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Abstract

Qualitative numerical planning is classical planning extended with non-negative real variables
that can be increased or decreased “qualitatively”, i.e., by positive indeterminate amounts. While
deterministic planning with numerical variables is undecidable in general, qualitative numerical
planning is decidable and provides a convenient abstract model for generalized planning. The
solutions to qualitative numerical problems (QNPs) were shown to correspond to the strong cyclic
solutions of an associated fully observable non-deterministic (FOND) problem that terminate. This
leads to a generate-and-test algorithm for solving QNPs where solutions to a FOND problem are
generated one by one and tested for termination. The computational shortcomings of this approach
for solving QNPs, however, are that it is not simple to amend FOND planners to generate all
solutions, and that the number of solutions to check can be doubly exponential in the number of
variables. In this work we address these limitations while providing additional insights on QNPs.
More precisely, we introduce two polynomial-time reductions, one from QNPs to FOND problems
and the other from FOND problems to QNPs both of which do not involve termination tests. A
result of these reductions is that QNPs are shown to have the same expressive power and the same
complexity as FOND problems.

1. Introduction

Qualitative numerical problems (QNPs) are classical planning problems extended with non-negative
numerical variables X that can be decreased or increased “qualitatively”, i.e., by positive indeter-
minate amounts. Since such numerical variables cannot be used for counting, QNP planning,
unlike most other general forms of planning with numbers (Helmert, 2002), turns out to be decid-
able. QNPs were introduced by Srivastava et al. (2011) as a useful model for generalized planning,
namely, the synthesis of plans that solve multiple classical planning instances (Levesque, 2005;
Bonet et al., 2009; Srivastava et al., 2011; Hu & De Giacomo, 2011; Bonet & Geffner, 2015; Belle
& Levesque, 2016; Jiménez-Celorrio et al., 2019). Basically, collections Q of planning instances
P that share the same set of actions and state features may be often expressed as a single QNP
problem Q whose solutions, that map state features into actions, solve all problems P in Q (Bonet
& Geffner, 2018).

QNPs can be solved in two steps (Srivastava et al., 2011). First, the QNP Q is converted into
a standard fully observable non-deterministic (FOND) problem P (Cimatti et al., 2003). Then,
solutions of P obtained by an off-the-shelf FOND planner are tested for termination. This last step
is required because the non-determinism in the FOND problem P is not fair in the usual sense:
the trajectories that are not fair are those in which a variable is decreased an infinite number of
times but increased a finite number of times only (Bonet et al., 2017). The policies that solve P
in which the (QNP) fair trajectories all reach the goal, and which correspond to the terminating
strong cyclic policies for P , are the policies that solve the QNP Q (Srivastava et al., 2011).
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The computational shortcomings of solving QNPs following this generate-and-test approach,
however, are two. First, it is not simple to amend FOND planners to generate all the solutions of a
FOND problem because FOND plans are not action sequences but closed-loop policies. Second, the
number of policies that need to be tested for termination may be huge: exponential in the number
of FOND states, and hence, doubly exponential in the number of variables.

In this work we address these limitations while providing additional insights on QNPs. We
introduce two polynomial-time reductions, one from QNPs to FOND problems and the other from
FOND problems to QNPs. As every (formal) reduction, both reduction are sound and complete,
and hence do not require termination tests. A result of these reductions is that QNPs are shown
to have the same expressive power and in particular, the plan-existence decision problem for both
have the same complexity EXP-Complete (Littman et al., 1998; Rintanen, 2004). The new QNP to
FOND translator is implemented and available. In combination with sound and complete FOND
planners, the translation yields the only sound and complete QNP planner available (i.e., solver that
works directly on the factored QNP representation without explicitly flattening the input QNP).

The structure of the paper is as follows. We review first classical planning, FOND planning,
QNPs, the direct translation of QNPs into FOND problems, and the termination test. We follow
ideas from Srivastava et al. (2011) but in a slightly different and more expressive formulation. We
then introduce the two new reductions: from FOND problems into QNPs, and from QNPs into
FOND problems. This last reduction is very different from the one sketched by Bonet et al. (2017)
which is incorrect (we illustrate this with an example). We then consider variations and extensions
of QNPs, the use of QNPs for generalized planning, experimental results, and related work.

2. Classical and FOND planning

A classical planning problem is a sequential decision problem where a goal is to be reached by
performing actions with deterministic effects from a given initial state. These problems are usually
expressed in compact form in planning languages such as STRIPS (Fikes & Nilsson, 1971; Russell &
Norvig, 2002). A (grounded) STRIPS planning problem (with negation) is a tuple P = 〈F, I,O,G〉
where F denotes a set of propositional variables, I and G are sets of F -literals representing the
initial and goal situation, and O is a set of actions a with preconditions and effects Pre(a) and
Eff (a) given by sets of F -literals.

The state model S(P ) for the problem P = 〈F, I,O,G〉 is a tuple S(P ) = 〈S, s0, Act, A, f, SG〉
where S is the set of possible truth-valuations over the F literals, called the states, s0 is the initial
state, Act = O, A(s) represents the actions a in Act whose preconditions are true in s, f(a, s)
represents the state s′ that follows action a in s for a ∈ A(s), and SG is the set of goal states. It is
assumed that the problem P is consistent in the sense that s0 and f are well-defined and SG is not
empty. A solution to a classical problem P is an action sequence a0, . . . , an that generates a state
sequence s0, . . . , sn+1 over the model S(P ) that reaches the goal. In this sequence, ai ∈ A(si) and
si+1 = f(ai, si) for i = 0, . . . , n, and sn+1 ∈ SG.

A fully-observable non-deterministic (FOND) problem P is like a classical planning problem ex-
cept that actions a may have non-deterministic effects expressed as Eff 1(a) | · · · |Eff n(a) where
Eff i(a) is a set of F -literals as above (Cimatti et al., 2003; Geffner & Bonet, 2013; Ghallab
et al., 2016). The state model S(P ) determined by a FOND problem P = 〈F, I,O,G〉 is a tu-
ple S(P ) = 〈S, s0, Act, A, F, SG〉 as above with the difference that the state transition function F
is non-deterministic, and maps an action a and state s into a non-empty set F (a, s) of possible
successor states. As usual, the non-deterministic transition function F is given in factored form.

924



Qualitative Numerical Planning: Reductions and Complexity

That is, for action a made of multiple effects Eff 1 | · · · |Eff n (possibly deterministic when n = 1),
each outcome s′ in F (a, s) results of the choice of one Eff i for each non-deterministic effect of a.1

The solutions of FOND problems ensure that the goal is reached with certainty under certain
fairness assumptions. Policies or plans in the FOND setting are partial functions π mapping states
s into actions π(s). A state trajectory s0, s1, . . . , sn (finite or infinite) is induced by π over the
model S(P ) if the action ai = π(si) is defined, it is applicable in the state si, i.e., ai ∈ A(si), and
si+1 is in F (ai, si), i = 1, . . . , n − 1. The trajectory is said to be a π-trajectory. The trajectory is
maximal if A) it is infinite, i.e., n =∞, and does not include a goal state, B) if sn is the first goal
state in the sequence, or C) the action π(sn) is not defined or not applicable in sn.

A policy π is a solution of the FOND problem P if all the fair maximal trajectories induced
by π over the model S(P ) are goal reaching (Cimatti et al., 1998, 2003). The so-called strong
solutions assume that all state trajectories are fair. Strong-cyclic solutions, on the other hand,
assume that all trajectories are fair except the infinite trajectories where a state s occurs infinitely
often but a state transition (s, s′) for some s′ ∈ F (a, s) for a = π(s), occurs finitely often. The
latter trajectories are deemed to be unfair.

Other equivalent characterizations of strong and strong cyclic solutions are common. For ex-
ample, a strong cyclic solution π for a FOND problem P is also a policy π such that for each
π-trajectory connecting an initial state to a state s, there is a π-trajectory connecting s to a goal
state. Similarly, a strong solution is a strong cyclic solution π with no cycles; i.e., one where no
π-trajectory visits the same state twice.

Strong solutions can also be thought as winning strategies against an adversary, while strong
cyclic solutions as winning strategies against nature. Indeed, there is a well known relation between
(proper) policies that achieve the goal with probability 1 in goal-based MDPs (Markov Decision
Processes) and the strong cyclic policies that solve the FOND problem associated with the MDP,
where the transition function is such that F (a, s) collects the states s′ that are possible after action
a in s, i.e., for which Pa(s′|s) > 0 (Geffner & Bonet, 2013).

From now, by solution of a FOND problem we mean a strong cyclic solution or plan, and by
a FOND planner, we mean a strong cyclic planner, i.e., a planner that produces strong cyclic
solutions. There are some good FOND planners available, including PRP (Muise et al., 2012),
based on classical planners, MyND (Bercher & Mattmüller, 2009), based on heuristic AND/OR
search, and FOND-SAT (Geffner & Geffner, 2018), based on a reduction to SAT.

3. Qualitative Numerical Problems

Qualitative numerical problems (QNPs) are classical planning problems extended with numerical
variables that can be decremented or incremented “qualitatively”. We make this formal below.

3.1 QNPs: Syntax

The syntax of QNPs is defined as an extension of the STRIPS language with negation. A QNP is a
tuple Q = 〈F, V, I, O,G〉 where the new component is a set V of non-negative numerical variables
X ∈ V . These variables introduce the non-propositional atoms X = 0 and their negations, denoted
as X > 0. These literals can appear in the initial situation, action preconditions, and goals of Q.
The effects of actions a on a numerical variable X can be only qualitative increments or qualitative

1. As it is standard, any choice of effects is assumed to be consistent (i.e., any pair of choices for two different non-
deterministic effects of the same action contain no complementary literals). However, with some (polynomially
bounded) extra work, our methods, algorithms and results still apply if the model is extended with constraints
that every outcome s′ must satisfy, when such constraints are given in suitable form; e.g. DNF formulas over F .
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decrements denoted by the expressions Inc(X) and Dec(X), often abbreviated as X↑ and X↓
respectively. We refer to X = 0 and X > 0 as the V -literals for X ∈ V , and to p and ¬p for p ∈ F ,
as the F -literals in Q.

Definition 1. A QNP is a tuple Q = 〈F, V, I, O,G〉 where F and V are sets of propositional and
numerical variables respectively, I and G denote the initial and goal situations, and O is a set of
actions a with preconditions, and propositional and numerical effects that are denoted as Pre(a),
Eff (a), and N(a) respectively. The F -literals can appear in I, G, Pre(a), and Eff (a), while V -
literals can appear in I, G, and Pre(a). The numerical effects N(a) only contain special atoms of
the form Inc(X) or Dec(X) for the variables X in V . Actions with the Dec(X) effect must feature
the precondition X > 0 for any variable X in V .

The preconditions and effects of an action a are denoted as pairs 〈Pre(a); Eff (a), N(a)〉 where
N(a) contains the numerical effects; namely, expressions likeX↑ andX↓ that stand for the increment
and decrement of variable X respectively. QNPs are assumed to be syntactically consistent by
requiring that no pair of complementary literals or qualitative effects appears in the initial situation,
action effects, or goals. A pair of complementary literals or qualitative effects has the form {p,¬p}
for some p in F , or {X = 0, X > 0} or {X↓, X↑} for some X in V .

Example. An abstraction that is suitable for expressing the generalized problem of achieving the
goal clear(x) over an arbitrary Blocksworld instance (Bonet & Geffner, 2018) is given in terms of
the QNP Qclear = 〈F, V, I, O,G〉 where F = {H} contains a boolean variable H that represents if
the gripper is holding a block, V = {n(x)} contains a numerical variable n(x) that represents the
number of blocks above x, and I = {¬H,n(x)> 0} and G = {n(x) = 0} represent the initial and
goal situations. The actions O = {a, b} are

a = 〈¬H,n(x)> 0;H,n(x)↓〉 (1)

and

b = 〈H;¬H〉 . (2)

It is easy to see that the first action a picks up blocks that are above x; its first precondition
¬H expresses that the gripper is holding no block, while the second n(x)> 0 that there is at least
one block above x. The effects, on the other hand, make H true (expressing that some block is
being held) and decrease the number n(x) of blocks above x. The other action b puts the block
being held away from block x as expressed by the precondition H and effect ¬H. The fact that b
puts blocks away from block x is reflected in that it does not affect the variable n(x).

The QNP Qclear captures the relevant part of the infinite collection of Blocksworld instances
where the goal is to achieve the atom clear(x) for some block x. The solution to Qclear provides the
general strategy for solving all such instances. For ways of learning such abstractions automatically;
see the recent work of Bonet et al. (2019).

3.2 QNPs: Semantics

A state s for QNP Q = 〈F, V, I, O,G〉 is a valuation that assigns a truth value s[p] to each boolean
variable p ∈ F , and a non-negative real value s[X] to each numerical variable X ∈ V . Since the
initial situation I can only feature atoms of the form X = 0 or X > 0, there is a set S0 of possible
initial states s0 that correspond to the valuations that satisfy the literals in I. For example, in
Qclear, I is given by the literals I = {¬H,n(x)> 0}, meaning that S0 contains all and only the
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valuations that make H false and n(x) = r for some positive real number r. The use of variables
that can take real values for representing integer counters illustrates that the semantics of QNPs is
coarse-grained, and for this reason, decidable. Indeed, QNPs use just one qualitative property of
numbers; namely, that a non-negative variable eventually must reach the value of zero if it keeps
being decremented and not incremented. This property is true for integers, and it also true for reals,
as long as the magnitude of the decrements is bounded from below by some positive ε-parameter.
More about this below. The state model S(Q) represented by a QNP can be characterized as
follows:

Definition 2. A QNP Q = 〈F, V, I, O,G〉 determines a non-deterministic state model S(Q) =
〈S, S0, Act, A, F, SG〉 where

• the states s in S are the valuations that assign a truth value to the boolean variables in F and a
non-negative real value to the numerical variables in V ,

• the initial states s0 in S0 are those that satisfy the literals in I under a closed-world assumption
(s0 makes p and X = 0 false if the literals p and X = 0 are not in I),

• the actions in Act are those in O; i.e., Act = O,

• the actions A(s) applicable in s are those in Act such that Pre(a) is true in s,

• the goal states in SG are those that satisfy G,

• the transition function F is such that s′ ∈ F (a, s) for a ∈ A(s) if

(a) s′[p] is true (resp. false) if p (resp. ¬p) is in Eff (a),

(b) s[X] < s′[X] if Inc(X) is in N(a),

(c) s′[X] < s[X] if Dec(X) is in N(a),

(d) s′[p] = s[p] if neither p nor ¬p in Eff (a),

(e) s′[X] = s[X] if neither X↑ nor X↓ in N(a).

A trajectory s0, a0, s1, a1, . . . , sn is compatible with the model S(Q) = 〈S, S0, Act, A, F, SG〉 if
s0 ∈ S0, and ai ∈ A(si) and si+1 ∈ F (ai, si) for each ai in the sequence. The trajectory is an ε-
bounded trajectory or ε-trajectory if the numerical changes are bounded from below by a parameter
ε > 0, except when this would make the variable negative:

Definition 3. A trajectory s0, a0, s1, a1, . . . , sn is an ε-trajectory iff for any variable X and time
point i, with i < n, si+1[X] 6= si[X] implies |si+1[X]− si[X]| ≥ ε or si+1[X] = 0.

Trajectories bounded by ε > 0 cannot decrease the value of a variable asymptotically without
ever reaching the value of zero. This is in agreement with the key assumption in QNPs by which
variables that keep being decreased and not increased eventually must reach the value zero. From
now, trajectories over QNPs will refer to ε-trajectories for some ε > 0.

3.3 QNPs: Solutions

Solutions to QNPs take the form of partial functions or policies π that map states into actions.
The choice of the action π(s) to be done in a state s, however, can only depend on the truth values
s[p] associated with the boolean variables p in F and the truth values of the expressions s[X] = 0
associated with the numerical variables X in V . If we use the notation s[X = 0] to refer to s[X] = 0,
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then π(s) must depend solely on the truth-valuation over the F -literals p and the V -literals X = 0
that are determined by the state s. There is indeed a finite number of such truth valuations but
an infinite number of states. We refer to such truth valuations as the boolean states of the QNP
and denote the boolean state associated with a state s as s̄.

Definition 4 (Policy). A policy π for a QNP Q = 〈F, V, I, O,G〉 is a partial mapping of states
into actions such that π(s) = π(s′) if s̄ = s̄′.

A trajectory s0, a0, s1, a1, . . . , sn compatible with the model S(Q) is said to be a π-trajectory
for Q if ai = π(si). Sometimes, a π-trajectory is simply denoted as a sequence of states since
the actions are determined by π. A π-trajectory is also said to be a trajectory induced by π or
compatible with π. As before, a π-trajectory is maximal if A) the trajectory is infinite and does
not include a goal state, B) sn is the first goal state in the trajectory, or C) π(sn) is undefined or
denotes an action that is not applicable in sn. The solutions to QNPs are defined then as follows:

Definition 5 (Solution). Let Q be a QNP and let π be a policy for Q. The policy π solves Q iff
for every ε > 0, all the maximal ε-trajectories induced by π reach a goal state.

We will see that solutions to QNPs can be characterized equivalently in terms of a suitable notion
of QNP-fairness; namely, a policy π solves Q iff every maximal (QNP) fair trajectory induced by
π reaches the goal, where the unfair trajectories are those in which some variable X is decreased
infinitely often but increased finitely often. For historical reasons, such unfair trajectories are called
terminating instead, as indeed they cannot go on forever if the decrements are bounded from below
by some ε > 0.

Example. Consider the QNP Qclear = 〈F, V, I, O,G〉 from above with F = {H}, V = {n(x)},
I = {¬H,n(x)> 0}, G = {n(x) = 0}, and O = {a, b} where a = 〈¬H,n(x)> 0;H,n(x)↓〉 and
b = 〈H;¬H〉. Let π be the policy defined by the rules:

if ¬H and n(x)> 0, then do a , (3)

if H and n(x)> 0, then do b . (4)

All the maximal ε-bounded trajectories that are induced by the policy π on Qclear have the form

s0, a, s1, b, s2, a, s3, b, . . . , s2m, a, s2m+1 (5)

where sm+1, for positive integer m, is the first state where n(x) = 0 is true. The actions a and
b alternate because the first makes H false and the second makes it true. In each transition
(si, si+1) for a non-negative even integer i, the numerical variable n(x) decreases by ε or more,
unless si+1[n(x)] = 0. The former case cannot happen more than s0[n(x)]/2ε times, as the numerical
variable n(x) is decreased every two steps and is never increased. Thus, in all cases and for any
ε > 0, any ε-trajectory induced by the policy π reaches a goal state in a finite number of steps,
regardless of the initial value s0[n(x)] of n(x), and regardless of the actual magnitude of the changes
|si+1[n(x)]− si[n(x)]|.

Example. A more interesting QNP that requires “nested loops” is Qnest = 〈F, V, I, O,G〉 with
F = ∅, V = {X,Y }, I = {X > 0, Y > 0}, G = {X = 0}, and O = {a, b} where

a = 〈X > 0, Y = 0;X↓, Y ↑〉 , (6)

b = 〈Y > 0;Y ↓〉 . (7)
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The policy π is given by the rules:

if X > 0 and Y = 0, then do a , (8)

if X > 0 and Y > 0, then do b . (9)

The policy decrements Y using action b until the action a that decreases X and increases Y can
be applied, and the process is repeated until X = 0. The ε-trajectories induced by π have the form

s0, b, . . . , b, s
1
k0 , a, s1

0, b, . . . , b, s
1
k1 , a, s2

0, b, . . . , b, s
2
k2 , . . . , a, sm0 , b, . . . , b, s

m
km , a, sG . (10)

where there is an outer loop that is executed a number of times m bounded by s0[X]/ε, as X is
decreased by ε or more, but is not increased. In the iteration i of such a loop, the action b is
executed a number of times ki bounded by si0[Y ]/ε as in such inner loop Y begins with value si0[Y ]
and it is decreased and not increased. The result is that all the ε-trajectories induced by π reach
a goal state in a finite number of steps that cannot be bounded a priori because the increments of
Y produced by the action a are finite but not bounded. The policy π thus solves Qnest.

4. Direct Translation and Termination Test

The problem of deciding the existence of a policy that solves a given QNPs is decidable as noted by
Srivastava et al. (2011). They hint a generate-and-test procedure to find such a policy where the
QNP is first translated into a FOND problem, and then all the possible strong cyclic policies for
the FOND problem are enumerated and tested for termination. The translation runs in polynomial
(linear) time in the number of boolean states for the QNP while the termination test for a given
strong cyclic solution is polynomial in the number of FOND states. However, the number of strong
cyclic solutions that need to be tested is exponential in the number of FOND states in the worst
case. The generate-and-test approach is not efficient but it is complete and runs in finite time.
In contrast, the plan-existence problem for numerical planning is undecidable even in the classical
setting where there is a single initial state and the action effects are deterministic; e.g., Post’s
correspondence problem can be reduced to a numerical planning problem (Helmert, 2002). The
decidability of plan existence for QNPs is due to the “qualitative” behaviour of the numerical
variables that cannot keep track of counts; in particular, the variables cannot be incremented or
decremented by specific amounts nor queried about specific values. We review the translation and
the termination test for QNPs before considering a novel polynomial translation which does not
require termination tests and which thus is a true reduction of QNPs into FOND problems.

The translation TD from a QNP Q to a FOND P = TD(Q) by Srivastava et al. (2011) is simple
and direct, and it involves three steps: 1) the literals X = 0 and X > 0 are made propositional
with the numerical variables X eliminated, 2) Inc(X) effects are converted into deterministic
boolean effects X > 0, and 3) Dec(X) effects are converted into non-deterministic boolean effects
X > 0 |X = 0.

Definition 6 (Direct Translation TD). For QNP Q = 〈F, V, I, O,G〉, the FOND problem P =
TD(Q) is P = 〈F ′, I ′, O′, G′〉 with

1. F ′ = F ∪{X = 0 : X ∈ V }, where X = 0 stands for a new propositional symbol pX = 0 and X > 0
stands for ¬pX = 0,

2. I ′ = I but with X = 0 and X > 0 denoting pX = 0 and ¬pX = 0,

3. O′ = O but with Inc(X) effects replaced by the deterministic propositional effects X > 0, and
Dec(X) effects replaced by non-deterministic propositional effects X > 0 |X = 0,
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4. G′ = G but with X = 0 and X > 0 denoting pX = 0 and ¬pX = 0.

The problem P = TD(Q) is a special type of FOND problem. For example, from its definition,
there is no action in P that can achieve a proposition X = 0 deterministically. We refer to actions
in the FOND P with effects X > 0 and X > 0 |X = 0 as Inc(X) and Dec(X) actions, as such effects
in P may only come from Inc(X) and Dec(X) effects in Q. Also, observe that the FOND P has a
unique initial state even though the QNP Q may have an infinite number of initial states.

The states of the FOND problem P = TD(Q) are related to the boolean states over Q, i.e.,
the truth-assignments over the atoms p and X = 0, the latter of which stand for (abbreviation of)
symbols in P . A policy π for the QNP Q thus induces a policy over the FOND problem P and vice
versa.2 Moreover, the FOND problem P = TD(Q) captures the possible boolean state transitions in
Q exactly. More precisely, (s, a, s′) is a possible transition in Q iff (s̄, a, s̄′) is a possible transition
in P . Indeed, if we extend the notion of strong cyclic policies to QNPs:

Definition 7. Let Q be a QNP and let π be a policy for Q. π is strong cyclic for Q iff for every
π-trajectory connecting s0 with a state s, there is a π-trajectory connecting s with a goal state.

The following correspondence between boolean states in Q and the states of the boolean FOND
problem TD(Q) results:

Theorem 8. Let Q be a QNP and let π be a policy for Q. π is strong cyclic solution for Q iff π
is strong cyclic policy for the FOND problem TD(Q).

Proof. Let S(Q) = 〈S, S0, Act, A, F, SG〉 and S(P ) = 〈S′, s′0, Act′, A′, F ′, S′G〉 be the state models
for the QNP Q and the FOND problem P = TD(Q). From the definition of the TD translation,
the state s is in S0 (resp. in SG) iff s̄ = s′0 (resp. in S′G), and the state s′ ∈ F (a, s) for a ∈ A(s)
iff s̄′ ∈ F ′(a, s̄) for a ∈ A′(s̄). This means that there is a π-trajectory connecting an initial state
s0 in S0 with a state s in S iff there is a corresponding π-trajectory connecting s′0 with s̄ in S′,
and similarly, there is a π-trajectory connecting s with a goal state s′ iff there is a corresponding
π-trajectory connecting s̄ with s̄′ in S(Q).

The correspondence between the π-trajectories connecting states s in Q and the π-trajectories
connecting the states s̄ in P = TD(Q) does not imply however that the solutions of P and Q are
the same. Indeed, the Dec(x) effects of an action a in Q are mapped into the non-deterministic
propositional effects X > 0 |X = 0 in P = TD(Q) which implies that X = 0 will be true in P if the
action a is repeated infinitely often. On the other hand, a Dec(X) effect in Q ensures that X = 0
will be true if a is repeated infinitely often as long as no Inc(X) action is performed infinitely often
as well.

In other words, the correspondence between the state transitions (s, a, s′) in Q and the state
transitions (s̄, a, s̄′) in P = TD(Q) does not extend to infinite trajectories (Bonet et al., 2017).
Recall that trajectories in Q refer to ε-trajectories for some ε > 0 that exclude “infinitesimal”
changes. As a result:

Theorem 9. Let Q be a QNP and let π be a policy for Q. If τ = s0, s1 . . . is an infinite π-
trajectory in Q, then τ̄ = s̄0, s̄1, . . . is an infinite π-trajectory in P = TD(Q). Yet, there may be
infinite π-trajectories in P = T (D) that do not correspond to any π-trajectory in Q.

2. The policy π over states s of Q determines the policy π′ over the FOND P where π′(t) = π(s) if t = s̄, and vice
versa, a policy π′ for P determines a policy π for Q where π(s) = π′(t) if s̄ = t. For simplicity, we use the same
notation π to refer to the policy π over Q and the policy π′ that it induces over P = TD(Q).
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Proof. For the first part, if τ is an infinite π-trajectory over Q, then si+1 ∈ F (ai, si) for ai = π(si);
therefore s̄i+1 ∈ F (ai, s̄i) for ai = π(s̄i), and hence τ̄ = s̄0, s̄1, . . . is an infinite π-trajectory over P .

For the second part, one example suffices. Let Q be a QNP with a single variable X that is
numerical, a single action a with precondition X > 0 and effect Dec(X), initial condition X > 0,
and goal X = 0. In the state model S(P ) associated with the FOND problem P = TD(Q), there
are two states t and t′, the first where X = 0 is true and the second where X > 0 is true, and there
is an infinite trajectory s̄0, s̄1, . . . where all s̄i = t′ and π(s̄i) = a, but there is no infinite trajectory
s0, s1 . . . in Q where X > 0 stays true forever while being decremented. Indeed, for any ε > 0 and
any initial value of X, s0[X] > 0, it is the case that sn[X] = 0 for n > s0[X]/ε.

The notion of termination is aimed at capturing the infinite π-trajectories over the FOND
problem P = TD(Q) that do not map into infinite π-trajectories over Q. Let

s̄0, s̄1, . . . , [s̄i, . . . , s̄m]∗ (11)

denote any infinite π-trajectory on the FOND P where the states s̄i, . . . , s̄m in brackets make the
non-empty set of recurring states; namely those that occur infinitely often in the trajectory (not
necessarily in that order). We refer to such set of recurrent states as the loop of the trajectory.
Observe that knowledge of the loop (and the policy π) is sufficient to infer whether a variable X is
decremented or incremented infinitely often. Termination imposes the following condition on loops:

Definition 10 (Terminating Trajectories). Let Q be a QNP and let π be a policy for Q. An infinite
π-trajectory s̄0, . . . , [s̄i, . . . , s̄m]∗ is terminating in P = TD(Q) if there is a variable X in Q that is
decremented but not incremented in the loop; i.e., if π(s̄k) is a Dec(X) action for some k ∈ [i,m],
and π(s̄j) is not an Inc(X) action for any k ∈ [i,m].

The notion of termination is a notion of fairness that is different from the one underlying strong
cyclic planning that says that infinite but terminating trajectories in P are not “fair” and hence
can be ignored. Indeed, this notion of termination closes the gap in Theorem 9:

Theorem 11. Let Q be a QNP and let π be a policy for Q. τ̄ = s̄0, s̄1, . . . is an infinite non-
terminating π-trajectory in P = TD(Q) iff there is an infinite π-trajectory τ = s0, s1, . . . in Q.

Proof. Let τ = s0, s1, . . . be an infinite π-trajectory in Q, and let us assume that the infinite
trajectory τ̄ = s̄0, s̄1, . . . is terminating. Then there must be a variable X that is decremented by
π(s) in some recurring state s in τ and which is not incremented by π(s′) on any recurrent state s′

in τ . Let s(t) denote the state at time point t in τ , let t be the last time point where variable X is
increased in τ (t = −1 if X is not increased in τ), and let X(t+1) be the value of variable X at the
next time point. The maximum number of times that X can be decreased after t + 1 is bounded
by X(t+ 1)/ε, and after this, X must have zero value. But in τ , X is decreased an infinite number
of times, in contradiction with the assumption that any action that decrements X features X > 0
as precondition.

For the converse, we show that one such trajectory τ in Q can be constructed for any ε > 0,
given that the trajectory τ̄ in P is non-terminating. We do so by adjusting the non-deterministic
increments and decrements of the actions, all of which have to be greater than or equal to ε,
except when this would result in negative values that are increased back to zero. We construct
τ = s0, s1, . . . from τ̄ = s̄0, s̄1, . . . as follows. The value of the boolean variables is the same in si as
in s̄i, and in addition, si[X] = 0 iff X = 0 is true in s̄i for all i. We just have to find exact values
for the numerical variables X in each of the states si in τ , and this is a function of their initial
values s0[X] when s0[X] > 0, and the positive decrements or increments ∆(X, si) when π(si) is a
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Dec(X) or Inc(X) action, and ∆(X, si) ≥ ε. For simplicity and without loss of generality, let us
assume that ε < 1 (the case for ε ≥ 1 is an easy exercise).

All the positive initial values of numerical variables, increments, and decrements are set to
positive integers by considering the sequence of actions π(si), i = 1, . . .. The initial values s0[X]
are set to 1 + k(X, 0) where k(X, i) stands for the number of Dec(X) actions that occur between
the state si and the first state sj after si where an Inc(X) action occurs (if no Inc(X) action occurs
after state si, k(X, i) is the number of Dec(X) actions after si). That is, k(X, i) is the cardinality
of the set

{j : i ≤ j < ind(X, i) and π(sj) is Dec(X) action} (12)

where ind(X, i) is the minimum index j > i such that π(sj) is an Inc(X) action, or ∞ if there
is no such action after si. Observe that k(X, i) is bounded. The only way it could be infinite is
when no Inc(X) action occurs after si while at the same time an infinite number of Dec(X) actions
occur; yet, this is impossible since then X eventually becomes zero after which no Dec(X) action
may occurs as such actions feature the precondition X > 0. Likewise, the increments ∆(X, si) are
set to 1 + k(X, i), and the decrements ∆(X, si) are set to si[X] if X = 0 is true in s̄i+1 and to 1 is
X > 0 if true in s̄i+1. It is not difficult to verify that these choices define a trajectory τ in Q that
corresponds to the assumed trajectory τ̄ in P .

The full correspondence between infinite π-trajectories τ in Q and infinite non-terminating π-
trajectories τ in P = TD(Q) suggests the following definition of termination in QNPs Q and FOND
problems TD(Q):

Definition 12 (Termination inQ). A policy π for the QNP Q is terminating iff all the π-trajectories
on Q are of finite length. In such a case, we say that π is Q-terminating.

Definition 13 (Termination in P ). A policy π for the FOND problem P = TD(Q) is terminating iff
all the infinite π-trajectories on P are terminating. In such a case, we say that π is P -terminating.

The correspondence between policies can then be expressed as:

Theorem 14. Let Q be a QNP, let P = TD(Q) be its direct translation, and let π be a policy for
Q (and thus also for P ). Then, π is Q-terminating iff π is P -terminating.

Proof. Direct from Theorem 11. For one direction, assume that π is Q-terminating and let τ̄ be a
π-trajectory in P . If τ̄ is not terminating, by Theorem 11, τ is infinite and thus π would not be
Q-terminating. Therefore, every π-trajectory τ̄ in P is terminating and thus π is P -terminating.
The other direction is established similarly.

The soundness and completeness of the direct translation extended with termination can be ex-
pressed as following:

Theorem 15 (Soundness and Completeness TD). Let Q be a QNP, let P = TD(Q) be its direct
translation, and let π be a policy for Q (and thus also for P ). The following are equivalent:

1. π solves Q,

2. π is a strong cyclic solution of Q and π is Q-terminating,

3. π is a strong cyclic solution of P and π is P -terminating.
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Proof. (1 ⇔ 2) Assume that π solves Q. If there is π-trajectory connecting an initial state with
state s, there must be π-trajectory connecting s with a goal state. Otherwise, π would not be a
solution for Q. Likewise, if τ is an infinite π-trajectory in Q, then τ does not reach a goal state
and thus π would not solve Q. For the converse direction, assume that π is a strong cyclic solution
for Q and that π is Q-terminating, and suppose that π does not solve Q. Then, there is a maximal
π-trajectory τ in Q that does not reach a goal state. It cannot be the case that τ ends in a state
s where π(s) is undefined or non-applicable as π then would not be a strong cyclic solution for Q.
Hence, τ must be infinite but this contradicts the assumption that π is Q-terminating.

(2⇔ 3) By Theorem 8, π is a strong cyclic solution for Q iff it is strong cyclic solution for P .
By Theorem 14, π is Q-terminating iff it is P -terminating.

5. Checking Termination with Sieve

Sieve is the procedure introduced by Srivastava et al. (2011) to test whether a policy terminates.
It runs in time that is polynomial in the number of states of the FOND problem reached by the
policy.3 For this, the algorithm takes as input a policy graph G(P, π) = 〈V,E〉 constructed from
the FOND problem P = TD(Q) and a strong cyclic policy π for P . The nodes in the policy graph
are the states s̄ in the state model S(P ) that are reachable from the initial state and the policy
π, and the directed edges in E are the pairs (s̄, s̄′) for s̄′ ∈ F (a, s̄) and π(s̄) = a. These edges are
labeled with the action a. The algorithm iteratively removes edges from the graph G(P, π) until
the graph becomes acyclic or no additional edge can be removed.

For incrementally removing edges from the graph, Sieve identifies first its strongly connected
components by a single depth-first search traversal, following Tarjan’s algorithm (Tarjan, 1972). A
strongly connected component (SCC) is a partition of the nodes of the graph such that if a node
s̄ belongs to a partition, any node s̄′ that can be reached from s̄ and that can reach s̄ back in the
graph, is placed in the same partition as s̄.

The algorithm then picks a variable X and a SCC such that the variable X is decremented
but not incremented in the SCC. That is, there must be a state s̄ in the SCC such that π(s̄) is a
Dec(X) action and no π(s̄′) is an Inc(X) action for any s̄′ in the SCC. The algorithm then removes
all the edges (s̄, s̄′) in the SCC such that π(s̄) is a Dec(X) action. We abbreviate this by saying
that variable X is removed from the SCC, which means that the edges associated with Dec(X)
actions are removed. Following the edge removals, the SCCs must be recomputed and the process
is repeated until the graph becomes acyclic or no more edges can be removed in this manner. The
result is that:

Theorem 16. Let Q be a QNP. A policy π for the FOND problem P = TD(Q) is P -terminating
iff Sieve reduces the policy graph G(P, π) to an acyclic graph.

Proof. We show the contrapositive of the two implications that make up the equivalence. First,
let us assume that Sieve terminates with a cyclic graph G and, thus, let C be a non-trivial SCC
in the graph G. Since every state in G is reachable from the initial state by π and since every
state in C is also reachable by π from any other state in C, there is a π-trajectory τ̄ in P of the
form s̄0, . . . , [s̄i, . . . , s̄m]∗ where the recurrent states s̄i, . . . , s̄m in τ̄ are exactly all the states in C.
Observe that Sieve is unable to remove any further edge from G. If no variable is decremented in
the loop, τ̄ is not P -terminating by definition. Similarly, if some variable X is decremented in the
loop (i.e., C), X is also incremented in the loop and the trajectory is again not P -terminating.

3. Our account of termination differs from the one of Srivastava et al. (2011) in two main aspects. First, our notion
of termination is articulated independently of the algorithm for checking termination. Second, our version of the
algorithm is developed and applied to QNPs that involve both numerical and boolean variables.
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Sieve (Graph G = G(P, π)):
repeat

Compute the strongly connected components (SCC) of G.

Choose an SCC C and a variable X that is decreased in C but is not increased in C;
i.e., for some s̄ in C, π(s̄) is a Dec(X) action, and for no s̄ in C, π(s̄) is an Inc(X) action.

Remove the edges (s̄, s̄′) such that s̄ and s̄′ are in C, and π(s̄) is a Dec(X) action.
until G is acyclic (terminating) or there is no SCC C and variable X to choose
(non-terminating)

Figure 1: Sieve procedure for testing whether policy π for FOND problem P = TD(Q) termi-
nates (Srivastava et al., 2011).

For the other implication, let us assume that π is not P -terminating. Then, there must be an
infinite π-trajectory τ̄ in P of the form s̄0, . . . , [s̄i, . . . , s̄m]∗ where every variable that is decremented
by an action π(s̄j), j ∈ [i,m], is incremented by another action π(s̄j), j ∈ [i,m]. We want to show
that Sieve terminates with a graph that has one SCC that includes all the states in the loop.
Indeed, initially, all the states in the loop must be in one component C as they are all reachable
from each other. Observe that edges that correspond to actions that do not decrement variables
are not removed by Sieve. Hence, if the loop does not decrement any variable X, the states in the
loop cannot be separated into different SCCs. On the other hand, Sieve cannot remove a variable
X from the loop as the component C features actions that increment and decrement X. Therefore,
as before, the states in the loop stay together within an SCC for the whole execution of Sieve.

The Sieve procedure, slightly reformulated from Srivastava et al. (2011), is depicted in Figure 1.

Example. The policy π for Qnest above is given by the rules:

if X > 0 and Y = 0, then do a , (13)

if X > 0 and Y > 0, then do b (14)

where recall that Qnest = 〈F, V, I, O,G〉 with F = ∅, V = {X,Y }, I = {X > 0, Y > 0}, G =
{X = 0}, and O = {a, b} where a = 〈X > 0, Y = 0;X↓, Y ↑〉 and b = 〈Y > 0;Y ↓〉. The policy decre-
ments Y using the action b until the action a that decreases X and increases Y can be applied. The
process is repeated until X = 0. The nested loops in the policy graph G(P, π) are shown in Figure 2.
The policy graph contains three states: the leftmost one is the initial state, and the rightmost one is
a goal state. The two states on the left are reachable from each other, and hence, define a strongly
connected component (SCC). In this SCC, the Dec(X) edges are removed by Sieve because X is
not increased anywhere. Once this is done, the Dec(Y ) edges are removed by Sieve because the
edges associated with Inc(Y ) effects are gone. The resulting graph is acyclic establishing thus that
the policy π terminates in P = TD(Qnest).

Using Sieve it is easy to see that the problem of checking the existence of plans for QNPs can
be decided in exponential space:

Theorem 17 (Srivastava et al., 2011). Deciding plan existence for QNPs is in EXPSPACE.

Proof. Let Q = 〈F, V, I, O,G〉 be a QNP. The number of boolean states for Q is exponential in the
number of fluents and variables; i.e., |F | + |V |. A policy π for Q can be described in exponential
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X > 0, Y > 0 X > 0, Y = 0 X = 0, Y > 0

b : Y ↓

b : Y ↓

a : X↓, Y ↑

a : X↓, Y ↑

Figure 2: Testing termination with Sieve. Policy graph G(P, π) for the FOND problem P =
TD(Qnest) and policy π, from the example in text, containing three states: the leftmost is
the initial state, and the rightmost is a goal state. The two states on the left are reachable
from each other, and hence, define a strongly connected component (SCC). In this SCC,
the Dec(X) edges are removed by Sieve because X is not increased anywhere. Once this
is done, the Dec(Y ) edges are removed because the edges associated with Inc(Y ) effects
have been eliminated. The resulting graph is acyclic and hence π terminates in P .

space as a mapping from boolean states into actions. A brute-force algorithm enumerates all policies
one by one using exponential space. Each policy is tested for strong cyclicity and termination. The
former is a straightforward test in a graph while the latter is done with Sieve. If the policy is
strong cyclic and terminating, Q is accepted. Otherwise, if no policy is found to be strong cyclic
and terminating, Q is rejected. Since testing strong cyclicity and running Sieve both require
polynomial time in the size of the input policy, the whole algorithm can be implemented in space
that is exponential in the size of Q.

Below we improve this bound and show exponential time (EXP) solvability through a more
complex translation of QNPs into FOND problems that is also polynomial. The novelty of the
new translation is that the strong-cyclic policies of the resulting FOND problems do not need
to be checked for termination. QNPs are thus fully reduced to FOND problems. Since FOND
problems can be reduced to QNPs as well, we will show indeed that FOND problems and QNPs
have the same expressive power, and the complexity of plan existence for FOND problems is known
to be EXP-Complete (Littman et al., 1998; Rintanen, 2004), then these reductions show the EXP-
Completeness of the plan existence decision problem for QNPs. In addition to the establishment
of novel theoretical results, these reductions are also of practical importance as they permit the
computation of solutions; once a QNP is reduced to FOND, a solution for the QNP can be recovered
in linear time from a solution to the FOND problem, and the same for the reduction from FOND
problems into QNPs.

The distinction between the classes EXP and EXPSPACE is important. EXPSPACE contains
the (decision) problems that can be solved with Turing machines (TMs) that operate in exponential
space (as a function of the input size), yet such TMs may in fact run in doubly exponential time as
the running time is bounded, in the worst case, by an exponential function of the bound in space
(Sipser, 2006). On the other hand, EXP comprises the problems that can be solved with TMs
that run in exponential time. The difference is analogous to the difference between the classes P
(polynomial time) and PSPACE (polynomial space).

6. First Reduction: FOND problems into QNPs

The first reduction that we introduce is from FOND problems into QNPs. It is a non-trivial
reduction yet simpler than the inverse reduction from QNPs into FOND problems. The main
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obstacle to overcome is that the non-deterministic effects in FOND problems are over boolean
variables, while those in QNPs are only on numerical variables through decrements. Another
important obstacle is that strong cyclic solutions in QNPs are not QNP solutions unless they are
terminating.

Let P = 〈F, I,O,G〉 be a FOND problem and let us denote the non-deterministic effects of
action a as Ea

1 |Ea
2 | · · · |Ea

ka
where each Ea

i is a set (conjunction) of F -literals, and ka denotes the
number of non-deterministic effects of the action a. If ka = 1, the action a is deterministic, else it
is non-deterministic. For simplicity, we assume that the set of effects {Ea

i }i for action a aggregates
all the multiple non-deterministic effects in the description of a in P , and the reduction below is
presented under this assumption. Afterwards, we discuss how to handle in polynomial time FOND
problems whose transitions are factorized.

We map P into a QNP Q = 〈F ′, V ′, I ′, O′, G′〉 that extends P with numerical variables V ′ =
{X} ∪ {Ya,i : a ∈ O, 1 ≤ i ≤ ka}, extra boolean variables, and extra actions; i.e., F ⊆ F ′, I ⊆ I ′,
O ⊆ O′, and G′ = G.

The heart of the reduction lies in the way in which the non-deterministic effects of each action
are captured in Q. For this, the collection of non-deterministic effects of the action a are replaced by
an Inc(X) action, for the unique numerical variable X, followed by a fixed loop where the variable
X is decremented until becoming zero. The alternative effects Ea

i are then triggered when X = 0
becomes true in the corresponding part of the loop. Intuitively, each non-deterministic action a
becomes a “wheel of fortune” that must be spun to select the non-deterministic effect to be applied.
The increments and decrements of the extra variables Ya,i ensure that the strong cyclic policies π
for P , and only those, induce policies π′ for Q that are terminating. The fixed loop sequence
associated with action a performs the following steps, that are implemented with the help of new
auxiliary actions and propositional symbols:

1. Inc(X) (implemented by modified action a),

2. Dec(X) (implemented by new action Spin),

3. If X = 0, apply the effects in Ea
1 , increment Ya,1, decrement Ya,j , j 6= 1, and break loop

(implemented by new actions Prep(a, i) and Exit(a, i) for i = 1),

4. Dec(X) (implemented by new action Next(a, i) for i = 1)

5. If X = 0, apply the effects in Ea
2 , increment Ya,2, decrement Ya,j , j 6= 2, and break loop

(implemented by new actions Prep(a, i) and Exit(a, i) for i = 2),

6. Dec(X) (implemented by the new action Next(a, i) for i = 2)

...

7. If X = 0, apply the effects in Ea
ka

, increment Ya,ka , decrement Ya,j , j 6= ka, and break loop
(implemented by new actions Prep(a, i) and Exit(a, i) for i = ka),

8. Dec(X) and go back to 3 (implemented by new action Loop(a))

If, throughout the loop, some variable Ya,j becomes zero, the next action to apply is forced to be
a new action that achieves the goal thus ending the execution. This mechanism takes care of the
non-fair trajectories that may exist in P .

To show that the resulting mapping is indeed a reduction (i.e., the mapping is sound and
complete), two things need to be established: that a policy π that solves Q induces a policy π′ that
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solves P (soundness), and vice versa, that a policy π′ that solves the FOND problem P induces a
policy π that solves Q (completeness).

The fixed sequence of effects for each action a in Q is implemented using the following additional
boolean variables:

• A boolean normal that is false when the sequence is entered for some action a and made true
when the loop is exited.

• A boolean ex(a) to express that the sequence for the action a is being executed. The reduction
is such that the atoms in {normal} ∪ {ex(a) : a ∈ O} are pairwise mutex and one of them is
always true.

• A counter from 0 to K encoded using mutex atoms cnt(`), ` = 0, 1, . . . ,K + 1, that is set to 1
when the loop is entered and re-entered (step 8 above) and where K is the maximum number of
non-deterministic outcomes of any action in P . (An engineering trick that saves an extra boolean
permits cnt(0) and cnt(i) to be both true after executing the action Prep(a, i) below.)

The actions that implement the fixed loop sequence (i.e., spin the wheel) are the following:

• Spin = 〈¬normal, cnt(0), X > 0;¬cnt(0), cnt(1), X↓〉.

• Next(a, i) = 〈ex(a), cnt(i), X > 0;¬cnt(i), cnt(1+i), X↓〉 to advance along the fixed loop sequence
while X > 0 and decrementing X.

• Loop(a) = 〈ex(a), cnt(ka), X > 0;¬cnt(ka), cnt(1), X↓〉 to start a new iteration of the loop.

These are the only actions that decrease the variable X, while the (modified) non-deterministic
actions being the only actions that increase X (see below). Once X becomes zero, the non-
deterministic effect to apply is determined by the value of the counter. The actions that apply the
selected effect and capture the non-fair trajectories are:

• Prep(a, i) = 〈ex(a), cnt(i),¬cnt(0), X = 0, Ya,j > 0; cnt(0), Ya,i↑, {Ya,j↓}j 6=i〉 where the precondi-
tion Ya,j > 0 is for all j, and the effect Ya,j↓ for all j 6= i.

• Exit(a, i) = 〈ex(a), cnt(i), cnt(0), X = 0, Ya,j > 0;¬ex(a),¬cnt(i), normal, Ea
i 〉 where the precon-

dition Ya,j > 0 is for all j.

• Fin(a, j) = 〈ex(a), X = 0, Ya,j = 0;¬ex(a), {¬cnt(i)}i≥1, normal,G〉 that is forced when Ya,i = 0
and reaches the goal G, where the effect ¬cnt(i) is for all positive i.

The only actions that affect the variables Ya,j are the Prep(a, i) actions. After applying such an
action, some (one or more) variables Ya,j may become zero. If so, Fin(a, j) becomes the only
applicable action and the execution terminates as the goal is reached. If no such variable becomes
zero, Exit(a, i) becomes forced which applies the effect Ea

i and restores “normal” operation.

The initial state of the QNP includes the atoms normal and cnt(0). Deterministic actions
in P “pass directly” into the QNP Q with these two atoms added as extra preconditions. Non-
deterministic actions a, however, are handled differently by replacing their effects Ea

1 |Ea
2 | · · · |Ea

ka
by deterministic effects {¬normal, ex(a), X↑} after which the only applicable action would be the
Spin action from above. The idea of the construction is illustrated in Figure 3.

Definition 18. Let P = 〈F, I,O,G〉 be a FOND problem. The reduction R maps P into the QNP
Q = 〈F ′, V ′, I ′, O′, G′〉 given by
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cnt(0), X = 0, Yj > 0

cnt(0), X > 0, Yj > 0

cnt(1), X > 0, Yj > 0 cnt(1), X = 0, Yj > 0

cnt(2), X > 0, Yj > 0 cnt(2), X = 0, Yj > 0

cnt(k), X > 0, Yj > 0 cnt(k), X = 0, Yj > 0

(modified) a : X↑

Spin : X↓
Spin : X↓

Next(a, 1) : X↓

Next(a, 1) : X↓

Prep(a, 1) : Y1↑, {Yj↓}j 6=1

Prep(a, 2) : Y2↑, {Yj↓}j 6=2

Prep(a, k) : Yk↑, {Yj↓}j 6=k

Next(a, k−1) : X↓

Next(a, k−1) : X↓

L
oo
p
(a

)
:
X
↓

Figure 3: Encoding the non-deterministic boolean effects E1 | · · · |Ek of an action a in the FOND
problem P as a fixed sequence of effects that loops while decrementing the variable X
in the QNP Q = R(P ). The variable X implements the loop while the counter cnt(i)
determines which effect Ei obtains when X becomes zero. When X = 0 and cnt(i) hold,
Prep(a, i) is applied whose function is to increment Yi = Ya,i and decrement the other
Yj variables; if no such variable becomes zero, the effect Ei is applied with the action
Exit(a, i) (not shown), otherwise Fin(a, j) is applied when Yj becomes zero (not shown).
The variables Yi are used to map unfair trajectories in P into goal-reaching trajectories in
Q, while forcing solutions of Q to induce solutions for P . Indeed, if one unfair trajectory
contains the action a infinitely often but neglects (starves) the effect Ei, the variable
Yi eventually becomes zero, since the only action that increments it is Prep(a, i), and
then the trajectory forcibly applies the action Fin(a, i) that terminates the execution by
reaching the goal (see text for details).

1. F ′ = F ∪ {normal} ∪ {ex(a) : a ∈ O} ∪ {cnt(`) : ` ∈ [0,K]} where K = maxa∈O ka,

2. V ′ = {X} ∪ {Ya,i : a ∈ O, i ∈ [1, ka]},

3. I ′ = I ∪ {normal, cnt(0)} ∪ {X = 0} ∪ {Ya,i> 0 : a ∈ O, i ∈ [1, ka]},

4. O′ = O∪{Spin}∪{A(a, i) : A ∈ {Prep,Exit, F in,Next}, a ∈ O, i ∈ [1, ka]}∪{Loop(a) : a ∈ O},

5. G′ = G.

For stating the formal properties of the reduction, we need to specify how a policy π for Q
induces a policy π′ for P , and vice versa, as Q involves extra variables and actions.
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Let us split the non-goal states in Q into two sets: the normal states, where the booleans normal
and cnt(0) are true, and the rest of non-goal states where normal or cnt(0) is false. (Observe that
there cannot be a normal state where some variable Ya,j is zero as when that happens, the loop
must exit with Fin(a, j) that reaches a goal state.) In the normal states, the (qualitative) value of
all the extra variables is the same: all the extra boolean variables are false except for normal and
cnt(0) that are true, X = 0, and Ya,i> 0 for a ∈ O and i = 1, 2, . . . , ka. Hence, any policy for P can
be converted into a policy for Q, and vice versa. For example, a policy π for P translates directly
into a policy for Q on normal states, where the actions for non-normal states is determined (the
only real choice is when more that one variable Ya,j is zero, but then any choice of the Fin(a, j)
actions is equivalent as such actions yield goal states). Conversely, any policy for Q induces a
unique policy for P as each non-goal state in P is associated with normal states in Q that get the
same action from the policy. The main properties of the reduction are expressed as follows:

Theorem 19 (Reduction FOND to QNP). The mapping R is a polynomial-time reduction from
FOND problems into QNPs. That is, a FOND problem P has a solution iff the QNP Q = R(P )
has a solution. Moreover, a solution for P (resp. Q) can be recovered in polynomial time from a
solution for Q (resp. P ).

Proof. It is straightforward to see that R is computable in time that is polynomial in the size of
the input P and the maximum value ka for any action a. (See below for a discussion on how to
deal with FOND problems that may have multiple non-deterministic effects per action.) Likewise,
as explained above, policies for P map into policies for Q, and vice versa.

We first show how to map infinite fair trajectories in P into trajectories in Q that visits normal
states infinitely often, and vice versa. Indeed, for an infinite trajectory τ in P , we can construct a
corresponding trajectory τ ′ in Q by augmenting the states in τ to give value to the extra booleans
and numerical variables in Q, and by “inserting” sub-trajectories over non-normal states for the
triplets (s, a, s′) in τ for non-deterministic actions a. Indeed, for such a triplet, it is enough to
determine the effect Ea

i that produces the successor state s′ in order to obtain a finite sequence of
non-normal states that map s into s′ in Q. For the converse, if τ ′ is a trajectory in Q that visits
normal states infinitely often, then τ ′ does not contain an action Fin(a, i). Thus, we can construct
a trajectory over P by just projecting τ ′ over its normal states. This trajectory is fair since if some
effect Ea

i is starved from an action a that is applied infinitely often, the variable Ya,i would become
zero forcing the application of Fin(a, i).

For showing the first implication, let us consider a policy π for P . We want to show that the
policy π′ obtained from π solves Q. Indeed, suppose that π′ does not solve Q. Then, π′ is either not
strong cyclic or non terminating in Q. The former is impossible since π connects each reachable
normal state to a goal state. Thus, π′ is non terminating in Q and there is a non-terminating
trajectory s̄0, . . . [s̄i, . . . , s̄m]∗ in TD(Q). The loop increments and decrements the variable X, and
all the variables Ya,j for the actions a that are applied in the loop, and thus it must contain some
normal state. Therefore, we can construct an infinite fair π-trajectory in P that is non-goal reaching
contradicting the assumption that π solves P .

For showing the second implication, let π′ be a policy for Q and let us suppose that the policy
π induced from π′ does not solve P . Then, either π′ is not defined over its reachable states or there
is an infinite fair π-trajectory in P , one that does not reach the goal. The first case is impossible
since π′ solves Q. For the second case, if such trajectory exists, then there is a π′-trajectory τ in
Q that visits normal states infinitely often. This trajectory is associated with a non-terminating
trajectory in TD(Q) in contradiction with π′ being a solution for Q.

939



Bonet & Geffner

Theorem 19 states that the strong cyclic policies for a FOND problem P correspond exactly
with the policies of the QNP Q = R(P ) that can be obtained from P in polynomial time. There is
an analogous translation for computing the strong policies of P ; namely, the strong cyclic policies
that are actually acyclic (no state visited twice along any trajectory). For this, let R′ be the
translation that is like R above but with the numerical variables Ya,i removed; i.e., initial and goal
conditions on Ya,i are removed from R′(P ) as well as the conditions and effects on Ya,i in the actions
Prep(a, i) and Exit(a, i), and with the actions Fin(a, j) removed.

Theorem 20 (Reduction Strong FOND to QNP). The mapping R′ is a polynomial time reduction
from FOND problems with strong solutions into QNPs. That is, a FOND problem P has a strong
solution iff the QNP Q = R′(P ) has solution. Moreover, a strong solution for P (resp. solution for
Q) can be recovered in polynomial time from a solution for Q (resp. strong solution for P ).

Proof. In the absence of the variables Ya,i, the only solutions to Q = R′(P ) must be acyclic, as any
cycle would involve increments and decrements of the single numerical variable X, and thus, would
not be terminating. The rest of the proof follows from the correspondence laid out in the previous
proof between the trajectories over the normal states in Q and the trajectories in P .

Let us now consider the case when the FOND problem P contains actions with multiple non-
deterministic effects. Let a be one such action, and let n be the number of non-deterministic effects
in a, each one denoted by Ej

1 | · · · |E
j
kj

where j ∈ [1, n] and kj is the number of outcomes for the
j-th non-deterministic effect of a. By assumption, every choice of outcomes for the effects yields
a consistent (aggregated) outcome for a (cf. footnote 1). The easiest way to accommodate such
actions is to “preprocess” P by replacing the action a by the sequence 〈a(1), a(2), . . . , a(n)〉 of n non-
deterministic actions, each one featuring exactly one effect; i.e., the effect of a(j) is Ej

1 | · · · |E
j
kj

.

For this, the precondition of a(1) is set to the precondition of a, that of a(j) to {seq(a), next(j)},
j ∈ [2, n], and the precondition of every other action is extended with ¬seq(a). Likewise, the effect
of a(1) is extended with {seq(a), next(2)}, that of a(j) with {¬next(j), next(j + 1)}, j ∈ [2, n− 1],
and that of a(n) with {¬next(n),¬seq(a)}. The new atoms seq(a) and next(j) denote that the
sequence for a is being applied and the next action to apply in the sequence is a(j) respectively. In
this way, the FOND problem P is converted in linear time into an equivalent FOND problem where
each action has exactly one non-deterministic effect. In other words, we may assume without loss
of generality that the FOND problem P is such that each action has at most one non-deterministic
effect since if this is not the case, P can be converted into an equivalent FOND problem P ′ in linear
time. By equivalent, we mean that any solution π for P can be converted in polynomial time into
a solution π′ for P ′, and vice versa.

We have shown how strong cyclic and strong planning over a FOND problem P translates into
QNPs: in one case, including the extra variables X and {Ya,i}a,i in place, in the second, only X.
The translation with these variables offers the possibility of capturing more subtle forms of fairness.
For example, if we just remove from the translation a variable Ya,i along with the effects on it, the
resulting QNP would assume that all the outcomes Ej , j 6= i, of action a are fair (i.e., they cannot
be skipped forever in a fair trajectory) but that the outcome Ei is not. In other words, while
in strong cyclic planning, all the non-deterministic actions are assumed to be fair, and in strong
planning, all of them to be unfair, in QNP planning, it is possible to handle a combination of fair
and unfair actions (as in dual FOND planning, Geffner & Geffner, 2018), as well as a combination
of fair and unfair outcomes of the same action.
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7. Second Reduction: QNPs into FOND problems

We have shown that FOND problems can be reduced in polynomial time to QNPs. We show now
the other direction: QNPs can be reduced in polynomial time to FOND problems. The two results
imply a new complexity result; namely, that QNPs have the same expressive power as FOND
problem and that the plan existence decision problem for both models have the same complexity.
This second translation T is more subtle than the first and unlike the direct translation TD above,
it is a full reduction which does not require termination tests.

The first attempt at such a translation was sketched by Bonet et al. (2017) but the reduction is
buggy as it is not always sound. The intuition, however, is useful and we build on it. Basically, that
reduction introduces boolean variables qX that when set to true preclude increments of variable
X, hence making the decrements of X “fair”. The variable qX can be reset to false when the
loop “finishes”, i.e., when X = 0 is true. This idea, however, does not fully avoid non-terminating
loops and hence, by itself, does not produce a sound reduction.4 The new translation replaces
the qX variables by a bounded stack that keeps the variables X that are being decremented in
order, and suitable counters. The new variables and actions enforce that solutions of the FOND
problem P = T (Q), unlike the solutions of the direct translation TD(Q), are all terminating. For
this, the new translation introduces conditions that mirror those captured by the Sieve procedure.
In particular, for capturing policies that terminate, the variables are to be placed on the stack
following the order by which Sieve removes them.

7.1 Extra Variables and Actions

The reduction T (Q) introduces a bounded stack α where numerical variables from V can be pushed
and popped, and bounded counters c(d), for d = 0, . . . , |V | that are associated with the possible
levels (depths) d = |α| of the stack. There is also a top counter cT that may only increase. The
stack starts empty and may grow to contain all the variables in V , but no variable can appear in
the stack more than once. The stack is represented as growing from left to right; e.g., αX is the
stack that results of pushing the variable X in the stack α. The c counters start at 0 and may grow
up to a Max number, that for completeness must be set to 1 + 2n where n is the total number
of boolean and numerical variables in Q. In practice, Max can be set to a much small number.5

In any case, the counters and the stack are captured in terms of a polynomial number of boolean
variables and the whole reduction T (Q) is computed in polynomial time. The state of the stack
α is captured by the atoms in(X), depth(d), and index(X, d) that represent whether X is in the
stack, the depth of the stack, and the depth at which X is in the stack, respectively. X is the top
element in the stack when index(X, d) and depth(d) are true (i.e., the stack is αX and |α| = d−1),

4. Consider a QNP Q = 〈F, V, I, O,G〉 with a single numerical variable X and four actions a, b, c, and d that result
in a loop where a = 〈p1, X > 0;¬p1, p2, X↓〉, b = 〈p2; p3,¬p2〉, c = 〈p3, X > 0;X↓〉, d = 〈p3, X = 0;¬p3, p1, X↑〉.
Let us assume that I = {p1, X > 0} and G = {X = 0, p2}. There is a single policy π for Q, as in all the (non-goal)
states that can be reached from I, there is a single applicable action. This policy π is strongly cyclic but is
not terminating. The reason is that one of the trajectories determined by the policy is a non-terminating loop
s0, a, s1, b, s2, c, s3, d, s0, . . . where the single variable that is decremented (X) is also incremented, and where
s̄0 = {p1, X > 0}, s̄1 = {p2, X > 0}, s̄2 = {p3, X > 0}, and s̄3 = {p3, X = 0}. The FOND problem that results
from the translation sketched by Bonet et al. (2017) accepts this policy π as a solution, which is incorrect. This
happens because the variable qX can be set and reset an infinite number of times; indeed, right before and right
after the action c in the loop, respectively. The new translation excludes such non-terminating loops via a stack
and counters.

5. For structured policies that result in loops that can be entered and left through single entry and exit points, Max
is the bound on the number of consecutive loops (blocks), possibly with other loops nested, that the policy can
generate at the same level.
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and it is bottom element when index(X, 1) is true (i.e., the stack is X). The stack is empty when
depth(0) holds.

The extra actions in P = T (Q) are those for pushing and popping variables to and from the
stack, and for advancing the top counter cT .

1. Actions Push(X, d) for variable X and depth d ∈ [0, |V | − 1] have preconditions ¬in(X),
depth(d) and c(d) < Max, and effects:

a) in(X), index(X, d+ 1), depth(d+ 1) and ¬depth(d) to push X and increase stack depth,

b) c(d) := c(d) + 1 to increment counter for old level,

c) c(d+ 1) := 0 to initialize counter for new level.

2. Actions Pop(X, d) for variable X and depth d ∈ [1, |V |] have preconditions in(X), index(X, d)
and depth(d), and effects:

a) ¬in(X), ¬index(X, d), ¬depth(d), depth(d− 1) to pop X and decrease stack depth.

3. Action Move advances the top counter cT by 1 when the stack is empty; i.e., it has preconditions
depth(0) and cT < Max, and effect cT := cT + 1.

For simplicity, we assume that the language of our FOND problems P makes room for the
integer counters c(d), d = 0, . . . , |V |, that may be increased by 1, from 0 up to a fixed number Max
and that may be reset back to 0. In the implementation, these counters are represented in terms
of a linear number of boolean variables.6

The actions a that belong to Q are split into two classes. Actions a that do not decrement any
variable, keep their names in P = T (Q) but replace their Inc(X) effects by propositional effects
X > 0, and add the precondition ¬in(X) that disables a when X is in the stack:

4. Actions a in Q that decrement no variable, keep the same names in T (Q), the same
preconditions and same effects, except that the effects Inc(X) are replaced by propositional
effects X > 0, if any, and in such a case, the precondition ¬in(X) is added.

Actions a from Q that decrement variables (and hence introduce non-determinism) map into
actions in P of type a(X, d) where X is a variable decremented by X that is in the stack at depth
d: more of the variables that are decremented are in the stack when the action is applied:

5. Actions a(X, d) for a in Q that decrement a variable X in the stack at level d (and
possibly others) inherit propositional preconditions and effects of a, and for each variable Y
that is increased by a, they include the precondition ¬in(Y ) and the effect Y > 0. The parameter
d ∈ [1, |V |] stands for the current stack depth. The action a(X, d) also has:

a) extra precondition index(X, d) (i.e., d is level at which X appears in stack),

6. In the actual encoding, the counters c(d) are represented with 1 + n atoms (bits), bi(d), i = 0, . . . , n, where n is
total number of variables in Q, i.e., n = |F |+ |V |. A preconditions such as c(d) < Max then translates into the
precondition ¬bn(d); the least and most significant bits for c(d) are b0(d) and bn(d) respectively. Increments of c(d)
by 1 may be translated in two different ways, either by using conditional effects, or by increasing the number of
actions. For the former, conditional effects of the form b0(d), . . . bi−1(d),¬bi(d)→ ¬b0(d), . . . ,¬bi−1(d), bi(d), for
i ∈ [0, n], are used. For the latter, each action act that increases c(d) is replaced by n actions act(i), i ∈ [0, n], that
are like act but have the extra precondition b0(d), . . . bi−1(d),¬bi(d) and the extra effects b0(d), . . . ,¬bi−1(d), bi(d).
The first translation, however, when compiled into STRIPS introduces additional actions as well (Nebel, 2000).
Finally, a reset effect c(d) := 0 is obtained by setting all atoms b0(d), i ∈ [0, n], to false.
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b) extra non-deterministic effects Xi> 0 |Xi = 0 for each Dec(Xi) effect, and

c) extra effects c(d′) := 0 for each d′ such that d ≤ d′ ≤ |V | to reset the counters for the levels
above or equal to d.

In words, actions a from Q that do not decrement any variable map into a single action of the
form a in P = T (Q), while actions a from Q that decrement variables map into actions a(X, d)
applicable only when a variable X decremented by a is in the stack at level d. The actions of the
form a in P = T (Q) are deterministic, and only actions a(X, d) can generate cycles in a strong
cyclic policy for P . The reduction P = T (Q) can be summarized as follows:

Definition 21 (Reduction QNP to FOND). Let Q〈F, V, I, O,G〉 be a QNP. The FOND problem
P = T (Q) is P = 〈F ′, I ′, O′, G′〉 with:

1. F ′ = F ∪ {cT } ∪ {depth(d), c(d)} ∪ {in(X)} ∪ {index(X, d′)},

2. I ′ = I ∪ {depth(0), cT = 0, c(0) = 0},

3. G′ = G,

4. O′ = {a : a ∈ O+} ∪ {a(Y, d′) : a ∈ O−} ∪ {Push(X, d′ − 1), Pop(X, d′)} ∪ {Move}

where X ranges over V , d and d′ range over [0, |V |] and [1, |V |] respectively, and O− and O+ stand
for the sets of actions in O that decrement and do not decrement a variable respectively, and the
variable Y in a(Y, d′) ranges among the variables decremented by the action a in Q. Preconditions
and effects of the actions in O′ are described above in the text.

8. Properties

Clearly, the reduction P = T (Q) can be computed in polynomial time:

Theorem 22. Let Q = 〈F, V, I, O,G〉 be a QNP. The reduction P = T (Q) can be computed in
time that is polynomial in the size of Q.

Proof. Let n = |F |+ |V | be the number of variables, propositional or numerical, in P = T (Q). P
has 1 + n counters of capacity 1 + 2n, each one requiring 1 + n bits: the counter c(d) is encoded
in binary with bits c(d, i), i ∈ [0, n]. P also has n atoms of form depth(d), |V | = O(n) atoms of
form in(X), and n|V | = O(n2) atoms of form index(X, d). Therefore, P has O(|F |+ n2) = O(n2)
propositional variables.

P has |V |2 = O(n2) push actions. Since Push(X, d) has precondition c(d) < Max and effect
c(d) := c(d) + 1, it gets compiled into n actions of the form Push(X, d, i), i ∈ [0, n − 1], where
precondition c(d) < Max is expressed as {¬c(d, i)} ∪ {c(d, j) : j ∈ [0, i − 1]}, and effect c(d) :=
c(d) + 1 is expressed as {c(d, i)} ∪ {¬c(d, j) : j ∈ [0, i − 1]}. The pop actions do not modify
counters, so there are O(n2) of them. The Move action increments the counter cT and then, like
for Push(X, d), it gets compiled into n different actions. Actions a in Q that do not decrement
variables are translated into actions a in P . Actions a that decrement a variable get translated into
actions a(X, d); there are O(n2) such actions a(X, d) in P for each such action a in Q.

In total, P has O(n2) propositional variables and O(|O|n2 + n3) actions, where the cubic term
accounts for the Push(X, d, i) actions. These numbers (polynomially) bound the size of P . It is
clear that producing each action in P is straightforward and can be done in polynomial time.

The second direct property of the translation is that due to the use of the counters, all strong
cyclic policies π for P must terminate:
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Theorem 23. Let Q be a QNP. Any strong cyclic policy π for P = T (Q) is P -terminating.

Proof. Let π be a strong cyclic policy for P and let τ = s̄0, . . . , [s̄i, . . . , s̄m]∗ be an infinite π-
trajectory. We need to show that there is some variable X that is decreased in one of these states
and increased in none. Clearly, π(s̄) for some s̄ in the recurrent set must be a non-deterministic
action, and this means it is an action of form a(X, d). The actions a(X, d) require X to be in the
stack and then resets all counters c(d′) for d′ ≥ d back to 0.

Let us pick an action a(X, d) in the recurrent states of τ to be one with smallest stack depth
d, and let s̄ be one of such states where π(s̄) = a(X, d). In the state s̄, the variable X is in the
stack at level d; i.e., index(X, d) is true. We show next that this same atom must be true in all
the other recurrent states in τ . Indeed, if there is a recurrent state where index(X, d) is false, it
means that there are recurrent states where X is popped from the stack, and others where it is
pushed back at level d, as s̄ is a recurrent state where index(X, d) holds. Yet, each occurrence of
the action Push(X, d− 1) needed to make index(X, d) true increases the counter c(d− 1) that no
action a(Y, d′) can reset with d′ < d, due our choice of the action a(X, d) as one with minimum d.
As a result, it has to be the case that X is in the stack at level d in all the recurrent states of τ , and
hence no action that increases X is applied while in a recurrent state (since increments of X are
disabled when X is in the stack). Then, since there is a recurrent state where X is decremented,
the infinite π-trajectory τ is terminating. Therefore, the policy π is P -terminating.

In order to prove soundness and completeness, we establish a correspondence between the strong
cyclic policies of Q and the strong cyclic policies of P = T (Q). The policies cannot be the same,
however, as the reduction T , unlike the direct translation TD, adds extra variables and actions.
Indeed, T preserves the atoms p and X = 0 from Q, the latter being propositional, but adds boolean
variables and actions that ensure that the policies over of T (Q), unlike the policies over TD(Q),
terminate.

Let QM be the QNP obtained from the FOND problem P = T (Q) by 1) adding the numerical
variables X from Q, 2) replacing the effects X > 0 by Inc(X), and the non-deterministic effects
X > 0 |X = 0 by Dec(X), and 3) interpreting the preconditions and goal of the form X = 0 and
X > 0 in terms of such variables (i.e., non-propositionally).

Theorem 24. If π solves the FOND problem P = T (Q), π solves the QNP QM .

Proof. P is the direct translation of QM , i.e. P = TD(QM ). π is P -terminating by Theorem 23 and
strong cyclic for P as it solves it. Therefore, by Theorem 15, π solves QM .

The QNP QM can be thought of as the composition of the original QNP Q and with a deter-
ministic model that encodes the state of the stack and counters. From this perspective, the policy
π that solves QM stands for a controller πM for Q that has an internal memory M comprised of
the atoms that encode the stack and counters: actions like Push(X, d), Pop(X, d) and Move only
affect the internal memory M of the controller πM , actions a that do not decrement any variable
in Q, only affect the state of Q, while actions a(X, d) affect both the state of Q and the internal
memory M . Due to the correspondence between the application of policy π to the QNP QM and
the application of the controller with memory πM to the QNP Q, it is then direct that:

Theorem 25 (Soundness). If policy π solves the FOND problem P = T (Q), the controller πM
solves Q.

Proof. Each execution of π in QM generates a trajectory over M and one over Q. Since π solves
QM , the latter must be terminating and goal reaching, but then they must be terminating and goal
reaching in Q that shares the same goal as QM and the same Dec(X) and Inc(X) actions.
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The inverse direction of this theorem is also true, but it does not give us a completeness result.
For that, we need to show that a policy π that solves Q determines a policy π′ that solves P = T (Q).

8.1 Completeness

We now assume that there is a policy π that solves Q and want to show that there is a policy π̄ that
solves P = T (Q). Since π solves Q, π is Q-terminating and also P ′-terminating where P ′ = TD(Q)
is the direct translation of Q (cf. Theorem 15).

Let G be the policy graph associated with π in P ′. By Theorem 16, Sieve reduces G to an acyclic
graph. For the rest of this section, we assume that Sieve is run until all edges that are associated
with actions that decrement variables are eliminated rather than stopping as soon as the graph
becomes acyclic.7 As a result, since π solves Q, the resulting acyclic graph has no edge associated
with a decrement of a variable. Each edge removed by Sieve can be identified with a variable, and
edges are removed in batches by Sieve, each such batch(C) associated with a component C and a
variable X chosen by Sieve; i.e., in a given iteration, Sieve chooses a component C and a variable
X, and removes all edges (s̄, s̄′) from C such that π(s̄) is a Dec(X) action (cf. Figure 1).

Let us index the top SCCs processed by Sieve in topological order (i.e., if Ci reaches Cj for
j 6= i, then i < j), and let scc(s̄) be the index of the (top) component that includes s̄ (i.e., the
index of the component that includes s̄ in the graph G). Sieve decomposes each component C into
a collection of nested SCCs that result of recursively removing edges from C. For each state s̄, let
Cs̄ = {Cj

s̄}j≥1 be the collection of nested SCCs that contain s̄; i.e.,

• C1
s̄ = Ck1 where k1 = scc(s̄) is the index of the (top) component that contains s̄, and

• for j ≥ 1, Cj+1
s̄ = Ckj+1

where s̄ is in the component Ckj+1
of the graph that results when all

edges in
⋃
{batch(Cki) : i ∈ [1, j]} have been removed by Sieve.

For each state s̄, let stack(s̄) be the sequence of variables chosen by Sieve for each component
in Cs̄. Observe that such sequence contains no repetitions since once Sieve chooses variable X for a
component C, the same X cannot be chosen later for another component C ′ contained in C. Also,
if the action π(s̄) is a Dec(X) action for variable X, then stack(s̄) contains X by the assumption
that Sieve is run until all edges associated with decrements of variables are eliminated.

We compare the stack α and stack(s̄), and say that α = X1 · · ·Xn is a prefix of stack(s̄) =
Z1 · · ·Zm if the latter can be obtained from the former by pushing variables only; i.e., if n ≤ m
and Xi = Zi for i ∈ [1, n]. A property of the Sieve algorithm that we exploit in the completeness
proof is the following:

Theorem 26. Let Q be a QNP and let P ′ = TD(Q) be its direct translation. If π solves Q and
τ̄ = s̄0, . . . , [s̄i, . . . , s̄m]∗ is an infinite π-trajectory in P ′, there is a variable X and a recurrent state
s̄ such that π(s̄) is a Dec(X) action, and X is in stack(s̄′) for every recurrent state s̄′ in τ̄ .

Proof. If π solves Q, π must be P ′-terminating. Thus, there must be a variable that is decreased
by π in some recurrent state, and increased by π in no recurrent state. At the same time, Sieve
is complete and must remove variables (edges) in the policy graph until it becomes acyclic (cf.
Theorem 16). Initially, all the recurrent states in τ̄ are in the same component but at one point
Sieve removes a variable X and splits the set of recurrent states into different and smaller com-
ponents. From its definition, this means that X appears in stack(s̄) for each recurrent state s̄ in

7. Clearly, the modification on the stopping condition for Sieve does not affect its correctness since an acyclic graph
remains acyclic when one or more edges are removed, and, on the other hand, if the original Sieve cannot reduced
a component, the modified algorithm is not able to reduce it either.
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τ̄ . Moreover, since the removal of X leaves these states into two or more components, π(s̄) for one
such state must be a Dec(X) action.

We now define the policy π∗ for P = T (Q) that is determined by the policy π that solves Q. In
the definition, we use the two functions scc(s̄) and stack(s̄) defined above in terms of the execution
of Sieve on the policy graph for π on TD(Q). The states over P are denoted by triplets 〈s̄, c, α〉
where s̄ is the state in TD(Q), c stands for the state of the counters c(d), d ∈ [0, |V |], and cT , and
α stands for the state of the stack (given by the atoms depth(d), in(X), index(X, d)). The policy
π∗ for P is defined at triplet 〈s̄, c, α〉 by

Pop(X, d) if cT < scc(s̄), X is top variable in α, and d = |α|, else

Move if cT < scc(s̄) and empty stack, else

Pop(X, d) if X is top variable in α, d = |α|, and α is not a prefix of stack(s̄), else

Push(X, d) if αX is a prefix of stack(s̄) and d = |α|, else

a if π(s̄) = a decrements no variable, else

a(X, d) if π(s̄) = a decrements X at depth d in α but no other var at depth d′ < d.

(15)

A first observation is that the policy π∗ is defined on every triplet 〈s̄, c, α〉 such that π(s̄) is
defined. The policy π∗ for the FOND problem P = T (Q) on a triplet 〈s̄, c, α〉 advances the cT
counter until it becomes equal to the index scc(s̄) of the SCC in G that contains the node s̄. It
then performs pops and pushes until α becomes equal to stack(s̄), and finally applies the action a
selected by the policy π on Q using the action names a or a(X, d) according to whether a decrements
no variable or decrements a variable, which must be in stack(s̄) as discussed above. In the latter
case, the variable X for the action a(X, d) is the variable X decremented by a that is deepest in
the stack, at depth d. The completeness result can then be expressed as follows:

Theorem 27 (Completeness). If π solves the QNP Q, then the policy π∗ defined by (15) solves
the FOND problem P = T (Q).

Proof. From Theorem 15, π solves Q iff π solves and terminates in P ′ = TD(Q). We will show that
if π solves and terminates in P ′, then π∗ must solve P = T (Q). Therefore, by forward reasoning,
given that π solves Q, then π solves and terminates in P ′ from which we obtain that π∗ solves P .

We need to show that the policy π∗ is executable in P , and more precisely that 1) π∗ cannot
generate non-goal states 〈s̄, c, α〉 where π∗ is not defined or defined but non applicable, and 2) π∗

cannot get trapped in a loop that only involves the extra actions Move, Pop(X, d) and Push(X, d).
These two properties ensure that in any π∗-trajectory over P , if a non-goal state 〈s̄, c, α〉 is reached,
an action a or a(X, d) will be the one changing the component s̄ of the state when π(s̄) = a, and
that this will happen after a bounded number of applications of the extra actions Move, Pop(X, d)
and Push(X, d) that do not change s̄. Since the effect of the actions a or a(X, d) on s̄ in P is the
same as the effect of a on s in P ′, it follows that π∗ will be strong cyclic for P if π is strong cyclic
for P ′. Alternatively, 1) and 2) ensure that if π∗ is executable in P , it generate trajectories over
the s̄ components that are the same as those obtained by the policy π over P ′ except for a bounded
number of steps where the s̄ component in the states 〈s̄, c, α〉 does not change.

Point 2) is direct. Move increases the counter cT that no other action decreases. Pushes and
pops are applied in order, either to flush out the stack when cT < scc(s̄), or to make α = stack(s̄).
In the latter case, α is popped until it becomes a prefix of stack(s̄) (flushed out in the extreme
case), and then pushes take place to make α equal to stack(s̄). Hence, no loops that only involve
Move, Pop(X, d) and Push(X, d) actions are possible.
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Point 1) is more subtle. The policy π∗ is defined on all triplets 〈s̄, c, α〉 for which s̄ is reachable
by π. We first argue, that except for the preconditions on the counters c(d) and cT , the rest of the
preconditions are true for the actions selected by π∗. Observe that every triplet 〈s̄, c, α〉 reached
by π∗ is such that s̄ is reachable by π, and thus π(s̄) is defined and applicable in s̄. Second, for
an action selected by π∗, its easy to see, except for ¬in(Y ) when the action is a or a(X, d) and
it increments Y , that its preconditions hold. To see that ¬in(Y ) also holds, observe that if the
actions increments Y , then stack(s̄) cannot contain Y ; if so, the collection Cs̄ of nested components
for s̄ has a component C that contains a state where Y is decremented while being incremented in
s̄, thus making Y ineligible by Sieve.

The actions that have preconditions on counters are of type Push(�, d) with precondition
c(d) < Max, and Move with precondition cT < Max. Here, � is a placeholder that denotes any
variable X in V . For the top counter, cT < Max always hold since cT starts at 0, it is only increased
to make it equal to scc(s̄), and the number of components in G is less than or equal the number of
subsets of states which is less than Max. We are thus left to show c(d) < Max by considering the
only type of actions that increase c(d): Push(�, d).

For this, we show that π∗ cannot generate a trajectory τ̃ in P that contains a fragment τ̃ ′ with
1 + 2n (i.e. Max) actions of the form Push(�, d) while no action of the form a(�, d′), d′ ≤ d, or
Push(�, d− 1) as this would be the only way in which c(d) may grow up to 1 + 2n: actions of the
form Push(�, d) increase c(d) by 1, and the only actions that decreases c(d), back to 0, have the
form a(�, d′) for d′ ≤ d, or Push(�, d− 1).

Indeed, let τ̃ ′ = 〈s̄1, c1, α1〉, 〈s̄2, c2, α2〉, . . . be such a fragment, and let 1 = i1 < i2 < · · · < im,
for m = 1 + 2n, be the indices for the triplets in τ̃ ′ on which the policy π∗ selects an action of type
Push(�, d). Observe that between each pair of such indices, there must be one triplet where an
action of type a or a(�, d′) is applied: two pushes at the same stack depth must be mediated by
at least one such action.

Let i∗1 < i∗2 < · · · be the indices such that i∗k is the first index after ik where the action selected
by π∗ is of type a or a(�, d′), k ∈ [1,m]. Since the total number of states is less than or equal to m,
there is some s̄ that repeats. Without loss of generality, let us assume that s̄i∗1 = s̄i∗m . The policy π
loops in P ′ on a set R of recurrent states that includes {s̄i∗k : k ∈ [1,m]}. By Theorem 26, there is
a variable X that is decremented by π while looping in R such that X belongs to each stack(s̄i∗k),
k ∈ [1,m]. We choose X to be such variable appearing deepest in the stacks. Therefore, there is
index k ≥ 1 such that π∗(〈s̄k, ck, αk〉) = a(X, d′) where d′ is the depth of X in αk. Since X also
belongs to α1, it must be the case d′ ≤ |α1| = d, the latter inequality since π∗(〈s̄i1 , ci1 , αi1〉) is of
type Push(�, d). This is a contradiction with the assumption that τ̃ ′ contains no action of type
a(�, d′) for d′ ≤ d.

The second reduction from QNPs into FOND problems may be used to compute policies for a
given QNP from policies of the resulting FOND. The reduction is a sound and complete mapping.
As mentioned above, the resulting QNP policies correspond to controllers that map states s̄ and
controller states, pairs 〈c, α〉 that encode the state of the (bounded) counters and stack, into actions.
Hence, there is still the question of whether a QNP solvable by such a controller is solvable by a
flat policy (as given in Definition 5). In the examples below, the controllers found by the FOND
planner over the translation yield flat policies where the selection of actions does not depend on
the internal controller state, but more generally the question remains open and beyond the scope
of this paper.
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9. Examples

Let us illustrate the translation and its solution with a simple example and two variations. The
base QNP is Q1 = 〈F, V, I, O,G〉 where there are two boolean variables F = {p, g}, two numerical
variables V = {n,m}, the initial and goal states are I = {p, n> 0,m> 0} and G = {g} respectively,
and the four actions in O are a1 = 〈p, n> 0;¬p, n↓〉, a2 = 〈¬p; p〉, and fin1 = 〈n= 0; g〉 and
fin2 = 〈m= 0; g〉, where the last two actions are used to capture the disjunctive goal n= 0∨m= 0.
The QNP Q2 is like Q1 except that a2 = 〈¬p; p, n↑〉, while the QNP Q3 is like Q1 (and Q2) except
that a2 = 〈¬p,m> 0; p, n↑,m↓〉.

Figure 4 shows the solutions of the FOND problems P1 = T (Q1) and P3 = T (Q3) for Q1 and
Q3 that are obtained with the qnp2fond translator (see below), and a FOND planner. The QNP
P2 = T (Q2), on the other hand, has no solution.

In order to understand these results, recall that in the FOND problem T (Q) for any QNP Q,
actions that decrement variables may be applied only when some of the decremented variables are in
the stack, and actions that increment variables may be applied only when none of the incremented
variables is in the stack. In addition, the translation prevents loops where a variable is pushed
and popped from the stack, except when the stack contains another variable throughout the loop
that is decremented, as otherwise the counters would grow without bounds. With these elements
in mind, we can turn to the solutions of Q1 and Q3, and the lack of solutions for Q2.

The solution for Q1 is direct. The idea is to use action a1 to decrement n down to zero, and
then apply fin1 to reach the goal. However, a1 is applicable only if n is in the stack and p is true.
Then, n must be pushed into the stack before the first application of a1, and p must be set to true
using a2 after each use of a1 as observed in Fig. 4(a).

The QNP Q2 has no solution because the action a2 that must be used to restore the precondition
p of a1 in the loop increments the variable n as well. Since action a1 requires n to be in the stack,
which prevents an action like a2 in Q2 to execute, the only possibility is to pop n from the stack
before executing a2, but then variable n should be pushed and popped from the stack in a loop
without the presence of a another variable in the stack that is decremented; a condition that is
precluded by the translation, and which is necessary for the loop to terminate.

It is precisely the presence of such extra variable m that is decremented by a2 and not incre-
mented by any action that makes the QNP Q3 solvable. While the goal can be achieved by either
reaching the condition n = 0 or m = 0 and then applying the action fin1 or fin2 respectively, the
solution found by the FOND planner over T (Q3) focuses on decrementing m down to zero using
a2 instead, and then using fin2 to reach the goal. The loop involving an unbounded number of
pushes/pops of n in the stack is permitted in the solution because the variable m is in the stack
and it is decremented in each iteration of the loop. In the translation this means that decrements of
m reset the counters associated with the variables like n that are above m in the stack, cf. Fig. 4(b).

Finally, an extra dummy variable like z together with a dummy action a3 = 〈z > 0; z↓〉 would
not make the QNP Q2 solvable either, because while such an action could be used to render a
terminating loop involving actions a1 and a2, along with a3, it would move the unsolvability to the
subproblem that results when the variable z becomes zero. The policy would need to map states
where z = 0 holds into goal states, and then, the same obstacles arise.

10. Extensions, Variations, and Memoryless Controllers

For simplicity, QNPs have been defined with certain syntactic restrictions that do not limit their
expressive power. In particular, there are no actions with non-deterministic effects on boolean
variables, and there are no effects that can map a literal X = 0 non-deterministically into the

948



Qualitative Numerical Planning: Reductions and Complexity

p, n> 0,m> 0, g p, n> 0,m> 0, g

p, n> 0,m> 0, gp, n= 0,m> 0, g

p, n= 0,m> 0, g

Push(n)

a1 : n↓a1 : n↓ a2

fin1

p, n> 0,m> 0, g p, n> 0,m> 0, g p, n> 0,m> 0, g

p, n≥ 0,m> 0, gp, n≥ 0,m> 0, gp, n> 0,m= 0, g

p, n> 0,m= 0, g

Push(m) Push(n)

a1 : n↓

Pop(n)

a2 : n↑,m↓

a2 : n↑,m↓

fin2

(a) Solution for QNP Q1 (b) Solution for QNP Q3

Figure 4: Solutions to the FOND translations T (Q1) and T (Q3) of the QNPs Q1 and Q3 in the
text. Nodes represent states in the translations (i.e., boolean QNP states augmented
with stack and counters) but only the QNP part is shown. Edges correspond to actions
from Q or actions that manipulate the stack and counters. Edges are annotated with
action labels and their effect on the numerical variables. Blue nodes represent multiple
QNP states; e.g., the node {p, n≥ 0,m> 0, g} for Q3 represents the QNP states where
{p,m> 0, g} and there is no restriction on the value of n. In both controllers, the initial
state is the top leftmost state (in yellow) and the goal is the rightmost state at the bottom
(green). The solution for Q1 decrements n with action a1 until it becomes zero, and a1

requires p and thus a1 is interleaved with a2 that makes p true. In Q3, the action a2 is
changed to increment n as well, and to decrement another variable m. The solution for
Q3 found by the solver reaches the goal by decreasing m to zero using action a2, while
using a1 to restore the preconditions of a2, and ignoring the variable n. Another solution
could be obtained by applying the action fin1 to the states where n = 0 but it would
involve more controller states (not shown).

literals X > 0 and X = 0, as decrements require X > 0 as a precondition, and increments yield the
outcome X > 0. Yet, these two restrictions are not essential and can be bypassed. As we have seen
before, non-deterministic effects on boolean variables as found in strong and strong cyclic FOND
planning can be obtained in QNPs by using additional numerical variables (Section 6). Likewise,
a sequence of two consecutive effects Inc(X) and Dec(X) can be used to emulate the effect of an
action that leaves the value of X completely uncertain; i.e., it may increase X, decrease X, or leave
the value of X unchanged.

There are also syntactic conditions that when satisfied, make QNPs simpler. For example, if
the numerical variables in a QNP Q can be linearly ordered as X1, X2, . . . so that the actions that
increase a variable Xi also decrease a variable Xj that appears later in the ordering, then every
policy π that solves the direct translation P = TD(Q) of Q will necessarily solve Q as well, as any
such policy will terminate in Q. Indeed, if X` is the last variable in the ordering that is decreased in
a cycle induced by π, the cycle cannot include a different state where the variable X` is increased,
as otherwise, the condition implies that another variable Xj appearing later in the ordering must
be decreased in the cycle. For such well-ordered QNPs, the simpler, direct translation TD is thus
both sound and complete.

Finally, recall that a policy π that solves the FOND P = T (Q) obtained from the translation
of a QNP Q, defines a policy that can be understood as a memory-extended controller that solves
Q using extra boolean variables and actions. Often, however, the policy π(s̄,m) obtained from
P , where s is the state over Q and m is the memory state, can be projected onto a memoryless
controller π′ for Q which does not use the extra variables or actions. The projection is possible
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and immediate when there is no state s in the controller where the actions π(s̄,m) and π(s̄,m′)
selected by the policy over two different memory states are associated with different actions in Q.
In such a case, all states s can be associated with a single action a from Q (there must be one such
action as otherwise π would not map s̄ into a goal state), and the memoryless policy π′ for Q is
then simply π′(s̄) = a.

11. QNPs and Generalized Planning

QNPs were introduced by Srivastava et al. (2011) as a useful model for planning with loops and for
generalized planning (Levesque, 2005; Bonet et al., 2009; Srivastava et al., 2011; Hu & Levesque,
2011; Bonet & Geffner, 2015). In the basic formulation (Hu & De Giacomo, 2011), a generalized
planning problem is a collection Q of planning instances P that share the same set of (ground)
actions and the same set state features. The solution of the generalized problemQ is then a mapping
from feature valuations into actions that solves each of the instances in Q. This basic formulation
was then extended to domains where the ground actions change from instance to instance, as in
most relational domains, like Blocksworld, where the actions are determined by a small number
of action schemas and object names. This formulation is achieved by means of QNPs (Bonet &
Geffner, 2018) where a single QNP is shown to be capable of representing a suitable abstraction of
the concrete instances P involving different ground actions.

A QNP is a sound abstraction of a family Q of concrete problems P from a common domain
when the boolean and numerical variables p and n in the QNP accurately represent and track the
value changes of certain boolean and numerical state features φp and φn in each of the instances.
More precisely, a QNP action ā = 〈Pre; Eff 〉 is sound relative to Q if in any (reachable) state s over
an instance P in Q, if the formula Pre is true in s, with the QNP variables p and n replaced by the
state feature functions φp and φn, then there is an action in P that induces a state transition (s, s′)
that agrees with the effects of the abstract action a, once again, with the QNP variables replaced
by the corresponding state features.

For example, in Blocksworld, a QNP action ā = 〈¬H,n(x)> 0;H,n(x)↓〉 provides a suitable
abstraction of the action of picking up a block from above a designated block x. In this abstraction,
the variable H is associated with the boolean state feature φH that captures when the arm is empty,
and the variable n(x) is associated with the numerical state feature φn that captures the number
of blocks above x. The abstract action is sound in the sense that for any state s of a Blocksworld
instance P , if φH(s) is false and φn(x)(s) > 0, there is an action b in P that induces a state transition
(s, s′) such that φH(s′) is true and φn(x)(s

′) < φn(x)(s), in agreement with ā. The concrete action
b is then said to instantiate the abstract action ā in the state s of the instance.

In general, if all the QNP actions are sound relative to Q and suitable conditions apply to the
initial and goal conditions of the QNP in relation to Q, any policy π that solves the QNP provides a
solution to Q; i.e., the policy π can be applied to any instance P in Q by interpreting the variables
in the QNP in terms of the state features (Bonet & Geffner, 2018). More recently, it has been
shown how these QNPs can be learned directly from a PDDL description of the domain and a
number of sampled instances and their plans (Bonet et al., 2019), and also how to obtain testable
logical conditions to check the soundness of a QNP-based abstraction for an instance P of a PDDL
domain description (Bonet et al., 2017). The QNPs used in the experiments below are variations
of QNPs learned from samples.

A final question about QNPs for generalized planning is what are the generalized planning
problems for which QNPs provide a suitable abstraction and solution method. It turns out that
with no restrictions on the state features φp and φn that can be abstracted into the QNP, there is
indeed, no limit. The solution to any family Q of planning problems can be expressed compactly
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in terms of a single QNP action ā = 〈V ∗> 0;V ∗↓〉 that involves a single numerical variable V ∗

associated with the feature φV ∗ that measures the optimal cost of reaching the goal from a given
state. The QNP action is sound and just says to move in the direction of the goal. However, the
application of this abstract action in a concrete state requires the computation of optimal costs
for each successor state, which is in general intractable in the number of problem variables. Thus,
a reasonable restriction is that the QNP variables should represent “reasonable” features, and in
particular, features that can be computed in polynomial (perhaps linear) time.

12. Implementation: Qnp2fond

The reduction from QNPs to FOND problems has been implemented and it can be found in the
Github repository https://github.com/bonetblai/qnp2fond. The reduction produces a FOND
problem without conditional effects which is desirable since some FOND planners do not support
them. The reduction may be parametrized in terms of the maximum range of counters and the
maximum stack depth, but their default values are those used in the proofs that ensure completeness
in general. In some cases, however, the reduction can be made simpler without compromising
soundness or completeness. For example, if no numerical variable in the QNP is incremented by
an action, the more compact and efficient direct translation TD is sound and complete. The same
holds if the QNP is well-ordered as defined above, where variables may be ordered as X1, . . . , Xn

such that actions that increment a variable Xi decrement a variable Xj for i < j.

On the other hand, if there are actions that increase variables but there are no actions that
increase a variable X, there is no need to add push and pop actions for X, nor preconditions for X
to be in the stack when decrementing it. This is possible since X may be assumed to be always at
the bottom of the stack (as if an implicit action that pushes X has been executed before any other
action) and because there is no need to pop X as no action increments it. However, according
to the translation, every action that decreases X must reset all stack counters. Interestingly, this
and the other simplifications are special cases of a more general simplification that can be applied
when the QNP contains a subset S of well-ordered numerical variables, as defined above; indeed,
a subset of variables X that are not incremented by any action is such a subset. For such a subset
S, one can assume that all variables in S are in the stack and thus simplify the translation by
(a) not generating push/pop actions for the variables in S, (b) not adding extra preconditions to
actions that decrement a variable in S (such actions already fulfill the requirement that one of its
decremented variables must be in the stack), and (c) requiring that actions that decrement any
variable in S, reset all the stack counters.8 When S contains all the numerical variables in the
QNP, then there is no need to have a stack and the simplified translation T simply becomes the
direct translation TD.

Qnp2fond supports the optimization for variables that are not incremented by any action. The
general optimization involving a subset of well ordered variables is not yet implemented since finding

8. Observe that the simplification cannot affect completeness as no action becomes inapplicable since preconditions
are removed and counters are potentially reset more often. For soundness, suppose that there is a non-terminating
execution and let R be the set of recurrent actions in such an execution. It cannot be the case that R contains
only actions that affect numerical variables outside S since such actions are not affected by the simplification
and thus are subject to the full translation. Hence, there is at least one action in R that either increments or
decrements a variable in S. If the action increments a variable in S, by definition, the action also decrements
another variable in S, one that comes later in the ordering. By inductive reasoning, R contains an action that
decrements a “last” variable X` in R that is not incremented by any other action in R. Hence, such a variable
eventually becomes zero and the action cannot be applied afterwards, contradicting the choice of R.
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such a subset and ordering is intractable.9 There also options for disabling the optimization, and
even to force the direct translation whose solutions need to be checked with Sieve. By default,
the options are to use the optimization whenever possible, and to use the maximum range for the
counters and stack depth that ensure completeness in general.

13. Experiments

We illustrate the performance of the QNP translator and solver over some QNPs that capture
abstraction of generalized planning problems. There is no useful baseline for evaluating the use of
the translator in combination with FOND planners. The only other complete QNP planner would
result from translating QNP problems into LTL synthesis tasks but the comparison would be unfair
because LTL synthesis is computationally harder than QNP planning. There is also no complete
generate-and-test QNP planner reported, which would have to generate the strong cyclic policies
of the direct FOND translation, one by one, while checking them for termination.

In the examples, the resulting FOND problems T (Q) are solved with FOND-SAT (Geffner &
Geffner, 2018), a general SAT-based FOND planner that is available at https://github.com/

tomsons22/FOND-SAT. This planner calls a SAT solver multiple times.10 The SAT solver used is
Glucose 4.1 (Audemard & Simon, 2009) which builds on Minisat (Een & Sorensson, 2004). FOND-
SAT solves a FOND problem by constructing a compact controller where each node represents one
or more states. When depicting the solutions found, controller nodes that represent more than one
state are shown in blue, while the nodes that correspond to the initial and goal QNP states are
shown in yellow and green respectively.

13.1 Clearing a Block

A general plan for clearing a given block x in a Blocksworld instance can be obtained by solving the
following abstraction expressed as the QNP problem Q = 〈F, V, I, O,G〉 where F = {H} contains a
boolean variable H that represents if a block is being held, V = {n} contains a numerical variable
that counts the number of blocks above x, the initial situation I = {¬H,n> 0} assumes that block
x is not clear and that gripper is empty, and the goal situation G = {n= 0} expresses that there
are no blocks on top of x. There are four actions in O:11

– Putaway = 〈H;¬H〉 to put the block being held on the table or on a block not above x,

– Pick-above-x = 〈¬H,n> 0;H,n↓〉 to pick the top block above x,

– Put-above-x = 〈H;¬H,n↑〉 to put the block being held on the top block above x, and

– Pick-other = 〈¬H;H〉 to pick a block not above x.

Qnp2fond translates the QNP Q into the FOND problem P = T (Q) that has 20 atoms and 16
actions in less than 0.01 seconds. FOND-SAT solves P in 0.08 seconds after 3 calls to the SAT
solver that require 0.01 seconds in total. The solution produced by FOND-SAT is the controller

9. A subset S and ordering can be found by solving a simple SAT theory, while a maximum-size subset and ordering
can be found with a weighted-max SAT solver, or by doing multiple calls to a SAT solver.

10. In each call to the SAT solver, FOND-SAT tries to find a solution (controller) with a given number of states
(budget). If no controller is found, the budget is increased by 1, and repeat until one is found.

11. From the point of view of generalized planning, the last QNP action, Pick-other = 〈¬H;H〉 is not sound in the
Blocksworld domain because on the states where there is a single tower and the gripper is empty, the abstract
action is applicable yet no concrete action corresponds to it. The obtained policy however is sound as it never
prescribes the action Pick-other.
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H,n> 0 H,n> 0 H,n> 0 H,n= 0
Push(n) Pick-above-x : n↓

Pick-above-x : n↓

Putaway

Figure 5: Solution of the FOND translation for the QNP Q for clearing a block x. Nodes represent
states in the translation (i.e., QNP states augmented with stack and counters) but only
the QNP part is shown. Edges correspond to actions from Q or actions that manipulate
the stack and counters. Edges are annotated with action labels and their effect on the
numerical variables. The initial state is the leftmost state and the goal is the rightmost
one. The policy is strong cyclic and terminating.

shown in Figure 5 which depicts actions from the QNP as well as the added actions to manipulate
the stack. The resulting policy is a finite-state controller that can be converted into the memoryless
policy π′ for the QNP that picks a block above x when the gripper is free, and puts away the block
being held otherwise.

13.2 Placing a Block on Top of Another

A general plan for placing block x on top of block y may be obtained by solving a suitable QNP.
For simplicity, we only consider the case when the blocks x and y are initially in different towers
and remains so on the non-goal reachable states (i.e., there are no actions to put blocks above
x or y except Put-x-on-y that achieves the goal). In this case, the QNP Q = 〈F, V, I, O,G〉
has boolean and numerical variables F = {E,X,D} and V = {n,m} that represent whether the
gripper is empty (E) or holding the block x (X), or if the goal has been achieved (D), while the
numerical variables n and m count the number of blocks above x and y respectively. The initial
state I = {E,¬X,¬D,n> 0,m> 0} describes a configuration where no block is being held, there
are blocks above x and above y, but x and y are in different towers; the goal is simply G = {D}.
The QNP has six different actions:12

– Pick-x = 〈E,n= 0;¬E,X〉 to pick block x,

– Pick-above-x = 〈E,n> 0;¬E,n↓〉 to pick the topmost block that is above x,

– Pick-above-y = 〈E,m> 0;¬E,m↓〉 to pick the topmost block that is above y,

– Putaside = 〈¬E,¬X;E〉 to put aside (not above x or y) the block being held,

– Put-x-aside = 〈¬E,X;E,¬X〉 to put aside the block x (being held), and

– Put-x-on-y = 〈¬E,X,m= 0;E,¬X,D,m↑〉 to put x on y.

12. One reason for why this particular QNP is not suitable for dealing with states where the blocks x and y are in
the same tower, is that the Pick-above-x and Pick-above-y actions are not sound relative to the intended features
φn and φm that the variables n and m are aimed to track. A needed Pick-above-x-and-y action, for example, will
decrement the two variables n and m.

953



Bonet & Geffner

E,X,D, n> 0,m> 0 E,X,D, n> 0,m> 0

E,X,D, n= 0,m> 0 E,X,D, n= 0,m> 0 E,X,D, n= 0,m> 0 E,X,D, n= 0,m= 0

E,X,D, n= 0,m= 0E,X,D, n= 0,m= 0E,X,D, n= 0,m= 0E,X,D, n= 0,m> 0

Pick-above-x : n↓

Pick-above-x : n↓

Putaside

Push(m) Putaside Pick-above-y : m↓

Pick-above-y : m↓

Pop(m)

PutasidePick-xPut-x-on-y : m↑

Figure 6: Solution of the FOND translation for the QNP Q for placing a block x on top of another
block y. Nodes represent states in the translation (i.e., QNP states augmented with stack
and counters) but only the QNP part is shown. Edges correspond to actions from Q or
actions that manipulate the stack and counters. Edges are annotated with action labels
and their effect on the numerical variables. The initial state is the top leftmost state and
the goal is the leftmost one at the bottom. The policy is strong cyclic and terminating.

Since Q has no action to increment n, qnp2fond generates in less than 0.01 seconds a simplified
FOND problem P = T (Q) that has 47 atoms and 35 actions, 42 atoms for encoding the counters
and the stack, and 27 actions that manipulate the stack and the top counter. FOND-SAT finds
the solution shown in Figure 6 in 2.55 seconds; it makes 9 calls to the SAT solver that require 0.31
seconds in total. The resulting controller also defines a memoryless policy.

13.3 Gripper

The task involves a robot with grippers whose goal is to move a number of balls from one room
into a target room. Each gripper may carry one ball at a time. An abstraction for generalized plan
may be obtained with a QNP Q = 〈F, V, I, O,G〉 that involves one boolean feature T that indicates
whether the robot is in the target room, and three numerical features that count the number of
balls still to be moved (b), the number of balls being carried (c), and the number of empty grippers
(g). The initial state I = {T, b> 0, c= 0, g > 0} places the robot at the target room, carrying no
balls, and with some balls in the other room. The goal description is simply G = {c= 0, b= 0}
saying that the number of balls being carried and the number of balls in the other room are both
zero. The set of (abstract) actions in Q is:

– Drop-at-source = 〈¬T, c> 0; b↑, c↓, g↑〉 to drop balls in the other room,

– Drop-at-target = 〈T, c> 0; c↓, g↑〉 to drop balls in the target room,

– Pick-at-source = 〈¬T, b> 0, g > 0; b↓, c↑, g↓〉 to pick balls in the other room,

– Move = 〈¬T ;T 〉 to move to the target room, and

– Leave = 〈T ;¬T 〉 to move to the other room.

It is easy to see that this abstraction captures instances involving any number of balls and robots
with any positive number of grippers.

The translator runs in less than 0.01 seconds and generates a FOND problem P = T (Q) with
54 atoms and 47 actions (50 atoms for encoding the counters and the stack, and 29 actions to
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T, b> 0, c= 0, g > 0 T, b> 0, c= 0, g > 0 T , b> 0, c≥ 0, g > 0 T , b= 0, c> 0, g≥ 0

T, b= 0, c> 0, g≥ 0

T, b= 0, c> 0, g≥ 0T, b= 0, c= 0, g > 0

T , b> 0, c> 0, g= 0T , b> 0, c> 0, g= 0T, b> 0, c= 0, g > 0

T, b> 0, c> 0, g≥ 0

Push(b) Leave Pick-at-source : b↓, c↑, g↓

Move

Push(c)

Drop-at-target : c↓, g↑

Pick-at-source : b↓, c↑, g↓

Push(c)

MoveDrop-at-target : c↓, g↑

Pop
(c)

Pick-at-source : b↓, c↑, g↓

Drop-at-target : c↓, g↑Drop-at-target : c↓, g↑

Figure 7: Solution of the FOND translation for the QNP Q for Gripper. Nodes represent states
in the translation (i.e., QNP states augmented with stack and counters) but only the
QNP part is shown. Blue nodes in the controller represent one or more QNP states;
e.g., the node {T , b> 0, c≥ 0, g > 0} in the first row represents the QNP states where
{T , b> 0, g > 0} hold and there is no restriction on the value of c. Edges correspond to
actions from Q or actions that manipulate the stack and counters. Edges are annotated
with action labels and their effect on the numerical variables. The initial state is the
top leftmost state and the goal is the second one at the bottom row. The policy is
strong cyclic and terminating because each self loop is terminating, and the outer loop
terminates since the variable b decreases by at least one in each iteration, and no action
in the plan increases it.

manipulate the stack and move the top counter). FOND-SAT finds the solution shown in Figure 7
in 11.25 seconds; it makes 10 calls to the SAT solver that require 3.00 seconds in total. The resulting
controller also defines a memoryless policy.

13.4 Delivery

The last example involves an agent that navigates a grid and whose job is to look for packages
and deliver them at a target location subject to the constraint that it can carry one package at a
time. The generalized problem consists of all instances with a finite but unbounded grid, and a
finite but unbounded number of packages. The generalized problem can be captured with the QNP
Q = 〈F, V, I, O,G〉 that involves one boolean feature H that tells whether the agent is holding a
package, and 3 numerical features that measure the distance to the next package (d), the distance
to the target location (t), and the number of packages that still need to be delivered (p). The initial
state I = {¬H, d> 0, t > 0, p> 0} corresponds to a state where the agent holds no package and is
neither at a package or the target location, while the goal description G = {¬H, p= 0} indicates
that all packages have been delivered. The QNP Q has five actions:13

– Move = 〈d> 0, p> 0; d↓, t↑〉 to move towards next package and away from target location,

– Home = 〈t> 0; d↑, t↓〉 to move towards target location and away from next package,

– Pick = 〈¬H, d= 0;H〉 to pick a package,

13. From the point of view of generalized planning, the QNP actions Move and Home are not sound over this domain
since the agent may move towards the next package without moving away from the target location, and vice
versa.
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H, d> 0, t≥ 0, p> 0 H, d> 0, t≥ 0, p> 0 H, d= 0, t > 0, p> 0 H, d= 0, t > 0, p> 0

H, d= 0, t > 0, p> 0H, d≥ 0, t > 0, p> 0H, d> 0, t= 0, p> 0H, d> 0, t= 0, p> 0

H, d> 0, t= 0, p= 0

Push(d) Move : d↓, t↑ Pop(d)

Pick

Push(t)Home : d↑, t↓Pop(t)

Deliver : d↑, p↓

Deliver : d↑, p↓

Move : d↓, t↑

Home : d↑, t↓

Figure 8: Solution of the FOND translation for the QNP Q for Delivery. Nodes represent states in
the translation (i.e., QNP states augmented with stack and counters) but only the QNP
part is shown. Blue nodes in the controller represent one or more QNP states; e.g., the
top leftmost node {H, d> 0, t≥ 0, p> 0} represents the QNP initial state and a similar
state except t= 0. Edges correspond to actions from Q or actions that manipulate the
stack and counters. Edges are annotated with action labels and their effect on numerical
variables. The initial state is the top leftmost state and the goal is the one at the bottom
row. The policy is strong cyclic and terminating because each self loop is terminating,
and the outer loop terminates since the variable p decreases by one in each iteration, and
no action in the plan increases it.

– Drop = 〈H, t> 0;¬H〉 to drop a package not in target location, and

– Deliver = 〈H, t= 0, p> 0;¬H, d↑, p↓〉 to deliver a package in target location.

Since the variable p is not incremented by any action, the translator generates a simplified
FOND problem P = T (Q), in less than 0.01 seconds, that has 54 atoms and 40 actions (50 atoms
for encoding the counters and the stack, and 29 actions to manipulate the stack and move the top
counter). FOND-SAT finds the solution shown in Figure 8 in 2.99 seconds; it makes 8 calls to the
SAT solver that require 0.30 seconds in total. As in previous examples, the resulting controller
defines a memoryless policy.

14. Related Work

QNPs have been introduced as a decidable planning model able to account for plans with loops
(Srivastava et al., 2011, 2015). In addition, by defining the boolean and numerical variables of
QNPs as suitable general boolean and numerical features over a given domain, it has been shown
that QNPs can be used to express abstract models for generalized planning, in particular when
the ground actions change from instance to instance (Bonet & Geffner, 2018). More recently, it
has been shown that these QNP abstractions can be learned automatically from a given planning
domain and sampled plans (Bonet et al., 2019). QNPs thus provide a convenient language for a
model-based approach to the computation of general plans where such plans are derived from
a (QNP) planning model. If the model is sound, the general plans are guaranteed to be correct
(Bonet & Geffner, 2018; Bonet et al., 2019). This is in contrast with the more common inductive or
learning-based approaches where plans computed to solve a few sampled instances are assumed
to generalize to other instances by virtue of the compact form of the plans (Khardon, 1999; Martin
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& Geffner, 2004; Fern et al., 2004). These learning approaches do not construct or solve a suitable
abstraction of the problems as expressed by QNPs. Inductive approaches have been used recently
to learn general plans in the form of finite-state controllers (Bonet et al., 2009; Hu & De Giacomo,
2013), finite programs (Segovia-Aguas et al., 2016), and deep neural nets learned in a supervised
manner (Toyer et al., 2018; Bueno et al., 2019; Issakkimuthu et al., 2018; Bajpai et al., 2018).
A key difference between learning-based and model-based approaches is that the correctness of
the latter follows from the soundness of the model. Deep reinforcement learning methods have
also been used recently for computing generalized plans with no supervision (Groshev et al., 2018;
Sukhbaatar et al., 2015), yet by not using first-order symbolic representations, they have difficulties
in dealing with relational domains that involve objects and relations (Garnelo & Shanahan, 2019).
Forms of generalized planning have also been formulated using first-order logic (Srivastava et al.,
2011; Illanes & McIlraith, 2019), and general plans over finite horizons have been derived using
first-order regression as well (Boutilier et al., 2001; Wang et al., 2008; Van Otterlo, 2012; Sanner
& Boutilier, 2009). The use of QNPs for expressing (or learning) abstractions for generalized
planning problems, combined with the compilation of QNPs into FOND problems, allows us to
benefit from the performance of propositional off-the-shelf FOND planners like PRP (Muise et al.,
2012), MyND (Bercher & Mattmüller, 2009), and FOND-SAT (Geffner & Geffner, 2018) in order
to find generalized plans.

QNP problems can be easily translated into LTL planning problems with FOND domains,
reachability goals, and a particular type of trajectory constraints that can be expressed as compact
LTL formulas (Bonet et al., 2017). The trajectory constraints use a fragment of LTL (Pnueli,
1977) to express the QNP fairness constraints; namely, that trajectories where a variable X is
decremented an infinite number of times and incremented a finite number of times, are not fair
and can thus be ignored.14 As a result, QNP planning can be translated quite efficiently (linear
time) into LTL synthesis. The translation, however, is not particularly useful computationally, as
QNP planning, like FOND planning, is EXP-Complete, while LTL synthesis is 2EXP-Complete
(doubly exponential in time) (Pnueli & Rosner, 1989). In LTL planning, i.e., FOND planning with
LTL goals and trajectory constraints, the double exponential growth is in the number of variables
that appear in such formulas (Camacho et al., 2019; Aminof et al., 2019). Tight complexity bounds
for the specific type of LTL trajectory constraints that QNPs convey have not been settled. In any
case, such methods need to compute in explicit form the QNP transition system, and thus require
exponential space in the total number of variables. This lower bound, that does not consider the
LTL formulas associated with the trajectory constrains, already matches the upper bound of the
brute-force algorithm that uses Sieve as subroutine (cf. proof of Theorem 17).

15. Conclusions

QNPs are convenient abstract models for generalized planning. In this work we have studied QNPs
and placed them on firmer ground by studying their theoretical foundations further. We have also
shown that FOND problems can be reduced into QNPs, and vice versa, that QNPs can reduced into
FOND problems. Both translations are new and polynomial-time computable, hence establishing
that the two models have the same expressive power and the same complexity. The previous,
direct translation TD(Q) for QNPs Q also yields a FOND problem but with fairness assumptions
that do not match those underlying strong cyclic FOND planning, and this is why solutions to
this translation need to be checked for termination. QNPs can be reduced to LTL synthesis and

14. The LTL formula used by Bonet et al. (2017) is slightly different but logically equivalent, and states that always,
if a variable is decreased infinitely often and increased finitely often, it must eventually have value zero. They are
equivalent because once the value zero is reached, the variable cannot be decreased without being increased.
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planning but these are harder computational tasks. In the future, it would be interesting to
study more general types of fairness assumptions and the fragments of LTL that can be handled
efficiently with methods similar to the ones developed for QNPs that are based on polynomial-time
translations and off-the-shelf FOND planners.
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