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Abstract
Voting rules allow multiple agents to aggregate their preferences in order to reach joint
decisions. A common flaw of some voting rules, known as the no-show paradox, is that
agents may obtain a more preferred outcome by abstaining from an election. We study
strategic abstention for set-valued voting rules based on Kelly’s and Fishburn’s preference
extensions. Our contribution is twofold. First, we show that, whenever there are at least
five alternatives and seven agents, every Pareto-optimal majoritarian voting rule suffers
from the no-show paradox with respect to Fishburn’s extension. This is achieved by reduc-
ing the statement to a finite—yet very large—problem, which is encoded as a formula in
propositional logic and then shown to be unsatisfiable by a SAT solver. We also provide a
human-readable proof which we extracted from a minimal unsatisfiable core of the formula.
Secondly, we prove that every voting rule that satisfies two natural conditions cannot be
manipulated by strategic abstention with respect to Kelly’s extension and give examples
of well-known Pareto-optimal majoritarian voting rules that meet these requirements.

1. Introduction

Whenever a group of multiple agents aims at reaching a joint decision in a fair and sat-
isfactory way, they need to aggregate their (possibly conflicting) preferences. Voting rules
are studied in detail in social choice theory and are coming under increasing scrutiny from
computer scientists who are interested in their computational properties or want to utilize
them in artificial multiagent systems (Chevaleyre, Endriss, Lang, & Maudet, 2007; Brandt,
Conitzer, & Endriss, 2013; Brandt, Conitzer, Endriss, Lang, & Procaccia, 2016; Endriss,
2017).

A common flaw of many such rules, first observed by Fishburn and Brams (1983) is
that agents may obtain a more preferred outcome by abstaining from an election. This
phenomenon is known as the no-show paradox. Following Moulin (1988), a voting rule is
said to satisfy participation if it is immune to the no-show paradox. Moulin has shown that
all resolute, i.e., single-valued, scoring rules (such as Borda’s rule) satisfy participation while
all resolute Condorcet extensions suffer from the no-show paradox. Condorcet extensions
comprise a large class of voting rules that satisfy otherwise rather desirable properties.
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In this paper, we study participation for irresolute, i.e., set-valued, social choice func-
tions (SCFs). A proper definition of participation for irresolute SCFs requires the speci-
fication of preferences over sets of alternatives. Rather than asking the agents to specify
their complete preferences over all subsets (which would be bound to various rationality
constraints and require exponential space), it is typically assumed that the preferences over
single alternatives can be extended to preferences over sets. Of course, there are various
ways how to extend preferences to sets (see, e.g., Gärdenfors, 1979; Barberà, Bossert, &
Pattanaik, 2004), each of which leads to a different version of participation. A function
that yields a (possibly incomplete) preference relation over subsets of alternatives when
given a preference relation over single alternatives is called a preference extension. In this
paper, we focus on two common preference extensions due to Kelly (1977) and Fishburn
(1972), both of which arise under natural assumptions about the agents’ knowledge of the
tie-breaking mechanism that eventually picks a single alternative from the choice set (see,
e.g., Gärdenfors, 1979; Ching & Zhou, 2002; Sanver & Zwicker, 2012; Brandt & Brill, 2011;
Brandt, 2015; Brandt, Saile, & Stricker, 2018).

Kelly’s extension, for example, can be motivated by assuming that the agents are com-
pletely unaware of how ties are broken. A common interpretation of Fishburn’s extension,
on the other hand, is that ties are broken according to the unknown but transitive prefer-
ences of a chairman. While the agents do not know the chairman’s preferences, they are
aware that tie-breaking is consistent across different sets. Since Fishburn’s extension is a
refinement of Kelly’s extension it follows that Fishburn-participation is stronger than Kelly-
participation. In this paper we exploit the uncertainty of the agents about the tie-breaking
mechanism in order to prevent strategic abstention. Our two main results are as follows.

• Whenever there are at least four alternatives and six agents, Pareto-optimality and
Fishburn-participation are incompatible in the context of majoritarian SCFs. When
there are at least five alternatives and seven agents, this even holds for strict pref-
erences. These results imply impossibilities for SCFs with uniformly randomized tie-
breaking, even when the agents’ concrete utility functions are unknown.

• Every SCF that satisfies set-monotonicity and is independent of indifferent voters
satisfies Kelly-participation. Every set-monotonic majoritarian SCF satisfies Kelly-
participation when preferences are strict.

The first result is obtained using computer-aided theorem proving techniques. In particular,
we reduce the statement to a finite—yet very large—problem, which is encoded as a formula
in propositional logic and then shown to be unsatisfiable by a SAT solver. We also provide
a human-readable proof for this result, which we extracted from a minimal unsatisfiable
core of the SAT formula.

The conditions for the second result are easy to check and satisfied by a small number
of well-studied SCFs, including Pareto-optimal majoritarian SCFs. In contrast to Moulin’s
negative result for resolute SCFs, there are appealing Condorcet extensions that satisfy
Kelly-participation.

Our negative result holds even for strict preferences while our positive result holds
even for weak preferences. The latter is somewhat surprising and stands in sharp contrast
to the related finding that no Condorcet extension satisfies Kelly-strategyproofness when
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preferences are weak (recall that an SCF is strategyproof if no agent can obtain a more
preferred outcome by misrepresenting his preferences) (Brandt, 2015).

Participation is similar to, but logically independent from, strategyproofness. Manip-
ulation by abstention is arguably a more severe problem than manipulation by misrepre-
sentation for two reasons. First, agents might not be able to find a beneficial misrepre-
sentation. Various authors have shown that the corresponding computational problem can
be intractable (see, e.g., Faliszewski, Hemaspaandra, & Hemaspaandra, 2010). Finding a
successful manipulation by strategic abstention, on the other hand, is never harder than
computing the outcome of the SCF. Secondly, one could argue that agents will not lie about
their preferences because they consider it to be immoral (Borda famously exclaimed “my
scheme is intended only for honest men”), while they view strategic abstention as accept-
able.1

The remainder of the paper is structured as follows: we provide an overview of related
work in Section 2 and introduce the theoretical foundations and the notions of participation
in Section 3. Section 4 gives a short introduction to computer-aided theorem proving and
focuses on encoding participation. The results obtained are presented and discussed in
Section 5 and briefly summarized in Section 6. For the proofs we originally found with the
help of a computer, we provide human-readable versions that we manually restructured to
improve readability. The tedious proof of our theorem for strict preferences can be found
in Section 6.

2. Related Work

The problem of strategic abstention for irresolute SCFs has been addressed by a number
of authors. Pérez (2001) examined the situation where an agent can cause his most pre-
ferred alternative to be excluded from the choice set when joining an electorate and showed
that almost all common Condorcet extensions suffer from this paradox. Jimeno, Pérez,
and García (2009) proved that manipulation by abstention is possible for most common
Condorcet extensions when agents compare sets according to an optimistic, pessimistic,
or lexicographic preference extension. As observed by Brandt, Geist, and Peters (2017),
who also complemented these results with tight bounds on the number of required agents,
the impossibility for optimistic agents already follows from Moulin’s (1988) theorem. Ji-
meno et al. mentioned the investigation of participation for weak preferences and for Fish-
burn’s extension as interesting research directions for future work. Both of these questions
are addressed in our paper. Pérez, Jimeno, and García (2010) and Pérez, Jimeno, and
García (2015) revisited participation for the optimist extension with varying notions of
Condorcet-consistency. Pérez et al. (2010) derived incompatibilities using a set-valued vari-
ant of Condorcet-consistency for irresolute SCFs that always select exactly k alternatives.
Inspired by early work by Holzman (1988) on resolute SCFs, Pérez et al. (2015) showed
that participation is compatible with Condorcet-consistency if Condorcet winners need the
support of a supermajority rather than a simple majority. Brandt (2015) mainly focused
on strategyproofness for Kelly’s extension but in Remark 9 also gave a simple argument
connecting strategyproofness and participation.

1. Alternatively, one could also argue that manipulation by misrepresentation is more critical because agents
are tempted to act immorally, which is a valid, but different, concern.

1033



Brandl, Brandt, Geist, & Hofbauer

The computer-aided techniques in this paper have been inspired by Tang and Lin (2009),
who reduced well-known impossibility results to finite instances, which can then be checked
by a SAT solver. Geist and Endriss (2011) extended this method to a fully-automatic
search algorithm for impossibility theorems in the context of preference relations over sets
of alternatives. More recently, Brandt and Geist (2016) proved both impossibility and
possibility results regarding the strategyproofness of irresolute SCFs using this computer-
aided approach. We strongly build on their methodology and extend it to cover the notion
of participation, which—as we will see—requires a more advanced framework. Brandt et al.
(2017) used SAT solving together with participation in a different context: they considered
Moulin’s original result (Moulin, 1988)—and variants thereof—and examined the minimal
number of agents needed for the no-show paradox to occur.

3. Preliminaries

Let A be a finite set of alternatives and N a set of agents of which we will consider finite
subsets N ⊆ N. Therefore, let F(N) denote the set of all finite and non-empty subsets of N.
A (weak) preference relation is a complete, reflexive, and transitive binary relation on A.
The preference relation of agent i is denoted by %i. The set of all preference relations is
denoted by R. We write �i for the strict part of %i, i.e., x �i y if x %i y but not y %i x,
and ∼i for the indifference part of %i, i.e., x ∼i y if x %i y and y %i x. A preference relation
%i is called strict if it additionally is anti-symmetric, i.e., x �i y or y �i x for all distinct
alternatives x, y. We will compactly represent a preference relation as a comma-separated
list with all alternatives among which an agent is indifferent placed in a set. For example
x �i y ∼i z is represented by %i : x, {y, z}.

A preference profile R is a function from a set of agents N to the set of preference
relations R. The set of all preference profiles is denoted by RF(N). For a preference profile
R ∈ RN and two agents i ∈ N , j ∈ N, we define

R−i = R \ {(i,%i)} and R+j = R ∪ {(j,%j)}.

When multiple agents join an electorate, we sometimes also use
R+j1,...,jk = R ∪ (

⋃
1≤l≤k(jl,%jl)).

For a preference profile R and two alternatives x, y, the majority margin of x over y,
wR(x, y) = |{i ∈ N : x %i y}|−|{i ∈ N : y %i x}|, is the number of agents who prefer x to y
minus the number of agents who prefer y to x. We will omit R whenever it is clear from the
context. The majority relation of R is %R, where x %R y iff wR(x, y) > 0. We denote its
strict part by �R and its indifference part by ∼R. An alternative x is a Condorcet winner
in R if x �R y for all y ∈ A \ {x}. Figure 1 illustrates the preceding definitions.
For our proofs we will frequently need preference profiles that induce particular majority
margins. The following result by Debord (1987) shows that such profiles exist. It also
implies McGarvey’s (1953) theorem, which shows that every tournament is induced by
some preference profile.

Proposition 1 (Debord, 1987). Let W ∈ N|A|×|A| be a skew-symmetric matrix with either
only even or only odd off-diagonal entries.2 Then there is a preference profile R such that
wR(x, y) =W (x, y) for all alternatives x, y.

2. A matrix W is skew-symmetric if W = −WT .
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1 2 3

a c d
b a b
c d a
d b c

R

a b

cd

�R

Figure 1: R is a preference profile on four alternatives and three agents. The numbers in
the top row denote the agents’ identities. Each column states the preferences of
one agent, e.g., agent 1 prefers a to b to c to d. The directed graph on the right
depicts the strict part of the majority relation %R of R. There is an edge from x
to y if a majority of agents prefers x to y, e.g., agents 1 and 2 prefer a to b, so
a �R b and there is an edge from a to b. Moreover, a is a Condorcet winner.

Our central objects of study are social choice functions (SCFs), i.e., functions that map a
preference profile to a set of alternatives. Formally, an SCF is a function

f : RF(N) → 2A \ ∅.

Two minimal fairness conditions for SCFs are anonymity and neutrality. An SCF is
anonymous if the outcome does not depend on the identities of the agents and neu-
tral if it is symmetric with respect to alternatives. More formally, f is anonymous if
f(R) = f(R′) for all R ∈ RN , R′ ∈ RN

′ , N,N ′ ∈ F(N) and all bijections π : N → N ′ such
that (%i)i∈N = (%′π(i))i∈N . To define neutrality, denote by %i

π the result of renaming alter-
natives in the preference relation %i according to the permutation π of A, i.e., π(x) %π

i π(y)
if and only if x %i y. Then we get Rπ = (%i

π)i∈N by renaming alternatives in each agent’s
preference relation. We say that f is neutral if f(Rπ) = π(f(R)) for all N ∈ F(N) and all
permutations π : A→ A.

An SCF f is majoritarian (or a neutral C1 function) if it is neutral and for all
R,R′ ∈ RF(N), f(R) = f(R′) whenever �R = �R′ . Even the seemingly narrow class of
majoritarian SCFs contains a variety of interesting functions (sometimes called tournament
solutions) such as

• Copeland’s rule (which returns all alternatives x for which |{y ∈ A : x �R y}| is
maximal),

• the top cycle (which returns the maximal elements of the transitive closure of %R),

• the uncovered set (which returns the maximal elements of a subrelation of %R known
as the covering relation, see Section 5.1), and

• the bipartisan set (which returns all alternatives that are played with positive proba-
bility in some mixed-strategy equilibrium of the zero-sum game (sgn(wR(x, y)))x,y∈A).

All of the mentioned SCFs happen to be Condorcet extensions or Condorcet-consistent
SCFs, i.e., SCFs that uniquely return a Condorcet winner whenever one exists. We refer to

1035



Brandl, Brandt, Geist, & Hofbauer

Laslier (1997) and Brandt, Brill, and Harrenstein (2016) for a much more detailed overview
of majoritarian SCFs. In particular, the bipartisan set turned out to satisfy a large number
of desirable properties.

Next we introduce a very weak variable electorate condition which requires that a com-
pletely indifferent agent does not affect the outcome. An SCF f satisfies independence of
indifferent voters (IIV) if

f(R) = f(R+i) for all R ∈ RF(N) whenever x ∼i y for all x, y ∈ A,

i.e., adding an agent who is indifferent between all alternatives does not change the outcome.
It is easy to see that every majoritarian SCF satisfies anonymity, neutrality, and IIV.

Set-monotonicity. We say that R′ is an f -improvement over R if alternatives that are
chosen by f in R are not weakened from R to R′, i.e., for all x ∈ f(R), y ∈ A, and i ∈ N ,
x %i y implies x %′i y and y %′i x implies y %i x. An SCF f satisfies set-monotonicity if

f(R) = f(R′) whenever R′ is an f -improvement over R.

Set-monotonicity was introduced by Brandt (2015) in the context of Kelly-
strategyproofness.

Preference extensions. The two preference extensions we consider in this paper are
Kelly’s extension and Fishburn’s extension. For all X,Y ⊆ A and %i ∈ R,

X %K
i Y iff x %i y for all x ∈ X, y ∈ Y , and (Kelly)

X %F
i Y iff X\Y %K

i Y and X %K
i Y \X. (Fishburn)

The strict part of these relations will be denoted by �Ki and �Fi , respectively. It follows
from the definitions that Fishburn’s extension is a refinement of Kelly’s extension. Hence,
%K
i ⊆ %F

i for every %i ∈ R, i.e., whenever one set is Kelly-preferred to another one, it is
also Fishburn-preferred.

For better illustration of these extensions consider the preference relation %i : a, b, c, d
and the sets of alternatives X = {a, b}, Y = {a, b, c}, and Z = {b, d}. Then, X �Fi Y and
X �Ki Z. Sets Y and Z are not comparable with respect to either one of the two extensions.

Both extensions can be motivated using randomized tie-breaking mechanisms and ex-
pected utility maximization. Assume it is known that the tie-breaking lottery puts positive
probabilities on all alternatives in the choice set (and no other alternatives), but the exact
probabilities as well as the underlying utility function are unknown.3 Then Kelly’s exten-
sion is obtained by postulating that one set is preferred to another if the former yields at
least as much expected utility as the latter for all lotteries whose support coincides with
the respective choice set and all consistent utility functions. For Fishburn’s extension, one
may additionally assume that an unknown positive weight is assigned to every alternative a
priori and, given some choice set, the tie-breaking lottery over this set has probabilities di-
rectly proportional to these weights. The most natural special case is a weight function that
assigns equal weights to all alternative, which results in uniform lotteries over alternatives
in any choice set.

3. Utility functions are required to be consistent with the ordinal preferences, i.e., if x %i y, then x has to
yield at least as much utility as y.
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Participation and strategyproofness. With the preference extensions at hand, we can
now formally define participation and strategyproofness. An SCF f is Kelly-manipulable
by strategic abstention if there exists a preference profile R ∈ RN with N ∈ F(N) and an
agent i ∈ N such that f(R−i) �Ki f(R). An SCF f is Kelly-manipulable if there exist
preference profiles R,R′ ∈ RN , and an agent i ∈ N , such that %j = %′j for all agents
j 6= i and f(R′) �Ki f(R). f satisfies Kelly-participation or Kelly-strategyproofness if it is
not Kelly-manipulable by strategic abstention or Kelly-manipulable, respectively. Fishburn-
participation and Fishburn-strategyproofness are defined analogously. The interpretation of
Fishburn’s extension above shows that an impossibility for Fishburn-participation implies an
impossibility for SCFs with randomized tie-breaking using uniform lotteries (and unknown
utility functions).

The following example illustrates the definitions of Kelly-participation and Fishburn-
participation. Consider the preference profile R with six agents and four alternatives de-
picted below. Note that agents 3 and 4 as well as agents 5 and 6 have identical preferences.

1 2 3, 4 5, 6

c d a b
d b c a
b a d c
a c b d

R

a b

cd

�R

a b

cd

�R−6

The profile R induces the majority relation %R with its strict part �R. The bipartisan
set of R can be computed to be {a, b, c, d}.4 If agent 6 leaves the electorate, we obtain
the profile R−6, which induces the majority relation %R−6

whose bipartisan set is {a, b, c}.
Observe that {a, b, c} �F6 {a, b, c, d}, i.e., agent 6 can obtain a preferred outcome according
to Fishburn’s extension by abstaining from the election. Hence, the bipartisan set does
not satisfy Fishburn-participation. However, {a, b, c} �K6 {a, b, c, d} does not hold and,
hence, agent 6 cannot manipulate by abstaining according to Kelly’s extension. This
is not a coincidence: the bipartisan set satisfies Kelly-participation because it satisfies
set-monotonicity and IIV (cf. Theorem 3).

Pareto-optimality. In the subsequent sections, we will use participation and strate-
gyproofness in conjunction with Pareto-optimality. An alternative x is said to be Pareto-
dominated (in R ∈ RN ) by another alternative y if y %i x for all i ∈ N and there exists j ∈ N
such that y �j x. Whenever there is no y ∈ A that Pareto-dominates x, x is Pareto-optimal.
An SCF is Pareto-optimal if it never selects a Pareto-dominated alternative. The Pareto
rule (PO) is defined as the SCF that returns all Pareto-optimal alternatives.

4. Computer-Aided Theorem Proving

For our impossibility theorems, we will make use of the computer-aided proving method-
ology described by Brandt and Geist (2016). The main idea is to prove statements by
encoding a finite instance as a satisfiability problem, which can be solved by a computer

4. Computing the bipartisan set is non-trivial—but feasible in polynomial time—because it requires solving
a linear program. In the given example, the bipartisan set coincides with the uncovered set.
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|A| Brandt and Geist (2016) This paper

3 49 823,543
4 50,625 ∼ 2.5 · 1049
5 ∼ 7.9 · 1017 ∼ 9.4 · 10867
6 ∼ 5.8 · 10100 ∼ 6.8 · 1038649

Table 1: Number of different majoritarian SCFs for 3 to 6 alternatives. For every majority
relation, an SCF can choose one out of 2|A|−1 possible sets of alternatives. So the
number of SCFs is exponential in the number of different majority relations. While
Brandt and Geist (2016) could assume an odd number of agents with strict pref-
erences resulting in strict majority relations, participation requires us to deal with
variable electorates, and therefore possibly even numbers of agents and majority
relations that need not be strict.

using a SAT solver, and then providing a (simple) reduction argument which extends this
result to arbitrary domain sizes. We extend their framework to also cater for indifferences
in the majority relations, which is an important requirement for being able to deal with
participation: if an agent with at least one strict preference abstains from the election, the
corresponding majority relation might already contain indifferences.

Note that introducing majority ties significantly increases the size of the search space
(see Table 1). Apart from being able to treat such large search spaces, another major
advantage of the computer-aided approach is that many similar conjectures and hypotheses
(e.g., statements using other preference extensions) can be checked quickly using the same
framework.

In the following subsections, we are going to explain our extension and some core features
of the computer-aided method; for details of the original approach, however, the reader is
referred to Brandt and Geist (2016) and Geist and Peters (2017).

4.1 Encoding Participation

At the core of the computer-aided approach lies an encoding of the problem to be solved
as a SAT instance. For this, all axioms involved need to be stated in propositional logic.
We take over the formalization of the optimized encoding by Brandt and Geist (2016),
which contains the following relevant axioms: functionality of the choice function, the orbit
condition, and Pareto-optimality. Pareto-optimality is encoded as being a refinement of
the uncovered set (see Section 5.1 for details). What remains is to encode the notion of
participation. In order to be able to deal with participation, we introduce a new condition
called majority-participation and prove that it is equivalent to participation for majoritarian
SCFs.

We are going to identify preference profiles with their corresponding majority relations
(i.e., for majoritarian SCFs f we often also write f(%R) instead of f(R)). Moreover, the
inverse of % ∈ R is denoted by -, i.e., x - y if and only if y % x.
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Definition 1. A majoritarian SCF f is Fishburn-majority-manipulable by strategic absten-
tion if there exist majority relations %, %′ and a preference relation %i ∈ R such that
f(%′) �Fi f(%), with

� ∩≺′ = ∅, (1)
(% \%′) ∪ (-′ \-) ⊆ �i , and (2)

∼ ∩∼′ ⊆ ∼i. (3)

Whenever we require the agents’ preferences to be strict, either % or %′ has to be anti-
symmetric in addition. A majoritarian SCF f satisfies Fishburn-majority-participation if it
is not Fishburn-majority-manipulable by strategic abstention.

Conditions (1) to (3) can be interpreted as follows: (1) prescribes that no strict relationship
may be reversed between � and �′. (2) requires that %i is in line with the changes from
% to %′; more precisely, the first part of the set inclusion prescribes that a majority tie
between two alternatives x and y in % can only turn into a strict preference of x over y in
%′, if the abstaining agent i strictly prefers y to x; the second part requires the analogous
statement for alternatives less preferred by agent i. (3) means that majority ties that occur
in both majority relations must be reflected by an indifference in %i, so ties in the majority
relation can only be broken if the abstaining agent i is not indifferent himself.

In the following lemma, we show that, for majoritarian SCFs, the condition of Fishburn-
majority-manipulability corresponds to an abstaining agent with preferences%i who thereby
obtains a preferred outcome.5

Lemma 1. A majoritarian SCF satisfies Fishburn-participation if and only if it satisfies
Fishburn-majority-participation.

Proof. We first provide a short outline of the proof. To begin with, we show that for every
preference profile R that allows for a Fishburn-manipulation by abstention by agent i, the
two majority relations %R and %R−i

together with %i satisfy all required conditions. In
return, whenever we have two majority relations %1, %2 and a preference relation %i, all
with the properties stated in Definition 1, we can assign integer majority margins to all pairs
of alternatives and, by Proposition 1, use these to determine a preference profile R2 that
induces the majority relation %2. Together with R = R2

+i we obtain %R2 = %2, %R = %1

and thus f(R2) �Fi f(R) for any majoritarian SCF f .
In more detail, we begin by showing that if a majoritarian SCF violates Fishburn-

participation, then it also violates Fishburn-majority-participation. Therefore, let f be a
majoritarian SCF such that there exists some electorate N , agenda A, preference profile R ∈
RN and agent i ∈ N for whom it holds that f(R−i) �Fi f(R), i.e., there is an instance where
i can strategically manipulate by abstaining. Let furthermore %1 = %R and %2 = %R−i

.
First note that we trivially have that f(%2) �Fi f(%1). Now, continue with conditions

(1) to (3) as given in Definition 1. Since only one agent leaves the electorate when going
from R to R−i and everything else remains unchanged, we cannot have that x �1 y and

5. Note that both the definition of majority-participation and Lemma 1 are independent of a specific
preference extension, and thus also applicable to, e.g., Kelly’s extension.
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y �2 x for any x, y ∈ A, i.e., no edges in the strict part of the majority relation can be
reversed. Hence, �1 ∩ ≺2 = ∅.

Next, we have that if an alternative is preferred to another alternative by a majority in R
and not preferred any more in R−i, than i must prefer the former to the latter. Conversely,
given one alternative is preferred to another alternative by a majority in R−i but not in R,
i has to prefer the latter to the former. We together obtain (% \%′) ∪ (-′ \-) ⊆ �i.

Additionally, for every majority comparison that was balanced at an indifference in both
R and R−i, we necessarily also have an indifference in i’s preferences: ∼1 ∩ ∼2 ⊆ ∼i.

Finally note that either |N | or (|N |−1) is odd, so, assuming strict individual preferences,
we trivially have that either %1 or %2 does not contain majority indifferences, i.e., is anti-
symmetric.

We continue with the reverse direction and show that if f violates Fishburn-majority-
participation, then it also violates Fishburn-participation. To this end, let f be a majori-
tarian SCF, %1 and %2 be two majority relations (on some set of alternatives A), %i ∈ R

an individual preference ranking such that f(%2) �Fi f(%1), and let (1) to (3) as given in
Definition 1 hold. Concerning individual preferences, we start with the general case.

We begin with %2 and assign margins to all majority comparisons (x, y) ∈ �2 such that

w(x, y) =

{
1 if (x, y) /∈ �1, and
3 if (x, y) ∈ �1.

Using Proposition 1, it is possible to construct a preference profile R2 (for some electorate
N2) such that %R2 = %2 and |{j ∈ N : x %2

j y}| − |{j ∈ N : y %2
j x}| = w(x, y) for all

x, y ∈ A. Define R = R2
+i (and consequently N = N2 ∪ {i}). We now show that %R = %1,

or, equivalently, that all changes when going from %2 to %1 are solely due to i joining the
electorate while at the same time no other majority comparisons change.

Therefore note that for every pair of alternatives x, y ∈ A, one of the following cases—or
its neutral equivalent—applies:

1. (x, y) ∈ �1∩�2: In this case w(x, y) = 3 and i’s preferences do not affect the majority
comparison.

2. (x, y) ∈ �1, (y, x) ∈ �2: This case is not possible due to (1) in Definition 1.

3. (x, y) ∈ ∼1, (x, y) ∈ �2: We here have w(x, y) = 1 and by (2) in Definition 1 we know
that y �i x, i.e., including i indeed causes the majority comparison to change in the
required way.

4. (x, y) ∈ �1, (x, y) ∈ ∼2: By (2) in Definition 1 we know that x �i y and hence adding
i obviously causes the majority indifference in %2 to sway in favor of x.

5. (x, y) ∈ ∼1, (x, y) ∈ ∼2: By (3) in Definition 1 this means that x ∼i y, i does not
affect the majority comparison and it remains identical.

Consequently %R = %1 and we directly deduce that f(R−i) �Fi f(R), i.e., based on a
Fishburn-majority-manipulation we have constructed a Fishburn-manipulation and f vio-
lates Fishburn-participation.
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In case the agents’ preferences are required to be strict, minor details of the proof
change. First note that by Definition 1, either %1 or %2 has to be anti-symmetric. If %1

is anti-symmetric, %2 is not and we have to slightly modify our margin function for %2

and instead use w(x, y) = 2 for all (x, y) ∈ �2. This assures that the parity of all majority
comparisons is even and a corresponding preference profile consisting of strict preferences
only exists. The above case distinction still applies in so far as only the first, second, and
fourth case are still relevant, the third and fifth are ruled out by anti-symmetry.

Next, if%2 is anti-symmetric, %1 is not. Using the original weighting function guarantees
odd parity for all majority comparisons and hence that we can find a preference profile
consisting of strict preferences. Once more, the case distinction applies.

All in all, we have that every Fishburn-manipulation constitutes a Fishburn-majority-
manipulation with the required properties regarding the majority relations and given a
Fishburn-majority-manipulation it is possible to construct a Fishburn-manipulation. This
completes the proof.

Lemma 1 is useful since Fishburn-majority-participation can be encoded in propositional
logic (with variables f%,X representing f(%) = X) much more concisely than Fishburn-
participation. To see this, let % and %′ be two majority relations. Then,

¬
(
f(%′) �Fi f(%)

)
≡

∧
Y�F

i X

(¬f%,X ∨ ¬f%′,Y )

for all sets of alternatives X,Y and all preference relations %i satisfying conditions (1) to
(3).

The size of the search space grows significantly with the introduction of weak majority
relations (see Table 1). This larger search space can only be managed by an optimized
encoding based on identifying isomorphic graphs (we do this via canonical representations).6

4.2 Proof Extraction

A very interesting feature of the approach by Brandt and Geist (2016) is the possibility to
extract human-readable proofs from an unsatisfiability result by the SAT solver. This is
done by computing a minimal unsatisfiable set (MUS), an inclusion-minimal set of clauses
that is still unsatisfiable.7 This MUS can then, assisted by our encoder/decoder program,
be read and transformed into a standard human-readable proof. Different proofs can be
found by varying the MUS extractor or by encoding the problem for different subdomains,
such as neighborhoods of a set of profiles or randomly sampled subdomains, respectively.

5. Results and Discussion

In general, participation and strategyproofness are not logically related. However, extending
an observation by Brandt (2015), we show that strategyproofness implies participation
under certain conditions.

6. Without this optimization, only domains of up to 4 alternatives can be solved within a reasonable time
frame.

7. We used PicoMUS, which is part of the PicoSAT distribution (Biere, 2008).
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Lemma 2. Consider an arbitrary preference extension. Every SCF that satisfies IIV and
strategyproofness satisfies participation. Every majoritarian SCF that satisfies strategyproof-
ness satisfies participation, even when preferences are strict.

Proof. We show both statements for Kelly’s extension. The same argument works for any
other preference extension, including Fishburn’s.

For the first statement, let f be an SCF that satisfies IIV and Kelly-strategyproofness.
Assume for contradiction that f is Kelly-manipulable by strategic abstention, i.e., there is a
preference profile R and an agent i such that f(R−i) �Ki f(R). Let R′ be a preference profile
such that %′j = %j for all j 6= i and %′i the preference relation that expresses indifference
between all alternatives, i.e., x ∼′i y for all x, y ∈ A. Then, since f satisfies IIV,

f(R′) = f(R−i) �Ki f(R),

i.e., i can manipulate in R by reporting %′i instead of %i, which contradicts Kelly-
strategyproofness of f .

For the second statement, let f be a majoritarian SCF that satisfies Kelly-
strategyproofness. Assume for contradiction that f is Kelly-manipulable by strategic ab-
stention, i.e., there is a preference profile R and an agent i such that f(R−i) �Ki f(R). Let
2R be a preference profile that consists of two copies of each preference relation in R, i.e.,
for every (i,%i) ∈ R there are (i1,%i1), (i2,%i2) ∈ 2R such that %i = %i1 = %i2 . Note that
R and 2R have the same majority relation. 2R−i is defined analogously.

We define a preference profile 2R′ such that 2%′j = 2%j for all j 6= i1 and 2%′i1 = %−1i1 ,
where %−1i1 denotes the inverse of %i1 , i.e., for all x, y ∈ A, x %−1i1 y if and only if y %i1 x.
Intuitively, 2R′ is thus the same as 2R but for the preferences of agent i1 which are reversed.
In terms of the majority relation of R′, we thus have that i1 and i2 cancel each other out,
i.e., do not have an effect on the majority relation. Consequently, the majority relations of
2R′ and 2R−i are identical. Then, since f is majoritarian,

f(2R′) = f(2R−i) = f(R−i) �Ki f(R) = f(2R),

i.e., i1 can manipulate in 2R by reporting %−1i1 . This contradicts Kelly-strategyproofness of
f . Note that the proof of the second statement only requires strict preferences.

As a consequence of Lemma 2, some positive results for Kelly-strategyproofness and
Fishburn-strategyproofness carry over to participation.8 We will complement these re-
sults by impossibility theorems for Fishburn-participation and a positive result for Kelly-
participation, which specifically does not hold for Kelly-strategyproofness.

5.1 Fishburn-Participation

It turns out that Pareto-optimality is incompatible with Fishburn-participation for majori-
tarian SCFs. The corresponding Theorems 1 and 2 and their proofs were obtained using
the computer-aided method laid out in Section 4. In order to simplify the original proofs,
which were found by the computer, we first state a lemma that offers further insights into

8. See Table 2 in Section 6 for more details.
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the possible choices of majoritarian SCFs that satisfy Fishburn-participation and Pareto-
optimality.

To state Lemma 3 we introduce some additional notation: an alternative x (McKelvey)
covers an alternative y if x is at least as good as y compared to every other alternative.
Formally, x covers y if x � y and, for all z ∈ A, both y % z implies x % z, and z % x
implies z % y. The uncovered set of %, denoted UC (%), is the set of all alternatives that
are not covered by any other alternative. We inductively define UC k(%) as the repeated
application of UC , i.e., UC 1(%) = UC (%) and UC k(%) = UC (%|UCk−1(%)) for k > 1,
where %|UCk−1(%) is the restriction of % to alternatives in UC k−1(%). Then, the iterated
uncovered set is defined by UC∞(%) =

⋂
k≥1UC

k(%). We provide examples for both UC
and UC∞ after the next lemma. By definition, UC and UC∞ are majoritarian SCFs.

Brandt, Geist, and Harrenstein (2016) proved that every majoritarian and Pareto-
optimal SCF selects a subset of the (McKelvey) uncovered set. We show that an SCF
that additionally satisfies Fishburn-participation only chooses alternatives from the iterated
uncovered set. Furthermore, this choice only depends on the majority relation between
alternatives within the iterated uncovered set whenever the majority relation is strict.

Lemma 3. Let f be a majoritarian and Pareto-optimal SCF that satisfies Fishburn-
participation. Let R,R′ be preference profiles such that %R|UC∞(%R) = %R′ |UC∞(%R′ )

.
Then f(R) ⊆ UC∞(%R) and if %R and %R′ are additionally antisymmetric, we have that
f(R) = f(R′).9

Proof. We begin the proof by showing that f(R) ⊆ UC∞(%R). Let f be a majoritarian
and Pareto-optimal SCF that satisfies Fishburn-participation, N ∈ F(N) a set of agents,
R ∈ RN a preference profile and %R the majority relation of R. We prove inductively that
f(R) ⊆ UC k(%R) for all k ∈ N.

First, let k = 1. Brandt et al. (2016) have shown that if an alternative x is not in
the McKelvey uncovered set UC (%R), it is potentially Pareto-dominated, i.e., there is a
preference profile R′ such that %R = %R′ and x is Pareto-dominated in R′. Hence, x /∈ f(R′)
and as well x /∈ f(R), since f is majoritarian and Pareto-optimal.

Now let k ≥ 2. By induction, f(R) ⊆ UC k−1(%R). If UC
k−1(%R) = UC k(%R), there is

nothing left to show. Hence, we consider the remaining case, i.e., UC k(%R) ( UC k−1(%R).
By Proposition 1, we can find a preference profile R′ ∈ RN

′ such that %R′ = %R and

|wR′(x, y)| =

{
≤ 1 for all x ∈ UC k(%R), y ∈ A \UC k−1(%R), and
≥ 3 otherwise.

This intuitively means that one or two joining agents can only affect majority comparisons
in between alternatives x and y where x ∈ UC k(%R) and y ∈ A \UC k−1(%R). Note, in
particular, that if two agents j, j′ with x %j y, x %j′ y for all such x, y join the electorate,
we have that every alternative in UC k(%R) is majority-preferred to every alternative in
A \UC k−1(%R).

9. Lemma 3 can be strengthened in various respects and also holds for all other preference extensions
satisfying some mild conditions as well as probabilisitic social choice functions.
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Let %i be a preference relation such that x %i y for all alternatives x ∈ UC k(%R′) and
y ∈ A \UC k−1(%R′). Clearly, UC

k−1(%R′+i
) ⊆ UC k−1(%R′) as nothing covered before can

become uncovered.
If f(R′) 6= f(R′+i), we can find some %j such that x %j y for all x ∈ UC k(%R′)

and y ∈ A \UC k−1(%R′) and f(R
′) �Fj f(R′+j), which contradicts Fishburn-participation.

Thus, f(R′) = f(R′+i). With the same reasoning we can find %j′ such that x %j′ y for all
alternatives x ∈ UC k(%R′) and y ∈ A \UC k−1(%R′) and f(R

′
+j,j′) = f(R′+j) = f(R′).

Using the result by Brandt et al. (2016) again, Pareto-optimality of f directly im-
plies that f(R′+j,j′) ⊆ UC (%R+j,j′

). By definition of R′, %j and %j′ , we have that

UC (%R′
+j,j′

) = UC k(%R′). Hence,

f(R) = f(R′) = f(R+j,j′) ⊆ UC (%R′
+j,j′

) = UC k(%R′) = UC k(%R),

which completes the first part of the proof.
Next, let f be as above and R and R′ two preference profiles on some agenda A such

that %R|UC∞(%R) = %R′ |UC∞(%R′ )
. Suppose for contradiction that f(R) 6= f(R′). Since f

is majoritarian define without loss of generality for %R majority margins |w(x, y)| suitably
small if (x, y) ∈ �R and (x, y) /∈ �R′ , and |w(x, y)| sufficiently large otherwise.10

We successively include k agents i1, . . . , ik into the corresponding electorate, all
with individual preferences such that all alternatives in UC∞(%R′) are adjacent in %ij .
All other alternatives have to be ranked such that %R{+i1,...,ik}

= %R′ , yielding that
f(R{+i1,...,ik}) 6= f(R). This is possible because we assumed the weights of all edges that
have to be changed to be suitably small. Since the ordering of alternatives within UC∞(%R′)
does not affect the majority relation due to sufficiently large edge weights, we are able to
arrange them such that x �ij y �ij z for all

x ∈ f(R{+i1,...,ij−1}) \ f(R{+i1,...,ij}),
y ∈ f(R{+i1,...,ij−1}) ∩ f(R{+i1,...,ij}), and
z ∈ UC∞(%R) \ f(R{+i1,...,ij−1}),

1 ≤ j ≤ k. Intuitively, this means that everything that was in the choice set before ij joined
the electorate but is not contained anymore is preferred to everything that still is in the
choice set is preferred to everything that is possibly chosen now but was not chosen before.
Thus, every agent ij prefers what was chosen without him to what is chosen including him.

Hence, for at least one agent ij , 1 ≤ j ≤ k, it has to hold that
f(R+i1,...,ij−1) 6= f(R+i1,...,ij ) and by definition of this agent’s preferences
f(R+i1,...,ij−1) �Fij f(R+i1,...,ij ). This contradicts Fishburn-participation and completes the
proof.

10. Since %R and %R′ are antisymmetric we obviously have w(x, y) 6= 0 for all x, y ∈ A.
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The following brief example illustrates an application of Lemma 3. Let R
be a preference profile on A = {a, b, c, d, e} such that %R is as depicted below.
We have that UC (%R) = {a, b, d, e} and UC 2(%R) = UC∞(%R) =
{a, b, d}. For all majoritarian and Pareto-optimal SCFs f satisfying
Fishburn-participation, Lemma 3 gives that f(R) ⊆ {a, b, d}. Also,
the choice set has to be identical to the one of any other profile with
identically structured iterated uncovered set, e.g., a profile R′ where
the iterated uncovered set is a three-cycle on {a, b, d}. Thus, we even
have f(R) = {a, b, d} due to neutrality. Similar arguments are used
repeatedly in the proofs of Theorem 1 and Theorem 2.

a b

c

d

e

%R

Now, let us turn to our impossibility theorems. The computer found these impossibilities
even without using Lemma 3. However, the formalization of the lemma allowed the SAT
solver to find smaller proofs and makes the human-readable proofs more intuitive.

Theorem 1. There is no majoritarian and Pareto-optimal SCF that satisfies Fishburn-
participation if |A| ≥ 4 and |N | ≥ 6.

Proof. Let f be a majoritarian and Pareto-optimal SCF satisfying Fishburn-participation.
Note that majoritarianness implies anonymity and neutrality. We first prove the statement
for A = {a, b, c, d} and reason about the outcome of f for some specific majority relations.
Throughout this proof, we are going to make extensive use of Lemma 1, which allows us
to apply Fishburn-majority-participation instead of regular Fishburn-participation. Intu-
itively, the proof strategy is to alter the majority relations %, %′, and %′′ as depicted below
by letting varying agents join some underlying electorate, which will exclude certain choices
of f (by an application of Fishburn-majority-participation), until we reach a contradiction.
For each step, i.e., each time an additional agent alters one of the majority relations, we
provide a suitable electorate inducing %, %′, and %′′. Consider for instance %, which can
be altered to %+1 by an agent with preferences %1 : {a, b, c}, d. For this to be possible, we
need an underlying electorate where d has to be majority-preferred to b by a margin of
exactly one, while it has to be preferred to a by a margin of at least two. These constraints
make the construction of suitable electorates more demanding with respect to the number of
agents needed compared to the case where only the simple majority relation is of relevance.
In the figures depicting the strict part of the majority relations we highlight alternatives
that have to be chosen by f with a thick border.
First consider % as depicted on the right. In the following, arguments
using the additional agent’s preferences as well as which effects him join-
ing has on the set of possibly chosen alternatives are given on the left,
while suitable electorates inducing % together with the changed majority
graph are given on the right. Whenever an electorate works for multiple
cases they are grouped in a single paragraph with the preference profile
next to it.

a b

cd

�
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Adding an agent with preferences %1 : {a, b, c}, d yields %+1

where, due to symmetry, f(%+1) = {a, b, c, d}. As f satis-
fies Fishburn-participation, nothing that is strictly preferred to
{a, b, c, d} according to %F

1 can be chosen in %. Thus, d ∈ f(%).
Adding another agent with %1′ : b, {a, c, d} also leads to %+1.
Hence, f(%) 6= {b, d}, {a, b, d}, {b, c, d}.

1 2 3 4

a b c d
b, c, d c d a

d a b
a b c

a b

cd

�+1

If % is altered to %+2 by adding an agent with
%2 : {b, d}, c, a, we get f(%+2) = {b, c, d}, by the fact that
a is covered by d together with neutrality. Therefore,
f(%) 6= {d}, {c, d}. Note that here |N | = 5 is the minimal
number of other agents needed to construct a suitable pref-
erence profile.
Adding an agent with %3 : {a, b, d}, c leads to %+3, for which
we have f(%+3) = {a, c, d} by the fact that b is covered
by a together with neutrality. We correspondingly de-
duce f(%) 6= {a, d}, {a, b, c, d}. Hence, we conclude that
f(%) = {a, c, d}.

1 2 3 4 5

a a, c b c d
b d c d a
c b d a b
d a b c

a b

cd

�+2

a b

cd

�+3

Now consider %′ as shown on the right. Neutrality implies that f(%′)
contains either none or both of a and b.

a b

cd

�′

Adding an agent with preferences %′1 : c, a, b, d
changes %′ to %′+1 where {a, b, c, d} is se-
lected. Thus, f(%′) 6= {c}, {a, b, c}.

1 2, 3 4 5

a b d d
c c a a, b
d d b c
b a c

a b

cd

�′+1

Additionally, an agent with %′2 : {c, d}, a, b, al-
ters %′ to %′+2. Hence, f(%

′) 6= {d}, {c, d}.

1 2 3 4 5

a a, b b d d
c c c a b
d d d b a
b a c c

a b

cd

�′+2

Adding an agent with %′3 : {b, c}, a, d changes
%′ to %′+3. %′+3 is isomorphic to %
which implies f(%′+3) = {a, b, d}. Thus,
f(%′) 6= {a, b}, {a, b, c, d}. Putting everything
together, we deduce that f(%′) = {a, b, d}.

1 2 3 4, 5

a a c d
b c d b
c d a, b a
d b c

a b

cd

�′+3
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Finally consider %′′ as depicted on the right. Neutrality implies that
f(%′′) contains either none or both of b and c.

a b

cd

�′′

Adding an agent with %′′1 : a, {b, d}, c changes %′′

to %′′+1. Analogously to %+2, f(%′′+1) = {a, b, d}.
Therefore, f(%′′) 6= {a, d}.
Adding an agent with preferences %′′2 : c, {b, d}, a
alters %′′ to %′′+2. Alternative d is a Con-
dorcet winner in %′′+2, which implies that
f(%′′+2) = {d} because d covers a, b, and c. Hence,
f(%′′) 6= {b, c}, {b, c, d}.
Both an agent with %′′3 : a, d, {b, c} as well as with
%′′3′ : {a, b, c}, d, can alter %′′ to %′′+3 which is iso-
morphic to %′. Thus, f(%′′+3) = {b, c, d}. This
implies that f(%′′) 6= {d}, {a, b, c, d}, otherwise an
agent with %′′3 or %′′3′ , respectively, could manipu-
late.

1 2 3 4

b c d d
a a b c
d d c b
c b a a

a b

cd

�′′+1

a b

cd

�′′+2

a b

cd

�′′+3

An agent with %′′4 : a, b, c, d changes %′′ to %′′+4.
Neutrality implies that f(%′′+4) = {a, b, c, d}. This
gives that f(%′′) 6= {a}, {a, b, c}.
Consequently, if Fishburn-participation is to be re-
spected, f cannot choose anything from %′′, a con-
tradiction.

1 2 3 4

a, b c d d
c, d a b d

d c b
b a a

a b

cd

�′′+4

Now let |A| ≥ 5. It follows from Lemma 3 that the choice of f does not depend
on covered alternatives. Hence the statement follows by extending the majority relations
depicted above to A such that all alternatives but a, b, c, d are covered (for instance, by
adding Condorcet losers only).

The proof of Theorem 1 requires ties in the agents’ preferences. Theorem 2 shows that this
impossibility still holds for strict preferences when there are at least five alternatives and
seven agents. The steps in the human-readable proof of Theorem 2 are similar to those in
the proof of Theorem 1. We therefore defer the lengthy proof to the appendix.

Theorem 2. There is no majoritarian and Pareto-optimal SCF that satisfies Fishburn-
participation if |A| ≥ 5 and |N | ≥ 7, even when preferences are strict.

Theorems 1 and 2 are both tight in the sense that, whenever there are less than four or five
alternatives, respectively, there exists an SCF that satisfies the desired properties.

An interesting question is whether these impossibilities also extend to other preference
extensions. Given the computer-aided approach, this can be easily checked by simply re-
placing the preference extension in the SAT encoder. For instance, it turns out that the
impossibility of Theorem 1 still holds for a coarsening of Fishburn’s extension which only
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allows the comparison of sets that are contained in each other. Kelly’s extension on the
other hand does not lead to an impossibility for |A| ≤ 5, which will be confirmed by a
general positive result in the next section.

5.2 Kelly-Participation

Theorems 1 and 2 are sweeping impossibilities within the domain of majoritarian SCFs.
For Kelly’s extension, we obtain a positive result that covers attractive majoritarian
and non-majoritarian SCFs. Brandt (2015) has shown that set-monotonicity implies
Kelly-strategyproofness for strict preferences and that no Condorcet extension is Kelly-
strategyproof when preferences are weak. We prove that set-monotonicity (and the very
mild IIV axiom) imply Kelly-participation even for weak preferences. We have thus
found natural examples of SCFs that violate Kelly-strategyproofness but satisfy Kelly-
participation.

Theorem 3. Let f be an SCF that satisfies IIV and set-monotonicity. Then f satisfies
Kelly-participation.

Proof. Let f be an SCF that satisfies IIV and set-monotonicity. Assume for contradiction
that f does not satisfy Kelly-participation. Hence there exist a preference profile R and an
agent i such that f(R−i) �Ki f(R). Let X = f(R), Y = f(R−i), and Z = A \ (X ∪ Y ). By
definition of Y �Ki X we have that x ∼i y for all x, y ∈ X ∩ Y .

We define a new preference relation %i′ in which all alternatives in Y are tied for the
first place, followed by all alternatives in X \ Y (which may be empty) as they are ordered
in %i, and all remaining alternatives in one indifference class at the bottom of the ranking.
Formally,

%i′ = (Y ×A) ∪%i|X ∪ (A× Z).

Let i′′ be an agent who is indifferent between all alternatives, i.e., x ∼i′′ y for all x, y ∈ A.
Since f satisfies IIV we have that f(R−i+i′′) = f(R−i).

By definition, R−i+i′ is an f -improvement over both R and R−i+i′′ . Hence, set-
monotonicity implies that f(R−i+i′) = f(R) and f(R−i+i′) = f(R−i+i′′). In summary,
we obtain

f(R−i+i′) = f(R−i+i′′) = f(R−i) �Ki f(R) = f(R−i+i′),

which is a contradiction.

Inspecting the proof of Theorem 3 shows that it extends to group-participation, i.e., no
group of agents can obtain a unanimously more preferred outcome by abstaining. This
can be seen by applying the same construction to all agents in the manipulating group
simultaneously.

Two rather undiscriminating SCFs that satisfy both IIV and set-monotonicity are the
Pareto rule and the omninomination rule (which returns all alternatives that are ranked
first by at least one agent). Majoritarian SCFs satisfy IIV by definition and there are
several appealing majoritarian SCFs that satisfy set-monotonicity such as the top cycle,
(also known as weak closure maximality, GETCHA, or the Smith set) (Good, 1971; Smith,
1973; Bordes, 1976; Sen, 1977; Schwartz, 1986), the minimal covering set (Dutta, 1990), the
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bipartisan set (see Laffond, Laslier, & Le Breton, 1993; Brandt, 2015; Brandt et al., 2016)
and variations thereof (see Laslier, 1997; Dutta & Laslier, 1999; Laslier, 2000; Brandt, 2011).
These majoritarian SCFs are sometimes criticized for not being discriminating enough.11

The computer-aided approach described in this paper can be used to find more dis-
criminating SCFs that still satisfy Kelly-participation. We thus found a refinement of the
bipartisan set that, for |A| = 5, selects only 1.43 alternatives on average, and satisfies
Kelly-participation. For comparison, the bipartisan set (the smallest previously known
majoritarian SCF satisfying Kelly-participation) yields 2.68 alternatives on average.

6. Conclusion

Previous results have indicated a conflict between strategic non-manipulability and
Condorcet-consistency (Moulin, 1988; Pérez, 2001; Jimeno et al., 2009; Brandt, 2015).
In particular, Moulin (1988) has shown that no resolute Condorcet extension satisfies par-
ticipation and Brandt (2015) has shown that no irresolute Condorcet extension satisfies
Kelly-strategyproofness for weak preferences. Theorem 3 addresses an intermediate ques-
tion and finds that—perhaps surprisingly—there are attractive Condorcet extensions that
satisfy Kelly-participation, even when preferences are weak. On the other hand, we have
presented elaborate computer-generated impossibilities (Theorems 1 and 2), which show
that these encouraging results break down once preferences are extended by the more re-
fined Fishburn extension. These findings improve our understanding of which assumptions
allow for aggregation functions that are immune to strategic abstention. For example,
one may assume that an agent prefers one choice set to another if the former yields more
expected utility than the latter for all utility representations consistent with the ordinal
preferences. In this model, Theorems 1 and 2 imply impossibilities when ties are broken
by uniform randomization and Theorem 3 represents a positive result for the case when
tie-breaking probabilities are unknown. An overview of the main results of this paper and
how they relate to results for strategyproofness is given in Table 2.

For Fishburn’s extension, it would be interesting to closer examine how the picture
changes when giving up majoritarianness, for example by considering the more general
class of pairwise SCFs, i.e., SCFs whose output only depends on the majority margins. In
particular, the question is whether there is a pairwise SCF satisfying Condorcet-consistency,
Pareto-optimality, and Fishburn-participation. For any combination of three of these four
properties, we can give an affirmative answer.

• The uncovered set is majoritarian (and hence pairwise), Condorcet-consistent, and
Pareto-optimal (Fishburn, 1977). It does, however, violate Fishburn-participation
(Theorem 1 and Theorem 2). The same is true for other well-known pairwise rules
such as the essential set, Nanson’s rule, Kemeny’s rule, Schulze’s rule, and ranked
pairs.

• The SCF that selects the Condorcet winner whenever one exists and all alternatives
otherwise is majoritarian (and hence pairwise), Condorcet-consistent, and satisfies

11. Indeed, Scott and Fey (2012) show that the minimal covering set selects all alternatives in almost all
large tournaments. The bipartisan set selects half of the alternatives on average (Fisher & Reeves, 1995).
The question of discriminability has been addressed in detail by Brandt and Seedig (2016).
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Strict preferences Weak preferences

Kelly-Participation ‘ All set-monotonic SCFs that satisfy IIV (Theorem 3)

Kelly-Strategyproofness ‘ All set-monotonic SCFsa a

No Condorcet extensiona,
no pairwise &
Pareto-optimal SCF
(|A|, |N | ≥ 3)d

a

No majoritarian &
Pareto-optimal SCF
(|A| ≥ 5, |N | ≥ 7)
(Theorem 2)

a

No majoritarian &
Pareto-optimal SCF
(|A| ≥ 4, |N | ≥ 6)
(Theorem 1)

Fishburn-Participation

‘
Condorcetb, top cycleb,g,
POe (by Lemma 2), all
scoring rulesf

a
No majoritarian &
Pareto-optimal SCF
(|A| ≥ 5, |N | ≥ 7)c

a
No anonymous &
Pareto-optimal SCF
(|A|, |N | ≥ 3)d

Fishburn-Strategyproofness

‘ Condorcetb, top cycleb,g,
POe

Table 2: Overview of results for participation and strategyproofness with respect to Kelly’s
and Fishburn’s extension and strict/weak preferences. The symbol ‘ marks posi-
tive results while a marks impossibility results. The Condorcet SCF returns the
Condorcet winner whenever one exists and all alternatives otherwise. The Top
Cycle consists of all maximal elements of the transitive closure of the majority
relation. a: Brandt (2015), b: Brandt and Brill (2011), c: Brandt and Geist (2016),
d: Brandt et al. (2018), e: Feldman (1979), f : Moulin (1988), g: Sanver and Zwicker
(2012)

Fishburn-participation (Gärdenfors, 1976; Brandt & Brill, 2011). In the absence of a
Condorcet winner, it may select Pareto-dominated alternatives, though.

• Borda’s rule is pairwise, Pareto-optimal, and satisfies Fishburn-participation (Moulin,
1988). On the other hand, it is well-known that it may fail to choose the Condorcet
winner.

• The SCF that select selects the Condorcet winner whenever one exists and all Pareto-
optimal alternatives otherwise satisfies Condorcet-consistency, Pareto-optimality and
Fishburn-participation (Brandt & Brill, 2011). However, it is not pairwise.

If we require all four properties, the situation is, to the best of our knowledge, unclear.
In general, it is interesting to observe that, for weak preferences, Pareto-optimality and
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Condorcet-consistency are compatible with Fishburn-participation while each of these prop-
erties is incompatible with Fishburn-strategyproofness.
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Appendix A. Proof of Theorem 2

Theorem 2. There is no majoritarian and Pareto-optimal SCF that satisfies Fishburn-
participation if |A| ≥ 5 and |N | ≥ 7, even when preferences are strict.

Proof. Let f be a majoritarian and Pareto-optimal SCF satisfying Fishburn-participation
and note, just as before, that majoritarianness implies anonymity and neutrality. We
first prove the statement for A = {a, b, c, d, e} and reason about the outcome of f for
some specific majority relations. Throughout this proof, we again make extensive use
of Lemma 1, which allows us to apply Fishburn-majority-participation instead of regular
Fishburn-participation. Intuitively, the basic proof structure is similar, but more intricate,
than that of Theorem 1.
Briefly summarized, we focus on %1 as given on the right—
essentially a 3-cycle within a 3-cycle. By neutrality we know that
f has to select either all of c, d, e or none of them, i.e., there
are only seven possible subsets of A that f can choose in %1:
{a}, {b}, {c, d, e}, {a, b}, {a, c, d, e}, {b, c, d, e} or A.

a b

c

d

e

Using several auxiliary majority relations, we successively show that if f selects {b} or
{a, b}, nothing can be chosen in %2, if f selects {a, c, d, e} or A, nothing can be chosen
in %3, if f selects {a}, nothing can be chosen in %4 and finally if f chooses {c, d, e} or
{b, c, d, e}, nothing can be chosen in %5. Thus, whatever f selects in %1, one of the other
four majority relations is left without a possible choice set, a contradiction.
To begin with, consider the majority re-
lation %2 as depicted on the right to-
gether with a preference profile inducing
%2. Similar to before, we now let dif-
ferent agents join this electorate and ex-
amine which conclusions they allow with
respect to f(%2).

1 2 3 4, 5 6

b b c d e
c e a a a
d c b b b
e d d e c
a a e a d

a b

c

d

e

�2
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First, assume an agent with preferences %2
1 : e, b, a, d, c joins the elec-

torate and consequently alters %2 to %2
+1. Here, we have that

f(%2
+1) = {a, b, d} according to Lemma 3. As nothing preferred to

{a, b, d} can be selected by f in %2, we obtain f(%2) 6= {b}, {a, b}.

a b

c

d

e

�2
+1

If, on the other hand, either an agent with preferences %2
2 : d, c, e, b, a

or an agent with preferences %2
2′ : d, c, e, a, b joins the electorate, %

2 is
changed to %2

+2, which is equivalent to %1. Suppose for the following
arguments, that f chooses {b} or {a, b} in %1. With respect to %2

2 we
thus obtain that f(%2) 6={c}, {d}, {e}, {b, c}, {b, d}, {b, e}, {c, d},
{c, e}, {d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {b, c, d, e}.

a b

c

d

e

�2
+2

Similarly, when considering %2
2′ , we can deduce that f(%2) 6={a}, {a, c}, {a, d}, {a, e},

{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e},
{a, c, d, e}, A. Put differently, we thus have that if f(%2

+2) = f(%1) is either {b} or {a, b},
then we obtain f(%2) = ∅. Consequently, f(%1) 6= {b}, {a, b}.

Next, consider the majority relation %3

as given on the right together with a pref-
erence profile inducing %3. We proceed
with our standard procedure of letting
agents join this electorate.

1 2 3 4 5 6

a b b c d d
e c e a e e
b d c b a c
c e d d b a
d a a e c b

a b

c

d

e

�3

If an agent with preferences %3
1 : c, a, e, d, b joins the electorate, he

changes %3 to %3
+1 where we have that f(%3

+1) = {b, d, e}. Conse-
quently, nothing preferred to {b, d, e} could have been selected by
f in %3 and we obtain f(%3) 6= {a}, {c}, {e}, {a, c}, {a, e}, {c, e},
{d, e}, {a, c, e}, {a, d, e}, {c, d, e}, {a, c, d, e}, {b, c, d, e}, A.

a b

c

d

e

�3
+1

The same modification of %3 to %3
+1 can also be achieved by agents with preferences

%3
2 : c, a, d, e, b and %3

3 : c, a, e, b, d. This additionally gives f(%3) 6= {d}, {a, d}, {c, d},
{a, c, d}, {a, b, d, e} due to %3

2 and f(%3) 6= {b, e}, {a, b, e}, {b, c, e}, {a, b, c, e} because of
%3

3.
We now let five different agents join the electorate, each of them
will alter %3 to %3

+4 which is identical to %1. For this step of the
proof suppose that f(%1) is either {a, c, d, e} or A. Adding an agent
with preferences %3

4 : b, e, d, c, a then gives that f cannot select {b}
or {b, e, d} in %3. In a similar fashion, %3

5 : b, a, e, d, c excludes {a, b}
from the set of possible choices.

a b

c

d

e

�3
+4

Next, if an agent with %3
6 : c, b, a, e, d joins the electorate, we obtain f(%3) 6= {b, c}, {a, b, c}.

An agent with %3
7 : d, b, a, e, c causes an identical change in the majority relation and

gives that f(%3) cannot be either {b, d} or {a, b, d}. Finally, if an agent with prefer-
ences %3

8 : d, c, b, a, e joins the electorate, %3 is once more altered to %3
+4 and we deduce

f(%3) 6= {b, c, d}, {a, b, c, d}.
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To summarize this step, we have that if f(%3
+4) = f(%1) is either {a, c, d, e} or A, then

f(%3) = ∅. Hence, f(%1) 6= {a, c, d, e}, A.

In the next step, we focus on %4 as de-
picted on the right. Just as before, we
provide a preference profile inducing %4.

1 2 3 4 5 6

a b b d e e
b c c e a d
c d d a b c
d a e c c a
e e a b d b

a b

c

d

e

�4

First, %4 can be altered to %4
+1 if an agent with preferences

%4
1 : a, b, d, e, c joins the electorate. As we have f(%4

+1) = {a, b, d},
we obtain f(%4) 6= {a} because otherwise joining would result in a
strictly worse outcome for the corresponding agent.

a b

c

d

e

�4
+1

A second agent with preferences %4
2 : b, d, e, c, a changes %4 to %4

+2,
once again equal to %1. We now assume f(%1) = {a}. Given this
presumption and that nothing preferred to {a}may have been chosen
in %4, we deduce that f(%4) 6= X for all X ∈ 2A \ {∅, {a}}.
We hence have that if f(%4

+2) = f(%1) = {a}, then f(%4) = ∅. Thus,
f(%1) 6= {a}.

a b

c

d

e

�4
+2

Finally, consider %5 as given on the right
together with a preference profile induc-
ing it. Note that in %5, c, d, and e are
‘symmetric’, i.e., as f satisfies neutrality,
f has to either select all of c, d, e or none
of them.

1 2 3 4 5 6

c c d d e e
a b a b a b
b d b e b c
d e e c c d
e a c a d a

a b

c

d

e

�5

If an agent with preferences %5
1 : d, c, e, b, a joins the electorate,

he changes %5 to %5
+1 where b is a Condorcet winner and thus

f(%5
+1) = {b}. Consequently, f(%5) 6= {c, d, e}, {b, c, d, e}.

a b

c

d

e

�5
+1

If on the other hand an agent with preferences %5
2 : a, b, d, c, e joins,

%5 becomes %5
+2 which is equal to %1. Lastly supposing that f(%1)

is either {c, d, e} or {b, c, d, e}, we can consequently exclude the re-
maining five choice possibilities from %5: f(%5) 6= {a}, {b}, {a, e},
{a, c, d, e}12, A.
This step thus gives that if f(%5

+2) = f(%1) equals {c, d, e}
or {b, c, d, e}, then f(%5) = ∅. We therefore have that
f(%1) 6= {c, d, e}, {b, c, d, e}.

a b

c

d

e

�5
+2

12. In case that f(%1) = {b, c, d, e}, an agent with preferences %5
3 : a, d, c, e, b has to join the electorate in

order for us to be able to exclude {a, c, d, e}.
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To put it all together, we have that for %1, a majoritarian and Pareto-optimal SCF f
satisfying Fishburn-participation has to select either {a}, {b}, {a, b}, {c, d, e}, {a, c, d, e},
{b, c, d, e}, or A due to neutrality. Yet, assuming f selects {b} or {a, b}, we have that
f(%2) = ∅. If f selects {a, c, d, e} or A, we deduce that f(%3) = ∅. f(%1) = {a} implies that
f(%4) = ∅. Finally, if f selects {c, d, e} or {b, c, d, e}, we obtain f(%5) = ∅. We hence have
that f(%1) = ∅, a contradiction. Thus, such an SCF f cannot exist and the impossibility
is proven.

The extension from |A| = 5 to |A| ≥ 5 works analogously to the extension in the proof
of Theorem 1.

With respect to the number of agents observe that all relevant majority relations—%2,
%3, %4, and %5—require an electorate of six agents to induce them. Together with the
joining agent we obtain the threshold of |N | ≥ 7 agents for this impossibility theorem to
hold.13
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