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Abstract

Lifting a preference order on elements of some universe to a preference order on subsets
of this universe is often guided by postulated properties the lifted order should have. Well-
known impossibility results pose severe limits on when such liftings exist if all non-empty
subsets of the universe are to be ordered. The extent to which these negative results carry
over to other families of sets is not known. In this paper, we consider families of sets
that induce connected subgraphs in graphs. For such families, common in applications, we
study whether lifted orders satisfying the well-studied axioms of dominance and (strict)
independence exist for every or, in another setting, for some underlying order on elements
(strong and weak orderability). We characterize families that are strongly and weakly
orderable under dominance and strict independence, and obtain a tight bound on the class
of families that are strongly orderable under dominance and independence.

1. Introduction

When agents, individually or as a group, make decisions to select one of several options,
they refer to their preference orders (or rankings) of the available choices. In a single-agent
setting, the agent simply selects an option that she prefers the most. In a group setting,
the agents submit their preference orders, or votes, to a voting rule, which determines the
option to select.

In many situations, having a preference order on individual objects is not enough for
decision making, and the ability to compare sets of alternatives is needed. For instance,
when an agent is to select a set of objects subject to some constraints, as in the knapsack
problem, that agent must have a preference order on the family of feasible sets. Similarly,
in the problem of fair allocation of indivisible goods (Bouveret, Chevaleyre, & Maudet,
2016), knowing how agents rank sets of goods is necessary to ensure that the goods are
distributed fairly. Some problems involving strategic behaviors in voting (Barberà, 1977;
Fishburn, 1977; Bossert, 1989; Brandt & Brill, 2011; Brandt, Saile, & Stricker, 2018) and
problems arising when determining optimal matchings and assignments (Roth & Sotomayor,
1990) also require the knowledge of agents’ preferences on collections of objects. Finally,
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preferences on sets of outcomes are needed in decision making, when there is uncertainty
about the consequences of an action (Larbi, Konieczny, & Marquis, 2010).

However, often the number of possible sets of alternatives makes explicit enumerations of
preference orders or rankings infeasible. To circumvent this problem, researchers proposed
that agents’ true preference order on sets be approximated by an order that can be derived
from their preference order on individual objects. If such an order is given as a utility
function on objects, the utility function (preference) on sets of objects can be derived
assuming, say, some form of additivity. This is a common setting, used for instance in the
knapsack problem and fair division.

An alternative and more abstract framework, known as the ordinal setting, assumes
that preferences on objects in some set X are represented by an order relation on X. The
objective is to lift this order to an order on a family of non-empty subsets of X. The problem
of lifting an order relation on X to an order on the family of all non-empty subsets of X has
been extensively studied. The paper by Barberà, Bossert, and Pattanaik (2004) provides
an excellent extensive overview of this research area. The results can roughly be divided
into two groups, those concerned with properties of specific ways to lift an order on objects
to an order on sets of objects, and those following the “axiomatic” approach, where one
postulates desirable properties a lifted order should have and seeks conditions that would
guarantee the existence of such a lifting (Barberà, 1977; Barberà, Barret, & Pattanaik, 1977;
Moretti & Tsoukiàs, 2012). Among these properties dominance and independence are the
most studied ones. Informally speaking, dominance ensures that adding an element which is
better (worse) than all elements in a set, makes the augmented set better (worse) than the
original one. Independence, on the other hand, states that adding a new element a to sets A
and B where A is already known to be preferred over B, must not make B∪{a} be preferred
over A ∪ {a} (or, in the strict variant, A ∪ {a} should remain preferred over B ∪ {a}). A
further basic property, called extension rule, states that the singletons {a} and {b} have
to be ordered the same way as elements a and b are ordered in the underlying order. In
what follows, we shall call properties like dominance, independence, and extensions simply
axioms.

The most striking results in the group of axiomatic approaches are known as impossibility
theorems. They say that some natural desiderata are inherently incompatible and cannot be
achieved together (Kannai & Peleg, 1984; Barberà et al., 2004; Geist & Endriss, 2011). For
instance, given an ordered set X with |X| ≥ 6, orders on P(X) \ {∅} satisfying dominance
and independence are not possible (Kannai & Peleg, 1984). Since these impossibility results
usually seek liftings to the family of all non-empty subsets of a set, they put very strong
constraints on the lifted order, constraints that cannot be satisfied together. However, one
is often only interested in comparing sets from much smaller families of sets. This will be
the setting we study here.

Indeed, if the set of indivisible goods are offices and labs in a new research building and
agents are research groups, it is natural to only consider allocations that form topologically
contiguous areas. For instance, if the building consists of a single long hall of rooms,
legal allocations are only those that split this hall into segments. In such situations, only
preferences that research groups may have on contiguous segments of rooms need to be taken
into account (Bouveret, Cechlárová, Elkind, Igarashi, & Peters, 2017). For another example,
we might consider a problem of farmland fragmentation, where individual farms consist of
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many small non-contiguous plots of land as the result of divisions of farms among heirs,
and acquiring ownership through marriage (King & Burton, 1982). Land consolidation was
proposed as a method to improve economic performance. The objective of land consolidation
is to reallocate the plots so that they form large contiguous land areas. In both cases, the
topology of the set of goods can be modeled by a graph and valid sets of goods are those
that induce in this graph a connected subgraph.

The question we are concerned here is whether the impossibility results still hold when
the goal is to lift an order on a set X (of goods) to specific collections of subsets of X,
namely those determined by the condition of connectivity in a given graph on X. More
precisely, we seek characterizations of graphs (topologies) when the impossibility results
still hold and those, for which lifting to orders satisfying prescribed postulates is possible.
To this end, we introduce the key notions of strongly and weakly orderable graphs. A graph
is strongly (resp. weakly) orderable with respect to a set A of axioms if every (resp. at least
one) linear order on X can be lifted to an order on the collection of all sets inducing in the
graph connected subgraphs, such that the lifted order satisfies axioms A. The motivation
for studying both variants of orderability is illustrated by a two-step system for delivering
a ranking on a collection C of all sets that induce a connected subgraph in a given graph.
In the first step, the user specifies the graph defining the corresponding collection C, and
the check is made whether C is weakly orderable or strongly orderable with respect to the
desired axioms A. If C is not even weakly orderable with respect to A, the system reports
that no matter which preference order on individual elements is provided by the user, the
obtained ranking will violate the axioms (the user hence might then be asked to select a
weaker set of axioms or adjust the graph); on the other hand, if C turns out to be strongly
orderable with respect to A, the user is asked for a ranking on the individual elements with
the guarantee that no matter how the ranking is chosen, a lifted ranking satisfying A will
be produced and delivered.

We summarize the main contributions of our paper next.

1. We show that the disjoint union of orderable graphs yields an orderable graph as well.
This enables us to fully describe strong and weak orderability by characterizing the
two concepts for connected graphs.

2. We fully characterize orderable connected graphs with respect to the axioms of dom-
inance and strict independence. For these two axioms, the class of strongly orderable
graphs is that of trees and the class of weakly orderable graphs is that of connected
bipartite graphs. This also holds if, in addition, the axiom of (strong) extension is
required.

3. We show that weakening strict independence to independence has minimal effect on
strong orderability. In combination with strong extension, we show that the only
additional connected strongly orderable graph that arises is the complete graph K3.
Furthermore, we give a full characterization of strong orderability with respect to
dominance and independence for two-connected graphs. Here we observe that, except
for some smaller special cases, two-connected graphs are strongly orderable with re-
spect to dominance and independence if and only if they are cycles or if they do not
contain a cycle of length five or more. This result holds also if we additionally require
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the extension axiom. Finally, we give a nearly complete picture for strong order-
ability with respect to dominance and independence and with respect to dominance,
independence and extension for arbitrary graphs.

An interesting implication of our results is that weakening strict independence to inde-
pendence yields only a modest extension of the class of strongly orderable graphs. It points
to strict independence being perhaps more essential for strong orderability than its weaker
and more commonly studied version.

Although we have focused here on graphs to represent the sets of elements to be ordered
in an implicit and compact way, we believe that our work has impact on further aspects
of ongoing research on preferential reasoning in the field of AI. Indeed, implicit preference
models are important for representing, eliciting and using preferences in practical applica-
tions. As an example, we mention here the work on preferences in Answer-Set Programming
(see e.g. Brewka, Niemelä, & Truszczyński, 2003; Faber, Truszczyński, & Woltran, 2013)
where logic programs compactly represent the sets to be ordered and languages as the one
by Brewka et al. (2003) allow to express preferences over the individual elements, i.e. the
atoms in the program. To this date, it is unclear whether the rankings obtained by such for-
malisms satisfy desirable properties as the ones discussed above. Our work thus can be seen
as a starting point for more general investigations on (im)possibility results in formalisms
from the areas in AI and KR.

More generally, our paper can also be seen as a contribution to an area of research in AI
concerned with models of preferences for combinatorial domains. Alternatives or outcomes,
both terms commonly used for objects of a combinatorial domain, are defined in terms
of attributes, each alternative being a vector of attribute values. Collections of subsets
of a given set X, which are central to our work, are examples of combinatorial domains
(each element x ∈ X can be seen an attribute that can take 0 or 1 as its value to indicate
absence or presence of x in a particular subset of X). As we already observed for spaces of
subsets of a set, the number of alternatives in combinatorial domains grows exponentially
with the number of attributes. This precludes an explicit enumeration as a practical model
of preferences over a combinatorial domain and brings about the need for concise implicit
preference models. The topic has been extensively studied (Domshlak, Hüllermeier, Kaci,
& Prade, 2011; Kaci, 2011). Most prominent approaches build on logical languages (Dubois
& Prade, 1991; Brewka, Benferhat, & Berre, 2004; Brewka et al., 2003) or employ intuitive
graphical representations such as lexicographic trees (Booth, Chevaleyre, Lang, Mengin, &
Sombattheera, 2010; Bräuning & Hüllermeier, 2012; Liu & Truszczynski, 2015) and CP-nets
(Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004). Our research addresses the same
issue but proposes a different approach. It can be seen as a study of the question whether
a preference order on a collection of subsets of a set could be obtained by lifting a strict
preference order on elements of that set in a way to satisfy some natural postulates lifted
preference orders on collections of sets should satisfy. Whenever it is the case, the original
order on elements of a set can serve as a concise representation of the one lifted to a much
larger domain of subsets of that set. As we note above, in the present paper, we concentrate
purely on the question whether lifting is possible at all. The question how to reason about
lifted orders based on the “ground” information about preferences on elements is left for
future research.
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This paper extends the earlier conference version (Maly, Truszczyński, & Woltran, 2018).
It contains all full proofs, additional examples and illustrations. We provide here also new
results that sharpen the frontier between strongly orderable graphs under dominance and
(the non-strict version of) independence and graphs which are not strongly orderable in this
sense. First, we give a complete characterization of strong orderability under dominance
and independence for two-connected graphs in Theorem 29 based on several propositions
including two new ones, Propositions 26 and 27, and a new computer search argument
given in the appendix. This characterization also holds if we add the extension axiom. Fur-
thermore, we improve our understanding of strong orderability with respect to dominance,
independence and extension for arbitrary graphs with a new result stated as Proposition 30
and give a new, more precise summary of our knowledge about strong orderability with
respect to dominance and independence and with respect to dominance, independence and
extension in Theorems 34 and 35.

2. Background

All sets we consider in the paper are finite. A binary relation is called an order if it is
reflexive, transitive and total.1 An order is linear if it is also antisymmetric. If � is an
order on a set X, the corresponding strict order ≺ on X is defined by x ≺ y if x � y and
y 6� x, where x, y are arbitrary elements of X; the corresponding equivalence or indifference
relation ∼ is defined by x ∼ y if x � y and y � x. If � is linear then x ∼ y holds only if
x = y. We call the linear order 1 < 2 < 3 < . . . the natural linear order on the natural
numbers. If objects are identified with the natural numbers then we also call this order the
natural order on these objects.

For a linear order � on a set A, we write max�(A) for the maximal element of A with
respect to �. Similarly, we write min�(A) for the minimal element of A with respect to �.
If no ambiguity arises, we drop the reference to the relation from the notation.

Given a set X and a linear order ≤ on X, the order lifting problem consists of deriving
from ≤ an order � on a family X ⊆ P(X)\{∅} of non-empty subsets of X, guided by axioms
formalizing some natural desiderata for such lifted orders. Observe that this does not mean
that every axiom is desirable in every situation. We shortly discuss the conditions under
which each of the axioms can be considered desirable below. For a nuanced discussion on
the applicability of these axioms see the paper by Barberà et al. (2004). We recall several
axioms in Figure 1. They are natural extensions of the versions of those axioms considered
in the case when X = P(X) \ {∅} (cf. Barberà et al., 2004). The extensions consist of
adding conditions of the form Y ∈ X not needed in the original formulations (cf. Maly &
Woltran, 2017).

The extension rule states that the singletons in X have to be ordered the same way
as the elements in X are ordered. This is a natural requirement that is desirable in most
interpretations of the order lifting problem, though there are some notable exceptions like
the interpretation of � as a measure of freedom of choice (Pattanaik & Xu, 1990).

1. Orders are also called weak orders or total preorders.
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Axiom 1 (Extension Rule). For all x, y ∈ X, such that {x}, {y} ∈ X :

x < y implies {x} ≺ {y}.

Axiom 2 (Strong Extension). For all A,B ∈ X :

max(A) < max(B) implies A ≺ B.

Axiom 3 (Dominance). For all A ∈ X and all x ∈ X, such that A ∪ {x} ∈ X :

y < x for all y ∈ A implies A ≺ A ∪ {x};

x < y for all y ∈ A implies A ∪ {x} ≺ A.

Axiom 4 (Independence). For all A,B ∈ X and for all x ∈ X \ (A ∪ B), such that
A ∪ {x}, B ∪ {x} ∈ X :

A ≺ B implies A ∪ {x} � B ∪ {x}.

Axiom 5 (Strict Independence). For all A,B ∈ X and for all x ∈ X \ (A ∪ B), such
that A ∪ {x}, B ∪ {x} ∈ X :

A ≺ B implies A ∪ {x} ≺ B ∪ {x}.

Figure 1: Axioms for lifting orders

Dominance2 states that adding a better element to a set increases the quality of the
set and adding a worse element decreases the quality of the set. This principle is often
desirable if the order � should reflect, to some extent, the average quality of the sets. If we
assume, for example, that the sets represent incompatible alternatives from which one will
be chosen randomly, then dominance is a natural desideratum (Can, Erdamar, & Sanver,
2009).

Independence and strict independence are natural monotonicity axioms that require
that adding the same element to two sets does not reverse a strict preference in the case of
independence, and does not change a strict preference in the case of strict independence.
These are natural desiderata in many interpretations, for example if sets are bundles of
objects that are compared according to their overall goodness according to some additive
utility (Kraft, Pratt, & Seidenberg, 1959).

There is some tension between the motivations for dominance and (strict) independence,
as dominance is more related to average utility while independence and strict independence
are more related to total utility. Nevertheless, there are cases where both axioms are natural
desiderata. These cases are often characterized by the fact that all elements may influence
the quality of a set but the extent of this influence is unknown or unknowable. An example
for such a situation might be choice under complete uncertainty:

2. The axion is often also called Gärdenfors principle after Peter Gärdenfors who introduced a version of
the axiom (Gärdenfors, 1976).
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Example 1. Consider a situation where an agent can perform different actions a1, . . . , ak
for which he knows the (set of) possible outcomes but he is not able or not willing to
determine the (approximate) probability of each outcome. Such a situation can be modeled
as a family of outcomes X = {o1, o2, . . . , ol} and a function O : {a1, . . . , ak} → P(X) \ {∅}
that maps every action to the set of possible outcomes of that action. If we assume that
the agent has preferences over the set of possible outcomes X that can be modeled as a
linear order, the problem of ranking the different actions can be modeled as an order lifting
problem. Under this interpretation the extension rule, dominance and independence are
usually considered natural desiderata (Bossert, Pattanaik, & Xu, 2000; Barberà et al.,
2004). �

Finally, strong extension states that a set A is preferred to a set B if the maximal element
of A is larger than the maximal element of B. This axiom can be considered reasonable,
for example, in a choice under complete uncertainty situation where all outcomes have
a positive but vastly different utility. Note that strong extension implies the extension
rule. Furthermore, dominance and independence together imply strong extension, if X =
P(X) \ {∅}. One could also define a dual version of strong extension based on the minima
of A and B. Because all problems in this paper are symmetric, we can use either version
without loss of generality. The two dual strong extension axioms are strict versions of the
well known Hoare and Smyth axioms (discussed in particular by Brewka, Truszczynski, and
Woltran 2010) restricted to linear orders.

Example 2. Take X = {1, 2, 3, 4} with the natural linear order ≤ and

X = {{2}, {4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 4}}.

The axioms impose constraints on any lifted order � on X . In particular, the extension
rule implies {2} ≺ {4}, while strong extension additionally implies {2} ≺ A for every
A ∈ X \ {{2}}. Dominance implies {2} ≺ {2, 4} ≺ {4}, {3, 4} ≺ {4}, {1, 2, 4} ≺ {2, 4}
and {1, 4} ≺ {4}, and (strict) independence lifts the preference between {2, 4} and {4}
to {1, 2, 4} and {1, 4}. Thus, dominance and independence imply {1, 2, 4} � {1, 4}, and
dominance and strict independence imply {1, 2, 4} ≺ {1, 4}. �

There are well known orders that satisfy most of the axioms that we consider. For
example, it is easy to see that the lexicographic order satisfies the strong extension and
hence the extension rule as well as independence and strict independence.

On the other hand, consider the minmax-order �mm defined by A �mm B if and only
if one of the following holds:

• max(A) < max(B),

• max(A) = max(B) and min(B) ≤ min(B).

The minmax-order clearly satisfies strong extension and hence the extension rule. Fur-
thermore, it satisfies dominance as y < x for all y ∈ A implies max(A) < max(A ∪ {x})
and x < y for all y ∈ A implies max(A) = max(A ∪ {x}) and min(A ∪ {x}) < max(A).
However, the minmax-order does not necessarily satisfy independence. Take, for example,
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X = {1, 2, 3, 4} and let ≤ be the natural linear order on X. Then {2} ≺mm {1, 3} but
{1, 3, 4} ≺mm {2, 4}.

However, as it turns out, dominance and (strict) independence can rarely be satisfied
together. In their seminal paper, Kannai and Peleg (1984) proved that if |X| ≥ 6 then
orders on P(X)\{∅} satisfying dominance and independence are not possible. Barberà and
Pattanaik (1984) showed a similar impossibility result for |X| ≥ 3, when dominance and
strict independence are required.

We show in this paper that the picture for other families of non-empty subsets of X is
much more interesting. In particular, we show it to be the case for collections of subsets of
X that induce connected subgraphs in some graph on X. Namely, we describe non-trivial
classes of graphs defining families of sets that allow for lifted orders satisfying dominance
and (strict) independence. In many cases, these lifted orders also satisfy the extension rule
or its stronger version. It is important as every reasonable lifted order should satisfy the
extension rule.3

3. Problem Statement

We are interested in families of sets that are defined in terms of connectivity of subgraphs in
a graph. We consider undirected graphs only. We write G = (V,E) for a graph with the set
of vertices V and the set of edges E. We denote an edge between vertices u and v as {u, v}.
A graph H = (W,F ) is a subgraph of G if W ⊆ V and F ⊆ E. If a subgraph H = (W,F )
of G contains all edges in G connecting vertices in W , H is the subgraph induced by W .
A path consists of a non-empty set S of vertices that can be enumerated so that every two
consecutive vertices are connected with an edge; its length is given by |S| − 1, the number
of edges the path contains. A cycle is a sequence of at least three different vertices that
can be enumerated so that every two consecutive vertices, as well as the first and the last
one, are connected with an edge; the length of a cycle is given by the number of vertices. A
graph is connected if every two of its vertices are connected by a path. A forest is a graph
with no cycles. A tree is a forest that is connected. A connected graph is called unicyclic if
it contains at most one cycle. A pseudoforest is a graph whose every connected component
is a unicyclic graph.

Definition 3. For a graph G we write C(G) for the family of sets of vertices of all connected
non-empty subgraphs of G. Moreover, IT (G) denotes the family of sets of vertices V ′ such
that the subgraphs induced by V ′ in G are trees.

Example 4. To illustrate these concepts, let us consider graphs G and G′ shown in Figures 2
and 3. For the graph G in Figure 2, we get

C(G) = IT (G) = {{1}, {2}, {3}, {4}, {1, 4}, {2, 4},
{3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

3. The standard statement of the lifting problem does not explicitly mention the extension rule since for
X = P(X)\{∅} the extension rule is implied by two applications of dominance via {x1} ≺ {x1, x2} ≺ {x2}
for x1 < x2.
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Figure 2: Graph G

1
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4

Figure 3: Graph G′

and for the graph G′ in Figure 3, we have

C(G′) = P({1, 2, 3, 4}) \ {{1, 3}, {2, 4}}

and
IT (G′) = C(G′) \ {{1, 2, 3, 4}}.

�

The next two definitions introduce the two types of orderability we study in this paper,
namely strong and weak orderability. For each type, we consider six different versions
depending on the usage of independence and extension axioms.

Definition 5. Let X be a set of elements and X ⊆ (P(X) \ {∅}). We say X is

• strongly (weakly) DI-orderable, if for every (some) linear order on X there is an order
on X satisfying dominance and independence;

• strongly (weakly) DIS-orderable, if for every (some) linear order on X there is an order
on X satisfying dominance and strict independence;

• strongly (weakly) DIE-orderable if for every (some) linear order on X there is an order
on X satisfying dominance, independence, and extension;

• strongly (weakly) DISE-orderable if for every (some) linear order on X there is an
order on X satisfying dominance, strict independence, and extension;

• strongly (weakly) DIES-orderable if for every (some) linear order on X there is an
order on X satisfying dominance, independence, and strong extension;

• strongly (weakly) DISES-orderable if for every (some) linear order on X there is an
order on X satisfying dominance, strict independence, and strong extension.

Occasionally, we use the expression (S) in the superscript by the property symbol. We
use this notation when we want to make statements that hold no matter whether we omit
(S) or replace it with S. For instance, by stating that a family X of sets is weakly DI(S)-
orderable, we mean that X is both weakly DI-orderable and weakly DIS-orderable.

We extend the concepts defined above to graphs. That is, if there is no ambiguity, we
say that a graph G is strongly (or weakly) DI(S)- or DI(S)E(S)-orderable if C(G) has the
corresponding property.
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Remark 6. We observe that weak and strong orderability are equivalent concepts on com-
plete graphs Ki = (V,E), because C(Ki) = P(V ) \ {∅}. Therefore, by symmetry, if for one
order on the vertices there is an order on C(Ki) satisfying a set of axioms, then such an
order exists for every order on the vertices.

Example 7. Consider the graph G in Figure 2. One can check that G is strongly DISES-
orderable. Indeed, without loss of generality we may assume that 1, 2 and 3 are ordered so
that 1 < 2 < 3. Thus, there are four linear orders on {1, 2, 3, 4} to consider:

4 < 1 < 2 < 3

1 < 4 < 2 < 3

1 < 2 < 4 < 3

1 < 2 < 3 < 4.

Now consider the order � with its strict variant ≺ given by

{1} ≺ {2} ≺ {3} ≺ {1, 2, 3, 4} ≺ {1, 2, 4} ≺ {1, 3, 4} ≺ {2, 3, 4}
≺ {1, 4} ≺ {2, 4} ≺ {3, 4} ≺ {4}

We claim that � satisfies dominance, strict independence and strong extension with respect
to the last linear order. Strong extension implies {1} ≺ {2} ≺ {3}. Furthermore, for all A ∈
C(G)\{{1}, {2}, {3}} strong extension implies {1}, {2}, {3} ≺ A as 4 ∈ A holds. Dominance
implies {i} ≺ {i, 4} ≺ {4} for i ∈ {1, 2, 3}. Further, it implies {1, j, 4} ≺ {j, 4} for j ∈ {2, 3}
and {1, 2, 3, 4} ≺ {2, 3, 4} ≺ {3, 4}. Strict independence implies that {1, 4}, {2, 4} and
{3, 4} are ordered like {1}, {2} and {3}. Furthermore, strict independence implies that
{l, k, 4} and {l, 4} are ordered like {k, 4} and {4} for {1, 2} 3 l 6= k ∈ {2, 3}. Additionally,
{1, 4} ≺ {2, 4} ≺ {3, 4} implies by strict independence {1, 2, 4} ≺ {1, 3, 4} ≺ {2, 3, 4}.
Finally, there are sets A,B ∈ C(G) such that A ∪ {x}, B ∪ {x} ∈ C(G) where |A| = 3 and
|B| = 2. We observe that in � this implies A ≺ B as well as A ∪ {x} ≺ B ∪ {x}. It can be
checked that these are all possible applications of the axioms and that they all are satisfied
in �. Similar lifted orders can be constructed for the three other orders, too. Thus, our
claim follows.

On the other hand, the graph G′ in Figure 3 is not strongly DIS orderable. If we
assume the natural order on the vertices of G′, dominance implies {1} ≺ {1, 2} and {1, 2} ≺
{1, 2, 3}, and transitivity implies {1} ≺ {1, 2, 3}. Similarly, we can derive that {2, 3, 4} ≺
{4}. Applying strict independence to these two relations yields {1, 4} ≺ {1, 2, 3, 4} and
{1, 2, 3, 4} ≺ {1, 4}, preventing ≺ from being a strict order. (This argument obviously
does not work on IT (G′) because {1, 2, 3, 4} 6∈ IT (G′) and indeed IT (G′) is strongly DIS-
orderable.) However, the order

{1} ≺ {3} ≺ {1, 2, 3} ≺ {1, 2} ≺ {2, 3} ≺ {2} ≺ {1, 3, 4} ≺ {1, 4} ≺
{3, 4} ≺ {1, 2, 3, 4} ≺ {4} ≺ {1, 2, 4} ≺ {2, 3, 4}

satisfies dominance and strict independence with respect to the linear order 1 < 3 < 2 < 4.
Hence G′ is weakly DIS-orderable. In fact, since the order we demonstrated also satisfies
strong extension, G′ is even weakly DISES-orderable. �
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Graph G is . . . DIS-orderable DISE-orderable DISES-orderable

. . . a forest strongly strongly strongly

. . . two-colorable weakly weakly weakly

. . . not two-colorable not weakly not weakly not weakly

Table 1: Weak and Strong orderability with respect to strict independence.

It is evident that if a graph G is strongly or weakly orderable with respect to some
collection of axioms selected from those discussed above, so are all its connected components.
Indeed, we show below that if any set X is strongly or weakly orderable with respect to
some collection of axioms selected from those discussed above, so are all its subsets.

Observation 8. Let X ⊆ P(X) \ {∅} be a family of sets that is strongly DI-orderable and
let S ⊆ X be a subset of X . Then S is strongly DI-orderable.

The same holds if we replace strongly DI-orderable by strongly DIE-, DIES-, DIS-,
DISE- or DISES-orderable or by weakly DI-, DIE-, DIES-, DIS-, DISE- or DISES-
orderable.

Proof. Since all axioms are universal statements, it follows that the restriction of an order
to a subset satisfies all axioms that the original order satisfies.

Importantly, the converse holds for disjoint subsets allowing us to restrict attention to
connected graphs only.

Proposition 9. Let X ⊆ P(X) \ {∅} and Y ⊆ P(Y ) \ {∅} be families of subsets of X and
Y respectively such that X ∩ Y = ∅. If X and Y are strongly DI-orderable, then X ∪ Y is
strongly DI-orderable.

The same holds if we replace strongly DI-orderable by strongly DIE-, DIES-, DIS-,
DISE- or DISES-orderable or by weakly DI-, DIE-, DIES-, DIS-, DISE- or DISES-
orderable.

We omit the proof here. A full proof can be found in Appendix A. The observation
and Proposition 9 together immediately imply that a graph is strongly DI-orderable if and
only if all its connected components are strongly DI-orderable. Again, the same holds if we
replace strongly DI-orderable by strongly DIE-, DIES-, DIS-, DISE- or DISES-orderable
or by weakly DI-, DIE-, DIES-, DIS-, DISE- or DISES- orderable.

In the forthcoming two sections we present our main results. Section 4 considers the
combination of strict independence with dominance and optionally, extension or strong
extension. Then in Section 5 we consider combinations of axioms containing independence.

4. Strict Independence

In this section, we present classification results for strong and weak DIS-orderability, as
well as strong and weak DISE- and DISES-orderability. These results are summarized
Table 1. We start our investigations with strong orderability. Our first result concerns the
family of all subsets of vertices of a graph that induce a tree.
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Proposition 10. For every graph G, IT (G) is strongly DISES-orderable.

Proof. Let V be the vertex set of a graph G and n = |V |. Further, let ≤ be any linear
order on V . Wlog, we assume that V = {1, . . . , n} and that ≤ is the natural linear order
on {1, . . . , n}.

For every A ∈ IT (G) and i ∈ A, we write degA(i) for the degree of i in the subtree of G
induced by A. We associate with every set A ∈ IT (G) a vector

vA = (a1, . . . , an) ∈ (N ∪ {∞})n,

where ai =∞ if i 6∈ A, and ai = k if i ∈ A and degA(i) = k.

Let ≤∗ be the linear order on N ∪ {∞} such that ∞ <∗ · · · <∗ k <∗ · · · <∗ 1. We order
IT (G) by defining A � B precisely when vA ≤lex vB, where ≤lex is the lexicographic order
with respect to ≤∗, with the indices considered from n to 1. That is, A � B if an <∗ bn,
or an = bn and an−1 <∗ bn−1, and so on. Obviously, � is a (linear) order, and it satisfies
strong extension. We will show that � satisfies dominance and strict independence.

Dominance. Assume that for every y ∈ A, y < x. It follows that max(A) < x. Thus,
max(A) < max(A ∪ {x}) and A ≺ A ∪ {x} holds by strong extension. So, assume that
for every y ∈ A, x < y. Then, x < min(A). Let m be the neighbor of x in A (since
A,A ∪ {x} ∈ IT (G), that is, each set induces a tree in G, it follows that x has exactly one
neighbor in A). By the assumption, x < m and degA∪{x}(m) = degA(m) + 1. Therefore,
ai = axi for every i such that m < i, and axm <∗ am, where we write ai and axi for the
elements of the vectors vA and vA∪{x}. Hence, A ∪ {x} ≺ A.

Strict independence. Assume A,B,A ∪ {x}, B ∪ {x} ∈ IT (G) and A ≺ B. By the
same argument as above, x has a unique neighbor in A and a unique neighbor in B. We
will denote them by mA and mB, respectively. Using the same notation as above for the
corresponding vectors for the sets A,B,A ∪ {x}, B ∪ {x}, we have that ax = bx = ∞ and
axx = bxx = 1. Further, we observe that ai = axi and bi = bxi for i /∈ {x,mA,mB}.

Assume first that mA = mB = m. Then axm = am+1 and bxm = bm+1. Hence, axm <∗ bxm
if and only if am <∗ bm. It follows that vA∪{x} <lex vB∪{x} if and only if vA <lex vB.

Next, assume mA 6= mB. Then mA 6∈ B and mB 6∈ A. Hence, bmA = bxmA
= ∞

and amB = axmB
= ∞ by definition and, on the other hand, axmA

= amA + 1 6= ∞ and
bxmB

= bmB + 1 6=∞. Hence, by the definition of ≤∗ we have bmA <∗ amA and bxmA
<∗ axmA

Similarly, we have amB <∗ bmB and axmB
<∗ bxmB

. This implies that axi <∗ bxi holds if and
only if ai <

∗ bi holds and therefore vA∪{x} <lex vB∪{x} if and only if vA <lex vB.

The following corollary follows immediately from the fact that C(G) = IT (G) holds if
G is a tree.

Corollary 11. Every tree is strongly DISES-orderable.

This result is optimal in the sense that cycles prevent a graph from being strongly
DIS-orderable.

Proposition 12. If a graph G contains a cycle, then it is not strongly DIS-orderable.
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Proof. Let C = v1, . . . , vn be a shortest cycle in G. Then C(G) contains C and all connected
subgraphs of C. In particular, C(G) contains {v1, vn} and all sets {vi, vi+1, . . . , vj−1, vj},
where 1 ≤ i ≤ j ≤ n. Let ≤ be an order on V such that v1 < · · · < vn. Let us assume that
there is an order � on C(G) that satisfies dominance and strict independence with respect
to ≤. Then, by dominance

{v1} ≺ {v1, v2} ≺ · · · ≺ {v1, . . . , vn−1}

and

{v2, . . . , vn} ≺ {v3, . . . , vn} ≺ · · · ≺ {vn}.

Therefore, by strict independence {v1, vn} ≺ {v1, . . . , vn} and {v1, . . . , vn} ≺ {v1, vn}. Since
n ≥ 3, this is a contradiction!

The following theorem summarizes the previous results and follows from Corollary 11,
Proposition 9, Proposition 12 and the fact that any graph that is not strongly DIS-orderable
is also not strongly DISE(S)-orderable.

Theorem 13. The set of strongly DIS-, DISE- or DISES-orderable graphs is exactly
given by the class of forests.

This result states that every linear order on X can be lifted (with respect to dominance,
strict independence and strong extension) to every family of sets of vertices inducing a
connected subgraph in a forest on X. In other words, we know that a family of sets X
is strongly DISES-orderable if there exists a forest F such that X ⊆ C(F ) holds. For
instance, no matter what linear order on {1, 2, . . . , n} we consider, it extends to a linear
order on the family

I = {[i..j] | 1 ≤ i < j ≤ n}

that satisfies dominance, strict independence and strong extension. It is so because every
set in I induces a connected subgraph in the path in which elements 1, . . . , n are listed in
the natural order. The same is true for the family of sets

S = {X ⊆ {1, . . . , n} | 1 ∈ X}.

Indeed, each set in this family induces a connected subgraph in the “star” tree in which
every vertex i ≥ 2 is connected to 1 (and there are no other edges).

Furthermore, recall that a hypergraph H over a set X is called a hypertree or arboreal
if there exists a tree T with nodes X such that all edges of H induce connected subtrees
in T (Berge, 1984; Brandstädt, Dragan, Chepoi, & Voloshin, 1998). This means, in our
notation, H ⊆ C(T ). Therefore, Theorem 13 implies that every hypertree is strongly
DISES-orderable.

The converse is not necessarily true, however. Consider X = {{1, 2}, {1, 3}, {2, 3}} for
example. Then any graph G such that X ⊆ C(G) must contain the edges (1, 2), (1, 3), (2, 3)
and hence a cycle. However, because all sets in X have the same size, dominance and
strict independence hold vacuously for any order on X . Further, given any linear order ≤
on {1, 2, 3}, the relation A � B defined to hold when max(A) ≤ max(B) satisfies strong
extension. Therefore X is strongly DISES-orderable.
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We now turn to weak orderability and show in the forthcoming two results that the
bipartite graphs form the crucial class for our characterization. We use the fact that a
graph is bipartite if and only if it is two-colorable.

Proposition 14. Every two-colorable graph is weakly DISES-orderable.

Proof. Let us consider a two-colorable graph G = (V,E). We color G with two colors small
and large and call vertices of G small and large accordingly. Let ≤ be any linear order on
V such that every small vertex is smaller than every large vertex.

For every A ∈ C(G) we define AL = {x ∈ A | x is large} and AS = {x ∈ A | x is small}.
For A,B ∈ C(G), we define A � B if and only if

• A = B; or

• AL 6= BL and max(AL4BL) ∈ BL; or

• AL = BL, AS 6= BS , and min(AS4BS) ∈ AS .

(we write 4 for the symmetric difference of sets). We will prove that � is a linear order.
Indeed, it is easy to see that � is reflexive and total. Let us assume that A � B.

If A � B holds by the second condition of the definition, then B 6� A, because we have
BL 6= AL and max(BL4AL) = max(AL4BL) /∈ AL. By a similar argument, B 6� A follows
also if the third clause of the definition applies. Thus, if A � B and B � A, it must be that
the first condition holds, that is, A = B. It follows that � satisfies antisymmetry.

To prove transitivity, let us assume that A � B and B � C. If A = B or B = C, then
we obtain A � C by substituting A for B in B � C or C for B in A � B. Thus, from now
on we assume that that A 6= B and B 6= C. It follows that each of A � B and B � C holds
because of the second or the third condition of the definition of �.

Let us assume first that both A � B and B � C hold by the second condition and let

d = max((AL \BL) ∪ (BL \ CL) ∪ (CL \AL)).

We note that

(AL \BL) ∪ (BL \ CL) ∪ (CL \AL) = (AL4BL) ∪ (BL4CL) ∪ (AL4CL).

Clearly, d /∈ AL \ BL. Indeed, let us assume that d ∈ AL \ BL. This would imply d ∈ AL

as well as d ∈ AL4BL. We would then have max(AL4BL) = d ∈ AL, and, consequently,
B � A. Antisymmetry would then imply A = B, a contradiction. Similarly, d /∈ BL \ CL.
It follows that d ∈ CL \ AL. Thus, AL 6= CL, d ∈ CL, d ∈ AL4CL and d = max(AL4CL).
Consequently, max(AL4CL) ∈ CL and A � C.

The case when each of A � B and B � C holds because of the third clause in the
definition of � can be dealt with in a similar way.

Thus, let us assume then that A � B holds by the second condition of the definition
and B � C holds by the third condition. It follows that AL 6= BL, max(AL4BL) ∈ BL and
BL = CL. Consequently, AL 6= CL and max(AL4CL) ∈ CL. Thus, A � C. In the dual
case, when A � B holds because of the third condition and B � C because of the second
one, we obtain A � C in a similar way. This concludes the proof of transitivity.
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We will now show that � satisfies dominance, strict independence and strong extension.

Dominance. Let A,A∪{x} ∈ C(G). By the connectivity of the subgraph induced in G by
A∪{x}, x has at least one neighbor in A. Let us fix any such neighbor of x and denote it by
n. Clearly, the colors of x and n are different. Let us assume that max(A) < x. It follows
that x is large. Thus, x ∈ (A ∪ {x})L and so, AL 6= A ∪ {x}. Since AL4(A ∪ {x})L = {x},
max(AL4(A ∪ {x})L) = x. Thus, max(AL4(A ∪ {x})L) ∈ (A ∪ {x})L and A ≺ A ∪ {x}.
The case x < min(A) can be dealt with in a similar way.

Strict independence. Assume A,B,A∪{x}, B∪{x} ∈ C(G) and A ≺ B (thus, either the
second or the third condition of the definition holds). As AL4BL = (A∪{x})L4(B∪{x})L
and AS4BS = (A ∪ {x})S4(B ∪ {x})S , we have A ∪ {x} ≺ B ∪ {x}.
Strong Extension. Consider sets A,B ∈ C(G) such that max(A) < max(B). First
assume that BL 6= ∅. Clearly, max(B) ∈ BL and max(B) /∈ AL (because max(B) /∈ A). It
follows that AL4BL 6= ∅ and max(AL4BL) = max(B). Thus, max(AL4BL) ∈ BL and so,
A � B. Since A 6= B and � is a linear order, we have A ≺ B.

Next, assume that BL = ∅. It follows that max(B) is small and so, max(A) is small,
too. Consequently, we have that A and B consist of small vertices only. As they induce
connected subgraphs in G, |A| = |B| = 1. These observations imply that AL = BL = ∅, and
min(A) = max(A) < max(B) = min(B). Consequently, min(A) ∈ AS and min(A) /∈ BS . It
follows that AS4BS 6= ∅ and that min(AS4BS) = min(AS). Hence, min(AS4BS) ∈ AS

and so, A ≺ B.

Note that a complete bipartite graph is also two-colorable. Hence, this result shows, in
particular, that if X and Y are disjoint nonempty sets, then the family of sets

{Z ⊆ X ∪ Y | Z ∩X 6= ∅ 6= Z ∩ Y }

is weakly DISES-orderable.

Proposition 14 is tight as graphs that are not two-colorable are not weakly DIS-
orderable.

Proposition 15. If a graph is not two-colorable, then it is not weakly DIS-orderable.

Proof. Let V be the vertex set of G and let ≤ be a linear order on V . We say a vertex
x ∈ V is large (respectively, small) with respect to ≤ if for every neighbor n of x, n < x
(respectively, n > x) holds. We call x ∈ V intermediate with respect to ≤ if x is neither
large nor small. (When talking about large, small and intermediate vertices, we often drop
references to ≤ if it is clear from the context.) Let us assume that every vertex in V is
either large or small. Obviously no large vertex can be a neighbor of a large vertex and no
small vertex can be the neighbor of a small vertex. Thus, the large-small labeling of nodes
is a two-coloring of G, a contradiction.

Our argument shows that for every linear order ≤ on V , V contains at least one inter-
mediate vertex. Let ≤ be an arbitrary linear order on V and let x be an intermediate vertex
with respect to ≤. We call a neighbor n of x small if n < x holds and large otherwise.
Further, we call an intermediate x critical if at least one small neighbor of x is connected
to at least one large neighbor of x by a path in G−x , the graph induced by V \ {x}.
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x

n

n′

x1

xk

x2

xk−1

Figure 4: Vertex x with two neighbors n and n′ connected by a path

We claim that every linear order contains at least one critical vertex. Indeed, let us
assume otherwise and let ≤ be a counterexample order with the minimum number of in-
termediate vertices. That is, no vertex in V is critical and every linear order with fewer
intermediate vertices than ≤ contains a critical vertex.

Let x be an intermediate vertex with respect to ≤, and let V ′ be the set of all vertices in
V reachable in G from x by simple paths (no repetition of vertices) that start with an edge
connecting x to a small neighbor of x. Let us define V ′′ = V \ V ′. Clearly, x and all small
neighbors of x belong to V ′ and all large neighbors of x belong to V ′′. To see the latter,
let us assume that some large neighbor of x, say y, belongs to V ′. It follows that there is
a path from a small neighbor of x to y in G−x , contradicting that x is intermediate but not
critical. In addition, by the definition of V ′, the only edges between V ′ and V ′′ are those
that connect x and its large neighbors. We define linear order ≤′ on V by setting y ≤′ z if
and only if

• y, z ∈ V ′ and y ≤ z,

• y, z ∈ V ′′ and z ≤ y,

• z ∈ V ′, y ∈ V ′′.

It is clear that ≤′ is a linear order on V . Moreover, x is not an intermediate vertex in G
with respect to ≤′, because all neighbors of x that are small with respect to ≤ are also
small with respect to ≤′ and all neighbors that are large with respect to ≤ are small with
respect to ≤′. Furthermore, for all other vertices y 6= x, whether they are intermediate
or not does not change. This is clear if y ∈ V ′. If y ∈ V ′′ then the relation of y to all
its neighbors is inverted, hence small vertices become large vertices, large vertices become
small vertices and intermediate vertices stay intermediate. It follows that ≤′ has fewer
intermediate vertices than ≤. Let y be any intermediate vertex with respect to ≤′. By
construction either y and all its neighbors are all in V ′ or are all in V ′′. Since y is an
intermediate but not critical vertex with respect to ≤, y is not critical with respect to ≤′.
Thus, ≤′ is an order with fewer intermediate vertices than ≤ and with no critical vertices,
a contradiction.
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Let ≤ be any linear order on V and let x be a critical vertex under this order. Let
n be a small neighbor of x connected in G−x to a large neighbor of x, say n′, by a path
n, x1, . . . , xk, n

′, as shown in Figure 4. Let us assume there is an order � on C(G) satis-
fying dominance and strict independence with respect to ≤. Then, since n < x, we have
{n} ≺ {n, x} by dominance. Further, by repeated application of strict independence and
transitivity

{n, x1, . . . , xk, n
′} ≺ {n, x, x1, . . . , xk, n

′}.

On the other hand, since x < n′, we have {x, n′} ≺ {n′} and hence, again by strict inde-
pendence and transitivity,

{n′, x, x1, . . . , xk, n} ≺ {n′, x1, . . . , xk, n}.

Thus,
{n, x1, . . . , xk, n

′} ≺ {n, x1, . . . , xk, n
′},

a contradiction.

The following theorem follows directly from Proposition 14 and Proposition 15.

Theorem 16. The set of weakly DIS-, DISE- or DISES-orderable graphs is exactly given
by the class of two-colorable graphs (or equivalently, bipartite graphs).

Remark 17. It is worth observing that it is possible to decide in polynomial time if a
graph is a forest and if a graph is two-colorable. Therefore our results show that, for
a given graph G, it is decidable in polynomial time if C(G) is strongly/weakly DISES-
orderable. Furthermore, for any two-colorable graph, we can compute a two-coloring in
polynomial time. Therefore, for any weakly DISES-orderable graph G = (V,E) we can
compute, in polynomial time, an order ≤ on V such that there exists a linear order � on
C(G) satisfying dominance, strict independence and strong extension with respect to ≤ by
using the construction used in the proof of Proposition 14.

Finally, we observe that the orders constructed in the proofs of Proposition 10 and
Proposition 14 are linear orders. Furthermore, we observe that we did not use the totality
of the order � in the proofs of Proposition 12 and Proposition 15. Therefore, we can
conclude that if a graph G is not strongly (weakly) DISES-orderable, then for at least one
(for every) linear order on its vertices there does not exist a partial order on C(G) that
satisfies dominance, strict independence and strong extension. In other words:

Corollary 18. Let G be a graph. There exists a linear order on C(G) satisfying dominance
and strict independence (and extension or strong extension) for every (at least one) order
on the vertices of G if and only if there exists a partial order on C(G) satisfying dominance
and strict independence (and extension or strong extension) for every (at least one) order
on the vertices of G

This result is especially interesting because it is known that for every family of sets
X ⊆ P(X) \ {∅} there is a partial order satisfying dominance, independence and extension
for every linear order on X (Maly & Woltran, 2017). Hence, if we consider a clique with
six or more vertices, there exists a partial order satisfying dominance, independence and
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Graph G . . . strongly
DI-ord.

strongly
DIE-ord.

strongly
DIES-ord.

. . . is a tree or K3 Yes Yes Yes

. . . is a cycle of length ≥ 4 Yes Yes No

. . . is unicyclic Yes ? No

. . . contains 2 disjoint cycles ? No4 No

. . . contains 2 cycles sharing a vertex No5 No5 No

Table 2: Extent of strong orderability of a graph G, if G. . . .

extension but no (total) order satisfying the same axioms. Furthermore, if we require the
order � on X to be linear, independence and strict independence are equivalent. As we will
see later there are graphs that are strongly DIES-orderable but not strongly DIS-orderable.
Hence, there are graphs that are DIES-orderable but there is no linear order on C(G) that
satisfies dominance and independence. In other words, if we consider strict independence, it
makes no difference for orderability if we are looking for a partial order, an order or a linear
order, whereas for independence all three notions result in different concepts of orderability.

5. Regular Independence

We now replace strict independence by independence. Table 2 summarizes some of our main
results. For a complete list of the results, see Theorem 21, 29, 34 and 35. We focus first
on strong DIES-orderability for which we give an exact characterization. The following is
easy to see.

Proposition 19. Let X be a set. If |X| ≤ 3, then P(X) \ {∅} is strongly DIES-orderable.

Proof. Wlog we may assume that X = {1, 2, 3} and that ≤ is the natural linear order on
X. We define an order � by setting: {1} ≺ {1, 2} ≺ {2} ≺ {1, 3} ∼ {1, 2, 3} ≺ {2, 3} ≺ {3}.
We claim that this order satisfies dominance, independence and strong extension. Strong
extension can easily be checked. Dominance implies {1} ≺ {1, 2} ≺ {1, 2, 3} ≺ {2, 3} ≺ {3}
and {1} ≺ {1, 3} ≺ {3} as well as {1, 2} ≺ {2} ≺ {2, 3}. All of these are satisfied. For
independence, assume that A,B ∈ P(X) \ {∅} and A∪ {x}, B ∪ {x} ∈ P(X) \ {∅} for some
x 6∈ A ∪ B. First we assume |A| = |B| = 1. In this case independence holds as {1, 3}
and {2, 3} are ordered like {1} and {2}, {1, 2} and {2, 3} are ordered like {1} and {3} and
{1, 2} and {1, 3} are ordered like {2} and {3}. Now assume |A| = 1 and |B| = 2 Then,
{1} ≺ {1, 2} implies {1, 3} � {1, 2, 3}, {1} ≺ {1, 3} implies {1, 2} � {1, 2, 3}, {2} ≺ {2, 3}
implies {1, 2} � {1, 2, 3}, {1, 2} ≺ {2} implies {1, 2, 3} � {2, 3}, {1, 3} ≺ {3} implies
{1, 2, 3} � {2, 3} and {2, 3} ≺ {3} implies {1, 2, 3} � {1, 3}. It is straightforward to check
that all of these hold. Now |A| = |B| = 2 is not possible because then A ∪ {x} = B ∪ {x}
must hold and hence A = B. Furthermore, |A| = 3 or |B| = 3 is obviously not possible.

4. If the size of at least two cycles is at least 4.
5. If the size of at least one of the cycles is at least 4.
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v

vnum

u1 v1

u

Figure 5: A circle with at least 4 vertices.

v3

v1

v2 u

Figure 6: A circle with three vertices and
connected to an additional ver-
tex u.

While this result shows that cycles of length 3 are strongly DIES-orderable, the next
result shows that we cannot go much beyond 3-cycles.

Proposition 20. Let G be a connected graph with four or more vertices that contains at
least one cycle. Then G is not strongly DIES-orderable.

Proof. Either G contains a cycle of length at least four or a cycle of length three connected
to an additional vertex. In the first case let u, v ∈ V be two non-adjacent vertices contained
in the cycle, and let u, v1, . . . , vn, v and u, u1, . . . , um, v be the two paths from u to v (see
Figure 5). Define ≤ by specifying its strict version < as follows:

u < u1 < · · · < um < v1 < · · · < vn < v.

Then there is no order on C(G) satisfying dominance, independence and strong extension
with respect to ≤. Indeed, let us assume otherwise and let � be such an order. Then,
{um} ≺ V \ {v} by strong extension, and {um, v} � V by independence. However, by
repeated application of dominance, {v1, . . . , vn, v} ≺ {v} and therefore, by independence,
{um, v1, . . . , vn, v} � {um, v}. It follows that {um, v1, . . . , vn, v} � V . On the other hand,
repeated application of dominance implies V ≺ {um, v1, . . . , vn, v}, a contradiction.

In the second case let u be the additional vertex and let v1, v2, v3 be the vertices in the
cycle such that v2 is connected to u (see Figure 6). Define ≤ by specifying its strict version
< as follows:

u < v1 < v2 < v3.

Then there is no order on C(G) satisfying dominance, independence and strong extension
with respect to ≤. Indeed, let us assume otherwise and let � be such an order. Then {v1} ≺
V \ {v} by strong extension, and {v1, v3} � V by independence. However, by dominance,
{v2, v3} ≺ {v} and therefore, by independence, {v1, v2, v3} � {v1, v3}. It follows that
{v1, v2, v3} � V . On the other hand, dominance implies V ≺ {v1, v2, v3}, a contradiction.

Recall that if a family of sets is strongly DIES-orderable, then all subsets of this family
are also DIES-orderable. Hence, the negative result on the two types of graphs proven
above carries over to all graphs which contain such graphs as subgraphs.
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Therefore, K3 is the only connected graph that is strongly DIES-orderable but not
DISES-orderable (recall Proposition 12). Also recall that a graph is strongly DISES-
orderable precisely when it is a forest. Thus, it follows from Propositions 9, 19 and 20
that the class of strongly DIES-orderable graphs is only marginally larger than the class
of strongly DISES-orderable graphs.

Theorem 21. The set of strongly DIES-orderable graphs consists precisely of graphs whose
each connected component is a tree or a cycle K3.

We now turn to graphs that are strongly DIE-orderable. The next five results allow us
to settle the matter of DI(E)-orderability for two-connected graphs. We recall that x is an
articulation point in a graph G if the removal of x from G results in at least two connected
components. Graphs without articulation points are called two-connected. The simplest
two-connected graphs are cycles. The next result shows that all cycles are strongly DIE-
orderable. Additionally, the result implies that replacing strong extension by extension
leads to additional strongly orderable graphs.

Proposition 22. Let G = (V,E) be a graph and ≤ be a linear order on V . If there is an
order on C(G \ {min(V )}) satisfying dominance, independence and strong extension, then
there exists an order on C(G) satisfying dominance, independence and the extension rule.

Proof. Wlog we may assume that V = {1, . . . , n} for some n ∈ N and ≤ is the natural
linear order on V . Let �∗ be an order on C(G \ {1}) satisfying dominance, independence
and strong extension. We define an order � on C(G) by setting A � B if and only if:

1. 1 ∈ A and 1 6∈ B

2. 1 6∈ A ∪B and A �∗ B

3. 1 ∈ A ∩B and max(A) ≤ max(B).

It follows directly from the definition, that if 1 /∈ A∪B and A ≺∗ B, then A ≺ B. Similarly,
if 1 ∈ A ∩ B and max(A) < max(B), then A ≺ B. It can be checked that � is an order
satisfying dominance, independence and the extension rule. The full proof can be found
Appendix A.

This shows that every cycle is strongly DIE-orderable. In fact, for a cycle G, G \
{min≤(V (G))} is a tree. Since trees are strongly DIES-orderable by Theorem 21, Propo-
sition 22 implies that G is strongly DIE-orderable. We can generalize the result as follows
using Proposition 9.

Corollary 23. The set of strongly DIE-orderable graphs includes all graphs whose each
connected component is a tree or a cycle.

The following result shows that we can not go much beyond cycles if we want to preserve
strong DIE-orderability. The result states that any graph that contains a cycle of length at
least six and additionally any path (or edge) between two vertices contained in the cycle is
not strongly DI-orderable. An immediate consequence of this result is that a two-connected
graph that contains a cycle of length at least six is strongly DIE-orderable if and only if it
is a cycle.
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a

Figure 7: Vertices a, b connected by three mutually disjoint paths.

5

4 3

2 1

Figure 8: A graph where two vertices are connected by three disjoint path of length one,
two and three

Proposition 24. Let G = (V,E) be a graph containing distinct vertices a, b ∈ V connected
by three paths that do not share any vertices except a and b such that two of them have
length at least three, or one of the paths has length at least four and one of the remaining
two paths is of length two. Then, G is not strongly DI-orderable.

We omit the proof here. A full proof can be found in Appendix A. The graphs captured
by this result are of the shape depicted in Figure 7. The assumption on the length of the
paths amounts to k,m ≥ 2 in the first case, and k = 2 and m ≥ 3 in the second one. This
result is optimal in the sense that there exists a strongly DIE-orderable (two-connected)
graph that contains two vertices that are connected by three mutually disjoint paths such
that one has length three and one has length two.

Example 25. Consider the graph shown in Figure 8. Obviously, this is a connected graph
containing at least two cycles. However, we know that Kannai and Peleg’s impossibility
result is minimal in the sense that P({1, 2, 3, 4, 5}) \ {∅} can be ordered with an order
satisfying dominance, independence and extension (Bandyopadhyay, 1988). This implies
immediately that any graph with five or fewer vertices is strongly DIE-orderable, hence
also the one shown in Figure 8. �

However if we increase the number of paths we quickly run into impossibility again.
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Figure 9: The ordering used in the proof of Proposition 26

Proposition 26. If a graph G contains two distinct vertices a and b connected by four
mutually disjoint paths (not counting a and b) of length at least two, with one of them of
length at least three, then G is not strongly DI-orderable.

Proof. Assume that two of the paths have three or more edges. Then, Proposition 24 applies
and G is not strongly DI-orderable. Therefore, we may assume that three of the four paths
have length 2. If the fourth path has length at least four, G is not strongly DI-orderable
again by Proposition 24. Therefore, we will assume that this path has exactly three edges.
It follows that G contains a subgraph like the one shown in Figure 9. Clearly, if that graph
is not strongly DI-orderable, G is not strongly orderable either. Therefore, to prove the
assertion, we will prove that the graph in Figure 9 is not strongly DI-orderable.

Let us consider the labeling of the vertices shown in Figure 9 and take for a linear order
on this graph the order induced by the natural order of integers. We claim that there is no
order � on C(G) satisfying dominance and independence with respect to ≤.

First we assume {3} ≺ {2, 3, 4, 5, 6}. Then, by independence, {3, 7} � {2, 3, 4, 5, 6, 7}.
However, we have {4, 5, 6, 7} ≺ {7} by dominance and therefore {3, 4, 5, 6, 7} � {3, 7}
by independence. But then we have {3, 4, 5, 6, 7} � {2, 3, 4, 5, 6, 7} by transitivity, which
contradicts dominance.

Therefore, we must have {2, 3, 4, 5, 6} � {3}. Now observe that {1} ≺ {1, 2} by dom-
inance and therefore, by independence and dominance, {1, 3} � {1, 2, 3} ≺ {1, 2, 3, 4}.
Hence, by independence, {1, 3, 5} � {1, 2, 3, 4, 5}. Further, by dominance {3} ≺ {3, 5} and
so, by transitivity, {2, 3, 4, 5, 6} ≺ {3, 5}. Independence implies {1, 2, 3, 4, 5, 6} � {1, 3, 5}
and transitivity implies {1, 2, 3, 4, 5, 6} � {1, 2, 3, 4, 5}. This contradicts {1, 2, 3, 4, 5} ≺
{1, 2, 3, 4, 5, 6}, which we have by dominance.

Propositions 24 and 26 specify sufficient conditions for a graph not to be strongly DIE-
orderable. The next result gives a sufficient condition for a graph to be strongly DIE-
orderable.

Proposition 27. Let G be a graph consisting of two vertices a, b, where a 6= b, connected
by arbitrarily many paths of length at most two. Then G is strongly DIE-orderable

Proof. Let us consider any linear order on the set V of vertices of G. Wlog we may assume
that a < b. Under this assumption, we define the sets L = {v ∈ V | b < v}, I = {v ∈ V |
a ≤ v ≤ b} and S = {v ∈ V | v < a}.
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Next, we define two orders ≺+ and ≺− on the family of all subsets of V by setting

1. A ≺+ B if and only if max(A4B) ∈ B

2. A ≺− B if and only if min(A4B) ∈ A.

It is straightforward to verify that both relations are indeed orders.
We also define an order �∗ on C(G)

∣∣
I
, the set of all nonempty subsets of I inducing in

G a connected subgraph. Clearly, every set in C(G)
∣∣
I

is either a singleton, or contains at

least one of a and b. To define �∗, for each A ∈ C(G)
∣∣
I

we define its type, written type(A):

type(A) :=


a if a ∈ A, b 6∈ A

b if b ∈ A, a 6∈ A

ab if a, b ∈ A

0 if a, b 6∈ A

We note that type(A) = 0 if and only if A is a singleton set other than {a} and {b}. We
order the types a < 0 < ab < b (we point out that the order on types is unrelated to the
order on V that we are considering; it will always be clear from the context whether we are
comparing types or elements of V ).

With these concepts in hand, for A,B ∈ C(G)
∣∣
I

we set A �∗ B if and only if

1. type(A) < type(B),

2. type(A) = type(B) = a and A ≺+ B,

3. type(A) = type(B) = 0, A = {v}, B = {w} and v < w,

4. type(A) = type(B) = ab

5. type(A) = type(B) = b and A ≺− B,

This is an order, because �∗ restricted to sets of any type is an order, and the types are
linearly ordered.

Using the three orders defined above we now define an order � on C(G). We set A � B
if and only if

1. A ∩ L ≺+ B ∩ L,

2. A ∩ L = B ∩ L and A ∩ S ≺− B ∩ S,

3. A ∩ L = B ∩ L 6= ∅ 6= A ∩ S = B ∩ S,

4. A ∩ L = B ∩ L 6= ∅ = A ∩ S = B ∩ S and a ∈ A,

5. A ∩ L = B ∩ L 6= ∅ = A ∩ S = B ∩ S, a 6∈ A,B and A ∩ I ≺− B ∩ I,

6. A ∩ L = B ∩ L = ∅ 6= A ∩ S = B ∩ S and b ∈ B,

7. A ∩ L = B ∩ L = ∅ 6= A ∩ S = B ∩ S, b 6∈ B and A ∩ I ≺+ B ∩ I.
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8. A ∩ L = B ∩ L = ∅ = A ∩ S = B ∩ S and A �∗ B.

It can be checked that �∗ is an order on C(G)
∣∣
I

satisfying dominance, independence
and extension. Again, a full proof is given in Appendix A.

Proposition 27 implies that every two-connected graph with a longest cycle of length
four is strongly DIE-orderable. We will make this observation formal later on as a part of
a more general result on DIE-orderability of two-connected graphs.

The next result, while being of interest in its own right, is the last piece we need to
classify all two-connected strongly DIE-orderable graphs.

Proposition 28. Let G = (V,E) be a graph containing two cycles C1 and C2 that have
exactly one vertex in common, with one of the cycles having length at least 4. Then, G is
not strongly DI-orderable.

Proof. Let v1, . . . , vk and vk, vk+1, . . . , vn be the vertices of the cycles C1 and C2 enumerated
consistently with their order on the corresponding cycle, where vk is the unique common
vertex of the two cycles. By our assumptions, k ≥ 3 and n − k ≥ 3. Moreover, there are
edges in G between v1 and vk, and between vk and vn.

Clearly, it suffices to show the assertion under the assumption that G has no other
vertices. Thus, we adopt this assumption for the remainder of the proof. To simplify the
presentation, let us identify vi with i. In particular, V = {1, . . . , n}.

Let us consider a linear order ≤ on V induced by the natural order on the integers.
Let us assume that � is an order on C(G) that satisfies dominance and independence with
respect to ≤. We will derive a contradiction, which will prove the result.

All sets we use in the argument belong to C(G). This is easy to see and we will not be
making it explicit when we compare sets under �. Let us assume that {k} ≺ V \ {1, n}.
By independence, {k, n} � V \ {1}. In addition, by repeated application of dominance, we
get {k + 1, . . . , n} ≺ {n} and, by independence, {k, k + 1, . . . , n} � {k, n}.

However, since k ≥ 3, repeated application of dominance implies V \ {1} ≺ {k, k +
1, . . . , n}. By transitivity, {k, n} ≺ {k, n}, a contradiction.

Thus, we have V \{1, n} � {k}. Let us assume that {k} � {2, . . . , k+1}. By transitivity,
V \ {1, n} � {2, . . . , k + 1}. On the other hand, since n − k ≥ 3, k + 1 < n − 1. Thus, by
repeated application of dominance {2, . . . , k + 1} ≺ V \ {1, n}, a contradiction.

It follows that {2, . . . , k+1} ≺ {k}. This implies {1, . . . , k+1} � {1, k} by independence.
However, we also have {1} ≺ {1, . . . , k − 1} by dominance. Hence {1, k} � {1, . . . , k} ≺
{1, . . . , k + 1} by independence and dominance, and we reach a contradiction!

We are now ready to provide a complete characterization of the two-connected strongly
DI(E)-orderable graphs. First, we know from Corollary 23 that cycles are strongly DIE-
orderable. Further, Proposition 24 tells us that any two-connected graph properly containing
a cycle of length at least six is not strongly DI-orderable.

Let now G be a two connected graph with a longest cycle having length 5. Let C be
one such cycle. If G has only five vertices, it is strongly DIE-orderable as discussed in
Example 25. Thus, let us assume that G has at least one vertex not on the cycle C. Let
f be any vertex of G \ C connected to (a vertex on) C by an edge. Such vertex exists as
G is connected. Let a be a neighbor of f in C. Since G is two-connected, f is connected
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Figure 10: The graph T5
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Figure 11: The graph T+
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Figure 12: Two-connected graphs with longest cycle of length four

by a path in G \ {a} to a vertex in C other than a. Let P be a shortest such path and
let b ∈ C be the end of P . If P has length at least two or if b is a neighbor of a, then
G contains a cycle of length at least 6, a contradiction. Thus, b is not a neighbor of a
and f is connected to a and b by edges. This situation is illustrated in Figure 10. Let
us assume that G has yet another vertex. Then, by connectivity, it has a vertex, say g,
connected by an edge to f or to a vertex in C. If g is connected to f , then G is connected
to a vertex in C by a path in G \ {f}. In such case, G has a cycle of length at least 6, a
contradiction. Thus, g is connected by an edge to a vertex in C. Reasoning as for f , we
argue that g must be connected to two vertices in C that are not connected in C. Unless g
is connected to a and b, G contains a cycle of length 6 or two cycles of length 4 that share
exactly one vertex. The first possibility contradicts our assumption. In the second case, G
is not strongly DI-orderable by Proposition 28. Thus, let us assume that g is connected
by edges to a and b. In this case, G is not strongly DI-orderable by Proposition 26. This
leaves us with the case when G is as shown in Figure 10, with possibly some more edges
added. However, unless the added edge is just like the one shown in Figure 11, G contains
a cycle of length 6. For the two graphs T5 and T+

5 shown in Figures 10 and 11, we found
that they are strongly DIE-orderable by a computer search. We provide either a computer
generated order satisfying dominance, independence and extension on C(T+

5 ) or a proof of
existence of such an order for every possible order on the vertices of T+

5 in Appendix B.
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Next, let us assume then that a longest cycle in a two-connected graph G has length
4 and let C be one such cycle. If G has more than four vertices, there is a vertex in G,
say e, connected by an edge to a vertex in C. Let us denote this vertex by a. Since G is
two-connected, there is a path in G \ {a} connecting e to a vertex in C \ {a}. Let P be a
shortest path like that. If that path connects e to a neighbor of a in C, then G contains
a cycle of length 5, a contradiction. If that path connects a to the only non-neighbor of a
in C, say b, and has more than one edge, G contains a cycle of length 5, a contradiction
again. Thus, e is connected by edges to a and b. If G has any other vertices, one can show
reasoning as above that G has a cycle of length at least 5, or that each of these vertices is
connected to a and b by edges. The first situation contradicts our assumption. Thus, G is
of the form shown in Figure 12. Hence, it is strongly DIE-orderable by Proposition 27.

The only two-connected graphs with longest cycle less than four are the triangle and
the graphs consisting of a single edge. These are all obviously strongly DIE-orderable.

Let us observe that graphs that are not strongly DI-orderable are not strongly DIE-
orderable, and that graphs that are strongly DIE-orderable are also strongly DI-orderable.
Together with the discussion above, this proves the following result on two-connected graphs.

Theorem 29. A two-connected graph is strongly DI- and DIE-orderable if and only if it
lies in one of the following classes:

• Cycles

• Graphs with fewer than six vertices

• Graphs that contain no cycle of length five or more

• T5 and T+
5

Theorem 29 implies that for two-connected graphs the concepts of strong DI- and
DIE-orderability coincide, and by Proposition 9 this result can be extended to graphs with
two-connected components.

Next, we outline the extent of the strong DI(E)-orderability for graphs that are con-
nected but not two-connected. To this end, we will need two additional auxiliary results.
The first one shows that graphs containing two vertex-disjoint cycles connected with a path
are not strongly DIE-orderable if both cycles have length at least four.

Proposition 30. Let G be a graph containing two vertex-disjoint cycles of length at least
four. If these cycles are connected by a path, then G is not strongly DIE-orderable.

Proof. First, assume that the path connecting the two cycles has even length and let
u, p1, . . . , pn, v be the path connecting the two cycles. Then, let u, u∗, u1, . . . , uk be the
cycle containing u and v, v1, . . . , vl, v

∗ the circle containing v (see Figure 13). We define a
linear order ≤ by

u1 < · · · < uk < · · · < pn−3 < pn−1 < v < v∗ < u∗ < u < · · · < pn−2 < pn < v1 < · · · < vl.

If the path has odd length, then let uk, p1, . . . , pn, v be the path, u be a neighbor of uk and
u, u∗, u1, . . . , uk be the cycle containing u. As above, let v, v1, . . . vl, v

∗ the circle containing
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p1 pn v v1
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Figure 13: Two cycles connected by a
path of even length.

u
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p1 pn v v1
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Figure 14: Two cycles connected by a
path of odd length.

v (see Figure 14) and ≤ the same order as above. We claim that there is no order on C(G)
satisfying dominance, independence and the extension rule with respect to ≤.

Assume otherwise and let � be such an order. Assume that {v∗} ≺ {pn, v} (for n = 0
replace pn by u) By extension and independence we know that {pn, v} � {v, v1}. Hence
{v∗} ≺ {v, v1}. Further, by dominance, {v} ≺ {v, v∗} and, by independence, {v, v1} �
{v, v∗, v1}. By repeated application of dominance, {v, v∗, v1} ≺ {v, v∗, v1, . . . , vl−1}. Thus,
by transitivity, {v∗} ≺ {v, v∗, v1, . . . , vl−1}. By independence {v∗, vl} � {v, v∗, v1, . . . , vl}.
We also have {v1, . . . , vl} ≺ {vl} by dominance and {v∗, v1, . . . , vl} � {v∗, vl} by indepen-
dence. Hence, we have {v∗, v1, . . . , vl} � {v, v∗, v1, . . . , vl} contradicting dominance.

It follows that {pn, v} � {v∗} ({u, v} � {v∗}, if n = 0). By extension, {v∗} ≺ {u∗}.
Thus, {pn, v} ≺ {u∗} ({u, v} � {u∗}, if n = 0). Observe that for n = 0 we have {uk} ≺ {v}
by extension and therefore by independence {uk, u} � {u, v}. By a sequence of similar argu-
ments, for a path of even length we can derive {uk, u} � {u, p1} � · · · � {pn−1, pn} � {pn, v}
and, for a path of odd length, {uk, u} � {uk, p1} � · · · � {pn−1, pn} � {pn, v}. Using
this observation, we get {uk, u} ≺ {u∗}. From u∗ < u we get by dominance {u∗, u} ≺
{u} and hence by independence {uk, u∗, u} � {uk, u}. By dominance, we can extend
this to {u2, . . . , uk, u

∗, u} ≺ {uk, u∗, u}. By transitivity we get {u2 . . . , uk, u
∗, u} ≺ {u∗}.

Therefore, by independence {u1, . . . , uk, u
∗, u} � {u1, u

∗}. Applying dominance we obtain
{u1, . . . , uk, u

∗} ≺ {u1, . . . , uk, u
∗, u}. Thus, by transitivity, {u1, . . . , uk, u

∗} ≺ {u1, u
∗}.

On the other hand, by repeated application of dominance we have {u1} ≺ {u1, . . . , uk}.
Thus, by independence, {u1, u

∗} � {u1, . . . , uk, u
∗}, a contradiction.

Observe that this result does not tell us whether such graphs are strongly DI-orderable.
Indeed we used a computer program to check that a graph consisting of two cycles of length
four connected by an edge is strongly DI-orderable. This implies that strong DI- and
strong DIE-orderability are not equivalent on arbitrary graphs.

The next result states that whenever removing an edge from a graph with a given order
over its vertices leads to two disjoint graphs such that one can be ordered with respect to
dominance and independence and the other can be ordered with respect to dominance and
strict independence, then the original graph can also be ordered with respect to dominance
and independence.

Proposition 31. Let G = (V,E) be a connected graph and ≤ a linear order on V . Let
vw ∈ E be an edge of G such that (V,E \ {vw}) is a graph with two connected components
G′ and G′′. If C(G′) can be ordered satisfying dominance and independence and C(G′′) can
be ordered satisfying dominance and strict independence then C(G) can be ordered satisfying
dominance and independence.
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Figure 15: A graph and its biconnected components

Proof. Let us assume that G′ = (V ′, E′) and G′′ = (V ′′, E′′). Wlog we may assume that
v ∈ V ′, w ∈ V ′′. We will present the proof under the assumption that v < w. The other
case, w < v, works analogously.

We partition C(G) in three collections of sets: P1 = C(G′), P2 = {A ∈ C(G) | v, w ∈ A}
and P3 = C(G′′). Let �1 be any order satisfying dominance and independence on P1 (with
respect to ≤ restricted to V ′), and �3 any linear order satisfying dominance and strict
independence on P3 (with respect to ≤ restricted to V ′′). We define an order � on C(G)
by setting A � B (where A,B ∈ C(G)) if and only if

1. A,B ∈ P1, and A �1 B

2. A,B ∈ P3, and A �3 B

3. A,B ∈ P2 and A ∩ V ′′ ≺3 B ∩ V ′′

4. A,B ∈ P2 and A ∩ V ′′ = B ∩ V ′′ and A ∩ V ′ �1 B ∩ V ′

5. A ∈ Pi, B ∈ Pj and i < j (in fact, in this case, A ≺ B holds).

The relation � is obviously an order. It can be shown that this order satisfies dominance
and independence. A full proof can be found in Appendix A.

The next two results describe our knowledge of the extent of strong DIE- and DI-
orderability. To formulate them we need more notation. We recall that a biconnected
component of a graph G is any maximal two-connected subgraph of G. We note that
a single edge is two-connected and may appear in a graph as its biconnected component
(it is the case, when removing this edge disconnects the graph). Every graph G can be
viewed as a tree-like structure composed of its biconnected components, in which whenever
two biconnected components share a node, this node must be an articulation point. This
representation of a graph is illustrated in Figure 15. We denote by B the set of all two-
connected graphs that are strongly DIE-orderable (cf. Theorem 29). Next, we call a
biconnected component of G large if it contains a cycle of length at least four. Thus, if a
biconnected component is not large, it consists of a single edge or is a cycle of length three.

We define now four classes of graphs, C0, C1, C2 and C3. A graph G is in C3 if all its
biconnected components belong to B and no large biconnected component of G shares an
articulation point with another non-edge biconnected component of G. A graph G is in C2

if G ∈ C3 and G has at most one large biconnected component. A graph G is in C1 if G ∈ C2
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and has at most one non-edge biconnected component. Finally, a graph G is in C0 if G ∈ C1

and either every biconnected component of G is an edge or no biconnected component of G
is an edge (i.e. G is either a tree or in B). Clearly, C0 ⊆ C1 ⊆ C2 ⊆ C3. Figures 16–18 show
examples of graphs in C1, C2 and C3.

Proposition 32. All graphs in C1 are strongly DI-orderable. If a graph is not in C3 then
it is not strongly DI-orderable.

Proof. First we prove that all graphs in C1 are strongly orderable. We proceed by contra-
diction and consider the smallest graph in C1 that is a counterexample to the assertion.
Since strict independence implies independence, trees are strongly DI-orderable (cf. Corol-
lary 11). It follows that G contains a unique DIE-orderable two-connected subgraph, say
C.

Let ≤ be a linear order on V that cannot be lifted to an order � on C(G) so that
to satisfy dominance and independence. First assume C = G. Then G is strongly DIE-
orderable by assumption. So assume there is a vertex v ∈ G such that v 6∈ C. Let u be any
neighbor of v in G. It follows that G\{uv} consists of a graph in C1, say G′, and a tree, say
T . By the way G was chosen, G′ is strongly DI-orderable. Moreover, T is strongly DIS-
orderable (Corollary 11). Thus, Proposition 31 implies that G is strongly DI-orderable, a
contradiction.

Now assume G is not in C3. G can either not be in C3 because it contains a biconnected
component that is not in B or because it contains a large biconnected component that
shares a node with a non-edge biconnected component. In the first case, G is obviously not
strongly DIE-orderable. In the second case, the large biconnected component contains by
definition a longest cycle of length at least four. Observe that in a two-connected graph
with longest cycle of length at least four, every vertex is contained in a cycle of length at
least four, because every vertex must be connected to two different vertices in the cycle of
length at least four. Hence in the second case, G contains a cycle of length at least three
and a cycle of length at least four that share one vertex. Therefore G is not DIE-orderable
by Proposition 28.

It follows that for a connected graph G, its DI-orderability is open only if G ∈ C3 \ C1.

Proposition 33. All graphs in C0 are strongly DIE-orderable. If a graph is not in C2 then
it is not strongly DIE-orderable.

Proof. All graphs in C0 are either trees or in B. Hence, they are strongly DIE-orderable
either by Corollary 11 or by Theorem 29. By Proposition 32 a graph that is not in C3 can
not be strongly DI-orderable, therefore it can also not be DIE-orderable. Now assume G is
in C3 \ C2. Then it contains two two-connected subgraphs with longest cycle four or longer.
Hence it is not strongly DIE-orderable by Proposition 30. It follows that any graph that
is not in C2 can not be strongly DIE-orderable.

For a connected graph G, its DIE-orderability is open only if G ∈ C2 \ C0. By Proposi-
tion 9 we can extend these results to arbitrary graphs as follows:

Theorem 34. If every connected component of a graph G is in C1 then G is strongly DI-
orderable. If a graph G contains at least one component not in C3 then G is not strongly
DI-orderable.
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Figure 16: An example of
a graph in the
class C1

Figure 17: An example of
a graph in the
class C2

Figure 18: An example of
a graph in the
class C3

Theorem 35. If every connected component of a graph G is in C0 then G is strongly DIE-
orderable. If a graph G contains at least one component not in C2 then G is not strongly
DIE-orderable.

In particular, this implies, for example, that every pseudoforest is strongly DI-orderable.

Finally, we provide one preliminary result on graphs that are weakly orderable with respect
to dominance and independence. The result of Kannai and Peleg (1984) implies that the
complete graph Kn is not weakly DIE-orderable for n ≥ 6 (recall that for fully symmetric
graphs weak and strong orderability coincide). Interestingly, in our setting of orderable
graphs, it turns out this result is optimal in the sense that every proper subgraph of K6 is
weakly DIE-orderable.

Proposition 36. Every proper subgraph G of the complete graph K6 is weakly DIE-
orderable and thus weakly DI-orderable.

The proof is provided in Appendix A. Interestingly, this result can not be extended to
strong extension. This is because K4 is a proper subgraph of K6 and not weakly DIES-
orderable, which follows from Remark 6 and Proposition 20.

6. Discussion

Lifting a preference order on elements of some universe to a preference order on subsets of
this universe respecting certain axioms is a fundamental problem, but well-known impos-
sibility results pose severe limits on when such liftings exist. Bossert (1995) observed that
these impossibility results may be avoided by considering families of subsets of the same
fixed cardinality. Maly and Woltran (2017) showed that, deciding whether a given linear
order on a set of objects X can be lifted to an order on a given collection of subsets of X is
NP-complete. Bouveret et al. (2017) were the first to consider graph topologies and subsets
inducing connected subsets. They proposed this model for the problem of fair allocation
of indivisible goods. Our work adopts their idea for an implicit representation of classes
of families of non-empty subsets (in contrast to the explicit representation considered by
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Bossert 1995 and Maly and Woltran 2017). It turns out that for several interesting families
of sets definable in terms of graphs the impossibility results observed for the family of all
non-empty subsets of a set can be avoided!

Our main results characterize strongly and weakly DISES-orderable graphs, and more-
over, show that the same classes are obtained for strongly and weakly DISE-orderable and
strongly and weakly DIS-orderable graphs. In other words, the two versions of the extension
rule we have considered do not affect our results when strict independence is considered.
The picture is different if independence is used. We obtain a complete characterization of
strongly DIES-orderable graphs. For strong DI-orderability and DIE-orderability we have
an almost complete picture. Our results show rich classes of well-motivated families of sets
that allow for lifting of linear orders in ways that combine dominance and (strict) indepen-
dence. They also suggest that independence, despite being much less restrictive than strict
independence, does not significantly extend that class of strongly orderable graphs. This
suggests that it is strict independence that might be the axiom to focus on. Finally, we only
touched on weak DI-orderability and showed that all proper subgraphs of a complete graph
K6 are weakly DI-orderable but have as of yet no general results on weakly DI-orderable
graphs. We have to leave more detailed analysis on those graphs for future work.

In fact, our research opens several directions for future studies. Using graphs as implicit
representations of families of sets is just one of many possibilities. Knowledge representation
often uses logic formalisms towards this end. For instance, formulas can be viewed as concise
representations of the families of their models. Together with an order of the atoms in the
formulas, it is natural to ask how to rank these models and for which classes of formulas such
a lifting respects certain criteria. A particular formalism where lifting orders is inherently
needed can be found in the area of formal argumentation where ranking semantics (Amgoud
& Ben-Naim, 2013; Bonzon, Delobelle, Konieczny, & Maudet, 2016) have received increasing
interest within the last years. Hereby, a total (not necessarily linear) order on arguments
is obtained from the structure of an argumentation framework which then can be used
to rank the standard extensions (i.e. certain sets of arguments) of that framework (Yun,
Vesic, Croitoru, & Bisquert, 2018). It is evident that this is exactly the setting of lifting
we have studied here and our results can provide additional insight in which scenarios such
liftings satisfy certain criteria. Further, for all mentioned representations of families of sets
it is a key challenge to establish the complexity of deciding the existence of lifted orders,
and study algorithms for computing lifted orders in some concise representation. Finally,
another direction for future work, is to investigate how our findings apply to the “reverse”
problem of social ranking (Moretti & Öztürk, 2017), where an order over individuals needs
to be obtained from a given order over sets of individuals.
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Appendix A. Full Proofs

Proof of Proposition 9

Proposition. Let X ⊆ P(X) \ {∅} and Y ⊆ P(Y ) \ {∅} be families of subsets of X and
Y respectively such that X ∩ Y = ∅. If X and Y are strongly DI-orderable, then X ∪ Y is
strongly DI-orderable.

The same holds if we replace strongly DI-orderable by strongly DIE-, DIES-, DIS-,
DISE- or DISES-orderable or by weakly DI-, DIE-, DIES-, DIS-, DISE- or DISES-
orderable.

Proof. Let us define Z = X∪Y . Let us assume that ≤X and ≤Y are linear orders on X and
Y such that some orders �X on X and �Y on Y satisfy all necessary axioms with respect
to ≤X and ≤Y . To prove the claim in all its versions, it suffices to show that for every
linear order ≤ on Z such that ≤X and ≤Y are restrictions of ≤ to X and Y , respectively,
there is an order � on X ∪ Y satisfying all necessary axioms with respect to ≤.

DIE- and DISE-orderability. We first handle the case that X and Y are strongly or
weakly DIE- or DISE-orderable, i.e. the case that �X and �Y satisfy the extension axiom.
Let {x1, . . . , xk} be an enumeration of all elements in X such that x1 <X x2 <X . . . <X xk.
By the extension axiom, {x1} ≺X {x2} ≺X . . . ≺X {xk} Similarly, let {y1, . . . , yl} be an
enumeration of all elements of Y such that y1 <Y y2 <Y . . . <Y yl which, also by the
extension axiom, implies {y1} ≺Y {y2} ≺Y . . . ≺Y {yl}. Let z ∈ Z. If z = xi, where
1 ≤ i ≤ k − 1, we define

Cz = {A ∈ X | {xi} �X A ≺X {xi+1}}.

If z = xk, we define
Cz = {A ∈ X | {xk} �X A}.

We define sets Cz for z = yi, where 1 ≤ i ≤ l, analogously, with Y, l, yi, and �Y in place
of X , k, xi, and �X , respectively. It is clear that for every z ∈ Z, {z} ∈ Cz.

Further, to simplify the notation later on, we assume the existence of a “dummy” element
0 (not in Z) such that 0 < z, for every z ∈ Z, and we define

C0 = {A ∈ X | A ≺X {x1}} ∪ {A ∈ Y | A ≺Y {y1}}.

Clearly, the sets Cz, z ∈ {0}∪Z are pairwise disjoint. Moreover, since Z = X∪Y , it follows
that, X ∪ Y =

⋃
z∈{0}∪Z Cz.

Let ≤ be any linear order on Z such that ≤X and ≤Y are the restrictions of ≤ to X and
Y , respectively. To define an order � on X ∪ Y, for A,B ∈ X ∪ Y we set A � B precisely
when one of the following conditions holds:

• A,B ∈ Cz, for some z ∈ X, and A �X B

• A,B ∈ Cz, for some z ∈ Y , and A �Y B

• A,B ∈ C0 ∩ X , and A �X B

• A,B ∈ C0 ∩ Y, and A �Y B
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• A,B ∈ C0, A ∈ X , B ∈ Y

• A ∈ Cz, B ∈ Cz′ , for z, z′ ∈ {0} ∪ Z, and z < z′.

It is straightforward to verify that the relation � is total, reflexive and transitive. Hence,
it is an order. It is also clear that if z, z′ ∈ {0} ∪ Z, z < z′, A ∈ Cz and B ∈ Cz′ , then
A ≺ B holds. Indeed, in such case, by the definition we have A � B. Moreover, B � A is
impossible (none of the six cases applies).

We claim that � is an order satisfying the same axioms as �X and �Y . First, we will
prove that � satisfies the extension axiom. Thus, let us consider elements z, z′ ∈ Z such
that z < z′. By our earlier observation, {z} ∈ Cz and {z′} ∈ Cz′ . Thus, {z} � {z′} (by
the last clause of the definition). Since we do not have z′ < z (because ≤ is a linear order),
{z′} � {z} does not hold. It follows that � satisfies the extension axiom.

Next, we note that �X and �Y are the restrictions of � to X and Y, respectively. We
will prove it for �X ; the other case is similar. Therefore, let us assume that A,B ∈ X . If
A,B ∈ Cz, where z ∈ {0} ∪X, then by definition, A � B if and only if A �X B. Thus, let
A ∈ Cz and B ∈ Cz′ , where z, z′ ∈ {0} ∪X and z 6= z′. If A � B then it must be because
of the last clause in the definition of �. Consequently, z < z′. Since ≤X is the restriction
of ≤ to X, z <X z′. Since A ∈ Cz and B ∈ Cz′ , A ≺X {z′} and {z′} �X B. Thus, A �X B
by transitivity. Conversely, assume that A �X B. If z′ < z, then z′ <X z. Since A ∈ Cz

and B ∈ Cz′ , B ≺X {z} �X A. By transitivity, B ≺X A, a contradiction. Since z 6= z′, we
have z < z′ and so, A � B.

Using this claim, it is easy to show that � satisfies dominance and (strict) independence
if �X and �Y satisfy the corresponding axiom(s). Indeed, A,A ∪ {x} ∈ X ∪ Y implies
A,A ∪ {x} ∈ X or A,A ∪ {x} ∈ Y, and A,B,A ∪ {x}, B ∪ {x} ∈ X ∪ Y implies A,B,A ∪
{x}, B ∪ {x} ∈ X or A,B,A ∪ {x}, B ∪ {x} ∈ Y.

DIES- and DISES-orderability. Now assume that X and Y are strongly or weakly
DIES- or DISES-orderable, i.e. that ≺X and ≺Y satisfy strong extension. Let z ∈ Z. We
define

Cz =

{
{A ∈ X | max≤X (A) = z} if z ∈ X

{A ∈ Y | max≤Y (A) = z} if z ∈ Y

Let us now assume that the orders �X and �Y on X and Y respectively, satisfy strong
extension with respect to ≤X and ≤Y , respectively, and let ≤ be any linear order on Z such
that ≤X and ≤Y are the restrictions of ≤ to X and Y . To define an order � on X ∪Y, for
A,B ∈ X ∪ Y we set A � B precisely when one of the following conditions holds:

• A,B ∈ Cz, z ∈ X and A �X B

• A,B ∈ Cz, z ∈ Y and A �Y B

• A ∈ Cz, B ∈ Cz′ and z < z′.

It is straightforward to show that � is total, reflexive and transitive. Further, directly from
the definition, it follows that � satisfies the strong extension property.

Next, we note that �X and �Y are the restrictions of � to X and Y, respectively. We
will prove it for �X ; the other case is similar. Thus, let us consider sets A,B ∈ X . By
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definition, A ∈ Cx and B ∈ Cy, where x = max(A) and y = max(B). If A � B then
x ≤ y (y < x is impossible by the strong expansion axiom). If x = y, then A �X B (the
first condition is the only one that can imply A � B in this case). If x < y, then strong
extension of �X implies A �X B. Conversely, if A �X B then x ≤ y (y < x is impossible
by strong extension of �X). If x = y, then A � B by the first condition. If x < y then
A � B, by the third condition. Thus, dominance and (strict) independence can be argued
as above.

DI- and DIS-orderability. Finally, we will consider the case that X and Y are strongly
or weakly DI- or DIS-orderable, i.e. the case that �X and �Y satisfy dominance and
(strict) independence but no assumptions are made about extension or strong extension. In
this case, to define an order � on X ∪ Y, for A,B ∈ X ∪ Y we set A � B precisely when
one of the following conditions holds:

• A,B ∈ X and A �X B

• A,B ∈ Y and A �Y B

• A ∈ X , B ∈ Y.

It is straightforward to show that � is total, reflexive and transitive. Further, it is clear
that the relations �X and �Y are the restrictions of � to X and Y, respectively. Thus,
we can derive dominance (independence and strict independence, respectively) of � from
dominance (independence or strict independence, respectively) of �X and �Y in the same
way as before.

Proof of Proposition 22

Proposition. Let G = (V,E) be a graph and ≤ be a linear order on V . If there is an
order on C(G \ {min(V )}) satisfying dominance, independence and strong extension, then
there exists an order on C(G) satisfying dominance, independence and the extension rule.

Proof. Wlog we may assume that V = {1, . . . , n} for some n ∈ N and ≤ is the natural
linear order on V . Let �∗ be an order on C(G \ {1}) satisfying dominance, independence
and strong extension. We define an order � on C(G) by setting A � B if and only if:

1. 1 ∈ A and 1 6∈ B

2. 1 6∈ A ∪B and A �∗ B

3. 1 ∈ A ∩B and max(A) ≤ max(B).

It follows directly from the definition, that if 1 /∈ A∪B and A ≺∗ B, then A ≺ B. Similarly,
if 1 ∈ A ∩B and max(A) < max(B), then A ≺ B.

We claim that � is an order satisfying dominance, independence and the extension rule.

Order. Obviously, � is reflexive. To prove transitivity, let A,B,C ∈ C(G) satisfy A � B
and B � C. If A � B holds by (1), we have 1 ∈ A and 1 /∈ B. Since B � C, it follows that
1 /∈ C and B �∗ C. Thus, A � C by (1).

If A � B holds by (2), we know A �∗ B, 1 /∈ A, and 1 /∈ B. As before, the latter implies
that 1 /∈ C and B �∗ C. By the transitivity of �∗, A �∗ C. Consequently, A � C by (2).
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Finally, if A � B holds by (3), then 1 ∈ A, 1 ∈ B, and max(A) ≤ max(B). Since
B � C, 1 /∈ C, or 1 ∈ C and max(B) ≤ max(C). In the first case, A � C by (1). In the
second case, max(A) ≤ max(C). Thus, A � C holds by (3).

To show that the relation � is total, let us consider sets A,B ∈ C(G). If 1 ∈ A \B then
A � B by (1). The case 1 ∈ B \ A is symmetric. If 1 /∈ A ∪ B, A � B or B � A follows
as �∗ is total. Lastly, if 1 ∈ A ∩ B, A � B or B � A follows as ≤ is total. Thus, � is an
order.

Extension rule. Since �∗ satisfies the strong extension rule, (2) implies that {i} ≺ {j},
for all i, j such that 2 ≤ i < j ≤ n (as a matter of fact, here we need only the extension
rule). Further, (1) implies that {1} ≺ {j}, for j = 2, 3, . . . , n.

Dominance. Let us consider sets A,A ∪ {x} ∈ C(G) such that x < min(A). If x = 1
we have A ∪ {x} � A by (1). Furthermore, we have A 6� A ∪ {x} (clearly, neither of the
conditions (1)-(3) applies). Thus, A ∪ {x} ≺ A. If x 6= 1, 1 6∈ A therefore 1 /∈ A ∪ {x}.
Since �∗ satisfies dominance, we have A ∪ {x} ≺∗ A. By the observation above, it follows
that A ∪ {x} ≺ A.

Next, let us consider sets A,A ∪ {x} ∈ C(G) such that max(A) < x. Then we know
x 6= 1. Assume that 1 6∈ A. Then, since �∗ satisfies dominance, A ≺∗ A ∪ {x}. Recall that
we have 1 /∈ A and 1 /∈ A∪{x}. Thus, by the observation above, A ≺ A∪{x}. Let us assume
then that 1 ∈ A. Then 1 ∈ A ∪ {x}. Moreover, we have max(A) < x = max(A ∪ {x}).
Thus, using the observation above, A ≺ A ∪ {x}.
Independence. Let us consider sets A,B ∈ C(G) and an element x ∈ V such that
x 6∈ A ∪B, A ∪ {x}, B ∪ {x} ∈ C(G) and A ≺ B.

We first assume that 1 6∈ A∪B. If x 6= 1, we have A∪{x} �∗ B∪{x} because �∗ satisfies
independence. Hence, A ∪ {x} � B ∪ {x} by (2). If, on the other hand, x = 1, we observe
that max(A) ≤ max(B). Indeed, since �∗ satisfies strong extension, max(B) < max(A)
would imply B ≺∗ A which, in turn would imply B ≺ A (as 1 /∈ A ∪ B), a contradiction.
Therefore, A ∪ {x} � B ∪ {x} by (3).

Next, assume that 1 ∈ A and 1 6∈ B. Then x 6= 1 and hence, A ∪ {x} � B ∪ {x} by (1).
Finally, assume that 1 ∈ A,B. Then A ≺ B implies max(A) < max(B). Assume first

that x < max(B). Then max(A∪{x}) < max(B) = max(B∪{x}) and so, A∪{x} � B∪{x}
by (3). If max(B) < x, then max(A∪{x}) = max(B∪{x}) = x and hence A∪{x} � B∪{x}.
Finally, the case x = max(B) is impossible as x /∈ B.

Proof of Proposition 24

Proposition. Let G = (V,E) be a graph containing distinct vertices a, b ∈ V connected
by three paths that do not share any vertices except a and b such that two of them have
length at least three, or one of the paths has length at least four and one of the remaining
two paths is of length two. Then, G is not strongly DI-orderable.

Proof. Let the three paths be a, u1, . . . , uk, b; b, v1, . . . , vl, a; and a,w1, . . . , wm, b (see Fig-
ure 19). By the assumption on the lengths of the paths, wlog we will assume k,m ≥ 2 in
the first case, and k = 2 and m ≥ 3 in the second one. Let us also define

W = {a, u1, . . . , uk, v1, . . . , vl, w1, . . . , wm, b}.
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b

v1uk wm

u1 vlw1

a

Figure 19: Vertices a, b connected by three mutually disjoint paths.

We first consider the case when k,m ≥ 2. Let ≤ be any linear order on G such that

u1 < · · · < uk < b < v1 < . . . < vl < a < w1 < · · · < wm.

It is clear that such orders exist.
Let us assume that there is an order on C(G), say �, that satisfies dominance and

independence. All sets we use in the following belong to C(G). This is easy to see and we
will not be making it explicit when we compare sets under �.

Suppose {b} ≺W \ {u1, wm}. By independence,

{b, wm} �W \ {u1}.

Further, since v1 < . . . < vl < a < w1 < · · · < wm, repeated application of dominance
implies {v1, . . . , vl, a, w1, . . . , wm} ≺ {wm}. Thus, independence implies

{b, v1, . . . , vl, a, w1, . . . , wm} � {b, wm}.

However, since k > 1, dominance also implies that

W \ {u1} ≺ {b, v1, . . . , vl, a, w1, . . . , wm}.

By transitivity, {b, wm} ≺ {b, wm}, a contradiction.
Therefore, we must have W \ {u1, wm} � {b}. By repeated application of dominance,

{b} ≺ {b, v1, . . . , vl, a} ≺ {a}.

Thus, W \ {u1, wm} ≺ {a} and so, by independence,

W \ {wm} � {u1, a}.

Further, dominance also implies {u1} ≺ {u1, . . . , uk, b, v1, . . . , vl}. Hence, by independence,

{u1, a} � {u1, . . . , uk, b, v1, . . . , vl, a}.

Since m > 1, dominance implies

{u1, . . . , uk, b, v1, . . . , vl, a} ≺W \ {wm}.
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Thus, by transitivity, {u1, a} ≺ {u1, a}, a contradiction.

Next, we consider the remaining case k = 1 and m ≥ 3. This time, we assume the order

u1 < b < v1 < . . . < vl < a < wm < · · · < w1.

Let us assume that {a} ≺ W \ {u1, w1}. Reasoning as before yields a contradiction.
Namely, by independence,

{a,w1} �W \ {u1}.

Further, since w1 > · · · > wm, repeated application of dominance implies {w1, . . . , wm} ≺
{w1}. Thus, independence implies

{a,w1, . . . , wm} � {a,w1}.

However, dominance also implies that

W \ {u1} ≺ {a,w1, . . . , wm}.

By transitivity, {a,w1} ≺ {a,w1}, a contradiction. Hence, we must have W \{u1, w1} � {a}.
Since k = 1 and m ≥ 3, dominance implies

{b, v1, . . . , vl, a, wm} ≺ {b, v1, . . . , vl, a, w2, . . . , wm} = W \ {u1, w1}.

Thus, by transitivity, {b, v1, . . . , vl, a, wm} ≺ {a} and, by independence,

{u1, b, v1, . . . , vl, a, wm} � {u1, a}.

On the other hand, dominance implies {u1} ≺ {u1, b, v1, . . . , vl}. Thus, by independence
and dominance

{u1, a} � {u1, b, v1, . . . , vl, a} ≺ {u1, b, v1, . . . , vl, a, wm},

a contradiction.

Proof of Proposition 27

Proposition. Let G be a graph consisting of two vertices a, b, where a 6= b, connected by
arbitrarily many paths of length at most two. Then G is strongly DIE-orderable

Proof. Let us consider any linear order on the set V of vertices of G. Wlog we may assume
that a < b. Under this assumption, we define the sets L = {v ∈ V | b < v}, I = {v ∈ V |
a ≤ v ≤ b} and S = {v ∈ V | v < a}.

Next, we define two orders ≺+ and ≺− on the family of all subsets of V by setting

1. A ≺+ B if and only if max(A4B) ∈ B

2. A ≺− B if and only if min(A4B) ∈ A.
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It is straightforward to verify that both relations are indeed orders.
We also define an order �∗ on C(G)

∣∣
I
, the set of all nonempty subsets of I inducing in

G a connected subgraph. Clearly, every set in C(G)
∣∣
I

is either a singleton, or contains at

least one of a and b. To define �∗, for each A ∈ C(G)
∣∣
I

we define its type, written type(A):

type(A) :=


a if a ∈ A, b 6∈ A

b if b ∈ A, a 6∈ A

ab if a, b ∈ A

0 if a, b 6∈ A

We note that type(A) = 0 if and only if A is a singleton set other than {a} and {b}. We
order the types a < 0 < ab < b (we point out that the order on types is unrelated to the
order on V that we are considering; it will always be clear from the context whether we are
comparing types or elements of V ).

With these concepts in hand, for A,B ∈ C(G)
∣∣
I

we set A �∗ B if and only if

1. type(A) < type(B),

2. type(A) = type(B) = a and A ≺+ B,

3. type(A) = type(B) = 0, A = {v}, B = {w} and v < w,

4. type(A) = type(B) = ab

5. type(A) = type(B) = b and A ≺− B,

We claim that �∗ is an order on C(G)
∣∣
I

satisfying dominance, independence and exten-
sion. It is indeed an order, because �∗ restricted to sets of any type is an order, and the
types are linearly ordered.

Extension Assume v, w ∈ V and v < w. If w = b or v = a then type({v}) < type({w}).
Thus, {v} ≺∗ {w} by (1). If v, w 6∈ {a, b} then type({v}) = type({w}) = 0 and {v} ≺∗ {w}
holds by (3).

Dominance Let us consider a set A ∈ C(G)
∣∣
I

and an element x ∈ I \ A such that

A ∪ {x} ∈ C(G)
∣∣
I
. We need to show that if x < min(A) then A ∪ {x} ≺∗ A, and if

x > max(A), then A ≺∗ A ∪ {x}.
We consider the case x < min(A). The other one is dual. Clearly, x < min(A) implies

that type(A) 6= a, ab. Let us assume first that type(A) = 0. It follows that x = a. Thus,
type(A ∪ {x}) = a and A ∪ {x} ≺∗ A holds by (1). The only other possibility is that
type(A) = b. If x = a, we have type(A ∪ {x}) = ab. Hence, A ∪ {x} ≺∗ A holds by (1). If
x 6= a, type(A ∪ {x}) = b. Moreover, A ∪ {x} ≺− A (because min(A4(A ∪ {x})) = x ∈
A ∪ {x}). Hence, A ≺∗ A ∪ {x} holds by (5).

Independence Let us consider sets A,B ∈ C(G)
∣∣
I

and an element x ∈ I \ (A ∪ B)

such that A ≺∗ B and A ∪ {x}, B ∪ {x} ∈ C(G)
∣∣
I
. First, let us assume that x /∈ {a, b}.

Then A ≺∗ B holds by one of the conditions (1), (2), (4) or (5). It also follows that
type(A) = type(A ∪ {x}), type(B) = type(B ∪ {x}), and A4B = (A ∪ {x})4(B ∪ {x}). It
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is now easy to see that if A ≺∗ B holds by the condition (i), where i=1, 2, 4, or 5, then the
same condition (i) implies that A ∪ {x} �∗ B ∪ {x}.

If x = a, then a /∈ A∪B. It follows that type(A) = 0 or b, type(B) = 0 or b, and A ≺∗ B
holds by the condition (1), (3) or (5). In the first case, type(A) = 0 and type(B) = b. Thus,
type(A∪{x}) = a, type(B ∪{x}) = ab and, consequently, A∪{x} �∗ B ∪{x} holds by (1).
In the second case, there are v, w ∈ I \ {a, b} such that A = {v}, B = {w} and v < w. It
follows that type(A ∪ {x}) = type(B ∪ {x}) = a, and max((A ∪ {x})4(B ∪ {x}) = w ∈ B.
Thus, A ∪ {x} �∗ B ∪ {x} by (2). In the third case, type(A ∪ {x}) = type(B ∪ {x}) = ab,
and A ∪ {x} �∗ B ∪ {x} holds by (4). The case x = b is similar.

Using the three orders defined above we now define an order � on C(G). We set A � B
if and only if

1. A ∩ L ≺+ B ∩ L,

2. A ∩ L = B ∩ L and A ∩ S ≺− B ∩ S,

3. A ∩ L = B ∩ L 6= ∅ 6= A ∩ S = B ∩ S,

4. A ∩ L = B ∩ L 6= ∅ = A ∩ S = B ∩ S and a ∈ A,

5. A ∩ L = B ∩ L 6= ∅ = A ∩ S = B ∩ S, a 6∈ A,B and A ∩ I ≺− B ∩ I,

6. A ∩ L = B ∩ L = ∅ 6= A ∩ S = B ∩ S and b ∈ B,

7. A ∩ L = B ∩ L = ∅ 6= A ∩ S = B ∩ S, b 6∈ B and A ∩ I ≺+ B ∩ I.

8. A ∩ L = B ∩ L = ∅ = A ∩ S = B ∩ S and A �∗ B.

The relation � is indeed an order. To see it, we observe that for every two sets S′ ⊆ S and
L′ ⊆ L, the family of sets X ∈ C(G) such that X ∩ S = S′ and X ∩ L = L′ is ordered (for
each family, there is a condition among the conditions (3) - (8) that is used to compare any
two of its sets). Further, each set X ∈ C(G) belongs to one of these families. Finally, the
conditions (1) and (2) impose on these families a linear order that implies an ordering for
pairs of sets coming from different families. We will now prove that the order � satisfies
extension, dominance, and independence.

Extension: Assume v, w ∈ V and v < w. If w ∈ L then {v} ≺ {w} by (1). Otherwise,
if v ∈ S then {v} ≺ {w} by (2). Hence assume v, w ∈ I. Then {v} ≺∗ {w} because �∗
satisfies extension. Therefore {v} ≺ {w} by (8).

Dominance: Let us consider a set A ∈ C(G) and an element x /∈ A such that A ∪ {x} ∈
C(G). First we assume x ∈ L. Then x < min(A) is impossible. Indeed, it would imply
that A ⊆ L and A ∪ {x} ⊆ L. The latter set has at least two elements. However, the only
sets in C(G) contained in L are singletons, a contradiction. So, assume max(A) < x. Then
max(A4(A ∪ {x})) = x ∈ A ∪ {x} and we obtain A ≺ A ∪ {x} by (1). The case x ∈ S is
dual.

Hence, assume that x ∈ I. Furthermore, assume max(A) < x. Then A ∩ L = ∅ =
(A∪ {x})∩L and A∩ S = (A∩ {x})∩ S. Let us assume that A∩ S 6= ∅. Then if x = b we
have A ≺ A∪{x} by (6). On the other hand, if x 6= b then b > x > max(A). It follows that
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b 6∈ A ∪ {x} and max((A ∩ I)4((A ∪ {x}) ∩ I)) = x ∈ (A ∪ {x}) ∩ I. Hence, A ≺ A ∪ {x}
by (7). Finally, if A ∩ S = ∅, we have A ≺∗ A ∪ {x} as �∗ satisfies dominance. Hence
A ≺ A ∪ {x} by (8). The case x < min(A) is similar.

Independence: Let us consider sets A,B ∈ C(G) and an element x /∈ A ∪ B such that
A∪{x}, B∪{x} ∈ C(G) and A ≺ B. We distinguish eight cases based on the reason A ≺ B
holds.

First assume A ≺ B by (1). Then, A ∪ {x} ≺ B{x} by (1) as (A ∪ {x}4B ∪ {x}) =
(A4B). The same identity also shows that if A ≺ B holds by (2), then A ∪ {x} ≺ B{x}
holds also by (2). Next, we note that A ≺ B cannot hold by (3) (otherwise, we would also
have B ≺ A, a contradiction). Let us assume then that A ≺ B holds by (4). If x /∈ S, then
it follows immediately that (4) applies to imply A ∪ {x} ≺ B{x}. So assume that x ∈ S.
Then, A ∪ {x} � B ∪ {x} follows from (3). Next, let A ≺ B hold by (5). If x ∈ S, we
reason as above and derive A ∪ {x} � B ∪ {x} from (3). So, let us assume that x ∈ L.
Since ((A ∪ {x}) ∩ I)4((B ∪ {x}) ∩ I) = (A ∩ I)4(B ∩ I), (A ∪ {x}) ∩ I ≺− (B ∪ {x}) ∩ I.
It follows that (5) applies to imply A ∪ {x} � B ∪ {x}. In the case x ∈ I, we have either
x = a or a 6∈ A ∪ {x}, B ∪ {x}. In the first case, A ∪ {x} ≺ B ∪ {x} holds by (4). In
the second case, we have (A ∪ {x}) ∩ I ≺− (B ∪ {x}) ∩ I, which follows from the identity
((A∪ {x})∩ I)4((B ∪ {x})∩ I) = (A∩ I)4(B ∩ I). Thus, A∪ {x} ≺ B ∪ {x} by (5). The
cases A ≺ B by (6) or (7) are similar.

Finally assume that A ≺ B by (8). It follows that A,B ∈ C(G)
∣∣
I
. If x ∈ I, then

A∪{x} � B∪{x} by (8) because �∗ satisfies independence. So assume x ∈ S∪L. Observe
that type(A) 6= 0 6= type(B) is impossible as elements in L and S are only connected to
a and b. Assume b ∈ A. Then we know b ∈ B and A ≺− B. Therefore x ∈ L implies
A ∪ {x} � B ∪ {x} either by (4) or (5). If x ∈ S, we have A ∪ {x} � B ∪ {x} by (6) as
b ∈ B. The case a ∈ A is similar.

Proof of Proposition 31

Proposition. Let G = (V,E) be a connected graph and ≤ a linear order on V . Let
vw ∈ E, such that (V,E \ {vw}) results in two connected components G′ = (V ′, E′) and
G′′ = (V ′′, E′′). If C(G′) and can be ordered satisfying dominance and independence and
C(G′′) can be ordered satisfying dominance and strict independence then G can be ordered
with an order satisfying dominance and independence.

Proof. Let us assume that G′ = (V ′, E′) and G′′ = (V ′′, E′′). Wlog we may assume that
v ∈ V ′, w ∈ V ′′. We will present the proof under the assumption that v < w. The other
case, w < v, works analogously.

We partition C(G) in three collections of sets: P1 = C(G′), P2 = {A ∈ C(G) | v, w ∈ A}
and P3 = C(G′′). Let �1 be any order satisfying dominance and independence on P1 (with
respect to ≤ restricted to V ′), and �3 any linear order satisfying dominance and strict
independence on P3 (with respect to ≤ restricted to V ′′). We define an order � on C(G)
by setting A � B (where A,B ∈ C(G)) if and only if

1. A,B ∈ P1, and A �1 B

2. A,B ∈ P3, and A �3 B
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3. A,B ∈ P2 and A ∩ V ′′ ≺3 B ∩ V ′′

4. A,B ∈ P2 and A ∩ V ′′ = B ∩ V ′′ and A ∩ V ′ �1 B ∩ V ′

5. A ∈ Pi, B ∈ Pj and i < j (in fact, in this case, A ≺ B holds).

The relation � is obviously an order. We claim that it satisfies dominance and indepen-
dence.

Dominance. Assume that A,A ∪ {x} ∈ C(G) and max(A) < x. If A,A ∪ {x} ∈ Pi for
some i, the result is clear. If A ∈ P3 and A ∪ {x} 6∈ P3, then we have w ∈ A and x = v.
Since max(A) < x, we have w < v, a contradiction. If A ∈ P1 and A ∪ {x} 6∈ P1 then
A ≺ A ∪ {x} by the condition (5). Finally, if A ∈ P2 then A ∪ {x} /∈ P2 is impossible. The
case min(A) > x is symmetric.

Independence. Assume that A,B,A ∪ {x}, B ∪ {x} ∈ C(G), x /∈ A ∪B, and A ≺ B.
Case 1. A,B ∈ P1 or A,B ∈ P3. If A,B ∈ P1, then x = w or x ∈ V ′. If A,B ∈ P3, then
x = v of x ∈ V ′′. Let us assume that A,B ∈ P1 and x = w, or A,B ∈ P3 and x = v. In each
case, A ∪ {x}, B ∪ {x} ∈ P2. In the first case, (A ∪ {x}) ∩ V ′′ = {x} = (B ∪ {x}). Clearly,
A ≺ B implies B 6� A. Since A,B ∈ P1, we have A �1 B and B 6�1 A. Thus, A ≺1 B.
Clearly, (A ∪ {x}) ∩ V ′ = A and (B ∪ {x}) ∩ V ′ = B. It follows that A ∪ {x} ≺1 B ∪ {x}.
Therefore, A∪{x} � B∪{x} holds by (4). In the second case, since A ≺ B, we have A ≺3 B.
Reasoning as before, we obtain (A∪{x})∩V ′′ ≺3 (B∪{x})∩V ′′ and so, A∪{x} � B∪{x}
holds by (3).

Thus, let us assume that A,B ∈ P1 and x ∈ V ′, or A,B ∈ P3 and x ∈ V ′′. In the
first case, A ≺ B implies A �1 B. Therefore, since A ∪ {x}, B ∪ {x} ∈ P1, we have
A ∪ {x} � B ∪ {x} by (1). The case A,B ∈ P3 and x ∈ V ′′ can be dealt with in a similar
way.
Case 2. A,B ∈ P2. This implies that A ∪ {x}, B ∪ {x} ∈ P2. Let us assume that x ∈ V ′′.
Clearly, A ≺ B is either by (3) or (4). Assume A ≺ B is by (3). It follows that A ∩ V ′′ ≺3

B ∩ V ′′. Hence, by strict independence of �3, we have (A ∪ {x}) ∩ V ′′ ≺3 (B ∪ {x}) ∩ V ′′

(indeed, we note that (A ∩ V ′′) ∪ {x} = (A ∪ {x}) ∩ V ′′, and similarly for B). This implies
that (A∪{x})∩V ′′ � (B ∪{x})∩V ′′ by (3). Let us assume then that A ≺ B by (4). Then
A ∩ V ′′ = B ∩ V ′′ and A ∩ V ′ ≺1 B ∩ V ′. But then also (A ∪ {x}) ∩ V ′′ = (B ∪ {x}) ∩ V ′′

and (A ∪ {x}) ∩ V ′ = A ∩ V ′ ≺1 B ∩ V ′ = (B ∪ {x}) ∩ V ′. This implies A ∪ {x} ≺ B ∪ {x}
by (4). The case x ∈ V ′ is similar.
Case 3. A ∈ P2 and B /∈ P2 or B ∈ P2 and A /∈ P2. Let us assume that A ∈ P2 and B /∈ P2.
Since A ≺ B, B ∈ P3. Let us assume that x ∈ V ′. Since B ∪ {x} ∈ C(G), x = v. Thus,
x ∈ A, a contradiction. It follows that x ∈ V ′′ and, consequently, B ∪ {x} ∈ P3. Since
A ∪ {x} ∈ P2, A ∪ {x} ≺ B ∪ {x} follows by (5). The case when B ∈ P2 and A /∈ P2 is
similar.
Case 4. A ∈ P1 and B ∈ P3. Then either x = v and w ∈ B or x = w and v ∈ A. In the
first case A ∪ {x} ∈ P1 and B ∪ {x} ∈ P2 and hence A ∪ {x} ≺ B ∪ {x} by (5). The other
case is similar.

Proof of Proposition 36

Proposition. Every proper subgraph G of the complete graph K6 is weakly DIE-orderable
and thus weakly DI-orderable.
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Proof. Wlog we assume that the vertices of G are 1 . . . 6, and that G contains edges between
every pair of vertices except for 1 and 2. Consequently, C(G) = P(X) \ {∅, {1, 2}}.

Let us now consider the standard linear order ≤ on 1, . . . , 6. We will show that there
is an order � on C(G) satisfying dominance and independence with respect to ≤. We
construct an order on C(G) in two steps. First, we partition C(G) in P1 = {S ∈ C(G) |
1, 2 ∈ S}, P2 = {S ∈ C(G) | 1 ∈ S, 2 /∈ S}, P3 = {S ∈ C(G) | 2 ∈ S, 1 /∈ S} and
P4 = {S ∈ C(G) | 1, 2 6∈ S}.

For every i ∈ {1, 2, 3}, we define an order �i on Pi by setting S �i T if max(S) ≤
max(T ). For example, for i = 2, we get the following order:

{1} ≺2 {1, 3} ≺2 {1, 3, 4} ∼2 {1, 4} ≺2

{1, 3, 5} ∼2 {1, 3, 4, 5} ∼2 {1, 4, 5} ∼2 {1, 5} ≺2

{1, 3, 6} ∼2 {1, 3, 4, 6} ∼2 {1, 3, 5, 6} ∼2 {1, 3, 4, 5, 6}
∼2 {1, 4, 5, 6} ∼2 {1, 4, 6} ∼2 {1, 5, 6} ∼2 {1, 6}

Observe that for every S, T ∈ Pi, where i ∈ {1, 2, 3}, S ≺i T if and only if max(S) < max(T ).
It is easy to see that every �i, i ∈ {1, 2, 3}, satisfies dominance and independence. To

show dominance, let us consider S ∈ Pi and x ∈ {1, . . . , 6} such that S ∪ {x} ∈ Pi and
either x < min(S) or max(S) < x. Since for all S, T ∈ Pi, min(S) = min(T ), x < min(S) is
impossible. Thus, to verify dominance we only need to consider the case max(S) < x. But
then we have max(S) < max(S ∪ {x}). Thus, S ≺i S ∪ {x}.

To show independence, let us consider x ∈ {1, . . . , 6} and sets S, T ∈ Pi such that
x /∈ S ∪ T , S ∪ {x}, T ∪ {x} ∈ Pi and S ≺i T . The latter implies that max(S) < max(T ).
Hence max(S ∪ {x}) ≤ max(T ∪ {x}) and, by definition, S ∪ {x} �i T ∪ {x}.

Next, we define an order �4 on P4 as follows (we present it in terms of the strict
preference relation ≺4 and the equivalence relation ∼4):

{3} ≺4 {3, 4} ≺4 {4} ∼4 {3, 5} ∼4 {3, 4, 5} ≺4 {4, 5} ≺4

{5} ∼4 {3, 6} ∼4 {3, 4, 6} ∼4 {3, 5, 6} ∼4 {3, 4, 5, 6}
≺4 {4, 5, 6} ∼4 {4, 6} ≺4 {5, 6} ≺4 {6}

It can be checked that the order �4 satisfies dominance and independence. In addition, it
is evident that S ≺4 T implies max(S) ≤ max(T ).

We now define a relation � on C(G) by S � T if for some i ∈ {1, 2, 3, 4}, S, T ∈ Pi and
S �i T , or if S ∈ Pi and T ∈ Pj for i < j. Since the relations �i, 1 ≤ i ≤ 4, are orders,
it is clear that � is an order. We claim that � satisfies dominance, independence and the
extension rule.

Extension rule. We note that {1} ∈ P2, {2} ∈ P3 and {3}, {4}, {5}, {6} ∈ P4. Directly
by the definition of �4 we have {3} ≺4 {4} ≺4 {5} ≺4 {6}. Thus, by the definition of �,
{1} ≺ {2} ≺ {3} ≺ {4} ≺ {5} ≺ {6}.
Dominance. Let us consider A ∈ C(G) and x ∈ {1, . . . , 6} such that A ∪ {x} ∈ C(G) and
(i) max(A) < x or (ii) x < min(A). In the first case, x 6= 1 (x = 1 would imply A = ∅, a
contradiction) and x 6= 2 (x = 2 would imply A = {1}; in such case, A∪{x} = {1, 2} /∈ C(G);
a contradiction). Therefore, A∩{1, 2} = (A∪{x})∩{1, 2} and, consequently, A∪{x} ∈ Pi
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Figure 20: A labeled T+
5

for some i. Since �i satisfies dominance, A ≺i A ∪ {x}. Thus, by the definition of �,
A ≺ A ∪ {x}.

Let us then assume assume (ii). If x 6= 1, 2, A,A ∪ {x} ∈ P4 and so A ∪ {x} ≺4 A. By
the definition of �, A ∪ {x} ≺ A. If x = 2, we have A ∈ P4 and A ∪ {x} ∈ P3. Hence,
A ∪ {x} ≺ A. If x = 1 there are two cases: 2 ∈ A and 2 /∈ A. In the first case, A ∈ P3 and
A ∪ {x} ∈ P1. Hence A ∪ {x} ≺ A. In the second case, A ∈ P4 and A ∪ {x} ∈ P2. Hence,
A ∪ {x} ≺ A.

Independence. Let us consider sets A,B ∈ C(G) and x ∈ {1, . . . , 6} such that x /∈ A∪B,
A ≺ B and A ∪ {x}, B ∪ {x} ∈ C(G). If x 6= 1, 2, reasoning as above, we conclude
that A,A ∪ {x} ∈ Pi and B,B ∪ {x} ∈ Pj for some i, j ∈ {1, 2, 3, 4}. If i = j then, by
the definition of � and by the independence of �i, we have A ∪ {x} �i B ∪ {x} and,
consequently, A ∪ {x} � B ∪ {x}. If i 6= j then, i < j. Consequently, A ∪ {x} ≺ B ∪ {x}.

So assume next that x = 1. There are four cases to consider. First, let us assume 2 /∈
A,B. Then A,B ∈ P4 and, by the construction of �, A ≺4 B. Therefore, by the observation
above, max(A) ≤ max(B). Moreover, A∪ {x}, B ∪ {x} ∈ P2. Thus, A∪ {x} �2 B ∪ {x} by
the definition of �2. By the definition of �, A ∪ {x} � B ∪ {x}.

Next, let us assume 2 ∈ A,B. Then, A,B ∈ P3 and so, by the definition of �, A ≺
B implies A ≺3 B. Consequently, max(A) < max(B), which implies max(A ∪ {x}) ≤
max(B ∪ {x}). Since, A ∪ {x}, B ∪ {x} ∈ P1, A ∪ {x} �1 B ∪ {x} and, by construction,
A ∪ {x} � B ∪ {x}.

The third case to consider is when 2 ∈ A and 2 6∈ B. It follows that A ∪ {x} ∈ P1 and
B ∪ {x} ∈ P2. Hence A ∪ {x} ≺ B ∪ {x}.

Finally, 2 6∈ A and 2 ∈ B is impossible as it contradicts A ≺ B. Indeed, in this case, we
would have A ∈ P4, B ∈ P1 ∪ P3 and B ≺ A.

The case x = 2 can be dealt with similarly; we omit the details.

Appendix B. Computer generated orders on T+
5

In the following we refer to the vertices of T+
5 according to the labels given in Figure 20. In

general, there are 720 ways to order the vertices of T+
5 . However, we can use the symmetry

of the graph as well as some lemmas to significantly reduce the number of orders that need
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to be checked. First, we define for any relation R on a set X the reverse order R−1 by
xR−1y iff yRx for all x, y ∈ X. Then the following result holds:

Lemma 37. Let X be a set of objects and X ⊆ P(X) a family of sets. Assume that there
exists an order on X that satisfies dominance, independence and extension with respect to
a linear order ≤. Then, there exists an order on X that satisfies dominance, independence
and extension with respect to ≤−1.

Proof. Let � be an order on X that satisfies dominance, independence and extension with
respect to ≤. Then we claim that �−1 satisfies dominance, independence and extension with
respect to ≤−1. Assume x <−1 y for x, y ∈ X. Then y < x, which implies by assumption
{y} ≺ {x} and hence {x} ≺−1 {y}. Assume A,A ∪ {x} ∈ X , then ∀y ∈ A(y <−1 x) implies
∀y ∈ A(y > x), which implies A∪{x} ≺ A by assumption, hence A ≺−1 A∪{x}. Similarly,
∀y ∈ A(x <−1 y) implies A ∪ {x} ≺−1 A.

Now assume A,B,A ∪ {x}, B ∪ {x} ∈ X and A ≺−1 B. Then B ≺ A and hence by
assumption B ∪ {x} � A ∪ {x} which implies A ∪ {x} �−1 B ∪ {x}.

Therefore, we can only consider linear orders where the vertex f is on position 4, 5 or
6 because for every linear order ≤ where f is on position 1, 2 or 3 we already consider the
inverse order.

Now, obviously, switching the places of b and f produces a completely symmetric in-
stance, therefore we can always assume b < f . Similarly, switching a and c and e and d at
the same time creates a symmetric instance. Hence, we can always assume d < e.

Finally, observe that T+
5 \{a} and T+

5 \{c} are trees. Therefore, we know for every linear
order ≤ for which either a or c are the minimal element that there exists a order on C(T+

5 )
that satisfies dominance, independence and extension with respect to ≤ by Proposition 22.
By symmetry, we know that this also holds if a or c are the maximum of an order.

This leaves us with 58 linear orders. They are listed in the following as vectors where
the first entry denotes the position of a in the order, the second entry gives the position
of b in the order and so on. Additionally, a computer generated order on C(T+

5 ) is given
that satisfies dominance, independence and extension with respect to that linear order.
The source code used to generate these orders is provided under the following url: https:

//www.dbai.tuwien.ac.at/software/pref/T5.zip

(2, 1, 3, 4, 5, 6)
1 ≤ 12 ≤ 13 = 123 ≤ 1234 ≤ 134 ≤ 1245 ≤ 125 ≤ 2 ≤ 23 = 12345 = 1235 ≤ 1345 ≤ 3 ≤ 234 ≤ 34 ≤ 4 ≤
126 ≤ 1236 ≤ 25 = 245 = 136 = 235 = 12346 = 2345 ≤ 1346 ≤ 345 ≤ 45 = 1256 = 12456 ≤ 5 ≤ 26 = 236 =
12356 = 123456 ≤ 13456 ≤ 36 ≤ 6 ≤ 2346 ≤ 346 ≤ 2456 ≤ 256 = 2356 = 23456 ≤ 3456
(2, 1, 3, 4, 6, 5)
1 ≤ 12 ≤ 13 = 123 ≤ 1234 ≤ 134 ≤ 126 ≤ 125 ≤ 1236 ≤ 2 ≤ 23 = 1235 ≤ 1246 ≤ 3 = 135 = 234 = 12346 =
12345 ≤ 34 ≤ 4 ≤ 1346 = 1345 ≤ 25 = 26 = 246 = 235 = 236 = 2346 = 1256 = 2345 = 12456 = 12356 ≤
123456 ≤ 35 ≤ 5 ≤ 346 ≤ 345 ≤ 46 ≤ 6 ≤ 13456 ≤ 256 ≤ 2456 ≤ 2356 ≤ 23456 ≤ 3456
(2, 1, 3, 5, 6, 4)
1 ≤ 12 ≤ 13 = 123 ≤ 124 ≤ 1234 ≤ 1235 ≤ 134 ≤ 126 ≤ 1236 ≤ 135 = 12345 ≤ 1246 ≤ 2 ≤ 23 = 12346 ≤
1256 = 12356 = 1345 ≤ 3 ≤ 24 = 234 = 235 = 12456 = 123456 ≤ 1356 ≤ 26 = 34 = 35 = 256 = 236 =
246 = 2356 = 2346 = 2345 = 13456 ≤ 4 ≤ 5 ≤ 345 ≤ 2456 ≤ 23456 ≤ 356 ≤ 56 ≤ 6 ≤ 3456
(2, 1, 4, 3, 5, 6)
1 ≤ 12 = 1234 ≤ 14 = 124 = 134 = 1235 ≤ 234 ≤ 126 ≤ 2 ≤ 125 ≤ 12346 ≤ 24 = 1246 = 12345 ≤ 3 ≤
1245 ≤ 34 ≤ 235 ≤ 1346 ≤ 4 ≤ 12356 ≤ 1345 ≤ 25 = 26 = 246 = 146 = 2346 = 1256 = 2345 = 123456 ≤
245 ≤ 12456 ≤ 35 = 346 ≤ 2356 ≤ 345 ≤ 46 = 23456 = 13456 ≤ 5 ≤ 6 ≤ 256 ≤ 2456 ≤ 3456
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(2, 1, 4, 3, 6, 5)

1 ≤ 12 = 1234 ≤ 14 = 124 = 134 ≤ 234 ≤ 1236 ≤ 2 ≤ 3 ≤ 24 = 12346 ≤ 34 = 12345 ≤ 126 ≤ 1246 ≤ 4 ≤
236 = 145 = 125 = 2346 = 1346 = 1345 = 2345 = 12356 = 1245 ≤ 25 = 26 = 36 = 245 = 345 = 246 =
123456 ≤ 346 ≤ 1256 ≤ 12456 ≤ 45 = 13456 ≤ 5 ≤ 6 ≤ 2356 ≤ 23456 ≤ 256 ≤ 2456 ≤ 3456

(2, 1, 5, 3, 4, 6)

1 ≤ 12 ≤ 1234 ≤ 1235 ≤ 124 ≤ 135 ≤ 15 = 125 = 126 = 12345 = 12346 ≤ 1245 = 1345 ≤ 2 ≤ 3 ≤ 12356 ≤
1246 ≤ 1256 = 1356 ≤ 234 ≤ 235 ≤ 156 ≤ 24 = 34 = 123456 ≤ 25 = 35 ≤ 12456 ≤ 4 ≤ 13456 ≤ 5 ≤ 2345 ≤
26 = 256 = 345 = 245 = 246 = 2356 = 2346 ≤ 356 ≤ 56 = 2456 = 23456 ≤ 6 ≤ 3456

(2, 1, 5, 3, 6, 4)

1 ≤ 12 ≤ 124 ≤ 2 ≤ 1235 ≤ 24 = 3 = 12345 ≤ 135 ≤ 4 ≤ 1345 ≤ 15 = 125 = 145 = 235 = 126 = 1236 =
12346 = 1245 ≤ 2345 ≤ 1246 ≤ 25 = 35 = 245 = 345 ≤ 45 ≤ 5 ≤ 236 ≤ 26 = 36 = 2346 = 12356 =
123456 ≤ 6 ≤ 246 ≤ 1356 = 13456 ≤ 1256 ≤ 12456 ≤ 2356 = 23456 ≤ 3456 ≤ 356 ≤ 256 ≤ 2456

(2, 3, 4, 1, 5, 6)

1234 ≤ 1235 ≤ 125 = 124 = 12345 ≤ 1245 ≤ 134 = 12346 = 12356 = 123456 ≤ 1246 ≤ 1256 ≤ 1345 ≤
12456 ≤ 1 ≤ 14 ≤ 15 ≤ 145 ≤ 2 ≤ 23 ≤ 1346 ≤ 24 = 25 = 146 = 234 = 235 = 13456 ≤ 1456 ≤ 2345 ≤ 3 ≤
245 ≤ 34 ≤ 26 = 4 = 246 = 236 = 256 = 2346 = 2456 = 23456 = 2356 ≤ 5 ≤ 346 ≤ 46 ≤ 6

(2, 3, 4, 1, 6, 5)

1234 ≤ 124 ≤ 1245 = 12345 ≤ 126 ≤ 1236 ≤ 1246 = 12346 ≤ 1256 = 12356 ≤ 123456 ≤ 1 ≤ 14 = 134 =
12456 ≤ 1345 ≤ 145 ≤ 16 ≤ 146 ≤ 2 ≤ 23 = 1346 ≤ 24 = 234 ≤ 25 = 245 = 235 = 2345 = 1456 = 13456 ≤
26 = 236 ≤ 2346 ≤ 3 ≤ 246 ≤ 2356 ≤ 256 ≤ 34 = 23456 ≤ 2456 ≤ 4 ≤ 345 ≤ 45 ≤ 5 ≤ 6

(2, 3, 5, 1, 4, 6)

125 ≤ 1235 ≤ 124 ≤ 1234 ≤ 1245 ≤ 12345 ≤ 1 ≤ 14 = 15 = 135 = 1256 = 12356 = 1246 ≤ 12346 ≤ 145 ≤
12456 ≤ 2 ≤ 23 = 1345 = 123456 ≤ 1356 ≤ 156 ≤ 24 = 25 = 235 ≤ 234 ≤ 26 = 256 = 236 = 245 = 2356 =
1456 = 2345 = 13456 ≤ 3 ≤ 35 ≤ 4 ≤ 5 ≤ 246 ≤ 2346 ≤ 2456 ≤ 23456 ≤ 356 ≤ 56 ≤ 6

(2, 3, 5, 1, 6, 4)

126 ≤ 1246 ≤ 1236 ≤ 12346 ≤ 1 ≤ 2 ≤ 23 = 24 = 125 = 1235 = 1245 = 12345 ≤ 234 ≤ 15 = 16 = 25 =
26 = 135 = 145 = 235 = 245 = 236 = 246 = 1256 = 2346 = 12356 = 12456 = 2345 = 1345 = 123456 ≤ 3 ≤
4 ≤ 13456 ≤ 1456 ≤ 1356 ≤ 156 ≤ 23456 ≤ 2356 ≤ 345 ≤ 2456 ≤ 35 = 256 ≤ 45 ≤ 5 ≤ 6

(2, 4, 3, 1, 5, 6)

123 ≤ 1234 ≤ 125 ≤ 1235 ≤ 1236 ≤ 1245 ≤ 12345 ≤ 12346 ≤ 1256 ≤ 12356 ≤ 1 ≤ 2 ≤ 13 = 23 = 12456 =
123456 ≤ 24 = 234 ≤ 134 ≤ 15 = 25 ≤ 235 ≤ 135 ≤ 26 = 236 ≤ 136 ≤ 245 ≤ 2345 ≤ 1345 ≤ 246 ≤ 2346 ≤
1346 ≤ 256 ≤ 2356 ≤ 1356 ≤ 2456 ≤ 23456 = 13456 ≤ 3 ≤ 34 ≤ 4 ≤ 5 ≤ 36 ≤ 6 ≤ 346

(2, 4, 3, 1, 6, 5)

123 ≤ 1234 ≤ 126 = 1236 = 1246 = 12346 = 1235 = 12345 ≤ 1256 = 12456 ≤ 123456 ≤ 1 ≤ 13 = 12356 ≤
134 ≤ 135 ≤ 2 ≤ 16 ≤ 23 = 136 ≤ 1345 ≤ 24 = 234 ≤ 25 = 235 ≤ 1346 ≤ 26 = 236 = 245 = 2345 = 1356 =
13456 ≤ 246 ≤ 2346 ≤ 256 ≤ 2356 = 2456 = 23456 ≤ 3 ≤ 34 ≤ 4 ≤ 35 ≤ 5 ≤ 6 ≤ 345

(2, 4, 5, 1, 3, 6)

123 ≤ 1234 ≤ 125 ≤ 1245 ≤ 1235 ≤ 12345 ≤ 1236 ≤ 1256 = 12456 = 12346 ≤ 12356 ≤ 1 ≤ 13 = 123456 ≤
2 ≤ 15 = 23 = 24 = 145 = 135 = 1345 ≤ 25 = 245 = 234 ≤ 235 ≤ 2345 ≤ 26 = 256 = 156 = 236 = 246 =
2456 = 1456 = 1356 = 13456 ≤ 2346 ≤ 2356 ≤ 23456 ≤ 3 ≤ 4 ≤ 45 ≤ 5 ≤ 456 ≤ 56 ≤ 6

(2, 5, 3, 1, 4, 6)

123 ≤ 124 ≤ 1234 ≤ 1235 ≤ 1245 ≤ 1236 = 12345 ≤ 1246 ≤ 12346 ≤ 12356 ≤ 12456 = 123456 ≤ 1 ≤ 13 ≤
14 ≤ 134 ≤ 135 ≤ 136 ≤ 2 ≤ 23 ≤ 1345 ≤ 24 = 234 = 1346 ≤ 25 = 235 = 245 = 1356 = 2345 ≤ 26 = 236 =
246 = 2346 = 13456 ≤ 2356 = 23456 ≤ 2456 ≤ 3 ≤ 256 ≤ 4 ≤ 35 ≤ 5 ≤ 36 ≤ 6 ≤ 356

(2, 5, 4, 1, 3, 6)

123 ≤ 124 ≤ 1234 ≤ 1235 ≤ 1245 = 12345 ≤ 1236 ≤ 1246 ≤ 12346 ≤ 12356 ≤ 1 ≤ 13 = 12456 = 123456 ≤
14 = 134 ≤ 2 ≤ 23 = 1345 ≤ 145 ≤ 146 ≤ 24 ≤ 234 = 1346 ≤ 25 = 26 = 246 = 245 = 235 = 236 = 2346 =
1456 = 2345 = 13456 ≤ 23456 = 2356 ≤ 2456 ≤ 3 ≤ 4 ≤ 256 ≤ 45 ≤ 5 ≤ 46 ≤ 6 ≤ 456

(3, 1, 2, 4, 5, 6)

1 ≤ 12 ≤ 13 = 123 ≤ 124 = 1234 ≤ 2 ≤ 23 ≤ 1235 ≤ 24 = 3 = 135 = 234 = 12345 ≤ 1345 ≤ 1245 ≤ 235 ≤
2345 ≤ 4 ≤ 35 = 345 ≤ 245 ≤ 45 ≤ 5 ≤ 126 = 1236 ≤ 136 = 12346 ≤ 1246 ≤ 26 = 236 = 12356 ≤ 36 ≤ 6 ≤
123456 ≤ 1356 ≤ 2346 ≤ 246 = 13456 = 12456 ≤ 2356 ≤ 356 = 23456 ≤ 3456 ≤ 2456

(3, 1, 2, 4, 6, 5)
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1 ≤ 12 ≤ 124 ≤ 13 = 123 ≤ 1234 ≤ 2 ≤ 23 = 24 ≤ 125 ≤ 3 = 234 = 1245 = 1235 ≤ 4 = 135 = 12345 ≤
1236 = 1246 ≤ 136 = 12346 ≤ 1346 ≤ 25 = 235 ≤ 245 ≤ 2345 ≤ 35 = 246 = 236 = 2346 = 12356 ≤ 5 ≤
12456 ≤ 36 = 346 = 123456 ≤ 46 ≤ 6 ≤ 1356 ≤ 13456 ≤ 2356 ≤ 2456 ≤ 23456 ≤ 356 ≤ 3456

(3, 1, 2, 5, 6, 4)

1 ≤ 12 ≤ 13 = 123 ≤ 1236 ≤ 124 = 1234 ≤ 125 = 1235 ≤ 134 = 136 = 12356 = 12346 ≤ 1256 ≤ 2 ≤ 23 =
12345 ≤ 1245 ≤ 1356 ≤ 1346 ≤ 123456 ≤ 24 = 25 = 3 = 234 = 236 = 235 = 13456 = 12456 ≤ 34 ≤ 2356 ≤
4 ≤ 36 = 5 = 356 = 256 = 245 = 2346 = 2345 ≤ 346 = 23456 ≤ 56 = 3456 ≤ 6 ≤ 2456

(3, 1, 4, 2, 5, 6)

1234 ≤ 124 = 1235 ≤ 1 ≤ 13 ≤ 234 ≤ 2 ≤ 12345 ≤ 14 = 24 = 134 = 12346 = 1245 = 12356 ≤ 135 ≤ 235 ≤
1246 ≤ 3 ≤ 136 ≤ 25 = 34 = 2346 = 1345 = 2345 = 123456 ≤ 1346 ≤ 4 ≤ 35 = 36 = 346 = 146 = 246 =
345 = 245 = 13456 = 23456 = 1356 = 12456 = 2356 ≤ 5 ≤ 46 = 3456 ≤ 6 ≤ 2456 ≤ 356

(3, 1, 4, 2, 6, 5)

1 ≤ 13 = 1234 ≤ 2 ≤ 14 = 3 = 124 = 134 = 234 = 135 = 1236 = 12345 ≤ 24 = 34 ≤ 1345 ≤ 2345 ≤ 1245 ≤
12346 ≤ 236 ≤ 136 ≤ 4 ≤ 12356 ≤ 26 = 35 = 36 = 345 = 145 = 245 = 2346 = 2356 = 1346 = 1246 =
123456 ≤ 1356 ≤ 346 ≤ 246 ≤ 45 = 23456 = 13456 ≤ 5 ≤ 6 ≤ 12456 ≤ 356 ≤ 3456 = 2456

(3, 1, 5, 2, 4, 6)

1234 ≤ 1235 ≤ 125 ≤ 1 ≤ 2 ≤ 13 = 234 = 12345 = 1245 = 12346 ≤ 235 ≤ 24 = 134 = 12356 ≤ 15 = 25 =
135 = 1256 = 1345 = 2345 = 123456 ≤ 2346 ≤ 245 ≤ 3 ≤ 12456 ≤ 136 ≤ 34 ≤ 2356 ≤ 1346 ≤ 35 = 23456 ≤
4 ≤ 1356 ≤ 256 ≤ 345 ≤ 5 ≤ 13456 ≤ 156 = 2456 ≤ 36 = 356 = 346 ≤ 3456 ≤ 56 ≤ 6

(3, 1, 5, 2, 6, 4)

1 ≤ 13 ≤ 134 ≤ 2 ≤ 15 = 3 = 125 = 135 = 145 = 1345 = 1235 = 12345 = 1245 ≤ 34 ≤ 235 ≤ 4 ≤ 2345 ≤
1236 ≤ 25 = 35 = 245 = 345 = 136 = 12346 ≤ 1346 ≤ 45 ≤ 5 ≤ 236 ≤ 26 ≤ 36 ≤ 6 ≤ 12356 ≤ 2346 ≤
1256 ≤ 1356 ≤ 346 = 13456 = 12456 = 123456 ≤ 2356 ≤ 356 = 256 = 23456 ≤ 2456 ≤ 3456

(3, 2, 4, 1, 5, 6)

1234 = 1235 ≤ 124 ≤ 12356 ≤ 1 ≤ 2 ≤ 23 = 12346 = 12345 ≤ 135 ≤ 134 ≤ 1246 ≤ 14 = 15 = 24 = 234 =
235 = 236 = 1346 = 1245 = 1345 = 1356 = 123456 ≤ 12456 ≤ 3 ≤ 146 ≤ 145 ≤ 13456 ≤ 2356 ≤ 2345 ≤
2346 ≤ 34 = 35 ≤ 36 = 4 = 346 = 246 = 345 = 356 = 23456 = 1456 ≤ 5 ≤ 46 = 3456 ≤ 6

(3, 2, 4, 1, 6, 5)

1234 ≤ 124 = 134 ≤ 1 ≤ 14 ≤ 2 ≤ 23 ≤ 1236 ≤ 24 = 234 = 12345 ≤ 12346 ≤ 3 ≤ 34 = 136 = 1345 ≤
1245 ≤ 4 = 1346 = 1246 ≤ 145 ≤ 16 ≤ 235 ≤ 12356 ≤ 146 ≤ 236 ≤ 2345 ≤ 35 = 36 = 345 = 245 = 1356 =
2346 = 123456 ≤ 13456 ≤ 346 ≤ 45 ≤ 5 ≤ 6 ≤ 12456 ≤ 1456 ≤ 2356 ≤ 23456 ≤ 356 ≤ 3456

(3, 2, 5, 1, 4, 6)

1234 ≤ 1235 ≤ 125 ≤ 12345 ≤ 1245 ≤ 12346 ≤ 1 ≤ 2 ≤ 23 ≤ 12356 ≤ 1256 ≤ 134 ≤ 14 = 15 = 25 = 135 =
235 = 234 = 123456 ≤ 256 = 236 = 145 = 2356 = 2346 = 1345 = 2345 = 12456 = 1346 ≤ 3 ≤ 1356 ≤ 156 ≤
34 = 23456 ≤ 35 = 13456 ≤ 4 ≤ 5 ≤ 1456 ≤ 345 ≤ 36 = 356 = 346 ≤ 56 = 3456 ≤ 6

(3, 2, 5, 1, 6, 4)

1 ≤ 2 ≤ 23 ≤ 234 ≤ 3 ≤ 1235 ≤ 34 = 12345 ≤ 125 = 135 = 1245 ≤ 4 ≤ 1345 ≤ 15 = 145 ≤ 25 = 235 =
245 = 2345 ≤ 35 = 345 ≤ 45 = 12346 ≤ 5 ≤ 1236 ≤ 16 = 136 = 1346 ≤ 236 = 2346 ≤ 36 = 12356 =
123456 ≤ 6 ≤ 346 ≤ 1356 ≤ 1256 ≤ 13456 = 12456 ≤ 156 ≤ 1456 ≤ 2356 ≤ 23456 ≤ 356 ≤ 3456

(3, 4, 2, 1, 5, 6)

1 ≤ 12 ≤ 123 ≤ 15 = 135 = 124 = 126 = 125 = 1236 = 1235 = 1234 ≤ 2 ≤ 23 ≤ 12345 ≤ 12346 ≤ 12356 ≤
3 ≤ 1345 ≤ 1245 ≤ 1246 ≤ 1356 ≤ 1256 ≤ 24 = 234 = 235 ≤ 26 = 34 = 35 = 236 = 123456 ≤ 4 ≤ 36 ≤
13456 ≤ 12456 ≤ 5 ≤ 6 ≤ 2345 ≤ 2346 ≤ 2356 ≤ 345 ≤ 246 ≤ 346 ≤ 356 ≤ 23456 ≤ 3456

(3, 4, 2, 1, 6, 5)

1 ≤ 12 ≤ 123 ≤ 124 = 1234 ≤ 125 = 1235 ≤ 16 = 136 = 126 = 1236 ≤ 2 ≤ 23 ≤ 12345 ≤ 1245 ≤ 12346 ≤
1246 ≤ 1256 ≤ 24 = 25 = 3 = 235 = 234 = 236 = 1346 = 1356 = 12356 = 12456 = 123456 ≤ 34 ≤ 4 ≤
13456 ≤ 35 ≤ 5 ≤ 36 ≤ 6 ≤ 2345 ≤ 245 ≤ 2346 ≤ 2356 ≤ 345 ≤ 346 ≤ 356 ≤ 23456 ≤ 3456

(3, 4, 5, 1, 2, 6)

1 ≤ 12 ≤ 123 ≤ 1234 ≤ 2 ≤ 15 = 23 = 135 = 145 = 125 = 1345 = 1235 = 12345 = 1245 ≤ 234 ≤ 1236 ≤
12346 ≤ 235 ≤ 2345 ≤ 3 ≤ 12356 ≤ 34 = 123456 ≤ 1256 = 12456 ≤ 35 = 345 = 1356 = 13456 ≤ 4 ≤ 45 ≤
1456 ≤ 5 ≤ 156 ≤ 236 ≤ 2346 ≤ 2356 ≤ 23456 ≤ 36 = 356 = 346 = 3456 ≤ 456 ≤ 56 ≤ 6

(3, 5, 2, 1, 4, 6)

1 ≤ 12 ≤ 123 ≤ 14 = 134 = 124 = 1234 ≤ 125 = 1235 ≤ 126 = 1236 ≤ 2 ≤ 23 ≤ 12345 ≤ 1245 ≤ 12346 ≤
3 ≤ 1345 ≤ 1246 ≤ 1346 ≤ 234 ≤ 12356 ≤ 34 ≤ 1256 ≤ 4 ≤ 25 = 235 ≤ 26 = 35 = 236 = 123456 ≤ 12456 ≤
5 ≤ 36 ≤ 2346 = 2345 = 13456 ≤ 6 ≤ 345 ≤ 346 ≤ 2356 ≤ 256 ≤ 356 ≤ 23456 ≤ 3456
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(3, 5, 4, 1, 2, 6)

1 ≤ 12 ≤ 123 ≤ 14 = 134 = 124 = 1234 ≤ 2 ≤ 23 ≤ 234 ≤ 3 ≤ 34 ≤ 4 ≤ 1235 ≤ 1345 = 12345 ≤ 145 ≤
1236 ≤ 1245 ≤ 235 ≤ 12346 = 2345 ≤ 1246 ≤ 35 = 345 ≤ 45 ≤ 5 ≤ 1346 ≤ 146 ≤ 236 ≤ 2346 ≤ 36 = 346 ≤
46 ≤ 6 ≤ 12356 ≤ 123456 ≤ 1456 = 13456 = 12456 ≤ 2356 ≤ 23456 ≤ 356 ≤ 3456 ≤ 456

(4, 1, 2, 3, 5, 6)

1 ≤ 12 ≤ 123 ≤ 14 = 124 = 1234 ≤ 1235 ≤ 2 ≤ 23 ≤ 126 ≤ 1236 ≤ 24 = 234 = 1246 = 12345 = 1245 ≤ 3 ≤
12346 ≤ 4 ≤ 1345 ≤ 145 ≤ 146 ≤ 26 = 246 = 245 = 235 = 236 = 2345 = 12356 ≤ 12456 ≤ 2346 ≤ 35 =
345 = 123456 ≤ 45 ≤ 5 ≤ 46 ≤ 6 ≤ 1456 = 13456 ≤ 2356 ≤ 2456 = 23456 ≤ 3456 ≤ 456

(4, 1, 2, 3, 6, 5)

1 ≤ 12 ≤ 123 ≤ 14 = 124 = 1234 ≤ 2 ≤ 125 ≤ 23 ≤ 24 ≤ 1235 ≤ 1245 ≤ 1236 ≤ 234 ≤ 12345 ≤ 3 ≤
12346 ≤ 4 = 1246 ≤ 145 ≤ 1346 ≤ 146 ≤ 25 = 245 = 246 = 236 = 235 = 2346 = 12456 = 2345 = 12356 =
123456 ≤ 45 = 346 ≤ 5 ≤ 36 ≤ 46 ≤ 6 ≤ 13456 ≤ 1456 ≤ 2356 ≤ 23456 ≤ 2456 ≤ 3456 ≤ 456

(4, 1, 3, 2, 5, 6)

123 ≤ 1234 ≤ 1 ≤ 13 ≤ 2 ≤ 23 ≤ 14 = 134 = 234 ≤ 3 ≤ 34 ≤ 4 ≤ 1245 ≤ 1235 ≤ 12345 ≤ 1236 ≤ 12346 ≤
25 = 245 = 145 = 235 = 2345 = 1345 ≤ 136 ≤ 345 = 236 = 1346 = 2346 ≤ 45 ≤ 5 ≤ 146 ≤ 36 = 346 ≤
46 ≤ 6 ≤ 12456 = 12356 = 123456 ≤ 23456 ≤ 13456 ≤ 2456 ≤ 2356 ≤ 1456 ≤ 3456 ≤ 456

(4, 1, 3, 2, 6, 5)

123 ≤ 1234 ≤ 1 ≤ 13 ≤ 14 = 134 ≤ 2 ≤ 23 ≤ 234 ≤ 3 ≤ 34 ≤ 4 ≤ 1235 ≤ 12345 ≤ 135 ≤ 1345 ≤ 145 ≤
1236 ≤ 235 = 12346 = 2345 ≤ 1246 ≤ 35 = 345 ≤ 45 ≤ 5 ≤ 1346 ≤ 146 ≤ 26 = 246 = 236 = 2346 ≤ 346 ≤
46 ≤ 6 ≤ 12456 = 12356 = 123456 ≤ 13456 ≤ 1456 ≤ 23456 ≤ 2456 ≤ 2356 ≤ 3456 ≤ 456

(4, 1, 5, 2, 3, 6)

1234 ≤ 12345 ≤ 1235 ≤ 1245 ≤ 125 ≤ 134 ≤ 12346 ≤ 1345 ≤ 12356 = 123456 ≤ 1 ≤ 14 ≤ 15 = 145 =
12456 ≤ 1256 ≤ 2 ≤ 23 ≤ 234 ≤ 1346 ≤ 25 = 245 = 146 = 235 = 13456 = 2345 ≤ 1456 ≤ 156 ≤ 3 ≤ 34 ≤
2346 ≤ 345 ≤ 23456 ≤ 2356 ≤ 4 ≤ 45 ≤ 2456 ≤ 5 ≤ 256 ≤ 346 ≤ 3456 ≤ 46 = 456 ≤ 56 ≤ 6

(4, 2, 3, 1, 5, 6)

123 ≤ 1234 ≤ 1245 ≤ 1235 ≤ 12345 ≤ 1236 ≤ 12346 ≤ 12456 = 12356 = 123456 ≤ 1 ≤ 13 ≤ 134 ≤ 15 =
145 = 135 = 1345 ≤ 136 ≤ 1346 ≤ 2 ≤ 23 ≤ 24 = 234 ≤ 1356 ≤ 245 = 13456 = 2345 ≤ 1456 ≤ 236 ≤
2346 ≤ 246 ≤ 23456 ≤ 2456 ≤ 3 ≤ 34 ≤ 4 ≤ 345 ≤ 45 ≤ 5 ≤ 36 = 346 ≤ 46 ≤ 6 ≤ 3456 ≤ 456

(4, 2, 3, 1, 6, 5)

123 ≤ 1234 = 1235 ≤ 12345 ≤ 1 ≤ 13 ≤ 134 ≤ 135 ≤ 2 ≤ 23 ≤ 24 = 234 = 1345 ≤ 235 ≤ 2345 ≤ 245 ≤
1236 ≤ 3 = 12356 ≤ 34 = 12346 ≤ 4 ≤ 1246 ≤ 35 = 345 = 123456 ≤ 45 ≤ 5 ≤ 16 = 146 = 246 = 136 =
1346 = 2346 = 12456 = 1356 ≤ 346 = 2456 = 13456 = 23456 ≤ 46 ≤ 6 ≤ 1456 ≤ 3456 ≤ 456

(4, 2, 5, 1, 3, 6)

1234 ≤ 12345 ≤ 1245 ≤ 1235 ≤ 125 ≤ 12346 ≤ 1 ≤ 13 ≤ 234 ≤ 134 ≤ 2 ≤ 24 ≤ 123456 ≤ 15 = 25 = 145 =
245 = 135 = 1256 = 12456 = 1345 = 2345 = 12356 ≤ 2346 = 1346 ≤ 3 ≤ 34 ≤ 4 = 246 = 345 = 13456 =
23456 ≤ 1356 ≤ 45 = 2456 ≤ 5 ≤ 1456 ≤ 256 ≤ 156 ≤ 346 ≤ 3456 ≤ 46 = 456 ≤ 56 ≤ 6

(4, 3, 2, 1, 5, 6)

1 ≤ 12 ≤ 123 ≤ 124 ≤ 1234 ≤ 2 ≤ 23 ≤ 24 = 234 ≤ 3 ≤ 34 ≤ 4 ≤ 15 = 145 = 125 = 1245 = 1345 = 12345 =
1235 ≤ 126 = 1246 = 12346 = 1236 ≤ 2345 ≤ 245 ≤ 345 ≤ 45 ≤ 5 ≤ 26 = 246 = 236 = 2346 ≤ 346 ≤ 46 ≤
6 ≤ 123456 ≤ 12456 ≤ 13456 ≤ 1456 ≤ 12356 ≤ 1256 ≤ 23456 ≤ 2456 ≤ 3456 ≤ 456

(4, 3, 2, 1, 6, 5)

1 ≤ 12 ≤ 123 ≤ 124 = 1234 ≤ 2 ≤ 23 ≤ 24 = 234 ≤ 3 ≤ 34 ≤ 4 ≤ 125 = 12345 = 1235 ≤ 1245 ≤ 16 = 146 =
126 = 1246 = 1346 = 12346 = 1236 ≤ 25 = 245 = 235 = 2345 ≤ 345 ≤ 2346 ≤ 45 ≤ 5 ≤ 246 ≤ 346 ≤ 46 ≤
6 ≤ 123456 ≤ 13456 ≤ 12356 ≤ 1456 = 12456 = 1256 ≤ 23456 ≤ 2456 = 3456 ≤ 456

(4, 3, 5, 1, 2, 6)

1234 ≤ 1 ≤ 12 ≤ 124 ≤ 12345 ≤ 1235 ≤ 234 ≤ 2 ≤ 3 ≤ 15 = 24 = 34 = 135 = 145 = 125 = 1345 = 1245 =
2345 = 12346 ≤ 1246 ≤ 35 = 345 = 245 = 12356 = 123456 ≤ 4 ≤ 12456 = 2346 = 1256 ≤ 45 = 13456 ≤ 5 ≤
1356 ≤ 246 = 23456 ≤ 1456 ≤ 156 ≤ 346 ≤ 2456 ≤ 3456 ≤ 356 ≤ 46 = 456 ≤ 56 ≤ 6

(4, 5, 2, 1, 3, 6)

1 ≤ 12 ≤ 13 = 123 ≤ 124 = 1234 ≤ 134 ≤ 2 ≤ 3 ≤ 234 ≤ 24 ≤ 34 ≤ 4 ≤ 125 ≤ 12345 = 1245 = 1235 ≤
126 ≤ 1246 = 12346 = 1236 ≤ 25 = 26 = 246 = 245 = 2346 = 2345 = 1345 = 1346 ≤ 345 ≤ 346 ≤ 45 =
46 = 12456 = 1256 ≤ 5 ≤ 6 ≤ 123456 ≤ 12356 ≤ 13456 ≤ 256 ≤ 2456 = 23456 ≤ 3456 ≤ 456

(4, 5, 3, 1, 2, 6)
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1 ≤ 12 ≤ 13 = 123 ≤ 124 = 1234 ≤ 134 ≤ 2 ≤ 24 = 3 = 234 ≤ 34 ≤ 4 ≤ 1236 ≤ 1235 ≤ 135 = 136 =
12346 = 1345 = 12345 = 1245 ≤ 1346 = 1246 ≤ 2345 ≤ 2346 ≤ 245 ≤ 35 = 36 = 346 = 345 = 246 ≤ 45 =
46 = 13456 = 1356 = 12356 = 123456 ≤ 5 ≤ 6 ≤ 12456 ≤ 23456 ≤ 356 = 3456 = 2456 ≤ 456
(5, 1, 2, 3, 4, 6)
1 ≤ 12 ≤ 123 ≤ 1234 ≤ 15 = 125 = 145 = 1245 = 12345 = 1235 = 1345 ≤ 126 = 1236 ≤ 12346 ≤ 2 ≤ 23 ≤
234 ≤ 3 ≤ 12356 ≤ 25 = 34 = 245 = 235 = 1256 = 2345 = 123456 ≤ 12456 ≤ 4 ≤ 345 ≤ 45 ≤ 5 ≤ 13456 ≤
156 = 1456 ≤ 26 = 256 = 236 = 2456 = 2356 = 23456 = 2346 ≤ 3456 ≤ 456 ≤ 56 ≤ 6
(5, 1, 2, 3, 6, 4)
1 ≤ 12 ≤ 123 ≤ 124 ≤ 1234 ≤ 2 ≤ 15 = 23 = 24 = 125 = 145 = 1245 = 1235 = 12345 ≤ 1236 ≤ 234 ≤
12346 ≤ 25 = 245 = 235 = 12356 = 2345 = 123456 ≤ 1256 ≤ 3 ≤ 12456 ≤ 4 ≤ 13456 ≤ 1356 ≤ 45 ≤ 5 ≤
236 ≤ 156 = 1456 = 2346 ≤ 2356 ≤ 23456 ≤ 256 = 2456 ≤ 36 = 356 = 3456 ≤ 456 ≤ 56 ≤ 6
(5, 1, 3, 2, 4, 6)
123 ≤ 1235 = 1234 ≤ 12345 ≤ 1245 ≤ 1236 ≤ 12356 ≤ 12346 ≤ 1 ≤ 13 ≤ 2 ≤ 23 ≤ 24 = 234 = 123456 ≤
15 = 135 = 145 = 235 = 1345 = 12456 = 2345 ≤ 136 ≤ 245 ≤ 236 ≤ 1356 = 2356 = 2346 ≤ 3 ≤ 13456 ≤
4 ≤ 35 = 345 = 23456 ≤ 45 = 156 = 1456 ≤ 5 ≤ 2456 ≤ 36 = 356 = 3456 ≤ 456 ≤ 56 ≤ 6
(5, 1, 3, 2, 6, 4)
123 ≤ 1234 ≤ 1235 ≤ 12345 ≤ 1236 ≤ 1256 ≤ 12346 ≤ 12356 ≤ 1 ≤ 13 ≤ 2 ≤ 23 ≤ 134 = 234 = 12456 =
123456 ≤ 15 = 135 = 145 = 235 = 1345 ≤ 2345 ≤ 26 = 3 = 256 = 156 = 236 = 2356 = 2456 = 1356 =
1456 = 23456 = 13456 = 2346 ≤ 34 ≤ 4 ≤ 35 = 345 ≤ 45 ≤ 5 ≤ 3456 ≤ 356 ≤ 456 ≤ 56 ≤ 6
(5, 1, 4, 2, 3, 6)
1235 ≤ 1234 ≤ 124 = 12345 ≤ 1245 ≤ 135 = 12356 = 12346 ≤ 1345 ≤ 123456 ≤ 1246 ≤ 1 ≤ 14 ≤ 15 =
145 = 12456 ≤ 1356 ≤ 13456 ≤ 146 ≤ 156 = 1456 ≤ 2 ≤ 23 ≤ 235 ≤ 24 = 234 ≤ 3 ≤ 2345 ≤ 245 ≤ 2356 ≤
2346 ≤ 35 = 4 = 345 = 246 = 23456 ≤ 2456 ≤ 45 ≤ 5 ≤ 356 = 3456 ≤ 46 = 456 ≤ 56 ≤ 6
(5, 2, 3, 1, 4, 6)
123 ≤ 1234 ≤ 1235 ≤ 12345 ≤ 1245 ≤ 1236 ≤ 1 ≤ 13 ≤ 2 ≤ 14 = 23 = 12356 = 12346 ≤ 134 ≤ 25 = 235 =
245 = 145 = 135 = 2345 = 12456 = 1345 = 123456 ≤ 136 ≤ 236 = 1346 ≤ 1356 ≤ 3 ≤ 13456 ≤ 1456 ≤ 4 ≤
2356 ≤ 23456 ≤ 256 = 2456 ≤ 345 ≤ 35 ≤ 45 ≤ 5 ≤ 36 = 356 = 3456 ≤ 456 ≤ 56 ≤ 6
(5, 2, 3, 1, 6, 4)
123 ≤ 1234 ≤ 1235 ≤ 12345 ≤ 1236 ≤ 1256 ≤ 12346 ≤ 12356 ≤ 1 ≤ 13 ≤ 2 ≤ 23 ≤ 134 = 12456 = 123456 ≤
135 ≤ 234 ≤ 25 = 235 = 245 = 2345 = 1345 ≤ 16 = 3 = 156 = 256 = 136 = 1356 = 1456 = 2356 = 2456 =
13456 = 23456 = 1346 ≤ 34 ≤ 4 ≤ 35 = 345 ≤ 45 ≤ 5 ≤ 3456 ≤ 356 ≤ 456 ≤ 56 ≤ 6
(5, 2, 4, 1, 3, 6)
1234 ≤ 124 ≤ 12345 ≤ 1235 ≤ 1245 ≤ 12346 ≤ 1246 ≤ 1 ≤ 13 ≤ 14 = 134 = 123456 ≤ 12356 ≤ 2 ≤ 24 =
145 = 135 = 12456 = 1345 ≤ 2345 ≤ 235 ≤ 25 = 245 ≤ 1346 ≤ 146 = 1456 = 13456 = 1356 ≤ 3 = 246 =
23456 ≤ 4 = 345 = 2456 = 2356 ≤ 256 ≤ 35 = 45 ≤ 5 ≤ 3456 ≤ 46 = 456 ≤ 356 ≤ 56 ≤ 6
(5, 3, 2, 1, 4, 6)
1 ≤ 12 ≤ 123 ≤ 14 = 124 = 1234 ≤ 125 = 1235 ≤ 12345 ≤ 1245 ≤ 126 = 1236 = 1345 ≤ 145 ≤ 2 ≤ 23 ≤
1246 ≤ 12346 ≤ 3 ≤ 12356 ≤ 4 ≤ 1256 ≤ 25 = 235 = 245 = 12456 = 2345 = 123456 ≤ 13456 ≤ 345 ≤
1456 ≤ 26 = 35 = 45 = 256 = 236 = 2356 = 2456 = 23456 ≤ 5 ≤ 3456 ≤ 356 ≤ 456 ≤ 56 ≤ 6
(5, 3, 2, 1, 6, 4)
1 ≤ 12 ≤ 123 ≤ 124 ≤ 1234 ≤ 125 ≤ 1235 ≤ 1245 ≤ 12345 ≤ 16 = 156 = 126 = 1256 = 1356 = 1456 =
12356 = 12456 = 13456 = 1236 = 1246 = 12346 = 123456 ≤ 2 ≤ 23 ≤ 24 ≤ 234 ≤ 3 ≤ 25 = 235 = 245 =
2345 ≤ 4 ≤ 345 ≤ 35 ≤ 23456 ≤ 2356 ≤ 45 ≤ 5 ≤ 2456 ≤ 256 ≤ 3456 ≤ 356 ≤ 456 ≤ 56 ≤ 6
(5, 3, 4, 1, 2, 6)
1235 ≤ 1 ≤ 12 = 1234 ≤ 134 = 12345 ≤ 14 = 2 = 235 = 125 = 124 = 2345 = 1345 ≤ 3 ≤ 1245 ≤ 34 ≤ 25 =
35 = 4 = 245 = 345 = 145 = 12356 = 12346 ≤ 123456 ≤ 1346 ≤ 1246 ≤ 2356 ≤ 45 = 23456 ≤ 5 ≤ 1256 ≤
146 = 346 = 12456 = 13456 ≤ 256 = 2456 ≤ 356 = 3456 ≤ 1456 ≤ 46 = 456 ≤ 56 ≤ 6
(5, 4, 2, 1, 3, 6)
1 ≤ 12 ≤ 13 = 123 ≤ 124 ≤ 1234 ≤ 125 = 1235 ≤ 135 = 12345 = 1245 ≤ 2 ≤ 1345 ≤ 24 = 3 = 235 = 126 =
1236 ≤ 25 = 245 = 1246 = 2345 = 12346 ≤ 12356 ≤ 4 ≤ 1256 ≤ 35 = 345 = 12456 = 123456 ≤ 45 ≤ 5 ≤
1356 ≤ 26 = 256 = 246 = 2356 = 2456 = 23456 = 13456 ≤ 356 = 3456 ≤ 456 ≤ 56 ≤ 6
(5, 4, 3, 1, 2, 6)

1 ≤ 12 ≤ 13 = 123 ≤ 1234 ≤ 125 ≤ 1235 ≤ 2 ≤ 134 = 135 = 12345 = 1245 ≤ 25 = 3 = 235 = 245 = 2345 =

1345 ≤ 34 ≤ 4 ≤ 35 = 345 ≤ 45 ≤ 5 ≤ 1236 ≤ 136 = 12356 = 1256 = 12456 = 12346 = 123456 ≤ 1346 ≤
1356 ≤ 13456 ≤ 23456 ≤ 2356 ≤ 2456 ≤ 256 ≤ 36 = 356 = 346 = 3456 ≤ 456 ≤ 56 ≤ 6
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Barberà, S., Barret, C. R., & Pattanaik, P. K. (1977). On some axioms for ranking sets of
alternatives. Journal of Economic Theory, 33(2), 301–308.
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