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Abstract

We propose a general semantics for strategic abilities of agents in asynchronous systems,
with and without perfect information. Based on the semantics, we show some general
complexity results for verification of strategic abilities in asynchronous interaction. More
importantly, we develop a methodology for partial order reduction in verification of agents
with imperfect information. We show that the reduction preserves an important subset of
strategic properties, with as well as without the fairness assumption. We also demonstrate
the effectiveness of the reduction on a number of benchmarks. Interestingly, the reduction
does not work for strategic abilities under perfect information.

1. Introduction

Multi-agent systems describe interactions of multiple entities called agents, often assumed
to be intelligent and autonomous. Alternating-time temporal logic ATL∗ and its fragment
ATL (Alur et al., 1997, 2002) extend temporal logic with the game-theoretic notion of
strategic ability. They allow to express statements about what agents (or groups of agents)
can achieve. For example, 〈〈i〉〉Fwini says that agent i has the ability to eventually win no
matter what the other agents do, while 〈〈i, j〉〉G safe expresses that agents i and j together
can force the system to always remain in a safe state. Such properties can be useful for
specification, verification, and reasoning about interaction in agent systems. Moreover, al-
gorithms and tools for verification of strategic abilities have been in constant development
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for almost 20 years (Alur et al., 1998, 2001; Kacprzak & Penczek, 2004; Lomuscio & Rai-
mondi, 2006; Chen et al., 2013; Huang & van der Meyden, 2014; Busard et al., 2014; Pilecki
et al., 2014; Cermák et al., 2014; Lomuscio et al., 2017; Cermák et al., 2015; Belardinelli
et al., 2017a, 2017c).

However, there are two caveats. First, many tools and algorithmic solutions focus on
agents with perfect information, i.e., agents who always know exactly the global state
of the system. This is clearly unrealistic in all but the simplest multi-agent scenarios.
Still, the tendency is somewhat easy to understand, since model checking of ATL variants
with imperfect information is ∆P

2 - to PSPACE-complete for agents playing memoryless
strategies (Schobbens, 2004; Jamroga & Dix, 2006; Bulling et al., 2010) and EXPTIME-
complete to undecidable for agents with perfect recall of the past (Dima & Tiplea, 2011;
Guelev et al., 2011; Berthon et al., 2017b). Moreover, the imperfect information semantics
of ATL does not admit alternation-free fixpoint characterizations (Bulling & Jamroga,
2011; Dima et al., 2014, 2015), which makes incremental synthesis of strategies impossible,
or at least difficult to achieve. Some early attempts at verification of imperfect information
strategies made their way into the MCMAS model checker (Lomuscio & Raimondi, 2006;
Raimondi, 2006; Lomuscio et al., 2009, 2017), but the issue has never been at the heart of
the tool. Indeed, the recent attempts at practical model checking of imperfect information
strategies (Pilecki et al., 2014; Busard et al., 2014; Huang & van der Meyden, 2014; Busard
et al., 2015; Jamroga et al., 2019; Kurpiewski et al., 2019a, 2019b) confirm that the problem
is hard, and dealing with it requires innovative algorithms and verification techniques.

Secondly, the semantics of strategic logics are almost exclusively based on synchronous
concurrent game models. That is, one implicitly assumes the existence of a global clock
that triggers subsequent global events in the system. At each tick of the clock, all the
agents choose their actions, and the system proceeds accordingly with the corresponding
global transition. However, many real-life systems are inherently asynchronous, and do not
operate on a global clock that perfectly synchronizes the atomic steps of all the components.
As an example, consider robots interacting in an environment with faulty communication
or non-negligible delays in execution of actions. No less importantly, many systems that
are synchronous at the implementation level (say, the level of the virtual machine) can
be more conveniently modeled as asynchronous on a more abstract level. For instance,
the actual implementation of a soccer match in the simulated RoboCup competition can be
executed on a single computer with a global clock ticking every 0.3 ns, but the corresponding
synchronous model would be huge and in consequence useless for analysis. Instead, one can
remove a lot of unnecessary details by assuming that the players execute their actions
asynchronously – without clear temporal relationship between their execution times – and
synchronize only when a particular event has to be executed jointly.

In many scenarios, both aspects combine. For example, when modeling an election, one
must take into account both the truly asynchronous nature of events happening at different
polling stations, and the best level of granularity for modeling the events happening within
a single polling station.

In this paper, we make the first step towards strategic analysis of such systems. Our
contribution is threefold. First, we define a semantics of strategic abilities for agents in
asynchronous systems, with and without perfect information. Secondly, we present some
general complexity results for verification of strategic abilities in such systems. Thirdly,
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and most importantly, we adapt partial order reduction (POR) to model checking of strate-
gic abilities for agents with imperfect information. We also present experimental results
demonstrating that POR allows to significantly reduce the size of the model, and thus to
make the verification more feasible. In fact, we show that the most efficient variant of POR,
defined for linear time logic LTL, can be applied almost directly. The (nontrivial) proof
that the LTL reductions work also for the more expressive strategic operators is the main
contribution of this paper. Interestingly, the scheme does not work for verification of agents
with perfect information.

The outline of the paper is as follows. In Section 2, we introduce the structures to
represent and reason about asynchronous multi-agent systems. In Section 3, we define the
semantics of ATL for asynchronous systems. In Section 4, we show the general complexity
results. Sections 5 and 6 put forward the theoretical foundations and the algorithms for
partial order reduction. Experimental results for several multi-agent scenarios are presented
in Section 7. We conclude in Section 8.

Related work. Relevant related work is relatively scarce. Asynchronous semantics and
partial order reduction for distributed systems were extensively studied by Peled (1993,
1996a, 1996b, 1998), Kokkarinen et al. (1997), Godefroid and Wolper (1994), Godefroid
(1991), Gerth et al. (1999), Kristensen and Valmari (2000), Penczek et al. (2000). These
approaches deal with reductions for preserving reachability and temporal logics: LTL,
CTL, and ACTL. The only efficient approach to partial order reduction in a MAS context
(Lomuscio et al., 2010a, 2010b) concerns standard temporal-epistemic logics (LTLK−X,
CTL∗K−X) interpreted over interleaved interpreted systems. Our approach for ATL is
similar to the approach for LTL, but the logic is interpreted over models based on interleaved
interpreted systems like in case of LTLK−X. As shown by Meski et al. (2014) interleaved
interpreted systems can be viewed as a subclass of interpreted systems e.g., by adding
dummy epsilon actions. The most recent approaches include dynamic POR (Flanagan &
Godefroid, 2005; Abdulla et al., 2014; Chatterjee et al., 2016) and combine POR with
symbolic methods (Kahlon et al., 2009; Konnov et al., 2015). Our future plan is to extend
our POR approach for ATL to dynamic and symbolic versions.

Alur, Henzinger and Kupferman mentioned asynchronous systems in their seminal pa-
per on ATL (Alur et al., 2002), but they modeled them as a special case of synchronous
systems. Asynchronous omega-regular games were also considered by Puchala (2010). Re-
active modules (Alur & Henzinger, 1999), the class of representations behind the Mocha
model checker (Alur et al., 1998, 2001), feature several modes of asynchronous execution,
but – to the best of our knowledge – this aspect has never been given a more systematic
analysis. The work that comes closest to our new proposal is (Dastani & Jamroga, 2010)
where a variant of ATL was proposed for agent-oriented agent programs written in 2APL
with asynchronous execution semantics.

2. Models of Multi-agent Systems

We first define models of asynchronous interaction in MAS, inspired by Priese (1983), Fagin
et al. (1995), Lomuscio et al. (2010a).
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2.1 Asynchronous Multi-agent Systems

In many multi-agent systems, the interaction between different agents is asynchronous.
That is, the actions of different agents are usually executed independently, without clear
temporal relationship. There is no global clock that provides automatic synchronization to
all the components in the system. Only some events, such as synchronous communication,
require that the involved components execute their parts of the event at precisely the same
moment (or within the same time interval).

One can represent such systems with networks of automata that execute asynchronously
by interleaving local transitions, and synchronize their moves whenever a shared event
occurs. This modeling approach is standard in theory of concurrent systems, where the
use of automata networks dates back at least to the early 1980s and the idea of APA
Nets (asynchronous, parallel automata nets) (Priese, 1983). The idea is to represent the
behaviour of each component by a finite automaton where the states of the automaton
correspond to the local states of the component. The transitions in the automaton are
labeled by the events in which the component can take part. Then, the global behaviour of
the system is obtained by the interleaving of local transitions, assuming that, in order for
an event to occur, all the corresponding components must execute it in their automatons.

We note that the same idea has been also used in the multi-agent systems community.
While most models of MAS, such as concurrent game structures (Alur et al., 2002), assume
synchronous execution of actions from all the agents, we note that asynchronous execution
based on interleaving was considered in some seminal works on agent interaction, both
theoretical (Fagin et al., 1995; Lomuscio et al., 2010a) and practically oriented (Alur &
Henzinger, 1999). Moreover, building models of MAS from local state spaces is standard
in most approaches to practical modeling and verification of MAS (Lomuscio & Sergot,
2003; van der Hoek et al., 2006; Jamroga & Agotnes, 2007), including the most popular
model checking tool MCMAS (Lomuscio & Raimondi, 2006; Lomuscio et al., 2017). This
motivates the following definition.

Definition 1 (Asynchronous MAS). An asynchronous multi-agent system (AMAS) consists
of n agents A = {1, . . . , n},1 each associated with a tuple Ai = (Li, ιi,Evt i, Pi, Ti,PV i, Vi)
that includes a set of possible local states Li = {l1i , l2i , . . . , l

ni
i }, an initial state ιi ∈ Li,

and a set of events Evt i = {α1
i , α

2
i , . . . , α

mi
i } in which agent i can choose to participate.

Note that the sets Evt i do not need to be disjoint, i.e., there may be events that require
participation of more than one agent.

Evt =
⋃
i∈A Evt i is the set of all events, and Loc =

⋃
i∈A Li is the set of all local states

in the system. For each event α ∈ Evt, the set Agent(α) = {i ∈ A | α ∈ Evt i} contains the
agents which have α in their sets of events.

A local protocol Pi : Li → 2Evti shows which events are available for selection at which
local state. Moreover, Ti : Li × Evt i ⇀ Li is a (partial) local transition function such that
Ti(li, α) is defined iff α ∈ Pi(li). That is, Ti(l, α) indicates the result of executing event α
in local state l from the perspective of agent i.

Finally, we assume that each agent i in the AMAS is endowed with a set of its local
propositions PV i, and their valuation Vi : Li → 2PVi. Additionally, the overall set of
propositions PV =

⋃
i∈A PV i collects all the local propositions.

1. We do not consider the environment component, which may be added with no technical difficulty.

820



Towards Partial Order Reductions for Strategic Ability

W

T

A

G

R

W

T

A

Train1 Train2Controller

a1

a1a2

a2

a3 b1

b1

b2

b2

b3

Figure 1: Asynchronous MAS for the TGC benchmark.

Example 1 (TGC). Figure 1 presents the Train-Gate-Controller (TGC) benchmark (Alur
et al., 1993, 1998; Hoek & Wooldridge, 2002). The system consists of three agents: a
controller c and two trains t1, t2. The trains run on separate circular tracks that jointly pass
through a narrow tunnel. Each train can be waiting for the permission to enter (state W ),
riding inside the tunnel (T ), or riding somewhere away of the tunnel (A). The controller
switches between green light (state G) and red light (R). Initially, both trains are waiting
and the controller displays Green.

2.2 Interleaved Interpreted Systems

To understand the interaction between asynchronous agents, we use the standard execution
semantics from concurrency models, i.e., interleaving with synchronization on shared events.
To this end, we unfold the network of local automata (i.e., AMAS) to a single automaton
based on the notions of global states and global transitions, defined formally below.

Definition 2 (Interleaved Interpreted System). Let PV be a set of propositional variables.
An interleaved interpreted system (IIS), or a model, is an asynchronous MAS extended
with the following elements: a set St ⊆ L1×· · ·×Ln of global states, an initial state ι ∈ St,
a partial global transition function T : St × Evt ⇀ St, and a valuation of propositions
V : St → 2PV . For state g = (l1, . . . , ln), we denote the local component of agent i by
gi = li. Also, we will sometimes write g1

α−→ g2 instead of T (g1, α) = g2.
We will show in Definition 3 how to generate such a model for a given asynchronous

multi-agent system.

We say that event α ∈ Evt is enabled at g ∈ St if g
α−→ g′ for some g′ ∈ St. The global

transition function is assumed to be serial, i.e., at each g ∈ St there exists at least one
enabled event.

An infinite sequence of global states and events π = g0α0g1α1g2 . . . is called an (inter-

leaved) path if there is a sequence of global transitions from g0 onwards, i.e., if gi
αi−→ gi+1

for every i ≥ 0. Evt(π) = α0α1α2 . . . is the sequence of events in π, and π[i] = gi is the i-th
global state of π. ΠM (g) denotes the set of all paths in an IIS M starting at g.

IIS can be used to provide an execution semantics to AMAS.
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Figure 2: IIS for TGC: full model (left) and reduced model (right). Visible transitions are
depicted by bold arrows.

Definition 3 (Canonical IIS). Let S be an asynchronous MAS with n agents. Its canonical
model IISV (S) extends S with global states St = L1× . . .×Ln, initial state ι = (ι1, . . . , ιn),
and transition function T defined as follows: T (g1, α) = g2 iff Ti(g

i
1, α) = gi2 for all

i ∈ Agent(α), and gi1 = gi2 for all i ∈ A \ Agent(α). Moreover, the global valuation of
propositions is defined as V (l1, . . . , ln) =

⋃
i∈A Vi(li).

Intuitively, the global states in IISV (S) can be seen as the possible configurations of
local states of all the agents. Moreover, the transitions are labeled by events that can be
synchronously selected (in the current configuration) by all the agents that have the event
in their repertoire. Clearly, private events (i.e., events such that Agent(α) is a singleton)
require no synchronization.

We also note that, for the properties considered in this paper, the global states unreach-
able from ι can be as well omitted from the set St.

Example 2. Let TGCn be the asynchronous MAS consisting of the controller c and n trains
(t1, . . . , tn). Additionally, let us assume PV = {in1, . . . , inn} with ini ∈ V (g) iff gi = T .
That is, proposition ini denotes that train ti is currently in the tunnel. The state/transition
structure of the canonical interleaved interpreted system for TGC2 is depicted in Figure 2
(left).

It is easy to see that the global state space grows exponentially with the number of
agents. In some cases, it suffices to consider a subset of states and transitions, i.e., concen-
trate on a submodel of IIS(S).

Definition 4 (Submodel). Let M,M ′ be two models extending the same AMAS, such that
St′ ⊆ St, ι ∈ St′, T is an extension of T ′, and V ′ = V |St′. Then, we write M ′ ⊆ M and
call M ′ a submodel of M or a reduced model of M .
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An example submodel of the IIS for TGC is shown in Figure 2 (right). Note that, for
each g ∈ St′, we have ΠM ′(g) ⊆ ΠM (g).

In order to generate reduced models, we need a notion of invisibility and independency
of events with respect to propositional variables. Intuitively, an event is invisible iff it
does not change the valuations of the propositions. Note that this concept of invisibility
is technical, and is not connected to the view of any agent in the sense of Malvone et al.
(2017). Additionally, we can designate a subset of agents A whose events are visible by
definition. Furthermore, two events are weakly independent iff they are not events of the
same agent, and strongly independent iff they are weakly independent and at least one of
them is invisible.

Definition 5 (Invisible events). Consider a model M , a subset of agents A ⊆ A, and
a subset of propositions PV ⊆ PV. An event α ∈ Evt is invisible w.r.t. A and PV if
Agent(α) ∩ A = ∅ and for each two global states g, g′ ∈ St we have that g

α−→ g′ implies
V (g)∩PV = V (g′)∩PV . The set of all invisible events for A,PV is denoted by InvisA,PV ,
and its closure – of visible events – by V isA,PV = Evt \ InvisA,PV .

Definition 6 (Independent events). Two notions of independence of events are defined:

Weak independence WI ⊆ Evt × Evt is defined as: WI = {(α, α′) ∈ Evt × Evt |
Agent(α) ∩Agent(α′) = ∅}.

Strong independence (or simply independence) IA,PV ⊆ Evt × Evt is defined as:
IA,PV = WI \ (V isA,PV ×V isA,PV ). Two events α, α′ ∈ Evt are called dependent if
(α, α′) 6∈ IA,PV .

Note that two visible events are called dependent regardless of whether they are weakly
independent or not. This definition is motivated by the fact that LTL−X cannot distinguish
between two sequences that differ in the ordering of two independent events (according to
our definition).

We assume in the rest of the paper that a suitable subset PV is given to parameterize
all the notions of equivalence, and omit the subscript PV whenever clear from the context.

3. Reasoning about Agents’ Abilities

Many important properties in a MAS can be specified in terms of the strategic ability
(or inability) of some agents to achieve a given goal. Such properties can be specified by
formulas of the strategic logic ATL. The semantics of ATL is typically defined for models
of synchronous systems. In this section, we show how to adapt it to asynchronous MAS.

3.1 Alternating-Time Temporal Logic: Syntax

Alternating-time temporal logic (Alur et al., 1997, 2002) generalizes the branching-time
temporal logic CTL (Clarke & Emerson, 1981) by replacing the path quantifiers E,A with
strategic modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ expresses that the group of agents A has a
collective strategy to enforce the temporal property γ. The formulas make use of unary
temporal operators: “X ” (“next”), “G ” (“always from now on”), “F ” (“now or sometime
in the future”), and binary ones: U (“strong until”, γ1 holds until γ2 becomes true), and
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R (“release”, logical dual of U : γ2 holds until and including the state when γ1 becomes
true; γ1 is not required to ever hold, in which case γ2 must be always true). The logic comes
in several syntactic variants, the most popular of which are ATL∗ and ATL.

Definition 7 (Syntax of ATL∗). Let PV be a set of propositional variables and A the set
of all agents. The language of ATL∗ is defined by the following grammar (where p ∈ PV
and A ⊆ A):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | X γ | γU γ.

The other Boolean operators, true and false are defined as usual. “Release” can be
defined as γ1 R γ2 ≡ ¬((¬γ1) U (¬γ2)). The “sometime” and “always” operators are given
as F γ ≡ true U γ and G γ ≡ false R γ. Moreover, the CTL∗ operator “for all paths” can be
defined as Aγ ≡ 〈〈∅〉〉γ.

Definition 8 (Syntax of ATL). In ATL, every occurrence of a strategic modality is imme-
diately followed by a single temporal operator. In that case, “release” is not definable from
“until” anymore (Laroussinie et al., 2008), and it must be added explicitly to the syntax
as another primitive operator. Formally, the language of ATL is defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉ϕUϕ | 〈〈A〉〉ϕRϕ.

In the rest of the paper, we are mainly interested in formulas that do not use the
next step operator X , and do not contain nested strategic modalities. We denote the
corresponding subsets of ATL∗ and ATL by sATL∗ (“simple ATL∗”) and sATL (“simple
ATL”). Moreover, 1ATL∗ is the fragment of sATL∗ that admits only formulas consisting
of a single strategic modality followed by an LTL formula (i.e., 〈〈A〉〉γ, where γ ∈ LTL),
and analogously for 1ATL.

Example 3. The following formulas of sATL∗ specify interesting properties of the TGC
system: 〈〈c〉〉F in1 (the controller can let train t1 in), 〈〈c〉〉G¬in1 (the controller can keep t1
out forever), 〈〈c〉〉F (in1 ∧ F¬in1) (the controller can let t1 through), ¬〈〈t1, t2〉〉F (in1 ∨ in2)
(neither train can get in without the help of the controller, even if it collaborates with the
other train).

We claim that most of practically interesting specifications of strategic ability can be
expressed in sATL∗, possibly extended with epistemic operators. Typically, one wants to
verify if a group of agents can reach a “winning” state (expressed by formula 〈〈A〉〉Fwin), or
that they can avoid failure (captured by 〈〈A〉〉G¬fail). Nested strategic modalities allow to
express that agents A can endow agents B with the ability to enforce some goal γ (captured
by 〈〈A〉〉F 〈〈B〉〉γ) or to deprive the other agents of the ability (〈〈A〉〉G¬〈〈B〉〉γ), which is
seldom of practical interest.

3.2 Strategies and Outcomes

Let M be a model. A strategy of agent i ∈ A in M is a conditional plan that specifies what
i is going to do in any potential situation. A number of semantic variations are possible.
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Here, we follow Schobbens (2004), and adopt his taxonomy of four “canonical” strategy
types: IR, iR, Ir, and ir. In the notation, R (resp. r) stands for perfect (resp. imperfect)
recall, and I (resp. i) refers to perfect (resp. imperfect) information. Note that verification
of ATL for agents with perfect recall is in general undecidable (Dima & Tiplea, 2011).
Because of that, we focus on memoryless strategies, i.e., consider strategies of types Ir and
ir. Formally:

� A memoryless perfect information strategy for agent i is a function σi : St → Evt i
such that σi(g) ∈ Pi(gi) for each global state g ∈ St.

� A memoryless imperfect information strategy for i is a function σi : Li → Evt i such
that σi(l) ∈ Pi(l) for each local state l ∈ Li.

Thus, a perfect information strategy can assign different events to any two global states,
while under imperfect information the agent’s choices depend only on the local state of the
agent.2 A joint strategy σA for a coalition A ⊆ A is a tuple of strategies, one per agent
i ∈ A. We denote the set of A’s joint memoryless perfect (resp. imperfect) information
strategies by ΣIr

A (resp. Σir
A). Additionally, let σA = (σ1, . . . , σk) be a joint strategy for

A = {i1, . . . , ik}. For each g ∈ St, we define σA(g) = (σ1(g), . . . , σk(g)).

Definition 9 (Outcome paths). Let Y ∈ {Ir, ir}. The outcome of strategy σA ∈ ΣY
A in

state g ∈ St is the set outM (g, σA) ⊆ ΠM (g) such that π = g0α0g1α1g2 · · · ∈ outM (g, σA)
iff g0 = g and ∀i ∈ N ∀j ∈ A if j ∈ Agent(αi), then αi ∈ σj(π[i]) for Y = Ir, and
αi ∈ σj(π[i]j) for Y = ir.

Intuitively, the outcome of a joint strategy σA in a global state g is the set of all the
infinite paths that can occur when in each state of the paths either some agents (an agent)
in A execute(s) an event according to σA or some agents (an agent) in A \ A execute(s)
an event following their protocols. Clearly, each event α has to be executed by all agents
which have α in their sets of events. In reasoning about asynchronous systems, one often
wants to look only at fair paths, i.e., ones that do not consistently ignore an agent whose
choice is always enabled. Formally, a path π satisfies the concurrency-fairness condition
(CF) if there is no event enabled in all states of π from π[i] on, and at the same time weakly
independent from all the events actually executed in π[i], π[i + 1], π[i + 2], . . . . We denote
the set of all such paths starting at g by ΠCF

M (g).

Definition 10 (CF-outcome). The concurrency-fair outcome of σA ∈ ΣY
A is defined as

outCFM (g, σA) = outM (g, σA) ∩ΠCF
M (g).

3.3 Asynchronous Semantics of ATL and ATL∗

Our semantics of ATL∗ for asynchronous interaction, parameterized with the strategy type
Y ∈ {Ir, ir}, is defined as follows:

M, g |=Y p iff p ∈ V (g), for p ∈ PV;

M, g |=Y ¬ϕ iff M, g 6|=Y ϕ;

2. Alternatively, we can require the agent’s choices to be the same for the global states that share the same
local states.
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M, g |=Y ϕ1 ∧ ϕ2 iff M, g |=Y ϕ1 and M, g |=Y ϕ2;

M, g |=Y 〈〈A〉〉γ iff there is a strategy σA ∈ ΣY
A such that outM (g, σA) 6= ∅ and, for each

path π ∈ outM (g, σA), we have M,π |=Y γ;

M,π |=Y ϕ iff M,π[0] |=Y ϕ;

M,π |=Y ¬γ iff M,π 6|=Y γ;

M,π |=Y γ1 ∧ γ2 iff M,π |=Y γ1 and M,π |=Y γ2;

M,π |=Y X γ iff M,π[1,∞] |=Y γ;

M,π |=Y γ1 U γ2 iffM,π[i,∞] |=Y γ2 for some i ≥ 0 andM,π[j,∞] |=Y γ1 for all 0 ≤ j < i.

As usual, the semantics of ATL can be given entirely with respect to states:

Definition 11 (State-based semantics of ATL). The Y -semantics of ATL can be equiva-
lently defined by the following clauses:

M, g |=Y p iff p ∈ V (g);

M, g |=Y ¬ϕ iff M, g 6|=Y ϕ;

M, g |=Y ϕ1 ∧ ϕ2 iff M, g |=Y ϕ1 and M, g |=Y ϕ2;

M, g |=Y 〈〈A〉〉Xϕ iff there is a Y -strategy σA such that, for each π ∈ outM (g, σA), we have
M,π[1] |=Y ϕ;

M, g |=Y 〈〈A〉〉ϕ1 Uϕ2 iff there is σA ∈ ΣY
A st. outM (g, σA) 6= ∅ and, for each π ∈ outM (g, σA),

there exists i ≥ 0 with M,π[i] |=Y ϕ2 and M,π[j] |=Y ϕ1 for all 0 ≤ j < i;

M, g |=Y 〈〈A〉〉ϕ1 Rϕ2 iff there is σA ∈ ΣY
A st. outM (g, σA) 6= ∅ and, for all π ∈ outM (g, σA)

and i ≥ 0, either M,π[i] |=Y ϕ2 or M,π[j] |=Y ϕ1 for some 0 ≤ j < i.

Example 4. We leave it to the reader to check that all the formulas in Example 3 hold in
the TGC model in Figure 2 (left) for both the Ir and the ir semantics.

Remark 1. We observe that the relation |=ir captures the “objective” notion of ability under
imperfect information (Jamroga, 2003; Bulling & Jamroga, 2014). That is, 〈〈A〉〉γ holds iff
agents in A have a joint strategy to enforce γ from the current global state of the system. We
expect to obtain analogous results for the semantics based on “subjective” ability (Schobbens,
2004; Jamroga & van der Hoek, 2004; Bulling & Jamroga, 2014), but a detailed study is
outside the scope of this paper.

Remark 2. Note also that the semantics constrains the abilities behind 〈〈A〉〉 to “no-
deadlock” paths and strategies. That is, we only consider infinite execution paths, and
only strategies whose outcomes are nonempty sets of such paths. This is in line with the
standard approach to analysis of distributed systems. An interesting alternative would be to
model executions with deadlock by paths ending with an infinite sequence of “silent” events,
looping in the deadlock state. We plan to study the resulting semantics of ATL∗, and model
reductions for the semantics, in the future.
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We obtain the concurrency-fair semantics |=IrF and |=irF of ATL and ATL∗ by replacing
outM (g, σA) with outCFM (g, σA) in the clauses for 〈〈A〉〉.

For the set of formulas L and the semantic relation |=Y , we denote the logical sys-
tem (L, |=Y ) by LY . Thus, ATLIr is ATL with memoryless perfect information seman-
tics, sATL∗irF is the “simple ATL∗” with memoryless imperfect information strategies and
concurrency-fairness assumption, and so on.

4. Model Checking sATL and sATL∗ for Asynchronous Agent Systems

In this work, we focus on simple specifications of strategic ability, i.e., ones that can be
formally characterized without nesting strategic modalities. We believe that an overwhelm-
ing majority of properties, relevant in actual application domains, follow that pattern. One
usually wants to require (or ask if) a given player has a strategy to eventually win the game,
two trains can persistently avoid the crash, Alice and Bob can exchange a secret without
Cathy learning it on the way, etc., see the example formulas below:

1. 〈〈i〉〉Fwini,

2. 〈〈t1, t2〉〉G¬(in1 ∧ in2),

3. 〈〈a, b〉〉
(
F (knowsSecra ∧ knowsSecrb) ∧G¬knowsSecrc

)
.

Note that (1) and (2) are formulas of sATL (in fact, 1ATL), while (3) is a formula of
sATL∗. Also, specification (3) suggests that many interesting properties can be more
conveniently specified with a combination of strategic and epistemic modalities, which seems
an interesting path for future work. Moreover, in all realistic scenarios, players have only
partial knowledge of the current global state of the world during the interaction. Thus, we
focus here on the semantics based on imperfect information strategies.

In this section, we establish the complexity of model checking for some relevant fragments
of sATL∗ir and sATL∗irF. We observe that the complexity can be given with respect to the
logical model of the system (i.e., an interleaved interpreted system, cf. Section 2.2), or the
compact representation of the system (in our case, an asynchronous MAS, cf. Section 2.1).
We give both kinds of results. Note that IISV (S) has usually exponentially many global
states and transitions in the number of agents in S. Thus, the model checking results relative
to the size of IISV (S) “hide” the part of the complexity already included in the blowup.
On the other hand, POR reduces models and not representations, so the complexity w.r.t.
the size of the model tells us how much gain we can expect when the model is reduced.

We also briefly look at the program complexity of model checking, i.e., the complexity
of the problem when the input formulas are of fixed or bounded length.

4.1 Model Checking 1ATLir and 1ATLirF

We begin by looking at the verification complexity for the simplest specifications, consisting
of a single strategic modality 〈〈A〉〉 immediately followed by a single temporal modality.

Proposition 1. Model checking 1ATLir and 1ATLirF is NP-complete in the size of the
model and the length of the formula. It remains NP-complete even for formulas of bounded
length.
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Proof. Analogous to the result by Schobbens (2004) for 〈〈Γ〉〉-ATLir.

For the upper bound, we note that model checking of 〈〈A〉〉γ in M, g can be done by
means of the following algorithm mcheck1(M,g, 〈〈A〉〉γ):

1. Guess a joint ir-strategy σA;

2. Prune M according to σA, obtaining model M ′;

3. Model-check the CTL formula ¬AG false ∧ Aγ (“the set of paths is nonempty3 and,
for all paths, γ”) in M ′, g, and return the answer.

Since σA is of at most linear size with respect to |M |, and model checking of Aγ can be
done in deterministic polynomial time w.r.t. |M |, both with and without fairness assump-
tions (Baier & Katoen, 2008), we obtain the bound.

For the lower bound, we observe that single-agent systems can be seen as special cases of
both synchronous and asynchronous systems, and the semantics with and without fairness
assumptions coincide on such models. Moreover, there exists a polynomial reduction of
the Boolean satisfiability problem (SAT) to model checking of the ATLir formula 〈〈1〉〉F yes
in a single-agent model. Schobbens (2004, Section 3.1) describes the general idea of this
reduction, and Jamroga (2015, Section 7.1.1) considers the single-agent version. This im-
mediately gives us NP-hardness for model checking of 1ATLir and 1ATLirF. Note also
that the lower bound does not rely on the length of the formula, as formulas of length 3 are
sufficient to construct the reduction.

Proposition 1 established the complexity of model checking when the input model is
given explicitly. We now examine the complexity of the same problem with respect to the
size of representations, i.e., AMAS. Since the proofs are more involved than for Proposi-
tion 1, we will separately prove the upper and the lower bounds.

Proposition 2. Model checking 1ATLir is in PSPACE with respect to the size of the
representation.

Proof. Observe that model checking of formula 〈〈A〉〉γ in an asynchronous MAS S can be
done by means of algorithm mcheck2(S, 〈〈A〉〉γ):

1. Guess a joint ir-strategy σA as a deterministic restriction of the protocols Pi, i ∈
A. That is, for every agent i in the coalition, and every local state li ∈ Li, select
nondeterministically an event α(i,li) ∈ Pi(li);

2. Prune S according to σA, obtaining AMAS S′. That is, update P ′i for all i ∈ A, so
that P ′i (li) = {α(i,li)};

3. Model-check the LTL formula G false in the resulting representation S′ (it holds only
if the set of paths is empty), and return false if the formula is true;

4. Otherwise, model-check the LTL formula γ in S′, and return the answer.

Since the size of σA is linear w.r.t. |S|, and model checking LTL is in PSPACE w.r.t.
|S| (Schnoebelen, 2003), we obtain the bound.

3. Note that AG false can hold only if the set of outgoing paths is empty.
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Proposition 3. Model checking 1ATLirF is in PSPACE with respect to the size of the
representation.

Proof. Verification in concurrency-fair paths is more sophisticated, and requires an addi-
tional construction. Given an asynchronous MAS S with agentsASi = (LSi , ι

S
i ,EvtSi , P

S
i , T

S
i ),

we construct its event trail extension ETrail(S) by adding, for each ASi , a new state (l, α) for
every local state l ∈ LSi and every event α ∈ EvtSi that labels some incoming transition in l.
We also modify the transition function TSi so that the outcome of each transition “records”

the latest event, i.e., T
ETrail(S)
i (l, α) = (TSi (l), α) and T

ETrail(S)
i ((l, α), α′) = (TSi (l), α′).

The valuation of the atomic propositions in PV carries over to the event trail extension, ex-
cept for new atomic propositions evtα, one per α ∈ Evt i, that label states where event α has

just been executed. That is, V
ETrail(S)
i (l) = V S

i (l), and V
ETrail(S)
i ((l, α)) = V S

i (l)∪{evtα}.
Finally, for each pair of events α, β ∈ EvtS , we add new proposition independentα,β which
holds in all the local states of S if α, β are weakly independent in S, and otherwise does
not hold anywhere.

Note that the CTL∗ formula enabledα ≡ EX evtα expresses that event α is enabled in the
current global state of the system. Moreover, the CTL∗ path formula alwaysEnabledα ≡
G enabledα says that α is always enabled on the selected path. Likewise, indExecα ≡
X G

(∨
β∈Evt(evtβ ∧ independentα,β)

)
says that only events independent from α will be ex-

ecuted. Consequently, fair ≡
∧
α G (alwaysEnabledα → ¬indExecα) expresses that the

selected path satisfies concurrency-fairness.
Now, model checking of formula 〈〈A〉〉γ in an asynchronous MAS S can be done by

algorithm mcheck3(S, 〈〈A〉〉γ):

1. Guess a joint ir-strategy σA as a deterministic restriction of the protocols Pi, i ∈ A;

2. Prune S according to σA, obtaining AMAS S′;

3. Model-check the CTL∗ formula
(
E fair ∧ A (fair → γ)

)
in the event trail extension

of the resulting representation, i.e., in ETrail(S′), and return the answer.

Since the size of σA is linear w.r.t. |S|, and model checking CTL∗ is in PSPACE w.r.t.
|S| (Schnoebelen, 2003), we obtain the bound.

Proposition 4. Model checking 1ATLir and 1ATLirF is PSPACE-hard in the size of the
representation (even for formulas of bounded length).

Proof. To prove the lower bound, we adapt the construction by Kupferman et al. (2000,
Theorem 6.1). Given a Turing machine T with space complexity s(n), a concurrent program
P (T ) of size O(s(n)) is constructed, such that accepting termination of T is reduced to
model checking of the CTL formula EF accept in P (T ). We recall from Kupferman et al.
(2000) that a concurrent program can be seen as a collection of local automata with disjoint
event sets, executed synchronously. That is, all the automata make a synchronous step at
every tick of the global clock. According to Kupferman et al. (2000, Theorem 6.1), there
exists a computation of T on the empty tape which eventually reaches an accepting state
iff P (T ) |=CTL EF accept.

We also observe that, for every synchronous program P , one can obtain an asynchronous
MAS Async(P ) with a similar behaviour by sequentializing the concurrent events of modules
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in P in an arbitrary order, and adding an extra “synchronizer” agent which enforces that
each module i ∈ {1, . . . , n} takes the i-th step in every “execution cycle.” In consequence,
each concurrent transition in P is decomposed into a sequence of n asynchronous transitions
in Async(P ). Clearly, EF p holds in P iff it holds in Async(P ). Thus, we have that
there exists an accepting computation of T on the empty tape iff P (T ) |=CTL EF accept iff
IIS(Async(P (T ))) 6|=ir 〈〈∅〉〉G¬accept. This way we obtain the co-PSPACE-hardness for
1ATLir. Since co-PSPACE = PSPACE, the lower bound follows.

For 1ATLirF, we observe that all the paths in IIS(Async(P (T ))) are fair, so the same
construction can be used.

Again, the reduction does not rely on the length of the formula.

Corollary 1. Model checking 1ATLir and 1ATLirF is PSPACE-complete in the size of
the representation (even for formulas of bounded length).

4.2 Model Checking sATLir and sATLirF

The verification complexity for Boolean combinations of formulas from 1ATL is almost the
same.

Proposition 5. Model checking sATLir and sATLirF is NP-hard and in ΘP
2 in the size

of the model and the length of the formula (even for formulas of bounded length).4

Proof. The lower bound follows from Proposition 1. The upper bound is demonstrated by
the algorithm mcheck5(M,g, ϕ) below:

1. If ϕ ≡ 〈〈A〉〉γ, then return mcheck1(M,g, 〈〈A〉〉γ);

2. If ϕ ≡ ¬ψ, then return (not mcheck5(M,g, ψ));

3. If ϕ ≡ ψ1 ∧ ψ2, then return (mcheck5(M,g, ψ1) and mcheck5(M,g, ψ2));

Thus, the non-deterministic algorithm in Proposition 1 is used as an oracle to establish the
truth value for each subformula 〈〈A〉〉γ of ϕ. Clearly, the oracle is called at most |ϕ| times,
and the input in the next call does not depend on the output of the preceding calls. Finally,
based on the output of the calls, the value of ϕ is calculated in the standard way.

We suspect that the problem is ΘP
2 -complete. We leave the proof for future work.

Proposition 6. Model checking sATLir and sATLirF is PSPACE-complete in the size of
the representation and the length of the formula (even for formulas of bounded length).

Proof. Analogous to Proposition 5. The lower bound follows from Proposition 4. For the
upper bound, we use algorithm mcheck6(M,g, ϕ):

1. If ϕ ≡ 〈〈A〉〉γ, then return mcheck2(M,g, 〈〈A〉〉γ) when model checking sATLir and
mcheck3(M,g, 〈〈A〉〉γ) for sATLirF;

2. If ϕ ≡ ¬ψ, then return (not mcheck6(M,g, ψ));

3. If ϕ ≡ ψ1 ∧ ψ2, then return (mcheck6(M,g, ψ1) and mcheck6(M,g, ψ2));

Thus, we now use the algorithms from Propositions 2 and 3 as the oracles. Since PPSPACE =
PSPACE, we obtain the result.

4. Where ΘP
2 = P||NP is the class of problems solvable by a deterministic polynomial-time Turing machine

making polynomially many nonadaptive calls to an NP oracle.
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4.3 Model Checking sATL∗ir and sATL∗irF

Finally, we examine the complexity of verification for specifications with arbitrary LTL
subformulas.

Proposition 7. Model checking 1ATL∗ir, 1ATL∗irF, sATL∗ir, and sATL∗irF is PSPACE-
complete in the size of the model and the length of the formula.

Proof. The lower bound follows from PSPACE-completeness of LTL model checking (Sch-
noebelen, 2003). The upper bound for 1ATL∗ir can be obtained by the following algorithm
mcheck7(M,g, 〈〈A〉〉γ):

1. Guess a joint ir-strategy σA;

2. Prune M according to σA, obtaining model M ′;

3. Model-check the LTL formula G false in M ′, g (it holds only if the set of paths is
empty), and return false if the formula is true;

4. Otherwise, model-check the LTL formula γ in M ′, g, and return the answer.

For 1ATL∗irF, we use an analogous construction to the one for Proposition 3. Given an
IIS M , we construct its event trail extension ETrail(M) analogously, i.e., for every state
q in M and every incoming transition in q, labeled by α, we add a new state (q, α) being
essentially a copy of q, and labeled additionally by a fresh proposition evtα. Formula fair is
defined as in Proposition 3. Now, model checking of 〈〈A〉〉γ in M, q can be done by algorithm
mcheck7F(M,q, 〈〈A〉〉γ):

1. Guess a joint ir-strategy σA;

2. Prune M according to σA, obtaining model M ′;

3. Model-check the CTL∗ formula
(
E fair ∧ A (fair → γ)

)
in ETrail(M ′), q, and return

the answer.

Finally, for sATL∗ir and sATL∗irF, we repeat the above procedure for each subformula,
and compute the Boolean combination, i.e., use an analogous algorithm to that in Propo-
sition 5. Since PPSPACE = PSPACE, we obtain the upper bound.

Proposition 8. For formulas of bounded length, model checking is NP-complete for 1ATL∗ir
and 1ATL∗irF, and between NP and ΘP

2 for sATL∗ir and sATL∗irF in the size of the model.

Proof. The lower bounds follow from Proposition 1.
Regarding the upper bounds, recall that CTL∗ model checking is in P for formulas of

bounded length (Schnoebelen, 2003). Hence, the algorithm mcheck7(M,g, 〈〈A〉〉γ), which
implements model checking of sATL∗ir, runs in deterministic polynomial time with nonadap-
tive queries to an NP oracle. When only one non-negated strategic modality is allowed (i.e.,
for 1ATL∗ir), the complexity of the algorithm is simply NP.

The same applies to the algorithm mcheck7F(M,g, 〈〈A〉〉γ) for model checking sATL∗irF
and 1ATL∗irF.

Proposition 9. Model checking sATL∗ir, 1ATL∗ir, sATL∗irF, and 1ATL∗irF is PSPACE-
complete in the size of the representation and the length of the formula (even for the formulas
of bounded length).
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Proof. The lower bounds follow from Proposition 4. The upper bounds are obtained anal-
ogously to Proposition 6, with algorithm mcheck7 serving as the oracle.

4.4 Discussion

The above complexity results show that model checking fragments of sATL∗ir and sATL∗irF
with respect to asynchronous multi-agent systems is hard, and the size of the representation
is the main factor for this hardness. Moreover, it is generally believed that fixpoint equiv-
alences do not hold for strategic abilities with imperfect information (Bulling & Jamroga,
2011; Dima et al., 2014). Thus, to model check AMAS we must, in many cases, resort to
unfolding the representation into an explicit model (i.e., an interleaved interpreted system),
and then verifying the IIS. Because of that, it is essential for the unfolding to produce as
small models as possible. If the input is given beforehand (e.g., prepared by the user),
then any reduction of the representation increases the likelihood that the verification task
becomes feasible.

In what follows, we recall the idea of partial order reduction, very important in veri-
fication of temporal properties in asynchronous systems, and show how it can be used to
model-check formulas of sATL∗ir and sATL∗irF.

5. Partial Order Reductions

Partial order reductions (POR) have been defined for various configurations of temporal
and temporal-epistemic logics without the “next step” operator X (Peled, 1993; Penczek
et al., 2000; Gerth et al., 1999; Lomuscio et al., 2010a, 2010b). The idea is to generate
reduced models that either preserve some kind of model equivalence, or preserve represen-
tatives of Mazurkiewicz traces (Mazurkiewicz, 1977). The former method was used, for
instance, to construct POR for LTL−X and LTLK−X based on stuttering trace equiva-
lence (Lomuscio et al., 2010a, 2010b), and to obtain reductions for CTL∗−X and CTLK−X
based on stuttering bisimulation (Gerth et al., 1999; Lomuscio et al., 2010a, 2010b). The
latter method was applied e.g. to prove correctness of reduction for LTL−X formulas under
the concurrency-fair semantics (Peled, 1993).

It is essential to note that the practical value of a reduction scheme depends on how
discriminative the underlying notion of equivalence between paths is. Since CTL−X equiv-
alences are more discriminative than those for LTL−X, there are more equivalence classes
for CTL−X, and more paths need to be retained in the reduced model as representatives.
In consequence, partial order reductions preserving LTL−X produce smaller models than
those for CTL−X. Note that ATL∗−X and ATL−X (i.e., ATL∗ and ATL without the next
step operator X ) have even more distinguishing power than CTL−X. Thus, one can expect
that equivalences preserving full ATL∗−X would be very discriminative, and result in very
inefficient reductions. Aware of this and motivated by practical applications, we do not
look for a general POR for ATL∗−X in this paper. Instead, we look for subsets of ATL∗−X
for which the most efficient known partial order reduction methods (i.e., those for LTL−X)
can be applied.

Note that 1ATL∗ is an extension of LTL−X with a single strategic modality, which is
put at the beginning of an LTL−X formula. sATL∗ extends this further to Boolean com-
binations of such simple formulas. Therefore, sATL∗ has only slightly more distinguishing
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power that LTL−X, which is one of the reasons that POR of LTL−X work relatively directly
for sATL∗ir. Our conjecture is that POR of LTL−X preserve a slightly stronger equivalence
that the one induced by LTL−X. On the other hand, the discriminative powers of sATL∗

and CTL−X are not comparable.
In what follows, we show that the reductions for LTL−X can be adapted to sATL∗ir

and its fragments, both with and without the CF assumption. We begin by introducing
the relevant notions of equivalence (Sections 5.2 and 5.3). Then, we propose conditions on
reduced models that preserve the equivalences (Sections 5.4 and 5.5). Finally, we present
algorithms for POR and show their correctness (Section 6).

Interestingly, it turns out that our approach does not apply to sATL∗Ir, cf. Section 6.3.
This suggests that ATL with imperfect information, besides conceptual advantage, can
possibly offer some technical benefits over ATL with perfect information.

5.1 Properties of Submodels

We first state the following two lemmas regarding the relation between the outcome set of
a strategy in a full model and that in its submodel.5

Lemma 1. Let M ′ be a submodel of M . For each ir-joint strategy σA we have outM ′(ι, σA) =
outM (ι, σA) ∩ΠM ′(ι) and outCFM ′ (ι, σA) = outCFM (ι, σA) ∩ΠCF

M ′ (ι).

Proof. Note that each ir-strategy in M is also a well defined ir-strategy in M ′ as it is defined
on the local states of AMAS which is extended by M and M ′. The lemma follows directly
from Definitions 9 and 10, together with the fact that ΠM ′(ι) ⊆ ΠM (ι).

The analogous lemma holds also for Ir-joint strategies, but σA ofM needs to be restricted
to the global states of M ′. The next lemma says that paths which follow the same sequence
of events from agent i’s perspective cannot be distinguished by any strategy of i.

Lemma 2. Let M be a model, π, π′ ∈ ΠM (ι), and for some i ∈ A : Evt(π) |Evti=
Evt(π′) |Evti. Then, for each ir-strategy σi, we have π ∈ outM (ι, σi) iff π′ ∈ outM (ι, σi).

Proof. Let π = g0α0g1α1g2α2 . . . and Evt(π) |Evti= αi0αi1αi2 . . . be the sequence of events
of agent i in π. This sequence can be either finite or infinite. If it is empty, then the
thesis trivially holds. So, assume that Evt(π) |Evti is not empty. Let L be equal to the
length of Evt(π) |Evti if Evt(π) |Evti is finite or be equal to ∞ otherwise. For each αij
let π[αij ] = π[ij ] = gij denote the global state from which αij is executed in π, where
0 ≤ j < L.

By induction we can show that for each 0 ≤ j < L we have π[αij ]
i = π′[αij ]

i. For j = 0
it is easy to note that π[αi0 ]i = π′[αi0 ]i = ιi, which follows from the fact that the paths π
and π′ start at the same global state ι and Evt(π) |Evti= Evt(π′) |Evti .

Assume that the thesis holds for j = k. The induction step follows from the fact
the local evolution Ti is a function, so if π[αik ]i = π′[αik ]i = l for some l ∈ Li, then
π[αik+1

]i = π′[αik+1
]i = Ti(l, αik). So, the events of Evt i are executed from the same local

states in π and π′, which means that αij ∈ σi(π[ij ]
i) iff αij ∈ σi(π

′[ij ]
i) for 0 ≤ j < L.

5. In line with the terminology established in the previous part of the paper, we use the term “model” to
refer to an interleaved interpreted system, see Section 2.2 for the precise definitions.
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Consequently, for each ir-strategy σi, we have π ∈ outM (ι, σi) iff π′ ∈ outM (ι, σi), which
concludes the proof.

The lemma can be easily generalized to joint strategies σA ∈ Σir
A. Note that the same

property does not hold for perfect information strategies. This is because the current local
state li can only change through the execution of an event by agent i, but the current global
state can possibly change because of another agent’s transition. Similarly, the analogue of
Lemma 2 does not hold in synchronous models of MAS, since the local transitions of i in a
synchronous model can be influenced by the events selected by the other agents.

5.2 Stuttering Equivalences for LTL−X

We now recall the definitions of stuttering equivalence and stuttering path equivalence. Let
M be a model, M ′ ⊆M , and PV ⊆ PV a subset of propositions. Stuttering equivalence says
that two paths can be divided into corresponding finite segments, each satisfying exactly
the same propositions. Stuttering path equivalence6 requires two models to always have
corresponding, stuttering-equivalent paths. Theorem 1 connects the latter to LTL−X.

Definition 12 (Stuttering equivalence (Clarke et al., 1999)). Two paths π ∈ ΠM (ι) and
π′ ∈ ΠM ′(ι) are stuttering equivalent, denoted π ≡s π′, if there exists a partition B0 =
(π[0], . . . , π[i1 − 1]), B1 = (π[i1], . . . , π[i2 − 1]), . . . of the states of π, and an analogous
partition B′0, B

′
1, . . . of the states of π′, such that for each j ≥ 0 : Bj and B′j are nonempty

and finite, and V (g) ∩ PV = V ′(g′) ∩ PV for every g ∈ Bj and g′ ∈ B′j.

Definition 13 (Stuttering path equivalence (Clarke et al., 1999)). Models M and M ′ are
stuttering path equivalent, denoted M ≡s M ′ if for each path π ∈ ΠM (ι), there is a path
π′ ∈ ΠM ′(ι) such that π ≡s π′.7

Theorem 1 (Clarke et al. (1999)). If M ≡s M ′, then, for any LTL−X formula ϕ over
PV , we have M, ι |= ϕ iff M ′, ι′ |= ϕ.

5.3 Independence-Based Equivalences

Partial order reductions for concurrency-fair LTL−X are based on Mazurkiewicz traces as
introduced by Mazurkiewicz (1977) and used e.g. in his later works (Mazurkiewicz, 1986,
1988). By Evt∗ (resp. Evtω), we denote the set of finite (resp. infinite) sequences of
events. Consider two sequences w,w′ ∈ Evt∗. We say that w ∼I w′ iff w = w1αα

′w2

and w′ = w1α
′αw2, for some w1, w2 ∈ Evt∗ and (α, α′) ∈ I∅. Let ≡I be the reflexive and

transitive closure of ∼I . By (finite) traces we mean the equivalence classes of ≡I , denoted
by [w]≡I . Formally, the definition of a trace is [w]≡I = {w′ ∈ Evt∗ | w′ ≡I w}.

To define infinite traces we need additional concepts. Let v, v′ ∈ Evtω, and let Pref (v)
denote the set of the finite prefixes of v. Now, the relation ≤I is defined as follows: v ≤I v′ iff
∀u ∈ Pref (v)∃û ∈ Pref (v)∃u′ ∈ Pref (v′)(u ∈ Pref (û) ∧ û ≡I u′). That is, each finite prefix
of v can be extended to a permutation (under commuting adjacent independent events) of

6. The property is usually called stuttering trace equivalence. We opt for a slightly different name to avoid
confusion with Mazurkiewicz traces, also used in this paper.

7. Typically, the definition contains also the symmetric condition which in our case always holds for M and
its submodel M ′, as ΠM′(ι) ⊆ ΠM (ι).
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some prefix of v′. Moreover, let v ≡ωI v′ iff v ≤I v′ and v′ ≤I v. Infinite traces are defined
as equivalence classes of the relation ≡ωI , denoted by [v]≡ω

I
.

Theorem 2 (Peled (1996a)). Let M be a model.8 If π, π′ ∈ ΠM (ι) such that Evt(π) ≡ωI
Evt(π′), then π ≡s π′.

Thus, paths over representatives of the same infinite trace cannot be distinguished by
any LTL−X formula using propositions of PV . Note that Mazurkiewicz traces preserve CF,
i.e., if π ∈ ΠCF

M (ι), then for each π′ such that Evt(π) ≡ωI Evt(π′) we have π′ ∈ ΠCF
M (ι). This

fact has been used to define partial order reductions for LTL−X under the CF assumption.
We will now generalize the approach to sATL∗ir.

5.4 Preserving Traces for sATL∗irF

Rather than generating the full model M = IIS(S), one can generate a reduced model M ′

of M satisfying the following property:

AE-CF : (∀π ∈ ΠCF
M (ι))(∃π′ ∈ ΠCF

M ′ (ι))Evt(π) ≡ωI Evt(π′).

Then, M ′ preserves the LTL−X formulas under CF over PV (Peled, 1996a). We will now
prove that this also works for sATL∗irF.

We first show that each set outM (g, σA) is trace-complete in the sense that with each
path π such that Evt(π) = w, it contains a path over any w′ ∈ [w]≡ω

I
.

Lemma 3. Let π ∈ outM (ι, σA) and Evt(π) = w. Then, ∀w′ ∈ [w]≡ω
I
∃π′ ∈ outM (ι, σA)

such that Evt(π′) = w′.

Proof. Let M ′ be obtained from M by fixing Pi(li) = {σi(li)} for each i ∈ A, li ∈ Li, and
pruning the transitions accordingly. That is, transitions of agents outside coalition A remain
unchanged, while agents in A only keep those consistent with strategy σA. Consider the set
of paths ΠM ′(ι). Let w be a sequence of events obtained by traversing M ′ along some path
π, i.e., w = Evt(π). Following the inductive reasoning of Peled (1996a, Theorem 3.3), while
reading w, an arbitrary equivalent sequence w′ ∈ ΠM ′(ι) can be produced. Thus, ΠM ′(ι) is
trace-complete. But, from the construction of M ′ and in accordance with Definition 9, we
have that ΠM ′(ι) = outM (ι, σA), which ends the proof.

The above lemma implies the following.

Lemma 4. Let M be a model and M ′ its submodel satisfying the property AE-CF. Then,
for each ir-strategy σA, ∀π ∈ outCFM (ι, σA) ∃π′ ∈ outCFM ′ (ι, σA) such that Evt(π) ≡ωI Evt(π′).

Proof. Assume that π ∈ outCFM (ι, σA). Then there is π′ ∈ ΠCF
M ′ (ι) such that Evt(π) ≡ωI

Evt(π′) (by AE-CF). Since M ′ is a submodel of M , we have that π′ ∈ ΠCF
M (ι). This

implies that π′ ∈ outCFM (ι, σA) by Lemma 3. Since π′ ∈ ΠCF
M ′ (ι) by Definition 9, we obtain

that π′ ∈ outCFM ′ (ι, σA), which together with the fact that Evt(π) ≡ωI Evt(π′) completes the
proof.

8. Technically, Peled’s original theorem refers to traces in a finite state program. It remains applicable to
IIS as defined in Sec. 2.2, since we consider sequences of events indiscriminately of agents and strategies.
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Theorem 3. Let M be a model and M ′ its submodel satisfying AE-CF. For each sATL∗irF
formula ϕ over PV we have:

M, ι |=irF ϕ iff M ′, ι′ |=irF ϕ.

Proof. Proof by induction on the structure of ϕ. We show the case ϕ = 〈〈A〉〉γ. The cases
for ¬,∧ are straightforward.

(⇒)(⇒)(⇒) Follows from the fact that for each ir-joint strategy σA we have outCFM ′ (ι, σA) =
outCFM (ι, σA) ∩ΠCF

M ′ (ι), so outCFM ′ (ι, σA) ⊆ outCFM (ι, σA).

(⇐)(⇐)(⇐) Assume that M ′, ι |=irF 〈〈A〉〉γ. From the semantics, there is an ir-joint strategy σA
such that for each π ∈ outCFM ′ (ι, σA) we have M ′, π |=irF γ. In order to prove the thesis, we
show that for each π ∈ outCFM (ι, σA) \ outCFM ′ (ι, σA) we have M,π |=irF γ. It follows from
Lemma 4 and Theorem 2 that for each π ∈ outCFM (ι, σA) there is π′ ∈ outCFM ′ (ι, σA) such
that π ≡s π′. So, M ′, π′ |=irF γ implies that M,π |=irF γ. Thus, we can conclude that
M, ι |=irF 〈〈A〉〉γ.

5.5 Stuttering Equivalence without CF

The method based on Mazurkiewicz traces works well for sATL∗irF, and we will present an
algorithm generating reduced models that satisfy condition AE-CF in Section 6. The same
cannot be easily applied to the semantics without fairness. In particular, it is unclear how
to generate reduced models that satisfy the analogue of AE-CF in all paths (and not only
the fair ones). However, a similar result can be obtained for a relevant subset of sATL∗ir
through stuttering equivalence, based on the following structural property:

AEA: ∀σA ∈ Σir
A∀π ∈ outM (ι, σA) ∃π′ ∈ outM ′(ι, σA): π ≡s π′

Theorem 4. Let A ⊆ A, and let M ′ be a submodel of M satisfying AEA. For each
sATL∗ir formula ϕ over PV , that refers only to coalitions Â ⊆ A, we have: M, ι |=ir ϕ
iff M ′, ι′ |=ir ϕ.

Proof. Proof by induction on the structure of ϕ. We show the case ϕ = 〈〈Â〉〉γ. The cases
for ¬,∧ are straightforward.

Note that outM ′(ι, σÂ) ⊆ outM (ι, σÂ), which together with the condition AEA implies
that the sets outM (ι, σÂ) and outM ′(ι, σÂ) are stuttering path equivalent. So, the thesis
follows from Theorem 1.

Thus, we have proved that the structural conditions AE-CF and AEA are sufficient to
obtain correct reductions with and without fairness (Theorems 3 and 4). We will discuss
algorithms that generate such reduced models in Section 6.

6. Algorithms for Partial Order Reduction

As mentioned above, the idea of model checking with POR is to reduce the size of models
while preserving satisfaction for a class of formulas. Traditionally, the reduction algorithm
is based either on depth-first-search (DFS, see (Gerth et al., 1999)), or on double-depth-
first-search (DDFS (Courcoubetis et al., 1992)). In this paper, we use the former approach.
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6.1 DFS Algorithm

DFS is used to search states and transitions that will make up the reduced model by explor-
ing systematically the tree of possible computations, and selecting only some of the possible
states and transitions. In the following, the stack represents a path π = g0α0g1α1 · · · gn
that is currently being visited. For the top element of the stack gn, the following three
operations are computed in a loop:

1. Identify the set en(gn) ⊆ Evt of enabled events.

2. Heuristically select a subset E(gn) ⊆ en(gn) of possible events (see Section 6.2).

3. For any event α ∈ E(gn), compute the successor state g′ such that gn
α→ g′, and

add g′ to the stack thereby generating the path π′ = g0α0g1α1 · · · gnαg′. Recursively
proceed to explore the submodel originating at g′ by means of the present algorithm,
beginning at step 1.

4. Remove gn from the stack.

The algorithm begins with the stack comprising of the initial state of M = IIS(S), and
terminates when the stack is empty. Note that the model generated by the algorithm must
be a submodel of M . Moreover, it is generated directly from the AMAS S, without ever
generating the full model M . Finally, the size of the reduced model crucially depends on
the ratio E(g)/en(g). The choice of E(g) is discussed in the next subsection.

6.2 Heuristics for sATL∗irF and Subsets of sATLir

Let A ⊆ A. The conditions C1−C3 below, inspired by Clarke et al. (1999), define condi-
tions for selection of E(g) ⊆ en(g) in the algorithm of Sect. 6.1.

C1 Along each path π in M that starts at g, each event that is dependent on an event in
E(g) cannot be executed in π unless an event in E(g) is executed first in π. Formally,
∀π ∈ ΠM (g) such that π = g0α0g1α1 . . . with g0 = g, and ∀α′ ∈ Evt such that
(α′, α′′) /∈ IA for some α′′ ∈ E(g), if αi = α′ for some i ≥ 0, then αj ∈ E(g) for some
j < i.

C2 If E(g) 6= en(g), then E(g) ⊆ InvisA.

C3 For every cycle in M ′ there is at least one node g in the cycle for which E(g) = en(g),
i.e., for which all the successors of g are expanded.

If more than one set of events satisfies the above conditions, any of them can be selected as
the actual E(g).

Theorem 5. Let M = IIS(S), and M ′ ⊆ M be the reduced model generated by DFS with
the choice of E(g′) for g′ ∈ St′ given by conditions C1, C3 and the independence relation
IA, where A = ∅. Then, M ′ satisfies AE-CF.

Proof. See (Peled, 1996a, Theorem 3.3).
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Theorem 6. Let A ⊆ A, M = IIS(S), and M ′ ⊆ M be the reduced model generated
by DFS with the choice of E(g′) for g′ ∈ St′ given by conditions C1, C2, C3 and the
independence relation IA. Then, M ′ satisfies AEA.

Proof. Although the setting is slightly different, it can be shown similarly to Clarke et al.
(1999, Theorem 12) that the conditions C1, C2, C3 guarantee that the models M and M ′

are stuttering path equivalent. More precisely, for each path π = g0α0g1α1 · · · with g0 = ι
in M there is a stuttering equivalent path π′ = g′0α

′
0g
′
1α
′
1 · · · with g′0 = ι in M ′ such that

Evt(π)|V isA = Evt(π′)|V isA , i.e., π and π′ have the same maximal sequence of visible events
for A.

To show that M ′ satisfies AEA, consider an ir-joint strategy σA and π ∈ outM (ι, σA).
Since M ≡s M ′, we have that there is π′ ∈ ΠM ′(ι) such that π ≡s π′ and Evt(π)|V isA =
Evt(π′)|V isA . Since Evt i ⊆ V isA for each i ∈ A, the same sequence of events of each Evt i is
executed in π and π′. Thus, by the generalization of Lemma 2 to ir-joint strategies we get
π′ ∈ outM (ι, σA). So, by Lemma 1 we have π′ ∈ outM (ι, σA).

Thus, we have obtained a general method of POR for fragments of ATL∗ with imperfect
information. The method is in fact a reformulation of the reduction for LTL−X. This has
at least two welcome implications. First, the actual reductions are likely to be substantial
– much more than one would expect with the expressivity of sATL∗. Secondly, one can
reuse or adapt existing algorithms and tools performing reductions for LTL−X. Algorithms
generating reduced models, in which the choice of E(g) is given by C1, C2, C3 or C1, C3
can be found for instance in the works of Peled (1996a, 1993), Clarke et al. (1999), Gerth
et al. (1999), Penczek et al. (2000), Lomuscio et al. (2010b).

6.3 Bad News for Agents with Perfect Information

Here, we briefly show that the adaptation of LTL−X reduction, proposed in this paper, does
not work for sATL∗ with memoryless perfect information. We begin with a counterexample
to Lemma 3 which was essential to our formal construction (Example 5). Then, we show
that the whole method does not preserve formulas of sATL∗Ir (Example 6).

Example 5. Consider the MAS composed of two agents {1, 2} such that: L1 = {l11, l21},
L2 = {l12, l22}, Evt1 = {ε, a}, Evt2 = {ε, b}, P1(l11) = {a, ε}, P1(l21) = {ε}, P2(l12) =
{b}, P2(l22) = {ε}, and T1(l11, a) = l21, T2(l12, b) = l22.

Define an Ir-strategy σ{1,2} as follows: σ1(l11, l
1
2) = a, σ1(l11, l

2
2) = σ1(l21, l

2
2) = ε;

σ2(l11, l
1
2) = σ2(l21, l

1
2) = b, σ2(l21, l

2
2) = ε. It is easy to see that out((l11, l

1
2), σ{1,2}) is not trace

complete. Note that (a, b) ∈ I, but while out((l11, l
1
2), σ{1,2}) contains the path over ab(ε)ω, it

does not contain any path over ba(ε)ω.

Example 6. Consider formula 〈〈c〉〉(F in1∧F in2), interpreted with the Ir semantics. Clearly,
the formula holds in the TGC model in Figure 2 (left), but not in the reduced model in
Figure 2 (right).

7. Experimental Evaluation

In this section, we demonstrate the efficiency of partial order reduction for strategic abilities
under imperfect information. We already pointed out that the main strength of our results
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lies in the fact that our reduction for sATL∗ is essentially the same as the well-known
reduction for LTL (Peled, 1993, 1996a, 1998; Clarke et al., 1999). This has two important
consequences. First, the reduction for sATL∗ is based on a weak notion of model equivalence
– much weaker than the equivalences for CTL∗ and full ATL∗. Hence, it allows for relatively
coarse equivalence classes, and produces relatively small models. Secondly, it can be done
by means of an existing POR implementation for LTL. That is, we can take an existing
tool off the shelf, and use it to do reductions for strategic abilities. This way, we do not only
avoid the burden of implementing the algorithms and heuristics on our own. We also benefit
from the 20 years of development and optimization of model checking tools for linear time
logic, which resulted in remarkably efficient partial order reduction (Peled, 1998; Lomuscio
et al., 2010b; Meulen & Pecheur, 2011).

To evaluate the gains that the technique produces for asynchronous multi-agent sys-
tems, we have used three benchmarks: classical Train-Gate-Controller, Pipeline, and Asyn-
chronous Simple Voting. We present the benchmarks in more detail in Section 7.1. We have
implemented the corresponding asynchronous MAS in Promela, the modeling language
of the Spin model checker (Holzmannn, 1997). Then, we used the partial order reduc-
tion functionality of Spin to produce reduced models, and compared their sizes to the full
models. The results are presented in Section 7.2. Again, the choice to use an existing,
well-known LTL model checker was made on purpose, to further demonstrate our claim
that the existing techniques and tools can be adapted for strategic operators in multi-agent
systems. The implementation of the partial order reduction algorithm in Spin is detailed
by Holzmann and Peled (1995).

7.1 Benchmarks

We ran our experiments for three classes of scalable asynchronous multi-agent systems:
Train-Gate-Controller, Pipeline, and Asynchronous Simple Voting.

Train-Gate-Controller (TGC). The TGC benchmark, inspired by Alur et al. (1993,
1998), Hoek and Wooldridge (2002), was already presented in Section 2 and used as the
running example in the subsequent sections. In particular, the asynchronous MAS for TGC
was presented in Example 1, and its unfolding to an interleaved interpreted system was
shown in Example 2. We recall that the variant of TGC with n trains is denoted by TGCn.

Pipeline. This is a benchmark adapted from Peled (1993), and featuring a sequence of
n processes p1, . . . , pn, each of length m (except for p1 and pn, whose length is fixed at
2). Resembling a physical pipeline, they are arranged so that an output transition of pi is
always synchronized with the input transition of pi+1.

Asynchronous Simple Voting (ASV). Finally, we propose a new benchmark, inspired
by the simple model of voting and coercion from Jamroga et al. (2017). There are n voters
v1, . . . , vn choosing between k candidates 1, . . . , k. Additionally, a coercer agent c may
attempt to coerce a voter into voting for a specific candidate. The voter has then the
choice between providing the coercer with a proof (i.e., ballot receipt) of how they voted,
or refusing to do so.

We denote an AMAS for the scenario by ASVn,k. The simplest variant, for n = 2
voters and k = 2 candidates, is presented in Figure 3. The set of propositional variables is
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Figure 3: Voter vi (left) and coercer c (right) in the ASV benchmark.

PV = {voted1,1, . . . , votedn,k, revealed1,1, . . . , revealedn,k}. Proposition votedi,j denotes that
vi voted for the j-th candidate, while revealedi,j denotes that vi additionally gave the coercer
the proof of having voted for j.

7.2 Experimental Results

TGC. The TGC benchmark is an example of an agent system excellently suited for partial
order reduction. As the input formula, we have used φ1 = 〈〈c〉〉G¬(

∨
1≤i 6=j≤n(ini ∧ inj)),

saying that the controller can ensure that different trains are never simultaneously in the
tunnel. Based on the estimates from Lomuscio et al. (2010a, 2010b), Jamroga et al. (2018),
the size of the full state space is |StIIS(TGCn)| = O(2n+1), while the size of the reduced model
is |StM ′

n
| = O(n). This is confirmed by our experimental results, presented in Figure 4,

which show that the reduction is indeed very significant.

Pipeline. The results for Pipeline are presented in Figure 5. The input formula is φ2 =
〈〈pi〉〉G (

∧
1≤i≤n(¬ini U (out1 ∧ · · · ∧ outi−1 ∧ ini))), where pi is the i-th process in the pipeline

and propositions ini, outi denote, respectively, that pi has started processing and that it has
delivered its output. Thus, φ2 expresses that no process in the pipeline will start operating
until the output from every previous one has been delivered.

While not exponential as in the case of TGC, the reduction can be considered very
substantial as it exceeds 90% for larger instances. Moreover, its effectiveness significantly
increases not only with the number of processes (n), but also with their length (m).

ASV. The reduction for Asynchronous Simple Voting was done in the context of formula
φ3 = 〈〈vi〉〉F (votedi,a ∧ ¬revealedi,a ∧ revealedi,b), expressing that voter vi has a strategy to
eventually have voted for candidate a, and revealed a receipt for a b vote instead. The set
of relevant propositions is now PV = {votedi,a, revealedi,a, revealedi,b}. In addition to the
number of voters n, we also scaled on the number of candidates k. The experimental results
for k = 2, k = 3 and k = 4 candidates are presented in Figure 6. In each instance, we
consider two cases, i.e., the reductions obtained with and without the concurrency fairness
assumption.
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Figure 4: Effectiveness of reduction for the TGC benchmark with n trains.

The effectiveness of the reduction, while also not exponential, is nevertheless significant.
For example, for n = 7 (i.e., 7 voters + 1 coercer), we got 62% reduction of the state
space and up to 70% reduction of the transition space. Moreover, the reduction becomes
more effective as the size of the MAS increases. Note also that, similarly to the previous
benchmarks, it produces larger gains w.r.t. the number of transitions rather than states,
i.e., it handles better the more important factor in the complexity of ATL model checking.

Finally, we observe that the choice of the semantics changes the output of the reduction
in case of ASV, unlike the previous benchmarks. In particular, transition ngi of voter
vi does not modify the propositions in PV, and thus can potentially be omitted in the
reduced model for sATL∗ir. On the other hand, it is visible under the concurrency-fairness
assumption when we want to verify the abilities of the coercer (as in formula φ3). Thus,
the reduction for sATL∗irF can be less effective.

7.3 Summary

The results presented in this section demonstrate that partial order reduction can provide
significant gains in terms of the size of the model that would be used as the input to veri-
fication. In some cases, like in the classical TGC benchmark, POR produces exponentially
smaller state- and transition-spaces. Of course, such optimistic results are by no means
guaranteed. For many asynchronous MAS, the reduction may remove a smaller fraction
of states, as demonstrated by the other two benchmarks. We note, however, that the re-
ductions obtained for Pipeline and ASV are also substantial: certainly better than linear,
and possibly close to quadratic w.r.t. the number of agents. This seems very promising,
especially considering the fact that sATL∗ir model checking is NP-hard in the size of the
model, and all the attempts at practical algorithms so far run in exponential time. Thus,
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Figure 5: Effectiveness of reduction for the Pipeline benchmark with n processes, each of
length m.

even a polynomial reduction of the state/transition space is likely to produce an exponential
improvement of the performance.

8. Conclusions and Future Work

Many important properties of multi-agent systems are underpinned by the ability of some
agents (or groups) to achieve a given goal. In this paper, we propose a general semantics
of strategic ability for asynchronous MAS, and study the model checking problem for rele-
vant subsets of alternating-time temporal logic. We concentrate on imperfect information
strategies, and consider two semantic variants: one looking at all the infinite executions of
strategies, and the other taking into account only the fair execution paths.

The theoretical complexity results follow the same pattern as those for synchronous
MAS, though proving them required careful treatment in some cases. Consequently, model
checking of strategic abilities under imperfect information for asynchronous systems is as
hard as in the synchronous case. This makes model reductions essential for practical verifi-
cation. The most important result of this paper consists in showing that the partial order
reduction for LTL−X can be almost directly applied to ATLir without nested strategic
modalities. The importance of the result stems from the fact that LTL−X has relatively
weak distinguishing power, and therefore admits strong reductions, clustering paths into
relatively few equivalence classes.

Interestingly, it turns out that the scheme does not work for ATL∗ with perfect in-
formation strategies. Until now, virtually all the results have suggested that verification
of strategic abilities is significantly easier for agents with perfect information. Thus, we

842



Towards Partial Order Reductions for Strategic Ability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

reduction (states), k = 2 reduction (transitions), k = 2 CF-reduction (transitions), k = 2

reduction (states), k = 3 reduction (transitions), k = 3 CF-reduction (transitions), k = 3

reduction (states), k = 4 reduction (transitions), k = 4 CF-reduction (transitions), k = 4

Figure 6: Effectiveness of reduction for the ASV benchmark with n voters and k candidates.

identify an aspect of verification that might be in favour of imperfect information strategies
in some contexts.

The ideas presented in this paper open many exciting paths for future research. We will
have a closer look at some alternative semantics for ATLir in asynchronous MAS, including
the “deadlock-friendly” semantics and the one based on “subjective” ability. Extending
the semantics by allowing for nondeterministic strategies of players is another possibility.
We suspect that, unlike for synchronous systems, allowing for nondeterministic choices in
strategies might make a difference in the semantics. We also plan to extend our method to
a larger subset of ATL∗ specifications, a subset of Strategy Logic (Berthon et al., 2017a),
and to sATL∗ with epistemic operators using possibly techniques reported by Cermák et al.
(2014). Further experimental evaluation of the reductions on randomly generated models
is also on the list. Adapting the POR scheme to combinations of strategic and epistemic
modalities is another interesting path for future work. Finally, we would like to investigate if
our partial order reduction scheme can be combined with the bisimulation-based reduction
for ATLir, proposed recently by Belardinelli et al. (2017b).
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We thank the anonymous reviewers for insightful comments. W. Jamroga and W. Penczek
acknowledge the support of the National Centre for Research and Development, Poland
(NCBR), and the Luxembourg National Research Fund (FNR), under the PolLux/FNR-

843



Jamroga, Penczek, Sidoruk, Dembiński, & Mazurkiewicz
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