Journal of Artificial Intelligence Research 69 (2020) 1395-1420 Submitted 03/2020; published 12/2020

Bounds on the size of PC and URC formulas

Petr Kucera KUCERAPQKTIML.MFF.CUNI.CZ
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics, Charles University

Malostranské nam. 25, 118 00 Praha 1, Czech Republic

Petr Savicky SAVICKY@CS.CAS.CZ
Institute of Computer Science of the Czech Academy of Sciences
Pod Voddrenskou Veézi 2, 182 07 Praha 8, Czech Republic

Abstract

In this paper, we investigate CNF encodings, for which unit propagation is strong
enough to derive a contradiction if the encoding is not consistent with a partial assign-
ment of the variables (unit refutation complete or URC encoding) or additionally to derive
all implied literals if the encoding is consistent with the partial assignment (propagation
complete or PC encoding). We prove an exponential separation between the sizes of PC
and URC encodings without auxiliary variables and strengthen the known results on their
relationship to the PC and URC encodings that can use auxiliary variables. Besides of this,
we prove that the sizes of any two irredundant PC formulas representing the same function
differ at most by a factor polynomial in the number of the variables and present an example
of a function demonstrating that a similar statement is not true for URC formulas. One of
the separations above implies that a g-Horn formula may require an exponential number of
additional clauses to become a URC formula. On the other hand, for every g-Horn formula,
we present a polynomial size URC encoding of the same function using auxiliary variables.
This encoding is not g-Horn in general.

1. Introduction

Since unit propagation is a basic procedure used in DPLL based SAT solvers including
CDCL solvers, it has become a common practice to require that unit propagation main-
tains at least some level of local consistency in the constraints being encoded into a con-
junctive normal form (CNF) formula. Close connection between unit propagation in SAT
solvers and maintaining generalized arc consistency was investigated for example by Bac-
chus (2007). CNF encodings do not support efficient consistency testing in general. In this
paper, we investigate CNF encodings with a high level of propagation strength — they are
unit refutation complete or propagation complete formulas. Both these classes of formulas
were introduced as target languages of knowledge compilation. The class of unit refuta-
tion complete (URC) formulas was introduced by del Val (1994) and it consists of formulas
whose consistency with any given partial assignment can be tested by unit propagation.
Independently, Schlipf et al. (1995) introduced the class of SLUR (single lookahead unit
resolution) formulas which was later shown to coincide with the class of unit refutation
complete formulas by Gwynne and Kullmann (2013). The class of propagation complete
formulas (PC) was introduced by Bordeaux and Marques-Silva (2012). PC formulas are
URC and, moreover, unit propagation derives all implied literals provided the formula is
consistent with a given partial assignment of its variables. The notions of empowerment

©2020 AI Access Foundation. All rights reserved.

KUCERA & SAVICKY

and absorption which serve as a basis for the definition of propagation complete formulas
were introduced earlier when studying learning in CDCL solvers (Pipatsrisawat & Darwiche,
2011; Atserias et al., 2011).

A CNF encoding of a boolean function f(x) is a CNF formula ¢(x,y), such that f(x) =
(3y)e(x,y), where x is the set of the main variables and y is a (possibly empty) set of
auxiliary variables. Note that an encoding of f(x) is typically a formula representing a
function different from f, since it depends also on y. On the other hand, a CNF formula
representing f(x) is an encoding of f without auxiliary variables. CNF encodings with
auxiliary variables are strictly more succinct in the sense of knowledge compilation map
(Darwiche & Marquis, 2002) than encodings without auxiliary variables. For example,
Tseitin encoding of a boolean circuit is a CNF encoding of the function represented by the
circuit.

Every boolean function has a URC and a PC encoding. In particular, a canonical CNF
on the main variables which consists of all prime implicates is always PC and, hence, URC.
On the other hand, it is co-NP complete to check if a formula is URC (Cepek et al., 2012)
or PC (Babka et al., 2013).

PC encodings were already used in knowledge compilation. In particular, Abio et al.
(2016) describe a construction of a PC encoding of a function represented with an ordered
decision diagram. Bordeaux et al. (2012) considered URC encodings as the existential
closure of URC formulas. They included URC encodings and their disjunctions into the
knowledge compilation map which was introduced by Darwiche and Marquis (2002) with
the goal of a systematic study of target languages for knowledge compilation.

Let us note that when encoding constraints into CNF formulas a weaker concept than
propagation completeness, namely generalized arc consistency (GAC) also called domain
consistency is often considered (see e.g., Bacchus, 2007; Bessiere, Katsirelos, Narodytska,
& Walsh, 2009; Abio et al., 2016, and Section 3 for further discussion on related work). PC
or URC encodings treat all variables in the same way: the propagation properties of PC
encoding with respect to the auxiliary variables are the same as with respect to the main
variables. In the case of GAC encodings, the propagation properties are required only for
the main variables.

In this paper, we prove an exponential separation between the size of URC and PC
encodings without auxiliary variables and compare their succinctness with URC and PC
encodings that can use auxiliary variables. In particular, we prove new exponential lower
bounds for PC and URC encodings without auxiliary variables for functions that have a
polynomial size PC encoding with auxiliary variables. Our lower bounds are stronger than
previously known lower bounds of this type in that they apply to functions defined by
polynomial size CNF formulas which, moreover, belong to well-known tractable classes of
Horn and g-Horn formulas (introduced by Boros et al., 1990).

We also show that the sizes of irredundant PC formulas representing the same function
are polynomially related which, as we show, is not the case of irredundant URC formulas.
This result suggests that irredundancy is a helpful criterion for the search of small PC
formulas, however, it can be completely misleading for URC ones, although the minimum
size of a URC formula is always at most the minimum size of a PC formula.

Section 2 summarizes known notions used in this paper. Section 3 contains a discussion
on related work. A complete summary of the results is presented in Section 4. The proofs of

1396

BounDs oN THE S1ZE OF PC AND URC FORMULAS

the results are postponed to the remaining sections. In Section 5, we prove the exponential
separations for PC and URC encodings described above. In Section 6, we prove the results
on irredundant PC and URC formulas. In Section 7, we use a variant of the dual rail encod-
ing (which was already used many times in literature, see e.g., Bessiere et al., 2009; Bonet
et al., 2018; Bordeaux et al., 2012; Bryant et al., 1987; Ignatiev et al., 2017; Manquinho
et al., 1997; Morgado et al., 2019) in order to interpret a PC formula as a representation
of a specific Horn function. In Section 8, we present a construction of a URC encoding for
a general q-Horn formula of size polynomial in the size of the input formula. The paper is
closed by formulating several directions for further research in Section 9.

2. Basic Concepts

In this section, we recall the known concepts we use and introduce the necessary notation.

A formula in conjunctive normal form (CNF formula) is a conjunction of clauses. A
clause is a disjunction of a set of literals and a literal is a variable x (positive literal) or its
negation —x (negative literal). Given a set of variables x, lit(x) denotes the set of literals
on variables in x. We treat a clause as a set of literals on distinct variables and a CNF
formula as a set of clauses. In particular, |C| denotes the number of literals in a clause C'
and |¢| denotes the number of clauses in a CNF formula ¢. We denote [|¢f| = > ¢, |C]
the length of a CNF formula ¢. For a clause C, let var(C') denote the set of variables used
in C.

We say that a clause C' is an implicate of a CNF ¢ if every model of ¢ is also a model
of C, i.e. ¢ E C. We say that C is a prime implicate if there is no proper subclause C’ of
C which is an implicate of ¢. CNF ¢ is prime if it consists only of prime implicates of (.

A clause C'is Horn if it contains at most one positive literal and it is definite Horn, if it
contains exactly one positive literal. A definite Horn clause —z1 V -+ - V =2k V y represents
the implication 1 A - -+ A 2 — y and we use both kinds of notation interchangeably.

We treat a partial assignment o« of values to variables in z as a subset of lit(z) that does
not contain a complementary pair of literals, so we have |aNlit(z)| <1 for each = € z. By
() we denote the formula obtained from ¢ by applying the partial setting of the variables
defined by «. In particular, the clauses satisfied by a are removed from ¢ and negations
of literals in « are removed from the remaining clauses. A set of literals « (in particular a
partial assignment) used in a formula such as ¢(x) A « is interpreted as the conjunction of
the literals in a.

2.1 URC and PC Formulas

We are interested in formulas which have good properties with respect to unit propagation
which is a well-known procedure in SAT solving (Biere, Heule, van Maaren, & Walsh,
2009). For technical reasons, we represent unit propagation using unit resolution. The unit
resolution rule allows to derive the clause C'\ {l} given a clause C' containing ! and a unit
clause —l. A clause C can be derived from ¢ by unit resolution, if C' is contained in ¢ or
can be derived from ¢ by a series of applications of the unit resolution rule. We denote this
fact with ¢ 1 C. The notion of a propagation complete CNF formula was introduced by
Bordeaux and Marques-Silva (2012) as a generalization of a unit refutation complete CNF
formula introduced by del Val (1994).

1397

KUCERA & SAVICKY

Definition 2.1. Let p(x) be a CNF formula.

e We say that ¢ is unit refutation complete (URC) if the following implication holds
for every partial assignment o C lit(x)

ex)NaEL = ¢eAabt; L. (1)

o We say that ¢ is propagation complete (PC) if for every partial assignment o C lit(x)
and for every l € lit(x), such that

p(x) Ao (2)

we have
pNakil or oANaby L. (3)

One can verify that a formula p(x) is PC if and only if for every partial assignment
a C lit(x) and for every [€ lit(x) such that

e(x)Nat/y L and @(x) Aatf -l

the formula ¢(x) A a Al is satisfiable.

It was shown by Bordeaux and Marques-Silva (2012) that propagation complete formulas
can be characterized using the notions of empowerment (Pipatsrisawat & Darwiche, 2011)
and absorption (Atserias et al., 2011). We extend these notions to non-implicates, since
this is useful for algorithmic purposes. A non-empty clause C' is empowering with respect
to a CNF formula ¢ if for some literal [€ C' we have that

YA /\ —e /11 and @A /\ —e I L

ecC\{l} ecC\{l}

and C' is absorbed by ¢ otherwise. By the results of Bordeaux and Marques-Silva (2012),
we have the following. A CNF formula ¢ is propagation complete if and only if it does
not admit any empowering implicate or, equivalently, every non-empty implicate of ¢ is
absorbed by ¢. Moreover, if ¢ is a PC formula and C' € ¢ is such that C is absorbed by
e\ {C}, then ¢\ {C} is a PC formula equivalent to . Since testing absorption can be done
in polynomial time, this can be used to obtain in polynomial time an inclusion minimal
subformula of a given PC formula that is a PC formula representing the same function.
Following del Val (1994), a resolution step which resolves a clause A V z with a clause
BV -z is called non-merge if A is disjoint from B. It was discussed by Bordeaux and
Marques-Silva (2012) (Section 5) that if a clause C is derived by a series of non-merge
resolutions from a formula ¢, then C' is absorbed by (. In particular, if every prime
implicate of ¢ is either in ¢ or can be derived by non-merge resolution from ¢, then ¢ is a
PC formula. The same proposition for URC formulas was earlier shown by del Val (1994).
We define the CNF encodings as follows.

Definition 2.2 (Encoding). Let f(x) be a boolean function on variables x = (x1,...,Ty).
Let p(x,y) be a CNF formula on n+m variables wherey = (y1,...,ym). We call ¢ a CNF
encoding of f if for every a € {0,1}* we have

f(a) = (Elb S {07 1}y) <p(a, b)) (4)

1398

BounDs oN THE S1ZE OF PC AND URC FORMULAS

where we identify 1 and 0 with logical values true and false. The variables in x and y are
called main variables and auxiliary variables, respectively.

The notions of PC and URC encodings are defined as follows.

Definition 2.3. PC encoding and URC encoding is an encoding that is a PC formula and
a URC formula, respectively.

2.2 g-Horn Formulas

The class of g-Horn formulas was introduced by Boros et al. (1990) as a generalization of
both renamable Horn formulas and 2-CNF formulas. It is a tractable class which means
that satisfiability of g-Horn formulas can be tested in polynomial time, the class of g-Horn
formulas is closed under partial assignment, and we can check if a formula is g-Horn in
linear time (Boros et al., 1994). Although Horn formulas are URC, g-Horn formulas are
not URC in general. For example, an unsatisfiable 2-CNF consisting only of binary clauses
(i.e., clauses of size 2) is q-Horn, but it is not URC.

Following the characterization of q-Horn formulas described by Boros et al. (1994), let
us define these formulas as follows.

Definition 2.4 (Boros et al., 1990, 1994). Let ¢ be a CNF formula. We say that v :
lit(¢) — {0,%,1} is a wvaluation of literals in ¢ if y(u) + v(—u) = 1 for every literal
u € lit(p). Formula ¢ is g-Horn if there is a valuation v of literals in ¢ which satisfies

D Au) <1 (5)

ueC

for every clause C € ¢. The value y(u) is called the weight of literal u. If x is a variable,
then ~v(x) is called the weight of variable x.

It is easy to observe that any renamable Horn formula is g-Horn, only values 0 and 1
are sufficient in a valuation. Also, any 2-CNF is gq-Horn, just assign % to every literal.

2.3 Succinctness

Let us recall the notion of succinctness introduced by Gogic et al. (1995) and used later
extensively by Darwiche and Marquis (2002).

Definition 2.5 (Succinctness). Let Ly and Lo be two representation languages. We say
that Ly is at least as succinct as Lo, iff there exists a polynomial p such that for every
sentence ¢ € Lo, there exists an equivalent sentence 1 € Ly where || < p(|p|). We say
that L is strictly more succinct than Lo if Ly is at least as succinct as Lo but Lo is not at
least as succinct as L.

3. Related Work

When encoding constraints into CNF formulas a weaker concept than propagation com-
pleteness, namely generalized arc consistency (GAC) also called domain consistency, is
often considered. For a presentation of GAC in the context of other local consistencies in

1399

KUCERA & SAVICKY

constraint programming see Bessiere (2006). CNF encodings which maintain generalized arc
consistency via unit propagation (GAC encodings) were described first by Bacchus (2007).
Two such notions were considered by Bessiere et al. (2009) in the form of a CNF decom-
position of a consistency checker (CC' encoding) and a CNF decomposition of a domain
consistency propagator. The latter is equivalent to an encoding which maintains general-
ized arc consistency (GAC encoding). CC encoding differs from a URC encoding in that
the implication (1) is required only for partial assignments of the main variables. Similarly,
GAC encoding differs from a PC encoding in that the implication from (2) to (3) is required
only if o and [consist only of literals on the main variables.

It was shown by Bessiere et al. (2009) that CC encodings and GAC encodings are
polynomially equivalent. In particular, any CC encoding can be translated into a GAC
encoding in polynomial time. This is in contrast to URC and PC encodings where it is open
whether every URC encoding can be translated in polynomial time into a PC encoding of
the same function.

Bessiere et al. (2009, Corollary 4) showed that there is no polynomial size CNF decom-
position of the ALLDIFFERENT consistency checker. We can rephrase their result as that
there is no polynomial size CC encoding for the ALLDIFFERENT constraint which implies
that there is no GAC, URC or PC encoding for this constraint of polynomial size either.

Jung, Barahona, Katsirelos, and Walsh (2008) describe a polynomial time construction
of a CNF encoding of a function represented with a decomposable negation normal form
(DNNF, introduced by Darwiche, 1999). Later, Gange and Stuckey (2012) and Abio et al.
(2016) argued that after a minor modification, this construction leads to a GAC encoding.
A polynomial time translation of a significant subset of DNNFs into a PC encoding was
first obtained for ordered decision diagrams (OBDD and MDD) by Abio et al. (2016). This
construction was generalized to DNNFs by Kucera and Savicky (2019). Bova, Capelli,
Mengel, and Slivovsky (2014, 2016) show examples of monotone CNF formulas which have
only exponentially larger DNNF. Given the fact that every monotone CNF formula is PC,
we get that PC encodings are strictly more succinct than DNNFs.

It is well-known that there are PC formulas of polynomial size which have exponentially
many prime implicates. Bordeaux and Marques-Silva (2012) show this in Proposition 5 for
a linear size PC encoding of the parity (XOR) function considered as a function of all its
variables. An even simpler example is the PC formula A’ | (x; V =) A (y1 V ... V yn).
Together with the fact that a formula consisting of all prime implicates is PC (Babka et al.,
2013) it follows that PC encodings without auxiliary variables are strictly more succinct
than the list of all prime implicates denoted as PI by Darwiche and Marquis (2002).

4. Results

In this section, we state the results proven in the paper.

4.1 Separations

In our results, we consider four representation languages — URC and PC encodings with
and without auxiliary variables. By definition, a PC encoding is also a URC encoding and
the classes of these encodings contain encodings without auxiliary variables. This implies
all the relations “at least as succinct” in Figure 1. It summarizes the known relationships

1400

BounDs oN THE S1ZE OF PC AND URC FORMULAS

’ URC encoding ‘

URC encoding R >
w/o auxiliary variables &\Q@

PC encoding
w/o auxiliary variables

Figure 1: Diagram showing the relations between the classes of encodings we discuss in the
paper. Solid arrow from L; to Ls represents the fact that L; is strictly more
succinct than Lo and the separation uses functions represented by CNF formulas
of polynomial size. Dotted arrow from L; to Lo represents the fact that Lj is at
least as succinct as Lo. The crossed over dotted arrow means that the relation
represented by the dotted arrow is not satisfied.

between the considered classes and the separations proven in our paper. Some of the
relations in the diagram follow by transitivity from the others and are omitted.

Our emphasis is on the influence of URC and PC property on the succinctness of encod-
ings. In particular, we prove in Section 5.1 as a consequence of Theorem 4.2 the following
separation which is the first result on separation of the corresponding classes of encodings.

Theorem 4.1. The language of URC encodings without auxiliary variables is strictly more
succinct than the language of PC encodings without auxiliary variables.

Encodings which can use auxiliary variables are known to be strictly more succinct than
encodings without auxiliary variables and this remains true even if we require URC or PC
property. A known example is the XOR function of several variables, which requires a CNF
encoding without auxiliary variables of exponential size, however, it has a PC encoding with
auxiliary variables which has a linear size. In this case, the large size of a CNF encoding
without auxiliary variables follows already from the assumption that the formula represents
the XOR function of several variables. As one of our results we show stronger separations
which are based on functions represented by CNF formulas of polynomial size. This means
that the lower bound parts of the separations follow solely from the requirements on the
propagation strength. The strongest of these separations follows from Theorem 4.3 below
implying that URC encodings without auxiliary variables are not at least as succinct as
PC encodings that can use auxiliary variables. By transitivity, we obtain that each of the
classes of URC and PC encodings without auxiliary variables is not at least as succinct as
each of the classes of PC and URC encodings that can use auxiliary variables, although
some of these separations follow more directly from Theorem 4.2 below.

1401

KUCERA & SAVICKY

The separations discussed above are based on the following. Lower bounds on the
size of PC encodings without auxiliary variables follow from the next theorem proven in
Section 5.1.

Theorem 4.2. For every n > 1, there is a Horn and, hence, a URC formula p, of size
O(n), such that

(a) every PC formula equivalent to ¢, has size 22",
(b) there is a PC encoding of ¢, of size O(n).

Lower bounds on the size of URC encodings without auxiliary variables follow from the
next theorem proven in Section 5.2.

Theorem 4.3. For every n > 1, there is a g-Horn formula ¢, of size O(n), such that
(a) every URC' formula equivalent to ¢, has size 224",

(b) there is a PC and, hence, a URC encoding of @y, of size O(n).

4.2 Irredundant PC and URC Formulas

We prove a remarkable difference in the properties of the size of irredundant PC and irredun-
dant URC formulas representing a given function. A PC formula is called a PC-irredundant
formula, if removing any clause either changes the represented function or yields a formula
that is not a PC formula (such formulas were also called minimal propagation complete
formulas by Bordeaux and Marques-Silva (2012)). A URC-irredundant formula is defined
in a similar way. Namely, we prove:

e The sizes of any two PC-irredundant formulas for the same function differ at most by
a factor polynomial in the number of the variables.

e There are URC-irredundant formulas for the same function such that one has size
polynomial and the other has size exponential in the number of the variables.

A PC-irredundant formula can be obtained from any PC formula in polynomial time by
repeated removal of absorbed clauses (see Bordeaux & Marques-Silva, 2012). The first
statement means that this is also a guarantee of a small size of a PC formula, if we disregard
factors polynomial in the number of the variables. On the other hand, the second statement
means that irredundancy cannot be used in the same way for URC formulas.

The statement above concerning PC formulas follows from the next theorem proven in
Section 6.1.

Theorem 4.4. If o1 and po are PC-irredundant representations of the same function of n
variables, then |@a| < n?|p1].

The statement above concerning URC formulas follows from the next theorem proven
in Section 6.2.

Theorem 4.5. For every n > 1, there is a PC formula ¢y of size O(n) and an equivalent
URC-irredundant formula ¢, 2 of size 2fx(n)

1402

BounDs oN THE S1ZE OF PC AND URC FORMULAS

The proof of Theorem 4.4 is similar to the proof of the known result that the sizes of
two equivalent irredundant Horn formulas differ at most by a factor at most n — 1 (see
Hammer & Kogan, 1993). For the PC formulas, the factor is larger, since we have to work
with absorbed clauses instead of implicates provable by unit propagation. However, the
relationship to Horn formulas can be made precise, since a PC formula can be understood
as a representation of the closure operator defined by semantic consequence on the literals
assuming a given formula. This representation is described in Section 7 using the cor-
respondence between closure operators and Horn functions and can be understood as an
explanation of the difference between the properties of irredundant PC and URC formu-
las. In particular, the above mentioned property of irredundant Horn formulas applies to
implicational dual rail encoding of PC formulas (see Section 7) and implies only a slightly
weaker upper bound than the bound in Theorem 4.4, namely |p2| < 2n2(|p1|+ 1) using the
same notation. According to Theorem 4.5, there is no similar description of URC property
using a closure operator.

4.3 An Encoding for q-Horn Formulas

We prove that although g-Horn formulas can be strongly non-URC in the sense formulated
in Theorem 4.3, every g-Horn formula has a URC encoding of size polynomial in the size of
the original formula.

Theorem 4.6. Assume that ¢(x) is a ¢-Horn formula with a valuation v representing a
qg-Horn function f(x). Moreover, assume a partition of the variables x = x3 U X2, such
that v(xz) € {0,1} for every x € x1 and (z) = 1/2 for every © € x3. Then there
is a URC encoding ¥(x,y) of f(x) satisfying |y| = O(|x2|?), |¥| = O(|lp| + |x2|?), and
141 = Ollel + Ix2/*).

The encoding constructed in the proof of Theorem 4.6 is not q-Horn in general, although
it represents a g-Horn function on the main variables. Note also that for the g-Horn function
used in Theorem 4.3 we obtain a polynomial size PC encoding which has higher propagation
strength than the encoding guaranteed by Theorem 4.6.

5. Lower Bounds on the Size of Specific Formulas

In this section, we present two examples of functions suitable for proving Theorem 4.2 and
Theorem 4.3.

5.1 Lower Bound on the Size of a PC Formula

Assume that ¢ is a CNF formula not containing the variable z and let

b= N\(evo). (6)

Cep

A formula constructed in a similar way using a positive common literal was used for instance
by Selman and Kautz (1996) to construct a small CNF formula such that every formula
representing its Horn least upper bound has exponential size. One can verify that the set

1403

KUCERA & SAVICKY

of prime implicates of 1 is the set of all clauses of the form —x V C, where C is a prime
implicate of ¢ (see also Bordeaux & Marques-Silva, 2012).

We claim that the only prime PC representation of ¢ (i.e. a prime CNF formula that is
equivalent to ¢ and is PC) is the set of all its prime implicates. Assume that ¢/’ is a prime
formula equivalent to 1. If a prime implicate —z VV D of 1) is not in 1/, let a be the partial
assignment —D. Clearly, ¢’ A« implies -z, however, every clause of ¢/’ has the form -z Vv C,
where C' is a prime implicate of ¢ different from D. It follows that C' contains at least one
literal not falsified by o and, hence, unit propagation does not derive any additional literal
from « together with —z vV C. This implies that ¢ is not a PC formula, hence the only
prime PC formula equivalent to (6) consists of all its prime implicates.

Each clause of the formula (6) contains the literal —z. In order to obtain a formula
with bounded number of occurrences of each variable, we demonstrate that a similar lower
bound on the size of a PC formula can be obtained, if the occurrences of —x are replaced
by different literals whose equivalence is guaranteed by additional clauses.

Lemma 5.1. Assume that ¢ = \~| Cp is a satisfiable CNF formula with p prime impli-

cates. Let x1,...,xy, be new variables and let
m—1 m
= N (2 Vai) A(czm Va) A N (v G
i=1 i=1

Then, the number of the prime implicates of 1 is mp +m(m — 1) and the size of a smallest
PC representation of ¥ is p + m.

Proof. Let II be the set of all prime implicates of . Let II' be the set of all clauses —z; V x;
where i # 7, 1 < 4,5 < m and the clauses —x; V D where 1 < ¢ < m and D € II. Each
clause in IT’ is either in ¢ or can be derived from v by resolution. On the other hand, each
resolvent of two clauses in I’ is either in IT’ or subsumed by a clause in II’. It follows that
IT" is equal to the set of all prime implicates of 1. In particular, the number of the prime
implicates of ¢ is mp +m(m — 1).

Consider the formula

m—1
¢/: /\ (ﬁl’i\/xlurl)/\(—'l‘m\/l‘l)/\ /\ (—gjl\/C),
=1 Cell

Any prime implicate of ¢ that is not in 1)’ can be derived by non-merge resolution from
Y’ Following the discussion in Section 2 (see also Bordeaux & Marques-Silva, 2012, Sec-
tion 5) we can conclude that ¢’ is a PC representation of ¢. It follows that i) has a PC
representation of size p + m.

Assume, 1" is any prime PC representation of ¢). By applying a satisfying assignment of
¢ to ¢, the prime implicates —z; V x; remain unchanged and the prime implicates —z; V D
become satisfied. Since the restricted formula represents the equivalence of the variables x;
for 1 < ¢ < m, the formula " contains at least m clauses of the form —z; V ;.

Assume for a contradiction that there is a prime implicate D € II, such that 1" does not
contain any of the clauses —x; VD, i =1,...,m. Let a be the partial assignment —=D. Since
each of the clauses —x; V D is an implicate of i, ¢ A o implies —x;, for every i = 1,..,m.

1404

BounDs oN THE S1ZE OF PC AND URC FORMULAS

On the other hand, for each clause —z; V C' in " at least one literal in C' is not falsified
by «, since C and D are different prime implicates of (. Since the clause also contains the
literal —x;, unit propagation does not derive any additional literal from —z; V C and a. In
particular, it does not derive any of the literals —x;. This is a contradiction. It follows that
" contains at least p clauses of the second type and, hence, has size at least p + m.]

For every m > 3, let 1, be the Horn formula of 3m — 2 variables consisting of the
clauses

—x; VY Vozg 1=1,....m—1
Ly V21 Ve Voo

—Z; V Ti4q 1=1,....m—1
T V I71 .

Note that each variable has at most three occurrences in v, which makes this formula
more interesting than (6). Note also that the binary clauses on the variables z; in 1, are
important for the next proposition, since removing them changes 1, to a PC formula.

Proposition 5.2. Formula v, has m2™~! + O(m?) prime implicates and its smallest PC
representation has size 2™~ 4+ O(m).

Proof. The formula 1, has the form from Lemma 5.1, if ¢ is

—y; V z; 1=1,....m—1
=21 V-V ozgo1

Assuming m > 3, formula ¢ has 2™~! prime implicates of the form

Cr= \/ -y V \/ -z

iel ie{l,..m—1 1\

where I C {1,...,m — 1}. For any given set I, C7 originates from ¢ by resolving —z; V

-V 2zZp—1 with —y; V 25, ¢ € 1. In addition, ¢ has m — 1 implicates —y; V z;. No
further clauses can be derived by resolution and thus ¢ has p = 27! +m — 1 prime
implicates. It follows by Lemma 5.1 that the number of the prime implicates of ¥y, is
mp+m(m—1) = m2™ =t + 2m(m — 1) and the smallest size of a PC formula equivalent to
Ymisp+m=2""14+2m —1. O

Lemma 5.3. There is a PC encoding of the function represented by ., of size linear in
the number of the variables.

Proof. Consider the order of the variables given as x1,¥1, 21, ..+, Tm—1, Ym—1, Zm—1, Tm. One
can verify that the standard construction of a Decision-DNNF using this order of the vari-
ables in all paths leads to an OBDD of constant width and size s = ©(m). The encoding
CompletePath introduced by Abio et al. (2016) can be used to form a CNF encoding ¥,,
which encodes the function represented by 1, and which is propagation complete (Abio
et al., 2016, Theorem 8). The CompletePath encoding is defined for every multi-valued
decision diagram (MDD). In case of an OBDD we get that the domain size of variables used
for decision nodes (i.e. variables x1,y1, 21, ..., Tm—1, Ym—1, Zm—1,Tm) is d = 2. Abio et al.
(2016) show that the number of variables of the encoding V¥, is upper bounded by s(d + 2)

1405

KUCERA & SAVICKY

and the number of clauses is upper bounded by s(4d + 5) 4+ nd where n is the number of
variables in 1y, in our case n = 3m — 2. It follows that U,, uses 4s = ©(m) variables
and 13s + 2(3m — 2) = O(m) clauses. Let us note that since the OBDD has constant
width, the encoding has size linear in the number of the variables even if the exactly-one
constraints used in CompletePath are represented by a formula of quadratic size without
auxiliary variables. O

We are now ready to prove Theorem 4.2.

Theorem (Theorem 4.2). For every n > 1, there is a Horn and, hence, a URC formula
©n of size O(n), such that

(a) every PC formula equivalent to o, has size 22"
(b) there is a PC encoding of ¢, of size O(n).

Proof. Let m = max(n,3). By construction, v, is a Horn formula. Condition (a) follows
from Proposition 5.2 and condition (b) follows from Lemma 5.3. O]

Theorem (Theorem 4.1). The language of URC encodings without auxiliary variables is
strictly more succinct than the language of PC' encodings without auxiliary variables.

Proof. Clearly, the language of URC encodings without auxiliary variables is at least as
succinct as the language of PC encodings without auxiliary variables. Consequently, The-
orem 4.1 follows from (a) in Theorem 4.2. O

5.2 Lower Bound on the Size of a URC Formula

Given a natural number n, define a formula ,(x,a,b) where x = (z1,...,z,), a =
(a1y...,ay), and b = (by,...,by,) as follows

n—1

Uy = /\ (—|a¢ V —x; V mi+1)(—|ai Vx;V —\xi+1)(—\bi V —x; V mi—l—l)(_‘bi Vo V —|mi+1)
=1
A (man V mx1 V xg) (man V21 Vo ag) (2by V nxy Vo xg) (2by Vo g Vo).

We can also write ,, more concisely as
n—1
Uy = /\ [(CLZ \Y bz) = (SCZ = $i+1)] VAN [(an V bn) = (551 = —q;n)] . (7)
i=1

Observe that 1), is not URC, because ¢, A \;; a; = L, however, ¥, A\ a; /1 L. On
the other hand, one can verify that 1, is -Horn using the valuation v(x;) = vy(—xz;) = %,
v(a;) = v(b;) = 1, and y(—a;) = y(=b;)) = 0 for all ¢ = 1,...,n. The main part of
Theorem 4.3 is the following lower bound.

Proposition 5.4. If ¢ is a URC formula equivalent to vy, then |p| > 2™.

1406

BounDs oN THE S1ZE OF PC AND URC FORMULAS

Proof. Without loss of generality, we can assume that ¢ is a prime formula. Let us start
by showing that there is no prime implicate of 1, which would contain exactly one literal
from lit(x). Let us assume for a contradiction that there is a prime implicate C' of v, which
contains precisely one literal | € lit(x). Since C is prime, there is a model a of 1, such
that [is the only satisfied literal in C' (otherwise C'\ {l} would still be an implicate of),
contradicting the primality of C). Let a’ be an assignment that is produced from a by
negating the values of all variables in x. Since all the occurrences of the variables x in (7)
are involved in equivalences and non-equivalences, the set of satisfying assignments of v, is
invariant under taking the negation of all the variables x simultaneously. In particular, a’
is also a model of v,,. However, C is falsified by a’ which is in contradiction with the fact
that C' is an implicate of ,,. It follows that every prime implicate of 1, containing a literal
from lit(x) contains at least two such literals. In particular, this is true for every clause of
p, since is prime.

Let U denote the set of partial assignments aUS where o C a, § C b and for every index
i =1,...,n exactly one of the variables a; and b; belongs to a U 3. In particular |[aU S| =n
and |U| = 2™. Clearly, for every aUS € U, the formula ¢, Aa A 3 is inconsistent. It follows
that the clauses in the set U = {=(a A B) | « U3 € U} are implicates of 1,. Moreover,
one can verify that U is precisely the set of all prime implicates of 1,, containing only the
literals from lit(a U b). Let us prove that ¢ contains all of the implicates in U.

Assume a partial assignment a U § € U and the clause C' = =(a A). Assume for a
contradiction that C' is not in (. Since o A a A § is inconsistent and ¢ is URC, we have
o AaA B L. Using the argument from the first paragraph of the proof, this derivation
does not use any of the prime implicates containing a literal from lit(x). However, unit
propagation using implicates from U \ {C} derives only negative literals on the variables
a U b and these literals cannot be used to continue unit propagation using clauses from
U\ {C}. This contradicts the assumption ¢ A a A 3 1 L. It follows that C is in ¢ as
required. O

Lemma 5.5. There is a PC encoding of the function represented by 1, of size linear in the
number of the variables.

Proof. Use the same approach as in the proof of Lemma 5.3 with the order of the variables
given as x1,a1,b1,T2,a2,b2, ..., Ty, ay, by.]

Theorem (Theorem 4.3). For every n > 1, there is a g-Horn formula ¢, of size O(n),
such that

(a) every URC' formula equivalent to ¢, has size 224",
(b) there is a PC and, hence, a URC encoding of ¢, of size O(n).

Proof. A consequence of Proposition 5.4 and Lemma 5.5. O
The size of the encoding guaranteed by Lemma 5.5 is ecn + O(1) with a relatively large

constant ¢. Let us note that a PC encoding of the function represented by 1, of size
4n+O(1) can be described as follows. We use additional auxiliary variables ¢ = (c1, ..., ¢,)

1407

KUCERA & SAVICKY

and define

=

’(ﬁ;l = (—|a¢ V Ci)(—'bi V Ci)

=1

(me1 Ve Vimey)

e

VAN /\ (_‘Ci V —x; V xi+1)(ﬁci Vx; V —\a}i+1)
=1

i
A (men V oz V oz) (e, Vo Voag,).

—_

One can check that ¢/, (x,a, b, ¢) is a PC encoding of the function represented by 1, (x, a, b).
The proof can be done by case inspection and is omitted since Lemma 5.5 is sufficient for
the proof of Theorem 4.3 above.

6. Irredundant PC and URC Formulas

In this section, we prove the results formulated in Section 4.2.

6.1 Irredundant PC Formulas

Recall that a formula is PC-irredundant, if removing any clause either changes the repre-
sented function or leads to a formula that is not PC. Let us now prove Theorem 4.4.

Theorem (Theorem 4.4). If p1 and po are PC-irredundant representations of the same
function of n variables, then |p2| < n?|p1].

Proof. If C' € p1 and | € C, then o A =(C \ {l}) b1 1 or oo A =(C'\ {l}) k1 L, since po
is a PC formula and C is its implicate. Let 6c; be a set of clauses of ¢y used in one of
these derivations. Since the derivation is unit resolution and each clause is used to derive
a literal on a different variable, we have |f¢;| < n. Moreover, we have 6c; = C. Let ¢} be
the union of 0, for all C' € ¢; and | € C. Clearly, ¢} is a subset of 9 and || < n?|p1].
It remains to verify that ¢ is a PC formula equivalent to ¢9. This implies that ¢}, = ¢,
since ¢y is PC-irredundant, and the statement follows.

Formula ¢f, is implied by ¢2 and implies ;. Together, this implies that ¢} is equivalent
to both @1 and ¢y. Consider the formula ¢}, A ¢1. Since it contains ¢1, it is a PC formula.
By construction of ¢}, each clause of ¢1 is absorbed by). This implies that we can
successively remove all clauses of o1 from ¢f A ¢; while keeping its PC property. O

6.2 A Large Irredundant URC Formula

Recall that a formula is URC-irredundant, if removing any clause either changes the rep-
resented function or leads to a formula that is not URC. In this section, we present an
example of a formula that can be extended by additional clauses to a PC formula of size
linear in the number of the variables and has also a URC-irredundant extension of size
exponential in the number of the variables.

Let m > 2. Consider the variables a;, b;, ¢;, d;, the definite Horn formulas

0; = (ﬂai V bz) A (—\ai V Ci) A (‘!bi V —e; V d,)

1408

BounDs oN THE S1ZE OF PC AND URC FORMULAS

fori=1,...,m, and the formulas
m m
Ym = (\/%) AN 6
i=1 i=1
m
Vi = Ym A /\(_‘ai Vv d;)
=1
Tm=vmA N\ [VavVd
I€E, \igI i€l
where E,, is the system of all non-empty subsets I C {1,...,m} such that |I| is even.
Clearly, we have
[ym| = 3m+1
Yl = 4m+1
V= 3m42mt.

Lemma 6.1. v/, and 7!/, are equivalent to ~p,.

Proof. For every i = 1,...,m, the clause —a; V d; can be obtained by resolution from the
clause —b; V —¢; V d; and the clauses —a; V b;, —a; V ¢;. This implies that v/, is equivalent
to Ym.

For every I C {1,...,m}, not necessarily in E,,, the clause

\/ai\/\/di

il iel

can be obtained by resolution from the clause \/", a; and the clauses —a; V d; for i € I.
This implies that v/ is equivalent to . O

Lemma 6.2.), is a PC formula.

Proof. The disjunction \/ | a; is a PC formula and also 0] = §; A (—a; Vd;) are PC formulas.
The formula ~,, is obtained from \/!", a; by combining it sequentially with §; for i =
1,...,m. In each step, we combine formulas which have only one variable in common. It
follows that the obtained formula is a PC formula. 0

Lemma 6.3.), is a URC formula.

Proof. Assume a partial assignment p, such that 4}/ A p is unsatisfiable and, hence, also
Ym A p is unsatisfiable. Let us prove that unit propagation from ~// A p derives L.

If there is an index i € {1,...,m}, such that 0; A p is unsatisfiable, then L can be derived
by unit propagation, since d¢; is a Horn and thus also a URC formula. For the rest of the
proof, assume that each of the formulas J; A p is satisfiable. Assume for a contradiction
that there is an index j, such that p A 6; = —a;. The setting a; = 1 satisfies the clause
V%, a; and it can be extended into a satisfying assignment of v, A p, since the formulas
0; are pairwise independent and each of them is satisfiable together with p A a;. Since this

1409

KUCERA & SAVICKY

contradicts the assumption, it follows that for all i = 1,...,m, we have p A §; |E —a;. By
case inspection, this is equivalent to the assumption that for every ¢ = 1,...,m, we have
{—ai, —b;,—c;,—d;} N p # 0. Let J be the set of indices 4, such that é; A p t/1 —a;. One can
verify that for every ¢ € J, we have —d; € p. This implies that the clause

\/ai\/\/di

igJ icJ

is falsified by the literals derived by unit propagation in formulas §; A p. If |J| is even, then
J € Ep, or J = () and the falsified clause is contained in 4/, so unit propagation derives L.
If |J| is odd, choose an arbitrary j € J and consider I = J \ {j}. Since I € E,, or I = 0,

the clause
\/(M‘V \/(h

il il
is in 7/, and the only literal in this clause that is not falsified by unit propagation using p

and the formulas §; is a;. Hence, unit propagation from ~;;, A p derives a;. Together with
05, we further derive d; and, finally, we derive L, since —d; € p. O

Lemma 6.4. Formula v, is URC-irredundant.

Proof. By the previous lemma, ~// is URC. If any of the clauses in §; for i € {1,...,m} is
removed from 7/, then the restriction of the function obtained by setting all the variables
aj,bj,cj,dj for j # i to 1 changes, since d; is an irredundant formula. If the clause /] a;
is removed, then the represented function changes on the assignment setting all a; variables
to 0 and all the remaining variables to 1.

Let us verify that removing any of the clauses

C’ZZ\/(M'V \/(h
il il

where I € E,, from 7, leads to a formula that is not a URC formula for ~,,. Consider
the partial assignment —C' and let us prove that this assignment does not make any of the
clauses of 4// \ {C} unit or empty. This can be verified by case inspection for the clauses
of 0; for every j =1,...,m. Since |I| > 2, the clause

m
\/(% € Tm
i=1
also does not become unit or empty. If J € E,, \ {I}, then the number of the literals in the

clause

\/(% \Y \/(h E’Y&

iZJ icJ
that are not falsified by —C' is equal to the size of the symmetric difference of the sets I and
J. Since these sets are different and both have even size, their symmetric difference has size
at least 2. Altogether, the assignment —C' is closed under unit propagation in the formula
v \{C} and, hence, unit propagation does not derive a contradiction from —~C' A (~)/,\{C}).
Since C' is an implicate of 7y, this implies that +//, \ {C} is not a URC formula for ~,,. O

1410

BounDs oN THE S1ZE OF PC AND URC FORMULAS

We are now ready to prove Theorem 4.5.

Theorem (Theorem 4.5). For every n > 1, there is a PC formula ¢, of size O(n) and
an equivalent URC-irredundant formula ¢y 2 of size 282(n)

Proof. For a given n, let m = max(n, 2), ©n.1 = Y, and @, 2 = 75,. Since |7,,| = O(n) and

|y | = 294" | the theorem follows from lemmas 6.2 and 6.4. O

7. Implicational Dual Rail Encoding of PC Formulas

Unit propagation in a formula on the variables x is a closure operator on the sets of literals
lit(x). It follows that it can be characterized by a suitable Horn function whose variables
correspond to the literals lit(x). In this section, we demonstrate that this correspondence
can be used to derive a slightly weaker version of Theorem 4.4, namely, the bound

pa| < 2n°(|1] + 1) (8)

where the same notation as in Theorem 4.4 is used. Although this bound is weaker than
Theorem 4.4, its proof demonstrates that this property of irredundant PC formulas is a
consequence of the known properties of closure operators and their representation using
Horn formulas. See Guigues and Duquenne (1986), Arias, Balcazar, and Tirnauca (2017)
for more information on the relationship between closure operators (or closure systems)
and Horn formulas. In particular, a formula is a PC formula, if it represents in the sense
specified below the semantic closure operator on the sets of literals which are subsets of
a set of polynomial size. By Theorem 4.5, there is no similar connection between URC
property and a suitable closure operator on subsets of a small set.

We use the well-known dual rail encoding of partial assignments (Bonet et al., 2018;
Bryant et al., 1987; Ignatiev et al., 2017; Manquinho et al., 1997; Morgado et al., 2019) to
simulate unit propagation in a general CNF formula in the same way as Bordeaux et al.
(2012), Bessiere et al. (2009). Let us describe a variant of such a simulation suitable for our
purposes.

Assume, ¢ is a CNF formula on the variables x. Let us introduce for every [€ lit(x)
a meta-variable [I] and let us denote meta(x) the set of all these variables. For each pair
(C,1), such that [€ C € ¢, we express the step of unit propagation deriving ! from —(C\ {l})
as an implication

A el | = [(9)

ecC\{l}
or an equivalent Horn clause

URARVARS R (10)

ecO\{1}

The implicational dual rail encoding of ¢ is the formula DR(y) on the variables meta(x)
described as follows. If ¢ contains an empty clause, then DR(¢) = L. Otherwise, DR(yp)
consists of all the clauses (10) and additional consistency clauses such that

DR(p)= A [TV \/ [| A A ([2] v =[-a]).

leCep ecC\{l} TEX

1411

KUCERA & SAVICKY

Unit propagation in a CNF formula ¢(x) with a partial assignment o C lit(x) can be
simulated by forward chaining in the definite Horn part of DR(¢) which is equivalent to the
implications (9). Sets of literals on the variables x are represented by total assignments of
the variables meta(x) in a natural way. Using this, the satisfying assignments of the definite
Horn part of DR(p) represent precisely the sets of literals on the variables x closed under
unit propagation in ¢ including those that contain complementary pairs of literals. Since
a closure operator is fully characterized by its closed sets, the definite Horn part of DR(¢p)
fully characterizes unit propagation in ¢ including propagation in contradictory cases.

When considering unit propagation, it is not desirable to distinguish different contradic-
tory cases. For this reason, DR(yp) is a Horn formula containing also negative clauses which
imply a contradiction whenever the simulated unit propagation reaches a complementary
pair of literals. As a consequence, we obtain that the models of DR(p) correspond precisely
to the partial assignments (consistent sets of literals) closed under unit propagation in .
Let us denote this set of partial assignments as S(¢). One can verify that S(¢) characterizes
unit propagation in ¢ as follows. If o C lit(x) is a partial assignment, then unit propa-
gation from ¢ A a derives a partial assignment [, if § is the smallest partial assignment,
such that o C 5 € S(¢p), or a contradiction, if such a partial assignment does not exist.
Altogether, two formulas provide the same derivations using unit propagation, if and only
if their implicational dual rail encodings are equivalent. In particular, we have

Proposition 7.1. Let ¢ and ¢’ be equivalent CNF formulas and assume that ¢’ is a PC
formula. Then ¢ is a PC formula if and only if DR(¢) and DR(¢') are equivalent.

Proposition 7.1 implies that ¢ is a PC formula if and only if DR(p) represents a fixed
function. Since a formula ¢ is PC if and only if unit propagation in it coincides with the
semantic consequence on the literals assuming ¢, it is the characteristic function of the
partial assignments closed under semantic consequence on the literals assuming (. This
function can be obtained, for example, as DR(¢’), where ¢’ is the set of all prime implicates
of .

Let us use this to prove (8). Assume that ¢; and ¢9 are irredundant PC formulas for the
same function of n variables. By Proposition 7.1, DR(¢1) and DR(p2) are equivalent Horn
formulas of 2n variables. Let 11 and 3 be irredundant subformulas of DR (1) and DR(g2),
respectively. By the results on Horn formulas proven by Hammer and Kogan (1993), the
sizes of 11 and 1o differ at most by a factor 2n — 1, so we have

[¥2] < 2nf¢n| < 2n(n + nlp1]) = 2n°(jp1| + 1) . (11)

Formula DR(p2) contains a group of |C| definite Horn clauses for each clause C' € ¢a.
If there is a clause C' € g, such that none of the corresponding clauses of DR(y2) is in
12, then Proposition 7.1 implies a contradiction with irredundancy of ¢2. Hence, we have
lp2| < |1p2| and together with (11), we obtain ().

8. URC Encoding of a g-Horn Formula

In this section, we show that every g-Horn function represented by a g-Horn formula ¢(x)
has a URC encoding of size polynomial in the size of ¢. The encoding is based on simulating
the satisfiability test for q-Horn formulas presented by Boros et al. (1990).

1412

BounDs oN THE S1ZE OF PC AND URC FORMULAS

Let us fix a valuation + which shows that ¢ is q-Horn. For simplicity, we assume
v(z) > y(—x) for every variable x € x. If this assumption is not satisfied for a variable z,
we can replace all occurrences of z with —z and vice versa and set y(z) = 1 — y(z). As
a consequence, all variables in ¢ have weight 1 or % The set of variables of weight 1 and
% will be denoted as x; and x9, respectively. Unless stated otherwise, we assume that the
sets of variables x, X1, X2, and the corresponding valuation = is fixed.

Recall that given a CNF formula ¢(x) and a partial assignment 5 C lit(x) we denote
©(B) the formula which originates from ¢ by applying partial assignment 5. A partial
assignment C lit(x) is an autark assignment (Kullmann, 2000) for a CNF ¢ if for every
clause C' € ¢ such that C(f) is different from C, we have that C is satisfied by . Since
satisfied clauses are removed when applying a partial assignment, this implies p(5) C ¢. It
follows that ¢ is satisfiable if and only if () is satisfiable, since using [, one can obtain a
satisfying assignment of ¢ from a satisfying assignment of ¢(3) and vice versa.

Lemma 8.1. Assume, ¢ is a ¢g-Horn formula with the valuation v and let § be the partial
assignment which sets all x1 variables that appear in ¢ to 0. If ¢ does not contain a unit
clause on a variable from x1, then § is an autark assignment for .

Proof. If C contains a positive literal on a variable from x;, then C contains only variables
from x; and, hence, also a negative literal on some other variable from x;. It follows that
all clauses of ¢ affected by § are satisfied by ¢. O

If unit propagation on a gq-Horn formula ¢ does not lead to a contradiction, then the
resulting formula satisfies the assumption of Lemma 8.1 and the formula ¢(¢) is a 2-CNF
formula. This allows to reduce the test of satisfiability of a g-Horn formula to a test of
satisfiability of a 2-CNF formula and, hence, implies a polynomial time satisfiability test for
g-Horn formulas. Moreover, in order to satisfy the assumption of Lemma 8.1, it is sufficient
to perform unit propagation restricted to the clauses containing only the variables x;. We
split the formula ¢(x;,x2) into two subformulas ¢;(x;) and p2(x1,x2). A clause C' € ¢
belongs to ¢y if var(C) C x; and it belongs to 2 otherwise. By construction, ¢; is a Horn
formula. Clauses in 9 contain one or two variables of weight % Other literals in these
clauses have weight 0 and they are negations of variables of weight 1. Using this notation,
the satisfiability test for a q-Horn formula ¢ described by Boros et al. (1990) is formulated
as Algorithm 1. Note that by Lemma 8.1, ¢ is an autark assignment for ¢(f3) and satisfies
all clauses of ¢1(f).

We shall construct a URC encoding ¢ (x,y) for a given q-Horn formula ¢(x) with the
valuation . Unit propagation in the encoding allows to simulate Algorithm 1 with a formula
@ A« as an input, where a C lit(x). Formula 6 created in Step 5 is a 2-CNF formula on
variables xo and we can thus check its satisfiability in linear time in Step 6 (see for example
Aspvall et al., 1979). In the URC encoding, Step 6 is implemented by simulating a resolution
derivation of a contradiction from 6 in which only resolvents of size at most 2 are needed.
The number of such resolvents is at most quadratic in the number of the variables in x2. We
can thus encode the resolution rules into a polynomial number of clauses of the encoding.

Let us first introduce a necessary notation. Given a g-Horn formula ¢ = @1 A 2, we
denote ¢, = {C' Nlit(x2) | C € o} which is a 2-CNF formula on variables of weight 1.
Moreover, let @;r be the set of all clauses of size 2 which can be derived by resolution from

1413

KUCERA & SAVICKY

Input: g-Horn formula ¢(x), valuation v satisfying v(z) € {1,1} for all z € x
Output: SAT if ¢ is satisfiable, UNSAT otherwise

let 1, @2, x1, and x5 be as described in the text

if 1 1 L then return UNSAT

B+ {u S ht(Xl) ‘ p1 1 u}

0 « {—x | z € x1,x not fixed by f}

0 < p2(B N 9)

if 0 is satisfiable then return SAT else return UNSAT

S Uk W N

Algorithm 1: Satisfiability checking of a q-Horn formula (Boros et al., 1990)

¢, and we associate a meta-variable [C] with every clause C' € cp;“. Note that if we test
satisfiability of ¢ A « instead of ¢ in Algorithm 1, the formula 6 can contain additional unit
clauses from a N lit(x3z), however, all its binary clauses belong to ¢,. The encoding ¥ (x,y)
for p(x) uses variables

y ={[CTIC €y}

as auxiliary variables and consists of the clauses defined by Table 1.

Let us look more closely at clauses of the encoding. Group (ql) consists of all clauses
of p1 and some of the clauses of ¢o. The clauses of (ql) that belong to ¢; allow unit
propagation on the clauses of 1, thus implementing the first part of Algorithm 1. Clauses of
group (ql) that belong to 2 and clauses of group (q2) allow to derive by unit propagation a
representation of all clauses of #. Unit clauses are represented directly and each binary clause
in 0 is represented by the corresponding meta-variable. Clauses of groups (q3) to (q5) allow
to simulate resolution on unit clauses and at least one binary clause from cpj represented by
meta-variables by unit propagation in 1(x,y). In particular, clause =[u Vo] V =[-v V w] Vv
[uVw] in group (q3) allows to derive literal Ju V w] representing resolvent assuming literals
[uVo] and [-vVw] representing the original clauses. Similarly, clause =[uVo]V=uV-v]Vu
in group (q4) allows to derive resolvent u assuming [u V v] and [u V —w]. Finally, clause
—[u Vo] Vo Vuin group (g5) allows to derive resolvent u assuming [uV v] and —v. Clauses

group clause condition

(1) C C € ¢ and |var(C) Nxy| < 1
(92) —xy V-V Vu Vo] —xi VooV ox, Vu Vo € oo
(@3) ~[uvo]Vv-[wVvw]Vuvw] uVue,-vVwuVwep!
(@4) ~[uvo]Vafuv-w]vVu uVo,uV-we gl

(@5) ~Juvv]vuvo uVoe gl

(@6) —uV[uVo] u\/vewt‘]"

Table 1: The clauses of encoding ¥ (x,y) for a q-Horn formula ¢(x), where u, v, and w
denote arbitrary literals from lit(xs).

1414

BounDs oN THE S1ZE OF PC AND URC FORMULAS

of groups (g5) and (g6) together represent the equivalences u V v < Ju V v] for all clauses
in ;. They thus define the semantics of the meta-variables [u V v] in y.

Lemma 8.2. Formula ¥ (x,y) is an encoding of p(x).

Proof. The clauses of groups (q5) and (q6) imply the clauses of groups (q3) and (q4).
Moreover, they also imply that the clauses of groups (ql) and (q2) are equivalent to ¢(x).
It follows that ¢ (x,y) is equivalent to the conjunction of ¢(x) and the clauses of groups (g5)
and (g6). This conjunction is clearly an encoding of ¢(x) obtained by adding definitions of
the new variables y. O

In order to prove that ¢ is a URC encoding, we distinguish three cases for « in the
implication (1). The first of them is the following lemma which states that ¢ implements
consistency checker.

Lemma 8.3. Let a C lit(x) be a partial assignment. If (x,y) A a = L, then we have
Y(x,y) Aoty L.

Proof. Assume, 9(x,y) A a = L. By Lemma 8.2, we have p(x) A a |= L. If 7 satisfies (5)
for the formula ¢, it satisfies (5) also for the formula ¢ A a. It follows that Algorithm 1
detects unsatisfiability of ¢ A « using the valuation v assumed for ¢. Let ay = aNlit(xy)
and ay = aNlit(xa).

If o1 ANag b1 L, then also ¥(x,y) A a 1 L since o1 A a; € ¥ A due to clauses in
group (ql). Now assume 1 A g I/ L. Consider the partial assignments § and ¢ used to
obtain # in Algorithm 1. By construction, 8 O «1. Since ¢ is an autark assignment for the
formula (¢ Aa)(B) = p(5) A g and satisfies all clauses of ¢ (), we have 6 = p2(BAI) Ao
and 0 = L. We claim that for any clause u V v € 6 we have 1(x,y) A a 1 JuV v]. Since
u Vv € 0, there must be a clause C = —z;, V---V 2z, VuVoin g and @1 A ag Ti;
for every j = 1,...,k. Using clauses of group (ql) we derive that also 1 (x,y) A a -1 z;;
for every j = 1,...,k and then using a clause of group (q2) corresponding to C we get
Y(x,y)Aa b1 [uVo]. Similarly, using clauses of group (ql) in @2, we obtain ¥ (x,y)Aa F1 u
for any unit clause u € #. Unit clauses in ay are contained in ¥ (x,y) A a directly. Since 6 is
an unsatisfiable 2-CNF formula not containing the empty clause, there is a literal u € lit(x2),
such that unit clauses v and —u can be derived by resolution from 6. As explained above,
clauses of groups (q3) to (g5) allow to simulate resolution on unit and binary clauses using
unit propagation. Hence, we have ¢ (x,y) A @ k1 w and ¥(x,y) A @ b1 —u which implies
P(x,y) Naty L. O

The next case shows that we can allow positive occurrences of variables from y in the
partial assignment .

Lemma 8.4. Let o C lit(x) Uy be a partial assignment. If (x,y) A a = L, then we have
Y(x,y) Naty L.

Proof. Assume ¥ (x,y) Aa = L. Let us split « into two partial assignments o, = aNlit(x)
and ay = a Ny, where o, represents a set of binary clauses. The formula

Yx)=px)n /\ C

[Cleay

1415

KUCERA & SAVICKY

is q-Horn using the valuation +, since we add to ¢ binary clauses on the variables xo.
The encoding of ¢'(x) constructed according to Table 1 is ¢'(x,y) = 9 (x,y) A ay. Since
a = az Aay, we have Y(x,y) Aa = ¢ (x,y) Aa, and thus ¢/ (x,y) Aa, = L. By Lemma 8.3
we obtain 1/(x,y) A az F1 L. This is equivalent to ¥(x,y) Aa b1 L. O

In the last case, we consider a without restrictions.

Lemma 8.5. Let a C lit(x Uy) be a partial assignment. If (x,y) AN a = L, then we have
Y(x,y) Na by L.

Proof. Assume ¢ (x,y)Aa = L. Let us split a into three partial assignments o, = aNlit(x),
ay =aNy,and oy = aN{-y |y € y}. Moreover, let Oély = {-u, v | ~[uVv] € agy}. Since
Y(x,y) FuVve [uVo], we have ¥(x,y) F agy < af. It follows that

YY) Nag Aoy Aoy = L

Since the left-hand side satisfies the assumption of Lemma 8.4, we get ¥(X,y) A oy A ay A
o/g k1 L. Using clauses of group (q6), this implies ¥(x,y) A @z A ay A ag 1 L and thus
P(x,y) ANty L as required. O

The main result of this section is the following statement, where the valuation « is an
arbitrary valuation with values {0,1/2,1}.

Theorem (Theorem 4.6). Assume that p(x) is a ¢-Horn formula with a valuation ~y repre-
senting a g-Horn function f(x). Moreover, assume a partition of the variables x = x1 UXg,
such that vy(z) € {0,1} for every x € x1 and y(x) = 1/2 for every x € x9. Then there
is a URC encoding ¥(x,y) of f(x) satisfying |y| = O(|x2|?), |¥| = O(|lp| + |x2|?), and
10 = O(llell + [x2)-

Proof. Transform the variables of ¢ as described at the beginning of this section to obtain
a g-Horn formula ¢’ with valuation 4’ with values {1/2,1} and construct its encoding
according to Table 1. Using lemmas 8.2 and 8.5, this is a URC encoding of ¢’. By reverting
the transformation of the variables, we obtain a URC encoding of ¢. The size estimates
follow directly from the construction described in Table 1. O

Let us point out that the encoding described in Table 1 is not g-Horn in general. If
the groups (g5) and (q6) of clauses are present in the encoding for some literals u, v, they
contain clauses ~JuVv] Vo Vu, ~uV [uVv], =vV [uVv]. One can verify that a valuation
~v satisfying (5) for these clauses has to satisfy v(u) = v(v) = y([u V v]) = 0. The variable
[uVv] is included in the encoding, if the original q-Horn formula requires vy(u) = y(v) = 1/2.
In this case, the system of inequalitites (5) for the CNF encoding in Table 1 is inconsistent.

9. Conclusion and Further Research

We presented an exponential separation between the sizes of PC and URC encodings with-
out auxiliary variables and strengthened the known results on their relationship to the
PC and URC encodings that can use auxiliary variables. Moreover, we demonstrated a
difference in the properties of irredundant URC and PC formulas which can have applica-
tions to their use in knowledge compilation. The methods for compilation not introducing

1416

BounDs oN THE S1ZE OF PC AND URC FORMULAS

new auxiliary variables are investigated also in a related ongoing research using a program
pccompile (Kucera, 2020). One of the algorithms implemented in this program uses the
correspondence between dual rail encoding of a PC formula and a specific Horn function
presented in Section 7 in this paper.

By the results of Section 5, there is no guarantee for the existence of a reasonably sized
PC formula equivalent to a given CNF, even if it belongs to a tractable class of Horn or
g-Horn formulas. On the other hand, preliminary experiments (Kucera, 2019) with the
program pccompile demonstrate that a compilation into a PC formula not introducing new
auxiliary variables is frequently tractable for encodings of a few hundreds of clauses that
appear as benchmarks in knowledge compilation. Further research is needed to clarify the
conditions under which such a compilation is tractable.

Let us close the paper with several questions left open for further research. In Theo-
rem 4.4 we have shown that if ¢;(x) and ¢2(x) are two PC-irredundant formulas represent-
ing the same function f(x) on n = |x| variables, then |@a| < n?|p1]|. We are not aware of a
function for which the factor n? is needed in the upper bound, however, it is open, whether
the bound can be strengthened in the following sense.

Question 1. Is it possible to strengthen the bound from Theorem 4.4 to |p2| = O(nlp1])?

One of the relationships depicted in Figure 1 is that the language of URC encodings is
at least as succinct as the language of PC encodings. The following related question is open

Question 2. Is the language of PC encodings at least as succinct as the language of URC
encodings?

This question asks for a construction related to the polynomial construction of a propa-
gator from a consistency checker described by Bessiere et al. (2009). Question 2 is different
in that both the input and output encodings are required to satisfy a specified propagation
property on all variables, not only on the main ones.

By Theorem 4.6 there is a polynomial size URC encoding for an arbitrary g-Horn for-
mula. It is natural to ask whether we can in fact construct a PC encoding of polynomial
size. This question is open already for the class of Horn formulas contained in the class of
g-Horn formulas and we can thus pose the following question.

Question 3. Let ¢(x) be a Horn formula or, more generally, a g-Horn formula. Is there
a PC encoding 1 (x,y) of ¢ of size polynomial in the size of v ?¢

Using the notation from Theorem 4.6, the size of the URC encoding constructed for a
q-Horn formula ¢(x1,x2) is O(|¢| + [x2]3).

Question 4. Is there a URC encoding for every g-Horn formula ¢ of size O(|¢| + |x2|°),
where ¢ < 37

Acknowledgments

Both authors gratefully acknowledge the support by Grant Agency of the Czech Republic
(grant No. GA19-19463S).

1417

KUCERA & SAVICKY

References

Abio, 1., Gange, G., Mayer-Eichberger, V., & Stuckey, P. J. (2016). On CNF encodings of
decision diagrams. In Quimper, C.-G. (Ed.), Integration of AI and OR Techniques in
Constraint Programming, pp. 1-17, Cham. Springer International Publishing.

Arias, M., Balcazar, J. L., & Tirnduca, C. (2017). Learning definite Horn formulas from
closure queries. Theoretical Computer Science, 658, 346-356. Horn formulas, directed
hypergraphs, lattices and closure systems: related formalism and application.

Aspvall, B., Plass, M. F.; & Tarjan, R. E. (1979). A linear-time algorithm for testing the
truth of certain quantified boolean formulas. Information Processing Letters, 8(3),
121-123.

Atserias, A., Fichte, J. K., & Thurley, M. (2011). Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Int. Res., 40(1), 353-373.

Babka, M., Balyo, T., Cepek, O., Gursky, S., Kucera, P., & Vlcek, V. (2013). Complexity
issues related to propagation completeness. Artificial Intelligence, 203, 19-34.
Bacchus, F. (2007). GAC via unit propagation. In Bessiere, C. (Ed.), Principles and Prac-

tice of Constraint Programming — CP 2007, Vol. 4741 of Lecture Notes in Computer
Science, pp. 133-147. Springer Berlin Heidelberg.

Bessiere, C. (2006). Constraint propagation. In Rossi, F., van Beek, P., & Walsh, T. (Eds.),
Handbook of Constraint Programming, chap. 3. Elsevier Science Inc., USA.

Bessiere, C., Katsirelos, G., Narodytska, N., & Walsh, T. (2009). Circuit complexity and
decompositions of global constraints. In Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (IJCAI-09), pp. 412-418.

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (2009). Handbook of Satisfiability, Vol.
185 of Frontiers in Artificial Intelligence and Applications. 10S Press, Amsterdam,
The Netherlands.

Bonet, M. L., Buss, S., Ignatiev, A., Marques-Silva, J., & Morgado, A. (2018). MaxSAT
resolution with the dual rail encoding. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Bordeaux, L., Janota, M., Marques-Silva, J., & Marquis, P. (2012). On unit-refutation com-
plete formulae with existentially quantified variables. In Proceedings of the Thirteenth
International Conference on Principles of Knowledge Representation and Reasoning,
KR’12, pp. 75-84. AAAI Press.

Bordeaux, L., & Marques-Silva, J. (2012). Knowledge compilation with empowerment.
In Bielikova, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., & Turén, G. (Eds.),
SOFSEM 2012: Theory and Practice of Computer Science, Vol. 7147 of Lecture Notes
in Computer Science, pp. 612-624. Springer Berlin / Heidelberg.

Boros, E., Crama, Y., & Hammer, P. L. (1990). Polynomial-time inference of all valid
implications for Horn and related formulae. Annals of Mathematics and Artificial
Intelligence, 1(1), 21-32.

Boros, E., Hammer, P. L., & Sun, X. (1994). Recognition of q-Horn formulae in linear time.
Discrete Applied Mathematics, 55(1), 1-13.

1418

BounDs oN THE S1ZE OF PC AND URC FORMULAS

Bova, S., Capelli, F., Mengel, S., & Slivovsky, F. (2014). A strongly exponential separation
of DNNFs from CNF formulas. arXiv: 1411.1995 [cs.CC]. https://arxiv.org/abs/
1411.1995.

Bova, S., Capelli, F., Mengel, S., & Slivovsky, F. (2016). Knowledge compilation meets
communication complexity. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI'16, pp. 1008-1014. AAAT Press.

Bryant, R. E., Beatty, D., Brace, K., Cho, K., & Sheffler, T. (1987). COSMOS: A compiled
simulator for MOS circuits. In Proceedings of the 24th ACM/IEEE Design Automa-
tion Conference, DAC 87, p. 9-16, New York, NY, USA. Association for Computing
Machinery.

Cepek, O., Kucera, P., & Vlcek, V. (2012). Properties of SLUR formulae. In Bielikova,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., & Turan, G. (Eds.), SOFSEM 2012:
Theory and Practice of Computer Science, Vol. 7147 of LNCS, pp. 177-189. Springer
Berlin Heidelberg.

Darwiche, A. (1999). Compiling knowledge into decomposable negation normal form. In
Proceedings of the 16th International Joint Conference on Artifical Intelligence - Vol-
ume 1, IJCAI’99, pp. 284-289, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 229-264.

del Val, A. (1994). Tractable databases: How to make propositional unit resolution complete
through compilation. In Knowledge Representation and Reasoning, pp. 551-561.

Gange, G., & Stuckey, P. J. (2012). Explaining propagators for s-DNNF circuits. In
Beldiceanu, N., Jussien, N., & Pinson, E. (Eds.), Integration of AI and OR Techniques
in Contraint Programming for Combinatorial Optimzation Problems, pp. 195-210.
Springer Berlin Heidelberg.

Gogic, G., Kautz, H., Papadimitriou, C., & Selman, B. (1995). The comparative linguistics
of knowledge representation. In Proceedings of the 1/th International Joint Conference
on Artificial Intelligence - Volume 1, IJCAT’'95, pp. 862-869, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Guigues, J.-L., & Duquenne, V. (1986). Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Mathématiques et Sciences humaines, 95,
5-18.

Gwynne, M., & Kullmann, O. (2013). Generalising and unifying SLUR and unit-refutation
completeness. In van Emde Boas, P., Groen, F. C. A., Italiano, G. F., Nawrocki, J.,
& Sack, H. (Eds.), SOFSEM 2013: Theory and Practice of Computer Science, pp.
220-232, Berlin, Heidelberg. Springer Berlin Heidelberg.

Hammer, P., & Kogan, A. (1993). Optimal compression of propositional Horn knowledge
bases: Complexity and approximation. Artificial Intelligence, 64, 131-145.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2017). On tackling the limits of resolution
in SAT solving. In Gaspers, S., & Walsh, T. (Eds.), Theory and Applications of Satis-
fiability Testing — SAT 2017, pp. 164-183, Cham. Springer International Publishing.

1419

KUCERA & SAVICKY

Jung, J. C., Barahona, P., Katsirelos, G., & Walsh, T. (2008). Two Encodings of DNNF
Theories. In ECAI’08 Workshop on Inference methods based on Graphical Structures
of Knowledge.

Kucera, P. (2019). Tool presentation: pccompile. Presented at the KOCOON Workshop in
Arras. http://kocoon.gforge.inria.fr/slides/pccompile.pdf, Accessed: 2020-
12-21.

Kucera, P. (2020). Program pccompile. http://ktiml.mff.cuni.cz/~kucerap/
pccompile. Accessed: 2020-12-21.

Kucera, P., & Savicky, P. (2019). Propagation complete encodings of smooth DNNF theories.
arXiv: 1909.06673 [cs.Al]. https://arxiv.org/abs/1909.06673.

Kullmann, O. (2000). Investigations on autark assignments. Discrete Applied Mathematics,
107(1-3), 99-137.

Manquinho, V. M., Flores, P. F., Silva, J. P. M., & Oliveira, A. L. (1997). Prime implicant
computation using satisfiability algorithms. In Proceedings Ninth IEEE International
Conference on Tools with Artificial Intelligence, pp. 232-239.

Morgado, A., Ignatiev, A., Bonet, M. L., Marques-Silva, J., & Buss, S. (2019). DRMaxSAT
with MaxHS: First contact. In International Conference on Theory and Applications
of Satisfiability Testing, pp. 239-249. Springer.

Pipatsrisawat, K., & Darwiche, A. (2011). On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence, 175(2), 512-525.

Schlipf, J. S., Annexstein, F. S.; Franco, J. V., & Swaminathan, R. P. (1995). On finding
solutions for extended Horn formulas. Inf. Process. Lett., 54(3), 133-137.

Selman, B., & Kautz, H. (1996). Knowledge compilation and theory approximation. Journal
of the ACM (JACM), 43(2), 193-224.

1420

