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Abstract

Recurrent neural networks are extremely appealing for sequence-to-sequence learning tasks.
Despite their great success, they typically suffer from a shortcoming: they are prone to gen-
erate unbalanced targets with good prefixes but bad suffixes, and thus performance suffers
when dealing with long sequences. We propose a simple yet effective approach to overcome
this shortcoming. Our approach relies on the agreement between a pair of target-directional
RNNs, which generates more balanced targets. In addition, we develop two efficient ap-
proximate search methods for agreement that are empirically shown to be almost optimal
in terms of either sequence level or non-sequence level metrics. Extensive experiments were
performed on three standard sequence-to-sequence transduction tasks: machine translit-
eration, grapheme-to-phoneme transformation and machine translation. The results show
that the proposed approach achieves consistent and substantial improvements, compared
to many state-of-the-art systems.

1. Introduction

Recurrent neural networks (RNNs) (Mikolov, Karafiát, Burget, Cernocký, & Khudanpur,
2010), particularly RNNs with Long Short-term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997; Graves, 2013) or those with Gated Recurrent Units (Cho, Van Merriënboer,
Gulcehre, Bahdanau, Bougares, Schwenk, & Bengio, 2014), provide a universal and powerful
solution for various tasks that have traditionally required carefully designed, task-specific
solutions. On classification tasks (Graves & Schmidhuber, 2008; Tai, Socher, & Manning,
2015), they can readily summarize an unbounded context which is difficult for trandi-
tional solutions, and this leads to more reliable prediciton. They have advantages over
traditional solutions on more general and challenging tasks such as sequence-to-sequence
learning (Sutskever, Vinyals, & Le, 2014), where a series of local but dependent predictions
are required. RNNs make use of the contextual information for the entire source sequence
and also critically are able to exploit the entire sequence of previous predictions. On various
sequence-to-sequence transduction tasks, RNNs have been shown to be comparable to the
state-of-the-art (Bahdanau, Cho, & Bengio, 2015; Meng, Lu, Tu, Li, & Liu, 2015) or su-
perior (Jean, Cho, Memisevic, & Bengio, 2015; Luong, Sutskever, Le, Vinyals, & Zaremba,
2015).

Despite their sucesses on sequence-to-sequnce learning, RNNs suffer from an important
shortcoming, which has been overlooked. When making predictions (in decoding), an LSTM
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Figure 1: Illustraction of a shortcoming of an LSTM in decoding.

needs to encode the previous local predictions as a part of the contextual information. If
some of previous predictions are incorrect, the context for subsequent predictions might
include some noise, which will undermine the quality of these predicitons, as shown in
Figure 1.

In the figure, larger fonts in the output box indicate greater confidence in the predicted
target character. The prediction at t = 7 uses a context consisting of the input and all
previous predictions. Since at t = 5 the prediction is incorrect, i.e. it should be ‘R’ (in
the reference) instead of ‘L’, it leads to an incorrect prediction at t = 7. In this way, an
LSTM is more likely to generate an unbalanced sequence deteriorating in quality as the
target sequence is generated.

A statistical analysis on the real prediction results from an LSTM was performed in
order to motivate the work reported here. The analysis supports our hypothesis: on test
examples from real machine transliteration task, we found that for sequences longer than
10 characters, the precision of predictions for the first two characters was higher than 77%,
while for the last two it was only about 65% (see Section §5.1.2). Therefore this shortcoming
may limit the potential of an RNN, especially for long sequences.

To address the above shortcoming, in this paper, we propose a simple yet efficient ap-
proach. Its basic idea relies on the agreement between two target-specific directional
LSTM models: one generates target sequences from left-to-right as usual, while the other
generates from right-to-left. Specifically, we first jointly train both directional LSTM mod-
els; and then for testing we search for target sequences which have support from both of the
models. In this way, it is expected that the final outputs contain both good prefixes and good
suffixes. Since the agreement search problem involves in a pair of models with two opposite
generation orders, its exact solution is intractable, and we have therefore developed two
approximate alternatives which are simple yet efficient. The proposed approximate search
techniques consider only a tiny subset of the entire search space, and thus they might intro-
duce some search errors, which are well-known to undermine the performance of feature-rich
linear models in NLP tasks (Collins & Roark, 2004; Huang, Fayong, & Guo, 2012; Liu &
Huang, 2014). In this paper, we analyze the search quality according to both model scores
and evaluation metrics. In particular, we provide some theoretical basis for the condition
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when the search errors undermine the performance according to different types of evaluation
metrics. In addition, we empirically evaluate our approximate search approaches under this
condition on the real dataset, and the results show that both search approaches are almost
optimal in terms of both sequence-level and non-sequence-level evaluation metrics.

This paper makes the following contributions:

• It points out and formally analyzes a shortcoming affecting recurrent neural networks
in sequence-to-sequence learning.

• It proposes an efficient approach to address the shortcoming, by encouraging the
agreement between two directional (left-to-right and right-to-left) models. In addition,
two approximate methods are proposed to search for the agreement. This approach
is general enough to be applied to any deep recurrent neural networks.

• It intensively and systematically explores the problem of search errors from different
points of view, and proposes several methods and algorithms to analyze and evaluate
the search errors. With these methods, we empirically demonstrate that our approx-
imate search methods perform similarly to the optimal search method according to
different evaluation metrics. To the best of our knowledge, it is the first time search
errors have been evaluated for recurrent neural networks from multiple views.

• On three standard sequence-to-sequence learning tasks including machine translit-
eration, grapheme-to-phoneme transduction and machine translation, the proposed
approach delivered substantial improvements and consistently outperformed several
state-of-the-art systems.

The rest of this paper is organized as follows. Section §2 revisits RNN models for
sequence-to-sequence learning and points out one of their shortcomings; Section §3 pro-
poses the agreement model based on target-bidirectional RNNs and its approximate search
approaches to address this shortcomings; Section §4 analyzes the optimality of both approxi-
mate search approaches; the effectiveness of our model is empirically verified by experiments
on real sequence-to-sequence learning tasks in Section §5; and Section §6 presents the re-
lated work with respect to our model followed by the conclusion at the last section. Our
toolkit is publicly available on https://github.com/lemaoliu/Agtarbidir.

2. Background on Sequence-to-Sequence Learning with RNNs

Suppose x =
〈
x1, x2, · · · , x|x|

〉
denotes a sequence of characters, its tth character (at time

step t) is xt and its length is |x|. In addition, let x<t = 〈x1, x2, · · · , xt−1〉 denote a prefix
of x, and f denote a source sequence while e denote a target sequence. θ denotes the set of
model parameters of a recurrent neural network: θsuperscript denotes a component parameter
of θ depending on superscript, and it is either a bias vector (if superscript includes b) or
a matrix; θ(xt) is a vector representing embedding of xt, which is either a source character
or a target character. Note that in the rest of this paper, the subscript is reserved as the
time step in a sequence for easier reading.
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2.1 Model Definition

The sequence to sequence learning model maps a source sequence f into a target e in a
probabilistic way. Generally, this probabilistic model relies on two RNNs under the encode-
decode framework, where one RNN is used for encoding the source sequence while the other
is used for decoding the target sequence. For easier description, hEt denotes the hidden
state at time step t for encoding RNN, hDt denotes the hidden state for decoding RNN and

hE =
〈
hE1 , h

E
2 , · · · , hE|hE |

〉
denotes the sequence of hidden states for encoding RNN.

Formally, it defines a conditional probability over a pair of sequences f and e via RNNs
as follows:

P (e | f ; θ) =
∏
t

P (et | e<t; θ)

=
∏
t

softmax
(
g
(
hDt ,h

E , f
))[

I(θ, et)
] (1)

where g is a multi-layer peceptron transforming hDt , hE and f to a vector with dimension
of the target-side vocabulary size, I(θ, et) denotes the index of et in the target vocabulary,
vec[I] is a real number representing the Ith component of vector vec.

In order to further specify the definition of sequence to sequence learning architecture,
we introduce two different models in this paper. The main difference between them is
whether the attention mechanism is applied or not. Therefore, they are called Attention-
free Recurrent Neural Networks (AfRNN) and Attention-based Recurrent Neural Networks
(AbRNN) hereafter.

2.1.1 Attention-Free Recurrent Neural Networks

Sutskever et al. (2014) proposed an attention-free RNN model for sequence-to-sequence
learning. Both encoding and decoding use the same type of RNN models but they are
represented by different parameters θE and θD. Suppose < denotes a recurrent function,
then the hidden state hEt and hDt are recursively defined as follows:

hEt = <(ft, h
E
t−1; θE)

hDt = <(et−1, h
D
t−1; θD)

where the base case for encoding is hE0 = 0, and the base cases for decoding are hD0 = hE|e|
and e0, which denotes a special token with embedding θ(e0) = 0.

Let ht =
〈
h1
t , h

2
t

〉
be a hidden unit,

〈
h1
t , h

2
t

〉
= <(xt, ht−1, θ) is defined by an LSTM unit

(Graves, 2013) via the following functions:

it = σ(θiθ(xt) + θ1,ih1
t−1 + θ2,ih2

t−1 + θb,i)

jt = σ(θjθ(xt) + θ1,jh1
t−1 + θ2,jh2

t−1 + θb,j)

h2
t = jt � h2

t−1 + it � tanh(θ2θ(xt) + θ1,2h1
t−1 + θb,2)

ot = σ(θx,oθ(xt) + θ1,oh1
t−1 + θ2,oh2

t−1 + θb,o)

h1
t = ot � tanh(h2

t )

where θ(xt) denotes the embedding of xt as claimed before, σ denotes the sigmoid function
and � denotes the element-wise product over a pair of vectors.
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2.1.2 Attention-Based Recurrent Neural Networks

Note that an AfRNN encodes the entire source sequence into a single fixed-size vector
(i.e. hE|f |) for calculation of hDt in decoding. In contrast, an AbRNN is able to dynamically

summarize information from source hidden units for calculation of hDt , by using an attention
mechanism in decoding. In details, hDt is defined as follows:

hDt = <(hDt−1, et−1, ct; θ) (2)

where ct =
∑

i αt,ih
E
i denotes the context at time step t with its weight αt,i being specified

by

αt,i =
exp(θvtanh(θwhDt−1 + θuhEi )))∑
k exp(θvtanh(θwhDt−1 + θuhEk ))

,

and < is defined by the GRU unit (Cho et al., 2014) instead of LSTM unit as in AfRNN
according to Bahdanau et al. (2015):

<(ht−1, ft−1, ct) = (1− zt)� ht−1 + zt � h̃t (3)

where h̃t is defined by the following equations:

h̃t = tanh(θh,1θ(ft−1) + θh,2[rt � ht−1] + θh,3ct)

zt = σ(θz,1θ(ft−1) + θz,2ht−1 + θz,3ct)

rt = σ(θr,1θ(ft−1) + θr,2ht−1 + θr,3ct)

(4)

Furthermore, in order to capture abundant information during encoding, Bahdanau
et al. (2015) employ a bidirectional RNN to encode the source sequence in both forward
and backward directions. In other words, hEt = 〈h1,E

t , h2,E
t 〉, where h1,E

t is recursively defined

in an ascending manner, while h2,E
t is defined in a descending manner:

h1,E
t = <(ft, h

1,E
t−1; θ)

h2,E
t = <(ft, h

2,E
t+1; θ)

(5)

where the initial values h1,E
0 and h2,E

|f |+1 are 0, and < denotes a recurrent function similar to

that in Eq.(3) with a slight modification to consider ct as zero in Eq.(3), since it is defined
over two variables rather than three.

2.2 Decoding

Given a source sequence f and parameters θ, decoding can be formulated as follows:

ê
(
f ; θ,Ω(f)

)
= argmax

e∈Ω(f)
P (e | f ; θ) (6)

where P is given by Equation (1), and Ω(f) is the set of all possible target sequences e that
can be generated using the target vocabulary. Since the prediciton at time step t (i.e. et)
is dependent on all the previous predictions, it is NP-hard to optimize the exact solution of
Equation (6). Instead, an approximate solution, beam search, which generates the target
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Algorithm 1 Beam Search Algorithm

Require: initial state S0 (an empty state), beam size b
Ensure: Sg

1: FBIN = [], BEAM = [S0], Sg = S0

2: while BEAM do
3: OPEN = []
4: for all S in BEAM do
5: for all S′ in get successor(S) and not is explored(S′) do
6: if is goal state(S′) then
7: add(FBIN,S′)
8: Sg = min(S′, Sg)
9: if |FBIN| = b then

10: return Sg

11: else
12: add(OPEN,S′)

13: BEAM = min popb(OPEN)

14: return Sg

sequence by extending one token each time from left-to-right, is widely applied (Sutskever
et al., 2014).

Algorithm 1 shows the generic beam search algorithm. In this algorithm, its initial state
S0 is an empty sequence, get successor(S) consists of all possible states extending S with
only one token from left-to-right as shown in Figure 1, is explored(S′) is true if S′ has
been explored already, and is goal state(S) is true if and only if S is terminated with a
special token “eos”. Finally, the algorithm returns the target state Sg in line 14.

The main part of this algorithm is the loop between line 2 and 13. It enumerates each
successor S′ of each state S in BEAM in line 5 and checks whether S′ is a goal state or
not in line 6. If S′ is a goal state, S′ is added into final bin FBIN and the best state Sg
is added in line 7-8; otherwise S′ is added into OPEN list. Note that if the size of FBIN
exceeds b, then it returns the current Sg in line 9-10. In line 13, it performs pruning by
min popb(OPEN), which maintains a BEAM including at most b states with lower model
scores from OPEN.

2.3 Shortcoming of RNN

Despite their successes on various tasks, both AfRNN and AbRNN still suffer from a short-
coming. Suppose at time step t when predicting et, there is an incorrect prediciton et′ for t′

with 0 6 t′ < t. In other words, the hidden states hDt′′ makes use of this incorrect informa-
tion for each t′′ in the range t′ < t′′ 6 t; and this can be expected to degrade the quality of
all the predictions made using the noisy hDt′′ . Ideally, at any timestep t′′ if the probability
of a correct prediction is pt′′ , then will hDt contain noisy information with a probability
of: 1−∏06t′<t pt′ . As t increases the probability of noise in the context increases quickly,
and therefore it is more difficult for an RNN to make correct predictions as the sequence
length increases. As a result, generic LSTMs cannot maintain the quality of their earlier
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predictions in their later predictions, and this is a serious problem especially when the input
sequence is long.

3. Agreement on Target-Bidirectional RNNs

As explained in the previous section, although the generic (left-to-right) RNN struggles
when predicting suffixes, fortunately, it is very capable at predicting prefixes. On the other
hand, a complementary RNN which generates targets from right-to-left, is proficient at
predicting suffixes. Inspired by work in the field of word alignment (Liang, Bouchard-Côté,
Klein, & Taskar, 2006), we propose an agreement model for sequence-to-sequence learning
to overcome the shortcoming described in §2. It encourages the agreement between both
target-directional RNN models.

3.1 Agreement Model

Formally, we develop the joint training objective based on the agreement over a pair of
target-bidirectional RNNs following Liang et al. (2006):1

min−→
θ ,
←−
θ

∑
〈f ,e〉

(
log
(−→
P(e | f ;

−→
θ )
)

+ log
(←−
P(e | f ;

←−
θ )
))

(7)

where the example 〈f , e〉 ranges over a given training set.
−→
P and

←−
P are the left-to-right (l2r)

and right-to-left (r2l) RNN models respectively, with definitions similar to Equation (1);
−→
θ

and
←−
θ denote their parameters. This model is called an agreement model or bidirectional

model in this paper. To perform the optimization, we employ AdaDelta (Zeiler, 2012), a
mini-batch stochastic gradient method. The gradient is calculated using backpropogation
through time (Rumelhart, Hinton, & Williams, 1986), where the time is unlimited in our
experiments.

Suppose
←→
θ =

〈−→
θ ,
←−
θ
〉

denotes the over all parameters in Eq.(7), and P (e | f ;
←→
θ ) be the

product of a pair of bidirectional models as follows:

P (e | f ;
←→
θ ) =

−→
P(e | f ;

−→
θ )×←−P(e | f ;

←−
θ ) (8)

Then decoding can be formulated similarly by plugging Eq.(8) into Eq.(6). Note that
although the right hand of Eq.(8) involves in two distributions, their product is not a
distribution any more since it may not be normalized to 1 with respect to e. However, it
does not matter as a criteria for search and thus we still use P to denote the product of
two probabilities in Eq.(8) in this paper for the consistency.

The above directional RNN is different from the ideas in many works, for example,
Sundermeyer, Alkhouli, Wuebker, and Ney (2014), Bahdanau et al. (2015), Rao, Peng, Sak,
and Beaufays (2012), Yao and Zweig (2015), where directions are specified by the source
side instead of the target side as in our approach. Therefore, their bidirectional RNNs will
still suffer from the shortcoming mentioned before. The source-side bidirectional method
has been proven to be a basic and practical technique, and it can be easily employed in our

1. It might be better to constrain the embedding parameters across the two directional models as in Tamura,
Watanabe, and Sumita (2014), and this remains future work.
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models for potential improvements, but we skip it to instead to highlight the novelty of our
model in this paper.

In addition, our agreement model employs a pair of RNNs and thus it is in some sense an
ensemble. However, there are major differences between our idea and the neural network
ensembles reported in the literature to date. Firstly, the decoding for each RNN in an
ensemble of RNNs is straightforward to implement in the standard manner, whereas the
decoding for our agreement model with different directional RNNs is challenging, as will
be shown in the next section. Secondly, our idea is orthogonal to an ensemble, since the
left-to-right and right-to-left RNNs of our agreement model can themselves be an ensemble
of RNNs, and in fact this approach was taken in the experiments reported here.

3.2 Approximate Search

In the rest of this section, we firstly discuss the challenges in optimal search for the agreement
model and then we propose two approximate solutions to address its search problem.

3.2.1 Challenges in Agreement Search

The exact inference for an agreement model is usually intractable, even in the cases where
the individual models can be factorized locally. On an agreement task using HMMs, Liang
et al. (2006) apply an approximate inference method which depends on the tractable calcu-
lation of the marginal probability. Unfortunately, this approximate method can not be used
in our case, because our individual model (the RNN) is globally dependent and therefore
such marginal calculations are not tractable.

Bidirectional search (Kaindl & Kainz, 1997) for agreement search is also impracticable
for our agreement model. The reason being that the generation processes proceed in different
directions; the agreement model generates partial sequences either in a left-to-right or in a
right-to-left manner during the search. It is impossible to calculate both left-to-right and
right-to-left model scores simultaneously for each partial sequence because the prediction
of a latter token depends on the former token predictions in RNNs.

We propose two simple approximate methods for agreement search, which explore a
smaller space than that of beam search. Their basic idea is aggresive pruning followed
by exhaustive search: we first aggressively prune the entire exponential search space and
then obtain the 1-best result via exhaustive search over the pruned space S with respect
to the agreement model. Critical to the success of this approach is that the aggressive
pruning must not eliminate the truly optimal hypothesis from the search space prior to the
exhaustive search phase. In the rest of this section, we provide two methods to construct
the pruned space S.

3.2.2 Union b-best Approximation

Suppose b denotes the beam size in beam search algorithm, and FBINl2r(b) and FBINr2l(b)
are two FBINs for the left-to-right and right-to-left RNN models in Algorithm 1, respec-
tively. Then we construct the first search space S1(b) as the union of these two sets:

S1(b) = FBINl2r(b) ∪ FBINr2l(b)
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Since both FBINl2r(b) and FBINr2l(b) contain at most b target sequences, exhaustively re-
scoring S1 with the agreement model has complexity O(b). One advantage of this method
is that the search space is at most twice the size of that of its component RNN models, and
since the b-best size for generic RNNs is typically very small, this method is computationally
light. To make this explicit, in all the experiments reported here, the b-best size was 12,
and the additional rescoring time was negligible.

3.2.3 Polynomial Approximation

Observing that both the prefixes of sequences in FBINl2r(b) and the suffixes of sequences
in FBINr2l are of high quality, we construct the second search space S2(b) as follows:

S2(b) =
{

e[: t] ◦ e′[t′ :]
∣∣∣ e ∈ FBINl2r(b), e

′ ∈ FBINr2l(b), 0 6 t 6 |e|, 0 6 t′ 6 |e′|
}

where ◦ is a string concatenation operator, [: t] is a prefix operator that yields the first t
characters of a string, and [t :] is a suffix operator that yields the last t characters. Since
S2(b) contains at most b2N2 target sequences, exhaustively rescoring over this space has
complexity O(b2N2), where N is length of the longest target sequence2. In our implemen-
tation, the speed for rescoring over this space was approximately 0.1 seconds per sentence,
thanks to efficient use of a GPU. We can see that the search space of this method includes
that of the first method as a proper subset (S2(b) ⊃ S1(b)), and thus this method can be
expected to lead to higher 1-best agreement model scores than the previous method.

4. Analysis on Agreement Search

As discussed earlier, our agreement search only explores a tiny subset of the entire exponen-
tially large space. Therefore, one may argue that our agreement search may cause serious
search errors, and thus its performance is limited due to these search errors, which are
known to undermine linear models on many sequence-to-sequence learning tasks (Collins
& Roark, 2004; Huang et al., 2012; Liu & Huang, 2014). In this section, we firstly mea-
sure search errors for our agreement serach approaches according to model scores; and then
we show whether these search errors largely degrade end-to-end performance according to
evaluation metrics. To quantify the search errors in terms of both methods, we empirically
conduct analysis on machine transliteration Jp-En task (see the details of the dataset in
the Section §5.1 later), and use ACC (Word Accuracy in Top-1) and Fscore (Fuzziness in
Top-1, or Mean F-score) as two standard evaluation metrics following Zhang, Li, Liu, and
Kumaran (2012).

4.1 Measuring Search Errors

Inspired by Huang and Chiang (2007), we employ the Expected Relative Scores (ERS) to
measure the search errors for each agreement search approach represented by Si(b) (i = 1, 2)
as follows:

ERSi(b) = Ef [ max
e∈Ω(f)

P (e | f)− max
e∈Si(b)

P (e | f)]

2. One can also design some methods to filter some undesirable concatenations safely, for example, those
leading to too long or too short sequences. This will make rescoring much faster.
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Figure 2: AERS with respect to different beam sizes 1, 2, 4, 8, 12, 24, and 48 in log scale.

where b denotes beam size. It is trivial to know ERSi > 0, and if ERSi = 0, then the search
approach represented by Si(b) has no search errors. However, it is intractable to calculate
ERSi exactly due to maxe∈Ω(f) P (e | f). Instead, we adopt an Approximate Expected
Relative Scores (AERS), which is a lower bound to measure the search errors:

AERSi(b) = Ef [ max
e∈S1(b0)

P (e | f)− max
e∈Si(b)

P (e | f)] 6 ERSi(b)

where b0 � b is a sufficiently large constant. Note that if b0 →∞, then S1(b0)→ Ω(f) and
thereby AERSi(b) is close to ERSi(b) for any b. In this section, b0 is set to 2000.

In order to measure the search errors, we randomly pick up some examples f from
a machine transliteration task, and then calculate AERSi(b) for different beam sizes b.
Figure 2 shows the AERSi(b) for both agreement search approaches according to b. We can
see that AERS2(b) corresponding to polynomial approximation is smaller than AERS1(b)
corresponding to union b-best, which shows that the former agreement search approach is
better than the latter one according to search errors. In addition, with a beam size of 12,
for both agreement search approaches, their ARES are good enough and thus their search
quality is promising on this task. Note that since the vocabulary size is only 28, the AERS
is relatively small; while it would be much larger for the task with large vocabulary size. 3

4.2 Optimality towards Evaluation Metrics

Although our approximate agreement search approach leads to some search errors indicated
by ARES, in this section we try to answer the question of how much improvement the
optimal agreement search has over our approximate approach according to the evaluation
metrics.

3. We did not calculate AERS on machine translation task, because it needs a very large b0, which is
impossible due to the computational limitation.
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Suppose the parameters of our agreement model
←→
θ are fixed after training, r is the

reference sequence of f , Si(b) represents each of our approximate search approaches as
before; let e∗ be the optimal sequence, and êi be the sequence optimized via Si(b), i.e.
e∗ = argmaxe∈Ω(f) P (e | f ;

←→
θ ), and êi = argmaxe∈Si(b) P (e | f ;

←→
θ ). In addition, let

D = {e | M(e) > M(êi)} denote a domain of e, where the metric represented by M (the
higher is the better) of each element is better than that of êi.

Firstly, we define the quantity Q as follows:

Q(
←→
θ ) = max

e∈D
P (e | f ;

←→
θ )− P (êi | f ;

←→
θ )

We can obtain the following theorem:

Theorem 1. Suppose P (êi | f ;
←→
θ ) < P (e∗ | f ;

←→
θ ), if Q(

←→
θ ) 6 0, then M(e∗) 6M(êi).

Proof. To prove it by contradiction, we assume M(e∗) > M(êi), i.e. e∗ ∈ D. Then
maxe∈D P (e | f ;

←→
θ ) > P (e∗ | f ;

←→
θ ).

On the other hand, Q(
←→
θ ) 6 0 induces P (êi | f ;

←→
θ ) > maxe∈D P (e | f ;

←→
θ ). Since

P (e∗ | f ;
←→
θ ) > P (êi | f ;

←→
θ ), one has maxe∈D P (e | f ;

←→
θ ) < P (e∗ | f ;

←→
θ ). This is a

contradiction.

The above theorem shows that if êi is not optimal and Q(
←→
θ ) 6 0, then e∗ is worse than

êi according to the metric M . In other words, in this case, the optimal agreement search
approach does not lead to improvements over our approximate approach. In contrast, if
Q(
←→
θ ) > 0, it is possible that e∗ is equal to argmaxe∈D P (e | f ;

←→
θ ) and thusM(e∗) > M(êi),

where our approximate search undermines the performance in terms of M .

Using the above as a basis, we employ the following scheme to evaluate the potential
of our search methods as follows: randomly select examples from the development set and
calculate the distribution of the two cases Q(

←→
θ ) > 0 and Q(

←→
θ ) 6 0, which are represented

as GT (i.e. Greater Than) and LT (i.e. Less or equal Than), respectively. In addition,
to alleviate the dependency on

←→
θ , we try 100 parameter sets optimized by our training

algorithm starting from different initializations4. For simplicity, we run our bidirectional
RNN model based a pair of AfRNNs on the machine transliteration task in this section.

However, there still is a problem to be addressed, which is to solve the constrained
decoding, i.e. maxe∈D P (e | f ;

←→
θ ). Let us consider this problem in terms of different kinds

of metrics M in the next.

4.2.1 Evaluation on Sequence-Level Metrics

If M is a sequence-level metric, for example, ACC for machine transliteration. It is a 0-
1 metric, i.e. if e exactly matches its reference r, then M(e) = 1 otherwise M(e) = 0.
Therefore, D = {e |M(e) > M(êi)} is either {r} or ∅ depending on M(êi)} = 0 or not. In
this case, it is trivial to solve the constrained maximization problem and thus calculate the
distribution of GT and LT based on the value of Q(

←→
θ ). 5

4. These parameters are from independently training the agreement model with 10 different initializations,
as it is too costly to train with 100 initializations.

5. If D = ∅, we assume that the maximization problem over D is well defined with value of −∞.
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Figure 3: Potential estimations based on the distribution of GT (red ‘x’) and LT (blue ‘+’)
for union b-best (a) and polynomial (b) approximations along sequences with
different length in terms of sequence level metrics. The ratio between GT and LT
(less than 0.2%) indicates the search errors.

Sequences Scores Acc Fscore

êi F I G U E L O R A -0.3 0 0.78
e∗ F I G U E R O R A -0.2 0 0.89
r F I G U E R O L A -0.4 1 1.0

Table 1: The optimal sequence e∗ can not lead to better Acc than êi obtained by our
approximate search, but it leads to better Fscore. ‘Scores’ denotes the model
scores, red color denotes an error regarding to reference r.

Figure 3 shows that the distribution of GT and LT with respect to source sequence
length for both approximate search methods. It is clear that there were some LT (plotted
with a blue ‘+’) cases for union b-best approximation method and many of them were
eliminated by using polynomial approximation method. This fact shows that search errors
do undermine the performance in terms of sequence-level metrics. Fortunately, the cases
of LT (plotted with a blue ‘+’) far outnumber the GT cases, and only 0.2% of all cases
were GT, even for union b-best approximation. This 0.2% represents all this is possible to
be gained by improving the search technique, and therefore both approximate methods can
be said to be “almost optimal”. In addition, we can see that the search quality for short
sequences is much better than that for long sequences. This is as one expected, because the
search space for short sequences is much smaller.

The above scheme relates to sequence-level metrics like Acc, but it can not give an
indication of the effect on non sequence-level metrics such as Fscore. For example, in
Table 1, since e∗ ∈ D, maxe∈D P (e | f ;

←→
θ ) > P (e∗ | f ;

←→
θ ) > P (ê | f ;

←→
θ ) and thus Q(

←→
θ ) > 0.
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Operations Positions Sequences

Substitute with R 6 F I G U E R O R A
Insert A 5 F I G U E A L O R A
Delete L 6 F I G U E O R A

Table 2: The operations to get successors for the state of sequence “F I G U E L O R A”.
“Positions” denotes the position at the sequence to be operated; and “Sequences”
denotes the resulted sequences after the corresponding operation.

The optimal sequence e∗ thus can not obtain gains in Acc, while it still gains in Fscore.
Therefore, we need to consider the case of non-sequence-level metrics such as Fscore.

4.2.2 Evaluation on Non-Sequence-Level Metrics

Algorithm 2 Variant Beam Search Algorithm

Require: êi, state Sr regarding to reference r, beam size b, a large threshold B
Ensure: Sg

1: i = 0, BEAM = [Sr], Sg = Sr
2: while BEAM do
3: OPEN = []
4: for all S in BEAM do
5: for all S′ in get successor(S) and not is explored(S′) do
6: if is goal state(S′; êi) then
7: i = i+ 1
8: Sg = min(S′, Sg)
9: add(OPEN,S′)

10: if i > B then
11: return Sg

12: BEAM = min popb(OPEN)

13: return Sg

Suppose M is a kind of non-sequence-level metrics such as Fscore, e ∈ D contains
exponentially many elements, and thus it is impracticable to enumerate the elements to solve
the maximization problem. Furthermore, since P (e | f ,

←→
θ ) is defined upon bidirectional

RNNs, it is intractable to exactly solve the maximization problem, and thus we develop a
variant beam search approximate method as shown in Algorithm (2).

Algorithm 2 is similar to the standard beam search in Algorithm 1, but there are some
differences. Firstly, we start from the state Sr corresponding to reference r instead of an
empty state as in Algorithm 1 for search. Secondly, get successor(S), is goal state(S′; êi)
and min(S′, Sg) have different definitions. get successor(S) denotes a set of S′ whose
sequence differs from the sequence of S by an operation among substitution, insertion, and
deletion as shown in Table 2; is goal state(S′; êi) means that êi is better than the sequence
of S′ according to a metric M ; and min(S′, Sg) is compared with the bidirectional RNNs
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Figure 4: Potential estimations based on the distribution of GT (red ‘x’) and LT (blue ‘+’)
for union b-best approximation along sequences with different length in terms of
non-sequence (token) level metric. The ratio between GT and LT (less than 2%)
indicates the search errors.

rather than unidirectional RNN as in Algorithm 1. In addition, we use a large threshold B
for better search quality. In this paper, b and B are set to 12 and 20000 to trade off the
efficiency and search quality.

Figure 4 shows that the distribution of GT and LT with respect to source sequence
length for both approximate search methods. We can see that there are more LT (plotted
with a blue ‘+’) cases in Figure 3 than before, which means that search errors lead to
more drops in non-sequence-level metrics than those in sequence-level metrics. Fortunately,
the cases of LT (plotted with a blue ‘+’) are still dominated by GT cases. Their ratio
of 2% indicates that the optimal search method can only achieve relative gains of 2% in
non-sequence-level metrics, compared with our approximate method.

5. Experiments

We evaluated our approach on three standard sequence-to-sequence learning tasks: machine
transliteration, grapheme-to-phoneme conversion, and machine translation. The first two
are relatively easier sequence-to-sequence learning tasks, since there are no reorderings
between source and target sequences; while the last one is difficult due to reorderings.

On evaluation, we use Acc and Fscore for machine transliteration, Wer (word error
rate) and Per (phoneme error rate) for grapheme-to-phoneme, following Zhang et al. (2012),
Kubo, Sakti, Neubig, Toda, and Nakamura (2014), Finch, Liu, Wang, and Sumita (2015),
and Bleu for machine translation (Papineni, Roukos, Ward, & Zhu, 2002). For both Wer
and Per, lower is better; while for Acc, Fscore and Bleu, higher is better. Note that Acc
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and Wer are sequence-level metrics, while Fscore, Per and Bleu are non-sequence-level
metrics.

In the experiments, we used several systems as baselines, which are listed below. The
first four used open source implementations, and the last two were re-implemented:

• Moses: a phrase based machine translation model (Koehn et al., 2007) used with
default settings except the monotonic decoding as in Finch and Sumita (2008); the
reported results are the best from five independent runs of MERT.
• Moses hier: a herarchical phrase based machine translation model (Chiang, 2005)

implemented with the Moses toolkit.
• DirecTL+: a feature-rich linear model trained and run with default settings (Ji-

ampojamarn, Cherry, & Kondrak, 2008)6.
• Sequitur G2P: a joint n-gram model trained and run with default settings (Bisani

& Ney, 2008).
• AfRNN: a attention-free RNN model with LSTM as its RNN unit, which is uni-

directional model and re-implemented with Theano (Bergstra et al., 2010) following
Sutskever et al. (2014).
• AbRNN: a neural translation model (Bahdanau et al., 2015) with an attention mech-

anism, which is unidirectional and from the open source NMT system.
• EAfRNN: an unidirectional ensemble of several AfRNNs with the same direction.
• EAbRNN: an unidirectional ensemble of several AbRNNs with the same direction.

In implementation of AfRNN, we reverse the source sequences for encoding as Sutskever
et al. (2014). Our proposed bidirectional (agreement) RNN models are implemented on
both AfRNN and AbRNN and denoted as follows:

• BAfRNN: bidirectional model including a single left-to-right (l2r) AfRNN and a
single right-to-left (r2l) AfRNN.
• BAbRNN: bidirectional model including a single left-to-right (l2r) AbRNN and a

single right-to-left (r2l) AbRNN.

Since our bidirectional model is orthognal to ensemble, and we develop bidirectional models
based on ensemble of AfRNN and AbRNN for better performance:

• BEAfRNN: bidirectional model on the ensemble of AfRNN in both directions.
• BEAbRNN: bidirectional model on the ensemble of AbRNN in both directions.

In order to indicate the number of individual RNNs and its directions, we adopted the
notations with format m-d-n, where m denotes the specific model, d denotes either left-to-
right or right-to-left and n denotes the number of individual RNNs. For example, EAfRNN-
l2r-5 denotes the unidirectional ensemble of five left-to-right AfRNNs and BEAbRNN-5
denotes the bidirectional model including five left-to-right AbRNNs and five right-to-left
AbRNNs.

For all open source systems, their configurations and hyperparameters were set to their
default settings, if not explicitly stated. In order to make the comparison fair, the stopping
iteration was selected using the development set for all systems except Moses (which has
its own termination criteria).

6. We tried various different settings but the default settings proved to be the most effective.
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Approximations Acc Fscore

union b-best 33.3 85.1
polynomial 33.4 85.1

vanilla 32.7 84.9

Table 3: Performance of both search methods over the vanilla method using BAfRNN on
the Jp-En test set. For the vanilla method, its rescoring space is fixed as the
b-best list from one left-to-right AfRNN.

5.1 Machine Transliteration

For the machine transliteration task, we conducted both Japanese-to-English (Jp-En) and
English-to-Japanese (En-Jp) directional subtasks. The transliteration training, develop-
ment and test sets were taken from Wikipedia inter-language link titles7 from Fukunishi,
Finch, Yamamoto, and Sumita (2013): the training data consisted of 59000 sequence pairs
composed of 313378 Japanese katakana characters and 445254 English characters; the de-
velopment and test data were manually cleaned and each of them consisted of 1000 sequence
pairs.

For all of the re-implemented models based on AfRNN, the number of word embedding
units and hidden units were set to 500. We use the adadelta for training RNN based systems:
the decay rate ρ and constant ε were set as 0.95 and 10−6 as suggested by Zeiler (2012),
and minibatch sizes were 16.

In our experiments, we found one layer RNN works well for AfRNN, thanks to the
limited vocabulary in this task. Therefore, we employ one layer RNN for all AfRNN based
models including both unidirectional and bidirectional models.

5.1.1 Results

Table 3 shows the performance of the approximate search methods on the Jp-En test
set, and their comparisons with a vanilla approximate method, which defines the rescoring
space as the b-best list from left-to-right AfRNN model. We can see that both (i.e. union
b-best and polynomial ) methods achieve some improvements over the vanilla method. In
addition, both proposed methods perform almost identically in terms of Acc and Fscore.
This result is not surprising, because both of them are near optimal (as illustrated in the
previous section). Therefore, in the remainder of the experiments, we only report the results
using the union b-best approximate search.

Table 4 shows the results on the test sets of both Jp-En and En-Jp tasks. Firstly, we can
see that the undirectional neural networks (AbRNN and AfRNN) have lower performance
than the strongest non-neural network baselines (Sequitur G2P), even when they achieve
comparable performance on En-Jp. Our agreement model BAfRNN shows substantial gains
over both the AbRNN and AfRNN on both tasks. More specifically, the gain was up to 4.1
percentage points in terms of Acc and up to 4.8 percentage points in terms of Fscore.
Moreover, BAfRNN showed comparable performance relative to Sequitur G2P on Jp-En

7. www.dumps.wikimedia.org
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Systems Detailed Model
Jp-En En-Jp

Acc Fscore Acc Fscore

Moses log-linear 29.8 83.3 37.1 80.8
DirecTL+ feature-rich linear 11.1 75.1 31.7 79.9

Sequitur G2P joint n-gram 34.6 84.6 39.8 81.6

AbRNN

RNN models

29.2 82.8 40.0 81.2
AfRNN 28.3 83.0 40.1 81.0

BAfRNN 33.3 85.1 43.8 85.0
EAfRNN-5 34.2 85.4 44.5 86.0

BEAfRNN-5 36.3 86.0 45.3 86.3

Table 4: The comparison of different systems on machine transliteration (Jp-En and En-
Jp) tasks.

Systems Prefix Suffix

AfRNN-l2r 77% 65%
AfRNN-r2l 76% 74%
BAfRNN 80% 74%

EAfRNN-l2r-5 82% 73%
EAfRNN-r2l-5 82% 77%
BEAfRNN-5 82% 78%

Table 5: Precision of prefixes (the first two characters) and suffixes (the last two characters)
on long sequences longer than 10 characters from the Jp-En test set.

task, and was markedly better on the En-Jp task. Note that since AfRNN is comparable
to AbRNN, we did not run bidrectional models based on AbRNN in Table 4.

Secondly, the BEAfRNN-5 which used ensembles of five AfRNNs in both directions con-
sistently achieved the best performance on both tasks, and outperformed Sequitur G2P by
up to absolute gains of 5.5 points and 14% relative gains. In addition, BEAfRNN-5 outper-
formed the EAfRNN-5 by a substantial margin on all tasks, showing that our bidirectional
agreement is effective in improving the performance of the unidirectional AfRNN on which
it is based.

Furthermore it is clear that the gains of the BEAfRNN-5 relative to the EAfRNN-5 on
Jp-En were larger than those on En-Jp. We believe the explanation is likely to be that the
relative length of target sequences with respect to the source sequences on Jp-En is much
larger than that on En-Jp, and our agreement model is able to draw greater advantage
from the relatively longer target sequences. The relative length of the target for Jp-En was
1.43, whereas the relative length for En-Jp was only 0.70.
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Systems Acc Fscore

AfRNN-l2r 17.3 82.2
AfRNN-r2l 18.5 83.5
BAfRNN 25.0 85.3

EAfRNN-l2r-5 24.4 86.8
EAfRNN-r2l-5 28.6 87.0
BEAfRNN-5 28.6 88.2

Table 6: Performance comparison on long sequences (> 10 tokens) on the Jp-En test set.

Systems Acc Fscore

AfRNN-l2r 28.3 83.4
AfRNN-r2l 29.7 83.6

EAfRNN-r2l-2 31.2 84.2
BAfRNN 33.3 85.1

EAfRNN-l2r-5 34.2 85.4
EAfRNN-r2l-10 34.0 85.2
EAfRNN-l2r-10 34.5 85.6

BEAfRNN-5 36.3 86.0

BEAfRNN-10 36.5 86.2

Table 7: Ensemble Uni- and Bidirectional AfRNNs compared on the Jp-En test set.

5.1.2 Analysis on Jp-En

One of the main weaknesses of RNNs is their unbalanced outputs which have high quality
prefixes but low quality suffixes, as discussed earlier. Table 5 shows that the difference in
precision is 12% for AfRNN-l2r between prefixes and suffixes. This gap narrowed using the
BAfRNN, which outperformed the AfRNN-l2r on both prefix and suffix (with the largest
difference on the suffix) and outperformed the AfRNN-r2l on the prefix. A similar effect
was observed with the BEAfRNN-5, which generated the better, more balanced outputs
compared to EAfRNN-l2r-5 and EAfRNN-r2l-5 models.

Our agreement model worked well for long sequences, and this is shown in Table 6. The
BAfRNN obtained large gains over AfRNN-l2r and AfRNN-r2l, (the gains were up to 7.7 and
3.1 in terms of Acc and Fscore, respectively). Furthermore, the BEAfRNN-5 obtained
gains of 1.2 points in terms of Fscore over the EAfRNN-r2l-5, but gave no improvements
in terms of Acc. This is to be expected, since for long sequences it is hard to exactly match
the references and thus it is more difficult to improve Acc.

To ensure a fairer comparison, the number of individual AfRNNs in both the ensemble
and our agreement model were identical in the experiments. As shown in Table 7, although
the BAfRNN explores a much smaller search space than the AfRNN-r2l-2, it substantially
outperformed it. As the number of total number of AfRNNs used was increased to ten,
the BEAfRNN-5 still obtained substantial gains over the EAfRNN-l2r-10. Incorporating
more directional AfRNNs in the BEAfRNN-10 further increased the performance of the
BEAfRNN.
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Systems Wer Per

Moses 31.0 7.0
DirecTL+ 33.0 8.1

Sequitur G2P 25.0 6.0

AbRNN 29.4 7.9
AfRNN 29.6 8.0

BAfRNN 23.8 5.8

EAfRNN-5 22.1 5.3
BEAfRNN-5 21.2 5.0

Table 8: The comparison on machine transliteration on grapheme-to-phoneme (Gm-Pm)
task.

Model Wer Per

Wu, Allauzen, Hall, Riley, and Roark (2014) non-nn 23.4 5.5

Yao and Zweig (2015) nn 23.6 5.5

Rao et al. (2012) hybrid 21.3 -

This paper nn 21.2 5.0

Table 9: Comparison with the reported results from different models on Gm-Pm task. ‘-’
denotes no result was reported in the corresponding paper. ‘nn’ denotes a neural
network model, ‘non-nn’ denotes a non-neural network model, and ‘hybrid’ denotes
a linear combination between neural network and non-neural network models.

5.2 Graphenem to Phoneme Conversion

For grapheme-to-phoneme (Gm-Pm) conversion, the standard CMUdict8 data sets were
used: the original training set was randomly split into our training set (about 110000 se-
quence pairs) and development set (2000 pairs); the original test set consisting of about
12000 pairs was used for testing. For all of RNN based models, we used the same configura-
tion and hyperparameters as in machine transliteration task except that the minibatch size
was 64 for Gm-Pm task. In addition, we use the same baselines as in machine transliteration
task to conduct experiments.

Table 4 shows the results on the test set of Gm-Pm. We can clearly see that the undi-
rectional neural networks (AbRNN and AfRNN) are worse than the strongest non-neural
network baselines (Sequitur G2P). Fortunately, with the help of bidirectional models, one
can obtain substantial gains over both the AbRNN and AfRNN. Moreover, the BEAfRNN-5
achieved the best performance and outperformed Sequitur G2P by up to absolute gains of
5.5 points and 17% relative gains. In addition, BEAfRNN-5 outperformed the EAfRNN-5
by a substantial margin on all tasks. These results show that our bidirectional model is
very effective in improving the unidirectional AfRNN.

8. http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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We also compare our results with the reported ones taken from other papers on Gm-Pm
task 9, and these results are summarized in Table 9. This table shows that our results out-
perform these reported results from both non-neural network and neural network methods
with a relative gains of up to 9%. Additionally, our end-to-end neural network method is
slightly better than a hybrid method (Rao et al., 2012), which is a linear combination of
WFST (Novak, Minematsu, & Hirose, 2012) and neural network models10. One of the our
benefits over Rao et al. (2012), Yao and Zweig (2015) is that it does not need any external
modules such as WFST or Aligner, and this makes ours more flexible.

5.3 Machine Translation

We conducted experiments on two challenging translation tasks: Japanese-to-English (Jp-
En) and Chinese-to-English (Ch-En), using case-insensitive Bleu for evaluation. For the
Jp-En task, we use the data from NTCIR-9 (Goto, Lu, Chow, Sumita, & Tsou, 2011): the
training data consisted of 2.0M sentence pairs, The development and test sets contained
2K sentences with a single referece, respectively. For the Ch-En task, we used the data
from the NIST2008 Open Machine Translation Campaign: the training data consisted of
1.8M sentence pairs, the development set was nist02 (878 sentences), and the test sets were
nist05 (1082 sentences), nist06 (1664 sentences) and nist08 (1357 sentences).

Since the vocabulary size is much larger than that in machine transliteration, AfRNN
with a single layer LSTM does not work well in our preliminary experiment. However, it
is costly to train AfRNN with multiple layers on our large scale tasks, and thus we did not
implement our bidirectional model on top of AfRNN but on top of AbRNN. As comparison,
four baselines were used. The first two were the conventional phrase-based model Moses
and hierarchical phrase-based model Moses hier. and are respectively denoted as Moses and
Moses-hier. The other two were AbRNN and its ensemble EAbRNN.

We followed the standard pipeline to train and run Moses. GIZA++ (Och & Ney, 2000)
with grow-diag-final-and was used to build the translation model. We trained 5-gram target
language models with srilm (Stolcke et al., 2002) using the training set for Jp-En and the
Gigaword corpus for Ch-En, and used a lexicalized distortion model. All experiments were
run with the default settings except for a distortion-limit of 12 in the Jp-En experiment,
as suggested by Goto, Utiyama, Sumita, Tamura, and Kurohashi (2013).11 To alleviate
the negative effects of randomness, the final reported results are averaged over five runs of
MERT as suggested by Clark, Dyer, Lavie, and Smith (2011). We used the following settings
for AbRNN-based systems: the dimension of word embedding was 620, the dimension of
hidden units was 1000, the batch size was 80, the source and target side vocabulary sizes
were 30000, the maximum sequence length was set to 80, and the beam size for decoding
was 12. Training was conducted on a single Tesla K80 GPU, and it took about 6 days to
train a single AbRNN system on our large-scale data.

9. We can not present the similar comparison on machine transliteration tasks, since there are no previous
publications conducting experiments on the same datasets as ours.

10. We believe that the linear combination of ours and non-neural network methods will lead to more
improvements, but this is beyond the scope of this paper.

11. This configuration achieved the significant improvements over the default setting on Jp-En.
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Systems dev test

Moses 27.9 29.4
Moses-hier 28.6 30.2

AbRNN-l2r 31.5 32.4
AbRNN-r2l 31.5 32.6
BAbRNN 33.0 34.1

EAbRNN-l2r-5 32.6 33.7
EAbRNN-r2l-5 33.0 34.3
BEAbRNN-5 33.8 35.0

EAbRNN-l2r-10 32.5 33.6
EAbRNN-r2l-10 33.0 34.2

Table 10: Bleu comparison of the proposed bidirectional models with baselines on Jp-En
task.

Systems nist05 nist06 nist08

Moses 35.4 33.7 25.0
Moses-hier 35.6 33.8 25.3

AbRNN-l2r 34.2 34.9 27.7
AbRNN-r2l 34.0 34.1 26.9
BAbRNN 36.8 36.9 28.5

EAbRNN-l2r-5 37.0 37.5 28.2
EAbRNN-r2l-5 36.9 37.1 27.3
BEAbRNN-5 37.5 38.9 28.8

Table 11: Bleu comparison of the proposed bidirectional models with baselines on Ch-En
task.

5.3.1 Results

Table 10 shows the main results on the Jp-En task. From this table, we can see that,
although a single AbRNN model (either left-to-right or right-to-left) comfortably outper-
forms the Moses and Moses-hier baselines, our simple BAbRNN (with one l2r and one r2l
AbRNN model) obtain gains of 1.5 Bleu points over a single AbRNN. In addition, the
more powerful bidirectional model BEAbRNN-5, which is an ensemble of five l2r and five
r2l AbRNN models, gains 0.7 Bleu points over the strongest AbRNN ensemble EAbRNN-
r2l-5, i.e. an ensemble of five r2l AbRNN models. The ensemble of bidirectional models
achieved considerable gains of 5.6 and 4.8 Bleu points over the state-of-the-art Moses and
Moses-hier, respectively.

One might argue that our BEAbRNN-5 contained ten AbRNN models in total, while
the EAbRNN-l2r-5 or EAbRNN-r2l-5 only used five models, and thus such a comparison
is unfair. Therefore, we integrated ten AbRNN models into the EAbRNN-r2l-10 ensemble.
In Table 10, we can see that EAbRNN-r2l-10 is not necessarily better than EAbRNN-r2l-5,
which is consistent with the findings reported in Zhou, Wu, and Tang (2002).
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Table 11 shows the comparison between our method and the baselines on the Ch-En
task.12 The results were similar in character to the results for Jp-En. The proposed
bidirectional model (BEAbRNN-5) consistently outperformed the strongest neural baseline
(AbRNN-l2r-5), an ensemble of five l2r AbRNN models, on all the test sets with gains up to
1.4 Bleu points. Furthermore, our model again achieved substantial gains over the Moses
and Moses-hier systems, in the range 1.9∼5.2 Bleu points, depending on the test set.

6. Related Work

Target-bidirectional decoding techniques were pioneered in statistical machine translation.
For example, Watanabe and Sumita (2002), Finch and Sumita (2009), Zhang, Toutanova,
Quirk, and Gao (2013) proposed these techniques for traditional SMT models instead of
neural network models as ours. In particular, target-directional neural network models were
also employed in Devlin, Zbib, Huang, Lamar, Schwartz, and Makhoul (2014). However,
their approach was concerned with feedforward networks, which can not make full use
of contextual information. Furthermore, their models were implemented using features
(i.e. submodels) to augment traditional methods (for example, a hierarchical phrase-based
translation model) in contrast to the end-to-end neural network model for sequence-to-
sequence learning in our proposal.

Our work is closely related to the work of Liang et al. (2006) in the field of word
alignment. However, we use the agreement RNNs that exploit the global context as opposed
to the local HMM models; furthermore, the proposed approach combines left and right
generation directions on the target side instead of source and target directions. In Tamura
et al. (2014) a form of agreement for globally dependent RNN models was proposed for word
alignment. Similar to the proposed method their models are trained jointly. Their approach
differs from method in the directions used for agreement, and moreover their method does
not consider decoding with the agreement model, which is a very challenging problem as
discussed before in this paper.

Recurrent neural networks have become very popular for many sequence-to-sequence
learning tasks. For example, Watanabe and Sumita (2015) and Dyer, Ballesteros, Ling,
Matthews, and Smith (2015) employed RNNs and LSTMs for constituent and dependency
parsing, where parse trees are generated as sequences of shift-reduce actions. For machine
translation, Sutskever et al. (2014) introduced neural network based on LSTMs and Bah-
danau et al. (2015) proposed an effective attention mechanism under the RNN framework.
All of these works have advanced the state-of-the-art RNNs by notable improvements of a
basic technique; one key benefit of proposed method is that it does not vertically extend
these methods, but can be generally applied on top of them all.

Particularly, Yao and Zweig (2015) and Rao et al. (2012) also employed the LSTM mod-
els for the grapheme-to-phoneme conversion task. However, our model is directly oriented
to an issue of recurrent neural network rather than a specific task itself. In addition, one of
our advantages is that our model is very flexible: it is independent on any external toolk-
its such as the alignment toolkit in Yao and Zweig (2015) or WFST (weighted finite-state

12. We did not run AbRNN-l2r-10 and AbRNN-r2l-10, because it is too time-consuming to train 10 AbRNN
models on both target directions and especially AbRNN-r2l-10 is not necessarily better than AbRNN-
r2l-5 as shown in Table 10.
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transducer) in Rao et al. (2012). Anyway, our model can be easily applied on top of them
for potential improvements.

Finally, our work is related to Bengio, Vinyals, Jaitly, and Shazeer (2015) in some sense.
Both approaches can alleviate the mismatch between the training and testing stages: the
history predictions are always correct in training while may be incorrect in testing. Bengio
et al. (2015) introduce noise into history predictions in training to balance the mistmatch,
while we try to make the history predictions in testing as accurate as those in training by
using of two directional models. Therefore, theirs focuses on this problem from the view of
training instead of both modeling and training as ours, but it is possible and promising to
apply their approach to optimize our joint model.

7. Conclusion

When generating the target in a unidirectional process for RNNs, the precision falls off
with distance from the start of the sequence, and the generation of long sequences there-
fore becomes an issue. We propose an agreement model on target-bidirectional LSTMs
that symmetrize the generative process. The exact search for this agreement model is NP-
hard, and therefore we developed two approximate search alternatives, and analyze their
behavior empirically, finding them to be near optimal. Extensive experiments showed our
approach to be very promising, delivering substantial gains over a range of strong baselines
on three standard sequence-to-sequence learning tasks: machine transliteration, grapheme-
to-phoneme conversion and machine translation.
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