
Journal of Artificial Intelligence Research 70 (2021) 891-921 Submitted 04/2020; published 03/2021

On the Evolvability of Monotone Conjunctions with an
Evolutionary Mutation Mechanism

Dimitrios I. Diochnos diochnos@ou.edu

University of Oklahoma

Abstract

A Bernoulli(p)n distribution Bn,p over {0, 1}n is a product distribution where each
variable is satisfied with the same constant probability p. Diochnos (2016) showed that
Valiant’s swapping algorithm for monotone conjunctions converges efficiently under Bn,p
distributions over {0, 1}n for any 0 < p < 1. We continue the study of monotone con-
junctions in Valiant’s framework of evolvability. In particular, we prove that given a
Bn,p distribution characterized by some p ∈ (0, 1/3] ∪ {1/2}, then an evolutionary mech-
anism that relies on the basic mutation mechanism of a (1+1) evolutionary algorithm
converges efficiently, with high probability, to an ε-optimal hypothesis. Furthermore, for
0 < α ≤ 3/13, a slight modification of the algorithm, with a uniform setup this time,
evolves with high probability an ε-optimal hypothesis, for every Bn,p distribution such that
p ∈ [α, 1/3− 4α/9] ∪ {1/3} ∪ {1/2}.

1. Introduction

Valiant (2009) introduced a framework for a quantitative approach to evolution, called
evolvability. The idea is, roughly, that there is an ideal behavior in every environment and
the feedback that the various organisms receive during evolution indicates how close their
behavior is to ideal. Ultimately, evolvability aims at modeling and explaining mechanisms
that allow near-optimal behavior of organisms while exploiting realistic computational re-
sources. Due to a result by Feldman (2008), evolvability is equivalent to learning in the
correlational statistical query (CSQ) model (Bshouty & Feldman, 2002). Thus, evolvability
algorithms correspond to a special type of local search learning algorithms that fall under
the umbrella of the probably approximately correct (PAC) model of learning (Valiant, 1984).
In fact Valiant (2013) gives a broad exposition of such algorithms for evolution, which he
calls ecorithms, and discusses them within the context of computational complexity and
computational learning theory. Watson and Szathmáry (2016) have an interesting related
discussion on the connections between computational learning and evolution.

A key challenge for machine learning (and more broadly, for artificial intelligence) al-
gorithms, is that of brittleness. That is, typically many artificial intelligence systems fail
when tested outside of some narrow domain for which they have been designed; such discus-
sions go back to expert systems (see, e.g., Duda & Shortliffe, 1983). John Holland (1986)
argues on the use of genetic algorithms in order to handle brittleness. Valiant (2013) also
mentions brittleness as a challenge that needs to be addressed by ecorithms. Both Holland
and Valiant argue that learning is needed in order to tackle brittleness.

As a consequence, machine learning algorithms that can cope with noise are more desir-
able as they are more realistic for practical purposes. Quinlan (1986) conducted one of the
first wide experimental studies on various types of noise. However noise has been studied

©2021 AI Access Foundation. All rights reserved.

Diochnos

extensively within PAC learning (see, e.g., Laird, 1988; Sloan, 1995) and in particular an
important framework is the statistical query model (Kearns, 1998). It is within this frame-
work that we find the CSQ model and due to Feldman’s result, evolvability. Ecorithms,
by the very nature of the model, have to deal with noisy estimates. Such estimates repre-
sent the goodness of fit of individuals within environments and are computed by a limited
amount of interaction that individuals have with the environment.

Importance of the Problem and Motivation. Learning monotone conjunctions is
arguably the most natural problem studied in the theory of machine learning as it encap-
sulates, in a very basic form, a class of functions that determine among a pool of features
which ones should be included as relevant for a prediction mechanism. Conjunctions are
the building blocks for Disjunctive Normal Form formulae (DNFs) which can represent any
Boolean function, and monotone conjunctions are the case of conjunctions that contain no
negations and therefore perhaps the simplest non-trivial class of Boolean functions. Hence
it is natural to explore the learnability (evolvability) of such a class of functions in differ-
ent (restricted) learning setups hoping that such mechanisms can extend to richer classes of
functions and/or distributions. The current paper is contributing in this direction. Diochnos
and Turán (2009, Example 1) have shown that the simple mechanism that adds a variable,
removes a variable or swaps a variable for another one in the hypothesis, may get stuck in
local optima under product distributions. This phenomenon motivates the work on global
search operators that have the potential of taking us away from local optima and it is such
an operator that we study in this paper.

Brief Overview of Contributions. We provide two ecorithms for a class of product
distributions such that the first ecorithm adapts to each distribution in the class, whereas
the second ecorithm uses a uniform setup for the entire class of distributions of interest.
Both methods use a global search operator.

1.1 Models Related to Our Work

We first summarize the models that are connected to the work presented in this paper.

1.1.1 The Probably Approximately Correct (PAC) Model of Learning

Valiant (1984) defined what is perhaps the default model in computational learning. In
this model the learner typically knows the class of functions Cn, called concept class, from
where a target function c is drawn. (The subscript n, for example in Cn, indicates the
dimension of function inputs; e.g., vectors in Rn, or truth assignments over {0, 1}n.) The
goal of the learner is to create a hypothesis h that when asked about predicting the labels
of various inputs (called instances), h has error rate at most ε w.r.t. c. Part of the design
of the learning algorithm is the selection and encoding of the class of functions H, called
the hypothesis class, among which the learner will select a hypothesis h. It is important
that the learning process takes place in time polynomial w.r.t. 1/ε, 1/δ, and n. Ultimately
the learner is allowed to find an h that has error rate at most ε, not necessarily always, but
with probability at least 1 − δ. The parameters ε and δ give the name to the model; the
hypothesis generated is approximately correct but only probably. Thus, we have the probably
approximately correct (PAC) model of learning.

892

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

In the standard variant of the model, instances are drawn independently and identically
distributed (iid) according to some underlying distribution Dn that is unknown to the
learner, then those instances are labeled according to the target function c, and ultimately
this sequence of pairs of instances and labels is fed into the learner as the set of training
examples S. The learner uses this training set S in order to form a hypothesis h and the
assumption is that the same probability distribution Dn is going to govern the instances
that will be drawn during testing and for which the hypothesis h will predict their labels.
The PAC requirement is that h will behave well during testing (i.e., h will have error rate at
most ε) regardless of the underlying distribution Dn and despite the fact that Dn is unknown
to the learner. Hence, this variant of PAC learning is called distribution-independent, or
distribution-free.

In other variants, starting with the work of Benedek and Itai (1991), the learner may
know the exact underlying distribution Dn that governs the training and testing phases
(e.g., uniform over {0, 1}n), or perhaps may know that the underlying distribution Dn is
some distribution from a broader class of distributions D but Dn is not arbitrary (e.g., D
is the class of product distributions over {0, 1}n). In these variants the learner may use
the information about the underlying distribution and design an algorithm that is effective
for the specific distribution, or class of distributions. When the algorithm is tailored to a
specific distribution Dn, or when the algorithm is parameterized in such a way so that it can
adapt to every Dn ∈ D, then we talk about distribution-specific learning. In other cases,
the algorithm designed might be effective for the entire class of distributions D without any
parameterization. In this last case, the learner does not care about the exact underlying
distribution Dn (as long as Dn ∈ D) and for this reason we have distribution-free learning
for a class of distributions, a type of learning that falls somewhere in between distribution-
specific and truly distribution-free.

1.1.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) use methods inspired by biology in order to find the point
where an unknown (fitness) function attains its maximum value; thus, EAs fall under the
broader umbrella of black-box optimization methods. The most well studied algorithm in
this framework is the (1+1) EA shown in Algorithm 1; Droste, Jansen, and Wegener (2002)
indicate several interesting results.

Algorithm 1: The (1+1) Evolutionary Algorithm

Input: A function f to be optimized over {0, 1}n.
Output: A solution x, candidate for optimizing f .

1 x ← random string from {0, 1}n;
2 repeat

3 Compute x′ from x by flipping each bit of x independently with probability 1/n.
4 Replace x by x′ if f(x′) ≥ f(x)

5 until some termination condition is met ;

893

Diochnos

1.1.3 Evolving Programs

There is a natural extension of methods inspired by biology where the aim is to identify a
function that maximizes some objective function rather than finding the input point where
a function attains its maximum as is the case with EAs. This framework is called Genetic
Programming (GP) and typically the programs that are being evolved have a tree-like
structure (Koza, 1993). Since the work in this paper is about computational learning we
are interested in approximating well some target function as is the case in GP. However, we
will be able to use the mechanism shown in Algorithm 1 as we will see in Section 1.3.

1.1.4 Evolvability and Ecorithms

At a high level, ecorithms are local-search methods that achieve a PAC criterion. Perhaps
the key difference between evolvability and traditional EAs/GP is the fact that noise is
natural in evolvability as the functionalities that evolve over time realize their fitness through
interaction with the environment (sampling); not by being able to interpret arbitrarily small
differences of the fitness function. However, contrary to evolvability, with EAs and GP one
usually wants to identify precisely the ideal behavior; not just an ε-approximation.

We will be evolving Boolean functions and this interaction of the evolved organisms
(hypotheses) with the environment is a value that indicates how well the organism is ap-
proximating the ideal behavior (read, target function c in standard learning terminology)
for the environment. The value that represents the ‘goodness of fit’ of each hypothesis is
obtained by drawing a random sample of rows of the truth table and then letting the organ-
ism h know an aggregate value of how frequently h agrees with the ideal behavior (target
function) c on these rows. Note that ecorithms take as input the underlying distribution
Dn and therefore the results obtained are typically about distribution-specific learning, or
about distribution-free learning restricted to a class of distributions (as explained in the
paragraph earlier about PAC learning). This is the case, e.g., in the work of Kanade,
Valiant, and Vaughan (2010), in the work of Michael (2012), in the work of Angelino and
Kanade (2014), and in the work of Diochnos (2016). Ecorithms also fit very well within
the framework of learning by distances (Ben-David, Itai, & Kushilevitz, 1995); a framework
that is equivalent to the CSQ model and was defined independently of the statistical query
model of Kearns. Another closely related framework of learning to the model of evolvability
is the model of learning with a restricted focus of attention (Ben-David & Dichterman,
1998). Below we provide more details for the model of evolvability and full definitions are
available in Appendix A, or by Valiant (2009).

The truth values true and false are represented by 1 and −1 respectively. The ob-
jective function (or, fitness function) that guides the search is called performance. For a
target c and a distribution Dn over {0, 1}n, the performance of a hypothesis h, called the
correlation of h and c, is,

PerfDn (h, c) =
∑

x∈{0,1}n

h(x) · c(x) ·Prx∼Dn (x) = 1− 2 ·Prx∼Dn (h(x) 6= c(x)) . (1)

Note that an approximation error ε for correlation implies misclassification error ε/2.
Evolution starts with some initial hypothesis and produces a sequence of hypotheses

using a local-search procedure in the hypothesis space H. Similarity between h and c in an

894

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

underlying distribution Dn is measured by the empirical performance PerfDn (h, c, S) which
is evaluated approximately by drawing a random sample S (of size |S|) and computing

PerfDn (h, c, S) =
1

|S|

∑

x∈S

h(x) · c(x) . (2)

The mutator function is responsible for generating the neighborhood N(h) and selecting
one hypothesis from N(h) as the output for the next generation. For each hypothesis
h′ ∈ N(h), the mutator first computes an empirical value of ν(h′) = PerfDn (h

′, c, S) and
also associates each hypothesis h′ with a weight PrN (h, h′). Then, based on a real constant
t called tolerance we obtain,

{
Bene = {h′ ∈ N(h) | ν(h′) > ν(h) + t}
Neut = {h′ ∈ N(h) | ν(h′) ≥ ν(h)− t} \ Bene

(3)

The output of the mutator function is based on the rule:

• if Bene 6= ∅ then output h1 ∈ Bene with probabilityPrN (h, h1) /
∑

h′∈BenePrN (h, h′),

• if Bene = ∅ then output h1 ∈ Neut with probabilityPrN (h, h1) /
∑

h′∈NeutPrN (h, h′).

Ultimately, the goal of the evolution is to produce, within a realistic time period
(i.e., within poly(1/ε, 1/δ, n) generations), a hypothesis h ∈ H such that

Pr (PerfDn (h, c) < PerfDn (c, c)− ε) < δ . (4)

1.2 Related Work

There is a plethora of previous work in the framework of evolvability (Valiant, 2009; Feld-
man, 2008, 2009, 2011, 2012; Diochnos & Turán, 2009; Kanade et al., 2010; Kanade, 2011;
Michael, 2012; Angelino & Kanade, 2014; Valiant, 2014; Diochnos, 2016; Snir & Yohay,
2019a, 2019b). Regarding conjunctions, their evolvability follows by a result from Feld-
man (2008) for every fixed distribution within Õ (n) generations; where Õ (·) ignores poly-
log factors. As this translation is not necessarily the most efficient or intuitive method in
general, there is still interest in different evolution mechanisms. The evolvability of mono-
tone conjunctions under the uniform distribution Un with a swapping-type algorithm was
initially shown by Valiant (2009). The analysis was simplified by Diochnos and Turán (2009)
and the result was strengthened to general conjunctions1 under Un including target drift,
by Kanade, Valiant and Vaughan (2010). Kanade (2011) introduced recombination, where
it follows that conjunctions are evolvable in O

(
(log(n)/ε)2

)
generations. Diochnos (2016)

showed that monotone conjunctions are evolvable under Bernoulli(p)n distributions (prod-
uct distributions where each variable has the same probability p of being satisfied) for every
p ∈ (0, 1), in O (log(1/ε)) generations, by generalizing the swapping-type mechanism for
Un. Snir and Yohay (2019a, 2019b) extended the evolvability model with horizontal gene
transfer; in a theoretical work (Snir & Yohay, 2019b) the model with horizontal gene trans-
fer was defined and ultimately the main result allowed the evolvability of conjunctions in

1. Evolving general conjunctions under Un is attributed to B. Jacobson (see Kanade et al., 2010).

895

Diochnos

O(1) generations for any fixed distribution, whereas in a more practical work (Snir & Yohay,
2019a) it was verified experimentally the acceleration in terms of the number of generations.

Conjunctions have also been studied within black box optimization by Ros (1992). How-
ever, the distribution-free results that were obtained by Ros ultimately rely on information
such as the number of bits on which the hypothesis and the input differ. Such dependence
on the input condition is considered unrealistic and is outside of the model of evolvability.
Recently, Lissovoi and Oliveto (2019) studied monotone conjunctions within GP. Their work
refers to the uniform distribution Un over {0, 1}n, relies on initialization (namely, they start
from the empty representation) and some of their results extend to the framework of evolv-
ability; however, no concrete bounds on the tolerance and the sample size are mentioned.
In addition, Kötzing, Neumann, and Spöhel (2011) examine a swapping-type mechanism
for linear functions similar to Valiant’s swapping algorithm.

Noise models have also been studied within EAs/GP. Droste (2004) discusses noise in
the prior noise model while optimizing the OneMax function. In the prior noise model,
the fitness oracle may, with some small probability, return the true fitness value but for an
instance that is in the neighborhood of the queried instance. In the posterior noise model
the true fitness value is corrupted by noise; e.g., by adding a small random value drawn
from some fixed distribution. However, it is only in the last few years that noisy fitness
values have been identified as a hot topic in the field (Friedrich & Neumann, 2017). There
are several such recent results on either noise model (Astete-Morales, Cauwet, & Teytaud,
2015; Dang & Lehre, 2015; Prugel-Bennett, Rowe, & Shapiro, 2015; Gießen & Kötzing,
2016; Qian, Bian, Jiang, & Tang, 2019).

As a last remark, one can think of directions in optimization frameworks, where, while
the problem spaces are different, nevertheless the primary motivation for the proposed so-
lutions is relevant to the above lines of work. For example, the work of Mühlenbein and
Mahnig (2001) proposed the UMDA algorithm which solves difficult multi-modal optimiza-
tion problems. In addition, one can think of directions along the lines of simulated annealing
(Cordón, de Moya Anegón, & Zarco, 2002; Cai & Shao, 2002; Gutjahr & Pflug, 1996).

1.3 Bringing the Different Models Together

We consider product distributions over {0, 1}n such that each variable follows the same
Bernoulli(p) distribution. We call such distributions Bernoulli(p)n and denote them by
Bn,p. Hence, on a truth assignment of dimension n, a Bernoulli(p)n distribution Bn,p over
{0, 1}n is specified by the probability p of setting each variable xi equal to 1. A truth
assignment (a1, . . . , an) ∈ {0, 1}

n has probability
∏n

i=1 p
ai ·(1−p)1−ai . We use Bn to denote

a fixed Bernoulli(p)n distribution, omitting p ∈ (0, 1) for simplicity when it is clear from
the context. The uniform distribution Un is a Bernoulli(p)n distribution where p = 1/2.
We note that Diochnos (2016) was using the term binomial distribution in order to refer
to such a distribution Bn,p due to the fact that on a truth assignment drawn from such a
distribution, the number of 1’s are binomially distributed with parameters p and n; however,
the term Bernoulli(p)n is perhaps simpler and more fitting for such product distributions.

During the course of evolution we manipulate hypotheses that correspond to monotone
conjunctions in every step. For some integer q, the distributions that we examine have the
property that one can find optimal, or ε-optimal, approximations of any target function

896

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

(ideal behavior), when restricting the search to hypotheses that are composed of at most q
variables. We exploit this structural property and search only among such solutions. Hence,
we call q the frontier of our search. Throughout the paper Õ (·) will ignore poly-log factors
in n, 1/ε, 1/δ and q, but not the frontier q itself. (q has logarithmic dependence on 1/ε.)

Regarding the representation class Rn, we represent monotone conjunctions as sets of
indices; the indices correspond to the variables that appear in the conjunctions, in some
fixed ordering. Hence with Θ(logn) bits we can represent each variable and thus a monotone
conjunction that is composed of at most q variables requires space O (q log n). However,
so that there is an easier connection to the results found in evolutionary programming
literature, it is also convenient to think of the representation of a monotone conjunction
h as a binary string of length n, where a 1 in the i-th position indicates that the i-th
variable appears in h; after all, going back and forth between these two representations can
be done efficiently (polynomial time). In other words, for a binary string σ = b1b2 . . . bn,
let POS(σ) = {i | bi = 1}. Then, we can make a direct correspondence between bit strings
and monotone conjunctions:

σ = b1b2 . . . bn 7−→
∧

i∈POS(σ)

xi .

For two binary strings σ and σ′ of length n, let dn (σ,σ
′) =

∑n
i=1 |σi − σ′

i| be their Hamming
distance, where σi and σ′

i is their i-th bit respectively. Thinking of the representation of
monotone conjunctions as bitstrings of length n, for any two monotone conjunctions h1 and
h2 later on we will be able to compute dn (h1, h2) even if technically we will be passing sets
of indices as parameters.

In this work we will use the representation mentioned above together with the mechanism
for the (1+1) EA shown in Algorithm 1 and mutate from one representation to another.
However, there is a catch. Monotone conjunctions that are composed of about linear in n
variables may have exponentially small differences when looking at the performance and in
order for an evolutionary mechanism to understand such differences, an exponential amount
of examples would be needed; this is unrealistic for efficient evolvability.

To the rescue, we use the above-mentioned property of the frontier q: there is a monotone
conjunction ε-close to the optimum having at most q variables. Our modified mutation
mechanism will thus reject representations that have more than q variables; see Section 2.1
for the algorithm. Such a design decision is a typical difference between machine learning
and evolutionary algorithms; in machine learning we are not exploring the capabilities and
limitations of ‘pure’ optimization algorithms such as the (1+1) EA shown in Algorithm 1,
but rather we try to devise algorithms, perhaps less elegant, that nevertheless produce an ε-
optimal solution overcoming potential obstacles that ‘pure’ and more intuitive optimization
methods would otherwise have in some cases. Domingos (2015) has an interesting related
discussion and historical remarks about the emergence of the schism in the kind of research
performed by people working in machine learning on one hand and people working in
evolutionary algorithms on the other.

897

Diochnos

1.4 Contributions

We extend the work that deals with the evolution of monotone conjunctions – using a
global-search operator. The two lines of work that are closer to our work in this paper are:
the work by Diochnos (2016) and the work by Lissovoi and Oliveto (2019).

Theorem 1 below gives an informal description of the positive result of our paper that
is obtained when the evolutionary mechanism is adapted to the specific value of p that
characterizes the underlying distribution Bn,p.

Theorem 1 (Informal Version of Theorem 4). Let Bn,p be a Bernoulli(p)n distribution over
{0, 1}n characterized by some p ∈ (0, 1/3] ∪ {1/2}. Then, for any starting representation,
our evolutionary mechanism evolves an ε-optimal solution efficiently with high probability,
using at most q = ⌈log1/p(3/ε)⌉ variables in the solution.

Our first contribution is that the representation that we use together with the basic
evolutionary mechanism used in EAs provides an intuitive framework for evolving Boolean
functions; a property that is desirable in general and in particular was also explicitly noted
to be absent by Lissovoi and Oliveto (2019). In addition, the mutation operator from the
(1+1) EA shown in Algorithm 1 is a global-search operator that has the potential of taking
us away form local optima.

Our second contribution is that we provide a new characterization of the fitness land-
scape under the Bernoulli(p)n distributions Bn,p that we explore (where p ∈ (0, 1/3]∪{1/2})
and it is this new characterization that allows us to prove convergence using a fitness-level
technique; there are several other lines of work that use a similar technique (Wegener &
Witt, 2005; Sudholt, 2010; Corus, Dang, Eremeev, & Lehre, 2018).

Third, our algorithm by default uses the underlying distribution as a hint and adapts
to an appropriate representation and related parameters (e.g., sample size). To this end,
most of our results refer to the parameter p of the distribution as a real algebraic number2

and leave open the exact bit complexity of required related calculations. A different point
of view would be to assume that the algorithms are endowed with appropriate values that
are the integers or some appropriate fractions near the true values implied by operations on
arbitrary real numbers (referring to the distribution, or the inputs ε and δ), and then one
happens to examine the mechanism on a setup where these values correspond to. In any
case, we also provide a positive result with a uniform setup over a class of distributions as
stated by the following theorem.

Theorem 2 (Informal Version of Theorem 8). Let 0 < α ≤ 3/13. Let I = [α, 1/3− 4α/9]∪
{1/3} ∪ {1/2}. Consider a Bernoulli(p)n distribution Bn,p over {0, 1}n that is character-
ized by such a p ∈ I. Then, for any starting representation, our proposed evolutionary
mechanism evolves efficiently an ε-optimal solution with high probability, using at most
q = ⌈log2(3/ε)⌉ variables in the solution.

2. A real algebraic number ρ can be encoded in isolating interval representation using a polynomial f with
rational coefficients and an interval [α,β] such that α,β ∈ Q so that ρ is the unique root of f in the
interval [α,β]. Usually it is assumed that f is square-free; that is, f(α)f(β) < 0. Ultimately, the bit
complexity results of the computational problems at hand, are given with respect to the input degree
of the polynomials and the maximum bitsizes of the rationals that describe the various real algebraic
numbers that are part of the input (e.g., see, Yap, 2000).

898

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Note that the frontier q in Theorem 2 is independent of the exact value of p that governs
the underlying distribution Bn,p, thus contrasting Theorem 1 where there is a dependence.

Fourth, Feldman (2012) showed that conjunctions are evolvable in a distribution-inde-
pendent way with a quadratic loss function, while in an earlier work Feldman (2011) showed
that conjunctions are not CSQ learnable distribution-independently using Boolean loss; the
loss function of the current paper. In this context, Theorem 8 has an added value as the
result lies somewhere between distribution-specific and truly distribution-free learning.

Fifth, Kalai and Vempala (2006) showed that within simulated annealing it is important
to allow descendents with performance worse than that of the parent. Paul Valiant (2014)
asked whether similar phenomena can arise in evolvability. While our algorithm does not
fully achieve this goal, nevertheless it is the first ecorithm that allows partial random walks,
starting from any initial candidate solution, and does not necessarily follow strictly beneficial
steps until a near-optimal solution is formed – for example, this was the case in the work by
Diochnos (2016). Also, while the work of Lissovoi and Oliveto (2019) allows partial random
walks, nevertheless their convergence result is obtained after initializing the hypothesis to
the empty representation.

2. Preliminaries

Given a set of Boolean variables x1, . . . , xn, we assume that there is an unknown target
c ∈ Cn, a monotone conjunction of some of these variables. Let Cn be the concept class of
all possible monotone conjunctions. For a threshold q, let C≤q

n be the set of conjunctions
from Cn that contain at most q variables. Furthermore, let C>q

n = Cn \ C
≤q
n . Our hypothesis

space will be H = C≤q
n . With |h| we denote the size (or length) of a monotone conjunction

h; the number of variables that are contained h. Figure 1 provides a pictorial view of the
distinction between the concept class and the hypothesis space that we use.

By (3) the neighborhood N is split in 3 parts. There are beneficial, neutral, and delete-
rious mutations. Thus, we need an oracle for computing

∆ = PerfDn

(
h′, c

)
− PerfDn (h, c) ,

and hence for a tolerance t, determine the set where h′ ∈ N lies. In Appendix B we have a
brief discussion about different models that one can form for evolution, primarily based on
how this performance difference ∆ is provided to the evolved organisms. Now let,

c =
m∧

i=1

xi ∧
u∧

k=1

yk and h =
m∧

i=1

xi ∧
r∧

ℓ=1

wℓ . (5)

The x’s are mutual variables, the y’s are called undiscovered or missing, and the w’s are
called redundant or wrong. Variables in the target c are called good, otherwise bad. Given a
size q and an extension ϑ, a hypothesis h is short when |h| ≤ q, medium when q < |h| ≤ q+ϑ
and long when |h| > q + ϑ.

Definition 1 (Best q-Approximation). A hypothesis h is called a best q-approximation of
c if |h| ≤ q and ∀h′ 6= h, |h′| ≤ q : PerfDn

(h′, c) ≤ PerfDn
(h, c) .

899

Diochnos

x1 ∧ x2 ∧ . . . ∧ xn

∅

x1 x2 xn

x1 ∧ x2 x1 ∧ x3 xn−1 ∧ xn

0

1

2

q

n

Size

all monotone conjunctions
with precisely q variables

Concept Class

Hypothesis Space

Figure 1: At the bottom of the figure we see the empty monotone conjunction that has
size 0 corresponding to the identically true function, and at the very top we see the ‘full’
monotone conjunction of size n where all the variables appear in the conjunction. Our
hypothesis space is composed of monotone conjunctions that have size between 0 and q, for
some threshold q that we call the frontier of our search.

As mentioned in Section 1.3, we use sets of indices to represent monotone conjunctions
and consider Bernoulli(p)n product distributions Bn,p over {0, 1}n. Now consider a target c
and a hypothesis h as in (5). For a Bn,p distribution, (1) reduces to,

PerfBn (h, c) = 1− 2pm+r − 2pm+u + 4pm+r+u . (6)

We will use U = pu for the weight of the subcube of the undiscovered variables. For
a target c, we partition the hypothesis space in three parts; that is, we set H = H<1/2 ∪
H1/2 ∪H>1/2. H<1/2 refers to hypotheses for which U < 1/2, H1/2 refers to hypotheses for
which U = 1/2 and H>1/2 refers to hypotheses for which U > 1/2. Figure 2 gives a pictorial
example of this partitioning of H for a target monotone conjunction c that is short under
the uniform distribution over {0, 1}n. Ultimately, this partitioning gives rise to the different
phases of the convergence of our methods. For example, for a short target function c as

900

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

H>1/2H1/2H<1/2

c

Figure 2: Partitioning of the hypothesis space H in H<1/2, H1/2, and H>1/2. Similarly
to Figure 1, at the bottom of the figure we have the hypothesis that corresponds to the
empty monotone conjunction and as we proceed towards the top we encounter monotone
conjunctions that have progressively larger sizes, until we reach size q at the very top, which
is the frontier of our search. The large solid dot near the center of the hypothesis space
is the target function c that we want to learn. In this particular figure we assume that
the underlying distribution is uniform over {0, 1}n and thus the dots above c correspond to
hypotheses that belong to H>1/2 that have size larger than |c| and moreover contain all the
variables that appear in c.

in Figure 2, the evolved hypothesis will be proceed within H<1/2 with progressively larger
sizes, then mutate from H<1/2 to H1/2, then mutate from H1/2 to H>1/2, and ultimately
identify c within H>1/2. (It is also possible that our hypothesis will mutate from H<1/2 to
H>1/2 without ever visiting a hypothesis in H1/2.) Such separating groups of hypotheses
are known as fitness levels and we can express this notion as follows. Under a distribution
Dn, for a target c, and two sets of hypotheses Φ and Ψ, we write Φ 6 Ψ to indicate that

(∀h1 ∈ Φ)(∀h2 ∈ Ψ)[PerfDn (h1, c) > PerfDn (h2, c)] .

Thus the hypotheses in Φ are in a ‘higher’ fitness level compared to the hypotheses found
in the set Ψ.

With log1/p(x) we denote the logarithm of x in base 1/p, where 0 < p < 1. With Q and
Ralg we denote respectively the fields of rational and real algebraic numbers. Hj denotes

the j-th harmonic number; that is, Hj =
∑j

i=1 1/i.
Our proofs on the complexity analysis will also be using the following fact.

Proposition 1 (Hoeffding’s Bound; Hoeffding, 1963). Let X1, . . . , XR be R independent
random variables, each taking values in the range I = [α,β]. Let µ denote the mean of their

expectations. Then Pr
(∣∣∣ 1R

∑R
i=1Xi − µ

∣∣∣ ≥ ǫ
)
≤ 2e−2Rǫ2/(β−α)2 .

2.1 The Algorithm

Algorithm 2 presents the mutator function. For a current hypothesis h, the evolutionary
operator Mutate generates one candidate hypothesis h′ by first initializing h′ to h and then

901

Diochnos

Algorithm 2: Mutator function of the (1+1) EA for Bernoulli(p)n product dis-
tributions.
Input: n ∈ N∗, p ∈ (0, 1/3] ∪ {1/2}, δ ∈ (0, 1), ε ∈ (0, 2), h ∈ H = C≤q

n

Output: a new hypothesis
1 q ← ⌈log1/p(3/ε)⌉; ; /* set the frontier */

2 h′ ← Mutate(h); ; /* perform the mutation */

3 if |h′| ≤ q then N ← {h′}; /* set the neighborhood */

4 else return h;
5 if 0 < p < 1/3 then

6 t← pq−1 ·min{4pq/3, 1− 3p} ; /* set the tolerance */

7 δs ← δ2/(126en2q) ; /* set the confidence for estimating the performance */

8 else if p = 1/3 then

9 t← 2 · 3−1−2q ; /* set the tolerance */

10 δs ← δ2/(126en2q) ; /* set the confidence for estimating the performance */

11 else

12 t← 2−2q; ; /* set the tolerance */

13 δs ← δ2/(142en2q) ; /* set the confidence for estimating the performance */

14 ǫs ← t/2; ; /* set the approximation-error bound for estimating the performance */

15 νh ← Perf(p, h, ǫs, δs) ; /* estimate empirically the performance */

16 νh′ ← Perf(p, h′, ǫs, δs); ; /* estimate empirically the performance */

/* apply the selection mechanism below and return the appropriate hypothesis */

17 if νh′ > νh + t then return h′;
18 else if νh′ ≥ νh − t then return USelect({h} ∪ {h′});
19 else return h;

flipping each bit with probability 1/n. h′ is accepted as a viable neighbor only if |h′| ≤ q.
USelect picks uniformly at random among the elements of the set passed as argument.
The parameter ǫs governs the approximation within which the empirical performance of a
hypothesis will be computed (compared to its true performance) and such an approximation
will be correct except with probability at most δs. The value of δs is selected in such a way,
so that eventually with a union bound (we will see the details in the proofs that are available
in Section 4.4) one can provide the guarantee that we want: i.e., the evolution succeeds in
every phase with overall probability at least 1− δ. This is why these values of ǫs and δs are
passed as parameters in the computation of the empirical performance of the hypotheses h
and h′ in lines 15 and 16 (instead of the global parameters ε and δ).

3. Foundations for Evolvability

For a current hypothesis h, of particular interest will be the hypotheses that have: Hamming
distance 1, or Hamming distance 2 and same size, with respect to h. The set of hypotheses
that is obtained from h by adding (removing) a variable is denoted by N+ (respectively,
N−). The set of hypotheses that is obtained from h by swapping a variable with another
one is denoted by N±. As an example, let h = x1 ∧ x2, and n = 3. Then, N− = {x1, x2},
N+ = {x1 ∧ x2 ∧ x3}, and N± = {x3 ∧ x2, x1 ∧ x3}.

Even if we have to take into account mutations of h that are wilder than those described
byN+, N− andN±, nevertheless, such simple mutations are important for proving Theorem
3, Lemmas 1 and 2, as well as for some arguments related to the convergence of the (1+1)

902

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

EA. Figure 3 presents the sign of the difference ∆ for such mutations that give rise to a
hypothesis in N+, N− or N± as explained by the three quantities below.

good bad

(a) U < 1/2

badgood

(b) U = 1/2

badgood

(c) U > 1/2

Figure 3: Arrows pointing towards the nodes indicate addition of one variable and arrows
pointing away from a node indicate removal of one variable. This is consistent with arrows
indicating swapping a pair of variables. Let ∆ = PerfBn (h

′, c) − PerfBn (h, c). Thick solid
lines indicate ∆ > 0. Simple lines indicate ∆ = 0. Dashed lines indicate ∆ < 0. Figure 3a
holds when U < 1/2; Figure 3b when U = 1/2; Figure 3c when U > 1/2.

• Comparing h′ ∈ N+ with h. We introduce a variable z in the hypothesis h. If z is
good, ∆ = 2p|h|(1− p) > 0. If z is bad, ∆ = 2p|h|(1− 2pu)(1− p).

• Comparing h′ ∈ N− with h. We remove a variable z from the hypothesis h. If z is
good, ∆ = −2p|h|−1(1− p) < 0. If z is bad, ∆ = −2p|h|−1(1− 2pu)(1− p).

• Comparing h′ ∈ N± with h. Replacing a good with a bad variable gives ∆ =
−4p|h|+u(1 − p). Replacing a good with a good, or a bad with a bad variable gives
∆ = 0. Replacing a bad with a good variable gives ∆ = 4p|h|+u−1(1− p).

While the sign of an arrow in Figure 3 may be fully determined, it is the value of the
tolerance t that defines the sets Bene and Neut that guide the search. A critical quantity
in the above calculations is A (u) = |1− 2pu| , u ∈ {0, . . . , n}; its minimum non-zero
value of A (u), min 6=0 {A (u)}, is discussed by Diochnos (2016) for every p ∈ (0, 1). In our
context, for p ∈ (0, 1/3] we have min 6=0 {A (u)} = 1− 2p ≥ 1/3, while for p = 1/2 we have
min 6=0 {A (u)} = 1/2.

Theorem 3 (Diochnos, 2016). Let Bn be a Bernoulli(p)n product distribution with param-
eter p. The best q-approximation of a target c is c if |c| ≤ q, or any hypothesis formed by q
good variables if |c| > q.

Lemmas 1 and 2 below are taken from the work of Diochnos (2016), where for complete-
ness, we give their short proofs. Lemma 1 is relevant in our context only under Un, where
ϑ = 1. While Algorithm 2 does not mention ϑ, it is however taken into account under Un
in Lemmas 4, 11 and 12, when computing tolerance and sample size.

Lemma 1 (Medium Targets). Let Bn be a Bernoulli(p)n distribution, h a hypothesis and c
be the target. Then, q ≥ log 1

p

(
3
ε

)
, ϑ ≥ 0, |h| = q < |c| ≤ q + ϑ, all variables in h are good

⇒ PerfBn
(h, c) > 1− 2ε/3.

903

Diochnos

Proof. The setup of the lemma implies m = q, r = 0, u ≤ ϑ. Using (6) we have:
PerfBn (h, c) = 1 − 2pm+r − 2pm+u + 4pm+r+u = 1 − 2pq + 2pq+ϑ > 1 − 2pq. It follows
that PerfBn (h, c) > 1− 2pq ≥ 1− 2ε/3.

Lemma 2 (Long Targets). Let Bn be a Bernoulli(p)n distribution, h a hypothesis and c the
target. Then, q ≥ log 1

p

(
3
ε

)
, ϑ ≥ log 1

p
(2p), |h| ≥ q, |c| > q + ϑ ⇒ PerfBn

(h, c) > 1− ε.

Proof. The setup of the lemma implies m + r ≥ q, and m + u > q + ϑ. Using (6),
PerfBn (h, c) > 1− 2pm+r− 2pm+u ≥ 1− 2pq− 2pq+ϑ+1 = 1− 2pq

(
1 + p1+ϑ

)
. It follows that

PerfBn (h, c) > 1− 2pq
(
1 + p1+ϑ

)
≥ 1− 2 · ε3 ·

(
1 + p

log 1
p
(2)

)
= 1− ε.

4. Analysis of Our Modified (1+1) Evolutionary Algorithm

We start with some coarse characterizations under Un for the three sets into which the
hypothesis space H = H<1/2 ∪ H1/2 ∪ H>1/2 is partitioned. Lemma 3 further refines the
hypotheses in H<1/2 and expresses the fact that among such hypotheses, the larger the size
of the hypothesis, the better its performance. The lemmas for the relevant fitness levels for
the case where p ∈ (0, 1/3] are presented in a separate section on their own.

4.1 Fitness Levels when p = 1/2

Lemma 3 (More Variables in the Hypothesis is Better in H<1/2 under Un). Let h, h′ ∈
H<1/2 such that |h′| < |h| ≤ q. Then, under the uniform distribution Un, PerfUn

(h, c) ≥
PerfUn

(h′, c) + 21−2q.

Proof. We will prove the lemma by distinguishing cases on the size of the target. The
technique is identical to the case where p = 1/3. Let |h| = λ+ |h′|, for λ ≥ 1.

Case |c| ≤ q + 1. By (6), we have PerfUn (h, c) = 1 − 21−|c| − 21−|h| + 22−|c|−r. Since
|h| = λ+ |h′| and moreover the number r of redundant variables in h can be r ∈ {0, . . . , q},
it follows that

PerfUn (h, c) ≥ 1− 21−|c| − 21−λ−|h′| + 22−|c|−q . (7)

On the other hand, by (6), letting u′ be the number of good undiscovered variables in h′,
we have PerfUn (h

′, c) = 1− 21−|c|− 21−|h′|+22−|h′|−u′
. Since h′ ∈ H<1/2 ⇒ u′ ≥ 2 it follows

that

PerfUn

(
h′, c

)
≤ 1− 21−|c| − 21−|h′| + 2−|h′|

= 1− 21−|c| − 2−|h′| . (8)

Thus, by (7) and (8) it follows that

∆ = PerfUn (h, c)− PerfUn

(
h′, c

)

≥ 2−|h′| · (1− 21−λ) + 22−|c|−q

≥ 21−2q , (9)

where the last inequality is obtained since λ ≥ 1 and |c| ≤ q + 1.

904

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Case |c| ≥ q+2. For h, (7) continues to hold. On the other hand, letting r′ be the number
of (bad) redundant variables in h′, we have PerfUn (h

′, c) = 1 − 21−|c| − 21−|h′| + 22−|c|−r′ ,
and thus

PerfUn

(
h′, c

)
≤ 1− 21−|c| − 21−|h′| + 22−|c| . (10)

Hence, by (7) and (10) we have

∆ = PerfUn (h, c)− PerfUn

(
h′, c

)

≥ 21−|h′| · (1− 2−λ)− 22−|c| · (1− 2−q)

≥ 21−(q−1) ·
1

2
− 22−|c|

≥ 21−q − 2−q

= 2−q .

The lemma follows by observing that since q ≥ 1, we have that 1 ≥ 21−q ⇒ 2−q ≥ 21−2q.

Lemma 4 (H1/2 6 H<1/2). Under Un, let h ∈ H1/2 and h′ ∈ H<1/2. Then, PerfUn
(h, c) ≥

PerfUn
(h′, c) + 2−q.

Proof. First, h ∈ H1/2 ⇒ u = 1. Then, by (6),

PerfUn (h, c) = 1− 21−|h| − 21−|c| + 22−|h|−1

= 1− 21−|c| .

On the other hand, h′ ∈ H<1/2 ⇒ u′ ≥ 2. Then, by (6),

PerfUn

(
h′, c

)
= 1− 21−|h′| − 21−|c| + 22−|h′|−u′

≤ 1− 21−|h′| − 21−|c| + 22−|h′|−2

= 1− 2−|h′| − 21−|c|

≤ 1− 2−q − 21−|c| .

It follows that PerfUn (h, c)− PerfUn (h
′, c) ≥ 2−q.

Lemma 5 (H>1/2 6 H1/2). Under Un, let h ∈ H>1/2 and h′ ∈ H1/2. Then, PerfUn
(h, c) ≥

PerfUn
(h′, c) + 21−q.

Proof. First, h ∈ H>1/2 ⇒ u = 0. Then, by (6),

PerfUn (h, c) = 1− 21−|h| − 21−|c| + 22−|h|−u

= 1− 21−|h| − 21−|c| + 22−|h|

= 1 + 21−|h| − 21−|c|

≥ 1 + 21−q − 21−|c| .

On the other hand, h′ ∈ H1/2 ⇒ u′ = 1. Then, by (6),

PerfUn

(
h′, c

)
= 1− 21−|h′| − 21−|c| + 22−|h′|−1

= 1− 21−|c| .

It follows that PerfUn (h, c)− PerfUn (h
′, c) ≥ 21−q.

905

Diochnos

Lemma 6 (H>1/2 6 H<1/2 under Un). Under the uniform distribution Un, let h ∈ H>1/2

and h′ ∈ H<1/2. Then, PerfUn
(h, c) ≥ PerfUn

(h′, c) + 3 · 2−q.

Proof. First, h ∈ H>1/2 ⇒ u = 0. Then, by (6),

PerfUn (h, c) = 1− 21−|h| − 21−|c| + 22−|h|−u

= 1− 21−|h| − 21−|c| + 22−|h|

= 1 + 21−|h| − 21−|c|

≥ 1 + 21−q − 21−|c| .

On the other hand, h′ ∈ H<1/2 ⇒ u′ ≥ 2. Then, by (6),

PerfUn

(
h′, c

)
= 1− 21−|h′| − 21−|c| + 22−|h′|−u′

≤ 1− 21−|h′| − 21−|c| + 22−|h′|−2

= 1− 2−|h′| − 21−|c|

≤ 1− 2−q − 21−|c| .

Thus, PerfUn (h, c)− PerfUn (h
′, c) ≥ 3 · 2−q.

4.2 Fitness Levels when p ∈ (0, 1/3]

Lemma 7 (More Variables in the Hypothesis is Better in H<1/2 when 0 < p < 1
3). Let

h, h′ ∈ H<1/2 such that |h′| < |h| ≤ q. Then, under a Bernoulli(p)n distribution Bn with
p ∈ (0, 1/3), PerfBn

(h, c) ≥ PerfBn
(h′, c) + 2pq−1 · (1− 3p).

Proof. Let the target be

c =

m1∧

i=1

xi ∧
m∧

i=m1+1

xi ∧
u1∧

k=1

yk ∧
u∧

k=u1+1

yk .

Furthermore let,





h =
∧m1

i=1 xi ∧
∧m

i=m1+1 xi ∧
∧r1

ℓ=1wℓ ∧
∧r

ℓ=r1+1wℓ

h′ =
∧m1

i=1 xi ∧
∧u1

k=1 yk ∧
∧r1

ℓ=1wℓ ∧
∧r3

j=1 zj

be the two short hypotheses, such that |h| = |h′| + λ for λ ≥ 1 and moreover, U =∏u
k=1 pyk = pu < 1/2 and U ′ =

(∏m
i=m1+1 pxi

)
·
(∏u

k=u1+1 pyk
)
= pm2 · pu2 < 1/2, where

m2 = |{xm1+1, . . . , xm}|, u2 = |{yu1+1, . . . , yu}| and r2 = |{wr1+1, . . . , wr}|.

By construction we have |h| = m1 +m2 + r1 + r2 = λ+m1 + u1 + r1 + r3 = λ+ |h′|. In
other words, it holds

m2 + r2 = u1 + r3 + λ . (11)

906

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

For the difference ∆ in performance we have

∆ = PerfBn (h, c)− PerfBn

(
h′, c

)

= 2pm1+u1+r1+r3 + 2pm1+m2+u1+u2 − 4pm1+m2+u1+u2+r1+r3

−2pm1+m2+r1+r2 − 2pm1+m2+u1+u2 + 4pm1+m2+u1+u2+r1+r2

= 2pm1+r1 ·
(
pu1+r3 − pm2+r2

)

+2pm1+r1 ·
(
2pm2+u1+u2+r2 − 2pm2+u1+u2+r3

)

= 2pm1+r1 ·
(
pu1+r3 − pu1+r3+1

)

+2pm1+r1 ·
(
2pm2+u1+u2+r2 − 2pm2+u1+u2+r3

)

= 2pm1+r1+u1+r3 − 2pm1+r1+u1+r3p

+4pm1+m2+r1+r2+u1+u2 − 4pm1+m2+r1+r3+u1+u2

= 2pm1+r1+u1+r3 · (1− p) + 2pm1+r1+u1+r3 ·
(
2pm2+r2+u2−r3 − 2pm2+u2

)

≥ 2p|h
′| ·

(
1− p+ 2pλ+u1+u2 − 2p

)
(12)

> 2p|h
′| · (1− 3p)

≥ 2pq−1 · (1− 3p) ,

where (12) follows by (11) and the fact that pm2+u2 = U ′ < 1/2⇒ m2 + u2 ≥ 1. The claim
follows.

Lemma 8 (More Variables in the Hypothesis is Better in H<1/2 when p = 1
3). Let h, h′ ∈

H<1/2 such that |h′| < |h| ≤ q. Then, under a Bernoulli(p)n distribution Bn with p = 1/3,

PerfBn
(h, c) ≥ PerfBn

(h′, c) + 4
3 · 3

−2q.

Proof. We will prove the lemma by distinguishing cases on the size of the target. Let
|h| = λ+ |h′|, for λ ≥ 1.

Case |c| ≤ q + 1. By (6), we have PerfBn (h, c) = 1 − 2 · 3−|c| − 2 · 3−λ−|h′| + 4 · 3−|c|−r.
Since the number r of redundant variables in h can be r ∈ {0, . . . , q}, we have,

PerfBn (h, c) ≥ 1− 2 · 3−|c| − 2 · 3−λ−|h′| + 4 · 3−|c|−q . (13)

On the other hand, by (6), letting u′ be the number of good undiscovered variables in h′,
we have PerfBn (h

′, c) = 1− 2 · 3−|c| − 2 · 3−|h′| + 4 · 3−|h′|−u′
. Since h′ ∈ H<1/2 ⇒ u′ ≥ 1 it

follows that

PerfBn

(
h′, c

)
≤ 1− 2 · 3−|c| − 2 · 3−|h′| + 4 · 3−|h′|−1

= 1− 2 · 3−|c| − 2 · 3−|h′|−1 . (14)

Thus, by (13) and (14) it follows that

∆ = PerfBn (h, c)− PerfBn

(
h′, c

)

≥ 2 · 3−|h′|−1 − 2 · 3−|h′|−λ + 4 · 3−|c|−q

≥ 4 · 3−2q−1 ,

where the last inequality is obtained since |c| ≤ q + 1 and we also used the fact that λ ≥ 1.

907

Diochnos

Case |c| ≥ q+2. For h, (13) continues to hold. On the other hand, letting r′ be the number
of (bad) redundant variables in h′, we have PerfBn (h

′, c) = 1−2 ·3−|c|−2 ·3−|h′|+4 ·3−|c|−r′ ,
and thus

PerfBn

(
h′, c

)
≤ 1− 2 · 3−|c| − 2 · 3−|h′| + 4 · 3−|c| . (15)

Hence, by (13) and (15) we have

∆ = PerfBn (h, c)− PerfBn

(
h′, c

)

≥ 2 · 3−|h′| − 2 · 3−|h′|−λ + 4 · 3−|c|−q − 4 · 3−|c|

> 2 · 3−|h′| ·
(
1− 3−λ

)
− 4 · 3−|c|

≥ 2 · 31−q ·
2

3
− 4 · 3−q−2

=
32

9
· 3−q .

Since q ≥ 1, the lemma follows by observing that 32
9 · 3

−q > 4
3 · 3

−q ≥ 4
3 · 3

−2q.

Lemma 9 (H>1/2 6 H<1/2 under Bn with p ∈ (0, 1/3]). Under a Bernoulli(p)n distribution
Bn with parameter p ∈ (0, 1/3], let h ∈ H>1/2 and h′ ∈ H<1/2 such that |h| ≤ q and |h′| ≤ q.

Then, PerfBn
(h, c) ≥ PerfBn

(h′, c) + 8
3 · p

q.

Proof. First, h ∈ H>1/2 ⇒ u = 0. Then, by (6),

PerfBn (h, c) = 1− 2p|h| − 2p|c| + 4p|h|+u

= 1− 2p|h| − 2p|c| + 4p|h|+0

= 1 + 2p|h| − 2p|c| .

Before we proceed, note that for p ∈ (0, 1/3], we have 1− 2pu ≥ 1− 2p ≥ 1− 2/3 = 1/3
for any integer u ≥ 1. Then, since h′ ∈ H<1/2 we have u′ ≥ 1. As a result, by (6),

PerfBn

(
h′, c

)
= 1− 2p|h

′| − 2p|c| + 4p|h
′|+u′

= 1− 2p|c| − 2p|h
′|
(
1− 2pu

′
)

≤ 1− 2p|c| −
2

3
· p|h

′| .

It follows that PerfBn (h, c)− PerfBn (h
′, c) ≥ 2p|h| + 2

3 · p
|h′| ≥ 2pq + 2

3 · p
q = 8

3 · p
q.

4.3 Convergence

We start with the lemmas that signify the different phases of the algorithm in every case
where p ∈ (0, 1/3] ∪ {1/2}. We use the terms generalization and specialization as in Tom
Mitchell’s framework of version spaces (Mitchell, 1997). That is, a Boolean function f is a
generalization (resp., specialization) of a Boolean function f ′ iff the set of satisfying truth
assignments for f is a superset (resp., subset) of the set of satisfying truth assignments for
f ′.

908

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Lemma 10 (Long Targets). Let Bn be a Bernoulli(p)n distribution with parameter p ∈
Ralg such that p ∈ (0, 1/3] ∪ {1/2}. Starting with a short hypothesis h0, the (1+1) EA,
within ⌈16enq/δ⌉ generations, assuming that the performance of each hypothesis generated
is estimated within ǫs = t/2 of its true value, with probability at least 1− δ/16, will evolve
a hypothesis h such that, either h ∈ H1/2 ∪ H>1/2, or it is the case that h ∈ H<1/2 and
|h| = q.

Proof. Suffices to prove the lemma for an initial hypothesis h0 ∈ H<1/2, otherwise the
statement is trivial as h0 ∈ H1/2∪H>1/2. As long as h ∈ H<1/2 and |h| < q, the probability
of adding at least one good or bad variable to the hypothesis is lower bounded by the
probability of the event of not touching the variables that appear in h and introducing
precisely one variable. In other words, for this probability it holds (1− 1/n)n−1 · 1n ≥

1
e ·

1
n .

Thus, the expected time to introduce at least one variable is at most en. Conditioning on
h ∈ H<1/2 throughout, the expected time to form a hypothesis of size precisely q is at most
enq. We now apply Markov’s inequality with failure probability δ/16.

Lemma 11 (Specialization under p ∈ (0, 1/3] or Best Approximation under Un). Let Bn be
a Bernoulli(p)n distribution with parameter p ∈ Ralg; p ∈ (0, 1/3]∪{1/2}. Unless the target
is long, starting with a hypothesis h0 such that h0 ∈ H<1/2 and |h0| = q, the (1+1) EA,
within

⌈
16en2q/δ

⌉
generations, assuming that the performance of each hypothesis generated

is estimated within ǫs = t/2 of its true value, with probability at least 1− δ/16, will evolve
a hypothesis h ∈ H1/2 ∪H>1/2.

Proof. Due to Lemmas 7, 8 and 3, as long as h ∈ H<1/2, any mutations that form a
hypothesis h′ ∈ H<1/2 such that |h′| < |h| will cause a noticeable decrease in performance
by the selection of tolerance. On the other hand, swapping a bad with a good variable
provides a noticeable increase in performance, again due to the selection of tolerance, and
occurs with probability at least (1− 1/n)n−2 · 1n ·

1
n > 1

e ·
1
n2 . Conditioning on h ∈ H<1/2, up

to q such swaps will occur within expected time not more than en2q. However, for short and
medium targets, this implies enough swaps that lead to u = 0 when p ∈ (0, 1/3] or u = 1
when p = 1/2 and thus in either case a hypothesis h is formed such that h ∈ H1/2 ∪H>1/2.
We now apply Markov’s inequality with failure probability δ/16.

Note that the final hypothesis h belongs to H1/2 only under Un; if it is the case that
evolution takes place under a Bernoulli(p)n distribution with parameter p ∈ (0, 1/3], then
h belongs to H>1/2, which in fact implies that u = 0.

Lemma 12 (Maintain Best q-Approximation of Medium Targets or Create a Specialization
of Short Targets under Un). Under the uniform distribution Un, let h0 ∈ H1/2 such that
|h0| ≤ q. The (1+1) EA, within

⌈
16en2/δ

⌉
generations, assuming that the performance of

each hypothesis generated is estimated within ǫs = t/2 of its true value, with probability at
least 1 − δ/16, will, either maintain a best q-approximation for a target of size q + 1, or
evolve a hypothesis h ∈ H>1/2.

Proof. We have u = 1, corresponding to Figure 3b.
First of all, if the target has size |c| = q + 1, then, since u = 1, we have |h| = m = q.

That is, h is a best q-approximation of c. Due to Lemma 4, h is noticeably better (by

909

Diochnos

an amount of at least 2−q) compared to any other hypothesis of size at most q that is
not a best q-approximation (as for any such other hypothesis h′ it holds h′ ∈ H<1/2).
Thus, the formation is stable and h can only mutate to other hypotheses that are also best
q-approximations.

In the other case, |c| ≤ q. (Targets with size |c| > q + 1 imply u ≥ 2 ⇒ h ∈ H<1/2

contradicting that h ∈ H1/2.) Neutral mutations do not affect the number of good variables
that already appear in h. Also, any beneficial mutation results in the introduction of the
last good variable that is missing from the hypothesis. Due to Lemma 5 introducing the last
missing good variable results in noticeable increase in performance. Furthermore, by Lemma
4, any hypothesis that has fewer good variables than h results in a noticeable decrease in
performance. Thus, neutral mutations in this phase will generate hypotheses with sizes in
{m,m + 1, . . . , q} = {|c| − 1, |c| , . . . , q} depending on the number of present bad variables
in these hypotheses. In every generation the last good variable is introduced into the
hypothesis due to either a beneficial swap or a beneficial addition of the last good variable.
When |h| < q, the last good variable is added with probability at least (1−1/n)n−1 · 1n ≥

1
en .

When |h| = q the probability of a beneficial swap is at least (1−1/n)n−2 · 1n ·
1
n ≥

1
en2 . Hence,

regardless of the size of h, the probability that the last good variable is introduced into the
hypothesis within one generation, is at least 1

en2 . We now apply Markov’s inequality with
failure probability δ/16.

Lemma 13 (Identification of Short Targets). Let Bn be a Bernoulli(p)n distribution with
parameter p ∈ Ralg such that p ∈ (0, 1/3]∪{1/2}. For an initial hypothesis h0 ∈ H>1/2 such
that |h0| ≤ q, the (1+1) EA, within ⌈16enq/δ⌉ generations, assuming that the performance
of each hypothesis generated is estimated within ǫs = t/2 of its true value, with probability
at least 1− δ/16, will evolve to the target c.

Proof. h0 ∈ H>1/2 ⇒ u = 0, corresponding to Figure 3c. Furthermore, m = |c| ≤ q. Any
hypothesis that is missing u ≥ 1 variables has noticeably smaller performance compared to
any hypothesis that is a specialization of the target (u = 0). Under Un Lemmas 5 and 6
provide the performance gap between such hypotheses, while for Bernoulli(p)n distributions
Bn with p ∈ (0, 1/3] the gap in performance is provided by Lemma 9.

If the starting hypothesis h0 contains redundant bad variables, then beneficial mutations
are those that remove one or more of those in one step. Such a beneficial removal of
one bad variable will occur within one generation with probability at least (1 − 1/n)n−1 ·
1
n ≥

1
en and will be identified as such. Since h0 contains not more than q bad variables,

by linearity of expectation, it follows that within enq generations all the redundant bad
variables are expected to be removed from h0 thus leading to the target c. In this formation
the only neutral mutation is the target itself. We now apply Markov’s inequality with failure
probability δ/16.

4.4 Complexity

The complexity analysis has to be performed for three different cases; once for the uniform
distribution (p = 1/2), once when p = 1/3, and once when p ∈ (0, 1/3). Below we present
a unifying theorem for all these three cases.

910

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Theorem 4. Let Bn be a Bernoulli(p)n distribution with parameter p ∈ Ralg such that

p ∈ (0, 1/3] ∪ {1/2}. Let q = ⌈log1/p(3/ε)⌉. Then, using the hypothesis class H = C≤q
n ,

starting from any initial hypothesis, the (1+1) EA will evolve a hypothesis h such that
Pr

(
PerfBn

(h, c) > 1− ε
)
≥ 1 − δ, in O

(
n2q/δ

)
generations. The total sample size is

Õ
(

n2q
δ·ε4

)
when p = 1/3 or p = 1/2, and Õ

(
n2q

δ·ε2·(min{4pε/9,1−3p})2

)
when 0 < p < 1/3.

The proofs of these three different cases are similar. One has to use the appropriate
lower bounds for the tolerance in every case. Evolution under the uniform distribution
appears to be the more involved among the three of these cases, since it allows hypotheses
to visit all three diagrams in Figure 3. For this reason, we start with the presentation of the
complexity analysis for the uniform distribution and in sequence we examine the complexity
analysis for the cases where p ∈ (0, 1/3) or p = 1/3.

4.4.1 Complexity Analysis under the Uniform Distribution

Theorem 5 (Evolution in C≤q
n under Un). Let q = ⌈log2(3/ε)⌉. Under the uniform distribu-

tion Un, using the hypothesis class H = C≤q
n , starting from any initial hypothesis, the (1+1)

EA will evolve a hypothesis h such that Pr
(
PerfUn

(h, c) > 1− ε
)
≥ 1 − δ, in O

(
n2q/δ

)

generations using total sample size Õ
(
n2q/(δε4)

)
.

Proof. Note that long targets are taken care of by Lemma 10 as soon as a hypothesis of
size q has been formed. The reason is that any approximation of a long target belongs to
H<1/2 and due to Lemma 3 all shorter hypotheses have performance that will be noticeably
smaller by the selection of tolerance. Thus, below we will only discuss about short and
medium targets.

Phase 1. In the first phase of the evolution (Lemma 10), as long as h ∈ H<1/2, increasing
the size of h results in increase in performance by an amount of at least 21−2q due to
Lemma 3. Lemma 10 serves its purpose when either h ∈ H1/2 (leading to phase 3),
or h ∈ H>1/2 (leading to phase 4), or it is still the case that h ∈ H<1/2 and moreover
|h| = q (leading to phase 2).

Phase 2. In the second phase of the evolution (Lemma 11), as long as h ∈ H<1/2 and |h| =
q, due to Lemma 3, any shorter hypothesis will have noticeably smaller performance by
the selection of tolerance. Thus, the only beneficial mutations are those that increase
the number of good variables while retaining the size to be q for the hypothesis. The
smallest increase in performance on such beneficial swaps is obtained when only one
bad variable is replaced by a good one in one step and the increase is 4p|h|+u−1(1 −
p) = 22−|h|−u ≥ 21−2q. (Note also that if many good variables are brought into the
hypothesis in one generation, such that the resulting hypothesis belongs to H1/2 ∪
H>1/2, then by Lemma 4 the increase in performance is at least 2−q and by Lemma 6
the increase in performance is at least 3 ·2−q. Both such increases are at least as large
as 21−2q for any q ≥ 1.) Hence we reach phase 3 (h ∈ H1/2) or phase 4 (h ∈ H>1/2)
below.

Phase 3. In the third phase of the evolution (Lemma 12), a hypothesis h0 has been formed
that is missing precisely one variable from the target c. Due to Lemma 4, any other

911

Diochnos

short hypothesis h ∈ H<1/2 has noticeably smaller performance by an amount of at
least 2−q.

In the case where the target is medium (that is, |c| = q + 1), then h0 is already a
best q-approximation of c since h0 ∈ H1/2 ⇒ u = 1. Due to our remark above, this
formation is stable, as any hypothesis h with |h| < q will have u ≥ 2, and moreover,
among the hypotheses of size q again there can not be more than 2 good variables
missing from h as this would imply h ∈ H<1/2 again.

In the case where the target is short, we have that m = |c| − 1 ≤ q − 1. Therefore,
|h0| ∈ {|c| − 1, |c| , . . . , q}. As explained in the proof of Lemma 12 we are interested in
introducing the last missing good variable to h, which can either happen by appending
it to h when |h| < q, or by performing a beneficial swap when there are redundant bad
variables present in h. Either of these two mutations results in a new hypothesis h′ ∈
H>1/2 and due to Lemma 5 the increase in performance is at least 21−q. Similarly, until
such a good event occurs, by the selection of tolerance, any hypothesis h′′ ∈ H<1/2

has noticeably smaller performance compared to h by an amount of at least 2−q due
to Lemma 4. Thus, when the target is short, with the application of Lemma 12, we
reach phase 4.

Phase 4. In the fourth phase of the evolution (Lemma 13), a specialization of a short
target has been formed. Removing or replacing one or more good variables from the
hypothesis within one mutation, results in transitioning from a hypothesis h ∈ H>1/2

to a hypothesis h′ ∈ H1/2 ∪ H<1/2 and due to Lemmas 5 and 6, the decrease in
performance is at least 21−q. By the selection of tolerance such mutations will be
characterized as deleterious. Thus, the only beneficial mutations that can occur are
those that delete one or more bad variables from h in one step (without affecting the
good variables). Deleting one such bad variable results in increase in performance by
an amount of 2p|h|−1(1− p) = 21−|h| ≥ 21−q.

Once we reach the target, any mutation that removes one or more good variables, due
to Lemmas 5 and 6, will have as a result a noticeable decrease in performance by an
amount of at least 21−q. Similarly introducing one or more bad variables (which thus
maintains that h ∈ H>1/2) also results in a decrease in performance by an amount

|∆| = 2p|h|(1− p) = 2−|h| ≥ 2−q.

Thus, from all four phases, when a beneficial or deleterious mutation occurs, then the
performance of the hypothesis is affected by an additive amount at least 21−2q. Therefore,
we set the tolerance t to be

t = 2−2q .

Due to Lemmas 10, 11, 12 and 13, evolution lasts not more than ⌈16enq/δ⌉+
⌈
16en2q/δ

⌉
+⌈

16en2/δ
⌉
+ ⌈16enq/δ⌉ ≤ 4+32enq/δ+17en2q/δ ≤ 53en2q/δ generations (regardless of the

target) with failure probability, by a union bound, not more than δ/4. The neighborhood in
each generation has size not larger than 2. Hence, the total number of hypotheses that need
to be estimated is not more than 106en2q/δ. By the analysis above we want to estimate
the performance of each hypothesis within ǫs = t/2 of its true value.

912

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Requiring R ≥
⌈

8
t2
· ln

(
284en2q

δ2

)⌉
samples for estimating the empirical performance

of each hypothesis, it follows by Hoeffding’s bound (Proposition 1), using α = −1 and
β = 1, that the empirical performance of each hypothesis is estimated within ǫs = t/2
of its exact value with probability at least 1 − δs = 1 − δ2/(142en2q). As the number of
different hypotheses is not more than 106en2q/δ, by the union bound, the performance of
every hypothesis in this phase is computed within ǫs = t/2 of its exact value except with

probability at most
∑106en2q/δ

i=1 δ2/(142en2q) ≤
∑106en2q/δ

i=1 3δ2/(4 · 106en2q) = 3δ/4.
Thus, with a union bound argument again, the performance of each hypothesis is com-

puted within ǫs = t/2 of its true value and evolution achieves its goal within O
(
n2q/δ

)

generations with total probability at least 1− δ.
Since q = ⌈log2(3/ε)⌉ we have 2−q ≥ ε

6 and hence t = 2−2q ≥ ε2/36. The total sample
size follows.

4.4.2 Complexity Analysis when p ∈ (0, 1/3)

Theorem 6 (Evolution in C≤q
n when p ∈ (0, 1/3)). Let Bn be a Bernoulli(p)n product

distribution with parameter p ∈ Ralg such that p ∈ (0, 1/3). Using the hypothesis class

H = C≤q
n , starting from any initial hypothesis, the (1+1) EA will evolve a hypothesis h

such that Pr
(
PerfBn

(h, c) > 1− ε
)
≥ 1− δ in O

(
n2q/δ

)
generations with total sample size

Õ
(

n2q

δ·ε2·(min{4pε/9,1−3p})2

)
.

Proof. Note that long targets are taken care of by Lemma 10 as soon as a hypothesis of size
q has been formed. Thus, below we will only discuss about short targets.

Phase 1. In the first phase of the evolution (Lemma 10), as long as h ∈ H<1/2, increasing
the size of h results in increase in performance by an amount of at least 2pq−1(1− 3p)
due to Lemma 7. Lemma 10 serves its purpose when either h ∈ H>1/2 (leading to
phase 3 below), or it is still the case that h ∈ H<1/2 and moreover |h| = q (leading
to phase 2). Of course it can happen that all the good variables are brought into the
hypothesis in one generation; then by Lemma 9 the increase in performance is at least
8
3p

q.

Phase 2. In the second phase of the evolution (Lemma 11), as long as h ∈ H<1/2 and |h| =
q, due to Lemma 7, any shorter hypothesis will have noticeably smaller performance
by the selection of tolerance. Thus, the only beneficial mutations are those that
increase the number of good variables while retaining the size of the hypothesis to
be q. The smallest increase in performance on such beneficial swaps is obtained
when only one bad variable is replaced by a good one in one step and the increase is
4p|h|+u−1(1−p) ≥ 4p2q−1(1−p) ≥ 8p2q−1/3. Hence, we reach phase 3 once sufficiently
many beneficial swaps have occurred.

Phase 3. In the third phase of the evolution (Lemma 13), a specialization of the target has
been formed. Removing or replacing one or more good variables from the hypothesis
results in transitioning from a hypothesis h ∈ H>1/2 to a hypothesis h′ ∈ H<1/2; due

to Lemma 9 the decrease in performance will be at least 8
3p

q and by the selection
of the tolerance it will be characterized as deleterious. Thus, the only beneficial

913

Diochnos

mutations that can occur are those that delete one or more bad variables from h in
one step (without affecting the good ones). Deleting such a bad variable increases
the performance by an amount of 2p|h|−1(1 − p) ≥ 2pq−1(1 − p). In turn, for any
p ∈ (0, 1/3] we have that 2pq−1(1− p) ≥ 4p2q−1(1− p).

Once we reach the target, any mutation that removes one or more good variables,
due to Lemma 9 will have as a result a noticeable decrease in performance. Similarly
introducing one or more bad variables (which thus maintains that h ∈ H>1/2) also

results in a decrease in performance by an amount |∆| = 2p|h|(1− p) ≥ 2pq−1(1− p).

Thus, from all three phases, for any 0 < p ≤ 1/3, using the fact that 8p2q−1/3 is a lower
bound for the three quantities 2pq−1(1−p), 4p2q−1(1−p), and 8

3p
q, when a mutation occurs

that affects the true performance, then the performance of a hypothesis changes by at least
an additive factor of |∆| = 2pq−1 ·min {4pq/3, 1− 3p}. We thus set the tolerance to be

t = pq−1 ·min {4pq/3, 1− 3p} .

Due to Lemmas 10, 11 and 13, evolution lasts not more than ⌈16enq/δ⌉+
⌈
16en2q/δ

⌉
+

⌈16enq/δ⌉ ≤ 3 + 32enq/δ + 16en2q/δ ≤ 35enq/δ + 16en2q/δ ≤ 51en2q/δ generations (re-
gardless of the target) with failure probability, by a union bound, not more than 3δ/16.
The neighborhood in each generation has size not larger than 2. Hence, the total number of
hypotheses that need to be estimated is not more than 102en2q/δ. Furthermore, we want
to estimate the performance of each hypothesis within ǫs = t/2 of its true value.

Requiring R ≥
⌈

8
t2
· ln

(
252en2q

δ2

)⌉
samples for estimating the empirical performance

of each hypothesis, it follows by Hoeffding’s bound (Proposition 1), using α = −1 and
β = 1, that the empirical performance of each hypothesis is estimated within ǫs = t/2
of its exact value except with probability at most δs = δ2/(126en2q). As the number of
different hypotheses is not more than 102en2q/δ, by the union bound, the performance of
every hypothesis in this phase is computed within ǫs = t/2 of its exact value except with

probability at most
∑102en2q/δ

i=1 δ2/(126en2q) ≤
∑102en2q/δ

i=1 13δ2/(16 · 102en2q) = 13δ/16.

Thus, with a union bound argument again, the performance of each hypothesis is com-
puted within ǫs = t/2 of its true value and evolution achieves its goal within O

(
n2q/δ

)

generations except with probability at most δ.

Since q = ⌈log1/p(3/ε)⌉ we have pq ≥ p1+log1/p(3/ε) = pε/3 and hence t = pq−1 ·
min{4pq/3, 1− 3p} ≥ ε

3 ·min{4pε/9, 1− 3p}. The sample size follows.

4.4.3 Complexity Analysis when p = 1/3

Theorem 7 (Evolution in C≤q
n when p = 1/3). Let Bn be a Bernoulli(p)n product distribu-

tion with parameter p = 1/3. Using the hypothesis class H = C≤q
n , starting from any initial

hypothesis, the (1+1) EA will evolve a hypothesis h such that Pr
(
PerfBn

(h, c) > 1− ε
)
≥

1− δ in O
(
n2q/δ

)
generations with total sample size Õ

(
n2q
δ·ε4

)
.

Proof. The only difference in the proof of this theorem compared to Theorem 6 is that for
phases 1 and 2, instead of using Lemma 7 we use Lemma 8. Thus, the performance of a

914

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

hypothesis due to beneficial or deleterious mutations, is affected by at least an amount of
min{8 · 31−2q/3, 4 · 3−1−2q} = 4

3 · 3
−2q. Therefore, we set the tolerance t to be

t = 2 · 3−1−2q .

Since q = ⌈log3(3/ε)⌉, we have that 3
−q > 3−2 · ε. As a consequence from the above, for

the tolerance we have t = 2 · 3−1−2q ≥ 2 · 3−5 · ε2. The sample size follows.

5. Uniform Setup

Algorithm 3 provides a uniform setup so that the (1+1) EA can converge to an ε-optimal
hypothesis regardless of the value of p that characterizes the underlying distribution, as long
as p belongs to a specific family. The idea is that, on one hand Lemmas 1 and 2 hold for any
sufficiently large frontier q and on the other hand we will set the tolerance t so that it lower
bounds any tolerance that is used by Algorithm 2 when the exact value of p is known and
p belongs to the particular family. Therefore, we will use the fact that Theorem 4 indicates
that when p = 1

2 , then the tolerance t should be 2−2q, as well as the fact that it should
hold t = pq−1 ·min{4pq/3, 1 − 3p} when p ∈ (0, 13), and t = 2 · 3−1−2q when p = 1

3 . As an
additional consequence of the fact that Algorithm 3 is now agnostic to the underlying p that
characterizes the underlying distribution, this implies convergence for values of p where p
is transcendental since the actual value of p is no longer part of the input.

Algorithm 3: Mutator so that the (1+1) EA converges with a uniform setup for
a class of Bn,p distributions.

Input: n, α ∈ (0, 3/13], δ ∈ (0, 1), ε ∈ (0, 2), h ∈ H
Output: a new hypothesis

1 q ← ⌈log2(3/ε)⌉ ; /* set the frontier */

2 k ← ⌈log2(1/α)⌉ ; /* set the constant related to α */

3 h′ ← Mutate(h); ; /* perform the mutation */

4 if |h′| ≤ q then N ← {h′} ; /* set the neighborhood */

5 else return h;

6 t← 52
9
· (ε/6)2k ; /* set the tolerance */

7 δs ← δ2/(142en2q) ; /* set the confidence for estimating the performance */

8 ǫs ← t/2; ; /* set the approximation-error bound for estimating the performance */

9 νh ← Perf(p, h, ǫs, δs) ; /* estimate empirically the performance */

10 νh′ ← Perf(p, h′, ǫs, δs) ; /* estimate empirically the performance */

/* apply the selection mechanism below and return the appropriate hypothesis */

11 if νh′ > νh + t then return h′;
12 else if νh′ ≥ νh − t then return USelect({h} ∪ {h′});
13 else return h;

Theorem 8 (Evolution with a Uniform Setup). Let α ∈ Ralg with 0 < α ≤ 3/13. Let
k = ⌈log2(1/α)⌉. Let q = ⌈log2(3/ε)⌉. Let I = [α, 1/3− 4α/9] ∪ {1/3} ∪ {1/2}. Let p ∈ I.
Consider a Bernoulli(p)n distribution Bn over {0, 1}n that is characterized by p. Then,
using the hypothesis class H = C≤q

n , starting from any initial hypothesis, the (1+1) EA will
evolve a hypothesis h such that Pr

(
PerfBn

(h, c) > 1− ε
)
≥ 1− δ in O

(
n2q/δ

)
generations

with total sample size Õ
(
64kn2q/(δε4k)

)
.

Proof. Note that for any 0 < ε < 2, we have q ≥ 1.

915

Diochnos

Case p ∈ I1 = [α, 1/3− 4α/9]. We first use the fact that 4α/3 is a lower bound for
the quantity 1 − 3p for any p ∈ J = [3/13, 1/3− 4α/9]. Thus, for any p ∈ I1 we have
min {4pq/3, 1− 3p} ≥ min {4pq/3, 4α/3} ≥ min {4αq/3, 4α/3} = 4αq/3. It follows that for
any p ∈ I1 we have pq−1 · min {4pq/3, 1− 3p} ≥ αq−1 · (4αq/3) ≥ 52α2q/9, where in the
last inequality we used the fact that α ≤ 3/13. Furthermore, 2−k ≤ α ⇒ αq ≥ 2−kq =

2−k⌈log2(3/ε)⌉ ≥
(
2−1−log2(3/ε)

)k
= (ε/6)k. Therefore, it suffices to set the tolerance t so that,

t ≤
52

9
· (ε/6)2k ≤

52

9
· α2q . (16)

Case p = 1/3. We observe that 2
3 · 3

−2q ≥ 2
3 ·

(
3−1−log2(3/ε)

)
= 2

27 ·
(
3− log3(3/ε)

)2/ log3(2) =
2
27 · (ε/3)

2/ log3(2) ≥ 2
27 · (ε/3)

3.17. Hence, it suffices to set,

t ≤
2

27
· (ε/3)3.17 ≤

2

3
· 3−2q . (17)

Case p = 1/2. Since 2−2q ≥ (ε/6)2 it suffices to set,

t ≤ (ε/6)2 ≤ 2−2q . (18)

Now, using the fact that ε < 2 and k ≥ 3, the first observation is, 52
9 · (ε/6)

2k ≤ 52
9 · (ε/6)

6 =
52
9 · (ε/6)

4 · (ε/6)2 ≤ 52
9 · (2/6)

4 · (ε/6)2 ≤ 52
93
· (ε/6)2 < ε2/36. The second observation is,

ε2.83 < 22.83 < 2·9·66

52·27·33.17 and thus 52
9 · (ε/6)

2k ≤ 52
9 · (ε/6)

6 = 52
9·66 · ε

2.83 · ε3.17 < 2
27 · (ε/3)

3.17.

Hence, by (16), (17) and (18), it suffices to set, t = 52
9 · (ε/6)

2k unconditionally, so that
evolution can achieve its goal with a uniform setup for every p ∈ I.

6. Conclusion

We examined a modification of the well-studied evolutionary mutation mechanism that is
used in evolutionary algorithms, within the framework of evolvability. We modified the
typical version of the (1+1) EA so that we can cope with noisy estimates of the fitness
function. Our analysis was performed under a set of Bernoulli(p)n distributions.

Exploring such intuitive mutation mechanisms is desirable towards forming a better
theory for evolving functions and in fact this is a property that is sought for explicitly (see,
e.g., Lissovoi & Oliveto, 2019; Reyzin, 2020). The convergence relied on a new characteriza-
tion of the fitness landscape of monotone conjunctions by providing different fitness levels.
These fitness levels allow the analysis to be decomposed into different phases, as the evolved
function migrates from levels that have lower fitness values to levels that have higher fitness
values. In addition, we provided a distribution-specific result as well as a distribution-free
result for a class of distributions.

A very natural open question is whether the evolutionary mutation mechanism allows
convergence for a broader set of distributions as, for example, the swapping algorithm in the
analysis by Diochnos (2016) does. Are there other intuitive evolutionary mechanisms that
provably allow us to cover a broader set of distributions for monotone conjunctions? Can
similar intuitive evolutionary mechanisms provide results for other concept classes? Finally,
as one of the reviewers suggested, perhaps an interesting direction is to explore the conver-
gence in a population-based evolutionary algorithm, potentially allowing self-adjusting the
mutation rate along the lines of the work of Doerr, Gießen, Witt and Yang (2019).

916

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Appendix A. Definition of Evolvability

For the performance and the empirical performance we use (1) and (2) respectively. Below
we draw the definitions from the work of Valiant (2009); however, we include the failure
probability δ explicitly.

Definition 2 (Neighborhood and Selection). For a polynomial p(·, ·, ·) and a representation
class Rn a p-neighborhood N on Rn is a pair M1,M2 of randomized polynomial time Turing
machines such that the numbers n (in unary), ⌈1/ε⌉, ⌈1/δ⌉ and a representation r ∈ Rn

act as follows: M1 outputs all the members of a set NeighN (r, ε, δ) ⊆ Rn, that contains r
and may depend on random coin tosses of M1, and has size at most p(n, 1/ε, 1/δ). If M2

is then run on this output of M1, it in turn outputs one member of NeighN (r, ε, δ), with
member r1 being output with a probability PrN (r, r1) ≥ 1/p(n, 1/ε, 1/δ).

Definition 3 (Selection Mechanism Details). For confidence parameter δ, error parame-
ter ε, positive integers n and s, an ideal function f ∈ Cn, a representation class Rn with
p(n, 1/ε, 1/δ)-neighborhood N on Rn, a distribution Dn, a representation r ∈ Rn and a real
number t, the mutator Mu(f, p(n, 1/ε, 1/δ), Rn, N,Dn, s, r, t) is a random variable that on
input r ∈ Rn takes a value r1 ∈ Rn determined as follows: For each r1 ∈ NeighN (r, ε, δ)
it first computes an empirical value of ν(r1) = PerfDn

(r1, f, s). Let Bene be the set
{r1 | ν(r1) > ν(r) + t} and Neut be the set difference {r1 | ν(r1) ≥ ν(r) − t} \ Bene.
If Bene 6= ∅ then output r1 ∈ Bene with probability PrN (r, r1) /

∑
r1∈BenePrN (r, r1).

Otherwise (Bene = ∅), output an r1 ∈ Neut, the probability of a specific r1 being

PrN (r, r1) /
∑

r1∈Neut

PrN (r, r1) .

Definition 4 (One Evolutionary Step). For a mutator Mu(f, p(n, 1/ε, 1/δ), Rn, N,Dn, s, r,-
t) a t-evolution step on input r1 ∈ Rn is the random variable r2 = Mu(f, p(n, 1/ε, 1/δ), Rn,-
N,Dn, s, r1, t). We then say r1 → r2 or r2 ← Evolve(f, p(n, 1/ε, 1/δ), Rn, N,Dn, s, r1, t).

We say that polynomials tℓ(x, y, z) and tu(x, y, z) are polynomially related if for some
η > 1 for all x, y, z such that (0 < x, y, z < 1) it holds (tu(x, y, z))

η ≤ tℓ(x, y, z) ≤ tu(x, y, z).

Definition 5 (An Evolutionary Sequence (where for Each Step i it holds ti ∈ [tℓ, tu])). For
a mutator Mu(f, p(n, 1/ε, 1/δ), Rn, N,Dn, s, r, t) a (tℓ, tu)-evolution sequence for r1 ∈ Rn

is a random variable that takes as values sequences r1, r2, r3, . . . such that for all i, ri ←
Evolve(f, p(n, 1/ε, 1/δ), Rn, N,Dn, s, ri−1, ti), where tℓ(1/n, ε, δ) ≤ ti ≤ tu(1/n, ε, δ), tℓ and
tu are polynomially related polynomials, and ti is the output of a TM T on input ri−1, n, ε,
δ.

Definition 6 (Goal of Evolution; Evolvability of Concept Class Cn with an Evolutionary
Sequence). For polynomials p(n, 1/ε, 1/δ), s(n, 1/ε, 1/δ), tℓ(1/n, ε, δ) and tu(1/n, ε, δ), a
representation class Rn and p(n, 1/ε, 1/δ)-neighborhood N on Rn, the class Cn is (tℓ, tu)-
evolvable by (p(n, 1/ε, 1/δ), Rn, N, s(n, 1/ε, 1/δ)) over distribution Dn if there is a polyno-
mial g(n, 1/ε, 1/δ) and a Turing machine T , which computes a tolerance bounded between
tℓ and tu, such that for every positive integer n, every f ∈ Cn, every δ > 0, every ε > 0,
and every r0 ∈ Rn it is the case that with probability at least 1 − δ, a (tℓ, tu)-evolution
sequence r0, r1, r2, . . ., where ri ← Evolve(f, p(n, 1/ε, 1/δ), Rn, N,Dn, s(n, 1/ε, 1/δ), ri−1,-
T (ri−1, n, ε)), will have PerfDn

(
rg(n,1/ε,1/δ), f

)
≥ 1− ε.

917

Diochnos

Definition 7. A class Cn is evolvable by (p(n, 1/ε, 1/δ), Rn, N, s(n, 1/ε, 1/δ)) over Dn iff
for some pair of polynomially related polynomials tℓ, tu, Cn is (tℓ, tu)-evolvable by (p(n, 1/ε,-
1/δ), Rn, N, s(n, 1/ε, 1/δ)) over Dn.

Definition 8. A class Cn is evolvable by Rn over Dn iff for some polynomials (p(n, 1/ε, 1/δ)
and s(n, 1/ε, 1/δ)), and some p (n, 1/ε, 1/δ)-neighborhood N on Rn, Cn is evolvable by
(p(n, 1/ε, 1/δ), Rn, N, s(n, 1/ε, 1/δ)) over Dn.

Appendix B. Bounded and Unbounded Models of Evolution

We make the following remarks on different models of evolution.

Definition 9 (Bounded-/Unbounded- Precision Evolution). The unbounded-precision model
occurs for tℓ = 0 in the definitions of evolvability. The bounded-precision model occurs for
tℓ > 0.

The bounded precision model allows intermediate setups between black-box optimization
(unbounded-precision) and evolvability, where in evolvability one can determine the sign of
the performance difference ∆ = PerfDn (h

′, c)− PerfDn (h, c), if the two fitness values differ
significantly; that is, ∆ is poly(1/n, ε, δ). Bounded-precision oracles are of interest in other
domains as well (see, e.g., Ajtai, Feldman, Hassidim, & Nelson, 2016). Furthermore, in
the bounded-precision model it might be the case that the tolerances tℓ and tu are not
polynomially related. For example, theoretically it is possible to allow tu to have some
value larger than 1, since the correlation between the hypothesis h and the target c is
between -1 and +1.

References

Ajtai, M., Feldman, V., Hassidim, A., & Nelson, J. (2016). Sorting and selection with
imprecise comparisons. ACM Transactions on Algorithms, 12 (2), 19.

Angelino, E., & Kanade, V. (2014). Attribute-efficient evolvability of linear functions. In
Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January
12-14, 2014, pp. 287–300.

Astete-Morales, S., Cauwet, M.-L., & Teytaud, O. (2015). Evolution Strategies with Ad-
ditive Noise: A Convergence Rate Lower Bound. In Proceedings of the 2015 ACM
Conference on Foundations of Genetic Algorithms XIII, Aberystwyth, United King-
dom, January 17 - 20, 2015, pp. 76–84.

Ben-David, S., & Dichterman, E. (1998). Learning with restricted focus of attention. Journal
of Computer and System Sciences, 56 (3), 277–298.

Ben-David, S., Itai, A., & Kushilevitz, E. (1995). Learning by Distances. Information and
Computation, 117 (2), 240–250.

Benedek, G. M., & Itai, A. (1991). Learnability with Respect to Fixed Distributions.
Theoretical Computer Science, 86 (2), 377–390.

Bshouty, N. H., & Feldman, V. (2002). On Using Extended Statistical Queries to Avoid
Membership Queries. Journal of Machine Learning Research, 2, 359–395.

918

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Cai, W., & Shao, X. (2002). A fast annealing evolutionary algorithm for global optimization.
Journal of Computational Chemistry, 23 (4), 427–435.

Cordón, O., de Moya Anegón, F., & Zarco, C. (2002). A new evolutionary algorithm
combining simulated annealing and genetic programming for relevance feedback in
fuzzy information retrieval systems. Soft Computing, 6 (5), 308–319.

Corus, D., Dang, D., Eremeev, A. V., & Lehre, P. K. (2018). Level-Based Analysis of
Genetic Algorithms and Other Search Processes. IEEE Transactions on Evolutionary
Computation, 22 (5), 707–719.

Dang, D.-C., & Lehre, P. K. (2015). Efficient Optimisation of Noisy Fitness Functions with
Population-based Evolutionary Algorithms. In Proceedings of the 2015 ACM Con-
ference on Foundations of Genetic Algorithms XIII, Aberystwyth, United Kingdom,
January 17 - 20, 2015, pp. 62–68.

Diochnos, D. I. (2016). On the Evolution of Monotone Conjunctions: Drilling for Best
Approximations. In Algorithmic Learning Theory - 27th International Conference,
ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings, pp. 98–112.

Diochnos, D. I., & Turán, G. (2009). On Evolvability: The Swapping Algorithm, Product
Distributions, and Covariance. In Stochastic Algorithms: Foundations and Applica-
tions, 5th International Symposium, SAGA 2009, Sapporo, Japan, October 26-28,
2009. Proceedings, pp. 74–88.

Doerr, B., Gießen, C., Witt, C., & Yang, J. (2019). The (1 + λ) Evolutionary Algorithm
with Self-Adjusting Mutation Rate. Algorithmica, 81 (2), 593–631.

Domingos, P. (2015). The Master Algorithm: How the Quest for the Ultimate Learning
Machine Will Remake Our World. Basic Books, New York.

Droste, S. (2004). Analysis of the (1+1) EA for a Noisy OneMax. In Genetic and Evolution-
ary Computation - GECCO 2004, Genetic and Evolutionary Computation Conference,
Seattle, WA, USA, June 26-30, 2004, Proceedings, Part I, pp. 1088–1099.

Droste, S., Jansen, T., & Wegener, I. (2002). On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276 (1-2), 51–81.

Duda, R. O., & Shortliffe, E. H. (1983). Expert Systems Research. Science, 220, 261–268.

Feldman, V. (2008). Evolvability from learning algorithms. In Proceedings of the 40th An-
nual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, pp. 619–628.

Feldman, V. (2009). Robustness of Evolvability. In COLT 2009 - The 22nd Conference on
Learning Theory, Montreal, Quebec, Canada, June 18-21, 2009, pp. 277–292.

Feldman, V. (2011). Distribution-Independent Evolvability of Linear Threshold Functions.
In COLT 2011 - The 24th Annual Conference on Learning Theory, June 9-11, 2011,
Budapest, Hungary, pp. 253–272.

Feldman, V. (2012). A Complete Characterization of Statistical Query Learning with Appli-
cations to Evolvability. Journal of Computer and System Sciences, 78 (5), 1444–1459.

919

Diochnos

Friedrich, T., & Neumann, F. (2017). What’s Hot in Evolutionary Computation. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pp. 5064–5066.

Gießen, C., & Kötzing, T. (2016). Robustness of Populations in Stochastic Environments.
Algorithmica, 75 (3), 462–489.

Gutjahr, W. J., & Pflug, G. C. (1996). Simulated Annealing for noisy cost functions. Journal
of Global Optimization, 8 (1), 1–13.

Hoeffding, W. (1963). Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association, 58 (301), 13–30.

Holland, J. H. (1986). Escaping Brittleness: The Possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In Michalski, R. S., Carbonell,
J. G., & Mitchell, T. M. (Eds.), Machine Learning, An Artificial Intelligence Approach
(Volume II), chap. 20, pp. 593–623. Morgan Kaufmann, Los Alamos, CA.

Kalai, A. T., & Vempala, S. (2006). Simulated annealing for convex optimization. Mathe-
matics of Operations Research, 31 (2), 253–266.

Kanade, V. (2011). Evolution with Recombination. In IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pp. 837–846.

Kanade, V., Valiant, L. G., & Vaughan, J. W. (2010). Evolution with Drifting Targets. In
COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29,
2010, pp. 155–167.

Kearns, M. J. (1998). Efficient noise-tolerant learning from statistical queries. Journal of
the ACM, 45 (6), 983–1006.

Kötzing, T., Neumann, F., & Spöhel, R. (2011). PAC Learning and Genetic Programming.
In 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011,
Proceedings, Dublin, Ireland, July 12-16, 2011, pp. 2091–2096.

Koza, J. R. (1993). Genetic programming - on the programming of computers by means of
natural selection. Complex adaptive systems. MIT Press.

Laird, P. D. (1988). Learning from Good and Bad Data. Kluwer Academic Publishers,
Boston.

Lissovoi, A., & Oliveto, P. S. (2019). On the Time and Space Complexity of Genetic
Programming for Evolving Boolean Conjunctions. Journal of Artificial Intelligence
Research, 66, 655–689.

Michael, L. (2012). Evolvability via the Fourier transform. Theoretical Computer Science,
462, 88–98.

Mitchell, T. M. (1997). Machine learning. McGraw Hill series in computer science. McGraw-
Hill.

Mühlenbein, H., & Mahnig, T. (2001). Evolutionary algorithms: From recombination to
search distributions. In Kallel, L., Naudts, B., & Rogers, A. (Eds.), Theoretical As-
pects of Evolutionary Computing, pp. 135–173. Springer Berlin Heidelberg, Berlin,
Heidelberg.

920

Evolving Monotone Conjunctions with an Evolutionary Mutation Mechanism

Prugel-Bennett, A., Rowe, J., & Shapiro, J. (2015). Run-Time Analysis of Population-
Based Evolutionary Algorithm in Noisy Environments. In Proceedings of the 2015
ACM Conference on Foundations of Genetic Algorithms XIII, Aberystwyth, United
Kingdom, January 17 - 20, 2015, pp. 69–75.

Qian, C., Bian, C., Jiang, W., & Tang, K. (2019). Running Time Analysis of the (1+1)-EA
for OneMax and LeadingOnes Under Bit-Wise Noise. Algorithmica, 81 (2), 749–795.

Quinlan, J. R. (1986). The Effect of Noise on Concept Learning. In Michalski, R. S., Car-
bonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning, An Artificial Intelligence
Approach (Volume II), chap. 6, pp. 149–166. Morgan Kaufmann, Los Alamos, CA.

Reyzin, L. (2020). Statistical Queries and Statistical Algorithms: Foundations and Appli-
cations. CoRR, abs/2004.00557.

Ros, J. P. (1992). Learning Boolean Functions with Genetic Algorithms: A PAC Analysis.
In Proceedings of the Second Workshop on Foundations of Genetic Algorithms. Vail,
Colorado, USA, July 26-29 1992, pp. 257–275.

Sloan, R. H. (1995). Four Types of Noise in Data for PAC Learning. Information Processing
Letters, 54 (3), 157–162.

Snir, S., & Yohay, B. (2019a). Extending the Evolvability Model to the Prokaryotic World:
Simulations and Results on Real Data. Journal of Computational Biology, 26 (8),
794–805.

Snir, S., & Yohay, B. (2019b). Prokaryotic evolutionary mechanisms accelerate learning.
Discrete Applied Mathematics, 258, 222–234.

Sudholt, D. (2010). General Lower Bounds for the Running Time of Evolutionary Al-
gorithms. In Parallel Problem Solving from Nature - PPSN XI, 11th International
Conference, Kraków, Poland, September 11-15, 2010, Proceedings, Part I, pp. 124–
133.

Valiant, L. (2013). Probably Approximately Correct: Nature’s Algorithms for Learning and
Prospering in a Complex World. Basic Books, Inc., New York, NY, USA.

Valiant, L. G. (1984). A Theory of the Learnable. Communications of the ACM, 27 (11),
1134–1142.

Valiant, L. G. (2009). Evolvability. Journal of the ACM, 56 (1), 3:1–3:21.

Valiant, P. (2014). Evolvability of Real Functions. ACM Transactions on Computation
Theory, 6 (3), 12:1–12:19.

Watson, R. A., & Szathmáry, E. (2016). How can evolution learn?. Trends in Ecology &
Evolution, 31 (2), 147–157.

Wegener, I., & Witt, C. (2005). On the analysis of a simple evolutionary algorithm on
quadratic pseudo-boolean functions. Journal of Discrete Algorithms, 3 (1), 61–78.

Yap, C. (2000). Fundamental problems of algorithmic algebra. Oxford University Press.

921

