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Abstract

As an important field of Distributed artificial intelligence (DAI), multi-agent systems
(MASs) have attracted the attention of extensive research scholars. Consensus as an
important issue in MAS, good progress has been made in studying the consensus control of
MAS, but there are some problems remained largely unaddressed which cause the MAS
to lose some useful network structure information. First, multi-agent consensus protocol
usually proceeds over the low-order structure by only considering the direct edges between
agents, but ignores the higher-order structure of the whole topology network. Second, the
existing work assumes all the edges in a topology network have the same weight without
exploring the potential diversity of the connections. In this way, multi-agent systems fail
to enforce consensus, resulting in fragmentation into multiple clusters. To address the
above issues, this paper proposes a Motif-Aware Weighted Multi-agent System (MWMS)
method for consensus control. We focus more on triangle motif in the network, but it can
be extended to other kinds of motifs as well. First, a novel weighted network is used which
is the combination of the edge-based lower-order structure and the motif-based higher-order
structure, i.e., hybrid-order structure. Subsequently, by simultaneously considering the
quantity and the quality of the connections in the network, a novel consensus framework
for MAS is designed to update agents. Then, two baseline consensus algorithms are used in
MWMS. In our experiments, we use ten topologies of different shapes, densities and ranges
to comprehensively analyze the performance of our proposed algorithms. The simulation
results show that the hybrid higher-order network can effectively enhance the consensus of
the multi-agent system in different network topologies.

1. Introduction

Distributed Artificial Intelligence (DAI) mainly studies how logically or physically dispersed
intelligent systems solve problems in parallel and in cooperation with each other. DAI can
be divided into two basic research areas: Distributed Problem Solving (DPS) and Multi-
agent Systems (MAS). As an important field of DAI, MASs have attracted an increasing
amount of attention from experts in computer science1, control theory (Dobbe, Fridovich-
Keil, & Tomlin, 2017), cooperative2, engineering3, reinforcement learning (Lin, Adams, &

1. (Jiang & Lu, 2018; Han & Gmytrasiewicz, 2018; Song, Ren, Sadigh, & Ermon, 2018; Ephrati &
Rosenschein, 1996)

2. (da Silva, Wu, Dai, & Lin, 2016; Le & Plaku, 2019; Dutta, Jennings, & Moreau, 2005)
3. (Wang, Wei, Fan, Liu, & Huang, 2019; Le & Plaku, 2018; Kraus, 1997)
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Beling, 2019; Wai, Yang, Wang, & Hong, 2018), etc. MASs should consider uncertainty
and limited communication in order to generate robust solutions of high-quality (Amato,
2018; Bloembergen, Tuyls, Hennes, & Kaisers, 2015). Since each agent has limited sensing,
computing, storage and motion control capability, it is necessary for agent to cooperate
with its neighbors in a distributed method to make the system achieve convergence in finite
time (Ren & Beard, 2005). In complex networks, multi-agent systems are mainly used to
study the influence of algebraic connectivity on systems (Olfati-Saber, 2005).

MAS mainly studies the coordination of agent behavior, how to coordinate their knowl-
edge, goals, skills and mutual planning between a group of autonomous agents to take action
or solve problems. The agent in MAS can have a global goal or an independent goal related
to itself. They must follow the coordination procedure of the behavior between agents. The
basic difficulty to achieve system consensus is not to use centralized control. The basic
problem that DAI researchers are trying to solve is to achieve global or local consensus
only through local control (Bond, 1988). Olfati-Saber et al. (2007) provide a theoretical
framework for analysis of consensus algorithms for networked multi-agent systems with
fixed or unfixed topology and directed information flow. On this basis, many efforts have
been made in developing decentralized consensus algorithms, such as hybrid multi-agent
system (Zheng, Ma, & Wang, 2018; Nebel, Bolander, Engesser, & Mattmüller, 2019), co-
ordination problem of multi-agents (Bhargava, 2019; Li, Yang, Cai, Yang, & Wang, 2019),
consensus of multi-agent systems (Xu & He, 2018; Motsch & Tadmor, 2014).

Network stands for the information interaction between agents and is the basis of
distributed computing. However, the above existing methods only consider the design of
the consensus protocol with edge-based connectivity pattern but ignore the higher-order
connectivity structure which can reveal richer information between nodes, such as the
number of common neighbors. One-hop-based consensus may lose some important but
hard-to-discover connections. If this information can be fully used, multi-agent distributed
computation over networks will have greater advantages. These problems can be addressed
by motif which is a representative higher-order structure occurring in complex networks
at numbers that are significantly higher than those in randomized networks preserving the
same degrees of nodes4. In social network, the triangle motif composed of three vertices and
three edges is a crucial basis for building social relations5. For example, Li et al. use motif
to address the problem of low-order network structure on individual nodes and edges in the
network community detection (Li, Huang, Wang, & Lai, 2019). At present, motifs are mostly
used for analyzing network structure in biology (Kim & Choi, 2009), engineering (Milo, Shen-
Orr, Itzkovitz, Kashtan, Chklovskii, & Alon, 2002), social media (Coletto, Garimella, Gionis,
& Lucchese, 2017) and statistical relational learning (Das, Dhami, Kunapuli, Kersting, &
Natarajan, 2019). However, there is still a lack of work studying and leveraging motif in
MASs. According to our experiments, the introduction of motif to consensus protocols in
MASs can achieve better results.

In this paper, we for the first time integrate motif into MASs and propose a Motif-Aware
Weighted Multi-agent System (MWMS) framework for consensus control. In the previous
consensus control methods, the number of the topological edges formed by agents and all

4. (Zhou, Zhang, Yildirim, Alcorn, Tong, Davulcu, & He, 2017; Newman, 2006; Li, Cai, Wang, Liang, &
Zheng, 2019; Huang, Wang, & Chao, 2019)

5. (Li, Dau, Puleo, & Milenkovic, 2017; Li, Huang, Wang, Huang, & Lai, 2018; Song, Zou, & Liu, 2016)
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its neighbors is usually used as an important measure of neighborhood weight. Although
this approach can make the system stable, it may split all agents into multiple clusters.
The main reason is that some useful information is ignored if simply using the lower-order
connectivity edges as weight coefficient. Due to the characteristics of motif, we can consider
the higher-order structure as the reference for neighborhood weight. We design a hybrid
consensus framework model by taking into account both of lower-order connectivity pattern
and higher-order connectivity pattern, which is different from the traditional consensus
algorithms. In our consensus algorithm framework, the triangle motifs containing agents
are used as one of the sources of the edge weight coefficient, which is not just 0 and 1.
The reason is that the number of triangle motifs depicts the relationships between itself
and neighbors, neighbors and neighbors to a certain extent. We can regard the traditional
algorithm as a special case of our algorithm in this paper. In our experiments, we compare
the traditional algorithms with the proposed algorithms under the same initial topology
network. The results show that the convergence effect of the proposed MWMS framework
for MASs is better, i.e., the splitting of the system can be effectively reduced by introducing
motif into the control function.

The rest of this paper is organized as follows. In section 2, some definitions of symbols
and necessary knowledge are given to facilitate the following model description. Section
3 contains the construction of the MWMS framework and its application in multi-agent
consensus. In section 4, a large number of simulation results are given. At the same time, we
analyze the relationship between parameters and topological network. Section 5 summarizes
the contributions made by this paper and discusses future research directions.

2. Preliminary Knowledge and Problem Statement

In this section, we will introduce some symbols related to multi-agents and the definition of
motif. Then, the problem we solve in this paper will be explained.

2.1 Graph and Matrix Theory

We describe a multi-agent system with n agents as an undirected graph G = {V,E,A}.
V is the vertex set of graph G with each vertex being an agent. E is the edge set of
graph G, which satisfies E ⊂ V × V . One edge (i, j) ∈ E of graph G indicates that a
pair of agents i and j are neighbors, and they can exchange information with each other.
A = (aij)n×n is an adjacency matrix of graph G. The elements of A are related to edges,
i.e., aij = 1⇔ (i, j) ∈ E. The neighbor set of agent i is represented as

Ni = {j ∈ V |(i, j) ∈ E}. (1)

This paper assumes that there is no self-loop in graph G, i.e., the main diagonal elements
aii = 0, ∀i. If any two agents in graph G are neighbors, then graph G is called a complete
graph. The path from agent i to another agent j is defined as a sequence of different agents,
where i is the start and j is the end, and each agent in the sequence is a neighbor with the
agent next to it. If there is a path from agent i to agent j, then the two agents are said to be
connected. If any pair of agents in MAS are connected, G is called a connected graph. The
degree matrix D of graph G is defined as D = diag{di}, where di =

∑
j∈Ni

aij is the degree of
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Figure 1: An example of multi-agent systems with limited sensing range prone to splitting.

vertex i, i.e., |Ni| is the number of neighbors Ni. Accordingly, Laplacian matrix L of graph
G is defined as L = D −A.

2.2 Traditional Discrete Consensus Protocol

Consider a multi-agent system consisting of n agents. We use G(t) = {V,E(t), A(t)} to
represent the graph structure at time t. The state value of agent i at time t is represented by
xi(t). In this paper, it is assumed that agents can only communicate with neighbor agents
in a limited sensing range rc. The neighbor set of agent i is

Ni(t) = {j : ||xj(t)− xi(t)|| ≤ rc}. (2)

where || • || represents the second normal form of vector •.
Olfati-Saber et al. (2007) proposed a discrete distributed consensus algorithm. The

algorithm can be expressed as

xi(t+ 1) = xi(t) + ε
∑

j∈Ni(t)

aij(t)(xj(t)− xi(t)) (3)

where ε > 0 is the learning rate. In general, ε ∈ (0, 1
n ]. And aij(t) is binary, i.e., if j ∈ Ni(t),

then aij(t) = 1, otherwise aij(t) = 0. The discrete-time collective dynamics of the network
under this algorithm can be written as

X(t+ 1) = P (t)X(t) (4)

where P (t) = (I− εL(t)) with I being the identity matrix and L(t) being the Laplace matrix
at time t. L(t) is defined as

Lij(t) =


|Ni(t)|, i = j

−1, j ∈ Ni(t)

0, j /∈ Ni(t)

(5)

Another popular algorithm is proposed by Jadbabaie, Lin and Morse (2003), also discussed
by Olfati-Saber et al. (2007), which is the following discrete-time consensus algorithm for
undirected networks.
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(a) Υ(3, 3) (b) Υ(3, 2)

Figure 2: Illustration of motifs: The undirected motif with 3 nodes and 2 edges (resp. 3
nodes and 2 edges) is denoted by Υ(3, 3) (resp. Υ(3, 2)).

xi(t+ 1) =
1

1 + |Ni(t)|
(xi(t) +

∑
j∈Ni(t)

xj(t)) (6)

which can be written as

X(t+ 1) = (I +D(t))−1(I +A(t))X(t) (7)

Topological connectivity is closely related to the distance (state) between agents: when
the distance between agents is less than a certain threshold value, they are considered to
be communication connected (correspondingly, when the state value is less than a certain
threshold value, they are considered to be similar and can be used for mutual reference
information); otherwise, there is no connection, i.e., time-varying dynamic network6. In
this case, the theory proofs and effect of traditional protocol will become inapplicable. In
short, these methods are not effective in multi-agent systems with limited sensing range. For
example, as shown in Figure 1, the weight of each edge is 1. According to the traditional
consensus algorithm, agent i will converge to the left; otherwise, agent j will converge to the
right. The edge (i, j) is broken, and the system finally forms two clusters. The reason is that
edges (i, j) are fragile, they do not have common neighbors, and this information cannot
be reflected in low-level network structures. Therefore, we need to consider higher-order
features of the network to enhance the consensus, e.g., motifs.

2.3 Motif

The most common higher-order structures are small network subgraphs, which we refer
to as network motifs. Network motifs are considered as the building blocks for complex
networks. Given a graph G, a network motif in G is a subgraph g of G, such that g appears
much more frequently in G than in random graphs whose degree distributions are similar to
that of G. To some extent, network motif reveals a deeper relationship structure in G. An

6. (Cao, Ren, Casbeer, & Schumacher, 2016; Dong, 2010; Ma, Zheng, & Wang, 2015; Zhang, Wang, &
Zhang, 2015; Cao & Ren, 2009)
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Figure 3: The construction of the motif adjacency matrix based on Υ(3, 3).

adjacent matrix A represents the lower-order structure of graph G, while a motif matrix M
represents the higher order structure of graph G. The network motif is formally defined as
follows (Milo et al., 2002).

Definition 1. Motif is a dense subgraph occurring in complex networks at numbers that are
significantly higher than those in randomized networks preserving the same degree of nodes.
It is denoted as g = {Vg, Eg} where Vg and Eg denote the node set consisting of m nodes
and edge set consisting of l edges in the motif g respectively, with l being between m− 1 (a

line motif) and m(m−1)
2 (a clique motif).

We can analyze different motifs discovered from various types of networks. Among them,
the 3-node motifs and 4-node motifs composed of 3 nodes and 4 nodes are the most widely
studied respectively, due to their wide appearance in diverse networks as building blocks.
Following the conventional setting7, we focus on triangle motifs in an undirected network
of multi-agents. But our technique can be extended to other types of motifs. For clarity,
we denote Υ(p, q) as the undirected motif with p nodes and q edges. For example, the two
motifs in Figure 2 can be denoted as Υ(3, 3) and Υ(3, 2) respectively. They can effectively
reflect intimate relationship and the connectivity quality between two agents.

2.4 Problem Statement

In this paper, we focus on optimizing the protocol to enhance the consensus of the MAS,
rather than the topology control of the network. Therefore, we mainly solve two inevitable
problems in the baseline protocol:

1. Multi-agent consensus algorithm usually proceeds over the lower-order structure by
only considering the direct edges between agents, but ignores the higher-order structure
of the whole topology network.

7. (Newman, 2001; Newman & Park, 2003; Huang, Wang, & Chao, 2018; Wen, Gao, Fu, Zhang, & Xia,
2019)
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2. All the edges in a topology network have the same weight without exploring the
potential diversity of the connections.

The above two problems cause the communication network of the traditional consensus
protocol to be simple, and they cannot accurately reflect the richer connection information
between the two agents. The effective use of these informations can contribute to the
consensus of the MAS. Based on the knowledge of multi-agent systems and network motifs,
we simultaneously consider the lower-order structure and higher-order structure of network,
and design a more general consensus algorithm which enhances the consensus of multi-agent
systems.

3. The Proposed Method

In this section, we describe in detail the proposed Motif-Aware Weighted Multi-agent System
(MWMS) framework for consensus.

3.1 Motif-Based Hybrid-Order Structure

Given a network G(t) = {V,E(t), A(t)} of n agents at time t. Suppose the network is initially
connected. There are two subproblems need to be solved. The first subproblem is to find
the recurring patterns, i.e., motifs, which are statistically overrepresented compared with
those in the corresponding random networks. Many efforts have been made in addressing
this task, such as Kavosh (2009), FANMOD (Wernicke & Rasche, 2006) and GPU-based
solution (Lin, Xiao, Xie, & Li, 2017).

As for the second subproblem, we use motif to construct the higher-order motif adjacency
matrix M(t), whose elements represent the number of co-existing of the corresponding two
agents in an instance of the identified motif.

Mij(t) = NW
ij (t), (8)

where NW
ij (t) represents the number of the identified motif instances that contain agent i

and j. As shown in Figure 3, for example, there are totally five identified motif instances,
and three of them contain agent 2 and 5 so that M25(t) = M52(t) = 3. It’s worth noting that
different networks may have different motifs and may give different interpretations to the
identified motifs according to the characteristics of the network. In other words, different
motifs can model different kinds of relations in the network. In this example, we just take
the triangle motif motif for illustration purpose. Once the motif is identified, we can infer
the prevalent types of relations in the network by giving interpretations to the identified
motif. Hence, the structural characteristics can be uncovered and the second subproblem is
solved.

The motif matrix can express more abundant relationships between any two points.
Each edge is no longer weighted by 1, but by a different positive integer representing the
higher-order connectivity pattern. In particular, the larger the element value of the motif
matrix is, the closer the relationship between the corresponding two agents is. Motif matrix
gives us an intuitive understanding of how close agents are to each other. Therefore, we
propose a weighted hybrid matrix as follows:

W (t) = (1− α)A(t) + αM(t) (9)
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where A(t) is the adjacency matrix and M(t) is the motif adjacency matrix at time t.
α ∈ [0, 1] is the trade-off parameter which balances the importance of two matrices. In this
way, the aforementioned problems suffered by multi-agent system are solved.

3.2 The Motif-Aware Weighted Multi-agent System

Before using motif adjacency matrix to improve the existing consensus algorithm, we need
to understand the mechanism of hybrid-order structures.

In Eq. 9, it is shown that the value of each entry of the matrix represents the stability
between agents. In the case of triangle motif, the larger the Wij(t) value is, the more
stable the relationship between agent i and j is at time t. Motsch et al. (2014) hold that
“heterophily”, the tendency to bond more with those who are different rather than with
those who are similar, plays a decisive role in the process of clustering. In order to enhance
the consensus of the system, for each agent, the neighbor with relatively unstable structure
is bound to have greater weights. On the contrary, those with stable structure can relax
the constraint appropriately. As a result, the reciprocal is used to illustrate this idea. To
facilitate our work, we need to define some notations. Let W r denote a matrix whose
elements are reciprocal to the corresponding element of the adjacency matrix W . That is

W r
ij(t) =

{
1

Wij(t) , Wij(t) 6= 0

0
(10)

Likewise, let

Dr(t) = diag{dri (t)} (11)

where dri (t) =
∑

j∈Ni(t)

W r
ij(t). In fact, Dr(t) is similar to a weighted degree matrix, which is

related to W (t).

So far, we have explored the significance of element value of hybrid matrix in multi-agent
system, and made corresponding adjustment according to its value.

3.3 Traditional Consensus Algorithms based on Motif-Aware Weighted
Multi-agent System

We incorporate motif into the classical consensus algorithm, and show that the traditional
algorithms are special cases of our algorithms. Based on Motif-Aware Weighted Multi-agent
framework, Eq. 3 can be written as

xi(t+ 1) = xi(t) + ε
∑

j∈Ni(t)

|Ni(t)|
W r

ij(t)

Dr
ii(t)

(xj(t)− xi(t)) (12)

where ε > 0 denotes the learning rate, |Ni(t)| stands for the number of neighbors of agent i
at time t. In fact, compared with the traditional algorithm, aij(t) in MWMS is not a binary
value. At the same time, in order to compare with the same benchmark, both equations
satisfy

∑
j∈Ni(t)

aij(t) = |Ni(t)|. If α in Eq. (9) is equal to zero, which means only the lower-

order connectivity pattern is considered without taking motif structure into account. The
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Algorithm 1 The update process of agent i at time t based on MWMS: MWMS-S.

Input: Ni(t)
Output: xi(t+ 1)
1: N j

i (t) denotes the j-th neighbor of i.
2: for j = 1 → |Ni(t)| do
3: Count the number k of triangle motif instances which contain agent i and N j

i (t).
4: Update WM (t) = k.

5: Compute W (i, :) = (1− α)A(i, :) + αM(i, :).
6: Compute LW (i, :) according to Eq. (14).
7: Update xi(t+ 1) according to Eq. (12).

traditional algorithm and the MWMS algorithm are equivalent constitutionally. Similarly,
the matrix form of Eq. (12) can be written as

X(t+ 1) = PW (t)X(t) (13)

with PW (t) = (I − ε
_

L(t)) where
_

L(t) is a matrix having the similar form as Laplace matrix

L. And the elements of
_

L(t) are

_

Lij(t) =


|Ni(t)|, j = i

−|Ni(t)| ·
W r

ij(t)

Dr
ii(t)

, j ∈ Ni(t)

0

(14)

For clarity,
_

L(t) can be written as

_

L(t) = D(t)−D(t) · (Dr(t))−1 ·W r(t) (15)

where D(t) is the degree matrix of graph G(t) at time t. For clarity, Algorithm 1 summarizes
the updated process of agent i at time t based on MWMS.

Secondly, we apply the hybrid-order motif matrix to Eq. 6. It can be expressed as

xi(t+ 1) =
∑

j∈Ni(t)∪{i}

bij(t)xj(t) (16)

where bij(t) is defined as

bij(t) =


W r

ij(t)

Dr
ii(t)+1 , j ∈ Ni(t)

1
Dr

ii(t)+1 , j = i

0

(17)

Compare with Eq. 6 whose bij(t) = 1
1+|Ni(t)| , Eq. 17 also satisfies

∑
Ni(t)∪{i}

bij(t) = |Ni(t)|+

1. The difference is that each neighbor of agent i is given different weights, instead of equal
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Algorithm 2 The iterative of agent i based on MWMS: MWMS-J.

Input: Ni(t)
Output: xi(t+ 1)
1: N j

i (t) denotes the jth neighbor of i.
2: for j = 1 → |Ni(t)| do
3: Count the number k of triangle motifs which contain agent i and N j

i (t).
4: Update WM (t) = k.

5: Compute W (i, :) = (1− α)A(i, :) + αM(i, :).
6: Compute bij(t) according to Eq. (17).
7: Compute xi(t+ 1) according to Eq. (16).

weights, due to the consideration of adding motif matrix which can reveal the deep relations
that the adjacency matrix cannot. And then Eq. 16 can be written as

X(t+ 1) = (I +Dr(t))−1(I +W r(t))X(t). (18)

When α is equal to zero in Eq. 9, the consensus algorithm mentioned above is equivalent
to Eq. 7. Meanwhile, we can find that α is a parameter adjusting its weight. The bigger α
is, the bigger bii(t) has to be. The process is described by Algorithm 2.

For clarity, Algorithm 1 is called MWMS-S and Algorithm 2 is called MWMS-J. In
conclusion, MWMS-S and MWMS-J are based on three node motif, so the time complexity
for each agent is O(n

2

2 ) at time t, where n is the number of neighbors of agent i. A more
complex motif matrix would be better calculated if the agent had more computational power.
It is worth noting that, because of the addition of motif, the original symmetric adjacency
matrix becomes asymmetrical motif matrix, it is difficult to prove the convergence. So we
prove its convergence through a lot of simulation experiments.

4. Experiments

The experiment is mainly divided into two sets. In the first set of experiments, we explored
the effects of ten different initial topologies on the results of the algorithm. In the second
set of experiments, we focused on the square area and explored the effect of the initial
topology of different densities and ranges on the algorithm results. In our experiments, 11
different values of α are tested, that is α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. In
addition, rc = 1 and ε = 1

n . Due to the different final effects among the algorithms, the
traditional algorithm has been split into multiple clusters after several iterations to achieve
stability. Under the MWMS framework, the system can gradually reach consensus or just
split into several clusters, and the time to reach stability of the system must be longer than
the traditional method. In this case, the comparison of convergence rates is meaningless
because the results of convergence are different. Therefore, the number of clusters when
multi-agent system is stable is utilized to evaluate the performance of consensus algorithm
for evaluation. Smaller cluster number indicates better results.
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(a) Top-2: 200 agents (b) Top-1: 200 agents (c) Top-3: 200 agents (d) Top-4: 200 agents

(e) Top-5: 200 agents (f) Top-6: 200 agents (g) Top-7: 221 agents (h) Top-8: 217 agents

(i) Top-9: 225 agents (j) Top-10: 218 agents

Figure 4: Illustration of the 10 different network topologies in the square range with L = 10rc
and density ρ ≈ 2/r2

c .

4.1 Analyze α under General Data

In order to reveal the general rules, ten topological structures are used in this subsection,
which are plotted in Figure 4. The topologies in the square range with L = 10rc are described
as follows.

• Top-1: Random place n = ρ× L2 agents in a circular area of radius L
2 . As shown in

Figure 4(a), a total of 200 agents are generated.

• Top-2: A squared area with L = 10rc is divided into L2

r2c
small squares on average, and

ρ agents are randomly generated in each square. As shown in Figure 4(b), a total of
200 agents are generated.

399



Xie, Chen, & Li

(a) Top-1 (b) Top-2 (c) Top-3 (d) Top-4

(e) Top-5 (f) Top-6 (g) Top-7 (h) Top-8

(i) Top-9 (j) Top-10

Figure 5: Parameter analysis of α: the evaluation measures is number of clusters.

• Top-3: n = 1
2ρL

2 agents are randomly generated in two circles with ( L
2+2
√

2
, L

2+2
√

2
),

(− L
2+2
√

2
,− L

2+2
√

2
) as the center and L

2+
√

2
as the radius respectively. As shown in

Figure 4(c), a total of 200 agents are generated.

• Top-4: Random place n = ρ× L2 agents in a range consisting of a circle with radius
ROuter = L

2 and a circle with radius RInner = 0.6ROuter. As shown in Figure 4(d), a
total of 200 agents are generated.

• Top-5: In an isosceles triangle with L as the base and height, n = ρ× L2 agents are
randomly generated. As shown in Figure 4(e), a total of 200 agents are generated.

• Top-6: Divide a square with L equally into 9 squares with side length l = L
3 . The

four squares at the right angle are removed and n = ρ × L2 agents are generated
randomly in the remaining five squares. As shown in Figure 4(f), a total of 200 agents
are generated.

• Top-7: It is a neat topology generated by dividing a circle with a radius of r = L
2

into m = r
0.5rc

equal layers and placing an agent at equal radian intervals κrc, κ is
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Table 1: The statistics of 5 topologies in the same range (L = 10rc) and with varying
densities ρ.

No. ρ #Agents #A-edges #M-edges #Tri

D-1 4/r2
c 400 2100 2100 3642

D-2 8/r2
c 800 8778 8778 35996

D-3 12/r2
c 1200 20314 20314 133541

D-4 16/r2
c 1600 36110 36110 320667

D-5 20/r2
c 2000 56647 56647 637085

Table 2: The statistics of 5 topologies in the same density (4/r2
c ) and with varying L.

No. L #Agents #A-edges #M-edges #Tri

L-1 5rc 100 480 480 816

L-2 10rc 400 2072 2072 3532

L-3 15rc 900 4883 4883 8635

L-4 20rc 1600 8449 8448 15834

L-5 25rc 2500 13927 13927 24889

related to the density ρ. As shown in Figure 4(g) with κ = 0.8, a total of 221 agents
are generated.

• Top-8: It is a neat topology generated by dividing π into 25 equal parts, placing an
agent at equal distances d = 0.5rc in each direction. As shown in Figure 4(h), a total
of 217 agents are generated.

• Top-9: Neatly place about d
√
ρL2e2 agents in a square area with a side length of L.

As shown in Figure 4(i), a total of 225 agents are generated.

• Top-10: Different from Top-9. From the bottom up, Top-10 shifts each row a little bit
to the left. It’s worth noting that each triangle is an equilateral triangle. As shown in
Figure 4(j), a total of 218 agents are generated.

The effect of the trade-off parameter, i.e., α in Eq. 9, on the consensus of MAS is
shown in Figure 5. As can be seen, the performance of consensus (measured by number of
eventually formed clusters) vary slightly as α changes. The most common phenomenon for
all of these figures is that they display a trend of first increase and then drop. However,
the “knee points” may be a little bit different for different datasets. On the whole, as α
approaches a certain value that are larger than 0.5 but less than 1.0 for MWMS-S and larger
than 0 but less than 0.5 for MWMS-J, the best performance can be obtained. When α is set
to be exactly 0, which means that the proposed method degenerates into the basic consensus
method, the values of the evaluation measures are decreased.

The results have confirmed the necessity of utilizing the motif-based higher-order structure
and the effectiveness of the proposed method. However, since α plays a role of balancing
the influence of quantity of the connections in view of the number of neighbors and quality
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Table 3: Results of the number of clusters that converge with different α based on MWMS-S.

No. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D-1 20 17 12 11 7 6 5 3 4 3 8

D-2 23 14 8 6 4 1 1 1 1 1 1

D-3 22 13 9 5 4 3 2 1 2 3 1

D-4 26 15 12 11 9 12 11 7 6 6 5

D-5 27 11 6 5 5 1 3 3 3 3 4

L-1 5 3 2 1 1 1 1 1 1 1 1

L-2 20 15 12 9 5 2 2 2 2 2 3

L-3 52 33 27 18 14 13 8 3 2 4 2

L-4 95 67 47 39 30 28 18 14 5 4 4

L-5 147 104 80 64 47 46 29 18 19 17 16

Table 4: Results of the number of clusters that converge with different α based on MWMS-J.

No. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D-1 20 5 6 5 4 5 7 12 15 17 20

D-2 18 4 3 2 3 4 6 6 10 15 18

D-3 17 3 4 5 4 5 5 8 10 11 17

D-4 16 4 6 6 7 8 9 8 8 10 16

D-5 15 4 5 4 6 5 7 5 7 8 15

L-1 4 1 1 1 1 1 1 1 3 2 4

L-2 19 2 4 3 2 4 7 7 10 14 19

L-3 38 6 6 8 13 11 13 19 26 31 38

L-4 76 12 13 12 16 19 28 30 46 55 76

L-5 117 21 20 24 26 29 38 55 74 85 117

of the connections based on the motif structure, the optimal value may be different for
different datasets. In addition, as shown in Top-8 with a chain structure, if only higher-
order structures are considered without lower-order structures, that is, α = 1, the neighbor
structure becomes fragile, thus the consensus process of MAS can be easily affected. Actually,
the addition of the motif matrix M makes each agent more constrained, and more constraints
would make the propagation more stable, which is coincident to our intuition and accounts
for what have been shown in Figure 5.

4.2 Enhancement of Experimental Data

In order to explore the larger scale multi-agent system, the topologies in this subsection are
described in (Vicsek, Czirók, Ben-Jacob, Cohen, & Shochet, 1995) whose simulation are
carried out in a square shaped of linear size L and with density ρ = n/L2.
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Firstly, we place the agent in the square area of L = 10rc. In order to ensure the
connectivity of network topology, we divided the square area into several 0.5rc × 0.5rc
small squares. The number of agents in each 0.5rc × 0.5rc small square is 1, 2, 3, 4 and
5 respectively. In other words, the density is 4/r2

c , 8/r2
c , 12/r2

c , 16/r2
c , 20/r2

c , respectively.
The statistic of these 5 topologies is shown in Table 1, which contains the number of agents
(i.e. #Agents), the number of edges of adjacency matrix (i.e. #A-edges), the number of
edges of motif matrix (#M-edges) and the number of triangle motif instances (i.e. #Tri).
Secondly, agents are distributed in five different ranges of L = 5rc, 10rc, 15rc, 20rc, 25rc with
the same ρ = 4/r2

c . The statistic of these 5 topologies is shown in Table 2. From the two
tables, we can see that the number of edges of each network topology is not the same, and
the proportion of triangle motif also differs significantly from one to another.

In this experiment, we test the values of α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
and report the results in terms of the cluster number in Table 3 and Table 4. We can see
that the best value of α varies from one topology to another. It is confirmed that in each of
the topologies, the proposed methods outperform the existing lower-order structure based
methods.

Furthermore, the two tables are firstly analyzed horizontally. Under the same topology,
we can observe that the number of clusters that eventually converge in the multi-agent
system has a decreasing trend with the increase of α, which means that in the case of
sufficient network topology density, a higher value of α can promote the consensus of the
system. However, when α reaches a certain size, the results are relatively stable, without too
many large fluctuations. We can conclude that MWMS is relatively stable and insensitive
to α. As long as the higher-order structure is considered, the system performance can be
effectively improved.

Then, from the longitudinal analysis under the same α, from D-1 to D-5, multi-agent
systems with lower density tend to have better convergence performance, especially after
α value is greater than 1. It can be concluded that, when the magnitude of the trade-off
of motif matrix is the same or even greater than that of the adjacency matrix, the lower
density topological structure has a better effect. The main reason is that the motif matrix
has some triangle motifs in it that we should ignore. Within the same range, the number of
triangle motifs of low-density topologies is less, whereas the magnitude of triangle motifs
of high-density topologies is much higher, and there must be some triangle motifs in a
large number of triangle motifs that hinder the convergence of the system. Therefore, we
hypothesized that it would be better to simplify its information again in the motif matrix.
From L-1 to L-5, the convergence performance of the system will decline if the range is
increased with a certain density. The reason is that, in the large network topology, the agent
is more likely to fall into the local optimal convergence position, which leads to the system
splitting.

As for how to select an appropriate α for an unknown network where the ground truth
is not accessible, we can make use of the structure measure, e.g., characteristics, density and
range of initial network, proportion of triangle motif, etc. We can draw a conclusion that
the convergence performance and generality of MWMS considering motif matrix proposed in
this paper is more advantageous than that of traditional multi-agent system, which explores
deeper relationships among agents and makes the agent network more stable.

403



Xie, Chen, & Li

5. Conclusion

In this paper, we for the first time propose a motif-aware weighted multi-agent system for
enhancing consensus, which can shed light on the higher-order structure of the network by
motif mining. In addition, by seamlessly integrating the motif-based higher-order features
with the edge-based lower-order structure of the network, i.e., hybrid-order structure, we
consider not only the quantity but also the quality of connections. Two baseline methods
are used for MWMS. What’s more, compared with these two traditional consensus protocols,
our methods are more robust. The hundred of random network experiments demonstrate
that the proposed method achieves better performance over the baseline algorithms.
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