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Abstract

This paper deals with chain graphs (CGs) under the Andersson-Madigan—Perlman
(AMP) interpretation. We address the problem of finding a minimal separator in an AMP
CG, namely, finding a set Z of nodes that separates a given non-adjacent pair of nodes
such that no proper subset of Z separates that pair. We analyze several versions of this
problem and offer polynomial time algorithms for each. These include finding a minimal
separator from a restricted set of nodes, finding a minimal separator for two given disjoint
sets, and testing whether a given separator is minimal. To address the problem of learning
the structure of AMP CGs from data, we show that the PC-LikE algorithm is order-
dependent, in the sense that the output can depend on the order in which the variables are
given. We propose several modifications of the PC-L1KE algorithm that remove part or all
of this order-dependence. We also extend the decomposition-based approach for learning
Bayesian networks (BNs) to learn AMP CGs, which include BNs as a special case, under
the faithfulness assumption. We prove the correctness of our extension using the minimal
separator results. Using standard benchmarks and synthetically generated models and data
in our experiments demonstrate the competitive performance of our decomposition-based
method, called LCD-AMP, in comparison with the (modified versions of) PC-LIKE algorithm.
The LCD-AMP algorithm usually outperforms the PC-L1KE algorithm, and our modifications
of the PC-L1IKE algorithm learn structures that are more similar to the underlying ground
truth graphs than the original PC-LIKE algorithm, especially in high-dimensional settings.
In particular, we empirically show that the results of both algorithms are more accurate
and stabler when the sample size is reasonably large and the underlying graph is sparse.

1. Introduction

Probabilistic graphical models (PGMs), and their use for reasoning intelligently under un-
certainty, emerged in the 1980s within the statistical and artificial intelligence reasoning
communities. Probabilistic graphical models are now widely accepted as a powerful and
mature tools for reasoning under uncertainty. Unlike some of the ad hoc approaches taken
in early experts systems, PGMs are based on the strong mathematical foundations of graph
and probability theory. In fact, any PGM consists of two main components: (1) a graph
that defines the structure of the model; and (2) a joint distribution over random variables
of the model. The main advantages of using PGMs compared to other models are that
the representation is intuitive, inference can often be done efficiently and practical learning
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algorithms exist.! This led PGMs to become arguably the most important architecture for
reasoning with uncertainty in artificial intelligence (Koller & Friedman, 2009; Neapolitan &
Jiang, 2018). There are many efficient algorithms for both inference and learning available
in open-source (Hgjsgaard et al., 2012; Nagarajan et al., 2013; Scutari & Denis, 2015) and
commercial software (Hugin, Netica, GeNle, and BayesialLab). Moreover, their power and
efficacy has been proven through their successful application to an enormous range of real-
world problem domains. They can be used for a wide range of reasoning tasks including
prediction, monitoring, diagnosis, risk assessment and decision making (Spirtes et al., 2000;
Xiang, 2002; Jensen & Nielsen, 2007; Fenton & Neil, 2018).

One of the most basic subclasses of PGMs is Markov networks. The graphical framework
of Markov networks are undirected graphs (UGs), in which each undirected edge represents
a symmetric relation i.e., direct correlation between the two variables it connects, while no
edge means that the variables are not directly correlated. The best known and most widely
used PGM class, however, is Bayesian networks. The graphical structures of Bayesian
networks are directed acyclic graphs (DAGs). In a DAG the directed edges can often be
seen as representing cause and effect (asymmetric) relationships (e.g., Motzek & Moller,
2017).

Chain graphs (CGs) were introduced as a unification of directed and undirected graphs to
model systems containing both symmetric and asymmetric relations. In fact, a chain graph
is a type of mixed graph, admitting both directed and undirected edges, which contain no
partially directed cycles. So, CGs may contain two types of edges, the directed type that
corresponds to the causal relationship in DAGs and a second type of edge representing a
symmetric relationship (Sonntag, 2016). In particular, X is a direct cause of X5 only if
X1 — Xy (i.e., Xj is a parent of X3), and X; is a (possibly indirect) cause of Xs only
if there is a directed path from X; to Xy (i.e., X is an ancestor of X2). So, while the
interpretation of the directed edge in a CG is quite clear, the second type of edge can
represent different types of relations and, depending on how we interpret it in the graph, we
say that we have different CG interpretations with different separation criteria, i.e. different
ways of reading conditional independences from the graph, and different intuitive meaning
behind their edges. The three following interpretations are the best known in the literature.
The first interpretation (LWF) was introduced by Lauritzen, Wermuth and Frydenberg
(Lauritzen & Wermuth, 1989; Frydenberg, 1990) to combine DAGs and undirected graphs
(UGs). The second interpretation (AMP), was introduced by Andersson, Madigan and
Perlman (1996, 2001), and also combines DAGs and UGs but with a Markov equivalence
criterion that more closely resembles the one of DAGs (Andersson et al., 1996). The third
interpretation, the multivariate regression interpretation (MVR), was introduced by Cox
and Wermuth (1993, 1996) to combine DAGs and bidirected (covariance) graphs.

This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman
(AMP) interpretation (Andersson et al., 1996, 2001). AMP CGs are useful when we have
a set of variables for which the internal relations has no causal ordering, so the relations
should be modelled as a Markov network, but also a second set of variables that can be
seen as causes for some of these variables in the first set. The internal structure of the first

1. These algorithms are fast enough in practice, even though learning, inference, and other reasoning tasks
are NP-complete or worse in the worst case, because they exploit sparsity and other features prevalent
in application domains (Cooper, 1990; Koller & Friedman, 2009).
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set of variables can then be modelled as a Markov network, creating a chain component in
an AMP CG, and the causes as parents of some of the variables in the chain component.
Note that for AMP CGs the parents only affect the direct children in the chain component,
not all the nodes in the chain component as in the case of LWF CGs. An example in
medicine (Sonntag & Pena, 2015b) when such a model might be appropriate is when we are
modelling pain levels on different areas on the body of a patient. The pain levels can then
be seen as correlated “geographically” over the body, and hence be modelled as a Markov
network. Certain other factors do, however, exist that alters the pain levels locally at some
of these areas, such as the type of body part the area is located on or if local anaesthetic
has been administered in that area and so on. These outside factors can then be modeled as
parents affecting the pain levels locally. AMP chain graphs are widely studied in different
areas from applications in biology (Sonntag & Pefia, 2015b), to more advanced theoretical
investigations (Richardson, 1998; Levitz et al., 2001; Roverato, 2005; Roverato & Rocca,
2006; Drton, 2009; Studeny et al., 2009; Pena, 2014, 2015; Sonntag & Pena, 2015b; Pena,
2016; Pena & Gémez-Olmedo, 2016; Pena, 2018b, 2018a).

Minimality is a desirable property to ensure efficiency and usability (e.g., Pena, 2011).
Finding minimal separators is useful for learning and inference tasks (Acid & de Campos,
1996; Javidian & Valtorta, 2019). Of course, finding these sets will take some effort, but
the additional effort will be compensated by decreased computing time when using the
corresponding independencies in learning and inference. Moreover, it will also increase the
reliability of the results, because fewer data are needed to reliably compute a conditional
dependence measure of lower order. For example, Acid and de Campos (Acid & de Campos,
2001) proposed a hybrid algorithm for learning Bayesian networks from data that uses
minimal d-separators. They showed that the use of minimal d-separating sets is clearly
useful, not only with respect to the quality of the learned network but also in terms of time
complexity of the proposed algorithm. In this paper, we address the problem of finding
minimal separators in AMP chain graphs and their applications in learning the structure
of AMP CGs from data.

One important aspect of PGMs is the possibility of learning the structure of models
directly from sampled data. Two constraint-based learning algorithms, that use a statis-
tical analysis to test the presence of a conditional independency, exist for learning AMP
CGs: (1) the PC-LIKE algorithm (Pena, 2012; Pena & Gdémez-Olmedo, 2016), and (2) the
answer set programming (ASP) algorithm (Pena, 2016). In this paper, we show that the
PC-L1IKE algorithm is order-dependent, in the sense that the output can depend on the order
in which the variables are given. We propose several modifications of the PC-L1kE algo-
rithm, i.e., Stable PC-like for AMP CGs (STABLE-PC4AMP), Conservative PC-like for
AMP CGs (CoNSERVATIVE-PC4AMP), and a version that is both Stable and Conservative
(STABLE-CONSERVATIVE-PC4AMP) for learning the structure of AMP chain graphs under the
faithfulness assumption that remove part or all of the order-dependence.

We use some of our findings regarding minimal separators in AMP CGs to prove the
correctness of a new efficient algorithm for learning AMP chain graphs, called Learn Chain
graphs via Decomposition for AMP CGs (LCD-AMP). Our proposed LCD-AMP algorithm,
illustrated in Figure 1, consists of five steps: (1) An undirected graphical model for the
data is chosen. Any conditional independencies that hold under this model will also hold
under the selected chain graph, so this step serves to restrict the search space in the third

421



JAVIDIAN, VALTORTA, & JAMSHIDI

[ .
. -
- ? . L ) L) e} .
L ] ® ;e ¢
CARY S K
“ o * .
 J - ®
. . (o
» e, g 1
e ., - ® ° .
./ ® .
3 ¢ e
. * | . - .
. o
(a) Observational Data (b) Undirected Independence Graph (c) Triangulation

Spe = {a} Sed = {b}

b, c
e

GeD
= (0 ()
e' D

(d) p-Separation Tree (e) Local Skeleton Recovery (f) Global Skeleton Recovery

) 1
@/@ ) @/@4—@

(g) AMP CG Recovery (h) Largest Deflagged Graph Recovery

Figure 1: An overview of LCD-AMP ’s steps for learning the structure of the largest deflagged
AMP CG from a faithful distribution.

step. (2) A junction tree as a facilitator for decomposition of structure learning is built
from the triangulated graph obtained from the resulting graph at the end of step (1).
(3) Local skeletons are recovered in each individual node of the obtained separation tree
from the previous step. (4) The global skeleton is recovered by merging recovered local
skeletons from the previous step along with removing those edges that are deleted in any
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local skeleton. (5) Arrowheads are added to some of the edges to obtain desired AMP
chain graph. The details of each step with related definitions are provided later in the
paper (Section 5). This algorithm not only reduces complexity and increases the power
of computational independence tests but also achieves a better quality with respect to the
learned structure.

The results of the experiments show that our proposed LCD-AMP algorithm consistently
outperforms the ( STABLE-) PC-LIKE algorithm?. Our proposed algorithms, i.e., the Stable
PC-like for AMP CGs (STABLE-PC4AMP) and LCD-AMP are able to exploit the parallel
computations for scaling up the task of learning AMP chain graphs. This will enable
AMP chain graph discovery on large datasets. In fact, lower complexity, higher power of
computational independence test, better learned structure quality, along with the ability of
exploiting parallel computing, make our proposed algorithms more desirable and suitable
for big data analysis when AMP chain graphs are being used. Code for reproducing our
results is available at https://github.com/majavid/AMPCGs2019.

Our main contributions are the following:

1. We propose several polynomial time algorithms to solve the problem of finding minimal
separating sets in AMP chain graphs (Section 3).

2. We show that the original PC-LIKE algorithm (Pena, 2012) is order-dependent, in the
sense that the output can depend on the order in which the variables are given. Then,
we propose modifications of the PC-L1kE algorithm, i.e., Stable PC-like for AMP
(STABLE-PC4AMP), Conservative PC-like for AMP (ConNseErRVATIVE-PC4AMP), and
STABLE-CONSERVATIVE-PC4AMP for learning the structure of AMP chain graphs under
the faithfulness assumption that remove part or all of the order-dependence (Section
4).

3. We present a computationally feasible algorithm for learning the structure of AMP
chain graphs via decomposition, called LCD-AMP , that reduces complexity and increase
the power of computational independence tests (Section 5).

4. We compare the performance of our algorithms with that of the PC-L1KE algorithm
proposed by Pena (2012), in the Gaussian and discrete cases. We empirically show
that our modifications of the PC-L1KE algorithm achieve output of better quality than
the original PC-LIKE algorithm, especially in high-dimensional settings. We also show
that our decomposition based algorithm, i.e., the LCD-AMP algorithm outperforms the
( STABLE-) PC-LIKE algorithm in our experiments (Section 6).

5. We release supplementary material including data and an R package that implements
the proposed algorithms.

2. Basic Definitions and Concepts

In this paper, we consider graphs containing both directed (of the form a — b or, simply,
(a,b)) and undirected (of the form a — b or, simply, {a,b}) edges and largely use the termi-

2. When we use parenthesis, we mean that what we write applies to both the original PC-L1kE algorithm
and the STABLE-PC4AMP algorithm.
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nology of (Andersson et al., 2001), where the reader can also find further details. Below we
briefly list some of the central concepts used in this paper.

If A C V is a subset of the vertex set in a graph G = (V, E), the induced subgraph
G4 = (A, E4) is a graph in which the edge set E4 = EN (A x A) is obtained from G by
keeping edges with both endpoints in A.

If there is an arrow from a pointing towards b, a is said to be a parent of b. The set of
parents of b is denoted as pa(b). If there is an undirected edge between a and b, a and b
are said to be adjacent or neighbors. The set of neighbors of a vertex a is denoted as ne(a).
The expressions pa(A) and ne(A) denote the collection of parents and neighbors of vertices
in A that are not themselves elements of A. The boundary bd(A) of a subset A of vertices
is the set of vertices in V' \ A that are parents or neighbors to vertices in A. The closure of
Ais cl(A) = bd(A) U A.

A directed path of length n from a to b is a sequence a = ag,...,a, = b of distinct
vertices such that (a;,a;+1) € E, for all i = 0,...,n — 1. (A semidirected path of length n
from a to b is a sequence a = ay,...,a, = b of distinct vertices such that either (a;,a;+1)
or {aj,a;41} € E, for all i =0,...,n—1.) A chain of length n from a to b is a sequence
a = ag,...,a, = b of distinct vertices such that (a;,a;+1) € FE, or (a;+1,a;) € E, or
{aj,a;41} € E, for alli =0,...,n— 1. A vertex « is said to be an ancestor of a vertex (3
if there is a directed path a — --- — 8 from « to 5. We define the smallest ancestral set
containing A as An(A) := an(A) U A. A vertex « is said to be anterior to a vertex [ if
there is a chain g from « to 8 on which every edge is either of the form v —§, or v — ¢
with § between v and 5, or o = 3; that is, there are no edges v < ¢ pointing toward a. We
apply this definition to sets: ant(X) = {«|a is an anterior of § for some 3 € X}.

A partially directed cycle (or semi-directed cycle) in a graph G is a sequence of n distinct
vertices v1,va, ..., v,(n > 3), and v,4+1 = v1, such that

(a) for all i(1 < i < n) either v; — v;11 or v; = v;y1, and

(b) there exists a j(1 < j < n) such that v; = vj41.

An AMP chain graph is a graph in which there are no partially directed cycles. The
chain components T of a chain graph are the connected components of the undirected graph
obtained by removing all directed edges from the chain graph. We define the smallest
coherent set containing A as Co(A) := U {r € T|tN A # (0}. Let G be obtained by
deleting all directed edges of G; for A C V the extended subgraph G[A] is defined by
G[A] == G an(a) YU Goo(an(a))-

A triple of vertices {X,Y,Z} is said to form a flag in CG if the induced subgraph
CGxuyuz s X Y —Zor X =Y « Z. A triple of vertices {X,Y, Z} is said to form
a triplex in CG if the induced subgraph CGxyyyyz is either X - Y —Z, X = Y «+ 7,
or X —Y «+ Z. A triplex is augmented by adding the X — Z edge. A set of four vertices
{X, A, B,Y} is said to form a bi-flag if the edges X — A, Y — B, and A — B are present in
the induced subgraph over {X, A, B,Y}. A bi-flag is augmented by adding the edge X — Y.
A minimal complex (or simply a complex) in a chain graph is an induced subgraph of the
forma — vy —------ — vy < b. The augmented CG G® is the undirected graph formed by
augmenting all triplexes and bi-flags in CG and replacing all directed edges with undirected
edges (see Fig. 2). The skeleton (underlying graph) of a CG G is obtained from G by
changing all directed edges of GG into undirected edges. Vertex Y is an unshielded collider
(or V-structure) in a DAG G if G contains the induced subgraph U — Y « V.
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Figure 2: (a) Triplexes and (b) the corresponding augmented triplex, (c) the four configu-
rations that define the bi-flag; (d) the corresponding augmented bi-flag. The “?” indicates
that either X —Y € G, X - Y € G, Y - X € G, or X and Y are not adjacent in G.

Definition 1 (Global Markov property for AMP chain graphs) For any triple (A, B,S) of
disjoint subsets of V' such that S separates A from B in (G[AU B US|)%, in the augmented
graph of the extended subgraph of AU B U S, we have A 1L B|S (or (A, B|S)) i.e., A is
independent of B given S.

An equivalent pathwise separation criterion that identifies all valid conditional indepen-
dencies under the AMP Markov property was introduced by Levitz et al. (2001):

Definition 2 (The pathwise p-separation criterion for AMP chain graphs) A node B in a
chain p in an AMP CG G is called a triplex node in p if A—- B+ C,A— B—-C, or A—
B + C is a subchain of p. Moreover, p is said to be Z-open with Z C 'V when

e cvery triplex node in p is in An(Z), and

o cvery non-triplex node B in p is outside Z, unless A — B — C' is a subchain of p and

pag(B)\ Z # 0.

Let X, Y # 0 and Z (may be empty) denote three disjoint subsets of V.. When there is no
Z-open chain in an AMP CG G between a node in X and a node in'Y, we say that X is
separated from'Y given Z in G and denote it as X 1L Y|Z.

Theorem 4.1 by Levitz et al. (2001) establishes the equivalence of the p-separation

criterion and the augmentation criterion occurring in the AMP global Markov property for
CGs.

Example 1 Consider the AMP CG G in Fig. 3(a). The global Markov property of AMP
chain graphs implies that X 1l Y|A (see Fig. 3). There is no A-open chain in the AMP
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Figure 3: (a) The AMP CG G, (b) An(XUY UA), (c) the undirected edges in Co(An(X U
Y UA)), (d) GIXUY UA] and (e) (GIX UY U A])“.

CG G between X and Y because the only chain between X andY i.e., X > A— B+ Y is
blocked at B (B is a triplex node in the chain and B ¢ An(A)).

We say that two AMP CGs GG and H are Markov equivalent or that they are in the same
Markov equivalence class if they induce the same conditional independence restrictions. Two
chain graphs G and H are Markov equivalent if and only if they have the same skeletons and
the same triplexes (Andersson et al., 2001). Two LWF chain graphs G and H are Markov
equivalent if and only if they have the same skeletons and the same minimal complexes
(Frydenberg, 1990). Two DAGs G and H are Markov equivalent if and only if they have
the same skeletons and the same unshielded colliders (Pearl, 1988). The condition for AMP
Markov equivalence of CGs more closely resembles that for DAG Markov equivalence than
does the condition for LWF Markov equivalence of CGs, in the sense that triplexes involve
only three vertices, while complexes can involve arbitrarily many vertices.

We say that AMP chain graphs G and H belong to the same strong Markov equivalent
class iff G and H are Markov equivalent and contain the same flags. An AMP CG G* is said
to be the AMP essential graph of its Markov equivalence class iff for every directed edge
A — B that exists in G* there exists no AMP CG H s.t. G* and H are Markov equivalent
and A < Bisin H. An AMP CG G* is said to be the largest deflagged graph of its Markov
equivalence class iff there exists no other AMP CG H s.t. G* and H are Markov equivalent
and either H contains fewer flags than G* or G* and H belong to the same strong Markov
equivalence class but H contains more undirected edges. Any largest deflagged graph or
AMP essential graph are AMP CGs and both of these have been proven to be unique for the

426



AMP CGs: MINIMAL SEPARATORS AND STRUCTURE LEARNING ALGORITHMS

Markov equivalence class they represent (Roverato & Rocca, 2006; Andersson & Perlman,
2006).

Let Gy = (V, Ey) denote an undirected graph where Ey is a set of undirected edges.
For a subset A of V, let G4 = (A, E4) be the subgraph induced by A and E4 = {e €
Eyle € Ax A} = Ey N (A x A). An undirected graph is called complete if any pair of
vertices is connected by an edge. For an undirected graph, we say that vertices u and v are
separated by a set of vertices Z if each path between u and v passes through Z. We say
that two distinct vertex sets X and Y are separated by Z if and only if Z separates every
pair of vertices u and v for any u € X and v € Y. We say that an undirected graph Gy
is an undirected independence graph (UIG) for CG G if the fact that a set Z separates X
and Y in Gy implies that Z p-separates X and Y in G. Note that the augmented graph
derived from CG G, (G)?%, is an undirected independence graph for G. We say that Gy can
be decomposed into subgraphs G4 and Gp if

(1) AUB =1V, and
(2) C = AN B separates V\ A and V \ B in Gy.

The above decomposition does not require that the separator C' be complete, which is
required for weak decomposition defined by Lauritzen (1996). In this paper, we show that
a problem of learning the structure of CG can also be decomposed into problems for its
decomposed subgraphs even if the separator is not complete.

A triangulated (chordal) graph is an undirected graph in which all cycles of four or
more vertices have a chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle (see, for example, Figure 4). For an undirected graph Gy which is not
triangulated, we can add extra (“fill-in”) edges to it such that it becomes a triangulated
graph, denoted by G’@.

1
@/@4—@

(a)

Figure 4: (a) An AMP CG G. (b) The augmented graph G®, which is also an undirected
independence graph. (c) The triangulated graph (G%)!.

In this paper, we assume that all independencies of a probability distribution of variables
in V can be checked by p-separations of G, called the faithfulness assumption (Spirtes
et al., 2000). The faithfulness assumption means that all independencies and conditional
independencies among variables can be represented by G.
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The global skeleton is an undirected graph obtained by dropping direction of CG. A
local skeleton for a subset A of variables is an undirected subgraph for A in which the
absence of an edge u — v implies that there is a subset S of A such that u Il v|S. Now, we
introduce the notion of p-separation trees, which is used to facilitate the representation of the
decomposition. The concept is similar to the junction tree of cliques and the independence
tree introduced for DAGs as d-separation trees proposed by Xie et al. (2006). Let C =
{C4,...,Cg} be a collection of distinct variable sets such that for h = 1,..., H,C, C V.
Let T be a tree where each node corresponds to a distinct variable set in C, to be displayed
as an oval (see, for example, Figure 5). An undirected edge e = {C;, C;} connecting nodes
C; and Cj in T is labeled with a separator S = C; N C;, which is displayed as a rectangle.
Removing an edge e or, equivalently, removing a separator S from T splits T into two
subtrees T7 and T5 with node sets C7 and Cs respectively. We use V; to denote the union
of the vertices contained in the nodes of the subtree T; for ¢ = 1, 2.

e

Figure 5: The p-separation tree of CG G in Figure 4.

Notice that a separator is defined in terms of a tree whose nodes consist of variable
sets, while the p-separator is defined based on chain graph. In general, these two concepts
are not related, though for a p-separation tree its separator must be some corresponding p-
separator in the underlying AMP chain graph. The definition of p-separation trees for AMP
chain graphs is similar to that of junction trees of cliques discussed by Cowell et al. (1999),
Lauritzen (1996). Actually, it is not difficult to see that a junction tree of chain graph G
is also a p-separation tree. However, as reported by Ma et al. (2008), we point out two
differences here: (a) a p-separation tree is defined with p-separation and it does not require
that every node be a clique or that every separator be complete on the augmented graph; (b)
junction trees are mostly used in inference engines, while our interest in p-separation trees
is mainly derived from their power in facilitating the decomposition of structural learning.

Given an undirected graph G = (V, E), a subset S C V that does not contain a or
b is said to be an (a,b)-separator if all paths from a to b intersect S. A set S of nodes
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that separates a given pair of nodes such that no proper subset of S separates that pair
is called a minimal separator. Note that removing an (a, b)-separator disconnects a graph
into two connected components, one containing a, and another containing b. Conversely, if
a set S disconnects a graph into a connected component including a and another connected
component including b, then S is an (a, b)-separator. Two disjoint vertex subsets A and B
of V are adjacent if there is at least one pair of adjacent vertices u € A and v € B. Let A
and B be two disjoint non-adjacent subsets of V. Similarly, we define an (A, B)-separator
to be any subset of V' \ (A U B) whose removal separates A and B in distinct connected
components. A minimal (A, B)-separator does not contain any other (A, B)-separator.

3. Finding Minimal Separators in AMP Chain Graphs

In this section we propose and solve an optimization problem related to the separation in
AMP chain graphs. The basic problem is formulated as follows: given a pair of non-adjacent
nodes, z and y, in an AMP chain graph, G, find a minimal set of nodes that separates x
and y. We analyze several versions of this problem and offer polynomial time algorithms
for each. Apart from the possible theoretical interest that these problems may have (Tian
et al., 1998; Acid & de Campos, 1996), generally, the solution to the basic problem (Problem
2) represents the minimum information i.e., minimal set of variables, whose values we have
to know in order to break the mutual influence between two sets of variables, either in
the absence of any other information (Problem 5, 6), or in the presence of some previous
knowledge (Problem 1, 3, 4). These include the following problems:

Problem 1 (test for minimal separation) Given two non-adjacent nodes X and Y in an
AMP chain graph G and a set Z that separates X from Y, test if Z is minimal i.e., no
proper subset of Z separates X from Y.

Problem 2 (minimal separation) Given two non-adjacent nodes X and Y in an AMP
chain graph G, find a minimal separating set between X and Y, namely, find a set Z such
that Z, and no proper subset of Z, separates X from Y .

Problem 3 (restricted separation) Given two non-adjacent nodes X and Y in an AMP
chain graph G and a set S of nodes not containing X and Y, find a subset Z of S that
separates X fromY .

Problem 4 (restricted minimal separation) Given two non-adjacent nodes X and Y in an
AMP chain graph G and a set S of nodes not containing X and Y, find a subset Z of S
which is minimal and separates X from Y .

Problem 5 (minimal separation of two disjoint non-adjacent sets) Given two disjoint non-
adjacent sets X and Y in an AMP chain graph G, find a minimal separating set between X
and Y, namely, find a set Z such that Z, and no proper subset of Z, separates X from Y .

Problem 6 (enumeration of all minimal separators) Given two non-adjacent nodes (or

disjoint subsets) X and Y in an AMP chain graph G, enumerate all minimal separating
sets between X and Y .
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We prove that it is possible to transform our problem into a separation problem, where
the undirected graph in which we have to look for the minimal set separating X from Y
depends only on X and Y. For each above mentioned problem, we propose and analyze an
algorithm that, taking into account the previous results, solves it.

3.1 Main Theorem: Minimal Separators in AMP Chain Graphs

In this subsection we prove that it is possible to transform our problem into a separation
problem, where the undirected graph in which we have to look for the minimal set separating
X from Y depends only on X and Y. Later, in the next subsections, we will apply this
result to developing an efficient algorithm that solves our problems.

The next proposition shows that if we want to test a separation relationship between
two disjoint sets of nodes X and Y in an AMP chain graph, where the separating set is
included in the anterior set of X UY, then we can test this relationship in a smaller AMP
chain graph, whose set of nodes is formed only by the anteriors of X and Y.

Proposition 3 Given an AMP chain graph G = (V, E). Consider that X,Y, and Z are
three disjoint subsets of V, Z C ant(X UY'), and H = Ggpyxuy) is the subgraph of G
induced by ant(X UY'). Then (X,Y|Z)n & (X,Y|Z)y.

Proof (=) The necessary condition is obvious, because a separator in a graph is also a
separator in all of its subgraphs.

(<) Since bd(ant(X UY)) =0, so Co(An(ant(X UY))) = ant(X UY). Let (X,Y|Z)
and Z C ant(X UY), then Co(An(X UY UZ)) C ant(X UY'). Consider that (X,Y fZ)..
This means that X is not separated from Y given Z in (G[X UY U Z])%, which is a
subgraph of (G[ant(X UY)])®. In other words, there is a chain C between X and Y in
H® = (Glant(XUY)])* = (Gane(xuy))® that bypasses Z. Once again using Z C ant(XUY'),
we obtain that X and Y are not separated by Z in H, in contradiction to the assumption
(X,Y|Z) . Therefore, it has to be (X,Y|Z). [ ]

The following proposition establishes the basic result necessary to solve our optimization
problems.

Proposition 4 Given an AMP CG G = (V,E). Consider that X,Y, and Z are three
disjoint subsets of V' such that (X,Y|Z) and (X,Y fZ")\NZ' C Z. Then Z C ant(X UY).

Proof Suppose that Z € ant(XUY'). Define 2/ = ZNant(XUY'). Then, by assumption we
have (X, Y fZ'). Since Z' C ant(XUY), it is obvious that Co(An(XUYUZ')) C ant(XUY).
So, X and Y are not separated by Z’ in (G[X UY U Z’])%, hence there is a chain C' between
X and YV in (G[X UY U Z')® that bypasses Z’ i.e., the chain C is formed from nodes
in ant(X UY) that are outside of Z. Since Co(An(X UY U Z")) C ant(X UY), then
(GIX UY U Z')* is a subgraph of (Glant(X UY)])*. Then, the previously found chain C
is also a chain in (Glant(X UY)])® that bypasses Z, which means that X and Y are not
separated by Z in (Glant(X UY)])* = (Ganyxuy))?- So, X and Y are not p-separated by
Z in Gapy(xuy)- This implies that X and Y are not p-separated by Z in G, in contradiction
to the assumption (X,Y|Z). Therefore, it has to be Z C ant(X UY). [ |
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The next proposition shows that, by combining the results in propositions 3 and 4, we
can reduce our problems to a simpler one, which involves a smaller graph.

Proposition 5 Let G = (V, E) be an AMP CG, and X, Y C V are two disjoint subsets.
Then the problem of finding a minimal separating set for X and Y in G is equivalent to the
problem of finding a minimal separating set for X andY in the induced subgraph G g,i(xuy)-

Proof The proofis very similar to the proof of Proposition 3 proposed by Acid and de Cam-
pos (1996), Javidian and Valtorta (2018a) and Proposition 9 proposed by Javidian and
Valtorta (2018b). Let H = Gany(xuy), and let us to define sets Sg = {Z C V[(X,Y|Z)c}
and Sy = {Z C ant(X UY)[(X,Y|Z)y}. Then we have to prove that mingcg, |Z| =
mingeg, |Z|, and therefore, by proposition 4, the sets of minimal separators are the same.
From proposition 3, we deduce that Sy C S, and therefore mingcg,, |Z| > mingeg,, |Z|.
(=) Let T = min(Z € Sg). Then VI" C T we have T" ¢ Sg, and from proposition 4
we obtain T' C ant(X UY), and now using proposition 3 we get T' € Sy. So, we have
|T| = minges,, |Z| > mingeg,, |Z| = |T|, hence |T'| = mingeg,, |Z].

(<) Let T = min(Z € Sy). If, |T| = mingeg, |Z| > mingeg, |Z| = |Zy|, we have
VZ' C Zy,Z" ¢ Sg, and therefore, once again using proposition 4 and 3, we get Zy € Sy,
so that |Zp| > mingeg, |Z| = |T|, which is a contradiction. Thus, |T'| = mingeg, [Z]. N

Theorem 6 The problem of finding a minimal separating set for X and Y in an AMP
chain graph G is equivalent to the problem of finding a minimal separating set for X and
Y in the undirected graph (Gani(xuy))®-

Proof The proof is very similar to the proof of Theorem 1 proposed by Acid and de Campos
(1996), Javidian and Valtorta (2018a) and Theorem 10 proposed by Javidian and Valtorta
(2018b). Using the same notation from proposition 5, let H® be the augmented graph
of H = Gunyxuyy, and St = {Z C ant(X UY)[(X,Y[Z)pa}. Let Z be any subset of
ant(X UY). Then taking into account the characteristics of anterior sets, it is clear that

Hant(XUYUZ) = H. Then7 we have Z € SH g <X7Y|Z>H Ang <X7Y|Z>(Hant(XuYuZ))a =
(X,Y|Z)pge & Z € SY. Hence, Sy = S%. Now, using proposition 5, we obtain |T| =
minZeSG |Z| = |T‘ = minZeS?I |Z| |

Informally, Theorem 6 says that the search space of finding a minimal separating set S for
X and Y in an AMP chain graph G is limited to ant(X UY’), as shown in Figure 6.

3.2 Algorithms for Finding Minimal Separators

In undirected graphs we have efficient methods of testing whether a separation set is mini-
mal, which are based on the criterion in Theorem 7.

Theorem 7 Given two nodes X and Y in an undirected graph, a separating set Z between
X and Y is minimal if and only if for each node w in Z, there is a path from X toY which

passes through u and does not pass through any other nodes in Z.

Proof See the proof of Theorem 5 by Tian et al. (1998). |
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Figure 6: Search space for finding a minimal separating set S for X and Y in an AMP chain
graph G.

Algorithm 1: Test for minimal separation (Problem 1)

N =

10
11

12
13
14
15
16
17
18
19

Input: A set Z that separates two non-adjacent nodes X,Y in the AMP chain

graph G.

Output: If Z is minimal then the algorithm returns TRUE otherwise, returns

FALSE.

if Z contains a node that is not in ant(X UY') then

else

‘ return FALSE;
/* Building the search space according to Theorem 6. x/
Construct Gani(xuy);
Construct (Gant(xuy))?;
/* Applying Theorem 7 by running BFS algorithm that starts from
both X and Y. */
Starting from X, run BFS. Whenever a node in Z is met, mark it if it is not
already marked, and do not continue along that path. When BF'S stops;
if not all nodes in Z are marked then
return FALSE;
else
Remove all markings. Starting from Y, run BFS. Whenever a node in 7 is
met, mark it if it is not already marked, and do not continue along that
path. When BFS stops;
if not all nodes in Z are marked then
‘ return FALSFE;
else
‘ return TRUE;
end
end

end
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Algorithm 2: Minimal separation (Problem 2)

Input: Two non-adjacent nodes X,Y in the AMP chain graph G.
Output: Set Z, that is a minimal separator for X, Y.
/* Building the search space according to Theorem 6. x/
1 Construct Guni(xuy);
2 Construct (Gany(xuy))®;
3 Set Z' to be ne(X) (or ne(Y)) in (Gan(xuy))®;
/* Z' is a separator because, according to the local Markov property
of an undirected graph, a vertex is conditionally independent of
all other vertices in the graph, given its neighbors (Lauritzen,

1996) . */
/* Applying Theorem 7 by running BFS algorithm that starts from both
X and Y. */

4 Starting from X, run BFS. Whenever a node in Z’ is met, mark it if it is not
already marked, and do not continue along that path. When BFS stops, let Z” be
the set of nodes which are marked. Remove all markings;

5 Starting from Y, run BFS. Whenever a node in Z” is met, mark it if it is not
already marked, and do not continue along that path. When BFS stops, let Z be
the set of nodes which are marked;

6 return Z;

Applying this theorem to the undirected graph described in Theorem 6, i.e., (Gany(xuy))®;
leads to Algorithm 1 for Problem 1. The idea is that if Z is minimal then all nodes in Z
can be reached using Breadth First Search (BFS) that starts from both X and Y without
passing through any other nodes in Z.

Analysis of Algorithm 1 (Tian et al., 1998): Let H = Ganyxuy) and |Ef| stands for
the number of edges in H* = (G (xuy))®- Step 4-5 each requires O(|E%) time. Thus,
the complexity of Algorithm 1 is O(|E%]).

Remark 8 (Characteristic operation and size measure) The size measure used for
graph algorithms in this paper is the sum of the number of vertices and the number of
edges in a chain graph (for simplicity, in connected graphs, just the number of edges). This
measure, which is used in algorithms textbooks (e.g., Cormen et al., 2009), is appropriate
here, because the chain graph is given explicitly as an input. In contrast, in heuristic search,
it 1s usually assumed that a graph is constructed as it is searched, and the size measure that
we chose would be inappropriate (Edelkamp & Schroedl, 2011; Pearl, 1984).

A variant of Algorithm 1 solves Problem 2. Algorithm 2 lists pseudocode for this variation.
Analysis of Algorithm 2: Each one of steps 2-5 each requires O(|E%|) time. Thus, the
overall complexity of Algorithm 2 is O(|EY|).

Theorem 9 Given two nodes X and Y in an AMP chain graph G and a set S of nodes
not containing X andY , there exists some subset of S which separates X andY if and only
if the set " = SNant(X UY) separates X and Y .
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Proof (=) Proof by contradiction. Let S’ = S Nant(X UY) and (X,Y }S’). Since
S" Cant(X UY), it is obvious that ant(X UY U S’) = ant(X UY). So, X and Y are not
separated by S’ in (Gant(xuy))®, hence there is a chain C' between X and Y in (G gne(xuy))”
that bypasses S’ i.e., the chain C is formed from nodes in ant(X UY’) that are outside of
S. Since ant(X UY) C ant(X UY U S")),VS" C S, then (Gyne(xuy))® is a subgraph of
(Gant(xuyus))®- Then, the previously found chain C'is also a chain in (G xuyus»)® that
bypasses S”, which means that X and Y are not separated by any S” C S in (G gn(xuyus)®,
which is a contradiction. (<) It is obvious. [ ]

Informally, search space of finding a restricted minimal separating set Z for X and Y in
an AMP chain graph G, when a set of nodes S not containing X and Y is given, is limited
to ant(X UY), as shown in Figure 7.

Figure 7: Search space for finding a restricted minimal separating set Z for X and Y in an
AMP chain graph G, when a set of nodes S not containing X and Y is given.

Therefore, Problem 3 is solved by testing if S’ = S Nant(X UY) separates X and Y.
Analysis of Algorithm 3: This requires O(|Ef;|) time.

According to Theorem 9, Problem 4 is solved using Algorithm 3 and then, if False not
returned, Algorithm 2 with Z/ = SNant(X UY'). The time complexity of this algorithm is
also O(|E%|).

In order to solve Problem 5, i.e., to find the minimal set separating two disjoint non-
adjacent subsets of nodes X and Y (instead of two single nodes) in an AMP chain graph
G, first we build the undirected graph (Gany(xuy))®. Next, starting out from this graph,
we construct a new undirected graph Aug(G : ax,ay) by adding two artificial (dummy)
nodes ax, ay, and connect them to those nodes that are adjacent to some node in X and Y,
respectively. So, the separation of X and Y in (Ggni(xuy))® is equivalent to the separation
of ax and ay in Aug(G : ax,ay). Moreover, the minimal separating set for ax and ay
in Aug(G : ax,ay) cannot contain nodes from (X UY’). Therefore, in order to find the
minimal separating set for X and Y in G, it is suffice to find the minimal separating set for
ax and ay in Aug(G : ax,ay). So, we have reduced this problem to one of separation for
single nodes, which can be solved using Algorithm 2.

As Shen and Liang (Shen & Liang, 1997) present an efficient algorithm for enumerat-
ing all minimal (X, Y’)-separators, separating given non-adjacent vertices X and Y in an
undirected connected simple graph G = (V, E). This algorithm requires O(n®Rxy) time,
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Algorithm 3: Restricted separation (Problem 3)
Input: A set S of nodes not containing X and Y in the AMP chain graph G.
Output: If there is a subset of S that separates X from Y then the algorithm
returns Z C S that separates X from Y otherwise, returns FALSE.
/* Building the search space according to Theorem 9. */

Construct G gpi(xuy);
Construct (Gant(xuy))?;
Set ' =SNant(XUY);
Remove S’ from (Gone(xuy))®;
/* Using BFS algorithm to test the separability of the candidate set
S’ */
Starting from X, run BFS;
if Y is met then
‘ return FALSE
else
‘ return Z = 5’
10 end
11

= W N =

© ® g9 O o

where |V| = n and Ryy is the number of minimal (X, Y')-separators. The algorithm can be
generalized for enumerating all minimal (X, Y')-separators that separate non-adjacent ver-
tex sets X,Y C V, and it requires O(n?(n — ny — ny)Rxy) time. In this case, | X| = nyx,
|Y| = ny, and Rxy is the number of all minimal (X, Y')-separators. According to Theorem
6, using this algorithm for (Gy,s(xuy))® solves Problem 6.

Remark 10 Since DAGs (directed acyclic graphs) are subclass of AMP chain graphs, one
can use the same technique to enumerate all minimal separators in DAGS.

4. PC-LIKE Algorithm

In this section we explain the original PC-L1KE algorithm proposed by Pena (2012) briefly,
and we show that this version of the PC-L1KE algorithm is order-dependent, in the sense
that the output can depend on the order in which the variables are given. We propose
modifications of the PC-L1KE algorithm that remove (part or all of) this order-dependence.

4.1 Order-Dependent PC-LI1KE Algorithm

The PC-L1KE algorithm for learning AMP CGs under the faithfulness assumption proposed
by Pena (2012) is formally described in Algorithm 4 for the reader’s convenience.

In applications we do not have perfect conditional independence information. Instead,
we assume that we have an i.i.d. sample of size n of V' = (Xy,..., Xp). In the PC-L1KE algo-
rithm (Pena, 2012) all conditional independence queries are estimated by statistical condi-
tional independence tests at some pre-specified significance level (p.value) a. For example,
if the distribution of V' is multivariate Gaussian, one can test for zero partial correlation
(e.g., Kalisch & Biithlmann, 2007). For this purpose, we used the gaussCltest() function

435



JAVIDIAN, VALTORTA, & JAMSHIDI

Algorithm 4: The order-dependent (PC-LIKE) algorithm for learning AMP chain
graphs (Pena, 2012)

Input: A set V of nodes and a probability distribution p faithful to an unknown AMP CG

G and an ordering order(V') on the variables.

Output: A CG H that is triplex equivalent to G.
1 Let H denote the complete undirected graph over V;

/* Skeleton Recovery */
2 for i+ 0 to |[Vy|—2 do
while possible do

a Select any ordered pair of nodes u and v in H such that u € ady(v) and

[ladp (u) U adg (admg (w))] \ {u,v}| > i, using order(V);

/* adp(z) ={yeV]ix —y,y —x, orz — y} */
5 if there exists S C ([adpy(u) U ady (ady (w))] \ {u,v}) s.t. |S| =1 and v 1L, v|S

(i.e., w is independent of v given S in the probability distribution p) then

6 SethSuy = Sou = 9;
7 Remove the edge u — v from H;
8 end
9 end
10 end
11 /* Orientation phase: */

12 while possible do

13 ‘ Apply rules R1-R4 in Figure 10 to H.

14 end

15 Replace every edge — () in H with — (—);
16 return H.

from the R package pcalg throughout this paper. Let order(V') denote an ordering on the
variables in V. We now consider the role of order(V') in every step of the algorithm.

In the skeleton recovery phase of the PC-LIkE algorithm (Pena, 2012; Pena & Goémez-
Olmedo, 2016) (lines 2-10 of Algorithm 4), the order of variables affects the estimation of
the skeleton and the separating sets. In particular, at each level of i, the order of variables
determines the order in which pairs of adjacent vertices and subsets S of their adjacency sets
are considered (see lines 4 and 5 in Algorithm 4). The skeleton H is updated after each edge
removal. Hence, the adjacency sets typically change within one level of ¢, and this affects
which other conditional independencies are checked, since the algorithm only conditions on
subsets of the adjacency sets. When we have perfect conditional independence information,
all orderings on the variables lead to the same output. In the sample version, however, we
typically make mistakes in keeping or removing edges. In such cases, the resulting changes
in the adjacency sets can lead to different skeletons, as illustrated in Example 2.

Moreover, different variable orderings can lead to different separating sets in the skele-
ton recovery phase. When we have perfect conditional independence information, this is
not important, because any valid separating set leads to the correct triplex decision in the
orientation phase. In the sample version, however, different separating sets in the skeleton
recovery phase of the algorithm may yield different decisions about triplexes in the orien-
tation phase (lines 12-15 of Algorithm 4). This is illustrated in Example 3. The examples
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were encountered when testing the PC-L1kE algorithm by generating synthesized samples
from the DAGs in Figure 8(a) and 9(a).

Example 2 (Order-dependent skeleton of the PC-LikE algorithm.) Suppose that the
distribution of V. = {a,b,c,d,e} is faithful to the DAG in Figure 8(a). This DAG en-
codes the following conditional independencies with minimal separating sets: b 1L c|la and
a 1L el|{b,c,d}.

Suppose that we have an i.i.d. sample of (a,b,c,d,e), and that the following conditional
independencies with minimal separating sets are judged to hold at some significance level
a: b1l ca, a I elda 1L bld, a 1L ¢|d, b 1L dle, and ¢ I d|e. Thus, the first conditional
independence relation is correct, while the rest of them are false.

We now apply the skeleton recovery phase of the PC-LIKE algorithm with two different
orderings: order (V) = (d,c,b,a,e) and orders(V) = (d,e,a,c,b). The resulting skeletons
are shown in Figures 8(b) and 8(c), respectively.

(a) (b) ()

Figure 8: Order-dependent skeleton of the PC-LIkE algorithm. (a) The DAG G, (b) the
skeleton returned by Algorithm 4 with order;(V'), (c) the skeleton returned by Algorithm
4 with ordery (V).

We see that the skeletons are different, and that both are incorrect as the edges a —
b,a — ¢,b — d, and ¢ — d are missing. The skeleton for ordera(V') contains an additional
error, as there is an additional edge b — c. We now go through Algorithm 4 to see what
happened. We start with a complete undirected graph on V. When ¢ = 0, variables are
tested for marginal independence, and the algorithm correctly does mot remove any edge.
When i = 1, there are siz pairs of vertices that are thought to be conditionally independent
given a subset of size one. Table 1 shows the trace table of Algorithm 4 for i = 1 and
order1 (V) = (d,c,b,a,e).

Table 2 shows the trace table of Algorithm 4 for i =1 and ordery(V) = (d,e,a,c,b).

No conditional independency is found when i = 2.

Example 3 (Order-dependent separators & triplexes of the PC-LIkE algorithm)
Assume that the distribution of V. = {a,b,c,d,e} is faithful to the DAG in Figure 9(a).
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Table 1: The trace table of Algorithm 4 for ¢ = 1 and orderi(V) = (d,¢,b,a,¢e). For
simplicity, we define ADJg(u) := [adg(u) Uadg(admg(u))] \ {u, v}.

Ordered Pair (u,v) ‘ ADJg(u ‘ Suw ‘ Is Syv € ADJg(u)? ‘ Is u — v removed?

(d,c) ‘ {a,b, e} ‘ {e} ‘ Yes ‘ Yes
(d,b) | {a,c.e} | {e} | Yes | Yes
(c,b) ‘ {a,d,e} ‘ {a} ‘ Yes ‘ Yes
(c,a) ‘ {b,d, e} ‘ {d} ‘ Yes ‘ Yes
(b, a) ‘ {c,d, e} ‘ {d} ‘ Yes ‘ Yes
(a,e) ‘ {d} ‘ {d} ‘ Yes ‘ Yes

Table 2: The trace table of Algorithm 4 for ¢ = 1 and orders(V) = (d,e,a,c,b). For
simplicity, we define ADJy(u) := [adgy(u) U adg(adg(u))] \ {u,v}.

Ordered Pair (u,v) ‘ ADJg(u ‘ Suv ‘ Is Suw € ADJg(u)? ‘ Is u — v removed?

(d,c) ‘ {a,b,e} ‘ {e} ‘ Yes ‘ Yes
(d,b) ‘ {a,c,e} ‘ {e} ‘ Yes ‘ Yes
(e,a) ‘ {b,c,d} ‘ {d} ‘ Yes ‘ Yes
(a,c) | {b.d.e} | {d} | Yes | Yes
(a,b) ‘ {d, e} ‘ {d} ‘ Yes ‘ Yes
(¢, b) ‘ {d, e} ‘ {a} ‘ No ‘ No
(b, ¢) ‘ {c,e} ‘ {a} ‘ No ‘ No

This DAG encodes the following conditional independencies with minimal separating sets:
a 1L d|b,a 1L e|{b,c},a 1L e|{c,d},b 1L ¢,b 1L e|d, and ¢ 1L d.

Suppose that we have an i.i.d. sample of (a,b,c,d,e). Assume that all true conditional
independencies are judged to hold except ¢ L d. Suppose that ¢ 1 d|b and ¢ 1L dle
are thought to hold. Thus, the first is correct, while the second is false. We now apply
the orientation phase of the PC-LIKE algorithm with two different orderings: order; (V') =
(d,c,b,a,e) and orders(V) = (¢,d, e, a,b). The resulting CGs are shown in Figures 9(b) and
9(c), respectively. Note that while the separating set for vertices ¢ and d with order; (V) is
Sdc = Seq = {b}, the separating set for them with orders(V') is Seq = Sq. = {e}.

This illustrates that order-dependent separating sets in the skeleton recovery phase of the
sample version of the PC-algorithm can lead to order-dependent triplexes in the orientation
phase of the algorithm.
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(@) (@) (@)
(D—© (@O—0O O—CO
(a) (0) (c)

Figure 9: Order-dependent separators and triplexes of the PC-LIkE algorithm. (a) The
DAG G, (b) the CG returned by Algorithm 4 with order;(V'), (c¢) the CG returned by
Algorithm 4 with orderz(V).

4.2 Order-Independent ( STABLE-) PC-LIKE Algorithm

As shown in the previous section, the original PC-LIKE algorithm is order-dependent. In
this section we propose modifications of the PC-LIkE algorithm, i.e., the Stable PC-
like for AMP chain graphs (STABLE-PC4AMP), Conservative PC-like for AMP CGs
(ConNSERVATIVE-PC4AMP), and STABLE-CONSERVATIVE-PC4AMP for learning the structure of
AMP chain graphs under the faithfulness assumption that remove part or all of the order-
dependence. The order-dependence can become very problematic for high-dimensional data,
leading to highly variable results and conclusions for different variable orderings. The sec-
ond limitation of the PC-L1KE algorithm is that the runtime of the algorithm, in the worst
case, is exponential to the number of variables, and thus it is inefficient when applying to
high dimensional datasets such as gene expression. We now propose several modifications
of the original PC-L1kE algorithm for learning AMP chain graphs (and hence also of the
related algorithms), called stable PC-LIKE, that remove the order-dependence in the vari-
ous stages of the algorithm, analogously to what (Colombo & Maathuis, 2014) did for the
original PC algorithm in the case of DAGs. The stable PC-LIKE algorithm for AMP chain
graphs can be used to parallelize the conditional independence (CI) tests at each level of
the skeleton recovery algorithm. So, the CI tests at each level can be grouped and dis-
tributed over different cores of the computer, and the results can be integrated at the end
of each level. Consequently, the runtime of our parallelized stable PC-LIKE algorithm is
much shorter than the original PC-L1kE algorithm for learning AMP chain graphs. Fur-
thermore, this approach enjoys the advantage of knowing the number of CI tests of each
level in advance. This allows the CI tests to be evenly distributed over different cores, so
that the parallelized algorithm can achieve maximum possible speedup. In order to explain
the details of the stable PC-LIKE algorithm for AMP chain graphs, we discuss the skeleton
and the orientation rules, respectively.

We first consider estimation of the skeleton in the adjacency search (skeleton recov-
ery phase) of the PC-L1kE algorithm for AMP chain graphs (lines 2-10 of Algorithm 4).
The pseudocode for our modification is given in Algorithm 5 (lines 2-13). The resulting
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PC-L1kE algorithm for learning AMP chain graphs in Algorithm 5 is called Stable PC-like
for AMP CGs (STABLE-PC4AMP ).

Algorithm 5: The order-independent ( STABLE-) PC-LIKE algorithm for learning
AMP CGs (STABLE-PC4AMP)

Input: A set V of nodes and a probability distribution p faithful to an unknown AMP CG
G and an ordering order(V') on the variables.
Output: A CG H that is triplex equivalent to G.
1 Let H denote the complete undirected graph over V = {vy,...,v,};
/* Skeleton Recovery: */
2 for i+ 0 to |[Vy|—2 do

for j < 1 to |Vy| do
4 Set ag(vj) = ady(vj) Uady(adm(v)));
/* adpg(x) ={yeV|x —y,y —x, orz — y} */
5 end
6 while possible do
7 Select any ordered pair of nodes u and v in H such that u € ady(v) and
lap (uw) \ {u,v}| > i, using order(V);
8 if there exists S C (ap(u) \ {u,v}) s.t. |S| =14 and u 1L, v|S (i.e., u is independent
of v given S in the probability distribution p) then
9 SElH S = Som = 55
10 Remove the edge u — v from H,;
11 end
12 end
13 end
14 /* Orientation phase: */

15 while possible do

16 ‘ Apply rules R1-R4 in Figure 10 to H.

17 end

1s Replace every edge — (i) in H with — (—);
19 return H.

The main difference between Algorithms 4 and 5 is given by the for-loop on lines 3-
5 in the latter one, which computes and stores the adjacency sets ag(v;) of all variables
after each new size i of the conditioning sets. These stored adjacency sets ap(v;) are used
whenever we search for conditioning sets of this given size ¢. Consequently, an edge deletion
on line 10 no longer affects which conditional independencies are checked for other pairs of
variables at this level of i.

In other words, at each level of 4, Algorithm 5 records which edges should be removed,
but for the purpose of the adjacency sets it removes these edges only when it goes to the
next value of 7. Besides resolving the order-dependence in the estimation of the skeleton, our
algorithm has the advantage that it is easily parallelizable at each level of i i.e., computations
required for i-level can be performed in parallel. The STABLE-PC4AMP algorithm is correct,
i.e. it returns an AMP CG the given probability distribution is faithful to (Theorem 11),
and yields order-independent skeletons in the sample version (Theorem 12). We illustrate
the algorithm in Example 4.
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Figure 10: Orientation rules in Algorithms 4 and 5: Rules R1-R4 (Pena, 2012).

Theorem 11 Let the distribution of V be faithful to an AMP CG G, and assume that we
are given perfect conditional independence information about all pairs of variables (u,v) in
V' given subsets S C V' \ {u,v}. Then the output of the STABLE-PC4AMP algorithm is an
AMP CG that is Markov equivalent with G.

Proof The proof of Theorem 11 is completely analogous to the Pena’s proof of Theorem
1 for the original PC-LIKE algorithm (Pena, 2012). [ ]

Theorem 12 The skeleton resulting from the sample version of the STABLE-PC4AMP algo-
rithm for AMP CGs is order-independent.

Proof We consider the removal or retention of an arbitrary edge u — v at some level ¢. The
ordering of the variables determines the order in which the edges (line 7 of Algorithm 5) and
the subsets S of ay(u) and ay(v) (line 8 of Algorithm 5) are considered. By construction,
however, the order in which edges are considered does not affect the sets ag(u) and ag(v).

If there is at least one subset S of ap(u) or ag(v) such that w 1, v|S, then any ordering
of the variables will find a separating set for v and v (but different orderings may lead to
different separating sets as illustrated in Example 3). Conversely, if there is no subset S’ of
ap(u) or ag(v) such that u 1L, v|S’, then no ordering will find a separating set.

Hence, any ordering of the variables leads to the same edge deletions, and therefore to
the same skeleton. |

Example 4 (Order-independent skeletons) We go back to Example 2, and consider
the sample version of Algorithm 5. The algorithm now outputs the skeleton shown in Figure
8(b) for both orderings orderi (V') and ordery(V').
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We again go through the algorithm step by step. We start with a complete undirected
graph on V. No conditional independence found when i = 0. When i = 1, the algorithm
first computes the new adjacency sets: ag(v) = V \ {v},Yv € V. There are siz pairs of
variables that are thought to be conditionally independent given a subset of size 1 (see Table
3). Since the sets ag(v) are not updated after edge removals, it does not matter in which
order we consider the ordered pairs. Any ordering leads to the remowval of sixz edges.

Table 3: The trace table of Algorithm 5 for i = 1, order; (V') = (d, ¢, b, a, e), and orders(V) =
(d,e,a,c,b). For simplicity, we define ADJy(u) := [ady(u) Uadg(adg(w))] \ {u,v}.

Ordered Pair (u,v) ‘ ADJy(u) ‘ Sww ‘ Is Suw € ADJg(u)? ‘ Is w — v removed?

(d,c) ‘ {a,b,e} ‘ {e} ‘ Yes ‘ Yes
(d,b) ‘ {a,c, e} ‘ {e} ‘ Yes ‘ Yes
(¢, b) ‘ {a,d, e} ‘ {a} ‘ Yes ‘ Yes
(c,a) ‘ {b,d, e} ‘ {d} ‘ Yes ‘ Yes
(b,a) ‘ {c,d,e} ‘ {d} ‘ Yes ‘ Yes
(a,e) ‘ {b,c,d} ‘ {d} ‘ Yes ‘ Yes

Now, we propose a method to resolve the order-dependence in the determination of
the triplexes in AMP chain graphs, by extending the approach proposed by Ramsey et al.
(2006) for unshielded colliders recovery in DAGs.

Our proposed Conservative PC-like algorithm for AMP CGs (CONSERVATIVE-PC4AMP)
works as follows. Let H be the undirected graph resulting from the skeleton recovery phase
of the PC-LIKE algorithm (Algorithm 4). For all unshielded triples (X, X;, Xj) in H, deter-
mine all subsets S of ady (X;) Uady(ady(X;)) and of ady (Xy) Uady(adp(Xy)) that make
X; and X}, conditionally independent, i.e., that satisfy X; 1L, X%|S. We refer to such sets
as separating sets. The triple (Xj, X, Xj) is labelled as unambiguous if at least one such
separating set is found and either X is in all separating sets or in none of them; otherwise
it is labelled as ambiguous. If the triple is unambiguous, it is labeled and then oriented as
described in Algorithm 4. So, the orientation rules are adapted so that only unambiguous
triples are oriented.

We refer to the combination of the STABLE-PC4AMP and CONSERVATIVE-PC4AMP algo-
rithms for AMP chain graphs as the STABLE-CONSERVATIVE-PC4AMP algorithm.

Theorem 13 Let the distribution of V be faithful to an AMP CG G, and assume that we
are given perfect conditional independence information about all pairs of variables (u,v)
in V' given subsets S C V \ {u,v}. Then the output of the CONSERVATIVE-PC4AMP or
STABLE-CONSERVATIVE-PCAAMP algorithm is an AMP CG that is Markov equivalent with

G.

Proof The skeleton of the learned CG is correct by Theorem 11. Now, we prove that for
any unshielded triple (X;, X;, X) in an AMP CG G, Xj is either in all sets that p-separate
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X; and X} or in none of them. Since X;, X; are not adjacent, they are p-separated given
some subset S\ {X;, Xi} (see Algorithm 2). Based on the pathwise p-separation criterion
for AMP CGs (see Definition 2), X; is a triplex node in G if and only if X; ¢ An(S).
So, X; ¢ S. On the other hand, if X; is a non-triplex node then X; € S, for all S that
p-separate X; and Xj. Because in this case, X; € Co(An(X; U X} U S)) and so there is
an undirected path X; — X; — Xj in (G[X; U X} U S])*. Any set S\ {X;, X;} that
does not contain X; will fail to p-separate X; and X}, because of this undirected path. As a
result, unshielded triples are all unambiguous. Since all unshielded triples are unambiguous,
the orientation rules are as in the original ( STABLE-) PC-LIKE algorithm. Therefore, the
output of the CONSERVATIVE-PC4AMP/STABLE-CONSERVATIVE-PC4AMP algorithm is an AMP
CG that is Markov equivalent with G. |

Theorem 14 The decisions about triplexes in the sample version of the algorithm for AMP
chain graphs recovery by STABLE-CONSERVATIVE-PC4AMP is order-independent.

Proof The STABLE-CONSERVATIVE-PC4AMP algorithm have order-independent skeleton, by
Theorem 12. In particular, this means that their unshielded triples and adjacency sets are
order-independent. The decision about whether an unshielded triple is unambiguous and/or
a triplex is based on the adjacency sets of nodes in the triple, which are order independent. H

Example 5 (Order-independent decisions about triplexes) We consider the sample
versions of the STABLE-CONSERVATIVE-PC4AMP algorithm for AMP chain graphs, using the
same input as in BExample 3. In particular, we assume that all conditional independencies
induced by the AMP CG in Figure 9(a) are judged to hold except ¢ L d. Suppose that
¢ 1L d|b and ¢ L d|e are thought to hold.

Denote the skeleton after the skeleton recovery phase by H. We consider the unshielded
triple (c,e,d). First, we compute ag(c) = {a,b,d,e} and ag(d) = {a,b,c,e}. We now
consider all subsets S of these adjacency sets, and check whether ¢ 1L d|S. The follow-
ing separating sets are found: {b},{e}, and {b,e}. Since e is in some but not all of these
separating sets, the STABLE-CONSERVATIVE-PC4AMP algorithm for AMP chain graphs deter-
mines that the triple is ambiguous, and no orientations are performed. The output of the
algorithm is given in Figure 9(c).

At this point it should be clear why the modified PC-LIKE algorithm for AMP chain
graphs is labeled “conservative”: it is more cautious than the ( STABLE-) PC-LIKE algorithm
for AMP chain graphs in drawing unambiguous conclusions about orientations. As we
showed in Example 5, the output of the algorithm for AMP chain graphs recovery by
CONSERVATIVE-PC4AMP or STABLE-CONSERVATIVE-PC4AMP may not be triplex equivalent
with the true AMP CG G, if the resulting CG contains an ambiguous triple.

Table 4 summarizes all order-dependence issues explained above and the corresponding
modifications of the PC-L1kE algorithm for AMP chain graphs that removes the given order-
dependence problem.

443



JAVIDIAN, VALTORTA, & JAMSHIDI

Table 4: Order-dependence issues and corresponding modifications of the PC-L1KE algorithm
that remove the problem. “Yes” indicates that the corresponding aspect of the graph is
estimated order-independently in the sample version.

‘ skeleton ‘ triplexes decisions

PC-L1kE algorithm for AMP CGs ‘ No ‘ No
STABLE-PC4AMP | Yes | No
STABLE-CONSERVATIVE-PC4AMP ‘ Yes ‘ Yes

5. LCD-AMP Algorithm: Structure Learning by Decomposition

In this section, first, we address the issue of how to construct a p-separation tree from
observed data, which is the heart of our decomposition-based algorithm. Then, we present
an algorithm, called LCD-AMP, that shows how separation trees can be used to facilitate the
decomposition of the structure learning of AMP chain graphs. The theoretical results are
presented first, followed by descriptions of our algorithm that is the summary of the key
results in our paper.

5.1 Constructing a p-Separation Tree from Observed Data

As proposed by Xie et al. (2006), one can construct a d-separation tree from observed
data. In this section we extend Theorem 2 by Xie et al. (2006), and thereby prove that
their method for constructing a separation tree from data is valid for AMP chain graphs.
To construct an undirected independence graph in which the absence of an edge ©u — v
implies u 1L v|V '\ {u, v}, we can start with a complete undirected graph, and then for each
pair of variables v and v, an undirected edge u — v is removed if u and v are independent
conditional on the set of all other variables (Xie et al., 2006). For normally distributed
data, the undirected independence graph can be efficiently constructed by removing an
edge u — v if and only if the corresponding entry in the concentration matrix (inverse
covariance matrix) is zero (Lauritzen, 1996, Proposition 5.2). For this purpose, performing a
conditional independence test for each pair of random variables using the partial correlation
coefficient can be used. If the p-value of the test is smaller than the given threshold,
then there will be an edge on the output graph. For discrete data, a test of conditional
independence given a large number of discrete variables may be of extremely low power.
To cope with such difficulty, there are two fundamental ways to perform structure learning:
(1) Parameter estimation techniques (Banerjee et al., 2008; Ravikumar et al., 2010) that
utilize a factorization of the distribution according to the cliques of the graph to learn
the underlying graph. These techniques assume a certain form of the potential function,
and thereby relate the structure learning problem to one of finding a sparse maximum
likelihood estimator of a distribution from its samples. (2) Algorithms based on learning
conditional independence relations between the variables (Chow & Liu, 1968; Bresler et al.,
2008; Netrapalli et al., 2010; Anandkumar et al., 2012) that they do not need knowledge of
the underlying parametrization to learn the graph. These methods are based on comparing
all possible neighborhoods of a node to find one which has the mazimum influence on the
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node. As discussed by Edwards (2000, Chapter 6), (Bromberg et al., 2009), and (de Abreu
et al., 2010b) there are other methods for UIG learning, including some for data with both
continuous and discrete variables. All these methods can be used to construct separation
trees from data.

Theorem 15 A junction tree constructed from an undirected independence graph for AMP
CG G is a p-separation tree for G.

Proof See Appendix A. |

A p-separation tree T' only requires that all p-separation properties of T also hold for
AMP CG @G, but the reverse is not required. Thus we only need to construct an undirected
independence graph that may have fewer conditional independencies than the augmented
graph, and this means that the undirected independence graph may have extra edges added
to the augmented graph. As Xie et al. (2006) observe for d-separation in DAGs, if all nodes
of a p-separation tree contain only a few variables, “the null hypothesis of the absence of
an undirected edge may be tested statistically at a larger significance level.”

Since there are standard algorithms for constructing junction trees from UIGs (Cowell
et al.,, 1999, Chapter 4, Section 4), the construction of separation trees reduces to the
construction of UIGs. In this sense, Theorem 15 enables us to exploit various techniques for
learning UIGs to serve our purpose. More suggested methods for learning UIGs from data,
in addition to the above mentioned techniques, has been discussed by Ma et al. (2008).

Example 6 To construct a p-separation tree for the AMP CG G in Figure 4(a), at first
an undirected independence graph is constructed by starting with a complete graph and re-
moving an edge u — v if u 1L v|V \ {u,v}. An undirected graph obtained in this way is the
augmented graph of AMP CG G. In fact, we only need to construct an undirected indepen-
dence graph which may have extra edges added to the augmented graph. Next triangulate
the undirected graph and finally obtain the p-separation tree, as shown in Figure 4(c) and
Figure 5 respectively.

5.2 The LCD-AMP Algorithm for Learning AMP Chain Graphs

By applying the following theorem to structural learning, we can split a problem of searching
for p-separators and building the skeleton of a CG into small problems for every node of
p-separation tree T'.

Theorem 16 Let T be a p-separation tree for AMP CG G and u and v be two vertices that
do not belong to the same chain component. So, vertices u and v are p-separated by S C'V
in G if and only if (i) u and v are not contained together in any node C of T or (ii) there
exists a node C that contains both u and v such that a subset S’ of C' p-separates u and v.

Proof See Appendix A. [ ]

According to Theorem 16, a problem of searching for a p-separator S of u and v in all
possible subsets of V' is localized to all possible subsets of nodes in a p-separation tree that
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contain u and v. For a given p-separation tree 7" with the node set C' = {C1,...,Cx},
we can recover the skeleton and all triplexes for an AMP CG using a constraint-based
algorithm, called LCD-AMP, that contains two main steps: (a) determining the skeleton by a
divide-and-conquer approach; (b) determining triplexes and orienting some of the undirected
edges into directed edges according to a set of rules applied iteratively with localized search
for p-separators. We elaborate on each phase of this algorithm below.

LCD-AMP Description: (a) Skeleton Recovery. This phase has two steps. First, we con-
struct a local skeleton for every node Cj of T, which is constructed by starting with a
complete undirected subgraph and removing an undirected edge u — v if there is a subset
S of C}, such that u and v are independent conditional on S. For this purpose, we can use
the PC-LIKE algorithm (Pena, 2012) or the STABLE-PC4AMP algorithm (Algorithm 5, line
2-13) in Algorithm 6 (line 3-11). Second, in order to construct the global skeleton (line 13-23
of Algorithm 6), we combine all these local skeletons together. Note that it is possible that
some edges that are present in some local skeletons may be absent in other local skeletons.
Also, two non-adjacent vertices u and v in the AMP CG G that belong to the same chain
component may be adjacent in the temporary global skeleton. (Note that Theorem 16 only
guarantees the existence of the p-separators for those non-adjacent vertices that do not be-
long to the same chain component. In Appendix A, we provide an example that shows that
Theorem 16 cannot be strengthened.) In order to remove the extra edges in the resulting
undirected graph, we apply a removal procedure that is similar to the skeleton recovery
phase of the PC-L1KE algorithm. However, instead of the complete undirected graph we use
the resulting undirected graph obtained in the previous step. (b) Orientation phase. In this
phase (line 25-28 of Algorithm 6), we orient undirected edges using rules R1-R4 proposed
by Pena (2012), Pena and Gémez-Olmedo (2016) (illustrated in Figure 10 for the reader’s
convenience). The whole process is formally described in Algorithm 6.

We prove that the global skeleton and all triplexes obtained by applying the decomposi-
tion in Algorithm 6 are correct, that is, they are the same as those obtained from the joint
distribution of V. In other words, LCD-AMP returns a chain graph that is a member of a
class of triplex equivalent AMP chain graphs; see Appendix A for proof details. Note that
separators in a p-separation tree may not be complete in the augmented graph. Thus the
decomposition is weaker than the decomposition usually defined for parameter estimation
(Cowell et al., 1999; Lauritzen, 1996).

Remark 17 One can apply Algorithm 8 proposed by Roverato and Rocca (2006) to the
resulting chain graph of Algorithm 6 to obtain the largest deflagged graph. Also, one can
apply Algorithm 1 proposed by Sonntag and Pena (2015a) to the resulting chain graph of
Algorithm 6 to obtain the AMP essential graph.

5.3 Complexity Analysis of the LCD-AMP Algorithm

Here we start by comparing our algorithm with the main algorithm proposed by Xie et al.
(2006) that is designed specifically for DAG structural learning when the underlying graph
structure is a DAG. We make this choice of the DAG specific algorithm so that both
algorithms can have the same separation tree as input and hence are directly comparable.

The same advantages mentioned by Xie et al. (2006) for their BN structural learning
algorithm hold for our algorithm when applied to AMP CGs. For the reader’s convenience,
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Algorithm 6: LCD-AMP : A decomposition-based recovery algorithm for AMP CGs

© o N O ook W
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22
23
24
25
26

27
28
29

Input: A probability distribution p faithful to an unknown AMP CG G.
Output: A chain graph H that is triplex equivalent to the AMP CG G.
Construct a p-separation tree 7" with a node set C' = {C1,...,C} as discussed in
Section 5.1;
Set S = (;
/* Local skeleton recovery: */
for i < 1 to [ do
Start from a complete undirected graph G; with vertex set Cj;
for each vertex pair {u,v} C C; do
if 3Su, C C; such that u Ll v|Sy, then
Delete the edge u — v in Gj;
Add S,, to S;

end

end
end
/* Global skeleton recovery: */
Initialize the edge set Ey of Gy as the union of all edge sets of G, =1,...,1;
Set H = Gy;
for i + 0 to |[Vy| —2 do
while possible do
Select any ordered pair of nodes u and v in H such that u € ady(v) and
llads () U ads (adz (u)]\ {u, v} > is
/* adp(z) ={yeV]jx —y,y —uz, orx —y} */
if there exists S C ([adp(u) Uadg(adm(w))] \ {u,v}) s.t. |S| =1 and
u 1L, v|S (i.e., u is independent of v given S in the probability distribution
p) then
Sl Sy = Som = 55
Remove the edge u — v from H;;
end

end

end

/* Orientation phase (Pefia, 2012): */

while possible do

Apply rules R1-R4 in Figure 10 to H.

/* A block is represented by a perpendicular line at the edge end such as
in — or —, and it means that the edge cannot be a directed edge
pointing in the direction of the block. Note that — means that the
edge must be undirected. The ends of some of the edges in the rules
are labeled with a circle such as in o— or o-o. The circle

represents an unspecified end, i.e. a block or nothing. */
end
Replace every edge — () in H with — (—);
return H.
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we list them here. First, by using the p-separation tree, independence tests are performed
only conditionally on smaller sets contained in a node of the p-separation tree rather than
on the full set of all other variables. Thus our algorithm has higher power for statistical
tests. Second, the computational complexity can be reduced. The number of conditional
independence tests for constructing the equivalence class is used as characteristic operation
for this complexity analysis. Decomposition of graphs is a computationally simple task
compared to the task of testing conditional independence for a large number of triples of sets
of variables. The triangulation of an undirected graph is used in our algorithms to construct
a p-separation tree from an undirected independence graph. Although the problem for
optimally triangulating an undirected graph is NP-hard, sub-optimal triangulation methods
(Berry et al., 2004) may be used provided that the obtained tree does not contain too
large nodes to test conditional independencies. Two of the best known algorithms are
lexicographic search and maximum cardinality search, and their complexities are O(|V||E|)
and O(|V| + |E|), respectively (Berry et al., 2004). Thus in our algorithms, conditional
independence tests dominate algorithmic complexity.

For the sake of complexity analysis, Algorithm 6 can be divided into four parts: (1)
construction of the p-separation tree, (2) local skeleton recovery (lines 3-11), (3) global
skeleton recovery (lines 12-22), and (4) orientation phase (lines 23-25). Part (1) includes the
construction of the UIG, which takes at most O(n?) conditional independence tests, where
n is the number of variables in the data set. Part (2) and (3) together require O(Hm?2™)
as claimed by Xie et al. (2006, Section 6), where H is the number of p-separation tree nodes
(usually H < |V|) and m = maxy, |C}| where |C}| denotes the number of variables in C},
(m usually is much less than |V|). Part (4) does not require any conditional independence
tests.

6. Experimental Evaluation

In this section we evaluate the performance of our algorithms in various setups using sim-
ulated / synthetic data sets. We first compare the performance of our proposed algo-
rithms, i.e., STABLE-PC4AMP, CONSERVATIVE-PC4AMP, STABLE-CONSERVATIVE-PC4AMP and
LCD-AMP with the original PC-LIKE learning algorithms by running them on randomly gen-
erated AMP chain graphs. We then compare our algorithms, i.e., STABLE-PC4AMP and
LCD-AMP algorithms with the PC-L1kE algorithm on different discrete Bayesian networks
such as ASIA, INSURANCE, ALARM, and HAILFINDER that have been widely used in
evaluating the performance of structural learning algorithms. Empirical simulations show
that our algorithm achieves competitive results with the PC-L1KE and STABLE-PC4AMP learn-
ing algorithms; in particular, in the Gaussian case the decomposition-based algorithm out-
performs the PC-L1kE and STABLE-PC4AMP algorithms. Algorithms 6 and the PC-L1kE and
STABLE-PC4AMP algorithms have been implemented in the R language. All code, data, and
the results reported here are based on our R implementation available at the following
GitHub link https://github.com/majavid/AMPCGs2019. We do not consider the case of
mixed continuous and discrete data in this paper, and leave this important and complex
issue for future work; we only observe that this problem has been studied in the case of
Markov networks and Bayesian networks (e.g., de Abreu et al., 2010a; Lauritzen & Jensen,
2001; Raghu et al., 2018; Andrews et al., 2018).
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6.1 Performance Evaluation Metrics

We evaluate the performance of the proposed algorithms in terms of the six measurements
that are commonly used by Colombo and Maathuis (2014), Ma et al. (2008), Tsamardinos
et al. (2006) for constraint-based learning algorithms:

(a) the true positive rate (TPR)? is the ratio of the number of correctly identified edges
over total number of edges (in true graph), i.e.,

true positive (T'P)

TPR =
the number of real positive cases in the data (Pos)’

(b) the false positive rate (FPR)* is the ratio of the number of incorrectly identified edges
over total number of gaps, i.e.,

false positive (F'P)

FPR =
the number of real negative cases in the data (Neg)’

(c) the true discovery rate (TDR)? is the ratio of the number of correctly identified edges
over total number of edges (both in estimated graph), i.e.,

TDR — true positive (T'P)

the total number of edges in the recovered CG’

(d) accuracy (ACC) is defined as

true positive (T'P) + true negative (T'N)

A =
ce Pos+ Neg

9

(e) the structural Hamming distance (SHD)® is the number of legitimate operations
needed to change the current resulting graph to the true CG, where legitimate opera-
tions are: (i) add or delete an edge and (ii) insert, delete or reverse an edge orientation,
and

(e) run-time for the chain graph recovery algorithms.

Note that we use TPR, FPR, TDR, and ACC for comparing the skeletons of a learned
structure and a ground truth graph. In principle, a large TDR, TPR and ACC, a small
FPR and SHD indicate good performance. In principle, a large TDR, TPR and ACC, a
small FPR and SHD indicate good performance.

To investigate the performance of the proposed learning methods in this paper, we use
the same approach that (Ma et al., 2008) used in evaluating the performance of the LCD
algorithm on LWF chain graphs. We run our algorithms on randomly generated AMP chain
graphs and then we compare the results and report summary error measures in all cases.

. Also known as sensitivity, recall, and hit rate.

. Also known as fall-out.

. Also known as precision or positive predictive value.

. This is the metric described by Tsamardinos et al. (2006) to compare the structure of the learned and
the original graphs.

U W
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6.2 Performance Evaluation on Random AMP Chain Graphs (Gaussian case)
6.2.1 DATA GENERATION PROCEDURE

First we explain the way in which the random AMP chain graphs and random samples are
generated. Given a vertex set V', let p = |V| and N denote the average degree of edges
(including undirected and pointing out and pointing in) for each vertex. We generate a
random AMP chain graph on V' as follows:

e Order the p vertices and initialize a p X p adjacency matrix A with zeros;

e For each element in the lower triangle part of A, set it to be a random number
generated from a Bernoulli distribution with probability of occurrence s = N/(p — 1);

Symmetrize A according to its lower triangle;

Select an integer k randomly from {1,...,p} as the number of chain components;

Split the interval [1,p] into k& equal-length subintervals I,..., I} so that the set of
variables falling into each subinterval I,;, forms a chain component C),;

e Set A;; = 0 for any (4, j) pair such that i € I}, j € I, with [ > m.

This procedure yields an adjacency matrix A for a chain graph with (A4;; = A;; = 1)
representing an undirected edge between V; and V; and (A4;; = 1, Aj; = 0) representing a
directed edge from V; to Vj. Moreover, it is not difficult to see that E[vertex degree] = N,
where an adjacent vertex can be linked by either an undirected or a directed edge. In order
to sample from the artificial CGs, we first transformed them into DAGs and then sampled
from these DAGs under marginalization and conditioning as indicated by Penia (2014). The
transformation of an AMP CG G into a DAG H is as follows: First, every node X in G gets
a new parent eX representing an error term, which by definition is never observed. Then,
every undirected edge X — Y in G is replaced by €X — Sxy +— €¥ where Sxy denotes a
selection bias node, i.e. a node that is always observed. Given a randomly generated chain
graph G with ordered chain components C1,...,Ck, we generate a Gaussian distribution
on the corresponding transformed DAG H using the Hugin API. Note that the probability
distributions of samples are likely to satisfy the faithfulness assumption, but there is no

guarantee i.e., samples can have additional independencies that cannot be represented by
the CG G.

6.2.2 EXPERIMENTAL RESULTS IN LOW-DIMENSIONAL SETTINGS

Experimental Setting In our simulation, we change three parameters p (the number of
vertices), n (sample size) and N (expected number of adjacent vertices) as follows:

e p € {10,20, 30,40, 50},
e n € {500, 1000, 5000, 10000}, and

e N €{2,3}.
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For each (p, N) combination, we first generate 30 random AMP CGs. We then generate
a random Gaussian distribution based on each graph and draw an identically indepen-
dently distributed (i.i.d.) sample of size n from this distribution for each possible n. For
each sample, three different significance levels (o = 0.005,0.01,0.05) are used to perform
the hypothesis tests. The null hypothesis Hy is “two variables u and v are conditionally
independent given a set C' of variables” and alternative Hp is that Hy may not hold. We
then compare the results to access the influence of the significance testing level on the
performance of our algorithms.

Results The experimental results in Figure 11 shows that:

(a)
(b

)
()
(d)
(e)

(f)

(h)

Both algorithms work well on sparse graphs (N = 2, 3).

For both algorithms, typically the TPR, TDR, and ACC increase with sample size.
The SHD and FPR decrease with sample size.

A large significance level (o = 0.05) typically yields large TPR, FPR, and SHD.

In almost all cases, the performance of the LCD-AMP algorithm based on all error
measures i.e., TPR, FPR, TDR, ACC, and SHD is better than the performance of
the PC-L1KE and STABLE-PC4AMP algorithms.

In most cases, error measures based on @ = 0.01 and a = 0.005 are very close.
Generally, our empirical results suggests that in order to obtain a better performance,
we can choose a small value (say o = 0.005 or 0.01) for the significance level of
individual tests along with large sample if at all possible. However, the optimal value
for a desired overall error rate may depend on the sample size, significance level, and
the sparsity of the underlying graph.

While the STABLE-PC4AMP algorithm has a better TDR and FPR in comparison with
the original PC-L1kKE algorithm, the original PC-L1kE algorithm has a better TPR as
observed in the case of DAGs (Colombo & Maathuis, 2014). This can be explained
by the fact that the STABLE-PC4AMP algorithm tends to perform more tests than the
original PC-LIKE algorithm.

There is no meaningful difference between the performance of the STABLE-PC4AMP al-
gorithm and the original PC-LIKE algorithm in terms of error measures ACC and
SHD.

When considering average running times versus sample sizes, as shown in Figures 12,
we observe that:

(a)
(b)

()

The average run time increases when sample size increases.

The average run times based on = 0.01 and o = 0.005 are very close and in all cases
better than a = 0.05, while choosing o = 0.005 yields a consistently (albeit slightly)
lower average run time across all the settings.

Generally, the average run time for the decomposition-based algorithm is lower than
that for the ( STABLE-) PC-LIKE algorithm.
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Figure 11: First two columns show the performance of the decomposition based (LCD-AMP), original
PC-LIKE and STABLE-PC4AMP algorithms for randomly generated Gaussian chain graph models: average
over 30 repetitions with 50 variables correspond to N = 2, 3, and the significance level a = 0.005. In each
plot, the solid blue line corresponds to the LCD-AMP algorithm, the dashed red line corresponds to the
original PC-LIKE algorithm, and the dotted grey line corresponds to the stable PC-L1kE (STABLE-PC4AMP)
algorithm. The third column shows the performance of the decomposition-based (LCD-AMP) algorithm for
randomly generated Gaussian chain graph models: average over 30 repetitions with 50 variables correspond
to N = 2, and significance levels a = 0.05,0.01,0.005. In each plot, the solid green line corresponds to
a = 0.05, the dashed brown line corresponds to o = 0.01, and the dotted blue line corresponds to o = 0.005.
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Figure 12: First two columns show the running times of the decomposition-based (LCD-AMP), original
PC-L1KE and STABLE-PC4AMP algorithms for randomly generated Gaussian chain graph models: average over
30 repetitions with 50 variables correspond to N = 2,3 and significance levels a = 0.005. In each plot,
the solid blue line corresponds to the LCD-AMP algorithm, the dashed red line corresponds to the original
PC-LIKE algorithm, and the dotted grey line corresponds to the STABLE-PC4AMP algorithm. The third column
shows the running times of the decomposition-based (LCD-AMP) algorithm for randomly generated Gaussian
chain graph models: average over 30 repetitions with 50 variables correspond to N = 2, and significance
levels a = 0.05,0.01,0.005. In each plot, the solid green line corresponds to o = 0.05, the dashed brown line
corresponds to a = 0.01, and the dotted blue line corresponds to o = 0.005.

In Figure 13, the algorithms are compared by counting the number of independence
tests, rather than runtime, in order to reduce the impact of different implementations (R
packages). We observe that:

(a) The average number of independence tests increases when sample size increases.
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Figure 13: First two columns show the number of independence tests used by the decomposition-based
(LCD-AMP), original PC-LIKE and STABLE-PC4AMP algorithms for randomly generated Gaussian chain graph
models: average over 30 repetitions with 50 variables corresponding to average degrees N = 2,3 and sig-
nificance level a = 0.005. In each plot, the solid blue line corresponds to the LCD-AMP algorithm, the
dashed red line corresponds to the original PC-LikE algorithm, and the dotted grey line corresponds to
the STABLE-PC4AMP algorithm. The third column shows the number of independence tests used by the
decomposition-based (LCD-AMP) algorithm for randomly generated Gaussian chain graph models: aver-
age over 30 repetitions with 50 variables corresponding to average degree N = 2, and significance levels
a = 0.05,0.01,0.005. In each plot, the solid green line corresponds to a = 0.05, the dashed brown line
corresponds to @ = 0.01, and the dotted blue line corresponds to o = 0.005.

(b) The average number of independence tests based on a = 0.01 and o = 0.005 are close
and in all cases better than a = 0.05, while choosing o = 0.005 yields a consistently
lower average number of independence tests across all the settings.

(c) Generally, the average number of independence tests for the decomposition-based
algorithm is better than that for the (STABLE-) PC-LIKE algorithm.

These observations are consistent with the theoretical complexity analysis that we dis-
cussed in Section 5.3. In fact, our findings confirm that the decomposition-based algorithm
reduces complexity and increases the power of computational independence tests.

6.2.3 EXPERIMENTAL RESULTS IN HIGH-DIMENSIONAL SETTINGS

Although the results in Figure 14 show that our proposed modifications of PC-LIKE, i.e.,
STABLE-PC4AMP, CoNSERVATIVE-PC4AMP, and STABLE-CONSERVATIVE-PC4AMP provide sta-
bler estimations and closer to the true underlying structure in sparse high-dimensional
settings for simulated Gaussian data compared with PC-LIKE, we are interested to test
whether the difference is statistically significant.

Experimental Setting To show that the order-dependence of PC-L1KE algorithm is prob-
lematic in high-dimensional data, we compared the SHD of the original PC-L1KE algorithm
against its modifications for randomly generated Gaussian chain graph models: average over
30 repetitions with 1000 variables with NV = 2, sample size S = 50, and the significance
level @ = 0.05,0.01,0.005,0.001. We used an independent t-test to quantitatively evaluate
whether the means of SHDs in different structure discovery algorithms are different.
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Figure 14: The SHD of the original PC-LI1kE algorithm against its modifications for ran-
domly generated Gaussian chain graph models: average over 30 repetitions with 1000
variables correspond to N = 2, sample size S = 50, and the significance level o =
0.05,0.01,0.005,0.001.

Results The t-test results in Tables 5 and 6 show that:

(a) Except for the p-value v = 0.001, the mean SHD of our proposed algorithms (i.e.,
STABLE-CONSERVATIVE-PC4AMP, CONSERVATIVE-PC4AMP, and STABLE-PC4AMP) is sig-
nificantly different (lower) from the mean of PC-L1ke’s SHD. This confirms that our
proposed modifications provide more reliable and better-learned structures in com-
parison with the PC-LIKE algorithm.

(b) The mean of STABLE-CONSERVATIVE-PC4AMP’s SHD is significantly different from the
mean of the SHD of the STABLE-PC4AMP and CoNSERVATIVE-PC4AMP algorithms with
p-value a = 0.05. However, for the other p-values the difference is not meaningful.

(c) Taken together, the quantitative t-test analysis confirms what one would expect from
visual inspection of Figure 14.

In addition to t-test, we also performed F-test to test statistical difference between
the corresponding pairwise SHD variances. Our results show that the p-value of F-test in
all pairwise comparisons between all algorithms (STABLE-PC4AMP,CONSERVATIVE-PC4AMP,
STABLE-CONSERVATIVE-PC4AMP, and PC-LIKE) is greater than the significance level o =
0.05. In conclusion, there is no significant difference between the variances of the pairwise
SHDs. The similarity of SHD variances indicates that requiring stability does not control
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error propagation in constraint-based algorithms, and that there remains a common source
of errors to be discovered in future work.

Table 5: P-values for pairwise t-tests. Bold numbers in the table mean that PC-LIKE’s
average SHD is significantly different from other’s average SHD with the given p-value ().

PC LIKE PC-LIKE PC-LIKE PC-LIKE

(@ =0.05) | (@=0.01) | (a=0.005) | (e =0.001)
| 7.84e—11 | 3.338¢—06 | 0.0001399 | 0.1781
CONSERVATIVE-PC4AMP | 9.8e—13 | 1.682e—05 | 0.001254 | 0.6045
STABLE-CONSERVATIVE-PC4AMP | 4.997¢—16 | 7.368¢—07 | 0.0001269 | 0.3511

STABLE-PC4AMP

Table 6: P-values for pairwise t-tests. Bold numbers in the table mean that the average
SHD is significantly different when executing the given pair of algorithms for the p-value
a = 0.05.

STABLE- CONSERVATIVE- | STABLE-CONSERVATIVE-
PC4AMP PC4AMP PC4AMP
STABLE-PC4AMP | - | 0.116 | 0.0003893
CONSERVATIVE-PC4AMP | 0116 | - | 0.04492
STABLE-CONSERVATIVE-PC4AMP ‘ 0.0003893 ‘ 0.04492 ‘ -

6.3 Performance on Discrete Bayesian Networks

Since Bayesian networks are special cases of AMP CGs, it is of interest to see whether our
proposed algorithms still work well when the data are actually generated from a Bayesian
network. This matters because we often do not have the information that the underlying
graph is a DAG, which is usually untestable from data alone. For this purpose, we perform
simulation studies for four well-known Bayesian networks from Bayesian Network Reposi-
tory (Scutari, 2017): ASTA, INSURANCE, ALARM, and HAILFINDER. We purposefully
selected these networks because they have different sizes (from small to large numbers of
nodes, edges, and parameters), and they are often used to evaluate structure learning algo-
rithms. We briefly introduce these networks here:

e ASIA (Lauritzen & Spiegelhalter, 1988) with 8 nodes, 8 edges, and 18 parameters, it
describes the diagnosis of a patient at a chest clinic who may have just come back
from a trip to Asia and may be showing dyspnea. Standard constraint-based learning
algorithms are not able to recover the true structure of the network because of the
presence of a functional node.

e INSURANCE (Binder et al., 1997) with 27 nodes, 52 edges, and 984 parameters, it
evaluates car insurance risks.

456


http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/

AMP CGs: MINIMAL SEPARATORS AND STRUCTURE LEARNING ALGORITHMS

e ALARM (Beinlich et al., 1989) with 37 nodes, 46 edges and 509 parameters, it was
designed by medical experts to provide an alarm message system for intensive care
unit patients based on the output a number of vital signs monitoring devices.

e HAILFINDER (Abramson et al., 1996) with 56 nodes, 66 edges, and 2656 parameters,
it was designed to forecast severe summer hail in northeastern Colorado.

We compared the performance of our algorithms for these Bayesian networks for signif-
icance level a = 0.05. The Structural Hamming Distance (SHD) compares the structure of
the largest deflagged of the learned and the original networks, for a fair comparison.

Table 7: Results for discrete samples from the ASIA (5000 observations), INSURANCE
(20000 observations), ALARM (20000 observations), and HAILFINDER (20000 observa-
tions) networks from the bnlearn R package respectively. Each row corresponds to the
significance level: a = 0.05. In order to learn an undirected independence graph from a
given data set in the LCD-AMP algorithm we used the Incremental Association with FDR
(IAMB-FDR) algorithm (Pena, 2008) from the bnlearn R package (Scutari, 2017) and the
stepwise forward selection (FWD-AIC or FWD-BIC) algorithms (de Abreu et al., 2010a).

Algorithm | TPR | TDR | FPR | ACC | SHD
LCD-AMP Algorithm (IAMB-FDR) | 0.5 0.8 0.05 0.821 7

LCD-AMP Algorithm (FWD-AIC) 0.75 1 0 0.929 3

LCD-AMP Algorithm (FWD-BIC) 0.875 1 0 0.964 1

STABLE-PC4AMP Algorithm o5 | 1 | o |087L| 5

Original PC-L1kE Algorithm ‘ 0.5 ‘ 1 ‘ 0 ‘ 0.8571 ‘ 5

LCD-AMP Algorithm (IAMB-FDR) | 0.558 | 0.935 | 0.0067 | 0.929 | 33
LCD-AMP Algorithm (FWD-AIC) | 0.385 | 0.952 | 0.0033 | 0.906 | 42

LCD-AMP Algorithm (FWD-BIC) | 0.538 | 0.875 | 0.0134 | 0.920 | 36

STABLE-PC4AMP Algorithm 0173 | 1 | 0 | 0877 | 43

Original PC-L1kE Algorithm ‘ 0.346 ‘ 1 ‘ 0 ‘ 0.903 ‘ 41

LCD-AMP Algorithm (IAMB-FDR) | 0.783 | 0.878 | 0.0081 | 0.977 24

LCD-AMP Algorithm (FWD-AIC) 0.696 | 0.914 | 0.0048 | 0.974 27
LCD-AMP Algorithm (FWD-BIC) | 0.760 | 0.921 | 0.0048 | 0.979 | 20

STABLE-PC4AMP Algorithm 0587 | 1 | 0 | 0971 | 25

Original PC-L1kE Algorithm ‘ 0.696 ‘ 1 ‘ 0 ‘ 0.979 ‘ 18
LCD-AMP Algorithm (IAMB-FDR) | 0.515 | 0.971 | 0.00068 | 0.979 | 40

LCD-AMP Algorithm (FWD-AIC)

LCD-AMP Algorithm (FWD-BIC) | 0.803 | 0.930 | 0.0027 | 0.989 | 38
STABLE-PC4AMP Algorithm 0394 | 1 | 0 | 0974 | 46

Original PC-LIKE Algorithm | 0.455 | 0.811 | 0.0047 | 0.972 | 49
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6.3.1 EXPERIMENTAL RESULTS

The results of comparing all learning methods in Table 7 indicate that the performance of
LCD-AMP algorithm in many cases is better than that of the PC-L1kE and STABLE-PC4AMP al-
gorithms. In particular, we observed:

(a) Although the performance of our LCD-AMP algorithm, overall, is better than the
PC-L1KE and STABLE-PC4AMP algorithms, it is highly variable depending on the proce-
dure that is used for the UIG discovery, especially in TPR and SHD. One of the most
important implications of this observation is that there is much room for improve-
ment to the UIG recovery algorithms and decomposition-based learning algorithms,
and hopefully the present paper will inspire other researchers to address this impor-
tant class of algorithms. In general, the more accurate the UIG discovery algorithm,
the more robust the result. In our experiments, generally, the TAMB-FDR algorithm
(Pena, 2008) and the stepwise forward selection (FWD-BIC) algorithm (de Abreu
et al., 2010a) are more effective as a preliminary step (UIG recovery) towards under-
standing the overall dependence structure of high-dimensional discrete data.

(b) The PC-LIKE and STABLE-PC4AMP algorithms tend to have better TDR and FPR.
This comes at the expense, however, of much worse TPR. This suggests that the
PC-L1KE and STABLE-PC4AMP algorithms tend to add too many edges to the skeleton
of the learned graph.

7. Related Work

The contributions of this paper regarding finding minimal separators and structure learning
algorithms intersect with various works in the literature as follows.

7.1 Finding Minimal Separators in Probabilistic Graphical Models

A challenging task of model testing is to detect for any given pair of nodes a minimal
or minimum separator. Nontrivial algorithms for testing and for finding a minimal d-
separator in a DAG were first proposed by Acid and de Campos (1996), Tian et al. (1998).
An algorithm for learning the structure of Bayesian networks from data, based on the idea
of finding minimal d-separating sets, was proposed by Acid and de Campos (2001). As
discussed by van der Zander and Liskiewicz (2019), testing and finding a minimal separator
in DAGs can be done in linear time. As shown by van der Zander and Liskiewicz (2019),
van der Zander et al. (2019), (minimal) separating sets have important applications in causal
inference tasks like finding (minimal) covariate adjustment sets or conditional instrumental
variables. Javidian and Valtorta (2018b, 2018a) proposed algorithms for testing and for
finding a minimal separator in an LWF CG and an MVR CG, respectively. In this paper,
we proposed algorithms for testing and finding minimal separators in AMP chain graphs
(see Section 3).

7.2 PC-LikE Algorithms for Probabilistic Graphical Models

The PC algorithm proposed by Peter Spirtes and Clark Glymour (2000) learns the Bayesian
network structure from data by testing for conditional independence between various sets
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of variables. Given the results of these tests, a network pattern is constructed so that
the Markov property holds and d-separation confirms the resulting graph mirroring those
conditional independencies found in the data. The PC algorithm consists of two phases:
In the first phase, an undirected graph is learned. This is known as the skeleton of the
Bayesian network. In the second phase, arrowheads are added to some of the edges where
they can be inferred. The output graph may not be fully oriented and is called a pattern.
When the pattern contains undirected edges, these indicate that the data are consistent
with models in which either orientation is possible.

The PC algorithm is known to be order-dependent, in the sense that the output can
depend on the order in which the variables are given. This order-dependence can be very
pronounced in high-dimensional settings, where it can lead to highly variable results. In
order to resolve the order-dependence problem, Colombo and Maathuis (2014) proposed
several modifications of the PC algorithm that remove part or all of this order-dependence.

PC-LIKE algorithms currently exist for all three chain graph interpretations (Javidian
et al., 2020; Pena, 2012; Sonntag & Pena, 2012) where the different phases are slightly
altered according to the interpretation but the basic ideas are kept the same. The first
phase finds the adjacencies (skeleton), the second orients the edges that must be oriented
the same in every CG in the Markov equivalence class and the third phase transforms this
graph into a CG. Order-independent versions of the PC-L1kE algorithm for LWF CGs and
MVR CGs were proposed by Javidian (2019), Javidian et al. (2019), respectively. In this
paper, we proved that the proposed PC-LIKE algorithm for AMP CGs (Pena, 2012) is order-
dependent. Then, we proposed several modifications of the PC-LIKE algorithm that remove
part or all of this order-dependence, but the proposed algorithms do not change the result
when perfect conditional independence information is used (see Section 4).

7.3 Decomposition Based Learning (LCD-Like) Algorithms for PGMs

Structure learning of Bayesian networks via decomposition was proposed by Xie et al. (2006).
This approach starts with finding a decomposition of the entire variable set into subsets,
on each of which the local skeleton is then recovered. In the next phase, the adjacency
graph (global skeleton) is reconstructed by merging the decomposed graphs (local skeletons)
together. In the last phase, arrowheads are added to some of the edges where they can be
inferred in an efficient manner with lower complexity than the PC algorithm (Xie et al.,
2006).

Following the same idea, a decomposition-based algorithm called LCD (Learn Chain
graphs via Decomposition) was proposed by (Ma et al., 2008; Javidian, 2019) to learn LWF
CGs and MVR CGs, respectively; where the different phases are slightly altered according
to the interpretation but the basic ideas by Xie et al. (2006) are kept the same. In this
paper, we developed an LCD-like algorithm, called LCD-AMP, for learning the structure of
AMP chain graphs based on the idea of decomposing the learning problem into a set of
smaller scale problems on its decomposed subgraphs. Similarities and differences between
LCD-AMP and other LCD-like algorithms are discussed in section 5.
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8. Conclusion

This paper addresses two main problems in the context of AMP chain graphs (CGs): finding
minimal separators and structure learning. We first studied and solved the problem of
finding minimal separating sets for pairs of variables in an AMP CGs. We also studied some
extensions of the basic problem that include finding a minimal separator from a restricted
set of nodes, finding a minimal separator for two given disjoint sets, testing whether a given
separator is minimal, and listing all minimal separators given two non-adjacent nodes (or
disjoint subsets) X and Y. Applications of this research include: (1) learning chain graphs
from data and (2) problems related to the selection of the variables to be instantiated when
using chain graphs for inference tasks, a topic for future work.

Experimental evaluations in the Gaussian case show that both (STABLE-) PC-LIKE and
LCD-AMP algorithms yield good results when the underlying graph is sparse; this holds also
in the discrete case, according to experiments with standard benchmark Bayesian networks.
This is important because Bayesian networks are special cases of AMP CGs and we often
do not know the information that the true underlying structure is a DAG, which is not
usually testable from data. The LCD-AMP algorithm achieves competitive results with the
PC-L1KE and STABLE-PC4AMP learning algorithms in both the Gaussian and discrete cases.
In fact, our LCD-AMP usually outperforms the PC-L1kE and STABLE-PC4AMP algorithms in
all five performance metrics i.e., TPR, FPR, TDR, ACC, and SHD.

The local skeletons of our LCD-AMP algorithm and CI tests at each level of the skeleton
recovery of the STABLE-PC4AMP algorithm can be learned independently from each other,
and later merged and reconciled to produce a coherent AMP chain graph. This allows the
parallel implementations for scaling up the task of learning AMP chain graphs from data
containing more than hundreds of variables, which is crucial for big data analysis tasks.
The correctness proof of the decomposition-based algorithm (i.e., LCD-AMP) is built upon
our results on separating sets. This algorithm exhibits reduced complexity, as measured by
run time and number of conditional independence tests, enhances the power of conditional
independence tests by reducing the number of separating sets that need to be considered,
and, according to our experimental evaluation, achieves better quality with respect to the
learned structure.

A direction for future work is the design of a hybrid algorithm for learning AMP chain
graphs that exploits minimal separators directly, as done by Acid and de Campos (2001)
for learning Bayesian networks. Another natural continuation of the work presented here
would be to develop a learning algorithm with weaker assumptions than the faithfulness
assumption. This could for example be a learning algorithm that only assumes that the
probability distribution satisfies the composition property. It should be mentioned that Pena
et al. (2014) developed an algorithm for learning LWF CGs under the composition property.
However, Pena (2014) proved that the same technique cannot be used for AMP chain
graphs. We believe that our decomposition-based approach is extendable to the structural
learning of marginal AMP chain graphs (Pena & Gémez-Olmedo, 2016) and ancestral graphs
(Richardson & Spirtes, 2002). Also, a potential continuation of the work presented here
would be to develop a learning algorithm via decomposition for marginal AMP chain graphs
and ancestral graphs under the faithfulness assumption. As we mentioned before, our
LCD-AMP algorithm works better than the (STABLE-) PC-LIKE in many settings. The reason
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is that LCD-AMP algorithm takes advantage of local computations that makes it robust
against the choice of learning parameters. In Bayesian networks, the concept that enables
us to take advantage of local computation is Markov blanket. Recently, Javidian et al.
(2020) extended the concept of Markov blankets to LWF CGs and proved what variables
make up the Markov blanket of a target variable in an LWF CG. Characterizing Markov
blankets in AMP CGs and designing a Markov blanket based algorithm for learning AMP
CGs is another interesting direction for future work.
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Appendix A. Proofs of Theorems 15 and 16

In Theorem 9, we showed that if we find a separator over S in (G apy(uuw))® then it is a p-
separator in GG. On the other hand, if there exists a p-separator over S in G then there must
exist a separator over S in (G any(uuv))® by removing all nodes which are not in ant(u U v)
from it. This observation yield the following results.

Lemma 18 Let u and v be two non-adjacent vertices in AMP CG G, and let p be a chain
from u to v. If p is not contained in ant(u U v), then p is blocked by any subset S of
ant(uUv) \ {u,v}.

Proof Since p € ant(u U v), there is a sequence from s (may be u) to y (may be v) in
p=(u,...,s,t,...,x,y,...,v) such that s and y are contained in ant(uUv) and all vertices
from ¢ to x are out of ant(uUv).Then the edges s —t and x —y must be oriented as s — ¢ and
x < y, otherwise ¢ or z belongs to ant(uUwv). Thus there exist at least one triplex between s
and y on p. The middle vertex w of the triplex closest to s between s and ¥ is not contained
in ant(uUwv), and any descendant of w is not in ant(uUwv). So p is blocked by this triplex,
and it cannot be activated conditionally on any vertex in S where S C ant(u Uv) \ {u,v}.
|

Lemma 19 Let T be a p-separation tree for the AMP CG G. For any vertex u there exists
at least one node of T' that contains u and pa(u).

Proof If pa(u) is empty, the result is trivial. Otherwise let C' denote the node of T which
contains v and the most elements of u’s parent. Since no set can separate u from a parent,
there must be a node of T that contains v and the parent. If u has only one parent, then we
obtain the lemma. If v has two or more parents, we choose two arbitrary elements v and w
of u’s parent that are not contained in a single node of T" but are contained in two different
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nodes of T, say {u,v} C C and {u,w} C C’ respectively, since all vertices in V appear in
T. On the chain from C to C' in T, all separators must contain u, otherwise they cannot
separate C from C’. However, any separator containing u cannot separate v and w because
v — u 4— w is an active triplex between v and w in G. Thus we got a contradiction. |

Lemma 20 Let T be a p-separation tree for AMP CG G and C a node of T. If u and v are
two vertices in C that are non-adjacent in G and belong to two different chain components,
then there exists a node C' of T containing u,v and a set S such that S p-separates u and
v in G.

Proof Assume that u and v are two vertices in GG that are non-adjacent and belong to
two different chain components. Without loss of generality, we can suppose that v is not a
descendant of the vertex u in G, i.e., v & nd(u). According to the pairwise Markov property
for AMP chain graphs Andersson et al. (2001), u 1L v|pa(u). By Lemma 19, there is a node
C4 of T that contains u and pa(u). If v € C1, then S defined as the parents of u p-separates
u from v.

If v € C4, choose the node C5 that is the closest node in T to the node Cy and that
contains v and v. Consider that there is at least one parent p of u that is not contained in
C5. Thus there is a separator K connecting Cs toward C7 in T such that K p-separates p
from all vertices in Cs \ K. Note that on the chain from C; to Cy in T', all separators must
contain u, otherwise they cannot separate C; from Cj. So, we have u € K but v ¢ K (if
v € K, then C5 is not the closest node of T' to the node C1). In fact, for every parent p’ of u
that is contained in C} but not in Cy, K separates p’ from all vertices in Cy \ K, especially
the vertex v.

Define S = [ant(uUv) N (K U{p € pa(u)|p € C2})]\ 7w, where 7, is the chain component
that includes u. It is not difficult to see that S is a subset of C5. We need to show that u
and v are p-separated by S, that is, every chain between v and v in G, say p, is blocked by
S.

If p is not contained in ant(u U wv), then we obtain from Lemma 18 that p is blocked by
S.

When p is contained in ant(uUwv), let 2 be adjacent to u on p, that is, p = (u,z,y,...,v).
We consider the three possible orientations of the edge between u and z. We now show that
p is blocked in all three cases by S.

i u < x, so it is obvious that x is not a triplex node and we have two possible sub-cases:

1. 2 € (5. In this case the chain p is blocked at z.

2. x & Co. In this case K p-separates x from v. Theorem 9 guarantees that the set
S’ = K Nant(x Uv) also p-separates x from v. Note that S’ N7, = () to prevent
a partially directed cycle, and S’ C S. So, S p-separates x from v i.e., the chain
between v and z is blocked by S. Hence the chain p is blocked by S.

ii: w — x. We have the following sub-cases:

1. z € ant(u). This case is impossible because a partially directed cycle would
occur.
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2. z € an(v). This case is impossible because v cannot be a descendant of w.

iii: u — x, so ¢ € 7,. In this case the chain p between w and v has a triplex node at
y € 7, that is not in S. So, the chain p is blocked at y and cannot be activated by S.

Proof [Proof of Theorem 15| From Cowell et al. (1999), we know that any separator S in
junction tree T separates V1 \ S and V5 \ S in the triangulated graph G"{/, where V; denotes
the variable set of the subtree T; induced by removing the edge with a separator S attached,
for ¢+ = 1,2. Since the edge set of C‘{/ contains that of undirected independence graph Gy
for G, V1\ S and V3 \ S are also separated in Gy. Since Gy is an undirected independence
graph for G, using the definition of p-separation tree we obtain that T is a p-separation tree
for G. |

Proof [Proof of Theorem 16] (=) If condition (i) is the case, nothing remains to prove.
Otherwise, Lemma 20 implies condition (ii).
(<) Assume that u and v are not contained together in any chain component and any node
C of T. Also, assume that C7 and Cy are two nodes of T' that contain u and v, respectively.
Consider that C] is the most distant node from Cj, between C; and Cy, that contains u
and C% is the most distant node from Cs, between Cy and Co, that contains v. Note that
it is possible that C7 = Cy or Cy = C5. By the condition (i) we know that C] # C5. The
sufficiency of condition (i) is given by the definition of the p-separation tree, because any
separator between C and C) p-separates u from v.

The sufficiency of conditions (ii) is trivial by the definition of p-separation. [ |

The following example shows that Theorem 16 cannot be strengthened.

Example 7 Consider the AMP CG G in Figure 15(a). Vertices f and h are not adja-
cent but both of them belong to the same chain component. As one can see in the Figure
15(d), vertices f and h belong to nodes tree C1 = {b,c,d, f,g,h} and Co = {a,b,d,e, f,h}.
Howewver, none of them contains a subset of Vg that p-separates f from h.

Proof [Correctness of Algorithm 6] By the definition of p-separation trees and Theorem
16, the initializations at local and global skeleton recovery phases guarantee that no edge
is created between any two variables which are not in the same node of the p-separation
tree. Also, deleting edges at local and global skeleton recovery phases guarantees that any
other edge between two p-separated variables can be deleted in some local skeleton or in
the removal procedure at the global skeleton recovery phase. Thus the global skeleton ob-
tained after line 22 is correct. Note that, in an AMP CG, every missing edge corresponds
to at least one independency in the corresponding independence model. Therefore, each
augmented edge © — v in the undirected independence graph must be deleted at some
subgraph over a node of the p-separation tree or at some point of the removal procedure of
the global skeleton recovery. Pena (2012) proved the correctness of orientation rules R1-R4.
|
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b?c?d7f’g7h

b,d, f,h

a’7b7d7e7f7h

(d)

Figure 15: (a) AMP CG G, (b) augmented graph G, (c) triangulated graph (G%)!, and (d)
p-separation tree 7.
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