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Abstract

Additively separable hedonic games and fractional hedonic games have received consid-
erable attention in the literature. They are coalition formation games among selfish agents
based on their mutual preferences. Most of the work in the literature characterizes the
existence and structure of stable outcomes (i.e., partitions into coalitions) assuming that
preferences are given. However, there is little discussion of this assumption. In fact, agents
receive different utilities if they belong to different coalitions, and thus it is natural for
them to declare their preferences strategically in order to maximize their benefit. In this
paper we consider strategyproof mechanisms for additively separable hedonic games and
fractional hedonic games, that is, partitioning methods without payments such that utility
maximizing agents have no incentive to lie about their true preferences. We focus on so-
cial welfare maximization and provide several lower and upper bounds on the performance
achievable by strategyproof mechanisms for general and specific additive functions. In most
of the cases we provide tight or asymptotically tight results. All our mechanisms are simple
and can be run in polynomial time. Moreover, all the lower bounds are unconditional, that
is, they do not rely on any computational complexity assumptions.

1. Introduction

Teamwork and coalition or group formation has been an important and widely investigated
issue in computer science research. In many economic, social and political situations, indi-
viduals carry out activities in groups rather than by themselves. In these scenarios, it is of
crucial importance to consider the satisfaction of the members of the groups. For example,
the utility of an individual in a group sharing a resource depends both on the consumption
level of the resource and on the identity of the members in the group; similarly, the utility
for a party belonging to a political coalition depends both on the party program and on the
identity of its members.
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Hedonic games, introduced by Dréze and Greenberg (1980), model the formation of
coalitions (groups) of agents. These are games in which agents have preferences over the set
of all possible agent coalitions, and the utility of an agent merely depends on the composition
of the coalition she belongs to.

In this paper we consider additively separable hedonic games (ASHGs), which constitute
a natural and succinctly representable class of hedonic games. Each agent in an ASHG has
a value for every other agent, and the utility she ascribes to a given coalition is simply
the sum of the values she assigns to its members. Additive separability satisfies a number
of desirable properties (Aziz, Brandt, & Seedig, 2013b) and ASHG are equivalent to the
non-transferable utility generalization of graph games studied by Deng and Papadimitriou
(1994). They have also inspired several related coalition formation models. Among these,
we further consider fractional hedonic games (FHGs), introduced by Aziz, Brandl, Brandt,
Harrenstein, Olsen, and Peters (2019), which are similar to ASHGs, with the difference
that the utility of each agent is divided by the size of her coalition. This allows to model
behavioral dynamics in social environments that are not captured by ASHGs: one usually
prefers having a couple of good friends in a coalition composed by few other people rather
than being part of a crowded coalition populated by uninteresting agents. FHGs are well-
suited to model, for instance, the formation of social groups or of political parties.

Coalition formation in ASHGs and FHGs has received considerable attention from the
perspective of coalition stability, i.e., core, Nash equilibria, and other suitable equilibrium
notions, or from a classical offline optimization point of view in which solutions are not
necessarily stable (see the Related Work section), but rather try to maximize suitable
social welfare criteria. However, little emphasis has been placed onto the mechanism design
setting in which agents have private preferences. A major challenge in this respect is to
design algorithms that work well even when the input is reported by selfish agents aiming
only at maximizing their personal utility. An interesting approach is to use strategyproof
mechanisms (Dughmi & Ghosh, 2010; Procaccia & Tennenholtz, 2013), that is, algorithms
(not using payments) where agents have no incentive to lie about their true preferences for
increasing their personal benefit.

1.1 Our Contribution

We present strategyproof mechanisms for ASHGs and FHGs, both for general and for
specific valuation functions. In particular, we consider: i) general valuations where the
additive valuations among agents can get any values; ii) non-negative valuations, where
they can only get positive values; iii) duplex valuations, where they can only belong to the
set {−1, 0, 1} (each agent i can express for any other agent j if she is an enemy, neutral or
a friend), and finally iv) simple valuations, where they can only take values in {0, 1} (each
agent can express only a sort of ”I like” opinion for any other agent). The latter setting has
been also considered in other papers, since it models a basic economic scenario referred to
in the literature as Bakers and Millers (Aziz et al., 2019; Bilò, Fanelli, Flammini, Monaco,
& Moscardelli, 2015, 2018). See Section 2 for more details about the considered valuations.

We focus on the classical utilitarian social welfare, that is the sum of individual utili-
ties of the agents for their assigned coalitions, and provide several lower and upper bounds
on the performance achievable by strategyproof mechanisms. To this aim, we start by
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providing the result of Theorem 1, which shows an upper bound of 2 for the approxima-
tion ratio achieved by a maximum weight matching on symmetric FHGs. This result is
both interesting in its own right, improving over the result of Aziz, Gaspers, Gudmunds-
son, Mestre, and Täubig (2015), and also used later on in the paper. Then, for general
valuations, in Theorem 2 we prove that there is no randomized strategyproof mechanism
always returning a solution with non-negative expected social welfare and with a bounded
approximation ratio both for ASHGs and FHGs, even for the simple case of only 3 agents.
For non-negative valuations, we note that the mechanism returning the grand coalition is
strategyproof and optimal for ASHGs, while Proposition 1 shows that the approximation
ratio of the same mechanism is n/2 for FHGs. In Theorem 3, we further prove that no
deterministic strategyproof mechanism can achieve an approximation ratio better than n/2
for FHGs, meaning that the mechanism returning the grand coalition is in fact the best
possible one. For duplex valuations, we present several lower bounds for ASHGs and FHGs.
Theorem 4 and Theorem 5 state that no deterministic mechanism has approximation ratio
less than n − 2 for ASHGs or 2 − ε for FHGs, respectively. Theorem 6 and Theorem 7
show that no randomized strategyproof mechanism can achieve an approximation of 2 − ε
for ASHGs or 3/2− ε for FHGs, respectively. Such lower bounds are proven via a suitable
example in which one agent is valued positively by almost all the other agents, making it
harder for the mechanisms to be immune to her possible manipulations. On the positive
side, we present a deterministic strategyproof mechanism M3 with approximation O(n2)
for ASHGs and O(n) for FHGs (Theorem 8). The mechanism returns pairs of agents and
puts all other agents that it did not manage to pair into singleton coalitions. Furthermore,
we give a randomized strategyproof mechanism M4 with approximation O(n) for ASHGs
(Theorem 9), which tries to imitate a randomly chosen perfect or near-perfect matching on
the whole set of agents, and a randomized strategyproof mechanism M5 with approxima-
tion 8 for FHGs (Theorem 10), which is a variant of M3 that considers the agents in an
order chosen uniformly at random from the set of all possible orderings of n elements. For
simple valuations, Theorem 11 first proves that no deterministic strategyproof mechanism
can achieve approximation ratio less than 6/5 for FHGs, by considering a simple example
with 7 agents in a cycle, and then Theorem 12 shows that returning a maximum match-
ing yields a strategyproof mechanism with approximation ratio 2. Both Theorem 10 and
Theorem 12 use Theorem 1 from Section 3 as a building block.

Our results are summarized in Table 1. As it can be noticed, in most of the cases
(except in the case of duplex valuations) we provide tight or asymptotically tight results. We
remark that the lower bounds on the performance of randomized strategyproof mechanisms
also hold for deterministic ones, and similarly, the upper bounds on the performance of
deterministic strategyproof mechanisms also hold for randomized ones.

We finally point out that, while on the one hand all our mechanisms are simple and can
be run in polynomial time, on the other hand all lower bounds (some of them randomized)
are unconditional, that is, they do not rely on any computational complexity assumptions.

1.2 Related Work

The optimization problem of partitioning agents into coalitions so as to maximize the social
welfare is a major research challenge in AI and it has been extensively investigated in
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the field of multi-agent systems under the name of Coalition Structure Generation (CSG).
Many works characterize the computational complexity of finding optimal solutions, focus
on providing efficient algorithms, prove hardness results and give suitable approximations
under different assumptions or variants of the problem (Rahwan, Michalak, Wooldridge, &
Jennings, 2015).

In the literature, a significant stream of research considers hedonic games (see Aziz
& Savani, 2016), and in particular ASHGs, from a strategic cooperative point of view
(Banerjee, Konishi, & Sönmez, 2001; Bogomolnaia & Jackson, 2002; Elkind & Wooldridge,
2009), with the purpose of characterizing the existence and the properties of stable coalition
structures such as the core, and from a non-cooperative point of view (Bloch & Diamantoudi,
2011; Feldman, Lewin-Eytan, & Naor, 2015), with special focus on pure Nash equilibria.
Computational complexity issues related to the problem of computing stable outcomes have
been considered by Aziz et al. (2013b), Gairing and Savani (2019), Peters (2016), Peters
and Elkind (2015) and Woeginger (2013). Concerning FHGs, Aziz et al. (2019) give some
properties guaranteeing the (non-)emptiness of the core. Moreover, Brandl, Brandt, and
Strobel (2015) study the computational complexity of understanding the existence of core
and individually stable outcomes. Finally, Carosi, Monaco, and Moscardelli (2019) study
the local core stability in FHGs. From a non-cooperative point of view, Bilò et al. (2018)
study the existence, efficiency and computational complexity of Nash equilibria. Further
results on the price of stability for specific FHGs have been presented by Peters (2016) and
for some simple graph-based hedonic games by Kaklamanis, Kanellopoulos, Papaioannou,
and Patouchas (2021). Other stability notions have also been investigated, for example
Aziz, Brandt, and Harrenstein (2013a), Elkind, Fanelli, and Flammini (2020) focus on
Pareto optimality. Flammini, Monaco, Moscardelli, Shalom, and Zaks (2018) consider the
online scenario for both ASHGs and FHGs. Olsen (2012) considers a variant of FHGs called
modified fractional hedonic games, where the utility of each agent in a coalition structure is
equal to the sum of the weights of the incident edges in the coalition she belongs to, divided
by the size of the coalition minus 1. Monaco, Moscardelli, and Velaj (2020) consider Nash
and core stable outcomes for modified fractional hedonic games and provide bounds on their
performance. Finally, Bullinger (2020) gives algorithms for finding Pareto optimal solutions
in ASHGs, FHGs and modified FHGs.

The design of truthful mechanisms with money, that is of algorithms that use payments
to convince the selfish agents to reveal the truth and then compute the outcome on the
basis of their reported values, has been studied in numerous scenarios. However, there
are settings where monetary transfers are not feasible, because of either ethical or legal
issues (Nisan, Roughgarden, Tardos, & Vazirani, 2007), or practical matters in enforcing
and collecting payments (Procaccia & Tennenholtz, 2013). A growing stream of research
thus focuses on the design of the more applicable truthful mechanisms without money, often
called strategyproof mechanisms, that lead agents to report their true preferences without
resorting to payments.

Along these lines, Wright and Vorobeychik (2015) investigate strategyproof mechanisms
for ASHGs. They only consider positive preferences. Under this assumption, a trivial opti-
mal strategyproof mechanism just puts all the agents in the same grand coalition. Therefore,
they assume coalition size constraints and (approximate) envy-freeness. Their main con-
tribution is a mechanism that, despite not having theoretical guarantees, achieves a good
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experimental performance. We point out that in this paper we focus on theoretical results
concerning ASHGs and FHGs, for which, to the best of our knowledge, no strategyproof
mechanism has been proposed in the scientific literature, yet.

Vallée, Bonnet, Zanuttini, and Bourdon (2014) consider classical hedonic games with
general preference relationships, and characterize the conditions on the game structure
that allow rational false-name manipulations. However, they do not provide mechanisms.
Aziz et al. (2013a) show that the serial dictatorship mechanism is Pareto optimal and
strategyproof for general hedonic games when appropriate restrictions are imposed onto the
agents. Finally, Rodŕıguez-Álvarez (2009) studies properties of strategyproof mechanisms
that return core stable solutions for hedonic games.

1.3 Paper Organization

The paper is organized as follows. In Section 2, we formally describe the problems and
introduce some useful definitions. In Section 3, we present a result that is somewhat or-
thogonal to the rest of the paper, as it gives an approximation bound for a non-truthful
mechanism. This result, in fact, is used later in the paper. The studies of the performance
of strategyproof mechanisms are presented in Section 4, 5, 6, and 7, which address, respec-
tively, general, non-negative, duplex and simple valuations. Finally, in Section 8, we provide
some concluding remarks and list interesting open problems.

[-1,1] [0,1] {-1,0,1} {0,1}

ASHGs
L.B.

Unbounded∗ 1
Ω(n), 2− ε∗

1

U.B. O(n2), O(n)∗

FHGs
L.B.

Unbounded∗
n
2 2− ε, 3

2 − ε
∗ 6

5

U.B. n
2 O(n), 8∗ 2

Table 1: Our results for the different cases. Randomized mechanisms are denoted by ∗.
L.B. stands for lower bounds. U.B. stands for upper bounds.

2. Preliminaries

In additively separable hedonic games (ASHGs) and fractional hedonic games (FHGs), we
are given a set N = {1, . . . , n} of selfish agents. The outcome of the game is a partition of
the agents into disjoint coalitions C = {C1, C2, . . .}, where each coalition Cj is a subset of
agents and each agent is in exactly one coalition. Let C be the collection of all the possible
outcomes. Given a partition C ∈ C , we denote by |C| the number of its coalitions and by
Ci the coalition of C containing agent i. Similarly, given a coalition C, we let |C| be the
size or number of agents in C. The grand coalition is the outcome in which all the agents
are in the same coalition, i.e., |C| = 1. A singleton coalition is any coalition C such that
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|C| = 1. We assume that each agent has a privately known valuation vi : N → R, mapping
every agent to a real (possibly negative) value. In ASHGs, for any C ∈ C , the preference
or utility of agent i is ui(C) =

∑
j∈Ci vi(j), that is, it is additively induced by her valuation

function. Similarly, in FHGs, for any C ∈ C , the utility of agent i is ui(C) =
∑

j∈Ci vi(j)

|Ci| .

We are interested in four basic classes of valuation functions. Namely, for any pair of
agents i, j ∈ N , we consider:

� General valuations: vi(j) ∈ [−1, 1];

� Non-negative valuations: vi(j) ∈ [0, 1];

� Duplex valuations: vi(j) ∈ {−1, 0, 1};

� Simple valuations: vi(j) ∈ {0, 1}.

Furthermore, a valuation function is symmetric if and only if vi(j) = vj(i), for any i, j ∈ N .
We always assume that vi(i) = 0 for every i ∈ N . Notice that any valuation function can
be represented by using values in the range [−1, 1].

2.1 Graph Representation

ASHGs and FHGs have a very intuitive graph representation. In fact, any instance of these
games can be expressed by a weighted directed graph G = (V,E,w), where nodes in V
represent the agents, and arcs or directed edges are associated with non null valuations.
Namely, if vi(j) 6= 0, then E contains the arc (i, j) of weight w(i, j) = vi(j). As an
example, in case of simple valuations, if (i, j) /∈ E then vi(j) = 0, while if (i, j) ∈ E then
w(i, j) = vi(j) = 1. Throughout the paper we will sometimes describe an instance of the
considered game by its graph representation.

Given a weighted graph G = (V,E,w), where w is the weight function of the edges,
we denote by w(E) the sum of the weights of the edges belonging to E, i.e., w(E) =∑
{i,j}∈E w(i, j).

2.2 Mechanisms

Agents are self-interested entities. Thus, they may strategically misreport their valuation
functions in order to maximize their utilities. Let d denote the preferences (valuation
functions) declared by all the agents.

A deterministic mechanism M maps every set (or list) of preferences d to a set of
disjoint coalitionsM(d) ∈ C . We denote byMi(d) the coalition assigned to agent i byM.
The utility of agent i is given by ui(M(d)). Let d−i be the valuation functions declared
by all agents except agent i and let di be a possible declaration of valuation function by
i. A deterministic mechanism M is strategyproof if for any i ∈ N , any list of preferences
d−i, any vi and any di, it holds that ui(M(d−i, vi)) ≥ ui(M(d−i, di)). In other words,
a strategyproof mechanism prevents any agent i from benefiting by declaring a valuation
different from vi, whatever the other declared valuations are.

A randomized mechanism M maps every set of agents’ preferences d to a distribution
∆ over the set of all the possible outcomes C . The expected utility of agent i is given by
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E[ui(M(d))] = EC∼∆[ui(C)]. A randomized mechanismM is universally strategyproof if it is
a distribution over deterministic strategyproof mechanisms. This means that the mechanism
is strategyproof even if the outcomes of the random coin flips are known to the agents. On
the other hand, a randomized mechanismM is strategyproof in expectation if for any i ∈ N ,
any preferences d−i, any vi and any di, E[ui(M(d−i, vi))] ≥ E[ui(M(d−i, di))]. Note that
universal strategyproofness implies strategyproofness in expectation. In this paper, all
presented randomized mechanisms will be universally strategyproof and all lower bounds
for strategyproof randomized mechanisms will hold for strategyproofness in expectation.

We say that a deterministic mechanism M is acceptable if it always guarantees a non
negative sum of the players’ utilities (i.e., non negative social welfare, as defined in the fol-
lowing paragraph), i.e.,

∑n
i=1 ui(M(d)) ≥ 0 for any possible list of preferences d. Similarly,

a randomized mechanism M is acceptable if E [
∑n

i=1 ui(M(d))] ≥ 0 holds for every d. In
the following, we will always implicitly restrict our attention to acceptable mechanisms. In
fact, a simple acceptable strategyproof mechanism for all the considered classes of valua-
tions can be trivially obtained by putting every agent into a separate singleton coalition,
regardless of all the declared valuations.

2.3 Mechanism Performance

We are interested in strategyproof mechanisms that perform well with respect to the goal of
maximizing the classical utilitarian social welfare, that is, the sum of the utilities achieved by
all the agents. Namely, the social welfare of a given outcome C is SW(C) =

∑
i∈N ui(C). We

denote by SW(C) =
∑

i∈C ui(C) the overall social welfare achieved by the agents belonging
to a given coalition C. We measure the performance of a mechanism by comparing the
social welfare it achieves with the optimal one. More precisely, the approximation ratio of
a deterministic mechanism M is defined as

rM = sup
d

OPT(d)

SW(M(d))
,

where OPT(d) is the social welfare achieved by an optimal set of coalitions in the instance
induced by d. For randomized mechanisms, the approximation ratio is computed with
respect to the expected social welfare, that is,

rM = sup
d

OPT(d)

E[SW(M(d))]
.

If a set of preferences d is such that OPT(d) = 0, any mechanism M returns an optimal
coalition structure. Therefore, we define the approximation ratio for such an instance to be
1. On the other hand, for a fixed mechanism M, if there exists a set of preferences d such
that the (expected) social welfare of the outcomeM(d) is 0, while OPT(d) 6= 0, we say that
the approximation ratio rM is unbounded.

In all of the presented mechanisms, possible ties will be resolved by considering the
ordering in which the mechanism is processing the agents. More specifically, all of the
mechanisms that do not return the grand coalition, will be creating coalitions of size at
most 2. Therefore, when a possible tie appears, i.e., the i-th agent could be placed in a
coalition both with the j-th and the k-th agent, the mechanism will pair it with the j-th
agent if and only if j < k.
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3. Maximum Matching Approximation for Symmetric FHGs

Even though we are generally interested in strategyproof mechanisms, before starting to
analyze the aforementioned valuation function classes, in this section we prove a result of
somewhat different flavor. Namely, we give a bound on the approximation ratio achieved
by a maximum weight matching mechanism in symmetric fractional hedonic games. We
will use this result in Sections 6 and 7 for giving bounds on truthful mechanisms, but we
also believe it has applicability beyond mechanism design.

First, notice that every weighted undirected graph G = (V,E,w) where w : E → R
corresponds to an instance of a fractional hedonic game with a symmetric valuation function
(for any two agents i and j, it holds that vi(j) = vj(i)) and vice versa. We can show that
the outcome induced by a maximum weight matching in an undirected weighted graph G
is a 2-approximation of the maximum social welfare of the corresponding symmetric FHG.
This improves the result of Aziz et al. (2015), where a bound of 4 is proven. We state the
matching mechanism in terms of undirected weighted graphs.

Mechanism M1. Given an undirected weighted graph G = (V,E,w) where w : E → R,
the mechanism performs as follows:
1 Create a complete graph G′ = (V,E′, w′) by adding edges of weight 0 to G.
2 Consider any fixed numbering of the nodes in V , where |V | = n, and represent each

matching as a binary vector (x12, x13, . . . , x23, x24, . . . , xn−1n) in {0, 1}(
n
2), and let ≺ be the

lexicographic order on these vectors.
3 Return the ≺-minimal matching from the set argmaxM∈M

∑
{i,j}∈M w′(i, j).

We note here that Dughmi and Ghosh (2010) showed that such a ≺-minimal matching
can be found in polynomial time. This is precisely the reason why we introduce the binary
vector representation of matchings and use it as a tie-breaking rule in M1. A run of the
matching mechanism on an example instance can be seen in Figure 1.

1

2 3

4 5

10
7

8

11

4
9

10

-1

Figure 1: The outcome of Mechanism M1 on an example instance. The edges chosen by
the mechanism and the corresponding coalitions are depicted in red. The solution returned
by the mechanism has value 20, while the optimum, achieved by the coalition structure
{{1, 2, 4}, {3, 5}}, is 74

3 .

Theorem 1. For symmetric fractional hedonic games, returning the coalitions induced by
Mechanism M1 is a 2-approximation of the maximum social welfare.
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Proof. Let m be the matching computed by MechanismM1 and Cm the coalitions induced
by m. Let C∗ = {C∗1 , . . . , C∗p} be an optimal coalition structure (we assume all coalitions in
C∗ to have strictly positive social welfare, indeed we can ignore coalitions in C∗ whose social
welfare is zero). Let m′ = m′1 ∪ . . . ∪m′p where m′h, 1 ≤ h ≤ p, is a maximum matching in

the graph induced by the vertices of C∗h. Let Cm′ be the coalitions induced by m′. Let Ah
be the vertices matched in m′h and Bh = C∗h \Ah. Notice that Bh is an independent set in
C∗h and that |Ah| is an even number.

Lemma 1. For any h = 1, . . . , p and any edge {i, j} ∈ m′h, if |Bh| > 0, then∑
b∈Bh

(w(i, b) + w(j, b)) ≤ w(i, j)(|Bh|+ 1) .

Proof. First notice that, for any b ∈ Bh, it holds that w(i, b) ≤ w(i, j) and w(j, b) ≤ w(i, j),
since otherwise we can get a better matching by removing the edge {i, j} from m′h and
adding a new edge having weight strictly greater than w(i, j). We now distinguish two
cases depending on the size of Bh. If |Bh| = 1, then the claim easily follows from the
observation that w(i, b) ≤ w(i, j) and w(j, b) ≤ w(i, j). If |Bh| > 1, then suppose that∑

b∈Bh
(w(i, b) + w(j, b)) > w(i, j)(|Bh|+ 1). This implies that there are two distinct edges

{i, b} and {j, b′} for some b, b′ ∈ Bh, b 6= b′ such that w(i, b) + w(j, b′) > w(i, j), which
contradicts the fact that m′h is a maximum matching in C∗h.

Let Êh be the set of edges of the graph induced by the vertices of Ah minus the edges
belonging to the matching m′h. Moreover, let w(Êh) =

∑
{i,j}∈Êh

w(i, j).

Lemma 2. For any h = 1, . . . , p, it holds that w(Êh) ≤ w(m′h)(|Ah| − 2).

Proof. Let us consider the graph GAh
induced by the vertices of Ah and suppose that

GAh
is complete (if it is not complete, we can simply add edges with weight zero). Note

that there exists a set of |Ah| − 1 disjoint perfect matchings on GAh
that contains m′h

(see, e.g., Anderson, 2001, Theorem 8.1). Let us denote this set by M . Then, notice that
1

|Ah|−1

∑
{i,j}∈Ah

w(i, j) is the average weight of a matching from M . Therefore, it has to

hold that
∑
{i,j}∈Ah

w(i, j) ≤ w(m′h) · (|Ah| − 1). The claim now follows by using the fact

that w(Êh) =
∑
{i,j}∈Ah

w(i, j)− w(m′h).

Then, when |Bh| > 0, by using Lemma 1 and Lemma 2, we can bound the social welfare
of C∗h, for any h = 1, . . . , p:

SW(C∗h) =

=
1

|C∗h|

 ∑
{i,j}∈m′h

(w(i, j) +
∑
b∈Bh

w(i, b) + w(j, b)) + w(Êh)


≤ 1

|C∗h|
(
w(m′h) + w(m′h)(|Bh|+ 1) + w(m′h)(|Ah| − 2)

)
= w(m′h).
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Similarly, when |Bh| = 0 we can see that SW (C∗h) ≤ w(m′h). Therefore, overall we have
that SW(C∗) ≤ w(m′). Since by the choice of m we have w(m) ≥ w(m′), then the social
welfare of Cm is

SW(Cm) =
w(m)

2
≥ w(m′)

2
≥ SW(C∗)

2
.

Computing the maximum social welfare in symmetric fractional hedonic games is an
NP-hard problem (Aziz et al., 2015), and we are not aware of stronger inapproximability
results. Therefore, the 2-approximation algorithm of Theorem 1 is not tight in this sense.
Lastly, we note that 2 is the best approximation achievable by using matchings when dealing
with the problem of computing the maximum social welfare in symmetric fractional hedonic
games. This can be easily verified by considering a complete graph on n nodes. In the grand
coalition, each node has utility n−1

n (consider large n), while in a matching each node has
a utility of at most 1

2 .

4. General Valuations

In this section, we return to our main topic of strategyproof mechanisms and consider
the setting where agents have general valuations. We are able to prove that there is no
randomized strategyproof mechanism with bounded approximation ratio both for ASHGs
and FHGs. Clearly, the theorem applies also to deterministic mechanisms, since they are
special cases of randomized ones.

Theorem 2. For general valuation functions, there is no randomized strategyproof accept-
able mechanism with bounded approximation ratio both for ASHGs and FHGs.

Proof. We first prove the theorem for ASHGs and then show that the same arguments
directly apply also to FHGs.

1 2 3ε −1

0.9

(a) Instance I1

1 2 3ε −ε
0.9

(b) Instance I2

Figure 2: The lower bound instance for general valuations.

Let M be a given randomized strategyproof mechanism. Provided that M is strate-
gyproof, we implicitly assume that the agents’ declared preferences d correspond to the true
valuation functions. Let us then consider the instance I1 depicted in Figure 2a, and let p
be the probability that M returns an outcome for I1 where agents 2 and 3 are together in
the same coalition. Then, the expected social welfare is

E[SW(M(d1))] ≤ p(ε− 0.1) + (1− p)ε = ε− 0.1p ,

while the optimal solution has social welfare ε (notice that the presence of agent 1 is neces-
sary to guarantee a strictly positive value of the optimal outcome in instance I1). Therefore,

1262



Strategyproof Mechanisms for Hedonic Games

the randomized mechanism has bounded approximation ratio only if ε− 0.1p > 0; that im-
plies p < 10ε. Let us now consider the instance I2 depicted in Figure 2b, and let q be the
probability that mechanism M returns an outcome where agents 2 and 3 are together in
the same coalition. Then the expected social welfare is

E[SW(M(d2))] ≤ 0.9q + (1− q)ε .

We notice thatM can be strategyproof only if p ≥ q, otherwise agent 2 in I2 could improve
her utility by declaring value −1 for agent 3, since in such a case she would get utility
−pε > −qε. The optimal solution of instance I2 has value 0.9. Thus, the approximation
ratio of M is

sup
d

OPT(d)

E[SW(M(d))]
≥ OPT(d2)

E[SW(M(d2))]
≥ 0.9

0.9q + (1− q)ε
≥ 0.9

0.9p+ ε
>

0.9

0.9 · 10ε+ ε
=

0.9

10ε
.

As ε can be arbitrarily small, we can then conclude thatM has an unbounded approximation
ratio. The claim then follows by the arbitrariness of M.

Now, by using the same notation and the same arguments for FHGs, from instance I1

we learn that the expected social welfare of M is

E[SW(M(d1))] ≤ p · ε− 0.1

3
+ (1− p) · ε

2
.

The optimal solution now has social welfare ε
2 but we conclude the same as before that for a

bounded approximation ratio it has to hold that E[SW(M(d1))] > 0, which is equivalent to
p < 15ε

5ε+1 . Furthermore, it again has to hold that p ≥ q in order for M to be strategyproof.

Finally, from instance I2 and being interested in 0 < ε < 0.3 such that 0.9−ε
2 > 0.9

3 , we
conclude that the approximation ratio of M is

sup
d

OPT(d)

E[SW(M(d))]
≥ OPT(d2)

E[SW(M(d2))]
≥ 0.3

q 0.9−ε
2 + (1− q) ε2

≥ 0.6

q(0.9− 2ε) + ε
>

6 + 30ε

145ε− 250ε2
.

Again, M has an unbounded approximation ratio because ε can be arbitrarily small.

5. Non-Negative Valuations

In this section, we consider the setting where agents have non-negative valuations. Let us
first present a simple optimal mechanism for non-negative valuations in ASHGs.

MechanismM2. Given as input a list of agents’ valuations d = 〈d1, ..., dn〉, the mechanism
outputs the grand coalition, i.e. M(d) = {{1, . . . , n}}.

It is trivial to see that, in ASHGs with non-negative valuations, the above mechanism
M2 is acceptable, strategyproof, and achieves the optimal social welfare. Therefore, we
now focus on FHGs. We are able to show that any deterministic strategyproof mechanism
cannot have an approximation ratio better than n

2 .

Theorem 3. For FHGs with non-negative valuations, no deterministic strategyproof ac-
ceptable mechanism can achieve approximation ratio r, with r < n

2 .
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(a) Instance I1
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(b) Instance I2

Figure 3: The lower bound instances for non-negative valuations with 4 agents.

Proof. Assume 1
n � α � β. Let us consider the instance I1 (see Figure 3a) with an even

number n of agents, where the valuation functions are as follows:

� for any i = 1, 3, . . . , n− 1, vi(j) = α if j = i+ 1 and vi(j) = 0 otherwise;

� for any i = 2, 4, . . . , n− 2, vi(j) = β if j = i+ 1 and vi(j) = 0 otherwise;

� vn(1) = β and vn(j) = 0 for any j 6= 1.

The optimal outcome is given by the set of coalitions C = {C1, C2, . . . , Cn
2
}, where Cj =

{2j − 1, 2j} for any j = 1, . . . , n2 , and achieves social welfare n
4α. We now show that any

deterministic strategyproof mechanism with an approximation ratio lower than n
2 has to

output the grand coalition. In fact, since the grand coalition has social welfare α+β
2 , and

its approximation ratio tends to n
2 when β/α tends to 0, this is enough to prove the claim.

Assume then that a deterministic strategyproof mechanism M with an approximation
ratio strictly less than n

2 outputs an outcome different from the grand coalition. In this case,
there must be at least one agent k having null utility, since we can find agents k and k + 1
that are not in the same coalition. But then, k might try to improve her utility by declaring
vk(k+1) = 1, creating instance I2 (see Figure 3b). Note that in this case in order to achieve
an approximation less than n

2 , M must return an outcome in which agents k and k+ 1 are
in the same coalition. Hence, agent k indeed improves her utility by declaring vk(k+1) = 1.
Therefore, to maintain strategyproofness, M has to output the grand coalition also when
the input is I1. Thus, the theorem is proven.

Given the above result, it is easy to show that returning the grand coalition is the best
we can do.

Proposition 1. For FHGs with non-negative valuations, MechanismM2 is a deterministic
strategyproof acceptable mechanism with approximation ratio n

2 .

Proof. As valuations are non-negative and MechanismM2 always outputs the grand coali-
tion, the mechanism is clearly acceptable and strategyproof. Let us now focus on its
approximation ratio for the social welfare. On the one hand, given any d, OPT(d) ≤
1
2

∑
i∈N

∑
j∈N vi(j). This holds because any coalition with positive social welfare in the

optimal coalition structure consists of at least two agents. Otherwise, the coalition has zero
social welfare since vi(i) = 0 for any i ∈ N . On the other hand, the grand coalition has
social welfare equal to 1

n

∑
i∈N

∑
j∈N vi(j). The approximation ratio follows.
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6. Duplex Valuations

In this section, we consider the setting where agents have duplex valuations. We first present
deterministic lower bounds for ASHGs and FHGs.

Theorem 4. For ASHGs with duplex valuations, no deterministic strategyproof acceptable
mechanism has approximation ratio less than n− 2.

Proof. Let us consider the instance I1 depicted in Figure 4a, where the valuations of the n
agents are as follows:

� for i = 1, . . . , n− 2, vi(j) = 1 if j = n− 1 and vi(j) = 0 otherwise;

� vn−1(j) = 1 if j = n and vn−1(j) = −1 otherwise;

� vn(j) = −1 for j = 1, . . . , n− 2 and vn(n− 1) = 0.

n-2

2

1

n-1
n...

1

-1

1

-1

1

-1

1

-1

-1

-1

(a) Instance I1

n-2

2

1

n-1
n...

1

1

1

1

-1

-1

-1

(b) Instance I2

Figure 4: The lower bound instance for duplex valuations.

In any optimal outcome agents n− 1 and n are in the same coalition, and all other agents
are in other coalitions. The resulting social welfare is 1, and in particular it is due to agent
n−1 having utility 1. It is easy to see that any mechanism having a bounded approximation
ratio has to return the optimal outcome, as any other solution would have social welfare of
at most zero. Let us now consider the instance I2 depicted in Figure 4b, where agent n−1 is
the only one with a different valuation function with respect to I1, that is vn−1(n) = 1 and
vn−1(j) = 0 for j 6= n. Any strategyproof mechanism with bounded approximation ratio
for I2 has to put agents n− 1 and n in the same coalition, otherwise n− 1 would have zero
utility and could increase her utility by declaring her valuation function as it is in instance
I1. Moreover, any outcome in which n− 1 and n are together has social welfare 1, because
adding any further agent to this coalition does not change its social welfare and the social
welfare of all coalitions that do not contain n−1 and n is 0. However, the optimal outcome,
in which 1, 2, . . . , n− 1 are all together in the same coalition and agent n is alone, achieves
social welfare n− 2. This proves the n− 2 lower bound for any deterministic strategyproof
mechanism.

Theorem 5. For FHGs with duplex valuations, no deterministic strategyproof acceptable
mechanism can achieve approximation 2− ε, for any ε > 0.
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Proof. The proof is analogous to the proof of Theorem 4. Let us again consider the in-
stances depicted in Figure 4. From instance I1 we see that any mechanism having bounded
approximation ratio has to return n − 1 and n in the same coalition. From instance I2,
on the other hand, we see that returning n− 1 and n in the same coalition achieves social
welfare 1

2 , while the optimal solution puts 1, 2, . . . , n− 1 all together in the same coalition,
achieving social welfare n−2

n−1 . It follows that by increasing the value of n, the approximation
ratio tends to 2, thus proving the theorem.

We now turn our attention to randomized mechanisms and give lower bounds on the
performance of randomized strategyproof mechanisms for ASHGs and FHGs.

Theorem 6. For ASHGs with duplex valuations, no randomized strategyproof acceptable
mechanism can achieve approximation 2− ε, for any ε > 0.

Proof. Let us consider the instance I1 depicted in Figure 4a. Let p be the probability that
a randomized mechanism returns the outcome where agents n − 1 and n are together in
the same coalition and no other agent is with them in this coalition. Notice that in such
a case agent n− 1 has expected utility equal to p. Denote the outcome of the randomized
mechanism on I1 by rm . Then the expected social welfare in this case is such that E[rm] ≤
p. Let us now consider the instance I2 depicted in Figure 4b. Let q be the probability that
agents n− 1 and n are together in the same coalition (possibly with other agents). Notice
that the social welfare of any outcome where agents n − 1 and n are together is always 1,
independently from the coalitions that the other agents are members of. Moreover, notice
that in such a case agent n − 1 has expected utility equal to q. On the other hand, the
mechanism does not put agents n− 1 and n together in the same coalition with probability
1 − q. In such a case, i.e., with probability 1 − q, the social welfare is at most equal to
n − 2. Denote by rm′ the outcome of the randomized mechanism on I2. It turns out that
the expected social welfare in this case is such that E[rm′] ≤ q + (1− q)(n− 2). We notice
that the mechanism is strategyproof only if q ≥ p. In fact, if p > q, then agent n − 1
can improve her utility in I2 by declaring value vn−1(j) = −1, for every j = 1, . . . , n − 2,
and vn−1(n) = 1 (thus reconstructing the instance I1), since in such a case she would get
expected utility p > q. Therefore, the expected social welfare of the mechanism on I1 is
maximized when p = q, because E[rm] ≤ p ≤ q.

We notice that 1 is the optimal value for the instance depicted in Figure 4a, and n −
2 is the optimal value for the instance depicted in Figure 4b. Therefore, the expected
approximation ratio of the randomized mechanism is 1

E[rm] for the instance depicted in

Figure 4a, and n−2
E[rm′] for the instance depicted in Figure 4b. The best approximation ratio

that a strategyproof mechanism can achieve is therefore obtained by setting the value of q
such as to minimize the maximum of these two quantities. This is achieved by equalizing the
expected approximation ratio of the mechanism on both instances (where we, as previously
remarked, set p = q). We have that

1
E[rm] = n−2

E[rm′] =⇒ 1
q = n−2

q+(1−q)(n−2) =⇒ q = q+(1−q)(n−2)
n−2 =⇒ (q−1)(n−2)

q(3−n) = 1 =⇒
q = n−2

2n−5 .

It follows that for large value of n, q tends to 1
2 and the approximation ratio tends to 2,

thus proving the theorem.
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Theorem 7. For FHGs with duplex valuations, no randomized strategyproof acceptable
mechanism can achieve approximation 3/2− ε, for any ε > 0.

Proof. The proof is similar to the proof of Theorem 6. Let us again first consider instance
I1 in Figure 4a and let us denote by p the probability that a randomized mechanism returns
an outcome where agents n− 1 and n are together in a coalition and no other agent is with
them in this coalition. Then, we can see that the expected utility of agent n − 1 is p/2
and, if we again denote by rm the outcome of the mechanism on I1, E[rm] ≤ p/2. Now,
let us turn our attention to instance I2 in Figure 4b and let us denote by q the probability
that agents n− 1 and n are in a coalition together. The utility of agent n− 1 depends on
the number of agents in his coalition. If we denote by q0 the probability that agents n− 1
and n are alone in the coalition, q1 the probability that there is one additional agent with
them in the coalition, up to qn−2 the probability that all of the other n − 2 agents are in
a coalition together with agents n− 1 and n, then q = q0 + · · ·+ qn−2. Furthermore, if we
denote by rm′ the outcome of the mechanism on I2, the expected utility of the agent n− 1
is E[un−1(rm′)] = q0

2 + q1
3 + · · · + qn−2

n . In order for the mechanism to be strategyproof,
it has to hold that E[un−1(rm′)] ≥ E[un−1(rm)] = p/2. The expected social welfare of
the randomized mechanism on I1 is therefore maximized for p

2 = q0
2 + q1

3 + · · · + qn−2

n ≤
q0+q1+···+qn−2

2 = q
2 . On the other hand, we have that

E[rm′] ≤ q0

2
+
q1

3
+ · · ·+ qn−2

n
+ (1− q)n− 2

n− 1
≤ q

2
+ (1− q)n− 2

n− 1
.

As in the proof of Theorem 6, by equalizing the expected approximation ratio of the mech-
anism on both instances, since E[rm] ≤ p/2 ≤ q/2, we arrive at

1
2

E[rm]
=

n−2
n−1

E[rm′]
=⇒ 1

q
=

n−2
n−1

q
2 + (1− q)n−2

n−1

=⇒ q =
2n− 4

3n− 7
.

It follows that as n increases, q tends to 2/3 and thus the approximation ratio tends to
3/2.

On the positive side, we will now present a deterministic strategyproof acceptable mech-
anism M3 with approximation O(n2) for ASHGs and O(n) for FHGs. We doubt the exis-
tence of deterministic strategyproof acceptable mechanisms with approximation ratio O(n)
for ASHGs and O(1) for FHGs. Some discussion supporting this view is provided after
the analysis of M3. Closing the gap for deterministic mechanisms and duplex valuations
remains one of the main open problems.

The following definition is crucial for mechanism M3.

Definition 1. Given d = 〈d1, ..., dn〉 declared by the set of agents N , we say that an agent
i ∈ N is a sink if there is no agent j ∈ N such that di(j) = 1 and dj(i) 6= −1.

The idea of the mechanism M3 is as follows. It considers the agents in an arbitrary
ordering. If the considered agent i has value 1 for some other agent j, such that j also
has value 1 for i, or j is a sink, or j is before i in the ordering, then it returns agents i
and j together in a coalition. If, after considering all the agents, the mechanism does not
create a coalition for a specific agent, then it returns such agents in singleton coalitions.
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Some example instances that invoke the just described cases, together with the outcomes
produced by M3, are shown in Figure 5.

Mechanism M3. Given any declared valuation d = 〈d1, ..., dn〉, the mechanism performs
as follows:
1 Consider any ordering of the agents and, for the sake of simplicity, let i be the i-th agent
in that ordering.
2 Compute S, the set of sinks.
3 For i = 1 to n and i not placed in a coalition yet:

a If there exists unpaired j ∈ N such that di(j) = 1 ∧ dj(i) = 1: put agents i and j
together into a coalition.

b Else, if there exists unpaired j ∈ N such that di(j) = 1 ∧ dj(i) = 0 ∧ j is a sink: put
agents i and j together into a coalition.

c Else, if there exists unpaired j ∈ N such that di(j) = 1 ∧ dj(i) = 0 ∧ j < i: put
agents i and j together into a coalition.

4 Put every agent that was not placed into a coalition in step 3 in a singleton coalition.

1 2

34

1

1

1

1

1

(a) Instance I1

1 2

34

1

1

1

1

(b) Instance I2

1 2

34

1

1

1

1

(c) Instance I3

1 2

34

1

-1

-1

1-1

1

-1

1

(d) Instance I4

Figure 5: Outcomes of Mechanism M3 on different instances, where on I1, I2, I3 and I4

lines 3a and 4, 3b and 3c, 3c and 4, and only 4 of M3 were applied, respectively. The sink
nodes are depicted in blue and the coalitions returned by M3 in red.

First, let us prove that Mechanism M3 returns an outcome with positive social welfare
whenever the optimal solution does so as well.

Lemma 3. Given the valuations d = 〈d1, ..., dn〉 declared by the agents, if there exists an
agent i that is not a sink, then Mechanism M3 returns an outcome where two agents are
put together in the same coalition, thus yielding positive social welfare.

Proof. Only two scenarios are possible after running M3: i) agent i is put together with
another agent, achieving a positive social welfare, or ii) i is put alone. The second case
implies that, for any agent j such that di(j) = 1 and dj(i) 6= −1, agent j is not a sink and
she appears after i in the ordering. Thus we can now consider agent j as the new focus of
our attention that is not a sink and apply the same argument as above. Once we in this
manner arrive at the last agent k in the ordering that is not a sink, we know that she will
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be successfully matched. This is indeed so, because there exists ` such that dk(`) = 1 and
d`(k) 6= −1. If ` is before k, they will be matched. But also if ` is after k, meaning that `
must be a sink, they will again be matched.

Theorem 8. For ASHGs and FHGs with duplex valuations, Mechanism M3 is a deter-
ministic strategyproof acceptable mechanism. The approximation ratio is O(n2) for ASHGs
with duplex valuations, and O(n) for FHGs with duplex valuations.

Proof. No agent i is put in a coalition together with another agent j if there is a value of
−1 between them, that is, if di(j) = −1 or dj(i) = −1. This implies that no agent has
negative utility in the outcome returned by M3, i.e., M3 is acceptable.

Strategyproofness is shown by case distinction. If we assume that agent i gets posi-
tive utility when declaring her valuation truthfully, then i cannot obtain better utility by
declaring di 6= vi, as utility of 1

2 is the best she can obtain.

Assume now that agent i gets utility zero when declaring her valuation truthfully. If i is
a sink, there is no way of improving her utility. Therefore, let us consider the case where i
is not a sink. In this case, there exists an agent j such that di(j) = 1 and dj(i) ≥ 0. Let us
first assume that i is in a singleton coalition in the outcome returned by Mechanism M3.
From here, it follows that j was either paired already when the mechanism considered i in
step 3 or i < j. In both cases, i cannot get paired with j by modifying her valuation as
the problem is the ordering in which the mechanism is processing the agents in step 3 and
she has no control over it. Let us now assume that i is in a coalition with agent k such
that di(k) = 0 in the outcome returned by Mechanism M3. Since di(k) = 0 and i /∈ S,
the coalition had to be formed in step 3c. But this means that k was inspected after i in
step 3, so it is not the case that i is not matched to j because of k. In turn, by misreporting
di(k) = −1, i can at most achieve being in a singleton coalition. However, also in this case
her utility stays zero.

We now turn to the approximation ratio of the mechanism. Notice that, given the
valuations declared by the agents, if all the agents are sinks, then the optimal solution has
social welfare zero and also M3 returns the outcome where each agent is in a singleton
coalition. If the optimal solution has positive social welfare (and thus there exists an agent
that is not a sink), then by Lemma 3, we know that our mechanism returns an outcome
with social welfare at least 1 for ASHGs, and at least 1

2 for FHGs. The theorem follows by
noticing that any agent can get utility at most n−1 for ASHGs and at most 1 for FHGs.

We point out that, if we consider ASHGs, there exists an instance and an ordering of the
agents for that instance, such that the optimal solution has value Θ(n2), whileM3 only puts
two agents in a coalition in the last iteration of the For loop (see Figure 6). Clearly, M3

could perform more For loops and allow iterative creation of new sinks in order to match
more than one pair of agents. However, in such a case we can show that the mechanism
is not strategyproof anymore. In fact, consider instance I3 in Figure 5c. If the mechanism
iterates the For loop, it would return in the first iteration agents {4, 1} in a coalition, and
then, in a second iteration of the For loop, agents {2, 3} together. Notice that agent 1 has
utility zero. However, agent 1 can improve her utility by declaring a further arc of weight
−1 to agent 4. In fact, in this case, in the first iteration the mechanism would put agents
{3, 4} together, and then, in the second one, agents {1, 2}.
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Figure 6: An instance in which each node i ∈ {1, . . . , n− 2} has a positive valuation of 1 to
all nodes in {i+ 1, . . . , n− 1}, and n− 1 has a positive valuation of 1 to n. The sink nodes
are depicted in blue and the coalitions returned by M3 in red.

We now present a simple randomized strategyproof acceptable mechanism M4 with
approximation ratio O(n) both for ASHGs and for FHGs. The idea of M4 is to pick a
perfect or near-perfect matching M on the set of agents N uniformly at random, and then
try to mimic M . More precisely, for every pair {i, j} ∈ M a coalition {i, j} is formed if
and only if both di(j) 6= −1 and dj(i) 6= −1. Figure 7 contains an example listing all the
possible outcomes of Mechanism M4, when applied to the same instance.

Mechanism M4. Given any declared valuation d = 〈d1, ..., dn〉, the mechanism performs
as follows:
1 Consider any ordering of the agents and, for the sake of simplicity, let i be the i-th agent
in that ordering.
2 Let M be a random perfect or near-perfect matching on the complete graph given by the
set of the agents.
3 For i = 1 to n: If there exists j ∈ N such that {i, j} ∈ M ∧ di(j) 6= −1 ∧ dj(i) 6= −1:
put agents i and j together into a coalition.
4 Put every agent that was not placed into a coalition in step 3 in a singleton coalition.
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1

(a) Instance I

1 2

34

(b) Matching M1

1 2

34

(c) Matching M2

1 2

34

(d) Matching M3

Figure 7: Different outcomes of Mechanism M4 on the same instance, depending on the
randomly chosen perfect matching. The matched vertices are connected via a blue edge,
while the coalitions returned by M4 are shown in red.
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Theorem 9. For ASHGs and FHGs with duplex valuations, Mechanism M4 is a random-
ized universally strategyproof acceptable mechanism. The approximation ratio is O(n) for
ASHGs and FHGs with duplex valuations.

Proof. Mechanism M4 is obviously acceptable because no agent i is placed in a coalition
with another agent j if di(j) = −1 or dj(i) = −1. Strategyproofness follows from restricting
the non-singleton coalitions of the outcome to subsets of the matching M . Indeed, since
no agent can influence M , there is also no way for an agent to improve her utility by
manipulating her true valuations even if she would know M in advance. MechanismM4 is
therefore universally strategyproof.

For the approximation ratio, let us focus on two agents i and j. If n is even, i is equally
likely to be matched to any of the other n− 1 agents, so in particular also to j, and that is
with probability 1/(n − 1). If n is odd, i is unmatched with probability 1/n and matched
with the remaining probability (n − 1)/n. In particular, i is matched with any of the
remaining n− 1 agents with probability 1/n.

This in total means that if we consider any edge that contributes to the optimum,
Mechanism M4 will also obtain its contribution with probability of at least 1

n . Now, for
any preference profile d in ASHGs, using linearity of expectation,

E[SW(M4(d))] =
∑
e∈E

Pr(e ∈M4(d)) · w(e) ≥
∑
e∈E

w(e)≥1

1

n
· w(e) =

1

n

∑
e∈E

w(e)≥1

w(e) ≥ 1

n
OPT(d) .

For FHGs, analogously we see that

E[SW(M4(d))] =
∑
e∈E

Pr(e ∈M4(d))·w(e)

2
≥

∑
e∈E

w(e)≥1

1

n
·w(e)

2
=

1

2n

∑
e∈E

w(e)≥1

w(e) ≥ 1

2n
OPT(d) .

The fact that Mechanism M4 gives an O(n)-approximation for FHGs with duplex val-
uations is less interesting as Mechanism M3 already had the same approximation ratio for
this setting and M3 is in addition deterministic.

Lastly, we present a randomized strategyproof acceptable mechanism M5 with approx-
imation ratio O(1) for FHGs with duplex valuations. The idea is to develop a randomized
version of mechanism M3, for which we could not guarantee a better approximation ratio
for every possible ordering of the agents. In mechanism M5 we will choose the ordering in
which the agents are processed uniformly at random from the set of all possible permutations
of n elements.

Mechanism M5. Given any declared valuation d = 〈d1, ..., dn〉, the mechanism performs
as follows:
1 Let Π be a permutation of n elements, chosen uniformly at random.
2 Run M3 for the ordering given by Π.

The additional permutation Π is the only source of randomness in mechanism M5 and
without it, we would not be able to guarantee a constant approximation ratio for FHGs
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with duplex valuations. More precisely, there exist instances for which we cannot guarantee
a constant approximation ratio for every possible ordering of the agents. One such example
is already given in Figure 6, in which the output of Mechanism M5 would coincide with
the output of Mechanism M3 without the additional permutation Π. However, if we use
an additional ordering based on Π, which is chosen uniformly at random, the outcome in
the example instance given in Figure 6 changes (see Figure 8), and in fact the expected
approximation ratio becomes at most 8, as we will see in Theorem 10.

1 2 3 . . . n− 2 n− 1 n
1 1 1

1

1

1

1

1

1

1

1

Figure 8: An instance in which each node i ∈ {1, . . . , n− 2} has a positive valuation of 1 to
all nodes in {i+ 1, . . . , n− 1}, and n− 1 has a positive valuation of 1 to n. The sink nodes
are depicted in blue and the coalitions returned by M5 in red, assuming that the order in
which the nodes are processed, given by Π, is 3, n − 2, 1, n − 1, n, 2, . . . . For such Π, the
first two pairs, {1, 3} and {2, n − 2}, are created via line 3c and the last pair, {n − 1, n},
via line 3b of M3.

Theorem 10. For FHGs with duplex valuations, Mechanism M5 is a randomized uni-
versally strategyproof acceptable mechanism. The approximation ratio is 8 for FHGs with
duplex valuations.

Proof. Mechanism M5 is acceptable exactly for the same reasons as mechanism M3.

For a fixed permutation Π, M5 coincides with M3, which is truthful by Theorem 8.
Since Mechanism M5 is strategyproof even if the random permutation Π is fixed, and
therefore known to the agents, it is universally strategyproof.

We will now prove the claimed approximation ratio of Mechanism M5 when applied to
FHGs with duplex valuations in two steps. First, we will relate the expected social welfare
of the coalition structure returned by Mechanism M5 to the social welfare of the optimal
matching on the set of all agents in Lemma 4. Then, we will show that the social welfare
of the optimal matching is related to the actual optimal social welfare OPT(d) by using
Theorem 1. By combining these two statements, we will arrive at the claimed result.

Lemma 4. Given the valuations d = 〈d1, . . . , dn〉 declared by the agents, the expected value
of the outcome returned by MechanismM5 is at least 1/4 of the social welfare of the optimal
matching OPTM (d), i.e.,

E[SW(M5)] ≥ 1

4
OPTM (d) .

1272



Strategyproof Mechanisms for Hedonic Games

Proof. Let us denote by ` the number of pairs appearing in the optimal matching M . Then,
M = {{i1, i′1}, . . . , {i`, i′`}}. Now, consider the contribution of the set {ip, i′p} for some p ∈
{1, . . . , `} to the social welfare of M , and denote it by cp. Notice that cp ∈ {1

2 , 1},∀p ∈ [`].
If cp = 1, then dik(i′k) = di′k(ik) = 1, which means that Mechanism M5 will be able

to put these agents in a coalition together independently of the pairwise order in which
permutation Π places ip and i′p. If cp = 1/2 and one of ip, i

′
p is a sink, then again as in

the previous case Mechanism M5 will be able to create this pairing independently of the
mutual order of ip and i′p in the permutation Π. Lastly, if the contribution of {ip, i′p} to
OPTM (d) is 1/2 and both ip and i′p are not sinks, then let us assume w.l.o.g. that dik(i′k) = 1
and di′k(ik) = 0. In this case, in order for Mechanism M5 to be able to create this pair,

permutation Π has to be such that Π−1(i′k) < Π−1(ik).
Let us denote by Xp the random variable whose value is equal to the contribution of

{ip, i′p} to SW(M5(d)), where the individual contribution of each agent from {ip, i′p} equals
half of the value of the pair it is placed in. Note that ip and i′p may not be paired together,

so Xp ∈ {0, 1
4 ,

1
2 ,

3
4 , 1}. Then,

E[SW(M5(d))] ≥ E

∑̀
p=1

Xp

 =
∑̀
p=1

E[Xp],

where the inequality follows from M5 possibly having positive contributions from agents
that are not in M , and the equality by linearity of expectation.

Now, let us take a look at E[Xp] for p ∈ {1, . . . , `}. If cp = 1, then also E[Xp] ≥ 1
2 . This is

so becauseM5 is able to pair ip and i′p independently of their mutual ordering in Π, and the
case that they are not paired can only occur if at least one of them, w.l.o.g. ip, is paired with
another agent iq such that dip(iq) = diq(ip) = 1. Consequently, the contribution of ip is then
1/2. If cp = 1/2 and one of the two agents is a sink, we claim that E[Xp] ≥ 1

4 . Again,M5 is
able to pair ip and i′p independently of their mutual ordering in Π. If the pair is established,

the contribution of {ip, i′p} to M5((d)) is 1
2 and if it is not established, this means that

M5 paired at least one of them, w.l.o.g. ip, with some iq and the contribution of {ip, i′p} is

therefore at least 1
4 . In conclusion, E[Xp] ≥ 1

4 . Note that for the two cases considered so far,
we derived the expected value of Xp deterministically. Let us now consider the last case,
where the contribution of {ip, i′p} to OPT(d) is 1

2 and none of the two agents is a sink. Let
us w.l.o.g. assume that dip(i′p) = 1 and di′p(ip) = 0. In this case, M5 is able to pair them

if and only if Π−1(i′p) < Π−1(ip) and since Π is chosen uniformly at random, this occurs

with probability 1
2 . Furthermore, we claim that E

[
Xp | Π−1(i′p) < Π−1(ip)

]
≥ 1

4 . Similarly
to the previously discussed cases, this is so because the case that Π−1(i′p) < Π−1(ip) and
the pair {ip, i′p} is not created can only occur if, w.l.o.g., ip is paired with some iq and

again this immediately implies that the contribution of {ip, i′p} is at least 1
4 . In conclusion,

E[Xp] ≥ E
[
Xp | Π−1(i′p) < Π−1(ip)

]
≥ 1

4 ·
1
2 = 1

8 , where the first inequality follows by the
law of total expectation.

We showed that for all p ∈ {1, . . . , `},E[Xp] ≥ 1
4cp. Therefore,

E[SW(M5(d))] ≥
∑̀
p=1

E[Xp] ≥
∑̀
p=1

1

4
cp =

1

4

∑̀
i=1

cp =
1

4
OPTM (d).
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To see how the social welfare of the optimal matching OPTM (d) relates to the optimal
social welfare OPT(d), notice that every instance of FHG with duplex valuations can be
seen as an undirected weighted graph with edge weights in {−2,−1, 0, 1, 2}. Formally,
given a directed weighted graph G = (V,E,w) corresponding to a FHG instance with
duplex valuations, we create a complete undirected weighted graph G̃ = (V, Ẽ, w̃) by setting
w̃({i, j}) = w(i, j)+w(j, i). A matching m in G̃ naturally induces an outcome for fractional
hedonic games, that is, any edge {i, j} ∈ m induces the coalition Ci,j = {i, j}, and for any
node i not matched in m we have the coalition Ci = {i}. Now, we can apply Theorem 1,
to conclude that

OPTM (d) ≥ 1

2
OPT(d). (1)

By combining Lemma 4 and Equation 1, we see that

E[SW(M5(d))] ≥ 1

4
OPTM (d) ≥ 1

4
· 1

2
OPT(d) =

1

8
OPT(d) ,

and finally arrive at the claim of the theorem.

Note that since Mechanism M5 creates pairs, for ASHGs with duplex valuations it can
achieve a social welfare of at mostO(n), while there are instances where the optimal coalition
structure is the grand coalition with a social welfare of O(n2) (see Figure 8). In conclusion,
a mechanism that creates pairs cannot have a better approximation ratio than O(n) for
ASHGs with duplex valuations and, therefore, M5 cannot asymptotically outperform M4

in this setting.

7. Simple Valuations

Exactly as in the case of non-negative valuations, for ASHGs with simple valuations, Mech-
anism M2 is acceptable and strategyproof and it also achieves the optimal social welfare.
Therefore, we focus on FHGs. We first prove that no deterministic strategyproof mecha-
nism can approximate the optimal social welfare with an approximation ratio that is better
than 6

5 .

Theorem 11. For FHGs with simple valuations, no deterministic strategyproof acceptable
mechanism has approximation ratio less than 6

5 .

Proof. Let us consider the instance I1 depicted in Figure 9a. The reader can easily check
(by considering all the possible coalitions) that an optimal solution has social welfare 5

3 . It
is composed by three coalitions where two of them contain two consecutive agents and the
remaining one contains three consecutive agents. For instance, an optimal solution could be
C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6, 7}. Notice that the grand coalition has social welfare
1. Therefore, a mechanism achieving an approximation better than 5

3 has to return more
than one coalition. In such a solution there always exists at least one agent, say agent
k, having utility zero. Let us now consider the instance I2 depicted in Figure 9b, where
without loss of generality we suppose that k = 2. Again the reader can easily check (by
considering all the possible coalitions) that the optimal solution has social welfare 2 and
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consists of coalitions C1 = {2, 3, 4}, C2 = {5, 6}, C3 = {1, 7}. Once again the reader can
check that any solution where agents 2 and 3 are not in the same coalition (i.e., any solution
where agent 2 has utility equal to 0 in instance I1) can achieve a social welfare of at most
5
3 , and therefore an approximation not better than 6

5 . We conclude that any mechanism
achieving an approximation ratio strictly better than 6

5 , in both instances I1 and I2, is not
strategyproof.

1

2

3

4

5

6

7

(a) Instance I1

1

2

3

4

5

6

7

(b) Instance I2

Figure 9: The lower bound instance for simple valuations.

We now show that Mechanism M1 is a deterministic strategyproof acceptable mech-
anism with nearly optimal social welfare. Given the preferences declared by the agents
d = 〈d1, . . . , dn〉, and the associated directed weighted graph representation G = (V,E,w)
(notice that since we are considering simple valuations, di represents (indeed is) the set Ei
of arcs outgoing from node i in G), we construct a complete undirected weighted graph
G̃ = (V, Ẽ, w̃) by setting w̃({i, j}) = w(i, j) + w(j, i). This means that for each {i, j} ∈ Ẽ,
we have that the weight w̃({i, j}) = 1 if either di(j) = 1 (i.e., (i, j) ∈ E) or dj(i) = 1
(i.e., (j, i) ∈ E) but not both, and w̃({i, j}) = 2 if both di(j) = 1 and dj(i) = 1, otherwise
w̃({i, j}) = 0. A matching m in G̃ naturally induces an outcome for fractional hedonic
games, that is, any edge {i, j} ∈ m induces the coalition Ci,j = {i, j}, and for any node
i not matched in m we have the coalition Ci = {i}. Notice that the coalitions induced
by the matching are such that each agent can have utility either 1

2 or 0. We show that
Mechanism M1 is strategyproof in this setting.

Theorem 12. For FHGs with simple valuations, Mechanism M1 is a deterministic strat-
egyproof acceptable mechanism with approximation ratio of 2.

Proof. The approximation ratio follows from Theorem 1. Now, assume for a contradiction
that M1 is not truthful. Then there exists agent i that benefits by declaring preferences
different from the real ones, i.e., there exists G̃ = (V, Ẽ, w̃) with Ẽ induced by edges E−i∪Ei,
and E′i (inducing the graph G̃′ = (V, Ẽ′, w̃′) where the set of edges Ẽ′ = Ẽ−i∪Ẽ′i), violating
truthfulness. Let m =M1(G̃) and m′ =M1(G̃′). Agent i has utility zero in the coalitions
induced by m, that is, if {i, j} ∈ m then (i, j) /∈ Ei. Yet agent i has utility 1

2 in the coalitions
induced by m′. It means that there exists k ∈ V such that (i, k) ∈ Ei and {i, k} ∈ m′.
Moreover, since the input of the mechanism is a complete undirected weighted graph whose
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weights are obtained from the preferences declared by the agents and agent i has utility 1
2 in

the coalitions induced by m′, it follows that (i, k) ∈ Ei∩E′i. This implies that both m and m′

are inM(Ẽ)∩M(Ẽ′), whereM(Ẽ) andM(Ẽ′) denote the set of all possible matchings on
G̃ = (V, Ẽ, w̃) and G̃′ = (V, Ẽ′, w̃′), respectively. Since the mechanism returns the maximum
weight matching it follows that m and m′ are optimal in bothM(Ẽ) andM(Ẽ′). Recalling
that M1 breaks ties consistently, this yields a contradiction, as needed.

We point out that when dealing with FHGs, it is natural to resort to matchings. Many
papers (e.g. Aziz et al., 2015, 2019; Bilò et al., 2018) used them. The challenge is how
to exploit their properties, and in this sense we make some steps forward. Indeed, we
better exploit properties of maximum weight matchings. This is manifested by the fact
that our analysis can be used to improve the 4-approximation (Theorem 7 of the paper by
Aziz et al. (2015)) of maximum weight matching for symmetric valuations, i.e., undirected
graph, to a 2-approximation (see Section 3). Another remark is that our results not only
work for the approximation of asymmetric FHGs, i.e., directed graphs, but also include
strategyproofness, which was not considered before for FHGs.

8. Conclusion and Future Work

Hedonic games have received considerable attention in the scientific community, but most
of the literature assumes that agents’ preferences are given. However, agents receive differ-
ent utilities if they belong to different coalitions, and thus it is natural for them to declare
their preferences strategically in order to maximize their benefit. In this paper we stud-
ied strategyproof mechanisms (without payments), that is, coalition formation algorithms
in which agents have no incentive to lie about their true preferences, for two natural and
succinctly representable classes of hedonic games with cardinal utilities, ASHGs and FHGs.
We adopted the classical utilitarian social welfare, i.e., the sum of agents’ utilities, and pro-
vided a number of lower and upper bounds on the performance achievable by deterministic
and randomized strategyproof mechanisms.

We showed some differences between ASHGs and FHGs and shed some light onto the ca-
pabilities and limitations of strategyproof mechanisms for both game classes. In particular,
we first provided quite negative results for general additive valuations for both ASHGs and
FHGs, and then focused on more specific additive valuations, for which we were able to show
a better performance. Despite the primarily theoretical interest of these specific valuations,
they also model realistic scenarios, such as Bakers and Millers (Aziz et al., 2019; Bilò et al.,
2018). We were mainly interested in designing deterministic strategyproof mechanisms with
performance guarantees (i.e., in the worst-case analysis sense), and in some cases we pro-
vided results on the limitations of randomized strategyproof mechanisms. Moreover, for the
case of duplex valuations, for which we were not able to find deterministic strategyproof
mechanisms with an asymptotically tight performance with respect to our lower bounds,
we also designed randomized strategyproof mechanisms with better performance, both for
ASHGs and FHGs.

In summary, our results say that for both games, when considering general valuations,
no randomized (and thus also no deterministic) strategyproof mechanism can achieve a
bounded approximation ratio for all inputs. Moreover, when considering positive valuations,
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using the trivial strategyproof mechanism which puts all the agents together into the same
coalition is the best that can be done, both for ASHGs and FHGs. For the case of duplex
valuations we were not able to close the asymptotic gaps between our upper and lower
bounds. However, we provided randomized strategyproof mechanisms for both games with
good, and in case of FHGs even asymptotically tight, performance. These mechanisms are
in addition simple and efficient in terms of complexity, so we believe that they could be
used in practice. Finally, for simple valuations, while for ASHGs the problem is trivial, for
FHGs we showed that returning a particular maximum matching is both strategyproof and
almost optimal. This last mechanism is also simple and efficient and thus we believe it is
very suitable for practical use.

To the best of our knowledge, this is the first work that analyzes the performance of
strategyproof mechanisms for ASHGs and FHGs. There are several open problems that
still need to be addressed. First of all, some of the provided upper and lower bounds are
not tight, as outlined in Table 1. In particular, it is intriguing to close the gap between
upper and lower bounds of deterministic and randomized strategyproof mechanisms in the
setting of duplex valuations, both for ASHGs and FHGs. Moreover, it would be valuable to
understand whether randomized strategyproof mechanisms can achieve a significantly better
performance than deterministic ones for FHGs with non-negative valuations. What is also
important to understand is what happens when valuations are drawn from a distribution
(in order to avoid the bad instances), or when there are size constraints on the coalitions.
It would be also interesting to consider more general valuation functions, e.g. submodular.
Another open research direction is considering strategyproof mechanisms whose outputs
satisfy additional properties like Pareto optimality (Elkind et al., 2020) and envy-freeness
(Barrot & Yokoo, 2019). Finally, we were mainly interested in analyzing the performance
guaranteed by strategyproof mechanisms, focusing on and guided by the worst-case view.
It would be also important to design and analyze strategyproof mechanisms that work well
in, and are especially suited for, particular practical applications.

As a more general research direction, we see the study of strategyproof mechanisms for
all the classes of hedonic games appearing in the literature.
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