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Abstract
The paper introduces the notion of an epistemic argumentation framework (EAF) as a means

to integrate the beliefs of a reasoner with argumentation. Intuitively, an EAF encodes the beliefs of
an agent who reasons about arguments. Formally, an EAF is a pair of an argumentation framework
and an epistemic constraint. The semantics of the EAF is defined by the notion of an ω-epistemic
labelling set, where ω is complete, stable, grounded, or preferred, which is a set of ω-labellings that
collectively satisfies the epistemic constraint of the EAF. The paper shows how EAF can represent
different views of reasoners on the same argumentation framework. It also includes representing
preferences in EAF and multi-agent argumentation. Finally, the paper discusses complexity issues
and computation using epistemic logic programming.

1. Introduction

Rational agents often claim that they make their decision based on their knowledge and beliefs when
facing alternative and conflicting choices. Consider two examples:

• On January 15, 2019, British Prime Minister’s Theresa May suffered a humiliating defeat in
the vote on the Brexit deal; 432 Members of Parliament (MPs) voted against the deal while
202 were for it.1 The MPs who voted against the deal believe that the deal is bad for Britain.
Those who voted for the deal believe that the deal is the best that Britain can get.

• In the US presidential election, a voter selects one candidate from a set of candidates (often
only two candidates). Everyone claims that he/she has made the “right choice.”

In each scenario above, an agent (an MP or a voter) listens to various arguments, which either
support or reject a potential decision, and then opts for one among the possibilities, which he/she
believes is the right choice. In each situation, the arguments supporting/against a choice, their
counter-arguments, etc. can be easily encoded in an abstract argumentation framework (AF) intro-
duced by Dung (1995). For instance, AF = ({(a)ccept, (r)eject}, {(a, r), (r, a)}), having two
arguments mutually attacking each other, represents (in its most condensed form) the AF that the
MPs have for making their choice about the Brexit’s deal. Given arguments made by each agent
in each scenario, an argumentation semantics of the corresponding AF provides the result of ratio-
nal reasoning. The stable semantics of the above AF supports two alternative choices, {a} or {r},
while the grounded semantics of the AF supports “no decision”, i.e., the empty extension. As such,

1. “Brexit vote”, Jan. 15th, 2019. washingtonpost.com
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it would likely result in the unanimous choice by all agents who participate in argumentation and
claim that they are rational.

The above discussion raises the question “how to express an agent’s opinion for supporting an
argument among conflicting arguments in the outcome of an AF?” Arguably, there are two possi-
bilities: the agent modifies the AF so that the new AF supports his/her choice or the agent is simply
biased towards his/her conclusion.

In the first case, nothing other than the agent’s beliefs could influence his/her choice of argu-
ments and/or attacks that lead to the new AF, which ultimately leads to his/her conclusion. In this
approach, a modified AF represents objective evidences and subjective beliefs indistinguishably. If
one merges objective evidences (normally invariant) and subjective beliefs (possibly variant) in a
single AF, however, it must be revised whenever an agent changes its own belief. Moreover, it would
become hard to distinguish subjective beliefs from objective evidences in a personally customized
AF. In this respect, it is desirable to have a mechanism that can distinguishably represent subjective
beliefs (or biases) of agents as well as objective evidences as an AF.

In the second case, biases, reflecting beliefs of agents, could be viewed as agents’ preferences.
Furthermore, there is a huge amount of literature in AF on dealing with preferences in argumenta-
tion. It is therefore instructive to consider whether previously developed approaches to dealing with
preferences would be sufficient to capture biases. In most approaches in abstract AF, the key idea
is to extend an AF with a syntactic component that records the preferences such as a preference
relation among arguments or an attack relation between arguments and attacks, and then define
a new semantics for this extended AF (detailed discussion is in Section 5). Indirectly, these ap-
proaches also merge the objective evidences (the original AF) with subjective biases and define new
notions of extensions for AF with preferences. In addition, approaches to dealing with preferences
have thus far only considered biases/preferences between arguments (e.g., prefer an argument over
another one) or preferences between arguments and attacks. However, preference may change in
accordance with the change of beliefs. In June 2016, 52% of UK voters support Brexit and 48%
oppose it, while the rate changes after 3 years of debate and negotiation. Such a dynamic change
of preference is hard to specify using static preference relations among individual arguments. Then
we represent preferences as a formula over epistemic literals, and realize a change of preference
as revision of beliefs. When an argumentation framework has multiple extensions (or labellings)
and agents support different conclusions, judgment aggregation focuses on resolution of disagree-
ment between agents (e.g., Caminada & Pigozzi, 2011; Rahwan & Tohmé, 2010). However, most
studies do not provide any mechanism explaining why an agent chooses particular extensions. We
represent private belief of an agent towards an AF, which explains why an agent supports particular
conclusions. We then argue agreement and majority voting in multi-agent argumentation.

In this paper, we propose an approach to incorporate agents’ beliefs into an argumentation
framework. Specifically, we propose an extension of AF, called epistemic argumentation frame-
work (EAF). EAF introduces the third component to an AF, an epistemic constraint, that represents
the belief of an agent given an AF. We study formal properties of EAF and show that it can be used
in representing preferences and decision making in multi-agent environments. We also investigate
computational complexity and provide a procedure for computing EAF.

The rest of the paper is organized as follows. Section 2 reviews basic notions of argumentation
frameworks used in this paper. Section 3 introduces epistemic argumentation frameworks and ad-
dresses its applications. Section 4 presents computation of EAF. Section 5 discusses related issues
and Section 6 concludes the paper. This paper is an extended version of the paper by Sakama and
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Son (2019) which does not include proofs of propositions. Revision is made throughout the paper
and new considerations are often added. Section 4 is also new in this paper.

2. Argumentation Framework

This paper uses (abstract) argumentation frameworks introduced by Dung (1995).
An argumentation framework (AF) is a pair (Ar, att) where Ar is a (finite) set of arguments

and att ⊆ Ar × Ar. We write a → b (say, a attacks b) iff (a, b) ∈ att. We say that a indirectly
attacks b if there is a finite sequence x0, ..., x2n+1 (n ≥ 1) such that a = x0 and b = x2n+1 and for
each 0 ≤ i ≤ 2n, (xi, xi+1) ∈ att.

For the semantics of AFs, we use the labelling-based semantics introduced by Caminada and
Gabbay (2009). A labelling of (Ar, att) is a (total) function L : Ar → { in, out, und }. When
L(a) = in (resp. L(a) = out or L(a) = und) for an argument a ∈ Ar, it is written as in(a) (resp.
out(a) or und(a)). In this case, the argument a is said to be accepted (resp. rejected or undecided)
in L. Given AF = (Ar, att) and a labelling L, define in(L) = {x | L(x) = in for x ∈ Ar },
out(L) = {x | L(x) = out for x ∈ Ar }, and und(L) = {x | L(x) = und for x ∈ Ar }. A
labelling L of (Ar, att) is also represented as a set S(L) = {λ(x) | L(x) = λ for x ∈ Ar }. We
say that λ(x) represents the justification state of x ∈ Ar.

A labelling L of AF = (Ar, att) is a complete labelling if for each argument a ∈ Ar, it holds
that:

• L(a) = in iff L(b) = out for every b ∈ Ar such that (b, a) ∈ att.

• L(a) = out iff L(b) = in for at least one b ∈ Ar such that (b, a) ∈ att.

• L(a) = und, otherwise.

Let L be a complete labelling of AF . Then,

• L is a stable labelling iff und(L) = ∅.

• L is a grounded labelling iff in(L) ⊆ in(L′) for any complete labelling L′ of AF .

• L is a preferred labelling iff there is no complete labelling L′ of AF such that in(L) ⊂
in(L′).

We often abbreviate complete, stable, grounded, and preferred labelling as co, st, gr, and pr, respec-
tively.

3. Epistemic Argumentation Framework

In this section, we introduce the notion of epistemic argumentation frameworks and address its
applications.

3.1 Epistemic Labelling Set

Given AF = (Ar, att), define AAF = { in(a), out(a), und(a) | a ∈ Ar }. An epistemic atom
over AF is of the form K ϕ or M ϕ where ϕ is a propositional formula over AAF . An epistemic
literal is an epistemic atom or its negation. An epistemic formula (over AAF ) is a propositional
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formula constructed over epistemic literals together with > (true) and ⊥ (false). Intuitively, K ϕ
(resp. Mϕ) states that the agent believes that ϕ is true (resp. possibly true).2 We will use epistemic
formulas to represent the epistemic side of an agent given an AF.

Let ϕ be a propositional formula over AAF and L be a labelling over AF . Then S(L) is
considered an interpretation of ϕ. We say that ϕ is true in L, denoted by L |= ϕ, if ϕ is interpreted
to be true under S(L).

Definition 1 (satisfaction) A set SL of labellings satisfies an epistemic formula ϕ, denoted by
SL |= ϕ, if one of the following conditions holds:

(i) ϕ = >,

(ii) ϕ = K ψ and L |= ψ for every L ∈ SL,

(iii) ϕ = M ψ and L |= ψ for some L ∈ SL,

(iv) ϕ = ¬ψ and SL 6|= ψ,

(v) ϕ = ϕ1 ∧ ϕ2 and (SL |= ϕ1 and SL |= ϕ2),

(vi) ϕ = ϕ1 ∨ ϕ2 and (SL |= ϕ1 or SL |= ϕ2).

We write ϕ ⊃ ψ as the abbreviation of ¬ϕ ∨ ψ as usual. An epistemic formula ϕ is consistent
if there exists a (non-empty) set SL of labellings such that SL |= ϕ; otherwise, ϕ is inconsistent.
Some basic properties are addressed.

Proposition 1 Let SL be a set of labellings. For any propositional formula ϕ and ψ over AAF ,

(i) SL |= ¬M ϕ iff SL |= K ¬ϕ,

(ii) SL |= ¬K ϕ iff SL |= M ¬ϕ,

(iii) SL |= M (ϕ ∨ ψ) iff SL |= M ϕ ∨M ψ,

(iv) SL |= K (ϕ ∧ ψ) iff SL |= K ϕ ∧K ψ.

Proof: (i) SL |= ¬Mϕ iff SL 6|= Mϕ iff ϕ is false in every L ∈ SL iff ¬ϕ is true in every L ∈ SL
iff SL |= K ¬ϕ. (ii) SL |= ¬K ϕ iff SL 6|= K ϕ iff ϕ is false in some L ∈ SL iff ¬ϕ is true in
some L ∈ SL iff SL |= M ¬ϕ. (iii) SL |= M (ϕ ∨ ψ) iff L |= ϕ ∨ ψ for some L ∈ SL iff L |= ϕ
or L |= ψ for some L ∈ SL iff SL |= M ϕ ∨M ψ. (iv) SL |= K (ϕ ∧ ψ) iff L |= ϕ ∧ ψ for every
L ∈ SL iff L |= ϕ and L |= ψ for every L ∈ SL iff SL |= K ϕ ∧K ψ. 2

Definition 2 (epistemic argumentation framework) An epistemic argumentation framework
(EAF) is a triple (Ar, att, ϕ) where AF = (Ar, att) is an argumentation framework and ϕ is an
epistemic formula (called an epistemic constraint). We also refer to an EAF by (AF,ϕ) whenever
it is clear from the context what AF refers to.

2. By the meaning, it might be better to write Bϕ rather than K ϕ, but we use K because we implement it using
epistemic logic programs in which K and M are used (see Section 4).
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Intuitively, an EAF (Ar, att, ϕ) represents the view of an agent who, given AF = (Ar, att),
believes that ϕ is true. An EAF consists of two different types of information: an objective evidence
AF and a subjective belief ϕ of an agent. An epistemic constraint ϕ represents an individual view
on AF . Different agents may have different views (or bias) towards the same AF. The situation
is represented by different EAFs (AF,ϕ1), . . ., (AF,ϕn) for n agents. Moreover, an agent may
change its own belief and the situation is realized by revising ϕ. We will see such a situation later
in Example 2.

Example 1 Consider an AF with the set of arguments {a, b, c, d} where

a: The UK should remain in the EU.

b: The UK should exit from the EU.

c: EU membership gives Britain access to the European single market.

d: The effect of single market has been exaggerated and the supposed benefits of EU membership
are largely imaginary.

Suppose that a and b mutually attack, c and d mutually attack, and c attacks b.

-�• •
a b

� -�• •
c d

Then some EAFs are defined as follows:

• EAF1 = (AF, M in(b)) represents the view of an agent who believes that b is possibly
accepted.

• EAF2 = (AF, K in(a) ∨K in(b)) represents the view of an agent who believes that either
a or b should be accepted.

• EAF3 = (AF, M in(c) ⊃ K in(a)) represents the view of an agent who believes that if
in(c) is possibly true then in(a) should be accepted.

Next we define the semantics of an EAF.

Definition 3 (epistemic labelling set) Let EAF = (AF,ϕ) and ω ∈ {co, st, gr, pr}. A set SL of
labellings is an ω-epistemic labelling set of (AF,ϕ) if (i) each L ∈ SL is an ω-labelling ofAF , and
(ii) SL is a ⊆-maximal set of ω-labellings of AF that satisfies ϕ. An EAF possibly has multiple
ω-epistemic labelling sets.

Intuitively, an ω-epistemic labelling set is a collection of ω-labellings that reflects the belief of
an agent. In particular, EAF = (AF,>) has the unique ω-epistemic labelling set that coincides
with the set of ω-labellings of AF . In what follows, we assume ω ∈ {co, st, gr, pr} unless stated
otherwise. By definition, EAF always has an ω-epistemic labelling set (possibly as an empty set).

Proposition 2 EAF = (AF,⊥) has the ω-epistemic labelling set ∅.

Proof: When ϕ is inconsistent, there is no set of labellings satisfying ϕ. Hence, the result holds. 2
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Our primary interest is an EAF that has non-empty ω-epistemic labelling sets.

Example 2 Consider the EAFs of Example 1. First, AF in the EAFs has three stable labellings:

L1 = { in(a), out(b), in(c), out(d) },
L2 = { in(a), out(b), out(c), in(d) },
L3 = { out(a), in(b), out(c), in(d) },

and the grounded labelling:

L4 = { und(a), und(b), und(c), und(d) }.

This implies that EAF1 has a single stable epistemic labelling set {L1, L2, L3}; EAF2 has two
stable epistemic labelling sets {L1, L2} and {L3}; and EAF3 has two stable epistemic labelling
sets {L1, L2} and {L2, L3}. By contrast, EAF1 and EAF2 have the grounded epistemic labelling
set ∅, while EAF3 has a single grounded epistemic labelling set {L4}.

Suppose an agent, who previously has EAF3, introduces a new belief K in(d). The situation
is represented by

EAF4 = (AF, (M in(c) ⊃ K in(a)) ∧ K in(d) ).

Then EAF4 has a unique stable epistemic labelling set {L2, L3}, while it has the grounded epis-
temic labelling set ∅.

As shown in the above example, EAF can represent belief change of an agent by revising an
epistemic constraint without modifying AF. The revised EAF would produce new epistemic la-
belling sets that reflect new belief states of an agent. In Example 2, EAF4 introduces an additional
constraint K in(d) to EAF3, which results in eliminating {L1, L2} from the stable epistemic la-
belling sets ofEAF3. Moreover, if another belief Kout(a) is introduced toEAF4, then the revised
EAF has the single stable epistemic labelling set {L3}. In this way, EAF could represent dynamic
change of opinions resulting from belief revision of an agent. In argumentation frameworks, if an
AF has a single stable labelling, it is also the grounded labelling, while in EAF the single stable
epistemic labelling set does not coincide with the grounded epistemic labelling set in general.

For two epistemic formulas ϕ1 and ϕ2, we say that ϕ1 is stronger than ϕ2 if for every set SL of
labellings, SL |= ϕ1 implies SL |= ϕ2. We write ϕ1 |= ϕ2

3 to denote that ϕ1 is stronger than ϕ2.
Introducing a stronger constraint to EAF eliminates elements of SL in general.

Proposition 3 LetEAF1 = (AF,ϕ1) andEAF2 = (AF,ϕ2) be two EAFs such that ϕ1 is stronger
than ϕ2. Then, for each ω-epistemic labelling set SL1 of EAF1 there exists some ω-epistemic
labelling set SL2 of EAF2 such that SL1 ⊆ SL2.

Proof: Suppose an ω-epistemic labelling SL1 of EAF1. Each L ∈ SL1 is an ω-labelling of AF
satisfying ϕ1. Since ϕ1 is stronger than ϕ2, SL1 |= ϕ1 implies SL1 |= ϕ2. Then there is an
ω-epistemic labelling SL2 of EAF2 such that L ∈ SL2. Since L ∈ SL1 implies L ∈ SL2,
SL1 ⊆ SL2 holds. 2

3. Note that ϕ1 |= ϕ2 can be proved using the set of inference rules consisting of the modus ponens rule and the
following rules: K ϕ ` K ψ, M ϕ ` M ψ, K ϕ ` M ψ, and K ϕ ` ψ where ϕ and ψ are propositional formulas
such that ϕ |= ψ.
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In argumentation frameworks, stable, grounded, or preferred labellings are complete labellings.
Also stable labellings are preferred labellings. Similar relations hold in epistemic argumentation
frameworks.

Proposition 4 Let (AF,ϕ) be an EAF. If a non-empty set SL of labellings is a stable, grounded,
or preferred epistemic labelling set of (AF,ϕ), then L ∈ SL is an element of a complete epistemic
labelling set of (AF,ϕ). Also if SL is a stable labelling set of (AF,ϕ), then L ∈ SL is an element
of a preferred epistemic labelling set of (AF,ϕ).

Proof: Suppose a non-empty set SL that is a stable epistemic labelling set of (AF,ϕ). Then each
L ∈ SL is a stable labelling ofAF , and SL is a maximal set of stable labellings ofAF that satisfies
ϕ. Since a stable labelling of AF is a complete labelling of AF , SL is a set of complete labellings
of AF that satisfies ϕ. Hence, the result holds. Relations between grounded/preferred epistemic
labelling sets and complete epistemic labelling sets, and the relation between stable epistemic la-
belling sets and preferred epistemic labelling sets are shown in similar ways. 2

We next consider a sufficient condition for the uniqueness of ω-epistemic labelling sets.

Lemma 5 Let ϕ be a conjunction of epistemic literals over AAF . If two sets of labellings SL1 and
SL2 satisfy ϕ (i.e., SL1 |= ϕ and SL2 |= ϕ), then SL1 ∪ SL2 |= ϕ.

Proof: (i) For any epistemic literal Kψ in ϕ, SL1 |= ϕ and SL2 |= ϕ imply that L |= ψ for every
L ∈ SL1 ∪ SL2. Then SL1 ∪ SL2 |= Kψ. (ii) For any epistemic literal Mψ in ϕ, SL1 |= ϕ and
SL2 |= ϕ imply that L |= ψ for some L ∈ SL1 ∪ SL2. Then SL1 ∪ SL2 |= M ψ. (iii) For any
epistemic literal ¬K ψ in ϕ, SL1 |= ϕ and SL2 |= ϕ imply that L 6|= ψ for some L ∈ SL1 ∪ SL2.
Then SL1 ∪ SL2 |= ¬K ψ. (iv) For any epistemic literal ¬M ψ in ϕ, SL1 |= ϕ and SL2 |= ϕ
imply that L 6|= ψ for every L ∈ SL1 ∪ SL2. Then SL1 ∪ SL2 |= ¬M ψ. Since ϕ is a conjunction
of epistemic literals of the forms (i)–(iv), the result holds. 2

Using the lemma, we can prove the next result.

Proposition 6 Let (AF,ϕ) be an EAF such that ϕ is a conjunction of epistemic literals. Then
(AF,ϕ) has a unique ω-epistemic labelling set. .

Proof: Suppose that (AF,ϕ) has two ω-epistemic labelling sets SL1 and SL2 (SL1 6= SL2). Then
SL1 |= ϕ and SL2 |= ϕ imply SL1 ∪ SL2 |= ϕ (by Lemma 5). This contradicts the assumption
that SL1 (or SL2) is a ⊆-maximal set of ω-labellings of AF satisfying ϕ. 2

Assume that ϕ is a DNF in which each disjunct is a conjunction of epistemic literals. Due
to Proposition 1, we can assume that each disjunct in ϕ is of the form K ψ0 ∧M ψ1 ∧ · · · ∧
M ψn

4 where ψi (0 ≤ i ≤ n) is a propositional formula over AAF , which will be denoted by
EC(ψ0;ψ1, . . . , ψn). By definition, the next result holds.

Lemma 7 Let SL be a set of labellings such that SL |= EC(ψ0;ψ1, . . . , ψn). Then, for each
i = 1, . . . , n, there exists some L ∈ SL such that L |= ψ0 ∧ ψi.

4. ¬M ψ (resp. ¬K ψ) is converted to K ¬ψ (resp. M ¬ψ), and K ψ1 ∧K ψ2 is converted to K (ψ1 ∧ ψ2).
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This leads to the following proposition.

Proposition 8 Let ϕ =
∨k
j=1EC(ψj ;ψ

j
1, . . . , ψ

j
nj ) (k ≥ 1) be an epistemic formula. Then,

EAF=(AF,ϕ) has a non-empty ω-epistemic labelling set if there exists an integer j (1 ≤ j ≤ k)
such that for each 1 ≤ i ≤ nj , AF has an ω-labelling L and L |= ψj ∧ ψji .

Proof: Assume that there exists j (1 ≤ j ≤ k) such that for each i (1 ≤ i ≤ nj), AF has an
ω-labelling Li and Li |= ψj ∧ ψji . By Lemma 7 it is clear that SL = {Li | i = 1, . . . , nj} |=
EC(ψj ;ψ

j
1, . . . , ψ

j
nj ), i.e., SL |= ϕ. Hence, the result follows. 2

Each AF semantics imposes some specific condition on every argument, e.g., the stable se-
mantics allows no argument to be undecided, while the grounded semantics keeps controversial
arguments undecided. EAF is useful for selecting intended labellings from the set of all possible
labellings.

Example 3 Consider the AF in Example 1 in which an agent does not want to decide yet
whether he/she will support Brexit or not. The situation is specified as the epistemic con-
straint ϕ = K und(b). Then (AF,ϕ) has the single preferred epistemic labelling set
{{und(a), und(b), out(c), in(d)}}.

3.2 Representing Preference

Preference among arguments can be specified in EAF as follows. Let� be a pre-order (i.e., reflexive
and transitive) relation over Ar×Ar such that (x, y) ∈� implies that x indirectly attacks y or vice
versa. x � y means that an argument x is at least as preferred as y. We write x � y if x � y and
y 6� x.

Definition 4 (preference over arguments) Given AF = (Ar, att) and a preorder relation �⊆
Ar ×Ar, define EAF = (AF,ϕA) where

ϕA =
∧
x�y

K(in(y) ⊃ in(x)).

Intuitively speaking, ϕA represents that an argument x should be accepted whenever another
argument y of lower preference is accepted. Note that the preference is specified as x � y but not
as x � y in ϕA. When both x � y and y � x exist, there is no reason to prefer one of them. In this
case, the conjunct involved x and y in ϕA is >. By definition, the next proposition holds.

Proposition 9 Let EAF = (AF,ϕA) be an EAF defined as above. Then, for any ω-epistemic
labelling set SL of EAF , there is no L ∈ SL such that L 6|= in(x) and L |= in(y) for any x � y.

Example 4 Consider AF = ({a, r}, {(a, r), (r, a)}) with r � a. Then EAF = (AF,ϕA) with
ϕA = K(in(a) ⊃ in(r)) has the unique stable epistemic labelling set {{in(r), out(a)}}, and the
unique complete epistemic labelling set {{in(r), out(a)}, {und(r), und(a)}}.

In Example 4, the complete epistemic labelling set contains {und(r), und(a)}. This can be
eliminated by introducing the constraint ϕA = K(in(a) ∨ und(a) ⊃ in(r)). In EAF preferences
could be revised by belief change of an agent. For instance, if one wants to neutralize the preference
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r � a, it could be done by changing ϕA to ϕ′A = K(in(a) ⊃ in(r)) ∨K(in(r) ⊃ in(a)). In this
case, (AF,ϕ′A) has two stable epistemic labelling sets {{in(r), out(a)}} and {{in(a), out(r)}}.

Preference over arguments is generalized to preference over justification states of arguments as
follows. A pre-order relation w over justification states of arguments is a collection of elements of
the form λ(x) w µ(y) where λ, µ ∈ {in, out, und}, meaning that λ(x) is at least as preferred as
µ(y) for arguments x and y. We write λ(x) = µ(y) if λ(x) w µ(y) and µ(y) 6w λ(x).

Definition 5 (preference over justification states) Given AF = (Ar, att) and a preorder relation
w⊆ AAF ×AAF , define EAF = (AF,ϕJ) where

ϕJ =
∧

λ(x)=µ(y)

K (µ(y) ⊃ λ(x)).

ϕJ states that if the justification state λ(x) is preferred to µ(y) for x, y ∈ Ar, then L |= µ(x)
implies L |= λ(x) for any L ∈ SL where SL is any ω-epistemic labelling set of EAF .

By definition, Def. 4 is considered a special case of Def. 5 with µ = λ = in.

Proposition 10 Let EAF = (AF,ϕJ) be an EAF defined as above. Then, for any ω-epistemic
labelling set SL of EAF , there is no L ∈ SL such that L 6|= λ(x) and L |= µ(y) for any
λ(x) = µ(y). In particular, L 6|= µ(y) for any L ∈ SL if x = y.

Proof: If there isL ∈ SL such thatL 6|= λ(x) andL |= µ(y), then SL does not satisfy the constraint
ϕJ . When x = y, if L |= µ(y) then L |= λ(y) for µ 6= λ. This does not happen because L is a
function. Hence, the result holds. 2

Example 5 Suppose that in Example 4, an MP prefers keeping the decision undecided if possible.
This is represented by == {(und(x), in(x)), (und(x), out(x)) | x ∈ {a, r}} which is translated
to ϕJ =

∧
x∈{a,r}K (in(x) ⊃ und(x)) ∧K (out(x) ⊃ und(x)). Then EAF = (AF,ϕJ) has the

unique complete epistemic labelling set {{und(r), und(a)}}. Furthermore, ∅ is the stable epistemic
labelling set, since there is no choice to make a and r undecided.

In this way, EAF enables us to specify preference over not only arguments but also justification
states of arguments.

Definition 5 is extended to specify conditional preferences. For instance, we could specify
a preference ψ ⊃ ϕJ where ψ is an epistemic formula. It represents that if ψ is true then the
preference ϕJ is applied. In Example 5, if ϕC = M (und(a) ∨ und(r)) ⊃ ϕJ is used instead of
ϕJ , then EAF = (AF,ϕC) has the unique complete epistemic labelling set {{und(r), und(a)}},
while it still has the unique stable epistemic labelling set {{in(a), out(r)}, {in(r), out(a)}}.

Furthermore, it could also be useful to introduce preferences among epistemic formulas. For
instance, we could write K λ(x) > K µ(x) for some argument x to indicate that we prefer SL1

over SL2 whenever SL1 |= Kλ(x) and SL2 |= Kµ(x) for two arbitrary ω-epistemic labelling sets
SL1 and SL2. Such a preference relation is specified as the epistemic constraint K µ(x) ⊃ K λ(x)
whose intended meaning is clear. Generally, given two epistemic formulas ψ1 and ψ2, the preference
relation ψ1 > ψ2 (ψ1 is preferred to ψ2) is specified as the epistemic constraint ϕF = ψ2 ⊃ ψ1.
Then, EAF = (AF,ϕF ) would select ω-epistemic labelling sets SL such that SL |= ψ2 implies
SL |= ψ1.
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3.3 Multiple Agents

Suppose that two agents share AF = ({a, r}, {(a, r), (r, a)}). If they have the same belief repre-
sented by the epistemic constraint ϕ = K in(a), the EAF (AF,ϕ) has the single epistemic com-
plete labelling set {{in(a), out(r)}} and the agents agree on accepting a. On the other hand, if
two agents have conflicting beliefs ϕ1 = K in(a) and ϕ2 = K in(r) respectively, then they do not
agree on accepting a or r. In this section, we assume multiple agents who share the same AF while
having different beliefs in general. The situation is represented by the collection of EAFs (AF,ϕi)
(1 ≤ i ≤ n). First, we define two different types of agreements.

Definition 6 (agreement) Let AF = (Ar, att) and EAF1 = (AF,ϕ1), . . . , EAFn = (AF,ϕn)
(n ≥ 1). Then EAF1, . . . , EAFn credulously agree on λ(a) for a ∈ Ar where λ ∈
{in, out, und } under ω-epistemic labelling if each EAFi (i = 1, . . . , n) has an ω-epistemic
labelling set SLi such that SLi |= M λ(a). In contrast, EAF1, . . . , EAFn skeptically agree on
λ(a) under ω-epistemic labelling if for any ω-epistemic labelling set SLi of EAFi (i = 1, . . . , n)
SLi |= K λ(a).

The above definition characterizes two different situations (credulous or skeptical) in which
agents reach an agreement on λ(a). For simplicity reasons, Def.6 assumes that different agents
employ the same ω-epistemic labelling, but the definition is easily extended to a case in which
agents employ different ω-labellings.

Proposition 11 Let AF = (Ar, att) and EAF1 = (AF,ϕ1), . . . , EAFn = (AF,ϕn) (n ≥ 1).
Then, EAF1, . . . , EAFn skeptically agree on λ(a) for a ∈ Ar under ω-epistemic labelling iff
EAFi and EAF ′i = (AF,ϕi ∧K λ(a)) (i = 1, . . . , n) have the same ω-epistemic labelling sets.

Proof: The if-part is clear. We show the only-if part. If EAF1, . . . , EAFn skeptically agree on
λ(a), then SLi |= K λ(a) for any ω-epistemic labelling set SLi of EAFi (i = 1, . . . , n). Since
every ω-epistemic labelling set SLi of EAFi satisfies K λ(a), SLi is also an ω-epistemic labelling
set of EAF ′i = (AF,ϕi ∧K λ(a)). 2

Proposition 12 Let AF = (Ar, att) and EAF1 = (AF,ϕ1), . . . , EAFn = (AF,ϕn) (n ≥ 1).
If EAF1, . . . , EAFn credulously agree on λ(a) for a ∈ Ar under ω-epistemic labelling, then
(AF,ϕ1 ∨ · · · ∨ ϕn) has an ω-epistemic labelling set SL such that SL |= M λ(a). Conversely,
if (AF,ϕ1 ∧ · · · ∧ ϕn) has an ω-epistemic labelling set SL such that SL |= M λ(a), then
EAF1, . . . , EAFn credulously agree on λ(a) under ω-epistemic labelling.

Proof: Suppose that EAF1, . . . , EAFn credulously agree on λ(a) for a ∈ Ar under ω-epistemic
labelling. Then, EAFi (1 ≤ i ≤ n) has an ω-epistemic labelling set SLi such that SLi |= M λ(a),
and there is L ∈ SLi such that L |= λ(a). By Proposition 3, for each ω-epistemic labelling set SLi
of (AF,ϕi), there is some ω-epistemic labelling set SL of (AF,ϕ1∨· · ·∨ϕn) such that SLi ⊆ SL.
Then, ∃L ∈ SL such that L |= λ(a). Hence, SL |= Mλ(a). Conversely, if (AF,ϕ1∧· · ·∧ϕn) has
an ω-epistemic labelling set SL such that SL |= M λ(a), then there is some ω-epistemic labelling
set SLj of (AF,ϕj) such that SL ⊆ SLj for each EAFj (1 ≤ j ≤ n) by Proposition 3. By
SLj |= M λ(a), EAF1, . . . , EAFn credulously agree on λ(a) under ω-epistemic labelling. 2
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Algorithm 1: Existence(EAF, ω)

Input: ω, EAF = (AF,ϕ).
Output: true if EAF has a (non-empty) ω-epistemic labelling set; false otherwise.

1 Convert to DNF: ϕ = ∨kj=1EC(ψj ;ψ
j
1, . . . , ψ

j
nj

)

2 where EC(ψ;ψ1, . . . , ψk) = Kψ ∧
∧k

i=1 Mψi

3 for j = 1 to k do
4 num labelling := 0
5 for i = 1 to nj do
6 if D(ω,AF, ψj ∧ ψj

i ) = true then
7 num labelling := num labelling + 1

8 if num labelling = nj then return true
9 return false

We next show that EAF can be used for formalizing majority voting. In the presence ofEAFi =
(AF,ϕi) (1 ≤ i ≤ n), define:

Mω
ψ = { i | EAFi has an ω-epistemic labelling set SL s.t. SL |= M ψ },

Nω
ψ = { i | for each ω-epistemic labelling set SL ofEAFi, SL |= K ψ }.

Definition 7 (majority voting) Let AF=(Ar, att) and EAFi = (AF,ϕi) for (1 ≤ i ≤ n). For
a ∈ Ar, λ(a) is credulously (resp. skeptically) adopted by majority voting under ω-epistemic la-
belling iff the cardinality of the set Mω

λ(a) (resp. Nω
λ(a)) is greater than the cardinality of the set

Mω
µ(a) (resp. Nω

µ(a)) where λ, µ ∈ {in, out, und} and λ 6= µ.

When |Mω
λ(a)|=n (resp. |Nω

λ(a)|=n) in Def. 7,EAF1, . . .,EAFn credulously (resp. skeptically)
agree on λ(a).

Example 6 Consider AF = ({a, r}, {(a, r), (r, a)}) and three EAFs: EAF1 = (AF, K in(a)),
EAF2 = (AF, ¬M und(a)), and EAF3 = (AF, K und(a)). Then in(a) is credulously adopted
by majority voting under the complete epistemic labelling, while it is not skeptically adopted.

It is known that judgment aggregation may lead to an inconsistent group outcome where the
reasons do not support the conclusion by Caminada and Pigozzi (2011). Majority voting in this
section concerns the justification state of a single argument, and the issue of handling inconsistent
collective judgment of arguments is outside the scope of this paper.

3.4 Complexity

In this section, we consider a decision problem of whether an EAF has a non-empty ω-epistemic
labelling set. We assume that the readers are familiar with the well-known notations in computa-
tional complexity (e.g., P-c, NP-c, coNP-c, etc.). Let ω ∈ {gr, st, co, pr} and EAF = (AF,ϕ).
Due to Proposition 8, we can check for the existence of a non-empty ω-epistemic labelling set using
Algorithm 1, assuming the existence of a procedure D(ω,AF, ψ) that determines the existence of an
ω-labelling L of AF such that L |= ψ.
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In essence, Algorithm 1 shows that checking whether EAF has a non-empty ω-epistemic la-
belling set can be reduced to checking whether a labelling L of AF satisfies a formula over AAF .
In line 1 we assume that ϕ has at most k disjuncts, and each contains at most p conjuncts, where p
and k are polynomial in the size of the AF and refer to ϕ as a (k, p)-DNF.5 Under this assumption,
Algorithm 1 will call D(ω,AF, ψ) at most k × p times. Consider the following decision problem:

Exists
(k,p)
ω : Given an AF = (Ar, att) and a (k, p)-DNF epistemic formula ϕ over

AAF , does (AF,ϕ) have a non-empty ω-epistemic labelling set?

The above discussion gives us the next result.

Proposition 13 Exists
(k,p)
ω is P-c for ω = gr and NP-c for ω ∈ {co, st, pr}.

Proof: Suppose EAF = (AF,ϕ) with ϕ =
∨k
j=1EC(ψj ;ψ

j
1, . . . , ψ

j
nj ).

(i) Consider ω = gr. Since the grounded labelling Lgr of AF is unique and can be computed in
polynomial time, there is only a single potential grounded epistemic labelling set SLgr = {Lgr} of
EAF . Since SLgr |= ϕ iff there exists some j such that Lgr |= ψj ∧

∧nj

i=1 ψ
j
i , which can be done

in polynomial time, the result follows immediately.
(ii) Consider ω ∈ {co, st, pr}. Hardness of the problem follows from the fact that if ϕ =

Kin(a) for some a then Exists
(k,p)
ω is the same as checking whether or not AF has an ω-labelling

containing in(a) which is NP-c (or the problem Credσ in Dvorák, 2011; Dvorák & Dunne, 2018).
Assume that we have an oracle O that determines whether or not AF has an ω-labelling satis-

fying a propositional formula over AAF . Then, the following polynomial algorithm can be used to
decide Exists(k,p)ω .

• for each j = 1, . . . , k and i = 1, . . . , nj , use O to determine whether or not an ω-labelling
Lj,i satisfying ψj ∧ ψji exists;

• if there exists some j such that Lj,i for i = 1, . . . , nj then the answer to Exists
(k,p)
ω is yes;

otherwise, the answer is no.

This shows that the complexity of Exists(k,p)ω is P C where C is the complexity class of Credω, i.e.,
determining whether or not there exists an ω-labelling Lj,i satisfying a formula overAAF . Because
C is NP-c for ω ∈ {st, co, pr}, we can conclude that Exists(k,p)ω is NP-c. 2

The above results show that the decision problem Exists
(k,p)
ω has the same complexity as Credσ

in abstract argumentation.

4. Computation

In this section, we describe a system for computing epistemic labelling sets of an EAF.

5. The DNF of a formula ϕmight have exponential number of disjuncts in general, however, it would be a rare case that
belief of an agent is expressed by an exponential formula.

1114



EPISTEMIC ARGUMENTATION FRAMEWORK

4.1 Epistemic Logic Programs

A logic program (LP) is a finite set of rules of the form:

L1 or · · · or Ll ← Ll+1 , . . . , Lm, notLm+1 , . . . , notLn (1)

(n ≥ m ≥ l ≥ 0) where each Li is a ground literal (an atom a or its negation ¬a). not is negation
as failure (NAF) and notL is called an NAF-literal. The left-hand side of← is the head, and the
right-hand side is the body. For each rule r of the above form, head(r), body+(r), and body−(r)
denote the sets of literals {L1, . . . , Ll}, {Ll+1, . . . , Lm}, and {Lm+1, . . . , Ln}, respectively. A rule
r is a constraint if head(r) = ∅; and r is a (disjunctive) fact if body+(r) = body−(r) = ∅. We
often write a rule with variables as a shorthand of its ground instances. A logic program is simply
called a program. The semantics of a program is defined by the answer set semantics, introduced
by Gelfond and Lifschitz (1991).

Let lit(P ) be the set of all ground literals of a program P . A set S of literals is consistent if
a ∈ S implies ¬a 6∈ S for any atom a. A consistent set of literals S ⊂ lit(P ) satisfies a rule r of the
form (1) if body+(r) ⊆ S and body−(r) ∩ S = ∅ imply head(r) ∩ S 6= ∅. In particular, S satisfies
a constraint r such that head(r) = ∅ if body+(r) \ S 6= ∅ or body−(r) ∩ S 6= ∅. S is a model of
the program P if it satisfies every rule in P . For a program P with body−(r) = ∅ for every rule r
in P , a model S of P is minimal if there is no model T of P such that T ⊂ S. Given a program P ,
a consistent set of literals S is an answer set of P if it coincides with a minimal model of PS , the
reduct of P with respect to S, defined as follows:

PS =
{
head(r)← body+(r)

∣∣ r ∈ P and body−(r) ∩ S = ∅
}
.

A program may have no, one, or multiple answer sets in general. A program is consistent if
it has at least one answer set; otherwise, the program is inconsistent. The set of answer sets of a
program P is denoted by AS(P ). Representing knowledge by logic programs under the answer set
semantics is called answer set programming (ASP) (Brewka, Eiter, & Truszczynski, 2011). We use
the terms logic programming and answer set programming interchangeably.

An epistemic logic program (ELP), introduced by Gelfond (1991), is a collection of rules of the
form (1) with the following extended syntax: each Lj (l+ 1 ≤ j ≤ n) is either a ground literal, or a
subjective literal of the form K ` or M ` where ` is a ground literal (also referred to as an objective
literal). The semantics of epistemic logic programs is defined by world views. The semantics used
in this paper is due to Kahl, Leclerc, and Son (2016) and Shen and Eiter (2016).

Let W be a non-empty set of consistent sets of ground literals, and ` be a literal.

• K ` is satisfied by W if ∀A ∈W : ` ∈ A.

• notK ` is satisfied by W if ∃A ∈W : ` /∈ A.

• M ` is satisfied by W if ∃A ∈W : ` ∈ A.

• notM ` is satisfied by W if ∀A ∈W : ` /∈ A.

We write W |= K ` (W |= M ` ) to mean that K ` (M ` ) is satisfied by W.
Let Π be an epistemic logic program andW a non-empty set of consistent sets of ground literals.

We denote by ΠW the modal reduct of Π with respect to W defined as the ASP program6 obtained

6. with nested expressions of the form not not ` as defined by Lifschitz, Tang, and Turner (1999).
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from Π by replacing/removing subjective literals and/or deleting associated rules in Π as follows:
for any subject literal ϕ in a rule,

• If ϕ is K ` and W |= ϕ then replace K ` with `; otherwise, delete the rule from Π;

• If ϕ is notK ` and W |= ϕ then remove notK ` from the rule; otherwise, replace notK `
with not `;

• If ϕ is M ` and W |= ϕ then remove M ` from the rule; otherwise, replace M ` with
not not `;

• If ϕ is notM ` and W |= ϕ then replace notM ` with not `; otherwise, delete the rule
from Π.

Let Π be an epistemic logic program and W a non-empty set of consistent sets of literals. Then
W is a world view of Π if W = AS(ΠW ). An ELP might have multiple world views, e.g., the
program

{ p or q, r ← notM p, ¬p←M r, not q }

has two world views {{p}, {q}} and {{q, r}}.

4.2 Computing Epistemic Labelling Sets

An EAF = (AF,ϕ) is called a normal EAF if ϕ is a CNF form ϕ = ψ1 ∧ · · · ∧ ψk in which
ψi (1 ≤ i ≤ k) is a disjunction of simple epistemic literals of the form Eλ(x) or ¬Eλ(x) where
E is either K or M and λ∈{in, out, und}.7 In the following, we assume that an argumentation
framework is represented by atoms of the forms arg(x) (x is an argument) or att(x, y) (x attacks
y).

We first introduce a set of rules for argumentative reasoning in logic programming. These rules
are similar to the rules introduced by Sakama and Rienstra (2017), with some modification so that
they are generic in the sense that they are independent from the input AF. The program makes use
of the extended syntax of answer set programming such as aggregate and choice atoms which are
implemented in available answer set solvers such as clingo or dlv8.

Definition 8 (AF rules) The set ΓAF consists of the following AF rules:

n atts(X,N)← arg(X), N = #count{Y : att(Y,X)}. (2)

in(X)← arg(X), n atts(X, 0). (3)

in(X)← n atts(X,N), N == #count{Y : out(Y ), att(Y,X)}. (4)

out(X)← arg(X), in(Y ), att(Y,X). (5)

← arg(X), in(X), att(Y,X),not out(Y ). (6)

← arg(X), out(X), n atts(X,N), N == #count{Y : not in(Y ), att(Y,X)}. (7)

In the above rules, the extended syntax of ASP is used as follows. For an argument X ,

• the atom #count{Y : att(Y,X)} encodes the number of attackers of X;

7. By Prop. 1, M ¬λ(x) (resp. K ¬λ(x)) is rewritten by ¬K λ(x) (resp. ¬M λ(x)).
8. https://potassco.org or https://www.mat.unical.it/DLV2/
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• #count{Y : out(Y ), att(Y,X)} (resp. #count{Y : not in(Y ), att(Y,X)}) encodes the
number of attackers of X which are labelled out (resp. not labelled in);

• == tests for equality between two values.

Rule (2) computes the number of attacks against an argument X . Rule (3) implies that if there is no
attacker of X then X is labelled in. Rule (4) states that if all attackers of X is labelled out then
X is labelled in. Rule (5) states that an argument X is labelled out if one of its attackers, Y , is
labelled in. The constraint (6) states that every in-labelled argument X has no attacker Y which
is not labelled out. The constraint (7) states that every out-labelled argument X has at least one
attacker which is labelled in.

Definition 9 (EC rules) Suppose an epistemic constraint ϕ = ψ1 ∧ · · · ∧ ψk where ψi = ¬E1 ∨
· · · ∨ ¬Em ∨ Em+1 ∨ · · · ∨ En (1 ≤ i ≤ k) and (¬)Ej (1 ≤ j ≤ n) is a simple epistemic literal.
Then the set Γϕ of EC rules are defined as

Γϕ = {← E1, . . . , Em,notEm+1, . . . ,notEn | ψi is in ϕ }.

Definition 10 (EAF program) A normal EAF (Ar, att, ϕ) is transformed to an epistemic AF pro-
gram (EAF program, for short)

Πω
EAF = L(AF ) ∪ ΓAF ∪ Γϕ ∪ Γω

where L(AF ) = { arg(x) | x ∈ Ar } ∪ { att(x, y) | (x, y) ∈ att }, ω ∈ {co, st, gr, pr}, and Γω is
defined as follows:

1. Γco consists of the following rule:

1{in(X); out(X); und(X)}1← arg(X)

where the choice atom 1{in(X); out(X); und(X)}1 indicates that exactly one of the atoms
in(X), out(X), and und(X) must be true.

2. Γst consists of the following rule:

1{in(X); out(X)}1← arg(X).

3. Γgr consists of the following rule:

und(X)← arg(X),not in(X),not out(X).

4. Γpr consists of the following rules:

1{in(X); out(X)} ← arg(X)

p-in(X)← arg(X), in(X),not out(X)

p-out(X)← arg(X),not in(X), out(X)

p-und(X)← arg(X), in(X), out(X)

where p-in, p-out, and p-und are new unary predicates. 1{in(X); out(X)} is a choice atom
requiring that at least one of the atoms in {in(X), out(X)} is true.
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With this setting, we have the next result.

Proposition 14 Let EAF = (Ar, att, ϕ) be a normal EAF, and Πω
EAF its transformed ELP. Then

there is 1-1 correspondence between the (non-empty) ω-epistemic labelling sets of EAF and the
world-views of Πω

EAF for ω ∈ {co, st, pr, gr}.

Proof: There is 1-1 correspondence between answer sets of L(AF ) ∪ ΓAF ∪ Γω and ω-labellings
of AF as shown by Sakama and Rienstra (2017). Since the world views of Πω

EAF are non-empty
collections of answer sets satisfying the constraints in Γϕ, they correspond to the (non-empty) ω-
epistemic labelling sets of EAF = (Ar, att, ϕ). 2

The system presented in this section could be realized by an epistemic logic program solver such as
the one presented by Son, Le, Kahl, and Leclerc (2017).

5. Related Work

EAF could be viewed as an approach to limiting the set of extensions (or labellings) of an argu-
mentation framework for semantical consideration and this is similar, at least in the spirit, to argu-
mentation with preferences and probabilistic argumentation. By introducing epistemic constraints,
it is similar to works focusing on a reasoner’s belief. In this section, we compare EAF and related
studies.

5.1 Constrained Argumentation Framework

Constrained argumentation frameworks (CAF) proposed in (Coste-Marquis, Devred, & Marquis,
2006) are syntactically similar to EAF. Both are of the form 〈A,R,C 〉 where (A,R) is an AF and
C is a propositional formula (over A) in a CAF whilst it is an epistemic formula (over AAF ) in
an EAF. The key distinction between CAF and EAF lies in the use of the constraint. In CAF, C is
imposed on the admissibility of sets of arguments, effectively changing the set of extensions of the
AF and leading to a new set of extensions of the original AF. In contrast, ϕ does not change the
labellings of the original AF in an EAF (AF,ϕ). For instance, a preferred C-extension of a CAF
〈A,R,C 〉 is a subset of a preferred extension of 〈A,R 〉 in general. In EAF, on the other hand,
every element in an ω-epistemic labelling set is an ω-labelling of the original AF. A CAF represents
constraints as propositional formulas that specify conditions on arguments at the objective level. In
contrast, an EAF represents constraints as epistemic formulas that specify conditions on arguments
at the subjective level. Generally, an epistemic constraint of the type KF (an agent believes F )
is also represented by CAF as a constraint F . On the other hand, an epistemic constraint of the
type MF (an agent possibly believes F ) is not represented by CAF. A more detailed comparison is
given below.

Example 7 Consider the AF from Example 1.

• Semantical differences: Consider CAF = (AF, b) and EAF = (AF,K in(b)) and the
stable semantics of AF. In principle, both CAF and EAF indicate a bias of b.

The set {a, c} is not a stable C-extension in CAF . In contrast, its equivalent labelling,
{in(a), in(c), out(b), out(d)}, is still a stable labelling of AF in EAF .
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In this case, both CAF and EAF accept the same set of conclusions. CAF has
only one stable C-extension {b, d} and EAF has only one stable epistemic labelling set
{{in(b), in(d), out(a), out(c)}}.

• Mϕ has no equivalent representation in CAF: for the sake of discussion, let us consider
EAF ′ = (AF,M in(b)). Intuitively, EAF ′ states that b is possibly accepted. As such,
EAF ′ has a stable epistemic labeling set which consists of all possible stable labellings of
AF , since AF has one stable labelling containing b. To obtain this result, i.e., to keep all
stable extensions of AF as C-stable extensions in the CAF representation, one would likely
have to use (AF,>) as the corresponding CAF. However, this translation would not be ade-
quate for situation where the original AF does not have a stable extension containing b. In that
case, EAF ′ = (AF,M in(b)) would have { } as its stable epistemic labelling set whereas
(AF,>) will still have the same set of stable extensions.

In general, we can prove the following: let Ar be a set of arguments and a ∈ Ar.

• for every formulaC overAr, there exists an epistemic formula KCe such that for every attack
relation att ⊆ Ar × Ar, S is the set of stable C-extensions of (Ar, att, C) iff {S | S ∈ S }
is the stable epistemic labelling set of (Ar, att,KCe);

• there exists no formula Cf overAr such that for every attack relation att ⊆ Ar×Ar, S is the
set of stable C-extensions of (Ar, att, Cf ) iff {S | S ∈ S } is the stable epistemic labelling
set of (Ar, att,M in(a)).

The first item shows that EAF could be used to represent CAF despite the semantical differences at
the basic level, i.e., in the definition of admissible set. On the other hand, the second item shows
that something expressible in EAF cannot be done using CAF. We note that similar results hold for
the other types of semantics studied in this paper as well. In addition, EAF allows reasoning about
undecided arguments (using und(x) formulas), while in CAF an argument may take only two states,
accepted or rejected, corresponding respectively to in or out labels of EAF.

It is worth mentioning that CAF can represent bipolar argumentation frameworks (BAF), which
was introduced by Cayrol and Lagasquie-Schiex (2009), by representing support relations as the
constraint Cs =

∧
(a,b)∈Supp (a ⇒ b) where Supp is the set of support relations and ⇒ repre-

sents material implication. The above consideration implies that BAF is also encoded in EAF as
(AF,KCs).

There are several approaches for selecting extensions of AF. Dauphin, Cramer, and van der
Torre (2018) introduce a method of choosing an extension from multiple extensions. Given a partial
extension that specifies arguments to be included/excluded in the final outcome, it constructs a deci-
sion graph for classifying other arguments to reach a total extension. It provides a step-wise decision
making framework for choosing extensions, which is different from EAF that specifies constraints
over arguments for choosing intended labellings. Dimopoulos, Mailly, and Moraitis (2018) intro-
duce control argumentation frameworks (CTAF). A CTAF is defined as a triple (F,C,U) where F
is a fixed AF, U is an AF that contains uncertain arguments or attacks, and C is an AF that a user
can choose to use or not. Given a target set T of arguments, they consider whether an AF is built
from a CTAF such that arguments in T are credulously/skeptically accepted (or controllable) by
fixing uncertain arguments/attacks in U and choosing appropriate ones from C. They encode con-
ditions for controllability using quantified Boolean formulas and investigate the decision problem
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whether a CTAF is controllable or not. In EAF the controllability of arguments is represented using
epistemic constraints, while EAF does not distinguish F , C and U as CTAF does.

5.2 Abstract Dialectical Framework

Another extension of Dung’s AF is abstract dialectical framework (ADF) (Brewka & Woltran,
2010) where each argument has an associated acceptance condition expressed by a propositional
formula over the existing arguments. For instance, the ADF “a [t], b [¬a ∨ c], c [t]” represents that
the argument a and c are always accepted, and b is accepted if ¬a∨c is true. The ADF has the stable
extension {a, b, c} which is not stable in AF. Thus, an ADF acquires new meaning in the presence
of support relations. Generally, an ADF will not be directly translated into EAF, since it changes
extensions of an AF in general. In EAF individual arguments do not have acceptance conditions,
while epistemic constraints specify beliefs concerning which extensions are to be selected in the
final outcome. The ADF also handles preference in its extended syntax called a prioritized ADF
(Brewka, Strass, Ellmauthaler, Wallner, & Woltran, 2013). A prioritized ADF expresses dynamic
preferences in which preferences depend on arguments to be accepted. In this framework, an ex-
tension E is constructed in a way compatible with the preference information contained in E. In
EAF, on the other hand, belief change of an agent may lead to constructing new epistemic labelling
sets, while those sets just change the selection of labellings of the original AF. ADF is similar to
CAF in the sense that constraints are represented by propositional formulas over arguments. As a
result, it has limitation similar to CAF, that is, an epistemic constraint of the type MF in EAF is
not represented in ADF.

5.3 Probabilistic Argumentation

Probabilistic argumentation as proposed in (Hunter, 2013; Hunter & Thimm, 2017) focuses on
the uncertainty of arguments rather than reasoners’ beliefs. This approach represents the beliefs of
agents by a probability assignment to arguments (e.g., by Hunter, 2013) or an epistemic labelling
(e.g., by Hunter & Thimm, 2017). It provides methods for computing epistemic extensions of an
AF which contain arguments with probability greater than a certain threshold or assigning labels to
arguments in accordance to the probability of the labelling, i.e., it merges an objective evidence and
subjective beliefs in a single framework, which is in contrast to our approach. Moreover, it differs
from EAFs significantly as beliefs are represented quantitatively using probabilities. On the other
hand, there would be a connection between probabilistic argumentation and EAF. For instance, we
consider that for each EAF = (AF,ϕ) and ω ∈ {co, st, gr, pr}, there would exist a probabilistic
distribution P with respect to AF with the property that x is believed wrt P (P (x) > 0.5)) then
in(x) is skeptically entailed by every ω-labelling set of EAF . We believe that the inverse could be
true as well. We leave the precise formulation and proof of this interesting problem for future work.
Recent work in this direction has introduced epistemic attack semantics that considers extended
probability distribution, which assigns degrees of belief to arguments and attacks (Thimm, Polberg,
& Hunter, 2018) which is then further investigated in dynamic setting (Hunter, Polberg, & Potyka,
2018). Whether formulas in EAF could sufficiently model this type of extension is an open question
that we intend to pursuit as well.
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5.4 Argumentation with Preference

Argumentation with preferences or priorities has been studied extensively in recent years. Pref-
erence over arguments is introduced as a preorder relation over arguments in (Amgoud & Cayrol,
1998; Amgoud & Vesic, 2010, 2011; Kaci & van der Torre, 2008), while a new attack relation
that ranges from arguments to attacks is used in (Modgil, 2009). Our representation of preferences
is close to the approach employing a preorder but there are differences from them. For instance,
consider AF = ({a, b}, {(a, b)}) with the preference b � a, where a attacks b while b has higher
priority than a (such (a, b) is called a critical attack). In this case, Kaci and van der Torre (2008)
provide its semantics by extensions of AF1 = ({a, b}, {}), and Amgoud and Vesic (2010) convert
AF to AF2 = ({a, b}, {(b, a)}). Amgoud and Vesic (2011) consider {b} as the acceptable ex-
tension under the postulate that preferences are privileged in critical attacks. In these studies, the
structure of the original argumentation graph or semantics is changed, and as a result, extensions
of the preference-based AF are not extensions selected from those of AF. Wakaki (2015) introduces
preference-based AF (PAF) which, as we do, selects extensions based on preference relation over
arguments. Our representation of preference in EAF is different from PAF in the sense that EAF can
represent preference over not only arguments but justification states. Moreover, EAF can represent
conditional preferences using epistemic formulas.

Value-based argumentation framework (VAF) (Bench-Capon, 2002) represents preference in
AF by assigning values to arguments. In VAF acceptable arguments may change depending on the
order of values. Arguments acceptable irrespective of any value order are called objectively accept-
able and those acceptable for some order are called subjectively acceptable. In EAF justification
states of arguments change depending on epistemic constraints, so the effect of epistemic constraints
in EAF is similar to the effect of value in VAF. On the other hand, VAF may produce extensions
that are not those of the original AF, while EAF produces labellings that are also labellings of the
original AF.

Airiau, Bonzon, Endriss, Maudet, and Rossit (2017) consider the problem such that given a pro-
file of argumentation frameworks (AF1, . . . , AFn), one for each agent, can this profile be explained
in terms of a single master argumentation framework, an association of arguments with values, and
a profile of preference orders over values (�1, . . . ,�n), one for each agent? Their approach repre-
sents individual views of a common AF by preference orders over values, which is in contrast with
our approach in which individual views are encoded by epistemic formulas over arguments. Visser,
Hindriks, and Jonker (2012) introduce an epistemic argumentation framework for reasoning about
preferences with uncertain information. They provide languages and inference schemes for instanti-
ated AFs, which is in contrast with our framework for abstract argumentation. Some studies handle
dynamics of preferences. Dimopoulos, Moraitis, and Amgoud (2008) consider negotiation theories
based on preference-based argumentation. They formulate dynamics of preferences in the context
of aggregate argumentation systems: taking into account the interests of the negotiating agents by
the intersection of individual preference relations. In contrast to this, we formulate belief change of
a single agent in an EAF. In (Kakas, Moraitis, & Spanoudakis, 2019), the authors specify changes
of preferences in the context of “Scenario-based Preferences”. Prakken and Sartor (1997) specify
defeasible priorities in their argument-based logic programming. These frameworks handle struc-
tured argumentation, and they are significantly different from our framework in both representing
and reasoning about preferences.

1121



SAKAMA & SON

5.5 Multi-agent Argumentation

Judgment aggregation in multi-agent argumentation has been studied by several researchers. Cami-
nada and Pigozzi (2011) study aggregation of individual labellings of a given argumentation frame-
work. They introduce three operators for skeptical aggregation, credulous aggregation and super-
credulous aggregation. Those aggregation operators produce outcomes that are compatible with
the individual judgments, and are guaranteed to keep rationality in terms of admissibility and re-
lated argumentation-theoretic concepts. Awad, Booth, Tohmé, and Rahwan (2017) and Rahwan
and Tohmé (2010) study judgment aggregation in abstract argumentation. In their setting agents
have a shared argumentation framework while having different labellings of the AF. They give
social-choice theoretic analyses of argument evaluation semantics to reach a collective decision.
Ganzer-Ripoll, López-Sánchez, and Rodrı́guez-Aguilar (2017) study collective decision making in
bipolar argumentation frameworks. They introduce the notion of coherent labelling, which is a
relaxed version of the notion of complete labelling. Then they provide an aggregate function that
guarantees the coherent collective rationality of the outcome as well as valuable social-choice the-
oretic properties. Chen and Endriss (2018) study whether properties of argumentation semantics,
such as conflict-freeness, admissibility, or stability are preserved or not under aggregation. They
show, for instance, that the majority rule always preserves conflict-freeness, while no quota rule
can guarantee the preservation of either admissibility or stability unless imposing restrictions on
argumentation framework.

In contrast to previous studies, we consider a multi-agent argumentation framework as the col-
lection of EAFs. In our setting agents have different beliefs towards the single AF and those beliefs
are explicitly represented by epistemic formulas in individual EAFs. We then considered whether
those agents can reach an agreement for acceptance/rejection of a particular argument (not an ex-
tension) under credulous or skeptical reasoning. Further investigation is needed to verify whether
such an agreement satisfies valuable social-choice properties or not. Schwarzentruber, Vesic, and
Rienstra (2012) introduce a logical framework for reasoning about arguments owned by agents and
their knowledge about other agents’ arguments. They introduce epistemic logics to represent be-
lief state of agents in dialogues and define Kripke semantics. For instance, they represent that “an
agent 1 believes that there exists an argument about global warming (gw) owned by an agent 2”
by the formula: B1(〈U 〉(gw ∧ ownedby(2))). Our approach is different from theirs in two ways:
first EAF is an extension of AF and we do not use modal logic based on Kripke structures. Second,
our primary interest in this paper is to represent an agent’s own beliefs, and we do not consider
reasoning about beliefs of other agents. An EAF realizes meta-level reasoning about arguments in
abstract argumentation frameworks. In this sense, it could be viewed as a kind of meta-level argu-
ments discussed in (Boella, Gabbay, van der Torre, & Villata, 2009), while the paper by Boella et al.
(2009) does not argue for a method of introducing epistemic formulas as we do in this paper.

6. Conclusion

An epistemic argumentation framework introduces belief of agents to argumentation frameworks.
A unique feature of EAF is that it can represent arguments and attacks as objective evidence in AF,
while at the same time, it can encode subjective beliefs of individual agents by epistemic constraints
over the outcome. By separating objective knowledge and subjective beliefs, individual agents could
produce different conclusions based on their biases toward a common AF. Such a situation happens,
for instance, in a court case where jurors share the same open AF while could reach different con-
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clusions based on their biases. Moreover, the separation has an advantage that an individual agent
can easily revise his/her belief without changing the structure of an AF. We introduce EAF for com-
plete, stable, grounded, or preferred semantics, but the framework is applied to other semantics as
well.

This paper focuses on representing an agent’s own belief in EAF, while EAF could be extended
to reasoning about beliefs of other agents and representing an agent’s own belief based on beliefs of
other agents. This type of belief contains a constraint such that “K1in(a) ⊃M2in(a)” (if an agent
1 supports the acceptance of an argument a then an agent 2 would not argue against it). Then we
could combine some axiomatic system for reasoning about beliefs in EAF. In this paper we consider
EAF where AF is fixed and an epistemic constraint ϕ is variable. On the other hand, EAF is also
usable by changing AF with a fixed ϕ. The extension enforcement (Baumann & Brewka, 2010)
is the problem of determining whether an AF can be modified so that a given set of arguments
becomes a subset of an extension of the AF, for instance, by adding new arguments that interact
with existing ones. The problem could be characterized as finding an EAF (AF ′,

∧
a∈S M in(a))

having a non-empty ω-epistemic labelling set where AF ′ is an expansion of AF and S is a desired
set of arguments. As such, the enforcement problem would be characterized by changing AF with
a given epistemic constraint. Formal connection to the issue is left for future work.
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