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Abstract

In crowdsourcing systems, it is important for the crowdsource campaign initiator to incen-
tivize users to share their data to produce results of the desired computational accuracy.
This problem becomes especially challenging when users are concerned about the privacy
of their data. To overcome this challenge, existing work often aims to provide users with
differential privacy guarantees to incentivize privacy-sensitive users to share their data.
However, this work neglects the network effect that a user enjoys greater privacy protec-
tion when he aligns his participation behaviour with that of other users. To explore this
network effect, we formulate the interaction among users regarding their participation deci-
sions as a population game, because a user’s welfare from the interaction depends not only
on his own participation decision but also the distribution of others’ decisions. We show
that the Nash equilibrium of this game consists of a threshold strategy, where all users
whose privacy sensitivity is below a certain threshold will participate and the remaining
users will not. We characterize the existence and uniqueness of this equilibrium, which
depends on the privacy guarantee, the reward provided by the initiator and the popula-
tion size. Based on this equilibria analysis, we design the PINE (Privacy Incentivization
with Network Effects) mechanism and prove that it maximizes the initiator’s payoff while
providing participating users with a guaranteed degree of privacy protection. Numerical
simulations, on both real and synthetic data, show that (i) PINE improves the initiator’s
expected payoff by up to 75%, compared to state of the art mechanisms that do not con-
sider this effect; (ii) the performance gain by exploiting the network effect is particularly
good when the majority of users are flexible over their privacy attitudes and when there
are a large number of low quality task performers.

1. Introduction

A growing number of crowdsourcing applications aggregate and utilize users’ personal data
for decision-making purposes. Examples include movie rating systems such as Netflix and
OK.com and online survey systems such as QuestionPro and SurveyMonkey. Users who
share their personal data can certainly derive benefits from such information aggregation.
For example, a user may receive good recommendations from a movie rating system or know
whether he is paid fairly from an online survey. Furthermore, the benefit that a user derives
typically increases with the number of participants in the system. Hence, crowdsourcing
applications need to recruit and maintain large numbers of users to maintain the accuracy
of their results.

However, the increasing use of individuals’ data has been accompanied by growing con-
cerns about their privacy. For example, Narayanan and Shmatikov (2008) were able to
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recover private information such as movie viewing history and political preferences from
Netflix’s published movie ratings. This risk of exposing private information deters privacy-
sensitive users who do not want to suffer privacy losses when sharing their personal data
(Jin et al., 2016). Given this, appropriate means for encouraging participation are central to
the design of crowdsourcing systems (Lev et al., 2013; Chandra et al., 2017). In particular,
it is important to develop methods for incentivizing such users to share their data with the
crowdsource campaign initiator1 or her agents who will process and publish the computa-
tional result2 (Dandekar et al., 2014; Ghosh & Roth, 2015). To this end, recent work has
started to explore the question by relating differential privacy guarantees to questions of
incentives in mechanism design (e.g., Ghosh & Roth, 2015; Chen et al., 2016b; Wang et al.,
2016).

In more detail, a guarantee of differential privacy provides a degree of privacy protection
to participating users when an initiator computes the data of a population and publishes the
computational result (Dwork et al., 2006). Specifically, a differentially private mechanism
involves the initiator publishing a noisy version of the computational result, where the noise
level corresponds to a differential privacy guarantee (more noise means greater privacy).
Using the added noise ensures that whether or not a user chooses to share his data only
marginally changes the statistics inferred from the published computational result. As a
consequence, any participant’s information is harder to determine from the published results
(Zhang et al., 2016). For example, if an average rating for a movie is 4, Netflix can publish
the rating as 4.6 to provide a differential privacy guarantee. The difference between the
published rating (i.e., 4.6) and the true rating (i.e., 4) is determined by the differentially
private mechanism adopted by Netflix (McSherry & Mironov, 2009). Similarly, instead of
publishing that the true percentage of people whose income is above 50K US dollars is 10%,
QuestionPro could publish the percentage as 8%. Here, the differential privacy mechanism
adopted by the survey system determines the difference between the true percentage and
the announced percentage (Xu et al., 2013).

In addition to providing participants with differential privacy guarantees, one of the
simplest ways to incentivize users to share their personal data is to pay them for using it.
However, determining the correct price is challenging: low payments may not draw sufficient
participants, causing insufficient data for an accurate computation, while high payments
may make the system uneconomic. Existing incentive mechanisms with differential privacy
guarantees aim to elicit each user’s valuation for the various levels of guarantee and then
tailor payments based on the elicited values to incentivize sufficient participants to produce
accurate results and pay the minimum possible cost (see Section 2 for details). However,
these mechanisms are often not suitable for crowdsourcing systems for a number of reasons.
First, most real-world crowdsourcing applications that utilize personal data only mention
how an individual’s data might be used, instead of promising a differential privacy guarantee.
For example, Google adds a single specified level of noise to users’ web browsing data that
is uploaded (Erlingsson et al., 2014) and Apple uses differential privacy to collect emoji
usage data from users without identifying the added noise level (Apple, 2017a). In both
of these cases, users cannot determine their privacy loss. Second, a crowdsourcing system

1. For convenience, we term the crowdsource campaign initiator the “initiator” in the remainder of this
paper.

2. We refer to the initiator who collects and processes the data as “she” and individual users as “he”.
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can have thousands of participants and it is costly to elicit their valuations and determine
payment individually with each of them based on his individual privacy loss. Finally, it is
more difficult to identify a user’s identity in a large population than in a smaller one. Thus,
the more users contributing their personal data, the more difficult it is to identify a specific
user’s identity and therefore the more users should be willing to contribute their data. This
network effect (Easley & Kleinberg, 2010) means a user’s participation decision may be
correlated with that of other users. To date, however, most existing work does not consider
this network effect on users’ participation decisions, meaning such mechanisms overpay to
achieve a given level of privacy.

In this paper, we aim to bridge these gaps. Specifically, we design a mechanism that
both exploits network effects to provide participants with a differential privacy guarantee
and maximizes an initiator’s payoff. The initiator’s payoff is here defined as the difference
between the payments made to the (privacy-sensitive) users and the computational accuracy
of the population’s data3. Designing such a mechanism poses interesting scientific challenges
since it represents one of the first examples where privacy, game theory, social network
theory and mechanism design are brought together to devise effective methods to incentivize
a sufficient number of privacy-sensitive users with a minimum payment (Gatti et al., 2015).
Furthermore, this mechanism design is complex as an initiator’s payment strategy couples
with the privacy guarantee level and all potential users’ strategies. Such coupling exists
for a number of reasons. First, an initiator’s payment that incentivizes users’ participation
depends on the privacy guarantee level. A low privacy guarantee level requires the initiator
to pay a high price to compensate for a user’s privacy loss. A high privacy guarantee can
reduce the payment made to a user. Second, the privacy guarantee level provided by the
initiator can be increased by utilizing the network effect. Here, the benefit of utilizing the
network effect depends on the number of participants which is determined by all potential
users’ strategies. Thus, the initiator’s payment strategy, the privacy guarantee level and
the users’ participation strategies couple together. As existing mechanisms do not consider
the interaction among these strategies, there is no way to design a mechanism by simply
extending or combining existing techniques.

Against this background, we formulate the interactions between the users and the ini-
tiator (i.e., the initiator first announces the payment to users, and the users respond by
participating or not) as a two-stage Stackelberg game. Such games are often used to model
a two-step process (e.g., Shokri et al., 2012; Pawlick & Zhu, 2016; Liao et al., 2018). We
then use backward induction (Von Stackelberg, 1934; Fudenberg & Tirole, 1991) to analyze
users’ participation strategies and the initiator’s payment strategy. Based on the results of
the analysis, we design a novel mechanism, which we call “PINE” (Privacy Incentivization
with Network Effects). PINE utilizes the network effect to maximize the initiator’s payoff,
while providing privacy protection to participants. Moreover, PINE satisfies the Individual
Rationality condition, i.e., if a user’s utility, the difference between the payment received
from the initiator and the cost of sharing personal data, is non-negative, then he should be
willing to participate. Thus, PINE can incentivize appropriate numbers of participants to
maximize the initiator’s payoff.

3. Computational accuracy is defined as the difference between the initiator’s published result and the true
computation on the full set of data from the entire population (Liu & Chen, 2017).
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This paper advances the state of the art in the following ways. First, we show how
the network effect influences a user’s participation decision. In particular, we show users’
participation decisions couple together and form a population game among all the users.
That is, a user’s welfare from the interaction depends not only on his own participation
decision, but also the distribution of others’ decisions. We show that the Nash equilibrium
of this game consists of a threshold strategy, where all users whose privacy sensitivities
are lower than this threshold participate and the remainder do not. We characterize the
existence and uniqueness of these equilibria, which depend on the privacy guarantee, the
reward provided by the initiator and the population size. Second, we characterize the ini-
tiator’s optimal payment strategy to maximize the initiator’s expected payoff. Our analysis
shows that if the initiator provides a high level privacy guarantee to participants, she can
decrease her payment in line with the number of users. If the initiator provides a low level
privacy guarantee to participants, her best payment strategy is to pay them nothing be-
cause the benefit brought by incentivizing users’ participation is smaller than the payment
made to the users. Thus, the initiator gives up incentivizing users in return for a low cost
to maximize her payoff. If the initiator provides an in-between privacy guarantee level,
the optimal payment only attracts a subset of the potential users to contribute their data.
Third, our numerical simulations show that considering the network effect can significantly
improve the initiator’s expected payoff; the improvement is at least 50% and can be up to
75%, compared to the state of the art mechanisms that do not consider this effect. Finally,
our empirical studies on both synthetic data and real-world data sets highlight the condi-
tions under which utilizing the network effect can bring the greatest benefit. In particular,
network effects are most apparent when the number of potential users is large. Moreover,
compared to the setting where most users are either always willing or always reluctant to
share their data, the benefit of utilizing network effects to maximize the initiator’s expected
payoff is most significant when the majority of users are willing to provide data only when
the initiator provides sufficient incentivization and some degree of privacy guarantee. If
the initiator can calculate an accurate computational result based on a small dataset, the
benefit of the network effect is less important.

The rest of the paper is organized as follows. After reviewing the literature in Section
2, we describe a two-stage Stackelberg game in Section 3 to characterize the interaction
between the users and the initiator. We apply backward induction to study this two-
stage Stackelberg game and show the strategies of users and the initiator in Sections 4
and 5, respectively. Based on this analysis, we present PINE in Section 6. Then, we
provide the simulation results in Section 7 to show the benefit of utilizing the network effect
by comparing the performance of PINE to the state of the art mechanisms. Finally, we
conclude in Section 8.

2. Related Work

A growing body of research has been carried out on a variety of topics at the intersection
of privacy, game theory and mechanism design. One fruitful line of inquiry has considered
market-based mechanism design, focusing on applying pricing or auctions to collect data
from privacy-sensitive users. For example, Wang et al. (2016) study how a monopoly
initiator engages in price discrimination during data collection to keep users’ identities
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private. Li et al. (2014) propose a theoretical framework for assigning prices to users’
answers based on their accuracy. Ho et al. (2016) design a monetary contract to collect
high-quality data. Other work studies how to prevent unnecessary information about bids
(such as users’ actions, political preferences or social connections) from being leaked in
an auction (e.g., Brandt & Sandholm, 2008; Feigenbaum et al., 2010; Gao et al., 2016;
Krause & Horvitz, 2010). There has also been work that incentivizes users to report their
personal data truthfully by designing appropriate mechanisms (Kamar & Horvitz, 2012;
Jain et al., 2018). All the above studies assume that revealing data to an initiator does not
incur privacy costs to users. However, in practice, users may consider themselves suffering
privacy losses when sharing their data (Gradwohl, 2017). Furthermore, an experimental
study by Huberman, Adar, and Fine (2005) shows that users have diverse evaluations for
their privacy losses and each user’s evaluation is his private information which is unknown
to the initiator.

An alternative approach to collecting data from users is to use differential privacy mech-
anisms. For example, the Chrome web browser uses RAPPOR (Erlingsson et al., 2014), a
differentially private mechanism, to track the distribution of users’ browser configuration
behaviour while protecting users’ privacy. Apple deploys local differential privacy in its
iOS system for collecting their users’ emoji usage data (Apple, 2017b). The basic ideas
of these differentially private mechanisms are the same, i.e., adding statistical noise to a
user’s individual data before this data is shared with Chrome or Apple. The differences
come from the added noise level. Kifer and Machanavajjhala (2014) propose Pufferfish to
protect users under correlated data evolution scenarios. There is also a related literature
on providing various tasks with a certain level of differential privacy (see Dwork, 2008, for
a detailed survey). However, what has been almost entirely missing is any normative guid-
ance for balancing the tradeoff between incentivization of individuals’ participation and an
initiator’s computational accuracy. Therefore, our paper proposes to answer this question
of how the reward should be chosen to incentivize users’ participation, while maximizing
the initiator’s payoff. Here, the initiator’s payoff is defined as the difference between the
payments made to the participants and the initiator’s computational accuracy.

Several papers do study the conflict between users’ participation that are affected by
differential privacy and an initiator’s computational accuracy by using Stackelberg games
(see Zhu & Rass, 2018, for a detailed survey). For example, Shokri et al. (2012) formulate
a game for preserving location privacy. In this game, after participating users choose the
noise level added to their location, the initiator chooses the optimal way to reconstruct each
user’s location. In contrast, Pawlick and Zhu (2016) let the initiator choose a level of privacy
protection first and users simultaneously make participation decision as well as choosing the
added noise levels later. Dunyak and Zhu (2018) let the initiator decide privacy protection
level and users react to privacy promises as Stackelberg followers. Liao et al. (2018) address
the conflict issue by formulating a two-stage Stackelberg game where the initiator selects
participants first and users respond by choosing appropriate levels of differential privacy.
However, none of this work discusses the impact of payment and network effects on users’
participating decisions and the initiator’s payoff.

Closest to our work is the recent literature on modeling and designing mechanisms for
computation in settings where a user’s data is sensitive and sharing it incurs a privacy loss
cost that should be compensated for (e.g., Ghosh & Roth, 2015; Yang et al., 2018; Zhang
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et al., 2016, 2018; Jin et al., 2018). In such settings, users’ evaluations for their privacy loss
are independent of the actual data they have and whether they report this truthfully. The
initiator typically aims to compensate users for their costs incurred by the privacy losses
so that she can attract sufficient participants to improve her computational accuracy. As a
user’s cost for the privacy loss is his private information, the existing literature proposes a
number of different mechanisms to elicit this information and designs appropriate rewards
based on the elicited information to maximize the initiator’s payoff. For example, Ghosh and
Roth (2015) propose an auction-based mechanism, called MinCostAuction, to learn every
user’s privacy loss cost and then tailor payments based on the elicited values to incentivize
sufficient participants to produce accurate results with a minimum possible cost. Zhang et
al. (2018) apply contract theory to elicit every potential user’s evaluation for his privacy loss
and incentivize all potential users to participate. Based on the elicited result, the initiator
negotiates with every user regarding the noise level added to the user’s contributing data
and the corresponding payment so that her payoff can be maximized. Their solution is called
REAP. However, in crowdsourcing applications, an initiator usually recruits thousands of
users (Nath & Narayanaswamy, 2014; Jain et al., 2016) so it would be very costly to
negotiate compensation individually with each of them. Furthermore, in practice, a user
may be unable to state a quantitative privacy loss but is usually able to say whether or not
he is willing to share his data (Ghosh & Kleinberg, 2014). Thus, the above mechanisms are
not easily implemented in practical crowdsourcing systems. Nevertheless, MinCostAuction
and REAP provide a good basis for benchmarking our proposed mechanism (see Section
7.1 for more details), as they provide efficient solutions for the same problem as this paper.

Finally, our model is also related to the literature that studies network effects. For
example, Levit et al. (2018) study the impact of network effects on users’ actions and
social welfare. Ghosh and Ligett (2013) show how users make their participation decisions
considering the network effect. Gradwohl (2017) analyzes the relationship between the
network effect and users’ privacy revealing risk. Tembine et al. (2009) formulate users’
interactions as a population game and study the impact of the network effect on users’
participation decisions. Manshaei et al. (2008) analyze a population game to show how
users subscribe to a wireless access provider. However, all of these studies focus solely
on interactions among different users without considering the initiator’s payment scheme
and how the network effect affects the payment strategy of the initiator when she needs to
balance the computational accuracy and the cost. Thus, they cannot help the initiator to
maximize her payoff. Some operations management and marketing science literature (e.g.,
Candogan et al., 2010; Lin & Lu, 2011; Ajorlou et al., 2016; Luo et al., 2016; Chen et al.,
2016a; Nair et al., 2015). does study the impact of network effects on an initiator’s payment
strategy. However, they focus on a public goods setting which does not require an initiator
to make a computation on a collected dataset and they do not consider providing privacy
protection to participants.

3. A Two-Stage Stackelberg Game for Crowdsourcing Systems

We consider a setting where an initiator wants to learn and publish some statistic about
the population. Learning the average rating for a movie and knowing the average number
of people whose income is above 50K US dollars in a certain area are two examples. The
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initiator will conduct a survey that asks a set N = {1, 2, . . . , N} of N users and gives a
participating user a reward π. Users choose whether or not to contribute their data to the
initiator. We let n ≤ N denote the number of actual participants in this survey.

3.1 The Initiator

Given that there are n participating users, the initiator has a database D ∈ {0, 1}n with
each entry of d ∈ {0, 1} corresponding to some private information for a user4, e.g., his
attitude towards a movie (good or bad) or his wealth (exceeding 50K dollars or not). The
initiator computes the average of the dataset5, i.e., g : Rn → R with g(D) = 1

n

∑n
j=1 dj and

publishes the computational result in a differentially private way to preserve the privacy
of all participants. In more detail, let L : Rn × Ω → R denote the mechanism that the
initiator adopts to compute and publish the mean of the population, where Ω denotes the
sample space of noise added to the computational result g(D), which is the set of all possible
outcomes of the noise. Specifically,

L(D) = g(D) + w, (1)

where the added noise w is drawn from the Laplace distribution Lap(0, 1/ε) with mean zero
and standard deviation

√
2/ε. We can view 1/ε as the noise level added to the computational

result6. Then we can check that L supports ε/n-differential privacy (Dwork et al., 2006).
Specifically, for any two neighbouring pairs of datasets D and D′ where the dataset D
includes the private data of user j ∈ N and the dataset D′ does not, we have the following
result given the number of actual participants n and any possible computational result
α based on the calculation of the dataset (e.g., a movie rating calculated based on all
participants’ attitudes towards this movie or the average number of people whose income
is above 50K US dollars in a country):

Pr[L(D) = α] ≤ eε/nPr[L(D′) = α]. (2)

Based on (2), the differential privacy guarantee states that the probability that any output
of mechanism L will be within an eε/n multiplicative factor whether or not a user’s private
data is included in the computational dataset. In particular, the parameter ε/n controls
how much the distribution of the published computational result depends on data from a
user7. We denote ε/n as a user’s privacy revealing risk. This is because with an increase of

4. We focus on binary private information for analytical convenience. We only need to revise the worst
failure probability discussed in equation (3) to deal with the more general case.

5. For analytical convenience, we assume the initiator wants to learn the mean of a population. Relaxing
to learn other statistics of a population does not change our main insights (Zhang et al., 2016; Ghosh &
Ligett, 2013).

6. We add random noise with Laplacian distribution for analytical convenience. Adding random noise with
other distributions such as Gaussian or binomial distribution does not change our main results (Dwork
et al., 2006; Geng & Viswanath, 2014).

7. We assume that the accuracy of the initiator’s computational result depends only on the number, rather
than the specific subset, of users that contribute their private data. This is a standard assumption
(Ghosh & Roth, 2015; Zhang et al., 2018; Ghosh & Ligett, 2013; Jin et al., 2015) and holds in settings
where no particular data is more or less incriminating than another, such as collecting data regarding
watching movie behaviour, mobile applications for traffic monitoring, or polls in online communities.
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ε/n, the difference between two neighbouring databases increases. In such cases, it is easier
to identify whether a user’s private data is included in the computational dataset.

We assume that the value of ε is an exogenous variable8 and the initiator will notify the
users of this value. We can also see that a user’s privacy revealing risk ε/n decreases as the
value of 1/ε (i.e., the noise level added to the published computational result) increases.

The initiator’s main concern is the accuracy of the published computational result with
respect to the true mean of the entire population. We assume that the true mean of the
target population is µ (e.g., the average percentage of people in London who think the
movie Dunkirk is good and the millionaire ratio in New York). Let function A be a measure
of accuracy. In general, there are several choices of what A can measure, e.g., average error
(Chatzikokolakis et al., 2014), estimation distortion (Yang et al., 2018) and regularized
empirical error (Ligett et al., 2017). As users’ contributed data and added noise level are
all random variables and the initiator has little information about the users’ contributed
data, we can only use a probability bounds analysis to quantify the uncertainties of various
random variables. Such a quantitative calculation allows us to characterize the strategies
of the initiator and users. In more detail, let A : R+ × R+ × R+ → R+ measure the upper
bound of the failure probability (i.e., Pr

[∣∣g(D) +w−µ
∣∣ ≥ T ] given the fixed error T ). We

call this the worst failure probability9. By applying the Chernoff bound, we have (Hoeffding,
1994)

A(n, T, ε) = 2 exp

(
−nT

2

12

)
+ exp

(
−Tε

2

)
. (3)

We assume that the initiator’s utility, when she has perfect accuracy (i.e., her published
computational result is the same as the true mean), is zero. Let v denote the monetary
punishment to the initiator when she fails (i.e., the difference between her published com-
putational result and the true mean of the population is larger than the desired error T ).
Then, the initiator’s expected utility is −v ·A(n, T, ε). Correspondingly, the expected payoff
of the initiator U in : R+ × R+ × R+ × R+ × R+ → R is defined as the difference between
her utility obtained from the computation and the monetary payments to all participating
users (Krause & Horvitz, 2010)

U in(v, n, T, ε, π) = −v ·A(n, T, ε)− π · n. (4)

3.2 The Users

After knowing the noise level 1/ε added to the computational result and the payment π, each
user decides whether to participate in a particular survey based on his payoff. We denote

8. The value of ε depends on the circumstances of the data collection process. Experimental evaluations
of differential privacy typically pick a value ranging from 0.01 to 10 (see Table 1 in Hsu et al., 2014).
However, widespread practice assumes that the value of ε in computing the average of the dataset should
not be larger than 7 (Machanavajjhala et al., 2008).

9. Given a users’ contributed dataset, the true mean of the target population and the mean value of the
noise level, we can use numerical methods to calculate the empirical values of Pr

[∣∣g(D) + w − µ
∣∣ ≥ T

]
.

We refer to the value of Pr
[∣∣g(D) +w− µ

∣∣ ≥ T
]

as the failure probability. The detailed result is shown
in Section 7.
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the choice of user j ∈ N as `j ∈ {0, 1}, where `j = 1 if he participates and `j = 0 otherwise.
Let θj denote user j’s privacy sensitivity. Recall that a user’s privacy revealing risk is ε/n
given there are n participants. A type-θj user’s evaluation for his privacy revealing risk (i.e.,
privacy loss) is θj · εn . We define the payoff of user j as the difference between the payment
he received from the initiator and his privacy loss (Jin et al., 2016; Ghosh & Kleinberg,
2014). In particular, given the same privacy revealing risk ε/n, a highly privacy-sensitive
user with a high value of θj would consider himself suffering a high privacy loss. For a
type-θj user, his payoff Uue : R+ × R+ × R+ × R+ → R is

Uue(π, θj , ε, n) =

π − θj ·
ε

n
, if `j = 1,

0, if `j = 0,
(5)

Note that different users may have a different value of θ (Huberman et al., 2005), i.e.,
users are heterogeneous in terms of θ. Thus, we assume that the users’ privacy sensitivities
follow a probability distribution whose probability density function (p.d.f.) h is strictly
positive and continuous on [0, θ̄] for some θ̄ > 0. Note that a user with θ = 0 does not care
about his privacy. For completeness of definition, we have h(θ) = 0 for all θ /∈ [0, θ̄]. The

cumulative distribution function (c.d.f.) is given by H(θ) =
∫ θ
−∞ h(y)dy for all θ ∈ R.

As can be seen, different numbers of participating users result in a difference of a user’s
privacy revealing risk and a type-θj user’s privacy revealing risk (i.e., θj · εn) decreases with
the number of participants n. Thus, we can have the following observation: a user’s partic-
ipation decision is affected by the network effect. Specifically, the more users participating
in a survey, the lower the privacy revealing risk faced by an individual participant and
therefore the more users should be willing to participate in the survey.

Note that without considering the network effect, a user considers his privacy revealing
risk is ε which is independent of the number of participants and is estimated based on
the noise level announced by the initiator only. Thus, his payoff is given in the following
equation:

Uue(π, θj , ε) =

{
π − θj · ε, if `j = 1,

0, if `j = 0,
(6)

3.3 The Two-Stage Stackelberg Game

Based on the above discussion, a user’s participation decision depends on the payment
announced by the initiator. Thus, we can formulate the interactions between the initiator
and the users as a two-stage Stackelberg game as discussed previously. Specifically, in Stage
I, the initiator determines the payment π given the noise level 1/ε, the number of potential
users N , and the desired error T . In Stage II, users decide to participate in the survey or not
based on the payment announced by the initiator at Stage I and the network effect brought
by other users’ participation decisions. We will study this two-stage game by backward
induction. Namely, we first study the users’ participation behaviours in Stage II (Section
4), then based on the participation analysis we study the initiator’s optimal pricing decision
that maximizes her expected payoff in Stage I (Section 5).
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4. The Users’ Best Strategies

In this section, given the payment specified by the initiator in Stage I, we study strategies of
users who are self-interested and participate only when participation brings a non-negative
payoff. As shown in (5), a user’s payoff varies with the number of participants so we will
formulate the interaction among users as a population game and study the existence and
uniqueness of an equilibrium in this game. Before explaining this population game, we
begin by defining one standard term that is used for defining population games.

Definition 1. Consider a population of individuals that can use a set of pure strategies, `.
A social state is a vector x that gives a mass of users x` with which each strategy ` ∈ ` is
played in the population (Sandholm, 2010).

In our model, each user can choose to participate (` = 1) or not (` = 0), i.e., ` = {1, 0}.
Then, the social state is x = (x1, x0), where x1 represents the mass of users choosing ` = 1
and x0 = 1−x1 denotes the mass of users choosing ` = 0. Now we can define the Population
Game formally as follows.

Definition 2. [Population Game]

• Players: Potential users in the set N with different privacy sensitivities;

• Strategies: The user j ∈ N ’s strategy is his participation decision `j ∈ `;

• Social State: x = (x1, x0);

• Payoffs: The users’ payoffs are defined in (5).

In this game, a type-θj user’s optimal strategy (i.e., best response) `∗j is the strategy in
` that is optimal at each social state x (Sandholm, 2010), i.e., the strategy that maximizes
the user’s payoff defined in (5). Formally, we define the Nash equilibrium (NE) of the
population game as follows.

Definition 3. A social state x∗ = (x∗1, x
∗
0) is a Nash equilibrium if each user chooses a best

response to this state and no user can improve his payoff by deviating from his best response
`∗j to a different response `j.

To find and study the Nash equilibrium, we first need to analyze users’ best responses.
As each user will form a belief on the number of participants when he makes a participation
decision, we construct and analyze a dynamic model that specifies how users form their
beliefs and make decisions. In more detail, we introduce a virtual discrete time system
with time periods indexed t = 1, 2, . . ., where user j makes his participation decision at
the beginning of slot t, based on his belief of the number of participants at the end of the
previous time slot10.

10. Note that each user makes this participation decision only once (because a crowdsourcing system only
allows a user to share his data once in order to avoid duplicate data) and it is independent of anyone else
(because users are anonymous in crowdsourcing systems and do not know other users’ identities). The
main purpose of introducing the virtual discrete time system is to characterize the relation between the
payment and the number of participants, and to facilitate the calculation of the initiator’s optimal pricing
strategy later. Such an analysis technique is commonplace in the existing literature, e.g., Manshaei et al.
(2008); Ren and Van der Schaar (2012); Luo et al. (2016).
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Note that the population game assumes that all users have the same belief of the mass
of participants and the number of participants at the same time slot. This is a standard
assumption (Sandholm, 2010) and holds in many practical crowdsourcing settings as an
initiator often updates the number of participants in real-time and publicizes this number
in the systems (e.g., Netflix, QuestionPro and SurveyMonkey).

Let xt−1
1 denote the users’ common belief of the mass of participants at the end of slot

t − 1. We also let function f : [0, 1] × R+ → R+ characterize the number of participants
that the users believe at time t. For a user who knows the number of potential users except
himself is N − 1 and believes the mass of participants at the end of slot t − 1 is xt−1

1 , the
number of participants that this user believes at time t is f(xt−1

1 , N) = xt−1
1 · (N − 1).

Let a user’s privacy sensitivity be θ. Then this user participates at slot t if and only if
π ≥ θ · ε

f(xt−1
1 ,N)+1

. That is, only those users with a privacy sensitivity smaller than or

equal to
π·[f(xt−1

1 ,N)+1]
ε will participate at slot t. Let function g : [0, 1]→ [0, 1] characterize

the mass of participants in time slot t given the participant fraction in the previous slot
t−1. Recall that the c.d.f. of user’s privacy sensitivity is H. Then, the mass of participants
evolves following a sequence {xt1}∞t=0 in [0, 1] generated by

xt1 = g(xt−1
1 ) = H

(
π · [f(xt−1

1 , N) + 1]

ε

)
(7)

for t = 1, 2, . . ., starting from a given initial point x0
1 ∈ [0, 1]. Note that the payment π is

fixed over time. Given the user participation dynamics (7), we are interested in whether
the mass of participants will stabilize in the long run and, if so, to what value.

Let ∆x be the change of participant mass between two successive time slots, e.g., t− 1
and t, that is

∆x(xt−1
1 ) = xt1 − xt−1

1 . (8)

Obviously, if ∆x is zero in slot t, i.e., xt1 = xt−1
1 , then users will not change their participa-

tion strategies in the future and the mass of participants remains the same from that time
slot on. Thus, this user participation dynamic system reaches an equilibrium. Formally,

Proposition 1. A social state x∗ = (x∗1, x
∗
0) where x∗1 +x∗0 = 1 is a Nash equilibrium if and

only if

∆x(x∗1) = H

(
π · [f(x∗1, N) + 1]

ε

)
− x∗1 = 0. (9)

We provide the detailed proof of Proposition 1 in Appendix A. Notice that under a
fixed payment π, (9) can have multiple solutions, which results in different Nash equilibria.
In such cases, there are a number of strategies that do equally well in the population and
the population could drift in the direction of their other strategies and their corresponding
Nash equilibrium. In more detail, we illustrate the dynamics of social state in Figure 1.
The blue line denotes the isoline of ∆x = 0 and the red line denotes the line of x1 +x0 = 1.
By Proposition 1, the intersections between the blue curve and the red line are the Nash
equilibria. The black arrows denote the social state changing directions at any given social
state.
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Figure 1: Dynamics of the social state x = (x1, x0). From the initial social state x0
1 =

(0.4, 0.6), the social state will gradually evolve to x1
1, x2

1, . . ., and eventually
achieve the equilibrium x∗1 located in the top-left corner. From the initial social
state x0

3 = (0.6, 0.4), the social state will evolve to the equilibrium x∗3 located in
the bottom-right corner.

We let x∗m,∀m ∈ {1, 2, . . . ,M} denote the m-th Nash equilibrium in a population
game, where M denotes the number of Nash equilibrium in this game. Moreover, for
m ∈ {1, 2, . . . ,M}, let x0

m represent the initial social state before the social state eventually
achieves the equilibrium x∗m. We use xtm, t = 1, 2, . . . to show the social state at time slot
t given the initial social state x0

m. Thus, from the initial social state x0
m, the social state

will evolve by following the path x1
m,x

2
m, . . . and eventually achieve the equilibrium x∗m.

In this example, given π = 0.16 and 1/ε = 0.1, there are three equilibrium points x∗1, x∗2
and x∗3, and which will eventually emerge depends on the initial social state. For example,
from the initial social state x0

1 = {0.4, 0.6}, the social state will change following the route
x0

1 → x1
1 → x2

1 → . . . → x∗1 as shown by the dashed arrow. From the initial social state
x0

3 = {0.6, 0.4}, the social state will follow the route x0
3 → x1

3 → x2
3 → . . .→ x∗3. Note that

no initial social state other than x∗2 = {0.53, 0.42} will converge to the Nash equilibrium x∗2.
In fact, the equilibria x∗1 and x∗3 are stable in the sense that a small fluctuation around these
equilibria will not drive the social state away from the equilibrium, while x∗2 is unstable as
a tiny fluctuation on this equilibrium will drive the social state to a different value.

We formalize the stability of the Nash Equilibrium in the next two results.

Definition 4. An equilibrium is stable (also called an evolutionarily stable state) if it is not
affected by any small fluctuation around it (Sandholm, 2010).

The stable equilibrium characterizes the robustness of an equilibrium to a small change
in social state. Studying the stability of an equilibrium is important as it begs the questions
of how equilibrium is established in the first place and whether this equilibrium will persist
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in the face of occasional small disturbances in behaviour. We characterize the uniqueness of
the stable Nash equilibrium in the following proposition and theorem. The detailed proofs
of all theorems and propositions are given in the appendices.

Proposition 2. For the given number of potential users N ≥ 1 and any payment π, there
exists a unique stable Nash equilibrium if

max
x1∈[0.1]

df(x1, N)/dx1

f(x1, N) + 1
<

1

K
, (10)

where K = maxθ∈[0,θ̄] h(θ)θ.

Notice that condition (10) is sufficient but not necessary for uniqueness. In particular,
we observe through numerical simulations that in some cases (e.g., θ ∼ U(0, 1) or θ ∼
Beta(5, 2)), there still exists a unique stable Nash equilibrium for any payment π although
the condition (10) is violated. Nevertheless, the condition in (10) leads to the insight
that if the number of participants that a user believes does not grow too rapidly (i.e.,
K · df(x1, N)/dx1 is smaller than f(x1, N) + 1 for any x1 ∈ [0, 1] ), there exists a unique
stable Nash equilibrium.

Suppose the uniqueness condition in Proposition 2 is satisfied. Then based on the opti-
mal participant mass x∗1 derived from (9), we characterize the unique stable Nash equilibrium
by the following theorem11.

Theorem 1. For any payment π and noise level 1/ε, the unique stable Nash equilibrium is
given by

(a) If πN/ε ≥ θ̄, there is a unique Nash equilibrium x∗ = (1, 0), where the number of
participants is

n = N, (11)

and each user’s best response is

`∗j = 1, ∀j ∈ N . (12)

(b) If πN/ε < θ̄, there is a unique Nash equilibrium x∗ = (x∗1, 1− x∗1), where the mass of
participants x1 is the solution of

H

(
π · [x1 · (N − 1) + 1]

ε

)
− x1 = 0, (13)

11. Note that the uniqueness condition in Proposition 2 guarantees the existence of the unique stable Nash
equilibrium and allows us to theoretically solve the optimal payment that maximizes the initiator’s
expected payoff as we will discuss in Section 5. If the assumption in Proposition 2 is violated, as long
as a unique stable Nash equilibrium exists for any payment (e.g., the p.d.f. of θ is uniformly distributed
in [0,1] or θ ∼ Beta(5, 2)), we can still find the unique stable Nash equilibrium based on Theorem 1.
As discussed in Section 1 and as we show in Section 5, it is practically impossible to find the optimal
payment that maximizes the initiator’s expected payoff if there exists multiple stable Nash equilibrium.
This is because the payment strategy couples with the privacy guarantee level and all potential users’
strategies.
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the number of participants is n = [x∗1 · (N − 1) + 1] and each user’s best response is

`∗j =

{
1, if θj ≤ θ∗,
0, otherwise,

(14)

where θ∗ =
π·[x∗1·(N−1)+1]

ε is a unique privacy sensitivity threshold.

The detailed proof of Theorem 1 is given in Appendix C. In practical terms, this means
that if the initiator’s payment is not less than the privacy loss of the user with the highest
privacy sensitivity, a user should participate irrespective of his own privacy sensitivity.
Otherwise, only users with low privacy sensitivities should join.

5. Maximizing the Initiator’s Payoff

In this section, we study the optimal payment strategy for the initiator to maximize her
expected payoff, based on the Nash equilibrium analysis in the previous section.

Based on Theorem 1, we can rewrite the initiator’s expected payoff as

U in(π) = −2v exp

(
−n
∗T 2

12

)
− v exp

(
−Tε

2

)
− π · n∗. (15)

Recall that the number of participants depends on the payment π. Directly solving the
optimal payment that maximizes (15) is challenging, due to the difficulty in analytically
characterizing the impact of the initiator’s payment on the number of participants and the
initiator’s expected payoff. To this end, we transform the original payment maximization
problem into an equivalent threshold maximization problem. The key insight is to view
the privacy sensitivity θ as the initiator’s strategy and the payment as a function of the
threshold. With such a transformation, the initiator’s expected payoff is a function of the
threshold, which allows us to characterize the property of the initiator’s expected payoff
analytically.

As Theorem 1 guarantees the uniqueness of the privacy sensitivity threshold θ, there
is a one-to-one correspondence between the optimal privacy sensitivity threshold θ and the
payment π. In this sense, once the initiator chooses the payment π, she has equivalently
determined the privacy sensitivity threshold θ. And any user j ∈ N with privacy sensitivity
θj not larger than this threshold θ will join the survey. Hence, we obtain the equivalent
threshold maximization problem, where the strategy of the initiator is the privacy sensitivity
threshold θ, and the payment π is the function of the threshold θ.

Based on Theorem 1, we can derive the payment and the number of participants as the
functions of the threshold θ, i.e.,

π =
εθ

(N − 1)H(θ) + 1
, (16)

n = (N − 1)H(θ) + 1. (17)
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Accordingly, the expected payoff of the initiator can be written as

U in(θ) = −2v exp

(
− [(N − 1)H(θ) + 1]T 2

12

)
− v exp

(
−Tε

2

)
− εθ. (18)

We first show the equivalence between the payment maximization problem and the
threshold maximization problem.

Proposition 3. If θ∗ is an optimal solution of (18), then π∗, calculated by substituting θ∗

into (16), is an optimal solution of (15).

As per Proposition 3, we can focus on finding the optimal solution of (18). It is clear
that a solution θ∗ ∈ [0, θ̄] that maximizes (18) exists as the constraint set (i.e., θ ∈ [0, θ̄]) is
compact and the objective function (i.e., U in(θ)) is continuous.

By taking the second order derivative of (18) with respect to θ, we have

d2Ũ in(θ)

dθ2
=
vT 2

6
(N − 1) exp

(
− [(N − 1)H(θ) + 1]T 2

12

)
·
[

dh(θ)

dθ
− [h(θ)]2

(N − 1)T 2

12

]
. (19)

We can easily check that d2Ũ in(θ)/dθ2 < 0 if dh(θ)/dθ ≤ 0 for any θ ∈ [0, θ̄]. This means
if the p.d.f. h of a user’s privacy sensitivity is a monotonic non-increasing function, such as a
uniform or exponential distribution, the initiator’s expected payoff in (18) is strictly concave
in θ ∈ [0, θ̄] and there exists a unique solution that maximizes the initiator’s expected payoff
defined in (18). In such cases, we can obtain the optimal privacy sensitivity threshold θ∗

(i.e., the optimal solution of (18)) by using the following equation:

dŨ in(θ)

dθ
=
vT 2

6
(N − 1)h(θ) exp

(
− [(N − 1)H(θ) + 1]T 2

12

)
− ε. (20)

Recall that the value of noise level 1/ε is [0,+∞]. By using (20), we obtain the op-
timal value of θ∗ in Theorem 2 and π∗ in Theorem 3 given the p.d.f. h is a monotonic
non-increasing function for any θ ∈ [0, θ̄]. The proofs are given in Appendix E and F,
respectively.

Theorem 2. Suppose the p.d.f. h is monotonic and non-increasing in [0, θ̄]. Then, there
exists a unique optimal solution θ∗ for the initiator, where for

(a) low noise level: 1/ε ≤ 1/[vT
2

6 (N − 1)h(0) exp(−T 2

12 )] the optimal threshold is θ∗ = 0
and only users with privacy sensitivity θ = 0 will participate.

(b) medium noise level: 1/[vT
2

6 (N−1)h(0) exp(−T 2

12 )] < 1/ε < 1/[vT
2

6 (N−1)h(θ̄) exp(−NT 2

12 )],
the optimal threshold θ∗ satisfies

vT 2

6
(N − 1)h(θ) · exp

(
− [(N − 1)H(θ) + 1]T 2

12

)
− ε = 0. (21)

and users with privacy sensitivity θ ≤ θ∗ will participate.
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(c) high noise level: 1/ε ≥ 1/[vT
2

6 (N − 1)h(θ̄) exp(−NT 2

12 )], the optimal threshold θ∗ = θ̄
and all the potential users will participate.

Based on Proposition 3 and Theorem 2, we obtain the following theorem to characterize
the optimal payment.

Theorem 3. Suppose the p.d.f. h is monotonic and non-increasing in [0, θ̄]. Then, there
exists a unique optimal solution π∗ for the initiator, where for

(a) low noise level: 1
ε ≤ 1/[vT

2

6 (N − 1)h(0) exp(−T 2

12 )], the optimal payment is

π∗ = 0; (22)

(b) medium noise level: 1/[vT
2

6 (N−1)h(0) exp(−T 2

12 )] < 1
ε < 1/[vT

2

6 (N−1)h(θ̄) exp(−NT 2

12 )],
the optimal payment is

π∗ =
εθ∗

(N − 1)H(θ∗) + 1
, (23)

where θ∗ is the optimal solution of (21).

(c) high noise level: 1
ε ≥ 1/[vT

2

6 (N − 1)h(θ̄) exp(−NT 2

12 )], the optimal payment is

π∗ = εθ̄/N. (24)

Theorem 3 implies that the initiator’s optimal payment increases with the noise level,
given the p.d.f. h is a monotonic non-increasing function for any θ ∈ [0, θ̄]. As different
added noise levels affect the initiator’s computational accuracy, Theorem 3 helps the initia-
tor to achieve a good tradeoff between the computational accuracy and her total payment.
In more detail, we have the following propositions to characterize the relationship between
the initiator’s payment π∗ and the added noise level, given the p.d.f. h is a monotonic
non-increasing function for any θ ∈ [0, θ̄].

Proposition 4. Suppose the p.d.f. h is monotonic and non-increasing in [0, θ̄]. Then with

a low noise level, i.e., 1/ε ≤ 1/[vT
2

6 (N − 1)h(0) exp(−T 2

12 )], the optimal payment π∗ is zero
and only users with no privacy sensitivity will join the survey.

Intuitively, it is easier to infer the true computational result g(D) from the published
computational result L(D) in the low noise setting than in the high noise one. With a
decrease in the added noise level 1/ε, a user’s privacy revealing risk ε/n increases, which
prevents users from participating in the survey. In such cases, the initiator needs to pay a
large amount of money to incentivize users to participate. However, when the noise level
is too low, i.e., 1/ε ≤ 1/[vT

2

6 (N − 1)h(0) exp(−T 2

12 )], the benefit regarding the accuracy
brought by incentivizing a large number of users to participate is smaller than the payment
made to the users. As the initiator’s goal is to maximize her expected payoff, she is willing
to give up the accuracy in return for a low cost.

Proposition 5. Suppose the p.d.f. h is monotonic and non-increasing in [0, θ̄]. Then

with a high noise level, i.e., 1/ε ≥ 1/[vT
2

6 (N − 1)h(θ̄) exp(−NT 2

12 )], the optimal payment π∗

decreases as the number of potential users N increases.
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Figure 2: Optimal payment with different noise levels 1/ε v.s. different numbers of potential
users when θ is uniformly distributed in [0, 1].

When the noise level is high, a user’s privacy revealing risk decreases and the initiator
can incentivize users to participate without paying too much. When the number of potential
users increases, the number of participants also increases given the same noise level and
payment. Due to the network effect, the more users participating in this survey, the more
difficult it is to identify whether a given user’s private data is included in the computational
dataset. This means more users are willing to participate and the initiator can decrease the
payment made to the users.

Proposition 6. Suppose the p.d.f. h is monotonic and non-increasing in [0, θ̄]. Then, with

a medium noise level, 1/[vT
2

6 (N−1)h(0) exp(−T 2

12 )] < 1/ε < 1/[vT
2

6 (N−1)h(θ̄) exp(−NT 2

12 )],
the relationship between the optimal payment π∗ and the noise level 1/ε depends on the value
of T and the functions of H and h. For example, when all users’ privacy sensitivities are
uniformly distributed in [0, 1], T = 0.4 and 1/ε = 1.33, the optimal payment π∗ increases
with the number of potential users when N ≤ 40, and decreases with the number of potential
users N when N > 40.

Proposition 6 reflects the impact of the network effect under a medium noise level. When
the number of potential users is not so large, e.g., N ≤ 40, the network effect’s benefit is less
obvious as the number of participants is small. Under a medium noise level, the initiator
has to increase the payment to incentivize as many participants as possible from the pool
of potential users to guarantee the accuracy. When the potential users’ number is large
enough, the network effect’s impact allows the initiator to decrease the payment without
jeopardizing the computational accuracy.

In more detail, Figure 2 shows the value of the optimal payment with different numbers
of potential users when T = 0.4 and a user’s privacy sensitivity θ is uniformly distributed
in [0, 1]. Note that the performance for other values of T are similar. We can see that
the payment is zero and independent of the number of potential users when the noise level
is low (i.e., 1/ε = 0.37) and the payment decreases with the number of potential users
when the noise level is high (i.e., 1/ε = 2.39), as discussed in Propositions 4 and 5. As

1143



Luo & Jennings

per Proposition 6, the payment first increases with the number of potential users and then
decreases with it when the noise level is medium (i.e., 1/ε = 1.35). The number of potential
users that determines the monotonicity of the payment is N = 40 as shown in Figure 2.

Note that Theorem 2, Theorem 3 and Propositions 4-6 only hold in a scenario where
the p.d.f. h of a user’s privacy sensitivity is monotonic and non-increasing on the interval
[0, θ̄], as such a function guarantees (18) has a unique solution. However, in practice, the
privacy sensitivities of users may follow other distributions, like log-normal or beta, which
result in multiple solutions that can maximize the initiator’s expected payoff defined in
(18). As the initiator’s expected payoff achieved in all these solutions is the same and the
purpose of the initiator is to use minimum cost to obtain high computational accuracy so
that her expected payoff is maximized, we have the following theorem.

Theorem 4 (Optimal Payment under Other Functions of h). Suppose the p.d.f. h is not
monotonic or non-increasing on the interval [0, θ̄]. Then, if there still exists a unique solu-
tion that maximizes the initiator’s payoff defined in (18), the initiator selects that solution
as the optimal θ∗ and the payment calculated by substituting θ∗ into (16) is the optimal
payment. Otherwise, the initiator selects the solution that achieves the minimum payment
as the optimal solution θ∗ and the payment calculated by substituting θ∗ into (16) is the
optimal payment.

Theorem 4 implies that we can still find the optimal payment that maximizes the ini-
tiator’s payoff under a general distribution. Thus, we can design a mechanism that works
under a general distribution of users’ privacy sensitivities.

6. The PINE Mechanism

Based on the analysis of our two-stage Stackelberg game in Sections 4 and 5, we present
the higher-level structure of the PINE mechanism in Algorithm 1, where N p denotes the
set of participating users.

As shown by the input in Algorithm 1, the payment announced by the initiator is cal-
culated based on Theorem 3 or 4 (depending on the p.d.f. h of a user’s privacy sensitivity).
Here, the value of the payment depends on the noise level 1/ε that is predetermined by
the initiator, the initiator’s targeted error T and the number of potential users N that
the initiator can ask to contribute data. Steps 2-8 show a type-θj user’s behaviour which is
characterized by Theorem 1. After collecting data from the participating users, the initiator
computes and publishes the average of the dataset as described in Section 3.1 and shown
by Steps 9-11.

We also characterize the properties of PINE in the following proposition.

Proposition 7. PINE is Individually Rationality (IR), exhibits ε/n-differential privacy
and maximizes the initiator’s payoff defined in (15).

Proposition 7 shows that PINE incentivizes users to participate as it satisfies the IR
condition. Meanwhile, PINE maximizes the initiator’s expected payoff (as shown by The-
orems 3 and 4), while providing all participants with a differential privacy guarantee (as
discussed in Section 3.2).
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Algorithm 1 PINE

Input: the noise level: 1/ε
the number of potential users: N
the target error: T
the payment: π %% if p.d.f. h is monotonic and non-increasing, then

%% calculate π based on Theorem 3, otherwise use
%% Theorem 4.

1: procedure
2: for user j ∈ N whose privacy sensitivity is θj ∈ [0, θ̄] do
3: if πN/ε ≥ θ̄ then
4: `j = 1, i.e., reporting data dj ∈ {0, 1} to the initiator;
5: else if πN/ε < θ̄ and θj ≤ θ∗ (the value of θ∗ is determined by Theorem 1) then
6: `j = 1, i.e., reporting data dj ∈ {0, 1} to the initiator;
7: else
8: `j = 0, i.e., not to participates.

9: Initiator computes the average of the dataset: g(D) = 1
|N p|

∑
j∈N p dj .

10: Initiator adds noise w to the computational result: L(D) = g(D) + w, where w ∼
Lap(0, 1/ε)

11: Initiator publishes the differentially private result L(D).

7. Empirical Evaluation

In this section, we conduct an empirical study to evaluate the performance of PINE. This
complements our theoretical analysis. In particular, the latter concentrates on how to
utilize the network effect to maximize the initiator’s expected payoff, while in this section
we are interested in quantifying the benefit of utilizing the network effect in terms of the
initiator’s expected payoff and how the number of potential users affects this benefit. We
first focus on synthetic data. This allows us to systematically control the properties of data
such as the distribution of the users’ privacy sensitivities, the accuracy of the users’ data
and the number of potential users so that the performance of PINE is solely affected by
the system parameters that we are interested in. However, as we are also interested in
real crowdsourcing settings, we then evaluate the performance of PINE on two real-world
data sets. Because movie rating and survey investigation are two of the most common
applications in crowdsourcing systems (Howe, 2008), we select standard data sets from
these domains. Specifically, we use the Netflix Prize Data Set (Narayanan & Shmatikov,
2008) and the census income data set (Dheeru & Karra Taniskidou, 2017).

Note that given a dataset (either synthetic or real-world), the true mean of the dataset
and the mean value of the added noise level, we can calculate the empirical values of
Pr
[∣∣g(D)+w−µ

∣∣ ≥ T ] which we refer to the failure probability. As the worst failure prob-
ability defined in (3) is the upper bound of failure probability, the value of failure probability
which depends on the users’ contributed data and the realized added noise level is a better
reflection of the performance of mechanisms in practical settings. Thus, we calculate the
expected payoff of the initiator in this section based on the following equation
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Ū in(v, n, T, w, µ, π) = −v · Pr
[∣∣g(D) + w − µ

∣∣ ≥ T ]− π · n. (25)

Compared with the initiator’s expected payoff defined in (4), the difference comes from
the initiator’s utility obtained from the computation which is calculated based on her fail-
ure probability instead of the worst failure probability.

In the following, we first describe the benchmarks (Section 7.1), then detail our results
using synthetic data (Section 7.2), before moving onto real-world data sets in Section 7.3.

7.1 Benchmarks

To evaluate PINE, we compare its performance to a number of benchmark methods:

1. Simple: Similar to PINE, except this mechanism does not consider the network effect
and results in an ε privacy revealing risk to a user that is independent of the number
of participants (see Appendix L).

2. REAP: As detailed in Section 2, REAP incentivizes all users and adds different noise
levels to users’ contributing data. The payment to a user is determined by all users’
privacy sensitivities that are elicited by the initiator from users. Although REAP
minimizes the initiator’s worst failure probability given a fixed budget, we revise it to
maximize the initiator’s expected payoff defined in (4) for a fair comparison12.

3. MinCostAuction: As detailed in Section 2, MinCostAuction determines the optimal
number of participants to minimize the total payment of the initiator given a target
error. Thus, for a fair comparison, we apply MinCostAuction by revising its payment
to an incentive for a subset of users’ participation so that the initiator’s expected payoff
defined in (4) is maximized. Furthermore, MinCostAuction requires the added noise
level to be 1/ε = T/(2 · ln(3)) to guarantee T -accuracy (i.e., the difference between
the initiator’s published computational result and the true value of the population is
less than T ). Thus, we also let the noise be 1/ε = T/(2 · ln(3)) in all our experiments.

7.2 Results in the Synthetic Data Settings

In this section, we study how much the initiator’s expected payoff (calculated based on
(25)) is affected by utilizing the network effect. We also study the impact of the number of
potential users N on the value of the network effect.

Throughout our simulations, let the number of potential users N range from13 50 to
250 and let these users’ data take the value 1 with probability 0.25 and the value 0 with
probability 0.75 (i.e., the true mean of the users’ contributed data is µ = 0.75). We run the
simulation 5000 times and randomly generate the users’ contributed data in each round.
We calculate the initiator’s failure probability and expected payoff based on the average

12. With such a revision, REAP aims to choose the optimal payment that maximizes the initiator’s expected
payoff, which is the same as the goal of PINE.

13. Recall that this is the number of users for an individual task, not all the people in the crowdsourcing
system. Even for real crowdsourcing systems, the number of users who perform each given task is
typically in this range (Hara et al., 2018; Difallah et al., 2018).
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Figure 3: (a) The expected payoff of the initiator and (b) the total payment of the initiator
vs. different numbers of potential users.

value in these 5000 runs. We also fix the monetary punishment v = 10, the initiator’s
target error T = 0.8 and the corresponding noise level 1/ε = T/(2 · ln(3)) = 0.36. To verify
the assumption in Theorem 3, we assume each user’s privacy sensitivity θ is uniformly
distributed in [0, 1]. Note that the p.d.f. of the uniform distribution is monotonic and
non-increasing so that we can calculate the optimal payment based on Theorem 3. As we
discussed in Section 4, there still exists a unique stable participation equilibrium for any
payment π when θ ∼ U(0, 1). Thus, we can obtain the number of participants based on
Theorem 1. In all of the graphics, the error bars are too small to be visible.

Figure 3.a illustrates the expected payoff of the initiator with different numbers of users.
Here, it can be seen that PINE outperforms the other three mechanisms by utilizing the
network effect. The improvement regarding the initiator’s expected payoff increases with
the number of potential users and is at least 50% when the number of potential users is small
(i.e., N = 50) and 75% when the number of potential users is large (i.e., N = 250). This is
because with the increase in the number of potential users, the benefit of the network effect
also increases. Hence, PINE can decrease the total payment (see Figure 3.b) to attract more
participants (see Figure 4.a). Meanwhile, the increased number of participants can lower
the failure probability (see Figure 4.b). The decreased payment and the failure probability
increase the initiator’s expected payoff. Figure 3.a also shows the expected payoff of the
initiator achieved by PINE is a concave function of the number of potential users due to
the diminishing marginal effect brought by the network effect.

In Figure 3.a, the Simple mechanism increase with the number of potential users N .
This is because two things happen when N increases: (i) more users are recruited to con-
tribute data, which reduces the initiator’s failure probability (see Figure 4.b) and (ii) the
initiator recruits more users with litter increasing in her payment (see Figures 3.a and 4.a).
MinCostAuction is independent of the number of potential users N as it does not incen-
tivize any user to participate. This is because the benefit regarding the accuracy brought
by incentivizing users to participate is smaller than the payment made to the users. As the
initiator’s goal is to maximize her expected payoff, she is willing to give up the accuracy in
return for a low cost.

Figure 3.a also shows that the performance of REAP decreases with the number of
potential users. This is because REAP incentivizes all users to participate so its total
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Figure 4: (a) The number of participants and (b) the failure probability vs. different num-
bers of potential users.

payment increases with the number of potential users (see Figure 3.b). Meanwhile, REAP
adds different noise levels to every user’s contributing data. With the increasing number of
participants, the data collected by the initiator contains more noise which makes it more
difficult for the initiator to infer the true mean. Thus, the failure probability of REAP
increases with the number of potential users (see Figure 4.b). With the increasing payment
and failure probability, the initiator’s expected payoff achieved by REAP decreases.

To conclude this section, we note that PINE outperforms other benchmarks by ef-
fectively utilizing network effects. The largest performance gain is achieved with a high
number of potential users, as the network effect increases with the number of participants
(see discussion in Section 3.2) and the latter depends on the number of potential users (see
Theorem 1 and 3). Thus, PINE is particularly beneficial for settings with a large number
of potential users.

7.3 Results in the Real-World Data Settings

While we have so far used synthetic data to show the impact of the number of potential users
on the performance of PINE, we now explore PINE’s performance in realistic settings. This
complements the synthetic data setting, because the mechanism has to cope with actual
behaviour rather than mathematically convenient assumptions.

Considering the Netflix data set first. We pick the movie with the most ratings from this
data set so that we can have the largest number of potential users (i.e., 581) from this data
set. Based on an experimental study by Huberman et al. (2005) on users’ general attitudes
towards privacy14, we assume 22% of participants are privacy fundamentalists who are
extremely concerned about any use of their data (i.e., their privacy sensitivities 0.78 < θj ≤
1), 48% are the pragmatic majority who are concerned about their data, but less so than the
fundamentalists (i.e., their privacy sensitivities are 0.3 < θj ≤ 0.78), 27% are marginally
concerned and generally willing to provide data (i.e., their privacy sensitivities are 0.03 <

14. In the experiment of Huberman et al. (2005), they collected 128 answers from users to the question
“How important to you is your personal privacy information” and clustered these users’ attitudes into
four types: Critical, Very Important, Somewhat Important and Not Important. As shown by Figure 3
in their paper, the price requested by users for sharing their information increases with their attitude
types. Thus, we need to pay more to users who value their privacy more.
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Figure 5: Density plot for different Beta distributions for generating θ: (a) θ ∼ Beta(5, 2)
and (b) θ ∼ Beta(0.5, 0.5).
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Figure 6: The expected payoff of the initiator vs. different numbers of potential users when
(a) θ ∼ Beta(5, 2) and (b) θ ∼ Beta(0.5, 0.5).

θj ≤ 0.3), and 3% do not really value their privacy (i.e., their privacy sensitivities 0 ≤ θj ≤
0.03). Thus, we put a Beta(5, 2) distribution for each user’s privacy sensitivity θ as shown in
Figure 5.a. To characterize the impact of θ’s distribution on the mechanisms’ performance,
we also evaluate the performance when θ follows a Beta(0.5, 0.5) distribution (shown in
Figure 5.b) where most users are either always willing (i.e., their privacy sensitivities are
0 ≤ θj ≤ 0.03) or reluctant (i.e., their privacy sensitivities are 0.9 < θj ≤ 1) to share their
data. By comparing Figure 5.a with Figure 5.b, we can see that these two distributions
show highly opposing distributions of users’ attitude towards privacy.

We can check that the sufficient condition in Proposition 2 is violated in the case where
θ ∼ Beta(5, 2) and θ ∼ Beta(0..5, 0.5) for any N > 1. However, our numerical simulations
show that there still exists a unique stable participation equilibrium. Thus, the number
of participants when θ follows these two distributions can be obtained based on Theorem
1. As the p.d.f. of Beta distribution is not monotonic and non-increasing, we obtain the
payment of the initiator based on Theorem 4.

In this setting, the movie’s true rating is the mean value of all the users’ ratings provided
by this data set (i.e., 581 ratings in total). The initiator estimates the movie’s rating by av-
eraging all participating users’ ratings. We run 5000 times in this simulation and randomly
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Figure 7: The number of participants vs. different numbers of potential users when (a)
θ ∼ Beta(5, 2) and (b) θ ∼ Beta(0.5, 0.5).

select N users out of the 581 users as potential users in each round and let each potential
user’s privacy sensitivity be randomly drawn from a beta distribution based on the exper-
imental study by Huberman et al. (2005). We calculate the initiator’s failure probability
based on the average value in these 5000 runs. We fix the monetary punishment v = 10, the
initiator’s target error T = 0.8 and the corresponding noise level 1/ε = T/(2 · ln(3)) = 0.36
for illustrative purpose (the results for other distributions and other values of T are broadly
similar).

Figure 6 illustrates the expected payoff of the initiator with different numbers of potential
users (N from 50 to 250) when (a) θ ∼ Beta(5, 2) and (b) θ ∼ Beta(0.5, 0.5). The error bars
in Figure 6 are too small to be visible. From both Figure 6.a and Figure 6.b, we can see that
PINE outperforms the three benchmark mechanisms and similar observations can be drawn
with those from the synthetic data in Section 7.2. By comparing Figure 6.a with Figure 6.b,
we can see the network effect has a higher impact on the initiator’s expected payoff when
θ ∼ Beta(5, 2) than when θ ∼ Beta(0.5, 0.5). This is because when θ ∼ Beta(5, 2), most
of the users are pragmatists whose concerns about privacy can be significantly reduced
by the presence of privacy protection measures. As PINE both adds noise to protect
participants’ privacy, as do the other three mechanisms, and utilizes the network effect to
provide users with further privacy protection, the mechanism can attract a large number
of users without increasing the payment significantly (see Figures 7.a and 8.a). However,
when θ ∼ Beta(0.5, 0.5), most users either do not care about their privacy (i.e., θ = 0) or
value their data extremely importantly (i.e., θ = 1). This means incentivizing users with
high privacy sensitivities is expensive, so PINE focuses on incentivizing users with a small
value of θ with a small amount of payment (see Figures 7.b and 8.b). However, among
these users, most of them have θ = 0 and so their participation strategies are independent
of their privacy revealing risk. Thus, the impact of the network effect is less obvious.

Figure 6 also shows that the Simple mechanism has a relatively better performance when
θ ∼ Beta(0.5, 0.5). This is because when θ ∼ Beta(0.5, 0.5), the number of users with a
small value of θ increases. Thus, the Simple mechanism can attract some participants with
quite a small amount of money (see Figures 7.b and 8.b). However, when θ ∼ Beta(5, 2),
as shown by Figure 5.a, most users have a median value of privacy sensitivity (i.e., θj ∈
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Figure 8: The total payment of the initiator vs. different numbers of potential users when
(a) θ ∼ Beta(5, 2) and (b) θ ∼ Beta(0.5, 0.5).
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Figure 9: The expected payoff of the initiator vs. different numbers of potential users based
on (a) a Nexflix data set and (b) a census income data set when θ ∼ Beta(5, 2).

[0.5, 0.9]). In such cases, the Simple mechanism needs to pay more to incentivize users to
participate (see Figure 8.a).

As the movie rating data set contains a medium number of ratings, we also want to
see if we obtain the same results on a larger data set and also from a different domain.
Thus, we turn to the census income data set (Dheeru & Karra Taniskidou, 2017) that
has 32561 instances. By comparing different mechanisms’ performance on these two data
sets, we can explore the impact of the data set on the initiator’s expected payoff. The
standard census income data set contains census income data extracted from the 1994
and 1995 current population surveys conducted by the U.S. Census Bureau. In particular,
each instance shows whether a participant’s income is below or above the 50K US dollars
level. The purpose of the initiator is to compute the percentage of people whose income
is above 50K US dollars based on this data set. Similar to our Netflix studies, the true
percentage is the mean value of all users’ responses provided by this data set (i.e., 32561
responses in total) and the initiator estimates the percentage of people by averaging all
participating users’ responses. We also run this simulation 5000 times and calculate the
initiator’s failure probability based on the average value in these 5000 runs. We put a
Beta(5, 2) distribution for each user’s privacy sensitivity θ to be consistent with our Netflix
studies and keep the other parameters the same.
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Figure 10: The failure probability vs. different numbers of potential users based on (a) a
Nexflix data set and (b) a census income data set when θ ∼ Beta(5, 2).

Figure 9 illustrates the expected payoff of the initiator with different numbers of potential
users (N from 50 to 250) based on (a) the Netflix data set and (b) the census income data
set. Comparing with these two figures, we can see that the impact of the number of potential
users on the initiator’s payoff (calculated based on (25)) are broadly similar. However, both
figures show that the impact of the network effect in the census data set is higher than that
in the Netflix income data set. This is because in the Netflix income data set, 90.8% of the
participants rate the movie as good. Thus, even the Simple mechanism which only attracts
a few participants does not result in a high failure probability (see Figure 10.a). Thus, even
though PINE can utilize the network effect to attract more participants without paying
too much, the benefit of reducing the failure probability is small. This means there is only
a small difference between PINE and the Simple mechanism.

Based on the real-world data, we can see that PINE consistently outperforms all three
benchmarks. However, the empirical evaluation on real-world data sets provides several
new insights. First, the performance gain by exploiting the network effect is particularly
strong when most potential users are pragmatists who are willing to provide data when the
initiator provides sufficient incentivization and some degree of privacy guarantee. Second,
although the benefit of utilizing the network effect degrades when the users’ contributed
data has high accuracy, PINE still outperforms existing benchmarks by decreasing the total
payment.

8. Conclusions

We have presented a new model that can be used to underpin the design of incentives for
crowdsourcing applications with privacy-sensitive users. Our mechanism utilizes network
effects to optimize the initiator’s payoff and provides all participating users with differential
privacy guarantees. Our analysis shows that with the network effect, a user’s privacy
revealing risk depends on the number of participants. Thus all potential users’ participation
decisions couple together and form a Population Game. By analyzing this population game,
we prove the existence and uniqueness of the equilibrium and show that it depends on the
privacy guarantee provided by the initiator, the reward provided by the initiator, and the
population size. Based on the equilibrium result, we design a novel mechanism, PINE, that
incentivizes appropriate numbers of participants to maximize the initiator’s payoff.
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Based on our theoretical results, we use synthetic data to systematically explore the
benefit of utilizing the network effect and study the impact of system parameters on the
performance of PINE. We show that utilizing the network effect can significantly improve
the initiator’s payoff compared to the state of the art mechanisms by up to 75%. Further-
more, the performance is particularly strong when the population size is large. To further
characterize the performance of PINE, we also apply it to two standard real-world data
sets. These results show that when most potential users are pragmatists whose concerns
about privacy can be significantly reduced by the presence of privacy protection measures
and users’ contributed data are less accurate, PINE can effectively exploit the network
effect to improve the initiator’s payoff.

More generally, this work is an important initial step towards a sound theoretical basis
for crowdsourcing systems which aim to improve their computational accuracy and provide
effective privacy protection for participants with minimum payment. Such guarantees are
likely to become increasingly important as people become ever more aware of the value
of their data. Although couched in terms of crowdsourcing, this work is applicable to
a wide range of applications that require users to send information to data aggregators
performing monitoring or control tasks (e.g., database-assisted TV white space networks,
cloud-computing systems and smart grid systems). In all of these systems, a data aggregator
(i.e., a database in a TV white space network, a data center in a cloud-computing system
and a concentrator in a smart grid system) acts like an initiator in our paper. They all
collect users’ data such as spectrum occupation, server usage and electricity consumption
and announce the computational result based on the collected dataset to help users make
their resource usage decisions such as accessing new spectrum, selecting a new server and
increasing the electricity consumption. As the collected data contains users’ private infor-
mation, privacy-sensitive users will be reluctant to share their data and the data aggregator
needs to incentivize them to contribute data with appropriate monetary reward. Due to
the similarity between these systems and the crowdsourcing systems we considered in this
paper, PINE could be used with minimal adaptation.

There are several possible directions to extend this work. First, as in common in the
literature, we assume that there is no correlation between a user’s evaluation for his privacy
loss and his private data. While this is justifiable in several online settings such as collecting
data regarding watching movie behaviour, mobile applications for traffic monitoring, or polls
in online communities, there are also several other settings where this assumption is unlikely
to hold. For example, consider a database of HIV status: value 1 corresponds to the data
owner having HIV, while value 0 means that he does not. Typically, users who have HIV
will set a much higher value on privacy of their value 1 than those who do not have HIV.
Another example is to consider a database indicating whether a motor vehicle has been
damaged. When the database can be publicly accessed, the owner of a damaged car cannot
sell the car for the same price as an equivalent undamaged car. Thus, his privacy evaluation
for revealing data is higher than the owner of an undamaged car. Exploring these settings
where a user’s evaluation for his privacy loss depends on his private data will lead to a
different formulation and result. Second, as is also common in the literature, we assume
that the noise level is an exogenous system parameter. Again, however, in some cases
this may not be appropriate. For example, the initiator may be able to adjust the value
of the noise level to improve her computational accuracy (Machanavajjhala et al., 2011).
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Hsu et al. (2014) have some preliminary results on how to choose ε without considering
the network effect. The detailed analysis for finding the optimal value of ε by considering
the network effect, however, is much more challenging. It involves the negotiation process
between the initiator and all users and requires the initiator to know private information of
users such as their data and their evaluations for their privacy loss. Third, we assume that
the initiator is a trusted entity to whom all the users send their private data once they have
decided to participate. However, PINE fails to guarantee that the initiator will not collude
with a third party for her own personal benefit (e.g., the initiator can sell this data to
advertisement companies to make profit) or due to legal commitments (e.g., a government
may force the initiator to reveal the private data). To date, there is no effective method
preventing the initiator from collusion. When an initiator is considered to be untrustworthy,
the existing study lets users contribute their randomized data instead of true data to the
initiator to protect users’ privacy (Jin et al., 2016). However, such a method will decrease
the computational accuracy of the initiator due to the randomness added to users’ data.
Thus, designing a mechanism to prevent this collusion without jeopardizing the benefits of
the initiator and users deserves careful study in future work.

Appendix A. Proof of Proposition 1

Recall that in (8), ∆x(xt1) = xt1 − x
t−1
1 . Once the value of ∆x(xt1) is zero in slot t, we have

xt1 = xt−1
1 which means that users will no longer change their participation strategies in the

future and the social state remains the same from that time slot onwards. This satisfies the
definition of Nash Equilibrium. Note that (7) shows the value of xt1 depends on the value
of xt−1

1 . Thus, by substituting (7) into (8) and setting (8) equal to zero, we get the result.

Appendix B. Proof of Proposition 2

Recall that x1 + x0 = 1 and the value of x1 evolves following a sequence that is generated
by (7). Thus, to prove the Nash equilibrium (x∗1, x

∗
0) is unique and stable, we only need

to show the sequence always converges to a unique fixed point irrespective of the starting
point. As shown by Bertsekas and Tsitsiklis (1989), given a contraction mapping T , the
update sequence generated by yt = T (yt−1), t = 1, 2, . . . can converge to a fixed point y∗

satisfying T (y∗) = y∗ starting from any initial value y0 ∈ χ. Here, χ is a closed subset
of Rn. Thus, to prove Proposition 2, we will show that the function g defined in (7) is a
contraction mapping on [0, 1] with respect to the absolute value norm if condition (10) is
satisfied. A contraction mapping function is defined as follows.

Definition 5. A mapping T : χ→ χ, where χ is a closed subset of Rn is called a contraction
if there is a real number κ ∈ [0, 1) such that

‖T (y1)− T (y2)‖ ≤ κ · ‖y1 − y2‖, ∀y1, y2 ∈ χ, (26)

where ‖ · ‖ is some norm defined on χ.

Suppose π = 0. Then g(x1) = 0 for all x1 ∈ [0, 1], and thus g is a contraction with
κ = 0.
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Suppose π > 0. Let x1,a and x1,b be two different real numbers arbitrarily chosen from
the interval [0, 1]. Without loss of generality, we let x1,a > x1,b. We will show that

|g(x1,a)− g(x1,b)| ≤ κ · |x1,a − x1,b|, (27)

where κ = K · maxx1∈[0.1]
df(x1,N)/dx1
f(x1,N)+1 and K = maxθ∈[0,θ̄] h(θ)θ. Based on (10), we can

easily check that κ ∈ [0, 1). Hence, once we prove (27) holds, g is a contraction. As

0 <
π·[f(x1,b,N)+1]

ε <
π·[f(x1,a,N)+1]

ε , we have the following three settings.

1.
π·[f(x1,a,N)+1]

ε < θ̄ and
π·[f(x1,b,N)+1]

ε < θ̄. Note that g is continuous in [0, 1] and
differentiable in [x1,b, x1,a]. Thus, by the mean value theorem, there exists x1,c ∈
(x1,b, x1,a) such that

g′(x1,c) =
g(x1,a)− g(x1,b)

x1,a − x1,b
. (28)

Then we have

|g(x1,a)− g(x1,b)|
= |g′(x1,c)| · |x1,a − x1,b|

=

∣∣∣∣h(π · [f(x1,c, N) + 1]

ε

)
· π[f(x1,c, N) + 1]

ε
· f ′(x1,c, N)

f(x1,c, N) + 1

∣∣∣∣ · |x1,a − x1,b|

≤ κ · |x1,a − x1,b|. (29)

2.
π·[f(x1,b,N)+1]

ε < θ̄ ≤ π·[f(x1,a,N)+1]
ε . We first let x̄ = max{x1 ∈ [0, 1]

∣∣ θ̄·ε
f(x1,N)+1 ≥ π}.

Note that x1,b < x̄ ≤ x1,a. By applying the mean value theorem to g on the interval
[x1,b, x̄], we have

|g(x̄)− g(x1,b)| ≤ κ · |x̄− x1,b|. (30)

As g(x̄) = g(x1,a) = 1 and κ ≥ 0, we have

|g(x1,a)− g(x1,b)| = |g(x̄)− g(x1,b)|
≤ κ · |x̄− x1,b|
≤ κ · |x1,a − x1,b|. (31)

3.
π·[f(x1,a,N)+1]

ε ≥ θ̄ and
π·[f(x1,b,N)+1]

ε ≥ θ̄. In such a case, g(x1,a) = g(x1,b) = 1, and
(27) is trivially satisfied.

Appendix C. Proof of Theorem 1

We first prove that in an equilibrium x∗ = (x∗1, 1− x∗1), all users whose privacy sensitivities

are below or equal to a certain threshold θ∗ =
π·[x∗1·(N−1)+1]

ε participate and all users with
stricter privacy concerns, i.e., with privacy sensitivities above θ∗, do not participate, and
no user can benefit by deviating from this strategy.
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Recall that the payoff of user j ∈ N is

Uue(π, θj , ε) =

π − θj ·
ε

n∗
, if `j = 1,

0, if `j = 0,
(32)

where n∗ = [x∗1 · (N − 1) + 1]. By checking (32), we can see that every user with θj ≤ θ∗

must obtain a non-negative payoff, and every user with θj > θ∗ must receive a negative
expected payoff from participating. Hence, θ∗ is an equilibrium threshold that determines
the participation decisions of users.

Recall that the value of θ lies in [0, θ̄] for all users. Then when πN/ε ≥ θ̄ and n∗ = N , we
have θ∗ ≥ θ̄ and all potential users’ privacy sensitivities are below or equal to the optimal
threshold θ∗. Thus, all users participate. Only when πN/ε < θ̄, we have

n∗ = [x∗1 · (N − 1) + 1] < N, (33)

where x∗1 is the solution of H
(
π·[x1·(N−1)+1]

ε

)
− x1 = 0. Based on the above equation, we

have θ∗ < θ̄, and only users with privacy sensitivity θj ≤ θ∗ participate.

Based on Proposition 2 and its proof provided in Appendix B, we can prove the unique-
ness and stability of the Nash equilibrium.

Appendix D. Proof of Proposition 3

Based on the proof of Theorem 1, we can see that the number of participants has a unique
value given a payment π. As shown in (17), there exists a one-to-one correspondence between
n and θ due to the monotonic property of c.d.f. H. This means that given a payment π,
the threshold θ is uniquely determined. Thus we can rewrite the initiator’s expected payoff,
which is a function of payment π defined in (15), as a function of the optimal threshold θ.
Due to the one-to-one correspondence between the optimal privacy sensitivity threshold θ
and the payment π, (18) and (15) have the same value given a value θ∗ and π∗. Here, the
payment π∗ is calculated by substituting θ∗ into (16). This proves the result.

Appendix E. Proof of Theorem 2

By taking the second order derivative of (18) with respect to θ, we have

d2Ũ in(θ)

dθ2
=
vT 2

6
(N − 1) exp

(
− [(N − 1)H(θ) + 1]T 2

12

)
·
[

dh(θ)

dθ
− [h(θ)]2

(N − 1)T 2

12

]
. (34)

We can easily check that d2Ũ in(θ)
dθ2

< 0 if dh(θ)
dθ ≤ 0 for any θ ∈ [0, θ̄], which means, if

the p.d.f. h of a user’s privacy sensitivity is a monotonic non-increasing function such as a
uniform distribution or an exponential distribution, the initiator’s expected payoff in (18) is
strictly concave in θ ∈ [0, θ̄] and there exists a unique solution that maximizes the initiator’s
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expected payoff defined in (18). In such cases, we can obtain the optimal privacy sensitivity
threshold θ∗ (i.e., the optimal solution of (18)) by checking the following equation:

dŨ in(θ)

dθ
=
vT 2

6
· (N − 1) · h(θ) · exp

(
− [(N − 1)H(θ) + 1]T 2

12

)
− ε. (35)

Recall that the value of noise level 1
ε is [0,+∞], h is strictly positive and non-increasing

on [0, θ̄] and h(θ) = 0 for all θ /∈ [0, θ̄]. When the noise level satisfies 1
ε ≤ 1/[vT

2

6 · (N − 1) ·
h(0) · exp(−T 2

12 )], we have

dŨ in(θ)

dθ

∣∣∣
θ=0

=
vT 2

6
· (N − 1) · h(0) · exp

(
−T

2

12

)
− ε ≤ 0. (36)

This means that the value of dŨ in(θ)
dθ is always negative given θ ∈ [0, θ̄]. Hence, the initiator’s

expected payoff defined in (18) decreases with the value of θ ∈ [0, θ̄]. The optimal threshold
that maximizes the expected payoff of the initiator is θ∗ = 0.

When the noise level satisfies 1
ε ≥ 1/[vT

2

6 · (N − 1) · h(θ̄) · exp(−NT 2

12 )], we have

dŨ in(θ)

dθ

∣∣∣
θ=θ̄

=
vT 2

6
· (N − 1) · h(θ̄) · exp

(
−NT

2

12

)
− ε ≥ 0. (37)

This means that the value of dŨ in(θ)
dθ is always positive given θ ∈ [0, θ̄]. Hence, the initiator’s

expected payoff defined in (18) increases with the value of θ ∈ [0, θ̄]. The optimal threshold
that maximizes the expected payoff of the initiator is θ∗ = θ̄.

When the noise level satisfies 1/[vT
2

6 · (N − 1) · h(0) · exp(−T 2

12 )] < 1
ε and 1

ε < 1/[vT
2

6 ·
(N − 1) · h(θ̄) · exp(−NT 2

12 )], we have

dŨ in(θ)

dθ

∣∣∣
θ=0

=
vT 2

6
· (N − 1) · h(0) · exp

(
−T

2

12

)
− ε > 0. (38)

dŨ in(θ)

dθ

∣∣∣
θ=θ̄

=
vT 2

6
· (N − 1) · h(θ̄) · exp

(
−NT

2

12

)
− ε < 0. (39)

Due to the monotonicity of dŨ in(θ)
dθ , there exists a unique value θ∗ ∈ [0, θ̄] such that

dŨ in(θ)

dθ

∣∣∣
θ=θ∗

=
vT 2

6
· (N − 1) · h(θ∗) · exp

(
− [(N − 1)H(θ∗) + 1]T 2

12

)
− ε = 0, (40)

and this value θ∗ maximizes the expected payoff of the initiator.

Appendix F. Proof of Theorem 3

Based on Proposition 3, the optimal payment is obtained by substituting the results of
Theorem 2 into (16). In more detail, when the noise level satisfies 1

ε ≤ 1/[vT
2

6 · (N − 1) ·
h(0) · exp(−T 2

12 )], the optimal payment is

π (θ = 0) = 0; (41)
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when the noise level satisfies 1
ε ≥ 1/[vT

2

6 (N − 1) ·h(θ̄) · exp(−NT 2

12 )], the optimal payment is

π (θ = 1) =
ε · θ̄
N

; (42)

when the noise level satisfies 1/[vT
2

6 · (N − 1) · h(0) · exp(−T 2

12 )] < 1
ε and 1

ε < 1/[vT
2

6 · (N −
1) · h(θ̄) · exp(−NT 2

12 )], the optimal payment is

π (θ = θ∗) =
ε · θ∗

(N − 1)H(θ∗) + 1
, (43)

where θ∗ is the optimal solution of (21).

Appendix G. Proof of Proposition 4

As shown by Theorem 3, the optimal payment is π∗ = 0 when the added noise level satisfies
1
ε ≤ 1/[vT

2

6 · (N − 1) · h(0) · exp(−T 2

12 )]. Recall that only users with non-negative expected
payoff will participate in the survey. By checking (6), we can see that only the users with
no privacy sensitivity satisfy this condition. This proves the result.

Appendix H. Proof of Proposition 5

Based on Theorem 3, when 1
ε ≥ 1/[vT

2

6 · (N − 1) · h(θ̄) · exp(−NT 2

12 )], the optimal payment

is π∗ = ε·θ̄
N , and this payment decreases as the number of potential users N increases.

Appendix I. Proof of Proposition 6

When the added noise level 1/[vT
2

6 · (N −1) ·h(0) · exp(−T 2

12 )] < 1/ε and 1/ε < 1/[vT
2

6 · (N −
1) · h(θ̄) · exp(−NT 2

12 )], the optimal payment is π∗ = ε·θ∗
(N−1)H(θ∗)+1 , where θ∗ is the optimal

solution of (21). We can see that the relationship between π and θ depends on function H,
ε and T .

Appendix J. Proof of Proposition 7

We first prove that PINE satisfies the Individual Rationality (IR) condition. Theorem 1
shows that in the Nash equilibrium, every user j ∈ N with θj ∈ [0, θ∗] participates in
the survey. As shown in (32), a type-θ user’s payoff decreases with his privacy sensitivity
when he participates in the survey. Hence, we only need to prove that given the payment
characterized by PINE, the payoff of a type-θ∗ user must be zero. Otherwise, the initiator
can reduce the payment by a small value of δ > 0, which does not violate the IR condition
but raises the initiator’s expected payoff. By substituting (17) into (32), we have

Uue(π, θj , ε) = π − θ∗ · ε

(N − 1)H(θ∗) + 1
= 0. (44)

We then prove that PINE supports differential privacy. The sensitivity of a function is
the maximum by which the value of that function can change under any two neighbouring
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datasets. Recall that g(D) = 1
n

∑n
j=1 dj . For any two neighbouring pairs of datasets D

and D′ where the dataset D includes private data of user j ∈ N and the dataset D′ does
not, the difference between g(D) and g(D′) is 1/n. Hence, the sensitivity of g(D) is 1/n.
Recall that PINE requires the initiator to add noise drawn from the Laplace distribution
Lap(0, 1/ε) to her computational result g(D) whose sensitivity is 1/n. As shown by (Dwork
et al., 2006), we have

Pr[L(D) = a] ≤ eε/n · Pr[L(D′) = a], (45)

which shows that PINE supports ε/n-differential privacy.
Based on the proof of Theorem 3, we can prove that PINE maximizes the initiator’s

expected payoff.

Appendix K. Proof of Theorem 4

It is clear that a solution θ∗ ∈ [0, θ̄] that maximizes (18) exists as the constraint set (i.e.,
θ ∈ [0, θ̄]) is compact and the objective function (i.e., U in(θ)) is continuous. If there is
still a unique solution that maximizes the initiator’s payoff defined in (18), the optimal
payment can be obtained by substituting θ∗ into (16) based on Proposition 3. If there are
multiple solutions that maximize the initiator’s payoff defined in (18), we can check that the
initiator’s expected payoffs achieved for all these solutions are the same. As the purpose
of the initiator is to use minimum cost to obtain high computational accuracy so that
her expected payoff is maximized, the initiator should select the solution that brings the
minimum payment. Based on Proposition 3, the corresponding reward calculated based on
(16) by substituting the selected optimal solution θ∗ is the optimal solution that maximizes
the initiator’s expected payoff. Thus, we get the result.

Appendix L. The Simple Benchmark Mechanism

In order to evaluate the performance of PINE and show the benefit of utilizing the network
effect, we need a benchmark mechanism that does not consider the network effect. Thus
our Simple mechanism is based on the underlying ideas of Jin et al. (2018); Zhang et al.
(2016); and Yang et al. (2018) and determines the initiator’s optimal payment strategy
and the way of publishing her computational result without including the network effect.
In more detail, without knowing the benefit of the network effect, a type-θj user considers
his privacy revealing risk is ε which is independent of the number of participants and is
estimated based on the added noise level (i.e., 1/ε) announced by the initiator. Compared
to (5), his payoff is given in the following equation:

Uue(π, θj , ε) =

{
π − θj · ε, if `j = 1,

0, if `j = 0,
(46)

As the user’s payoff is decreasing with θ, given the initiator’s payment π, only users with
θj ≤ π/ε will participate. And the number of participants will be n = (N − 1) ·H(π/ε) + 1
instead of (13).

As the initiator adds noise that is drawn from the Laplace distribution with mean zero
and standard deviation

√
2/ε to her computational result, the initiator’s optimal payment
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π∗ is chosen to maximize the following equation instead of that defined in (15):

U in,sim(π) = −v ·
[
2 exp

(
− [(N − 1) ·H(π/ε) + 1]T 2

12

)
+ exp

(
−Tε

2

)]
− π · [(N − 1) ·H(π/ε) + 1], (47)

Compared to PINE that uses network effects to decrease a user’s privacy revealing risk
(i.e., a user’s privacy revealing risk decreases with the number of participants as shown
in (5)), the Simple mechanism does not consider the network effect and a user’s privacy
revealing risk is a constant value (i.e., ε as shown in (46)).
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