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Abstract

We demonstrate the use of a program that generates conjectures about positions of
the combinatorial game Chomp—explanations of why certain moves are bad. These could
be used in the design of a Chomp-playing program that gives reasons for its moves. We
prove one of these Chomp conjectures—demonstrating that our conjecturing program can
produce genuine Chomp knowledge.

The conjectures are generated by a general purpose conjecturing program that was
previously and successfully used to generate mathematical conjectures. Our program is
initialized with Chomp invariants and example game boards—the conjectures take the
form of invariant-relation statements interpreted to be true for all board positions of a
certain kind. The conjectures describe a theory of Chomp positions.

The program uses limited, natural input and suggests how theories generated on-the-fly
might be used in a variety of situations where decisions—based on reasons—are required.

1. Introduction

We describe a program that produces a theory of positions of the combinatorial game
Chomp. The theory consists of statements that have a truth value. We include a proof of
one of these generated statements as a demonstration of the potential high-quality of the
program’s output.

The input of our conjecturing program are a very small number of examples of
Chomp positions. The output will be a collection of human-comprehendable (that is, rela-
tively short) statements that describe certain desired board positions; these can, in turn, be
used as a basis of move selection. The theory is produced by a general-purpose automated
conjecturing program. The main purpose of this note is to demonstrate how automated con-
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jecturing programs might be used in the design of programs that make reasoned, explainable
actions for Chomp-like games.

An essentially unlimited number of Chomp invariants (numbers independent of Chomp
position representation) can be defined. These invariants together with labeled Chomp
positions constitute the knowledge given to the program. The conjectures produced by our
program naturally provide explanations for a version of one-step lookahead. This model
suggests a theory for how a program can learn to play Chomp-like games well.

The underlying idea of our program is general and not Chomp-specific. It does not use
knowledge obtained from experts, nor does it use traditional machine learning approaches
(neural nets, support vector machines, etc.) or big data. The idea is to make conjectures
based on very limited experience, and use new information to revise and improve its con-
jectures. (This is what mathematicians do and may be a more general cognitive strategy).
A program might then be designed to make moves using those conjectures, possibly in
conjunction with other heuristics or machine learning techniques.

2. Background & Previous Work

2.1 Automated Discovery

Research on automated mathematical discovery was conceived by Turing (1948) and there
is current work in a variety of areas (Larson & Van Cleemput, 2016; Larson, 2005). The
first programs to prove theorems were developed in the 1950s (Simon & Newell, 1958);
and the 1996 computer proof of the Robbins Conjecture (McCune, 1997) was a milestone
in this area. Fajtlowicz’s Graffiti was the first program to produce conjectures that
led to new theorems, published in research journals (new mathematical knowledge). Since
Graffiti produces statements that are relations between mathematical invariants, it is
worth noting related programs. The best-known research on discovering scientific laws
that are simple relations between invariants (measurements) is the work of Bacon and its
successors, comprehensively described by Langely, Simon, Bradshaw, and Zytkow (1987);
these programs reproduced known physical laws, rather than conjecture or discover any
new laws. (Similarly Lenat’s often-cited AM reproduced existing mathematical conjectures
and theorems—rather than made any new mathematical contribution (Lenat, 1977)). The
program of Todorovski, Džeroski, and Kompare (1998) discovered relations between mea-
surements in a novel real-world situation; their example involves very few data points and
very few variables, and does not seem to have led to generalizations. The work of Schmidt
and Lipson (2009) is an impressive experiment along similar lines; their program discovered
conservation laws for specific real-world physical systems.

Epstein’s FORR (FOr the Right Reasons) scheme and Hoyle program (Epstein, 1994,
2001; Ratterman & Epstein, 1995) share goals with our research: these shared goals include
game playing programs that use limited memory, limited game tree search, giving reasons
and learning from experience. In both cases, limited memory usage is due to a use of a
limited number of examples. Limited game tree search for Hoyle is by design: the reasons
built-in to Hoyle include valuing moves with 1- or 2-ply payoffs. A program using conjectures
as we describe here can be designed to only look at the current available moves. Both of
our programs are designed to give reasons: in the FORR paradigm, some of these must
be provided by experts—then the program’s algorithm decides how much weight to give
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each of these provided reasons. Our idea is not to use any expertly-provided reasons at
all—simply to see what can be deduced from known winning and losing positions. With
FORR weights are revised as relevant examples are adduced—with conjecturing new
examples may lead to falsified conjectures—that can never again be produced. In these
senses new examples provide new experiences, and these programs are designed to leverage
them.

The example statements produced by the conjecturing program will be necessary
conditions for winning positions for the current player; these are the positions the current
player should attempt to attain on her move—and can—if she currently has a winning
position. So this research might be seen as a contribution to explainable artificial intelligence
(XAI): these simple statements might be taken as explanations of a Chomp player’s actions.
This area of research is new, and its goals are still being clarified. The main idea is that
artificial intelligence programs using, for instance, neural nets have output that would be
formally described as a very complicated function—with a large number of variables and
weights. In contrast, many scientific laws (Newton’s Laws, Boyles Law, etc) used and
accepted as explanations express relationships between a small number of variables. There
is no accepted dividing line separating statements that might be counted as explanations
from more complicated (or less explanatory) ones. There are a variety of goals here—
possibly including the desire to have statements that could plausibly be proved from other
accepted laws or statements. Conflicting interests and standards of success will eventually
shake out. The statements produced here as examples have relatively simple form, have
few variables, and coefficients that are small integers or simple functions of them.

2.2 Chomp

Consider, for example, Fisher’s seminal example of automating iris classification by de-
veloping a linear discriminant from feature data (Fisher, 1936). Here he uses a data set
consisting of flower samples of three iris species and four measurements (or characters or
features) from each sample. His goal was to find a function which, when given features as
input, correctly produces the iris species-type as output. He starts with species Iris setosa
and Iris versicolor and features x1, x2, x3 and x4 for, respectively, the flowers’ sepal length,
sepal width, petal length and petal width, and 50 samples of each flower and looks for a
discriminating function of the form:

X = λ1d1 + λ2d2 + λ3d3 + λ4d4,

where di is the difference of the mean of the feature from xi. Fisher ultimately derives the
function,

X = d1 + 5.9037d2 + 7.1299d3 + 10.1036d4,

where positive values of X will identify setosa flowers and negative values of X will identify
versicolor flowers. In this case it seems unlikely that this classifier might be proved from
simpler (biological) relations or from analysis of the involved concepts. In contrast our
program produces simple relations that might be easier to investigate (and we give an
example of one that is proved from the involved concepts).

Our research extends the authors’ program Conjecturing, that produces invariant-
relation conjectures, and is based on a heuristic of Fajtlowicz (1995). Conjecturing and
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Figure 1: A 2-row Chomp position [4,3] with the poison cookie in the upper left corner.

related experiments are described by Larson and Van Cleemput (2016). The user of this
program may input example objects of any type, choose invariants (real numbers that can be
computed from the objects, specified as functions) that may appear in the conjecture state-
ments, choose a specific invariant that will appear on the left-hand side of the conjecture,
and choose the form of the inequality: either upper bounds or lower bounds for the chosen
invariant. The reported conjectures came from the domains of graph theory, matrix the-
ory, number theory, and combinatorial game theory. More recently we have demonstrated
the utility of our program for making conjectures in mathematical chemistry (Hutchinson,
Kamat, Larson, Mehta, Muncy, & Van Cleemput, 2018), several of which we proved. Our
program is open-source, and operates in Sage (a free and growing mathematical computing
environment, similar to Maple, Matlab and Mathematica). The program, examples, and
set-up instructions are available at: http://nvcleemp.github.io/conjecturing/

The program produces conjectures, in the form of inequalities between algebraic rela-
tions of the input invariants, that are true for all example objects that are provided to
the program. By the design of the program, each produced conjecture is significant with
respect to the previously produced conjectures—in the sense that each conjecture gives a
better bound for one of the example objects than any previously produced conjecture (this
condition defines our use of the term “significant”). This also implies that each newly pro-
duced conjecture is not implied by the previously produced conjectures. Furthermore, it
means that the number of conjectures (of any particular form) cannot exceed the number
of example objects.

Chomp is a two-player perfect information impartial game. It was invented by David
Gale in the 1970s (Gale, 1974). We chose this game for our initial experiments because
of its simplicity. The game begins with a full rectangle of cookies; this rectangle consists
of an arbitrary number of rows and columns. Each player alternately removes (or eats) a
cookie from the board. In our version, when a cookie is removed, all cookies to the right
of this cookie and all cookies below any of these are removed. The upper left-most cookie
is the poison cookie. The player to remove the poison cookie loses. Passing is not allowed:
a player must chose a cookie to remove or eat while cookies remain. Fig. 1 illustrates a
two-row Chomp board position. The circle with the cross represents the poison cookie,
while empty squares represent the remaining cookies.

Gale proved that the first player has a winning strategy: that is, with perfect play,
the first player can always win. Nevertheless, on even relatively small game boards it is
computationally impossible to determine this winning strategy. Successful play depends
on theory and experience. Winning strategies for specific positions are known. For in-
stance, one row and two row Chomp are solved: it can be efficiently determined whether
any one or two row position is a winning position (Zeilberger, 2001). Three row Chomp
is unsolved. While some results are known about three row positions, Doron Zeilberger,
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[3,2]

[4,1]

[2,1]

[3,2,1,1,1][4,1,1,1]

[3,2,1]

[1]

Figure 2: Examples of Chomp board positions and corresponding list representations.

a noted mathematician, proponent of experimental mathematics, Chomp enthusiast and
researcher, believes that the three row case may be the borderline between easy-to-solve
and intractable positions (Zeilberger, 2001).

Game boards can be represented in a variety of ways. We represent them with a non-
increasing sequence of positive numbers: the first number represents the number of cookies
in the first row, the nth number represents the number of cookies in the nth row (square
brackets are used here as this is Python’s list notation—how these are represented in our
code—and code snippets below). The rules of the game guarantee that the sequence is non-
increasing. The notation [3], for instance, represents a single-row Chomp board with three
cookies; other examples may be found in Fig. 2. An example of a complete game would be
the following. The players may play beginning with the rectangular 2×3 board [3,3]. The
first player might then choose the lower rightmost cookie. Since no other cookie is below or
to the right, the resulting board is [3,2]. If the second player then takes the second cookie
in the first row, together with the single cookie below it and the single cookie to its right,
the resulting board is [1,1]. The first player will now take the single remaining non-poison
cookie, leaving the board [1]. Then the second player is forced to take the poison cookie
and loses.

Research on machine learning does, of course, lead to conjectured relationships between
variables that are in turn used to make predictions of one or more variables in terms of
others. A trained neural net, for instance, can be viewed as a black box representing
a function that produces an output for every input in its domain. These functions are
complex and of a different character than, say, classical scientific laws: in particular, there
is less hope of deriving these functions or relationships from simpler existing laws.
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3. The Dalmatian Heuristic

Fajtlowicz’s Dalmatian heuristic is used to conjecture relations between real number in-
variants of objects. For Chomp the objects are board positions and the invariants are any
numbers that can be computed from these positions. This Dalmatian heuristic comprises a
truth-test and a significance test.

Both Graffiti and Conjecturing produce inequalities between algebraic relations of
the input invariants. These are then checked to be true for all examples that are provided
to the program. This is the truth test. If a produced statement is false for an input
object, the statement is rejected as a potential conjecture. Each statement is then tested
for significance with respect to the input objects and the database of previously produced
conjectures. Informally, a statement is “significant” if it is not implied by the totality of
previously made conjectures. By the design of the program, each produced conjecture is
then significant with respect to the previously produced conjectures.

In many well-studied research areas (such as chess, Go, or mathematical fields) there are
a large number of previously defined invariants. For well-studied games, these would include
position-evaluation functions—these are game position invariants. With other less-studied
games, including Chomp, there is no existing foundation to build on: an initial attempt
must be made to define potentially useful position invariants. These could be modified,
added to and supplanted as more researchers think about a game.

The following Chomp invariants were created for the sole purpose of having a large
collection of numbers that, together, would capture a large amount of information about a
board position. The utility of a particular invariant cannot be known until after conjectures
are generated. Many other Chomp invariants are conceivable and, possibly, more natural,
useful, or informative. The invariants that we used included:

number of rows the number of non-empty rows,
number of columns the number of non-empty columns
number of cookies the number of cookies remaining on the board,

full rectangle the product of the number of rows and columns,
rows of different length the number of rows with different numbers of

cookies,
rank ratio the number of rows of different length divided

by the number of rows,
squareness the absolute value of the difference between the

number of rows and the number of columns,
row product the product of the number of cookies in each

row,
column product the product of the number of cookies in each

column,
average cookies per column the average number of cookies in the columns,

average cookies per row the average number of cookies in the rows
duplicate rows the number of rows minus the number of rows

with different numbers of cookies,
duplicate columns number of columns minus number of columns of

different length,
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smallest row size fewest number of cookies in any row,
smallest column size fewest number of cookies in any column,

largest row size most number of cookies in any row,
largest column size most number of cookies in any column,
cookies inside ratio the number of cookies that are not on the top

row or leftmost column divided by the number
of cookies.

Computers can easily exhaustively generate and evaluate all expressions formed from
standard mathematical ingredients for relatively small numbers of example mathematical
objects. These expressions—and their corresponding values for example sets of objects—
can then be utilized in a variety of ways. Consider the search for upper bounds for some
invariant α. For these purposes we take an invariant to be a real-valued function of a
Chomp position. Let β1, β2, . . . , βk be Chomp invariants. An upper bound β of α will be
some mathematical function of the βi’s. This function will involve arithmetic operations,
algebraic operations, or any other mathematical operations. Some real-number operators
would include addition, square root, and taking the minimum of two numbers (+,

√
and

min). In this case (and if k = 3 for example) the complexity-1 expressions would be the
invariants themselves: β1, β2, β3. The complexity-2 expressions would be all the expressions
that can be formed from a mix of two operators or invariants. Since

√
is the only unary

operator, the only possibilities are:
√
β1,
√
β2,
√
β3. The complexity-3 expressions are:

β1 + β2, β1 + β3, β2 + β3, β1 + β1, β2 + β2, β3 + β3, min(β1, β2), min(β1, β3), min(β2, β3),

min(β1, β1), min(β2, β2), min(β3, β3),
√√

β1,
√√

β2, and
√√

β3 (a modern computer alge-
bra system can identify and remove expressions equivalent due to additive commutativity,
etc). A program can recursively generate all possible β’s up to any specified complexity.
Generating expressions will face combinatorial explosion—but there is no difficulty in gener-
ating all (relatively small) human-comprehendible expressions. (Our C-language expression
generator can generate more than 100 million expressions per second, depending on the
complexity of the expressions, on a standard 2018 laptop—with 8 GB RAM and a 2.6 GHz
core). Our conjecturing program can evaluate these expressions on the fly for a partic-
ular Chomp position. These generated, evaluated expressions are the main ingredients in
generating conjectures.

Here is a formal description of the Dalmatian heuristic. Let B1, . . . , Bn be Chomp
positions (boards). The generated inequalities can be interpreted as being true for all
Chomp positions (in general, or of any input Chomp position type). The inequality α ≤
β1 +β2 can be interpreted, for instance, as, “For every Chomp position B, α(B) ≤ β1(B) +
β2(B).” A conjectured upper bound β is only added to the database of conjectures if the
bound passes the following two tests.

1. (Truth test) The candidate conjecture α ≤ β is true for all of the stored objects
B1, . . . , Bn, and

2. (Significance test) There is an object B ∈ {B1, . . . , Bn} such that β(B) < min{c1(B),
. . . , cr(B)}, where c1, . . . , cr are the currently stored conjectures. That is, the candi-
date conjecture would give a better bound for α(B) than any previously conjectured
(upper) bound.
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Here is a simple example. We designed a Python class ChompBoard that takes board
position representations as input and returns an object that has invariants as the objects’
methods.

objects = [ChompBoard([1]),ChompBoard([2,2])]

invariants = [ChompBoard.number_of_rows, ChompBoard.number_of_columns,

ChompBoard.number_of_cookies]

invariant_of_interest = invariants.index(ChompBoard.number_of_cookies)

conjecture(objects, invariants, invariant_of_interest)

The program was given as input (or knows) the two positions [1] and [2,2]. It is us-
ing three invariants: number of rows, number of columns, and number of cookies. The
chosen invariant to generate conjectured bounds for is number of cookies. The procedure
conjecture calls the program; the default is to conjecture upper bounds for the chosen in-
variant; to generate lower bound conjectures, the user would add the parameter upperBound
= False to this function call. (The operator list is currently hard-coded: a subset can easily
be input, but addition to this list is not a simple input option). The program then produces
the following two conjectures:

number_of_cookies(x) <= 2*number_of_rows(x)

number_of_cookies(x) <= number_of_rows(x)^2

(The caret symbol “^” is the program’s symbol for exponentiation.) These conjectures may
naturally be interpreted as being true for all objects of the input type: arbitrary Chomp
positions. It happens to be the case here that these two positions are square boards—so
the user could also interpret the conjectures as being conjectures for square boards. But
the conjectures must necessarily be given some interpretation.

Note that both produced conjectures are true for both the input Chomp positions [1]

and [2,2]. While the right-hand-side of the first conjecture gives the exact value for the
number of cookies for position [2,2], it does not give the exact value for position [1]. So
it is possible that another conjecture could give an improved value or bound. In fact the
second conjecture gives the exact number of cookies for position [1]. That is, the second
conjecture is significant with respect to the previously produced conjectures and the input
objects.

The general approach to generating conjectures is as follows.

1. Produce a stream of inequalities with evaluable functions of the invariants on each
side of the inequality symbol. Some of these will pass the truth and significance tests
and be stored as conjectures.

2. Initialize an initial collection of game positions. These can be as few as one.

3. Generate conjectures that are true for all stored game positions and significant with
respect to these game positions and the previously stored conjectures. Pass each gen-
erated statement to the truth and significance tests. The program needs a stopping
condition. The best case is that, for each game position, there is at least one conjec-
ture that gives the exact value for that position. In this case there is no possibility of
improving the current conjectures—in the sense that no other conjectures can make
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better predictions about the values of the existing game positions—exact predictive
power for all game positions has been achieved. In the case where this natural stopping
condition is never attained, another stopping condition will be required. One possi-
bility is to simply stop making conjectures after some hardcoded or user-specified
time.

4. Remove insignificant conjectures. After a conjecture is added to the store of con-
jectures, it may be the case that another conjecture in the store is no longer sig-
nificant. If conjectured upper bounds (for example) for an invariant α are being
generated then a conjectured bound αi in the conjectures store is significant, with
respect to the stored game positions, if and only if there is a game position B such
that αi(B) < min{αj(B) : j 6= i}, that is, if and only if, there is an object B where
the bound gives a better predicted value for α(B) than any other conjectured bound
does. Insignificant conjectures are then removed.

If no-longer-significant conjectures are removed whenever significant conjectures are
added to the conjectures store, the number of conjectures (of any particular form) can-
not exceed the number of example game positions. This puts an important limit on the
number of produced conjectures.

4. Chomp Conjectures & Move Heuristics

Every Chomp position either has a winning strategy for the next player to play—an N -
position—or for the player that did previously play—a P -position (the language of N - and
P -positions comes from the standard book on combinatorial games (Berlekamp, Conway, &
Guy, 2004)). We are primarily interested in developing P -theory: that is, in the theory and
identification of P -positions. The reason is that, when a player makes a move, assuming
that she has a winning strategy, she must choose one of the remaining cookies to remove.
Each choice will yield a board position for her opponent—these positions are the reachable
positions from the current position. If she plays perfectly she will give her opponent a
P -position. So her perfect play boils down to identifying the P -positions that are reachable
from her current position.

A preliminary conjecture-based Chomp-player idea was proposed by Larson and Van Cleem-
put (2016). The idea there was to conjecture a theory of N -positions and to use this theory
to avoid giving one’s opponent an N -position. This idea may still have some value. And
might be used in conjunction with the current approach.

The simplest P -position [1] consists of a board whose only cookie is the poison cookie.
Any other single-row Chomp position is necessarily an N -position. L-boards are another
example of a simple—and analyzed—Chomp board position; these are boards whose only
cookies are in the first row and first column. The board [2,1] is an L-board with sides of
length two; it is a P -position. The board [3,1] is an L-board with sides both of length
two and three; it is an N -position. It can be argued that all L-boards with equal length
sides are P -positions, while all L-boards with unequal length sides are N -positions. The
strategy for a player facing an L-board with unequal length sides is to eat a cookie so that
the resulting position is an L-board with equal length sides. This process can be iterated:
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each intermediate board is an L-board, and the initial player can, on each turn, pass her
opponent an L-board with equal length sides.

Trivially, a position is a P -position if and only if it is not an N -position. More usefully,
a position is an N -position if there is a reachable position that is a P -position. And a
position is a P -position if every reachable position is an N -position. This idea can be
used recursively to determine if any given position is a P -position. And we used this idea
to create a small database of both N -positions and P -positions that we used in testing
generated conjectures. This recursive position-evaluation idea is not generally useful for
humans—and if the position is sufficiently large no program will be able to carry out this
computation in a reasonable amount of time either.

Generated conjectures for Chomp P -positions might at least approach an ideal and ef-
fectively computable Chomp P -theory. We initially determined a small number of known
P -positions, including boards [2,1], [1], [5,1,1,1,1], [3,2], and [7,6]. These were
the input examples for the earliest conjectures. The process was iterated whenever we
found a counterexample to any of the conjectures. That is, as we found counterexamples to
generated conjectures, those counterexamples were added to the list of Chomp P -position
Conjecturing program input. Conjecturing was never given more than 60 examples
total to use in any run of conjecture generation. These examples certainly constitute knowl-
edge—but it is not the expert knowledge of an expert Chomp-player (none of us attained
any Chomp skill at all during this project). There are a few reasons why we keep the number
of input examples relatively small—and limited to ones that are in some sense important ;
this is ordinary practice in mathematics (we are mathematicians).

We then conjectured upper and lower bounds for each of these defined invariants in
terms of the other invariants. Produced conjectures are true for all stored P -positions in
our database. These can then be divided into two classes: conjectures that are false for at
least one (recursively computed and) stored N -position, and conjectures that are true for
all stored N -positions. In the later case, the conjecture is necessarily true for every stored
position—and is thus uninformative. These were then eliminated; the remaining conjectures
are, thus, genuine P -theory conjectures.

The following conjectures come from a list produced for discussion in a summer research
project. They were selected for publication only for the reason that they could be printed
comfortably and readably below. Internally the conjectures are all represented as labeled
trees. We define the complexity of these expression-trees as the number of nodes in its rep-
resentation. As mentioned earlier, an invariant itself has complexity 1, an expression formed
by a unary operator applied to a single invariant has complexity 2, etc. The complexity of
the following conjectured bounds are no more than 7.

The first conjecture below is proved—and constitutes new Chomp knowledge. The proof
of the second is symmetric. The rest are open problems.

14. number_of_cookies(x) >= 2*number_of_columns(x) - 1

15. number_of_cookies(x) >= 2*number_of_rows(x) - 1

24. number_of_cookies(x) <= 2*number_of_columns(x) + 2*squareness(x)

29. full_rectangle(x) <= row_product(x)^2

33. rows_of_different_length(x) >= log(number_of_columns(x))/log(10)

36. rows_of_different_length(x) <= average_cookies_per_row(x) + 1
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38. squareness(x) >= cookies_inside_ratio(x)

47. row_product(x) >= number_of_rows(x)

48. row_product(x) >= smallest_row_size(x)^number_of_rows(x)/

rank_ratio(x)

55. row_product(x) <= number_of_rows(x)^number_of_cookies(x)

64. column_product(x) >= (squareness(x) + 1)*number_of_rows(x)

87. average_cookies_per_column(x) <=

2*squareness(x)/number_of_columns(x) + 2

90. average_cookies_per_row(x) >= -1/2*duplicate_rows(x) +

1/2*number_of_columns(x)

Consider a 9×9 initial board. This is a full rectangle and is, by Gale’s theorem, an
N -position. In fact, one winning move is to take the cookie in the second row and second
column. This yields the L-board [9,1,1,1,1,1,1,1,1]. Now the program will consider
the 81 possible moves consisting of taking a cookie from any of the 81 spots that have
cookies on them, and then removing cookies below and to the right. One of these positions
will be the position [9,1,1,1,1,1,1,1,1]. Table 1 contains values for the invariants for
this position. It is now easy to check that all the listed conjectures, for instance, are true for

Invariant Value

number of cookies 17

number of columns 9

number of rows 9

squareness 0

full rectangle 81

row product 9

rank ratio 2
9

Invariant Value

rows of different length 2

average cookies per row 17
9

cookies inside ratio 0

row product 9

average cookies per column 17
9

duplicate rows 7

Table 1: Values of invariants for position [9,1,1,1,1,1,1,1,1].

the position [9,1,1,1,1,1,1,1,1]. The move initiated by taking the cookie in the second
row and second column is satisfied by the conjectured theory.

A number of conjectures that were trivially true or very easy to prove (for instance that,
for any P -position, number of cookies >= min (number of rowsˆ2, number of columns

+ 1)). Conjectures 14 and 15 above turned out to be non-trivial—and true. We prove
Conjecture 14 below. A proof of Conjecture 15 follows similarly. For a board posi-
tion B let n = n(B) be the number of cookies on the board, and let c = c(B) be the
number of columns on the board. Notice that the theorem gives a necessary condition for
P -positions and thus adds to existing P -theory. Note too that the condition in the theorem
does not hold for arbitrary N -positions: in particular it is false for the position [3] (here
n = 3, and c = 3) and false for almost every other one row position. The theorem shows
that the conjectures may be generally true—not only true for the input examples but true
for every P -position.
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Theorem 4.1. For any P -position B, n(B) ≥ 2c(B)− 1.

Proof. The statement is clearly true for small board positions (for instance the P-position
[1]). Suppose then that n(B) ≥ 2c(B)− 1 for all P positions B with less than k cookies.
Let B be a P -position with k cookies. If every column contains two or more cookies we are
done (as n(B) ≥ 2c(B) in this case). So we can assume there is at least one column with
a single cookie. In particular the right-most column must have a single cookie. Any move
from a P -position must obtain an N -position. So let B′ be the N -position obtained by the
first player to move by taking that right-most cookie in the first row. So n(B′) = n(B)− 1
and c(B′) = c(B)− 1.

The main idea in the proof is strategy-stealing. There must now be a move that obtains
a P -position B′′. That move cannot consist of taking a cookie from the first row—otherwise
it could have been obtained directly from position B—but only N -positions are reachable
from B. So the move to obtain P -position B′′ from N -position B′ must begin by removing
a cookie from some row below the first row. Assume t cookies were removed. So n(B′′) =
n(B′)− t and in turn we have n(B) = n(B′′) + t+ 1.

Importantly the number of columns of B′ and B′′ must be the same; so c(B) = c(B′) +
1 = c(B′′) + 1. And since B′′ is a P -position with fewer than k cookies it follows from
the inductive hypothesis that n(B′′) ≥ 2c(B′′) − 1. Substituting we get n(B) − t − 1 ≥
2(c(B) − 1) − 1. Simplifying yields n(B) ≥ 2c(B) + t − 2. And since t ≥ 1 for any legal
move it follows that n(B) ≥ 2c(B)− 1, which was to be shown.

The conjectures are interpreted to be true for every P -position (that is, they are only
known to be true for the Chomp positions in the program’s input list—and then generalized
in some way. If the input positions are all P -positions one natural generalization is to all
P -positions. Of course the set of input objects can be correctly described by infinitely many
different properties). Ideally, if a reachable position is a P -position there will be a move
consistent with all of the conjectures. The move the player should make is to take any
cookie that yields a reachable P -position: just examine all reachable positions and check
them against the conjectured theory, and choose any position that satisfies all the theory
statements.

5. Discussion

We have demonstrated how a program can produce conjectures using relatively little data
and that would supply human-comprehensible reasons (reasons that are relatively short
statements) for a game-playing program. Chomp is our example—but these ideas apply
to any sufficiently similar game. The conjectures specify relations between game board
invariants that can used to choose a move. Suppose again a player is given a 9 × 9 full
rectangle of cookies. She wants to make a move that yield a P -position. She will base
her move on conjectures that capture her Chomp knowledge. Assume these are the batch
of reported conjectures above. One possible move is to take the first cookie in the sec-
ond row yielding the position [9], but this position violates the (true, proved) conjecture
number of cookies(x) >= 2*number of columns(x)-1. Thus she might reject that pos-
sible move for the reason that, according to her conjectural beliefs, it does not yield a
P -position.
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Since the underlying conjecturing program is domain independent, it may be that a wide
variety of intelligent behaviors may admit similar theories produced by generating and us-
ing conjectures—and useable in making decisions. When a conjecture-based game-playing
program gives a false reason, this can be addressed in the code: falsity is demonstrated by
examples—and these (in this sense) important examples can be added to the code. If a
conjectured reason is false, that means there must be a board position that is a counterex-
ample. This can be added to the program, conjectures can be regenerated—and the false
conjecture will disappear from the store of conjectured knowledge. The new theory will be
used for justification of future moves in future games. That is, just as a human player is not
born fully-formed and at maximum ability, a computer player using conjectures as reasons-
for-action will evolve in interaction with humans (and other intelligent agents), and will
add new significant positions to its memory. It will improve in interaction with other intel-
ligent agents. Conjecture-based programs—and humans—learn from mistakes, remember
important examples, and generate new theories that respond to newly learned examples.

There are a few noteworthy features of this approach:

1. It does not rely on processing databases of millions of games—no human has ever
done this. It uses a database with a relatively small number of board positions

2. The stored board positions are not randomly selected but are typically those that have
been counterexamples to previous conjectures. Leveraging counterexamples is stan-
dard practice in mathematical research—they must be responded to and often lead
to improved theory (and is exemplified by the number of books with titles like Coun-
terexamples in Analysis). Perhaps leveraging counterexamples is a more generally
important cognitive strategy.

3. It produces conjectures (statements, reasons) for rejecting possible move choices that
are arguably explainable. In most instances the conjectures are no more complex than
theorems in mathematics texts. Of course an “explanation” here requires understand-
ing the statement-terms, and some experience with examples—just as any other kind
of technical statement. Similarly, despite the apparent simplicity of Newton’s Laws,
their use as explanations is not immediately apparent to physics novices.

These experiments are first steps. Better Chomp conjectures can presumably be pro-
duced with better ingredients. This might include:

1. Adding more invariants to the program; the best invariants might be ones that capture
features that human players already pay attention to, or possibly strategic concepts.
The invariants we used were entirely made up on our own, without any knowledge of
strategic concepts.

2. Adding property-relation conjecturing ability. In another paper of this series we ex-
plained and demonstrated the design of a program that conjectures relations between
the properties of an object (Larson & Van Cleemput, 2017). This might better capture
position features that humans think about.

3. Using positions from published expert board games—this is part of our shared Chomp
knowledge. There is no evidence that humans have any special ability to evaluate or
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compute whether a board position is a P - or N -position. They must surmise them
from the success of the players. A real player can, for instance, typically only assume
that a position from which a known strong player won is an N -position. Of course,
these judgments can be changed, and reevaluated as new knowledge is obtained. A
position once believed to be an N -position can be removed from our store of known
N -positions.

4. Add known Chomp theory. This will presumably lead to better move choices. Ex-
isting published Chomp P -theory is currently limited (as mentioned, essentially, to
L-positions, and one- and two-rowed board positions). Chomp is a combinatorial
game. So general considerations from the theory of combinatorial games could also
be useful (Berlekamp et al., 2004).

Again, the underlying conjecturing program used here is domain-independent. We hope
other researchers will experiment with using the approach demonstrated here (and our con-
jecturing program) in designing machines that generate and use conjectures that can be
used as reasons or explanations.

Acknowledgements. The authors would like to thank the referees of this paper for
their careful and useful comments. In particular, the proof of the theorem was greatly
simplified.
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