
Journal of Artificial Intelligence Research 68 (2020) 777-816 Submitted 02/2020; published 08/2020

Gradient-based Learning Methods Extended to Smooth
Manifolds Applied to Automated Clustering

Alkis Koudounas S1078994@studenti.univpm.it
Graduate School of Computer Science,
Polytechnic of Turin,
Turin, Italy

Simone Fiori s.fiori@univpm.it

Department of Information Engineering,

Marches Polytechnic University,

Ancona, Italy

Abstract

Grassmann manifold based sparse spectral clustering is a classification technique that
consists in learning a latent representation of data, formed by a subspace basis, which
is sparse. In order to learn a latent representation, spectral clustering is formulated in
terms of a loss minimization problem over a smooth manifold known as Grassmannian.
Such minimization problem cannot be tackled by one of traditional gradient-based learning
algorithms, which are only suitable to perform optimization in absence of constraints among
parameters. It is, therefore, necessary to develop specific optimization/learning algorithms
that are able to look for a local minimum of a loss function under smooth constraints in
an efficient way. Such need calls for manifold optimization methods. In this paper, we
extend classical gradient-based learning algorithms on flat parameter spaces (from classical
gradient descent to adaptive momentum) to curved spaces (smooth manifolds) by means
of tools from manifold calculus. We compare clustering performances of these methods
and known methods from the scientific literature. The obtained results confirm that the
proposed learning algorithms prove lighter in computational complexity than existing ones
without detriment in clustering efficacy.

1. Introduction

Gradient-based optimization methods stay at the very core of machine learning algorithms
and are invoked whenever the performance of an adaptive system is evaluated through a
smooth criterion function. A criterion function affords the evaluation of any given configu-
ration of the parameters of an artificial learning system and the purpose of the optimization
method is to seek the best configuration of parameters that minimizes the discrepancy be-
tween the current system’s performances and its expected performances.

The behavior of a gradient-based optimization method depends on the shape of the
criterion surface as, for instance, how ‘deep’ is a local minimum or how far local minima
lie from one another. Starting from the basic gradient steepest descent method, which
seeks local extrema of a criterion function by pursuing the direction indicated by the func-
tion’s gradient, a number of gradient-based methods were derived. Each method in this
category was developed to fix a specific issue arising in a specific situation. In the Sec-
tion 2 of this paper, we are going to revise a number of classical and modern gradient-based

©2020 AI Access Foundation. All rights reserved.



Koudounas & Fiori

learning algorithms, such as basic gradient descent algorithms in Subsection 2.1, stochas-
tic gradient descent in Subsection 2.2, mini-batch stochastic gradient descent algorithm in
Subsection 2.3, gradient descent with momentum in Subsection 2.4, Nesterov accelerated
gradient algorithm in Subsection 2.5, adaptive gradient method in Subsection 2.6, AdaDelta
algorithm in Subsection 2.7 and adaptive moment estimation method in Subsection 2.8.

In several cases of interest, the parameters of a learning system are independent from
one another, therefore the search space is Rn, where the dimension n of the search space
might be large (this is the case, for example, of a multilayer perceptron endowed with several
layers and several neurons per layer). Over recent years, it occurred to researchers in this
area that the parameters of a learning system may be subjected to mutual, non-linear (even
very involved) constraints. If the constraints are smooth and holonomic, the constraints
themselves might be represented by a smooth manifold M ⊂ Rn. In this event, the opti-
mization methods at the core of systems’ learning procedures need to be reformulated in
terms of manifold language, namely, manifold calculus and numerical analysis on manifolds.

The basic gradient steepest descent learning method on manifold is already available in
the scientific literature and found widespread application in machine learning as testified,
for example, by Fiori (2010) and Bonnabel (2013). Since basic gradient descent suffers of
known drawbacks, we endeavored to extend a number of classical and modern gradient-
based learning methods to a general smooth manifold, as illustrated in Section 3. As a
special case of particular interest in the present work, we recalled some definitions and
details about the Grassmann manifold in Subsection 3.8.

In several applications – such as machine learning, image processing and computer vision
– high dimensional data are widespread (Samet, 2005). Grassmann manifolds are abstract
manifolds whose elements are subspaces. As such, Grassmann manifolds are natural can-
didates for data-size reduction and sparse representation, a necessary step in classification
by high-dimensional data clustering.

Clustering is one of the most widely used data exploration tools. Its goal is to partition
data points into several groups such that points in the same group are similar to one another,
according to a pre-defined similarity measure, and points in different groups are dissimilar
from each other. To this aim, the main steps to take are (a) creating a similarity/affinity
matrix for a given dataset, and (b) performing clustering to categorize data samples. These
two major steps determine the performance of spectral clustering methods. The goal of
Spectral (or Subspace) Clustering (SC) (Lu, Yan, & Lin, 2016; Ng, Jordan, & Weiss, 2002),
which is a simple extension of traditional clustering, is to cluster data points that lie in a
union of low-dimensional subspaces. The key idea behind Sparse Spectral Clustering (SSC)
is that, among infinitely many possible representations of a data point in terms of a dictio-
nary, a sparse representation corresponds to selecting a few points from the same subspace,
which form a small-size dictionary (Elhamifar & Vidal, 2013). This motivates solving a
sparse optimization program whose solution is used in a spectral clustering framework. The
Grassmannian manifold optimization assisted sparse spectral clustering, or GSC (Wang,
Gao, & Li, 2017) provides a straightforward way to optimize the sparse clustering objective
introduced by Lu et al. (2016) by adopting a Grassmann manifold optimization strategy, in
order to learn a better and efficient latent feature representation.

The purpose of the present research endeavor is to extend classical and modern gradient-
based machine-learning algorithms to smooth manifolds. The motivation of the present

778



Gradient-based Learning Methods Extended to Smooth Manifolds

endeavor is to improve the performances of the GSC sparse clustering technique based on
Grassmann manifold representation. Such technique is based on extracting a latent repre-
sentation of data based on rectangular (tall-skinny) orthogonal matrices, whose elements
(the parameters of the representation) need to satisfy multiple quadratic constraints. An
optimal latent representation is one that minimizes a cleverly defined loss function and
arises as a trade-off between data representation ability and sparseness (i.e., a parsimonious
representation is promoted). The resulting loss function is inherently non-linear in the
representation parameters. Solving a non-linear optimization problem over a curved feasi-
ble set is not a straightforward task, hence specific optimization algorithms are developed.
Such algorithms arise from the extension of classical gradient-based learning paradigms,
such as gradient descent, momentum, and adaptive momentum. In summary, the primary
contributions of this paper are:

1. To revise the GSC algorithm proposed by Wang et al. (2017) and propose a more
efficient and faster way to compute the gradient of the criterion function that expresses
an SSC;

2. To extend a number of classical and modern gradient-based learning methods to a
general smooth manifold;

3. To evaluate the performance of the GSC algorithm learnt by these gradient-based
learning methods on clustering both toy datasets and real-world (pictorial) databases.

The Section 4 of this paper contains a review of clustering in machine learning, with par-
ticular emphasis on the basic aspects of the SSC and the GSC algorithms. In this section,
the main steps of the NCut clustering method are also recalled. In Section 5, the perfor-
mance of the GSC algorithm learnt by all the gradient-based learning methods is assessed
via clustering on synthetic and pictorial real-world datasets. Section 6 concludes this paper.

2. Summary of Gradient-Based Learning Methods in Rn

The present section summarizes a number of classical as well as modern learning schemes
based on parameter optimization known from the machine learning literature.

2.1 Gradient Descent (GD)

Gradient descent is an optimization algorithm used to minimize a given convex function, the
so-called loss function J(θ), where θ is a parameter vector in Rn . Developed in the 1970s
and 1980s, GD iteratively moves parameters values in the direction of steepest descent as
defined by the opposite direction of the gradient (Theodoridis, 2015).

Upon defining initial parameters values θ0, Gradient descent iteratively adjusts the
parameters values in order to seek a (local) minimum of the given loss function. The size of
the steps taken by GD is determined by the learning rate η . The learning rate determines
how fast or slow the movement towards the optimal parameters will be. In formulas we
have:

θt+1 = θt − η∇J(θt), (1)

779



Koudounas & Fiori

Algorithm 1 Stochastic Gradient Descent (SGD)

1: Input η, {(x(i), y(i))Ni=1} and θ0.
2: Set t = 0.
3: Randomly sample a point i ∈ {1, 2, . . . , N}.
4: Update the parameters by

θt+1 = θt − η∇J(θt;x
(i); y(i)). (2)

5: Increase t and return to 3 until stopping condition is fulfilled.

where ∇J(θ) denotes the gradient of the criterion function J evaluated at a point θ and
t = 0, 1, 2, . . . denotes an iteration index.

In order for GD to reach a minimum of the criterion function, the learning rate has to
be set to an appropriate value, which is neither too low nor too high. This is because if the
steps are too large, the GD algorithm might not reach the local minimum because it just
bounces back and forth within the convex criterion. If the learning rate is set instead to a
very small value, GD will eventually reach a local minimum but it will take too long time.

2.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent is an optimization algorithm which improves the efficiency of
the Gradient Descent algorithm . In fact, GD is computationally expensive to run on large
data sets since gradient computation is based on the complete training set. Instead, SGD
is able to take smaller steps corresponding to single input-output data pairs to be more
efficient while achieving the same result (Bottou, 2010).

Let us denote by {(x(i), y(i))Ni=1} a N -size training set. The Algorithm 1 shows how SGD
optimization method works.

2.3 Mini-Batch Stochastic Gradient Descent

Mini-batch Stochastic Gradient Descent represents a trade-off between Stochastic Gradient
Descent and Gradient Descent. In Mini-batch Stochastic Gradient Descent, the loss function
(and therefore its gradient) is averaged over a small number m� N of samples, which are
usually selected upon a random permutation of the elements in the training set (Peng, Li,
& Wang, 2019).

Such learning strategy appears as a generalization of the SGD, equivalent to a batch
size of 1 sample, and as a specialization of the GD, equivalent to a batch size of N samples.
In this way, the algorithm is much faster than GD, although there exist still some unsolved
problems. First of all, the choice of the learning rate η is still a sensitive issue, because it
should be neither too high nor too low, in order to avoid the same problems encountered
in the GD optimization. Another notable limitation is that Mini-batch Stochastic Gradient
Descent algorithm tends to get stuck in local minima.

780



Gradient-based Learning Methods Extended to Smooth Manifolds

2.4 Gradient Descent with Momentum

SGD has troubles navigating areas where the surface of the loss function bends more steeply
in one dimension than in another. Such areas are common around local optima. The
Momentum is a method that helps accelerate SGD along the relevant directions and softens
the oscillations in the irrelevant directions (Qian, 1999). Such learning strategy consists in
adding a fraction γ (usually γ ∈ (0, 1]) of the direction of the previous step to a current
step. This entails amplification of speed in the correct direction and mellows oscillations
along wrong directions, so that the Gradient Descent step could be larger, compared to
SGD ’s constant step.

The momentum term increases along dimensions whose gradients point in the same
directions and reduces updates along dimensions whose gradients change directions. As a
result, faster convergence and reduced oscillation are gained. In formulas, the parameter
updating rule reads: {

vt = γ vt−1 + η∇J(θt),

θt+1 = θt − vt,
(3)

where the variable vt denotes a sort of learning speed.
One of the most troubling problems with Momentum is that it tends to miss (or to

oscillate around) the minima of the loss function.

2.5 Nesterov Accelerated Gradient (NAG)

Nesterov Accelerated Gradient is a simple change to normal momentum and it overcomes
its main problem by starting to slow down early (Nesterov, 1983). For a recent review see,
e.g., Botev, Lever, and Barber (2017).

In this algorithm indeed the gradient term is not computed from the current position θt in
parameter space, but instead from an approximated new “look-ahead” position. This helps
because while the gradient term always points in the right direction, the momentum term
may not. If the momentum term points in the wrong direction or overshoots, the gradient
can still “go back” and correct it in the same update step. The NAG learning strategy uses
the next approximated position’s gradient instead of using the current position’s gradient.
The NAG parameter updating rule reads:

θ̂t := θt − γ vt−1

vt = γ vt−1 + η∇J(θ̂t),

θt+1 = θt − vt.
(4)

The term θ̂t = θt − γvt−1, is somewhat reminiscent of the Momentum learning strategy.

2.6 Adaptive Gradient (AdaGrad)

AdaGrad was invented trying to improve the notion of learning rate in GD, which is constant
and affects all the parameters at the same rate (Duchi, Hazan, & Singer, 2011). In fact,
AdaGrad allows the learning rate to adapt based on parameters. Another advantage of
AdaGrad is that it basically eliminates the need to tune the learning rate. Each parameter
has its own learning rate and, due to the peculiarities of the AdaGrad strategy, the learning

781



Koudounas & Fiori

rate is monotonically decreasing. This entails however the most important disadvantage of
AdaGrad : at some point of time the learning rate is so small that the system stops learning.

What AdaGrad actually does is to accumulate the squares of all the gradient components
with respect to all parameters, and to use such sum to normalize the nominal learning rate
η. As a result, the effective learning rate could be smaller or larger depending on how the
past gradients behaved. In fact, the adaptation of parameters that were updated largely will
be slowed down, while parameters that received little updates will be subjected to bigger
learning rates to accelerate their learning process.

The parameter update rule corresponding to the AdaGrad algorithm reads:

θt+1,i = θt,i −
η√

Gt,ii + ε
∇J(θt)i. (5)

In the above formula, Gt ∈ Rd×d is a diagonal matrix where each element in the diagonal
(i, i) is the sum of squared gradient estimate over the course of training, up to the time-step
t, and the subscript i denotes the i-th entry of each vector. In formulas, the component
Gt,ii is defined as:

Gt,ii =

t∑
τ=1

(∇J(θτ )i)
2. (6)

Notice that parameters update is a component-wise operation, hence the learning rate is
adaptive per-parameter. Furthermore, the constant ε is useful to avoid division by zero, so
that optimization becomes numerically stable. For this reason, the constant ε is usually set
to a considerably small value, like 10−8.

2.7 AdaDelta

AdaDelta resolves the problem of continually decaying learning rate in AdaGrad by using
a limited sliding window (which allows the sum to decrease), instead of summing all past
squares. The actual accumulation process is implemented using the same concept as in the
Momentum (Zeiler, 2012). Also see Qu, Yuan, Chi, Chang, and Zhao (2019). The highlights
of AdaDelta algorithm are summarized in the Algorithm 2.

The AdaDelta learning algorithm attempts to alleviate the task of choosing a learning
rate by introducing a new dynamic learning rate. Such learning rate is computed on a
per-dimension basis using only first order information.

2.8 Adaptive Moment Estimation (AdaM)

Similar to AdaDelta, AdaM is an algorithm computationally efficient, little-memory de-
manding and appropriate for non-stationary objectives (Kingma & Ba, 2015; Zhong, Chen,
Qin, Huang, Zheng, Xu, & Chen, 2020). The AdaDelta learning strategy computes indi-
vidual adaptive learning rates for different parameters from estimates of first and second
moments of the gradients. The algorithm updates moving averages mt of the gradient
and moving averages vt of the squared gradients’ components. Two hyper-parameters
β1, β2 ∈ [0, 1) control the exponential decay rates of these moving averages. The mov-
ing averages themselves are estimates of the first moment (the mean) and the second raw
moment (the uncentered variance) of the gradient. However, these moving averages are

782



Gradient-based Learning Methods Extended to Smooth Manifolds

Algorithm 2 AdaDelta

1: Input values ε, γ, θ0.
2: Set t = 0 and E[∇J(θ)2

i ]−1 = 0.
3: Compute gradient ∇J(θ) at the current time t
4: Accumulate gradient

E[∇J(θ)2
i ]t = γE[∇J(θ)2

i ]t−1 + (1− γ)∇J(θt)
2
i . (7)

5: Compute update

(∆θt)i = −

√
E[(∆θ)2

i ]t−1 + ε√
E[∇J(θ)2

i ]t + ε
· ∇J(θt)i. (8)

6: Accumulate updates

E[(∆θ)2
i ]t = γE[(∆θ)2

i ]t−1 + (1− γ)(∆θt)
2
i , (9)

where γ is a decay constant similar to that used in the Momentum method.
7: Apply update

(θt+1)i = (θt)i + (∆θt)i. (10)

8: Increase t and return to 3 until stopping condition is fulfilled.

initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero,
especially during the initial timesteps, and especially when the decay rates are small. This
initialization bias can be easily counteracted, resulting in bias-corrected estimates m̂t and
v̂t. The main steps of this method are shown in the Algorithm 3.

The authors of the algorithm proposed default values of 0.9 for β1, 0.999 for β2, and 10−8

for ε. They showed empirically that AdaM works well in practice and compares favorably
to other adaptive learning algorithms.

3. Extension of Gradient-Based Learning Algorithms to Smooth
Manifolds

The present section aims at extending the optimization algorithms recalled in the previ-
ous section to Riemannian manifolds. The reader should keep in mind that extending an
optimization algorithm from a flat space like Rn to a Riemannian manifold M is neither
straightforward nor univocal.

3.1 Manifold Notation

A d-dimensional manifold can be informally defined as a set M covered with a suitable
collection of coordinate patches, or charts, that identify certain subsets of M with open
subsets of Rd. Such a collection of coordinate charts can be thought of as the basic structure
required to perform differential calculus on M.

783



Koudounas & Fiori

Algorithm 3 Adaptive Moment Estimation (AdaM)

1: Input values β1, β2, ε, θ0.
2: Set t = 0, mt−1 = 0, v−1,i = 0.
3: Compute gradient ∇J(θ) at the current time t
4: Update biased first moment estimate

mt = β1mt−1 + (1− β1)∇J(θt). (11)

5: Update biased second raw moment estimate

vt,i = β2vt−1,i + (1− β2)(∇J(θt)i)
2. (12)

6: Compute bias-corrected first moment estimate

m̂t =
mt

1− βt1
. (13)

7: Compute bias-corrected second raw moment estimate

v̂t =
vt

1− βt2
. (14)

8: Update parameters

θt+1 = θt −
η√
v̂t + ε

m̂t. (15)

9: Increase t and return to 3 until stopping condition is fulfilled.

At a point U ∈ M, the tangent space to the manifold M is denoted TUM. The symbol
TM denotes the tangent bundle defined as TM = {(U, V ) | U ∈M, V ∈ TUM}.

The exponential map is a map from a subset of a tangent space TUM of a manifold M
to M itself. Given a point U ∈ M and a vector V ∈ TUM, there is a unique geodesic1 γV
satisfying γV (0) = U with initial tangent vector γ′V (0) = V . The corresponding exponential
map is defined by expU (V ) = γV (1).

The parallel transport takes a point U, V ∈ TM and a vector W ∈ TUM as input and
transports the vector W along a geodesic arc departing from U along the direction V for
a unit time. We will use the notation PU,V (W ). In the design of a numerical algorithm
in Subsection 3.3, we shall invoke a version of parallel transport denoted by PU,V (V ),
namely, the transport of a tangent vector along the geodesic line directed along itself. This
concept exploits the well-known, defining property of a geodesic line to self-transport its
own tangents. Parallel transport is also an isometry, which means that parallel transport
changes the direction of a transported vector to make it conform to the geometry of the
underlying manifold, without altering the length of the transported tangent vector.

In addition, we shall make use of the operator ΠU [·], which denotes an orthogonal
projection over the tangent space TUM.

1. A geodesic is a curve representing the shortest path between two points in a manifold.

784



Gradient-based Learning Methods Extended to Smooth Manifolds

A detailed treatment of specific notions from manifold calculus exceeds the scope of
the present paper. We point interested readers to available material, such as the survey
by Fiori (2005) or applied papers by Fiori (2008a, 2008b). Specific formulas related to the
Grassmann manifold, of interest in spectral clustering, will be given in Subsection 3.8.

3.2 Gradient Descent on M

As mentioned in Subsection 2.1, this method imposes to add to the variable that should be
optimized a small fraction of the anti-gradient, so as to follow the right path.

The parameters updating operation follows this formula:

Ut+1 = expUt
(−η∇UtJ), (16)

where Ut ∈ M, η ∈ R+ and ∇UtJ ∈ TUtM, since it represents the Riemannian gradient of
the loss function J calculated in the point Ut. To start iteration, it is necessary to choose
an initial guess U0. The iteration step runs over t = 0, 1, 2, . . . , I, where I denotes a
pre-defined number of iterations.

This learning algorithm, as well as all the following ones, has been implemented in such
a way that the iteration loop ends once a predetermined number of iterations is reached.

3.3 Gradient Descent with Momentum on M

Faithful to the original idea recalled in Subsection 2.4, instead of using only the gradient in
the current step, the Momentum method also accumulates the gradient of the past steps to
determine the direction to move towards. Since gradients are calculated at different points,
they belong to different tangent spaces: ∇Ut−1J ∈ TUt−1M whereas ∇UtJ ∈ TUtM, therefore
it is not possible to add these terms directly. Parallel transport has to be used to transport
∇Ut−1J from TUt−1M to TUtM. Upon being transported to TUtM, it can be added to ∇UtJ ,
since they now both belong to the same tangent space. The parameters are then updated
through the exponential map.

The formulas below show the essential steps of this extended learning algorithm:{
Vt = γ PUt−1,Vt−1(Vt−1) + η∇UtJ,

Ut+1 = expUt
(−Vt)

(17)

where Ut ∈ M, η > 0 denotes a learning stepsize, γ > 0 is a momentum coefficient, and
∇UtJ, Vt ∈ TUtM. The iteration step runs over t = 0, 1, 2, . . . , I, where I denotes a
pre-defined number of iterations. The initial point U0 is chosen in M and the initial velocity
V0 may be either randomly picked in TU0M, or set to ∇U0J , or set to zero, while V−1 = 0.

3.4 Nesterov Accelerated Gradient on M

The idea behind NAG, as recalled in Subsection 2.5, is that instead of calculating the gradi-
ent at the current position, it calculates the gradient at the position where the momentum
is about to arrive, called “look-ahead” position, and by that time a fraction of this gradi-
ent is added to the previous ones. Since gradients are calculated at different points, they
belong to different tangent spaces, therefore they must be taken back to the same tangent

785



Koudounas & Fiori

space through the projection operator before updating the parameters. In formulas, this is
written as: 

Ût = expUt
(−γΠUt(Vt−1)) ,

Vt = ΠUt

(
γ Vt−1 + η∇Ût

J
)
,

Ut+1 = expUt
(−Vt),

(18)

where Ut ∈ M, η > 0 denotes a learning stepsize, γ > 0 denotes a forgetting factor and
∇Ût

J, Vt ∈ TUtM. The iteration step runs over t = 0, 1, 2, . . . , I, where I denotes a
pre-defined number of iterations. The initial point U0 is chosen in M and the initial velocity
V0 may be either randomly picked in TU0M, or set to ∇U0J , or set to zero, while V−1 = 0.

3.5 Adaptive Gradient on M

A direct extension of the original AdaGrad, as recalled in Subsection 2.6, would need a de-
composition of the Riemannian gradient of the criterion function into components in order to
weight any component according to the square root of the accumulated component squares.
In formulas, if we denoted by {∂1, ∂2, . . . , ∂d} the canonical basis of the tangent space
TUtM, the Riemannian gradient ∇UtJ would be decomposed as ∇UtJ =

∑d
i=1(∇UtJ)i∂i,

where each (∇UtJ)i ∈ R denotes one of the components of the gradient with respect to
the canonical basis and d denotes the dimension of the base manifold M. The accumulated
squared component may be updated as

Gt+1,ii = Gt,ii + (∇UtJ)2
i , (19)

and a normalized gradient may be defined as follows:

∇̃UtJ :=

d∑
i=1

(∇UtJ)i√
Gt,ii + ε

∂i. (20)

Although ∇̃UtJ does no longer represent a Riemannian gradient of the criterion function
J , it is still a tangent vector in TUtM, therefore it is mathematically sound to update the
current point Ut to the next point by

Ut+1 = expUt
(−η∇̃UtJ). (21)

The set of equations (19) and (20) are faithful to the original concept but are quite imprac-
tical due to the need of getting back and forth to the component representation and due
to the need of calculating the canonical basis of each tangent space encountered during the
optimization process.

Assuming that the manifold M is a matrix manifold (or that its elements may be rep-
resented as matrices), a possible workaround consists in weighting every single entry of the
gradient by a weight that is inversely proportional to the square root of the accumulated
square of the same entry across time. In formulas, a possible workaround may be expressed
as follows: 

Gt = Gt−1 +∇UtJ �∇UtJ,

Ĝt = ΠUt

[
η

◦√Gt+ε
�∇UtJ

]
,

Ut+1 = expUt
(−Ĝt),

(22)

786



Gradient-based Learning Methods Extended to Smooth Manifolds

where � denotes the Hadamard (component-wise) matrix product and ◦√ denotes a
component-wise square root. Here, η > 0 denotes a learning stepsize and ε > 0 is a small-
valued constant that prevents division by zero. Notice that both summation of a matrix by
a constant and division between two matrices are intended component-wise. The iteration
step runs over t = 0, 1, 2, . . . , I, where I denotes a pre-defined number of iterations.
The necessity of the projection operator is quite apparent since the result of the Hadamard
product η

◦√Gt+ε
�∇UtJ between a weighting matrix and a Riemannian gradient apparently

is not a tangent vector any longer. To start iteration, it is necessary to set G−1 = 0.

3.6 AdaDelta on M

Similarly to the AdaGrad method, the original AdaDelta algorithm, as recalled in Subsec-
tion 3.6, may be extended to a Riemannian manifold (and, indeed, even to non-Riemannian
smooth manifolds) in a number of ways. In the following, a mathematically sound version
is proposed: 

St = γ St−1 + (1− γ) · (∇UtJ �∇UtJ),

Ĝt = ΠUt

[
◦
√

∆t−1+ε
St+ε

� (γ∇UtJ)

]
,

∆t = γ∆t−1 + (1− γ) · (Ĝt � Ĝt),
Ut+1 = expUt

(−Ĝt).

(23)

The first two equations are meant to provide the accumulated gradients and the accumulated
updates as expected in the original AdaDelta method.

Notice that the two matrix-sequences ∆t and St do not show any particular structure.
Also, it is worth underlining that, in the equation that defines values of Ĝ, the summation
by a scalar as well as the division between matrices are meant to be effected component
wise and that the Riemannian gradient was further scaled by γ to improve the numerical
stability of this learning algorithm. The iteration step runs over t = 0, 1, 2, . . . , I, where
I denotes a pre-defined number of iterations. To start iteration, it is necessary to choose
an initial guess U0. Moreover, we set S−1 = 0 and ∆−1 = 0.

3.7 Adaptive Gradient with Momentum on M

The AdaM algorithm outlined in Subsection 2.8 may be extended to a smooth manifold by
an appropriate reformulation of its constituting equations. The proposed extension goes as
follows: 

Mt = β1 ΠUt(Mt−1) + (1− β1) · ∇UtJ,

Vt = β2 Vt−1 + (1− β2) · (∇UtJ �∇UtJ),

M̂t = Mt

1−βt
1
,

V̂t = Vt
1−βt

2
,

Ĝt = ΠUt

[
η

◦√
V̂t+ε

� M̂t

]
,

Ut+1 = expUt
(−Ĝt),

(24)

where the notations βt1 and βt2 denote tth-order powers.

787



Koudounas & Fiori

Notice that the two matrix-sequences Mt and Vt do not show any particular structure.
Also, it is worth underlining that, in the equation that defines values of Ĝ, the summation
by a scalar as well as the division between matrices are meant to be effected component
wise. The iteration step runs over t = 0, 1, 2, . . . , I, where I denotes a pre-defined number
of iterations. To start the iteration, it is necessary to choose an initial guess U0. Moreover,
we set M−1 = 0 and V−1 = 0.

3.8 Grassmann Manifold

The aim of this subsection is to recall some basic concepts about Grassmann manifolds.
As a further reference, readers might consult Edelman, Arias, and Smith (1998) and Fiori,
Kaneko, and Tanaka (2015).

Let N be a positive integer and let K be a positive integer, not greater than N . The set
of K-dimensional linear subspaces of RN is called Grassmann manifold and is denoted by
Gr(N,K). An element on a Grassmann manifold is generally represented by an arbitrarily
chosen N ×K full-rank matrix U , whose columns span the corresponding subspace. Given
the large arbitrariness in the choice of a basis to represent a subspace, and since K � N
in applications, a sensible choice is to restrict this selection to a ‘tall skinny’ orthonormal
(Stiefel) matrix. A Stiefel manifold St(N,K) is the set of matrices of size N × K with
orthonormal columns.

A Grassmann manifold can be represented by a collection of such generator matrices.
Mathematically, this may be written as:

Gr(N,K) = {span(U) | U ∈ RN×K , U>U = IK}.

This allows to represent a generic element of Grassmann manifold as U := {UR | R ∈
O(K)}, where O(K) denotes the orthogonal group (the set of p × p orthogonal matrices).
An implication of this observation is that each element of Gr(N,K) is an equivalence set.
This allows a Grassmann manifold to be treated as a quotient space of the larger Stiefel
manifold St(N,K). A Stiefel manifold is defined as:

St(N,K) := {U ∈ RN×K | U>U = IK}. (25)

Specifically, a Grassmann manifold has the quotient manifold structure

Gr(N,K) := St(N,K)/O(K). (26)

Hence, while optimization is conceptually taken on the Grassmann manifold Gr(N,K), the
quotient-space structure numerically allows to implement operations with concrete matrices
– that are elements of St(N,K).

Given two points on Grassmann manifold U, Û and a tangent vector V ∈ TUGr(N,K),
a Grassmann geodesic can be written as

γU,V (t) = [UB A]

[
cos(Σt)
sin(Σt)

]
B>, (27)

where AΣB> denotes the compact singular-value decomposition of V . Then the exponential
map, denoted as expU (V ) : TUGr(N,K) → Gr(N,K), can be defined as the computation
of Û = γU,V (1).

788



Gradient-based Learning Methods Extended to Smooth Manifolds

Given V and W tangent vectors to the Grassmann manifold at U , a formula for parallel
translation of W along the unique geodesic in the direction V can instead be described as
follows:

PU,V (W ) =

[
[UB A]

[
− sin(Σ)
cos(Σ)

]
A> + (I −AA>)

]
W. (28)

Moreover, when the elements of a Grassmann manifolds are represented through Stiefel
matrices, the projection operator over tangent spaces takes the expression ΠU [A] =
(I − UU>)A, with A being any matrix of consistent size. As it is immediate to verify,
computation-wise the projection over a tangent space is much more economical than par-
allel transport.

With that sorted, it is now possible to extend the above gradient-based learning methods
to the manifold Gr(N,K) as needed.

4. Sparse Spectral Clustering by Grassmann Manifold Optimization

The aim of this section is to summarize the main concepts about Grassmann manifold
optimization assisted spectral clustering algorithm, which is a clustering method based on
sparse spectral clustering, used to cluster a collection of multi-subspace data using sparse
representation techniques. This review is based mostly on the recent paper by Wang et al.
(2017).

4.1 Review of Clustering in Machine Learning

Clustering is one of the most widely used data exploration tools. Its goal is to divide the
data points into several groups such that data-points that are similar fall in the same group,
while data-points that are dissimilar fall in different groups. In order to achieve this result,
the main steps to take are: (a) to create a similarity/affinity matrix for the given data
sample set, and (b) to apply a general clustering method to categorize these data samples,
such as k-means, fuzzy c-means, expectation-maximisation, hierarchical clustering, graph
clustering, and NCut (Jain, Murty, & Flynn, 1999; Kang, Xu, Wang, Zhu, & Xu, 2019;
Papachristou, Miaskowski, Barnaghi, Maguire, Farajidavar, Cooper, & Hu, 2016).

There exist many recently developed clustering approaches that encounter challenging
optimization problems, e.g. multi-view clustering. Recently, proximity-based methods have
achieved great success in multiview clustering. A paper by Liu, Huang, Wang, Fan, and
Yu (2019a) suggest to consider both the intraview relation and the inter-view correlation.
Furthermore, through an adaptively weighted scheme, the information of the learned view-
specific proximity matrices is integrated into a view-common cluster indicator matrix. A
paper by Huang, Chao, and Wang (2019a) proposes a novel multi-view clustering method
termed ‘multi-view intact space clustering’, which is able to simultaneously recover the
latent intact space from multiple insufficient views and discover the cluster structure from
the intact space. The main idea of the contribution by Huang, Wang, Chao, and Yu (2019b)
is to design a multiview support vector domain description model, by which the information
from multiple insufficient views can be integrated, and the outputting support vectors are
utilized to abstract summary statistics of historical multiview data objects.

In several applications – such as image processing and computer vision – high dimen-
sional data are widespread. This has unpleasant affects on the computation time and

789



Koudounas & Fiori

memory requirements of algorithms used to extract information. However, it has been
shown that high dimensional data often lie close to low-dimensional structures correspond-
ing to several classes or categories. The goal of spectral/subspace clustering, which is a
simple extension of traditional clustering, is to cluster data points that lie in a union of
low-dimensional subspaces. Spectral clustering found a number of applications, as they are
parts of more complex algorithms, like community detection algorithms (Makris, Pispirigos,
& Rizos, 2020), film recommender systems for users (Cintia Ganesha Putri, Leu, & Seda,
2020), and algorithms to detect open-source software ecosystems (Liao, Wang, Liu, Zhang,
Liu, & Zhang, 2019).

The notion of compressive robust subspace clustering, which is to perform robust sub-
space clustering with compressed data, has recently been proposed by Liu, Zhang, Liu,
and Xiong (2019b). Compressive robust subspace clustering is generated by projecting
the original high-dimensional data onto a lower-dimensional subspace chosen at random.
A noteworthy contribution in this field was presented by Zhang, Ren, Li, Hong, Zha, and
Wang (2019). This paper introduced an unsupervised representation learning model, termed
rBDLR, that is able to recover multi-subspace structures and extract adaptive locality-
preserving salient features jointly. rBDLR jointly learns the coding coefficients and salient
features, and improves the results by enhancing the robustness to outliers and errors in
given data, preserving local information of salient features adaptively and ensuring the
block-diagonal structures of the coefficients. A paper by Li, Zhang, Wang, Liu, Yan, and
Wang (2020) explores the deep multi-subspace recovery problem by designing a multilayer
architecture for latent low-rank representations. Such paper proposes a new multilayer
collaborative low-rank representation network model termed to discover deep features and
deep subspaces.

Sparse spectral clustering improved spectral clustering. The underlying idea behind
sparse spectral clustering is what its authors call self-expressiveness property of the data.
According to this notion, each data point in a union of subspaces can be efficiently repre-
sented as a linear or affine combination of a few key points, which form a dictionary.

4.2 Formulation of Spectral Clustering as a Constrained Optimization
Problem

Assume we are given
X = [x1, . . . , xN ] ∈ RP×N , (29)

where X is a set of N data-points to be clustered and P is the dimension of data. The
purpose of clustering is to partition the dataset X into k clusters according to certain
similarity criteria. In particular, spectral clustering partitions these N points into K clusters
as specified in the Algorithm 4. It is important to underline two aspects of the Algorithm 4:

� This algorithm uses the data to compute the elements of an affinity matrix W .
Through the affinity matrix, a normalized graph Laplacian L is evaluated. On the
basis of the graph Laplacian, a subspace basis matrix U is defined. The columns
of the matrix U are taken as inputs of a clustering algorithm (upon normalization).
In summary, the original data are not clustered directly, but their information con-
tent is subjected to a series of transformation steps before being given as inputs to a
clustering algorithm.

790



Gradient-based Learning Methods Extended to Smooth Manifolds

Algorithm 4 Spectral Clustering (SC)

1: Compute the N ×N affinity matrix W defined by

Wij =

{
e−‖xi−xj‖

2

2σ2 if i 6= j,

0 otherwise,
(30)

where σ > 0 controls the size of each neighborhood.
2: Compute the normalized graph Laplacian

L = I −D−1/2WD−1/2, (31)

where D is the N × N diagonal matrix whose diagonal elements are given by dii =∑N
j=1wij .

3: Compute matrix U ∈ RN×K by solving the following constrained problem:

min
U∈RN×K

〈
UU>, L

〉
s.t. U>U = I. (32)

4: Form matrix Û ∈ RN×k by normalizing each row of U to have unit Euclidean length.
5: Treat each row of Û as a point in RK , and cluster them into K groups by any clustering

algorithm.

� The optimization problem (32) that defines an optimal subspace basis matrix U is
constrained to seek an orthonormal rectangular matrix. This optimization problem is
therefore a constrained one and, in particular, a Stiefel optimization problem, which
is better tackled by manifold calculus.

The rows of matrix U are regarded as the low-dimensional representation of the original
data. The elements of the matrix UU> represent similarity (or affinity) between the latent
representation (i.e., the rows) of the original data. In an ideal scenario, the matrix UU>

can be permuted to a block diagonal structure, which is privileged as it improves clustering
performance.

The idea of inducing or enforcing sparsity is the basis of sparse spectral clustering.
SSC tries to obtain a better representation U by solving the following sparsity-induced
optimization:

min
U∈RN×K

(〈
UU>, L

〉
+ β‖UU>‖1

)
s.t. U>U = I, (33)

where β represents a weight that promotes or demotes the sparsity of the solution U . The
elements of UUT corresponding to weak inter-cluster connections tend to be zero, while the
ones corresponding to strong intra-cluster connections will be kept. But the solution U of
the problem (33) may not be the best one. That is why GSC algorithm has been proposed
by Wang et al. (2017). We could sum it up as follows. Consider the optimization problem
(33). Denote the objective function by

f(U) :=
〈
UU>, L

〉
+ β‖UU>‖1, (34)

791



Koudounas & Fiori

where L is the normal Laplacian graph. The constraint condition in problem (33) defines
the Stiefel manifold which consists of all the orthogonal column matrices. As a consequence,
problem (33) is read as a manifold optimization problem on the Stiefel manifold St(N,K).
Due to the definition of the Grassmann manifold as a quotient space of the Stiefel manifold
St(N,K), it is possible to restate the problem on the Grassmann manifold as follows:

min
U∈St(N,K)

(〈
UU>, L

〉
+ β‖UU>‖1

)
, (35)

that is a Grassmann manifold optimization problem. The objective function (34) of the
new optimization problem (35) is not differentiable at the location where the elements of
UU> are zero. In this case, Wang et al. (2017) suggest using a sub-differential instead of
gradient-based optimization.

4.3 Role of Gradient-Based Optimization in Spectral Clustering

As it was explained in Subsection 4.2, spectral clustering may be formulated in terms of
a loss function f(U) (34) whose minimum is sought over a Grassmann manifold. Since
the solution U = 0 does not belong to St(N,K), the loss function f is smooth over the
feasible set St(N,K). In addition, the loss function is non-linear in its argument (namely,
an expansion of the function f in terms of the entry-variables in U reveals a non-linear
structure of the loss function). The feasible space itself is nonlinear, since the entry-variables
in U need to satisfy multiple quadratic constraints. It is therefore clear that a closed-form
solution to the problem (35) is out of reach.

Since a closed-form solution to the learning problem (35) is out of question, approximate
or numerical solutions may be envisaged. A widely accessed solution is based on gradient-
steepest descent method and on its extensions. Since the space of feasible solutions is a large-
dimensional, smooth, matrix-type, quadratic manifold, it is natural to access numerical
optimization methods developed in Section 3. These optimization methods, in fact, were
developed to look for a minimum of a smooth function over a constrained search space.
Their structure requires the knowledge of basic operators on manifolds (such as exponential
map and parallel transport) and the computation of the Riemannian gradient of the loss
function. The Grassmann manifold is a well-known and well-studied smooth manifold whose
principal operators are known from the scientific literature.

We are going to present some details about the computation of the Riemannian gradient
of the loss function f over a Grassmann manifold. We shall recall calculations developed in
(Wang et al., 2017) and then propose a more efficient way to perform the same calculation.
It is worth to introduce some notation and to revise the evaluation of the gradient of the
objective function (34) as pursued by Wang et al. (2017). For a matrix A of size m × n,
vec(A) is a mn-dimensional vector constructed by stacking columns of A one by one, and
ivec(vec(A)) = A the inverse operation of vec. A⊗B is the Kronecker product of matrices
A and B. The transform Tm,n is a matrix of size mn×mn such that vec(A) = Tm,nvec(A>).

For the first term in the objective function (34), it is possible to write that:〈
UU>, L

〉
= trace(UU>L) = trace(U>LU), (36)

792



Gradient-based Learning Methods Extended to Smooth Manifolds

therefore, for the Euclidean derivative, we have that

∂

∂U

〈
UU>, L

〉
= LU + L>U = 2LU (37)

because L is symmetric. Consider the second term of the objective function:

vec

(
∂‖UU>‖1

∂U

)>
= vec(sign(UU>))>

∂UU>

∂U
(38)

where
∂UU>

∂U
= (IN2 + TN2×N2)(U ⊗ IN ). (39)

Define the column vector M as

M =

(
∂UU>

∂U

)>
vec(sign(UU>)), (40)

hence, the Euclidean derivative of the objective function (34) is:

∂f(U)

∂U
= 2LU + β ivec(M). (41)

We believe that the matrix ivec(M) could be computed in a easier and efficient way,
especially in those cases where the involved matrices are large. Knowing that

‖UU>‖1 :=
∑
i

∑
j

|(UU>)ij | (42)

and that
UU> =

∑
k

Uik(U
>)kj =

∑
k

UikUjk, (43)

we are able to write [
∂‖UU>‖1

∂U

]
ab

=
∂

∂Uab

∑
i

∑
j

∣∣∣∣∣∑
k

UikUjk

∣∣∣∣∣ . (44)

We can now distinguish three cases:
i = a, k = b, or

j = a, k = b, or

i = j = a, k = b.

Hence [
∂‖UU>‖1

∂U

]
ab

=
∂

∂Uab

∑
j

|Uab| |Ujb|+
∑
i

|Uib| |Uab|


= 2

∑
i

|Uib| sign

[∑
k

|Uik| |Uak|

]
.

(45)

793



Koudounas & Fiori

Algorithm 5 Grassmann Manifold Optimization Assisted Spectral Clustering (GSC)

1: Construct a N ×N affinity matrix W where each element wij measures the similarity
between xi and xj as shown in Algorithm 4.

2: Defining K as the number of clusters, compute the initial latent representation U (0) of
size N×K by taking the first K eigenvectors corresponding to the largest K eigenvalues
of the matrix W .

3: Compute the Laplacian normalized matrix L as shown in Algorithm 4.
4: Taking as initial guess U (0), call any appropriate optimization algorithm on the Grass-

mann manifold to minimize the criterion function (34).
5: With the obtained sparse latent representation U , form the new affinity matrix Ŵ =
UU>.

6: Using the affinity matrix Ŵ , compute the pair-wise Euclidean distance ∆ij =
√
Pij

where, upon defining 1 as a 1×K all-one vector, the matrix P is computed as follows:
H = Ŵ>Ŵ , (size K ×K)

Q = diag(H), (size K × 1)

P = Q1 + 1
>Q> − 2H, (size K ×K)

Each negative entry of the matrix P is set to zero.

7: Take the new pair-wise data affinity matrix W ∗ as W ∗ij := exp(−∆ij/σ), where σ = 0.1,
as input of any clustering algorithm to separate data into clusters.

On the basis of the above formula to calculate ivec(M), at the representative U of a
Grassmann-manifold point, the Riemannian gradient of the criterion function f can be
computed as:

∇Uf = (I − UU>)
∂f

∂U
. (46)

At this stage, it is possible to use any suitable optimization algorithm on the Grassmann
manifold to solve the optimization problem (35) to get a solution U .

Given a data matrix X = [x1, . . . , xN ] and the trade-off parameter β, GSC consists of
the steps described in Algorithm 5 (Wang et al., 2017). Three observations on the Algorithm
5 are in order:

� The point 4 of the algorithm calls for a numerical optimization method that is able
to find the minimum of a cost function over a smooth manifold (the Grassmannian).
Apparently, the subject of optimization is not a data manifold, but rather a parameter
(or a latent representation) manifold.

� As optimization algorithms, we are going to employ the gradient-based optimization
methods developed in Section 3. In the computation of the gradient of the criterion
function f , we are going to make use of the formula (45) to evaluate the array M .

� The point 7 of the algorithm calls for a clustering method to categorize data on the
basis of the new affinity matrix W ∗. Wang et al. (2017) chose to use Normalized Cut.

794



Gradient-based Learning Methods Extended to Smooth Manifolds

We shall follow this line in the experimental section, hence we are going to recall the
Normalized Cut method in the following subsection.

4.4 Normalized Cut (NCut)

We will now briefly summarize the basic concepts about NCut (Shi & Malik, 2000). NCut
refers indeed to an objective function used in spectral clustering. We shall refer to spectral
clustering based on Normalized Cut or simply to NCut clustering, for short.

The set of points in an arbitrary feature space is represented as a weighted undirected
graph G = (V, E), where the nodes of the graph are the points in the characteristic space, and
an edge is built between every pair of nodes. The weight on each edge w(i, j) is a function
of the similarity between nodes i and j. In grouping, the set of vertexes is partitioned into
disjoint sets V1,V2, . . . ,Vm, where the similarity among the vertexes in a set Vi is high and
across different sets Vi,Vj is low.

A graph G = (V, E) can be partitioned into two disjoint sets A,B with A ∪ B = V and
A∩B = ∅, by simply removing edges connecting the two parts. The degree of dissimilarity
between these two partitions can be computed as the total weight of the edges that have
been removed. In a graph-theoretic language, it is called cut :

cut(A,B) :=
∑
u∈A
v∈B

w(u, v).

The optimal bi-partitioning of a graph is the one that minimizes such cut value. Even
though there exist a large number of such partitions, finding the minimum cut of a graph is
a well-studied problem and there exist efficient algorithms for solving it (Rendl & Sotirov,
2018).

The NCut objective function measures both the total dissimilarity between different
groups as well as the total similarity within each group. The NCut objective function is
defined as the cut cost as a fraction of the total edge connections to all the nodes in the
graph, instead of looking at the value of total edge weight connecting the two partitions:

NCut(A,B) :=
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
,

where assoc(A,V) :=
∑

u∈A,t∈V w(u, t) amounts to the total connection from nodes in A to
all nodes in the graph and assoc(B,V) is similarly defined. With this measure of disassocia-
tion between groups, the cut that partitions out small isolated points will no longer amount
to a small NCut value, since the cut value will almost certainly be a large percentage of
the total connection from that small set to all other nodes. NCut clustering consists of the
steps specified in the Algorithm 6.

It is important to underline that, unlike the popular K-means clustering method, NCut
does not cluster data points directly in their native data space but instead forms a similarity
matrix whose (i, j)-th entry denotes a similarity distance between the i-th and j-th data
points in the training set. Therefore, the NCut algorithm is more general (and powerful)
because whenever K-means is appropriate for use then so too is NCut (just use a simple
Euclidean distance as the similarity measure). The converse is not true, though.

795



Koudounas & Fiori

Algorithm 6 Normalized Cut (NCut)

1: Given a training set, build a weighted graph G = (V, E) and set the weight on the edge
connecting two nodes to be a measure of the similarity between these two nodes.

2: Summarize the information into matrices W and D as in Algorithm 4.
3: Solve for eigenvectors z with the smallest eigenvalues λ of (D −W )z = λDz.
4: Use the eigenvectors with the second smallest eigenvalue to bi-partition the graph by

finding the splitting point such that the NCut value is minimized.
5: Decide if the current partition should be subdivided by checking the stability of the cut,

and make sure that the NCut value lies below a pre-specified threshold.
6: Recursively re-partition the segmented parts if necessary.

5. Experimental Results

The present section illustrates results of numerical experiments performed on two cate-
gories of datasets, namely, synthetic 2-dimensional datasets used for testing purposes (Sub-
section 5.1, and real-world datasets used to validate the discussed gradient-based learning
algorithms (Subsection 5.2) and to compare their performances with those exhibited by
closely-related clustering algorithms known from the scientific literature (Subsection 5.3).

5.1 Clustering Results on Synthetic Datasets

The synthetic datasets used in this section are drawn from (Wang et al., 2017), namely:

� Two-moon data: These data are randomly generated from two sine-shape curves
with the noise percentage set to 0.09, and each cluster – in this specific case – contains
100 samples.

� Three-Gaussian data: Each cluster follows a Gaussian distribution with a variance
of 0.05. Again, each cluster has 100 samples.

� Three-ring data: These data are distributed on circles, with the noise percentage
set to 0.15. There are respectively 100, 100 and 150 samples in each cluster.

� Two disjoint quadratic para-curves data: These data are spread throughout two
disjoint parabolic-shape curves without overlapping, altered with Gaussian noise of 0
mean and variance 0.05. In our experiment each cluster contains 200 samples.

These datasets are shown in Figure 1, with the clusters colored. These numerical exper-
iments were performed on a personal computer endowed with a dual-core Intel Core i5
processor, a clock frequency of 2.7GHz and a 8GB RAM by the help of MATLAB R2017b
scripts.

5.1.1 Preliminary Illustrative Tests

As a preliminary test, before discussing and comparing the efficiency of the clustering algo-
rithms on each dataset, it is interesting to try directly the NCut method without extracting
any latent representation in advance. The results are shown in Figure 2. The accuracy

796



Gradient-based Learning Methods Extended to Smooth Manifolds

(a) Two-Moon dataset. (b) Three-Gaussian dataset.

(c) Three-Ring dataset (d) Two disjoint quadratic para-curves dataset

Figure 1: Synthetic datasets used to test clustering algorithms.

of NCut when the affinity matrix is not learned appears to be very low, which justifies
summoning a learning algorithm to discover a useful latent representation of the original
data.

As a further preliminary test, we assessed the efficiency in the computation of the vector
M using the expression (40) given in Wang et al. (2017) versus our improved expression (45).
In order to get a fair comparison, we used as learning algorithm the Trust Regions method
from the ManOpt tool (Boumal, Mishra, Absil, & Sepulchre, 2014). Results obtained by
using (40) are summarized in Table 1, while results obtained by using expression (45) are
summarized in Table 2. These tables show the number of iterations and the running time

797



Koudounas & Fiori

(a) NCut with Two-moon dataset. (b) NCut with Three-Gaussian dataset.

(c) NCut with Three-ring dataset. (d) NCut with Two disjoint para-curves dataset.

Figure 2: Clustering results obtained by the NCut algorithm without learning any affinity
matrix.

that an algorithm takes to get a 100% clustering accuracy for each dataset. As we can see,
our improvement in the way to compute M (45) makes the algorithm much faster.

Notice that the number of iterations is less meaningful than the running time. In fact,
the more complex the toy dataset is, the longer an algorithm takes to converge properly,
regardless of whether the number of iterations is slightly or significantly higher than the
number of iterations taken by other datasets.

798



Gradient-based Learning Methods Extended to Smooth Manifolds

Dataset # iterations Running time (sec)

Two-Moon 17 60.75
Three-Gaussian 8 162.87
Three-Ring 11 304.10
Two Disjoint Para-Curves 33 1047.79

Table 1: Comparison of the performance indexes of the TrustRegions (ManOpt tool) using
(40).

Dataset # iterations Running time (sec)

Two-Moon 12 4.59
Three-Gaussian 5 2.59
Three-Ring 10 3.42
Two Disjoint Para-Curves 11 4.39

Table 2: Comparison of the performance indexes of the TrustRegions with our improvement
in computation of M (45).

5.1.2 Comparison of Six Gradient-Based Learning Methods on Synthetic
Training Sets

We shall now move on to gradient-based learning methods. The following results were
obtained by choosing, as calculation method for the vector M , the expression (45).

The performances of the Gradient descent learning algorithm on four synthetic datasets
are summarized in Table 3. In this table, as well as in the following ones, the # iterations
refers to a pre-fixed number of learning cycles that guarantees complete convergence. It is
clear that the convergence of this algorithm is very slow.

Dataset # iterations Running time (sec)

Two-Moon 200,000 567.05
Three-Gaussian 500,000 1,463.19
Three-Ring 750,000 9,617.48
Two Disjoint Para-Curves 500,000 5,277.69

Table 3: Comparison of the performance indexes of the GD-based learning algorithm on
four synthetic datasets.

The performances of the Momentum learning algorithm on four toy datasets are sum-
marized in Table 4. Momentum is much faster than Gradient descent, but it appears quite
slow in converging to an appropriate latent representation, in absolute terms.

The performances of the Nesterov accelerated gradient learning algorithm on four toy
datasets are summarized in Table 5. As expected, Nesterov accelerated gradient is similar
to Momentum in terms of performance, although it appears to be slightly faster as the
complexity of the input data increases.

The performances of the Adaptive gradient learning algorithm on four synthetic datasets
are summarized in the Table 6. Adaptive methods turn out to be much faster, as it is possible

799



Koudounas & Fiori

Dataset # iterations Running time (sec)

Two-Moon 3,500 12.42
Three-Gaussian 1,500 18.28
Three-Ring 250,000 3,023.19
Two Disjoint Para-Curves 300,000 3,675.03

Table 4: Comparison of the performance indexes of the Momentum-based learning algorithm
on four synthetic datasets.

Dataset # iterations Running time (sec)

Two-Moon 6,500 21.86
Three-Gaussian 1,000 13.04
Three-Ring 10,000 156.30
Two Disjoint Para-Curves 10,000 173.70

Table 5: Comparison of the performance indexes of the NAG-based learning algorithm on
four synthetic datasets.

to notice by observing the performance of the AdaGrad, which is however the slowest of
them.

Dataset # iterations Running time (sec)

Two-Moon 2,000 19.58
Three-Gaussian 200 8.92
Three-Ring 300 15.34
Two Disjoint Para-Curves 5,000 77.59

Table 6: Comparison of the performance indexes of the AdaGrad-based learning algorithm
on four synthetic datasets.

The performances of the AdaDelta learning algorithm on four toy datasets are summa-
rized in Table 7. AdaDelta is able to further improve over AdaGrad performances as it
turns out to converge faster.

The performances of the AdaM learning algorithm on four toy datasets are summarized
in Table 8. AdaM clearly appears to be the fastest learning method in these experiments,
whatever the complexity of the input data is.

Apparently, the adaptive methods are much faster than the non-adaptive gradient-based
methods. In particular, the AdaM learning algorithm converges the fastest, whereas the
GD – as well as Momentum and NAG in the case of the Three-ring dataset – appear to be
inappropriate because of their slowness. To better illustrate this observation, the Figure 3
shows a comparison of learning curves of six learning algorithms on a Two-moon dataset.
The number of iterations is limited to 350, which corresponds to the number of iterations
needed by the AdaM algorithm to converge to a sparse matrix U that guarantees 100%
clustering accuracy.

800



Gradient-based Learning Methods Extended to Smooth Manifolds

Dataset # iterations Running time (sec)

Two-Moon 1,000 5.91
Three-Gaussian 100 2.41
Three-Ring 400 7.08
Two Disjoint Para-Curves 3,500 32.83

Table 7: Comparison of the performance indexes of the Adadelta-based learning algorithm
on four synthetic datasets.

Dataset # iterations Running time (sec)

Two-Moon 350 3.74
Three-Gaussian 100 4.34
Three-Ring 100 6.06
Two Disjoint Para-Curves 500 14.55

Table 8: Comparison of the performance indexes of the AdaM-based learning algorithm on
four synthetic datasets.

5.1.3 Influence of the Trade-Off Parameter β on Clustering Ability of
GSC

The clustering accuracy of the classical NCut algorithm on two-moon, three-Gaussian, three-
ring datasets is 56.50%, 60.10%, and 86.00%, respectively. We evaluated the influence of
the trade-off parameter β on the performance of GSC learnt by different adaptive methods,
namely AdaGrad, AdaDelta and AdaM. We used for each optimization method a fixed
number of iterations corresponding to the iterations they take to achieve 100% classification
accuracy with β = 0.00001. Tables 9, 10, 11 and 12 show clustering performance versus
parameter β on the toy datasets.

Trade-off parameter AdaGrad AdaDelta AdaM

β = 0.00001 100% 100% 100%
β = 0.00005 92.75% 96.50% 96.50%
β = 0.0001 75.75% 96.50% 86.41%
β = 0.0005 62.41% 66.71% 78.50%
β = 0.001 53.50% 54.25% 61.41%
β = 0.005 53.50% 52.75% 57.25%
β = 0.01 48.41% 49.71% 51.73%

Table 9: Clustering accuracy of GSC – learnt, respectively, by AdaGrad, AdaDelta and
AdaM – against different β on Two-Moon dataset.

For the two disjoint para-curve dataset, the clustering accuracy of NCut method is
54.50%. The best result for GSC method is 100% when β = 0.000001. Results reported
in these tables show that GSC when a latent representation is learned by AdaM is much
more robust, compared to the other considered learning methods against variations of the
parameter β.

801



Koudounas & Fiori

Figure 3: Complete view of learning curves of six algorithms on a Two-moon dataset.

Trade-off parameter AdaGrad AdaDelta AdaM

β = 0.00001 100% 100% 100%
β = 0.00005 100% 100% 100%
β = 0.0001 100% 99.75% 100%
β = 0.0005 84.33% 89.50% 95.70%
β = 0.001 60.33% 74.41% 89.71%
β = 0.005 47.25% 74.41% 88.50%
β = 0.01 42.75% 61.71% 84.33%

Table 10: Clustering accuracy of GSC – learnt, respectively, by AdaGrad, AdaDelta and
AdaM – against different β on Three-Gaussian dataset.

5.1.4 Visual Representation of Learned Affinity Matrix

In order to examine the underlying low-dimensional structure within data, we supply here
a visual comparison of affinity matrix for every synthetic training set used in this section.

Figures 4 and 5 show the affinity matrix W as computed by the NCut algorithm and
by the GSC clustering algorithm (learnt by an AdaM algorithm), respectively. Notice that
the affinity matrix obtained using AdaM has the same structure we could get by employing
any of the other optimization methods proposed in this paper. The affinity matrix obtained
by GSC effectively reveals the cluster structure of data.

802



Gradient-based Learning Methods Extended to Smooth Manifolds

Trade-off parameter AdaGrad AdaDelta AdaM

β = 0.00001 100% 100% 100%
β = 0.00005 100% 100% 100%
β = 0.0001 100% 100% 100%
β = 0.0005 79.71% 77.14% 88.50%
β = 0.001 69.71% 64.41% 88.50%
β = 0.005 58.43% 55.33% 83.41%
β = 0.01 58.43% 53.65% 83.41%

Table 11: Clustering accuracy of GSC – learnt, respectively, by AdaGrad, AdaDelta and
AdaM – against different β on Three-Ring dataset.

Trade-off parameter AdaGrad AdaDelta AdaM

β = 0.000001 100% 100% 100%
β = 0.000005 100% 100% 100%
β = 0.00001 95.75% 96.25% 97.75%
β = 0.00005 65.41% 68.71% 79.50%
β = 0.0001 56.75% 56.75% 71.40%
β = 0.0005 54.50% 55.33% 61.71%
β = 0.001 31.43% 34.66% 46.75%

Table 12: Clustering accuracy of GSC - learnt, respectively, by AdaGrad, AdaDelta and
AdaM - against different β on Two Disjoint Para-Curves dataset.

5.1.5 Summary of Results on Clustering Synthetic Datasets

From the results illustrated in the present subsection it is possible to draw some interesting
observations:

� Thanks to our adjustments in the calculation of the gradient of the loss function
(equation (45)), the GSC algorithm appears to be clearly faster: looking at Tables 1
and 2, it is clear that the running time of the GSC clustering algorithm is considerably
lower.

� The clustering results obtained by the GSC algorithm are way better than those ob-
tained by the NCut algorithm alone, for each synthetic dataset and each optimization
algorithm considered.

� AdaM appears to be the fastest optimization method among those considered. Es-
pecially for the complicated three-Gaussian, three-ring and two disjoint para-curves
datasets, AdaM outperforms the other learning algorithms and is also much more
robust versus variations of the sparse regularization parameter β.

5.2 Clustering Results on Three Pictorial Datasets

In this subsection, we perform some experiments on public databases to evaluate the per-
formances of the proposed optimization methods on real-world dataset. All experiments
are conducted on the following three public available datasets:

803



Koudounas & Fiori

(a) NCut with Two-Moon dataset. (b) GSC with Two-Moon dataset.

(c) NCut with Three-Gaussian dataset. (d) GSC with Three-Gaussian dataset.

Figure 4: Comparison of the affinity matrix W computed on Two-Moon and Three-Gaussian
Dataset: (a), (c) were obtained using NCut ; (b), (d) were obtained using GSC learnt by
AdaM.

� The YaleB face database. The YaleB dataset consists of 192 × 168 pixel cropped
face images of 38 individuals, where there are 64 frontal face images for each subject
acquired under various lighting conditions. Some sample face images are shown in
Figure 6(a). To reduce the computational cost and the memory requirements of all
algorithms, we down-sampled the images to 32 × 32 pixels and treat each 1,032-
dimensional vectorized image as a data point (http://vision.ucsd.edu/~leekc/
ExtYaleDatabase/ExtYaleB.html).

804



Gradient-based Learning Methods Extended to Smooth Manifolds

(a) NCut with Three-Ring dataset. (b) GSC with Three-Ring dataset.

(c) NCut with Two-ParaCurves dataset. (d) GSC with Two-ParaCurves dataset.

Figure 5: Comparison of the affinity matrix W computed on the Three-Ring and Two
Disjoint Para-Curves datasets: (a), (c) were obtained using NCut ; (b), (d) were obtained
using GSC learned by AdaM.

� The ORL face database. The ORL dataset is composed of 400 images of size 112
× 92, and some samples are shown in Figure 6(b). There are 10 different images of 40
distinct subjects. For some of the subjects, the images were taken at different times,
varying lighting slightly, facial expressions (open/closed eyes, smiling/non-smiling)
and facial details (glasses/no-glasses). All the images are taken against a dark ho-
mogeneous background and the subjects are in up-right, frontal position (with toler-
ance for some side movement). All the data is collected in a matrix of shape 10,304

805



Koudounas & Fiori

(pixels) × 400 (faces). To avoid large values, the data matrix is divided by 100
(https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html).

� The MNIST database. The MNIST dataset of handwritten digits has a training
set of 60,000 examples and a test set of 10,000 examples. The digits have been size-
normalized and centered in a fixed-size image. This dataset contains 600 images of
each digit. All images are normalized to fit into a 28 × 28 pixel bounding box and
anti-aliased (http://yann.lecun.com/exdb/mnist/).

(a) Examples of Extended Yale B Dataset. (b) Examples of ORL faces Dataset.

(c) Examples of MNIST handwritten digits.

Figure 6: Examples of the YaleB, ORL and MNIST datasets, respectively.

806



Gradient-based Learning Methods Extended to Smooth Manifolds

5.2.1 Comparison of TrustRegion and AdaM on Facial Datasets

We applied the method by Elhamifar and Vidal (2013) to construct the affinity matrix W
by l1-graph technique and subsequently applied GSC learnt by ManOpt-Trustregions and
AdaM on the constructed affinity matrix for the two face (YaleB and ORL) datasets. Six
subsets were constructed which consist of images of randomly selected subjects classified
in K clusters for K ∈ {5, 8, 10, 12, 15, 18}. We set the same value β = 0.00001 and let
gradient-based learning algorithms run over 1, 500 iterations.

The obtained results are summarized in Tables 13 and 14. They show how close is the
accuracy reached by GSC learnt both by Trustregions and AdaM, although AdaM seems
to reach a better accuracy with relatively low K whereas Trustregions is more reliable on a
larger number of clusters.

Clusters TrustRegions AdaM

K = 5 96.50% 97.15%
K = 8 91.65% 91.65%
K = 10 85.24% 86.33%
K = 12 81.31% 81.71%
K = 15 77.82% 76.91%
K = 18 74.61% 74.51%

Table 13: Clustering results in terms of accuracy of GSC learned by TrustRegions and by
AdaM on YaleB dataset.

Clusters TrustRegions AdaM

K = 5 97.60% 97.60%
K = 8 93.50% 94.25%
K = 10 82.77% 82.67%
K = 12 81.80% 81.95%
K = 15 79.67% 79.67%
K = 18 78.86% 77.95%

Table 14: Clustering results in terms of accuracy of GSC learned by TrustRegions and by
AdaM on ORL dataset.

5.2.2 Comparison of TrustRegions and AdaGrad, AdaDelta and AdaM on
Digits Datasets

Further, we compared the performance of GSC learned by ManOpt-TrustRegions and adap-
tive methods. We set the sparsity-promotion β to 0.00001 and the number of clusters K to
5, 8 and 10. Each training set was build up so as to contain a total of 400 images randomly
selected from the same cluster.

As Table 15 demonstrates, GSC algorithm learned by AdaM outperforms GSC algorithm
learned by all the other methods, even the TrustRegions.

807



Koudounas & Fiori

Clusters TrustRegions AdaGrad AdaDelta AdaM

K = 5 96.57% 93.71% 94.15% 97.50%
K = 8 89.41% 85.69% 87.61% 89.61%
K = 10 79.24% 73.21% 75.86% 79.24%

Table 15: Clustering results in terms of accuracy of GSC learned by TrustRegions and by
adaptive-methods on MNIST dataset.

5.2.3 Summary of Results on Clustering Pictorial Datasets

From the results illustrated in the present subsection it is possible to draw some interesting
observations:

� The AdaM optimization algorithm outperforms the other adaptive gradient algorithms
developed in Section 2. In addition, the AdaM algorithm outperforms the TrustRe-
gions up to 10 classes on the YaleB dataset, up to 15 classes on the ORL dataset
(Table 14 shows an exception for K = 10 which breaks the trend: we believe that a
difference in performance of 0.1% is a meaningless statistical fluctuation) and up 10
classes on the MNIST dataset. It is worth underlining that, on the YaleB dataset, the
performance discrepancy for K = 18 is also of 0.1%.

� The value chosen for the sparsity-promotion parameter β, which was validated on
synthetic datasets, proved satisfactory even for real-world pictorial datasets.

5.3 Comparative Results

Comparative experiments have been performed on the following 10 publicly available pic-
torial datasets:

� Recursion Cellular Image Classification (in the experiments: ‘Recursion’). Data
from the Recursion 2019 challenge. The goal of the competition was to use biological
microscopy data to develop a model that identifies replicates (https://www.kaggle.
com/xhlulu/recursion-cellular-image-classification-224-jpg).

� TensorFlow Patch Camelyon Medical Images (in the experiments: ‘Camelyon’).
Medical image classification dataset from the TensorFlow website. This medical im-
age classification dataset comes from the TensorFlow website. It contains just over
327,000 color images. The images are histopathological lymph node scans which con-
tain metastatic tissue (https://www.tensorflow.org/datasets/catalog/patch_
camelyon).

� CoastSat Image Classification Dataset (in the experiments: ‘CoastSat’).
Used for an open-source shoreline mapping tool, this dataset includes aerial im-
ages taken from satellites. The dataset also includes meta data pertaining
to labels (https://figshare.com/articles/CoastSat_image_classification_
training_data/8868665/1).

808



Gradient-based Learning Methods Extended to Smooth Manifolds

� Images for Weather Recognition (Ajayi, 2018) (in the experiments: ‘Weather’).
Used for multi-class weather recognition, this dataset is a collection of 1125 images di-
vided into four categories: sunrise, shine, rain, and cloudy (https://data.mendeley.
com/datasets/4drtyfjtfy/1).

� Indoor Scenes Images (in the experiments: ‘Indoor’). From MIT, this dataset
contains over 15,000 images of indoor locations. This dataset was originally built
to tackle the problem of indoor scene recognition. All images have been di-
vided into 67 categories. The number of images per category vary, however, there
are at least 100 images for each category (https://www.kaggle.com/itsahmad/
indoor-scenes-cvpr-2019).

� Intel Image Classification (in the experiments: ‘Intel’). Created by Intel for
an image classification contest, this image dataset contains approximately 25,000
images divided into the following categories: buildings, forest, glacier, moun-
tain, sea, and street. The training set includes around 14,000 images and the
testing folder has around 3,000 images (https://www.kaggle.com/puneet6060/
intel-image-classification/version/2).

� TensorFlow Sun397 Image Classification Dataset (in the experiments:
‘Sun397’). A dataset from Tensorflow that contains over 108,000 images used in
Scene Understanding (SUN) benchmark. These images have been divided into
397 categories. The exact amount of images in each category varies. However,
there are at least 100 images in each of the various scene and object categories
(https://www.tensorflow.org/datasets/catalog/sun397). Most of these images
were collected from Flickr and Wikimedia Commons (all of them under creative com-
mons license). For further details on this dataset, see Xiao, Hays, Ehinger, Oliva, and
Torralba (2010).

� Architectural Heritage Elements (in the experiments: ‘Heritage’). This
dataset was created to train models that could classify architectural images,
based on cultural heritage. It contains over 10,000 images divided into 10 cat-
egories, namely altar, apse, bell tower, column, dome (inner), dome (outer), fly-
ing buttress, gargoyle, stained glass, and vault (https://old.datahub.io/dataset/
architectural-heritage-elements-image-dataset).

� Images of People Eating Food (in the experiments: ‘Eating’). This dataset
consists of images of people eating fruits, cakes, and other foods. Human annota-
tors classified the images by gender and age (https://data.world/crowdflower/
image-classification-people-an).

� Images of Cracks in Concrete for Classification (in the experiments: ‘Con-
crete’). From Mendeley, this dataset was collected from various METU Campus
Buildings and includes 40,000 images of concrete slabs, where half of the images in-
clude concrete with cracks and half without. High-resolution images exhibit variance
in terms of surface finishing and illumination conditions. (https://data.mendeley.
com/datasets/5y9wdsg2zt/2). For further details on this dataset, see Özgenel (2019)
and Zhang, Yang, Daniel Zhang, and Zhu (2016).

809



Koudounas & Fiori

The comparison was effected on the basis of the following low-rank subspace clustering
methods:

� LRR: A low-rank representation and sparse coding-based subspace clustering method
that simultaneously considers feature information and spatial structures. LRR seeks
the lowest rank representation over original spatial structures. Sparse coding learns
a dictionary along feature spaces, so that each sample can be represented by a few
atoms of the learned dictionary. The affinity matrix used for spectral clustering is
built from the joint similarities in both spatial and feature spaces (Fu, Gao, Tien,
Lin, & Hong, 2016).

� LRSC: Solves the problem of fitting a union of subspaces to a collection of data points
drawn from one or more subspaces and corrupted by noise and/or gross errors. For
one subspace, a particular case of the LRSC framework leads to classical PCA. For
multiple subspaces, the low-rank coefficients obtained by the LRSC framework can be
used to construct a data affinity matrix from which clustering of data can be obtained
by spectral clustering (Vidal & Favaro, 2014).

� LatLRR: Latent Low-Rank Representation (LatLRR) delivers robust and promising
results for subspace recovery and feature extraction through mining hidden effects
(Fang, Han, Wu, Xu, Yang, Wong, & Li, 2018).

� rLRR: LatLRR is unable to preserve the locality of both similar principal and salient
features. To solve this issue, a boosted version of LatLRR, referred to as Regularized
Low-Rank Representation (rLRR), was proposed through explicitly including an ap-
propriate Laplacian regularization that can maximally preserve the similarity among
local features (Zhang, Yan, & Zhao, 2014).

� AdaM-based GSC: The clustering method based on GSC with an AdaM latent
representation extraction engine.

The classification results were evaluated on the basis of the following indexes:

� Jaccard index: The Jaccard index is a statistic used for gauging the similarity and
diversity of sample sets. The Jaccard index measures similarity between finite sample
sets, and is defined as the size of the intersection divided by the size of the union of
the sample sets.

� Adjusted Rand index (ARI): The Rand index in statistics, and in particular in
data clustering, is a measure of similarity between two data clusters. A form of the
Rand index may be defined that is adjusted for the chance grouping of elements, this
is the adjusted Rand index.

� Fowlkes-Mallows index: The Fowlkes–Mallows index is an external evaluation
method used to determine the similarity between two clusters. This measure of
similarity could be either between two hierarchical clusterings or a clustering and
a benchmark classification. A higher value for the Fowlkes–Mallows index indicates a
greater similarity between the clusters and the benchmark classifications.

810



Gradient-based Learning Methods Extended to Smooth Manifolds

� Normalized mutual information (NMI): We also consider the NMI as a quality
metric because it quantifies the mutual dependence between two random variables
based on well-established concepts of information theory.

We refer readers to, e.g., Rodriguez, Comin, Casanova, Bruno, Amancio, Costa, and Ro-
drigues (2019) for detailed definitions. As a baseline, when the two sets of labels have a
perfect one-to-one correspondence, the quality measures are all equal to 1.

Results of comparative experiments between five clustering methods on ten datasets,
evaluated in terms of Jaccard index, are summarized in Table 16. The result of this evalua-
tion confirms that the AdaM-GSC outperforms the other clustering algorithms considered
in this comparison on every dataset, except for the ‘Concrete’ dataset where the LRSC
algorithm slightly outperforms AdaM-GSC.

Dataset LRR LRSC LatLRR rLRR AdaM-GSC

Recursion 0.7496 0.7106 0.6822 0.7534 0.8198
Camelyon 0.7364 0.6711 0.7159 0.7745 0.7782
CoastSat 0.7503 0.7501 0.6807 0.7263 0.7622
Weather 0.7549 0.7234 0.7438 0.7012 0.8258
Indoor 0.6555 0.6535 0.7591 0.6928 0.8054
Intel 0.6604 0.7417 0.7478 0.7106 0.7596
Sun397 0.6946 0.7071 0.6838 0.7037 0.8270
Heritage 0.6961 0.6958 0.6568 0.661 0.8457
Eating 0.7161 0.7600 0.6823 0.6555 0.7631
Concrete 0.6652 0.7669 0.6562 0.6683 0.7661

Table 16: Results of comparative experiments between five clustering methods on ten
datasets, evaluated in terms of Jaccard index.

Clustering results evaluated in terms of ARI are summarized in Table 17. The result of
this evaluation confirms that the AdaM-GSC outperforms the other clustering algorithms
on every dataset, except for the ‘Camelyon’ dataset, where the LatLRR algorithm slightly
outperforms AdaM-GSC, and for the ‘Weather’ dataset, where rLRR slightly outperforms
AdaM-GSC.

Clustering results evaluated according to the Fowlkes-Mallows index are summarized
in Table 18. This evaluation confirms that the AdaM-GSC outperforms other clustering
algorithms on every dataset.

Clustering results evaluated in terms of the NMI index are summarized in Table 19. This
evaluation confirms that the AdaM-GSC outperforms other clustering algorithms on almost
every dataset, except for the ‘Indoor’ experiment, where ‘LatLRR’ outperforms AdaM-GSC.

Results across the above four tables look coherent to one another. Also, this evaluation
confirms that the AdaM-GSC clustering method is able to classify samples in the considered
datasets with a higher degree of accuracy in almost every experiment.

811



Koudounas & Fiori

Dataset LRR LRSC LatLRR rLRR AdaM-GSC

Recursion 0.6889 0.6780 0.6515 0.7105 0.7930
Camelyon 0.6812 0.6836 0.7768 0.7642 0.7576
CoastSat 0.7563 0.6518 0.6622 0.7596 0.7634
Weather 0.6546 0.6799 0.7172 0.7686 0.7633
Indoor 0.6956 0.7440 0.7733 0.7069 0.8062
Intel 0.7180 0.6682 0.6635 0.6588 0.8004
Sun397 0.7016 0.7482 0.7092 0.7156 0.7629
Heritage 0.7743 0.6794 0.7490 0.6806 0.8232
Eating 0.7208 0.6942 0.6728 0.7684 0.8310
Concrete 0.7466 0.6724 0.7095 0.7490 0.8443

Table 17: Results of comparative experiments between five clustering methods on ten
datasets, evaluated in terms of ARI.

Dataset LRR LRSC LatLRR rLRR AdaM-GSC

Recursion 0.6958 0.6854 0.7448 0.7005 0.8175
Camelyon 0.7068 0.6961 0.7092 0.7708 0.8450
CoastSat 0.6504 0.7174 0.6819 0.7389 0.8434
Weather 0.6782 0.6563 0.7665 0.7126 0.8066
Indoor 0.7739 0.7413 0.7220 0.6977 0.8325
Intel 0.7626 0.6517 0.7201 0.7603 0.8409
Sun397 0.7638 0.7620 0.7317 0.7398 0.8167
Heritage 0.7316 0.7270 0.6605 0.7146 0.7564
Eating 0.7337 0.7390 0.6908 0.7302 0.8364
Concrete 0.6822 0.7512 0.7089 0.6955 0.8055

Table 18: Results of comparative experiments between five clustering methods on ten
datasets, evaluated in terms of Fowlkes-Mallows index.

6. Conclusion

This paper studied and extended a number of classical and modern gradient-based learning
methods to a general smooth manifold. After a quick overview of the spectral clustering
world, we also examined the GSC model which adopts Grassmann manifold optimization
strategy to optimize the sparse spectral clustering objective in a straight-forward way, and
found out a way to make it converge faster. Extensive experiments conducted on both
toy datasets and several real-world databases demonstrated the effectiveness of adaptive
methods, in particular of AdaM.

Acknowledgments

The present research work was completed when the author AK was taking an internship
at the Tokyo University of Agriculture and Technology (TUAT, Koganei campus) thanks
to a scholarship of the Università Politecnica delle Marche (CampusWorld Program 2019)

812



Gradient-based Learning Methods Extended to Smooth Manifolds

Dataset LRR LRSC LatLRR rLRR AdaM-GSC

Recursion 0.7585 0.6921 0.7535 0.7314 0.7783
Camelyon 0.7485 0.7324 0.7122 0.6728 0.8301
CoastSat 0.7498 0.7679 0.6528 0.7507 0.8424
Weather 0.6871 0.7133 0.7206 0.7396 0.8388
Indoor 0.6764 0.6512 0.7711 0.6959 0.7563
Intel 0.7198 0.7016 0.7747 0.6522 0.7665
Sun397 0.6614 0.7044 0.7726 0.7421 0.7877
Heritage 0.7365 0.712 0.7592 0.6947 0.8045
Eating 0.7307 0.6753 0.748 0.6658 0.8149
Concrete 0.7537 0.7236 0.7024 0.7784 0.8343

Table 19: Results of comparative experiments between five clustering methods on ten
datasets, evaluated in terms of NMI.

during March-May 2019. The authors wish to gratefully thank Prof. Toshihisa Tanaka who
made this internship possible. The present research was advanced while the author SF was
visiting the TUAT, during April 2019, thanks to a TUAT visiting professor scholarship.
The authors wish to thank Prof. Junbin Gao (The University of Sydney) for sharing part
of the computer codes to implement the GSC algorithm, as well as Dr. Ehsan Elhamifar
(University of California at Berkeley) and Prof. René Vidal (The Johns Hopkins University)
for sharing part of the computer codes to implement sparse clustering on pictorial data.

References

Ajayi, G. (2018). Multi-class weather dataset for image classification. http://dx.doi.org/
10.17632/4drtyfjtfy.1#file-b3b8a956-4bcb-431d-bda0-d466af180d2e.

Bonnabel, S. (2013). Stochastic gradient descent on Riemannian manifolds. IEEE Trans-
actions on Automatic Control, 58 (9), 2217–2229.

Botev, A., Lever, G., & Barber, D. (2017). Nesterov’s accelerated gradient and momen-
tum as approximations to regularised update descent. In 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 1899–1903.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Lechevallier, Y., & Saporta, G. (Eds.), Proceedings of COMPSTAT’2010, pp. 177–
186, Heidelberg. Physica-Verlag HD.

Boumal, N., Mishra, B., Absil, P.-A., & Sepulchre, R. (2014). Manopt, a Matlab toolbox
for optimization on manifolds. Journal of Machine Learning Research, 15, 1455–1459.

Cintia Ganesha Putri, D., Leu, J.-S., & Seda, P. (2020). Design of an unsupervised machine
learning-based movie recommender system. Symmetry, 12 (2).

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.

Edelman, A., Arias, T., & Smith, S. (1998). The geometry of algorithms with orthogonality
constraints. SIAM Journal on Matrix Analysis and Applications, 20 (2), 303–353.

813



Koudounas & Fiori

Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and ap-
plications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (11),
2765–2781.

Fang, X., Han, N., Wu, J., Xu, Y., Yang, J., Wong, W. K., & Li, X. (2018). Approximate
low-rank projection learning for feature extraction. IEEE Transactions on Neural
Networks and Learning Systems, 29 (11), 5228–5241.

Fiori, S. (2005). Quasi-geodesic neural learning algorithms over the orthogonal group: A
tutorial. J. Mach. Learn. Res., 6, 743–781.

Fiori, S. (2008a). Leap-frog-type learning algorithms over the lie group of unitary matrices.
Neurocomputing, 71 (10), 2224–2244.

Fiori, S. (2008b). A study on neural learning on manifold foliations: the case of the Lie
group SU(3). Neural Compututation, 20 (4), 1091–1117.

Fiori, S. (2010). Learning by natural gradient on noncompact matrix-type pseudo-
Riemannian manifolds. IEEE Transactions on Neural Networks, 21 (5), 841–852.

Fiori, S., Kaneko, T., & Tanaka, T. (2015). Tangent-bundle maps on the Grassmann man-
ifold: Application to empirical arithmetic averaging. IEEE Transactions on Signal
Processing, 63 (1), 155–168.

Fu, Y., Gao, J., Tien, D., Lin, Z., & Hong, X. (2016). Tensor LRR and sparse coding-based
subspace clustering. IEEE Transactions on Neural Networks and Learning Systems,
27 (10), 2120–2133.

Huang, L., Chao, H.-Y., & Wang, C.-D. (2019a). Multi-view intact space clustering. Pattern
Recognition, 86, 344–353.

Huang, L., Wang, C., Chao, H., & Yu, P. (2019b). MVStream: Multiview data stream
clustering. IEEE Transactions on Neural Networks and Learning Systems.

Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: A review. ACM Comput. Surv.,
31 (3), 264–323.

Kang, Z., Xu, H., Wang, B., Zhu, H., & Xu, Z. (2019). Clustering with similarity preserving.
Neurocomputing, 365, 211–218.

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In 2015
International Conference on Learning Representations (ICLR).

Li, X., Zhang, Z., Wang, Y., Liu, G., Yan, S., & Wang, M. (2020). Multilayer collaborative
low-rank coding network for robust deep subspace discovery. In Proceedings of the
24th European Conference on Artificial Intelligence (ECAI).

Liao, Z., Wang, N., Liu, S., Zhang, Y., Liu, H., & Zhang, Q. (2019). Identification-method
research for open-source software ecosystems. Symmetry, 11 (2).

Liu, B., Huang, L., Wang, C., Fan, S., & Yu, P. (2019a). Adaptively weighted multiview
proximity learning for clustering. IEEE Transactions on Cybernetics.

Liu, G., Zhang, Z., Liu, Q., & Xiong, H. (2019b). Robust subspace clustering with com-
pressed data. IEEE Transactions on Image Processing, 28 (10), 5161–5170.

814



Gradient-based Learning Methods Extended to Smooth Manifolds

Lu, C., Yan, S., & Lin, Z. (2016). Convex sparse spectral clustering: Single-view to multi-
view. IEEE Transactions on Image Processing, 25 (6), 2833–2843.

Makris, C., Pispirigos, G., & Rizos, I. O. (2020). A distributed bagging ensemble method-
ology for community prediction in social networks. Information, 11 (4).

Nesterov, Y. (1983). A method for solving the convex programming problem with conver-
gence rate o(1/k2). Dokl. Akad. Nauk SSSR, 269, 543–547.

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clustering: Analysis and an algo-
rithm. In Dietterich, T., Becker, S., & Ghahramani, Z. (Eds.), Advances in Neural
Information Processing Systems 14, pp. 849–856. MIT Press.

Özgenel, Ç.F. (2019). Concrete crack images for classification. http://dx.doi.org/10.

17632/5y9wdsg2zt.2.

Papachristou, N., Miaskowski, C., Barnaghi, P., Maguire, R., Farajidavar, N., Cooper, B.,
& Hu, X. (2016). Comparing machine learning clustering with latent class analy-
sis on cancer symptoms’ data. In 2016 IEEE Healthcare Innovation Point-Of-Care
Technologies Conference (HI-POCT), pp. 162–166.

Peng, X., Li, L., & Wang, F. (2019). Accelerating minibatch stochastic gradient descent
using typicality sampling. IEEE Transactions on Neural Networks and Learning Sys-
tems.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural
Networks, 12 (1), 145–151.

Qu, Z., Yuan, S., Chi, R., Chang, L., & Zhao, L. (2019). Genetic optimization method of
pantograph and catenary comprehensive monitor status prediction model based on
Adadelta deep neural network. IEEE Access, 7, 23210–23221.

Rendl, F., & Sotirov, R. (2018). The min-cut and vertex separator problem. Computational
Optimization and Applications, 69, 159–187.

Rodriguez, M., Comin, C., Casanova, D., Bruno, O., Amancio, D., Costa, L., & Rodrigues,
F. (2019). Clustering algorithms: A comparative approach. PLoS ONE, 14 (1).

Samet, H. (2005). Foundations of Multidimensional and Metric Data Structures (The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22 (8), 888–905.

Theodoridis, S. (2015). Chapter 8 - Parameter learning: A convex analytic path. In Theodor-
idis, S. (Ed.), Machine Learning, pp. 327–402. Academic Press, Oxford.

Vidal, R., & Favaro, P. (2014). Low rank subspace clustering (LRSC). Pattern Recognition
Letters, 43, 47–61.

Wang, Q., Gao, J., & Li, H. (2017). Grassmannian manifold optimization assisted sparse
spectral clustering. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3145–3153.

815



Koudounas & Fiori

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). Sun database: Large-
scale scene recognition from abbey to zoo. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 3485–3492.

Zeiler, M. (2012). ADADELTA: An adaptive learning rate method. https://arxiv.org/

abs/1212.5701.

Zhang, L., Yang, F., Daniel Zhang, Y., & Zhu, Y. J. (2016). Road crack detection using
deep convolutional neural network. In 2016 IEEE International Conference on Image
Processing (ICIP), pp. 3708–3712.

Zhang, Z., Ren, J., Li, S., Hong, R., Zha, Z., & Wang, M. (2019). Robust subspace discovery
by block-diagonal adaptive locality-constrained representation. In Proceedings of the
27th ACM International Conference on Multimedia (ACM MM), pp. 1569–1577.

Zhang, Z., Yan, S., & Zhao, M. (2014). Similarity preserving low-rank representation for
enhanced data representation and effective subspace learning. Neural Networks, 53,
81–94.

Zhong, H., Chen, Z., Qin, C., Huang, Z., Zheng, V., Xu, T., & Chen, E. (2020). Adam
revisited: A weighted past gradients perspective. Frontiers of Computer Science, 14.

816


