
Journal of Artificial Intelligence Research 69 (2020) 1351-1393 Submitted 06/2020; published 12/2020

An Evaluation of Communication Protocol Languages for
Engineering Multiagent Systems

Amit K. Chopra amit.chopra@lancaster.ac.uk
Lancaster University
Lancaster, LA1 4WA, UK

Samuel H. Christie V schrist@ncsu.edu
North Carolina State University
Raleigh, NC 27695, USA
Lancaster University
Lancaster, LA1 4WA, UK

Munindar P. Singh singh@ncsu.edu

North Carolina State University

Raleigh, NC 27695, USA

Abstract

Communication protocols are central to engineering decentralized multiagent systems.
Modern protocol languages are typically formal and address aspects of decentralization,
such as asynchrony. However, modern languages differ in important ways in their basic
abstractions and operational assumptions. This diversity makes a comparative evaluation
of protocol languages a challenging task.

We contribute a rich evaluation of diverse and modern protocol languages. Among
the selected languages, Scribble is based on session types; Trace-C and Trace-F on trace
expressions; HAPN on hierarchical state machines, and BSPL on information causality.
Our contribution is four-fold. One, we contribute important criteria for evaluating protocol
languages. Two, for each criterion, we compare the languages on the basis of whether they
are able to specify elementary protocols that go to the heart of the criterion. Three, for
each language, we map our findings to a canonical architecture style for multiagent systems,
highlighting where the languages depart from the architecture. Four, we identify design
principles for protocol languages as guidance for future research.

1. Introduction

We understand a multiagent system (MAS) as a decentralized system of autonomous agents,
each of whom represents a real-world entity such as a person or an organization. In par-
ticular, a MAS is not a separate computational entity but is realized purely through its
member agents. When a MAS models a collective such as an institution, the institution
can be viewed as an entity that is itself a member of the MAS (Singh, 2013).

Agents in a MAS coordinate their computations while retaining loose coupling in their
construction and decision making. To accommodate such a conception of a MAS, it is
crucial that (1) agents coordinate their computations via arms-length communication, that
is, via asynchronous messaging, and (2) the coordination requirements be clearly specified
and support a programming model that facilitates the construction of agents.

c©2020 AI Access Foundation. All rights reserved.

Chopra, Christie, & Singh

The foregoing twin requirements have motivated an extensive study of languages for
specifying communication protocols. Broadly, a communication protocol specifies the co-
ordination in a MAS by specifying two or more interacting roles, the messages (that is,
message schemas) exchanged by these roles, and the conditions under which agents play-
ing those roles may send (instances of) the various messages to one another. Further, a
protocol yields a programming interface (skeleton) for every agent such that if an agent
implements its interface, then the agent is compliant. Compliance with the stated protocol
is the primary correctness criterion for individual agents: If all agents complied, then their
computations would be correctly coordinated.

For concreteness, Use Case 1 describes a protocol informally.

Use Case 1 (Purchase) A buyer requests an item from a seller, who responds with an
offer. The buyer may accept or reject the offer. If the buyer accepts the seller’s offer, the
seller delivers the specified item to the buyer, following which the buyer sends the specified
payment to the seller.

For Use Case 1, the roles would be buyer and seller. The messages would be Re-
quest, Offer, Reject, Accept, Payment, and Deliver. buyer may send Request, Accept,
Reject, and Payment, and seller may send Offer and Deliver. Each message contains the
information relevant to that message (presumably capturing what that message connotes
in the protocol). For example, Request contains the item and Offer contains the price. We
identify additional constraints from Use Case 1: Offer concerns the same item as specified
in Request; and, Payment specifies the same amount as the price in Offer.

The notion of protocol is naturally a foundational one for multiagent systems. Both
Hewitt (1991) and Gasser (1991) identify protocols as one of the central challenges for
MAS. Protocols are central to work on agent communication languages (FIPA, 2002; Vieira,
Moreira, Wooldridge, & Bordini, 2007); on institutions, e.g., (d’Inverno, Luck, Noriega,
Rodriguez-Aguilar, & Sierra, 2012); and on agent-oriented software engineering (AOSE)
methodologies such as Gaia (Zambonelli, Jennings, & Wooldridge, 2003), Tropos (Bresciani,
Perini, Giorgini, Giunchiglia, & Mylopoulos, 2004), and Prometheus (Padgham & Winikoff,
2005). The centrality of protocols has spurred work on protocol specification languages and
approaches. Agent UML (AUML) (Odell, Parunak, & Bauer, 2001), an early graphical
notation for specifying protocols that extends UML, is applied in Tropos and Prometheus
and by FIPA for specifying interaction protocols (FIPA, 2003). Inspired from problems in
telecommunications networks and UML, Message Sequence Charts (ITU, 2004) was another
early standardization of a protocol notation.

1.1 Problem

From modest beginnings in informal notations based on UML, work on protocol languages
has grown to encompass a number of sophisticated—and in some cases, complicated—
formal approaches that boast diverse basic abstractions and operational assumptions. For
example, the abstractions employed include state machines (Baldoni, Baroglio, Martelli, &
Patti, 2006; Winikoff, Yadav, & Padgham, 2018), logic-based constraints (Baldoni, Baroglio,
Marengo, & Patti, 2013), action descriptions (Desai & Singh, 2008a), trace expressions
(Castagna, Dezani-Ciancaglini, & Padovani, 2012; Ferrando, Winikoff, Cranefield, Dignum,

1352

Evaluation of Communication Protocol Languages for Engineering MAS

& Mascardi, 2019), session types (Yoshida, Hu, Neykova, & Ng, 2013), and information con-
straints (Singh, 2011a). Operational assumptions range from synchronous communication
(Winikoff et al., 2018), to asynchronous but pairwise FIFO communication (Castagna et
al., 2012; Yoshida et al., 2013), to unordered asynchronous communication (Singh, 2011a).

The rich diversity of languages for specifying protocols raises an important question:
how may we compare and evaluate them? Today, we lack generally clear evaluation criteria
and use cases for protocol languages that would enable us to evaluate them on conceptual
grounds. And yet, there is a general belief in the research community that existing languages
can largely tackle the challenges of building multiagent systems.

1.2 Contributions, Novelty, and Significance

We posit that current languages, illustrating the established paradigms, largely do not
support the engineering of decentralized multiagent systems. In support, we contribute a
conceptual evaluation of protocol languages with respect to decentralization. Specifically,
our contributions in this paper are the following.

First, we provide evaluation criteria for protocol languages that are informed by decen-
tralization. The criteria have to do with how well a language supports specifying flexible
interactions; whether a language enables expressing the appropriate information constraints;
and the assumptions (demands) a language makes of a MAS’s operational environment.

Second, we undertake a comparative evaluation of selected protocol languages against
the aforementioned criteria. The selected languages are modern, diverse, and prominent.
An important feature of our evaluation is our reliance on “minimal” use cases for protocols
that help bring forth the distinctions between the languages. Specifically, for each criterion,
we take realistic use cases that go to its heart and specify them as best possible in each of
the selected languages. We then analyze each resulting protocol specification for validity
according to the semantics of the language it is specified in. Following this methodology,
we show that several of the selected languages fall short of what is required to support
decentralization.

Third, we identify the architectural assumptions underlying the selected languages and
discuss how they map to MAS architecture.

Fourth, we posit principles for engineering MAS and discuss how the languages fare
against them. No unitary perspective states that a protocol must not specify orderings
of events from a unitary perspective. Noninterference and the end-to-end principle for
protocols both concern layering. Noninterference states that a protocol must not interfere
with agent reasoning. The end-to-end principle states that a protocol can be fully and
correctly implemented only in agents, not in the infrastructure. Relying on infrastructure
for correctness (e.g., via FIFO message delivery) may be inadequate and unnecessary for
correctness. The end-to-end principle for protocols derives from the more general end-to-end
principle for system design (Saltzer, Reed, & Clark, 1984).

This paper’s significance lies in bringing forth the information models, semantics, and
architectural assumptions underlying protocol languages as they relate to decentralization.
Doing so not only provides a conceptual framework for understanding protocols and protocol
languages but also clarifies requirements for MAS and yields guidance on research into
protocol languages. Its novelty arises from the absence, currently, of such a framework.

1353

Chopra, Christie, & Singh

Notably, this paper focuses on essential representational criteria for protocols and plays
down contingent features such as current tool support and popularity.

We use the following notational conventions throughout (except in listings and figures).
We use small caps for role names; Slant for protocol and message names; sans serif for
parameter names; and teletype for parameter values.

1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces protocols as an architec-
tural abstraction for MAS. Section 3 introduces the languages we analyze at depth in this
paper. Section 4 evaluates the languages for concurrency and extensibility, as important
aspects of flexibility; Section 5 for protocol instances, integrity, and social meaning, as im-
portant aspects related to the information exchanged in protocol enactments; and Section 6
for assumptions about the operational environment for protocol enactment. Section 7 teases
out the architectural models underlying the various languages and compares them to the
canonical MAS architecture, as presented earlier. It also presents broad principles for pro-
tocol languages and evaluates the selected languages against them. Section 8 summarizes
the overall evaluation in the context of alternative evaluations in the literature. It ends
with a discussion of future directions.

2. Multiagent Systems Architecture

A protocol is an architectural abstraction and therefore any evaluation of protocol languages
must start with a clear understanding of MAS architecture. Below, we present a canonical
architectural style (Shaw & Garlan, 1996) for MAS, clearly indicating its components, as-
sumptions, and constraints. The idea is that any concrete instantiation of the architecture
must satisfy constraints but without making stronger assumptions.

Strictly speaking, agents and roles are distinct categories (an agent may play several
roles and a role may be played by several agents). For expository convenience, and to focus
on other concerns in this paper, we assume that any role is played by a single agent and
distinct roles are played by distinct agents. This assumption enables us to identify an agent
with the role it plays. From here on, we talk primarily of agents and deemphasize roles.

As Figure 1 depicts, each agent represents an autonomous principal, for example, a
human or an organization. An agent internally encodes the private decision making of its
principal, including any private knowledge bases that it relies upon for decision making.
We elide principals in the subsequent figures.

In general, to achieve interoperation, the interoperating parties must agree at multiple
levels (Singh & Huhns, 2005). Here, the protocols focus on the operational level, which
concerns the exchange of information (i.e., reflected in constraints on the ordering and
occurrence of messages). In particular, we set aside both low-level concerns such as how
the information is encoded and high-level concerns as to the meaning of the information
exchanged—though we insist that protocols be able to support a flexible representation of
meaning.

An agent sends and receives messages via a communication infrastructure. An agent’s
observations are its message emissions and receptions. For simplicity and in accordance
with the literature, we assume that agents make observations serially (Agha, 1986; Fagin,

1354

Evaluation of Communication Protocol Languages for Engineering MAS

Agent Agent

Principal Principal

Protocol Specification

Asynchronous communication infrastructure

Figure 1: Minimal MAS architecture. Agents implement the protocol and communicate via
asynchronous messaging. The communication infrastructure provides no message delivery
guarantees other than that it is noncreative (delivers only those messages that were sent).

Halpern, Moses, & Vardi, 1995; Hewitt, 1977). An agent’s history is the set of its observa-
tions. Technically, an agent complies with a protocol if and only if all of its observations
are correct with respect to the protocol. Constraints 1 and 2 address the correctness of
emissions and receptions, respectively.

Constraint 1 (Emission correctness) The correctness of a message emission by an agent
may be determined from the agent’s history.

Constraint 1 rules out reliance on any kind of state other than the history for purposes
of determining the correctness of emissions. In particular, it rules out reliance on (1) the
global state, which may include what the agent has not observed; (2) the future state of an
agent, because any decision should respect causation; and (3) an agent’s internal state, for
example, as encoded in its beliefs (Singh, 1998).

Constraint 2 (Reception correctness) The reception of any message that was emitted
correctly is correct.

Constraint 2 captures the intuition of respecting the structure of causality. Specifically,
if the reception of a message could be incorrect, then that message ought never to have
been sent. Otherwise, the recipient would enter a “corrupted” state from which there is no
recourse. The only alternative would be for the infrastructure to intervene and prevent a
message reception that would be erroneous, but doing so would customize the infrastructure
to include application-specific details, in contravention of the famous end-to-end principle
(Saltzer et al., 1984), which advocates generality in the infrastructure.

Constraints 1 and 2 imply that agents need no more than an asynchronous communica-
tion infrastructure, as captured by Constraints 3 and 4.

Constraint 3 (Asynchrony: Nonblocking emission) Sends are nonblocking, meaning
that when an agent sends a message, it does not synchronize with the receiver on the sending
action.

Constraint 4 (Asynchrony: Anytime reception) An agent receives a message when
it is delivered by the infrastructure. That is, message reception is nondeterministic.

1355

Chopra, Christie, & Singh

Of course, an agent being autonomous may choose not to act on a message it has received
but the reception itself occurs due to the infrastructure.

Asynchrony promotes loose coupling between agents. Notably, programming paradigms
for building distributed systems such as the actor model (Agha, 1986; Hewitt, 1977; Hewitt,
Bishop, & Steiger, 1973) give prominence to asynchronous messaging for organizing decou-
pled computations. Practical communication infrastructures such as the Internet support
asynchronous messaging. In fact, asynchrony is the only viable option in the important
setting of the Internet of Things (IoT) (OASIS, 2014; Shelby, Hartke, & Bormann, 2014;
XMPP, 2015).

Assumption 1 (Infrastructure guarantees) The infrastructure is noncreative; that is,
only sent messages are received. Further, the infrastructure does not deliver corrupt mes-
sages.

Notice that Assumption 1 does not say that a sent message be also received. Indeed,
messages may be lost in transit. Some applications of MAS may require messages to be
delivered; the analysis in this paper however does not rely upon such an assumption. Also
notice that no message delivery order was assumed. Constraint 2 means no such assumption
is required for purposes of correctness.

Constraint 5 (Fullness) A protocol fully specifies a multiagent system at the operational
level.

Conceptually, as stated above, a protocol specifies the constraints on the operational
level, i.e., on the information exchange. Constraint 5 states that nothing else besides a
protocol is needed to characterize a MAS at the operational level. That is, this constraint
rules out reliance on extra-protocol mechanisms for coordination, e.g., agreements about
when to send or not send certain messages. Such extra-protocol mechanisms would amount
to hidden coupling between the agents: Agents developed to interoperate solely on the basis
of the protocol would not interoperate with agents that relied on extra-protocol mechanisms.
Constraint 5 means that Figure 1 captures a MAS fully from the standpoint of coordination.

Figure 2 elaborates on the architecture of Figure 1 by refining an agent into two com-
ponents: protocol filter and reasoner.

An agent’s protocol filter ensures compliance. The filter interfaces with the communi-
cation infrastructure to send and receive messages. And it interfaces with the reasoner to
notify the reasoner of observations of interest and to accept message emission requests. The
filter materializes the agent’s history and uses it to check the correctness of any message
that the reasoner requests it to send. If the message is correct, the filter sends the message
on the infrastructure (and records the emission as an observation in the history). If the
message is not correct, the filter discards the message with the indication of an exception to
the reasoner (and does not change the history). The filter is a form of generic protocol-based
control on the reasoner (Banihashemi, De Giacomo, & Lespérance, 2016, 2018).

An agent’s reasoner encodes the decision making of its principal. The reasoner deter-
mines how an agent processes events, both private (e.g., an update to an internal knowledge
base) and observations recorded by the filter. The processing of an event may require the
emission of a message, for which the reasoner relies on the filter. For example, referring to

1356

Evaluation of Communication Protocol Languages for Engineering MAS

Reasoner

Protocol filter

Reasoner

Protocol filter
Protocol

Specification

Agent Agent

Asynchronous communication infrastructure

Figure 2: MAS architecture with compliance checking. History is maintained by the protocol
filter for purposes of compliance checking.

Use Case 1, buyer’s reasoner, upon being notified by an internal database that a particu-
lar item was out of stock, may ask the filter to send a Request for that item to seller. If
the Request is correct, the filter sends it to seller. seller’s reasoner, when notified by
its filter of the reception of the Request, may determine—by looking up an internal price
list—that an Offer for the requested item should be sent for some price. And so on.

The architecture in Figure 3 further refines the architecture in Figure 2 by introducing
a declarative specification of the social meaning of an interaction (Singh, 1998) and a run-
time for the language in which meaning is specified, namely, the meaning computer. The
meaning specification takes an agent’s observations as the base-level social events and maps
combinations of social events to higher-level social events.

Constraint 6 defines what may be considered a social event.

Constraint 6 (Social) A social event is either an observation or is inferred from other
social events (Chopra & Singh, 2016).

Constraint 6 means that a social event cannot feature any information that does not
show up in an observation (of a message, as defined earlier). Internal events that reflect
updates to an agent’s internal state (e.g., its beliefs) have no effect on the computation of
social events (Singh, 1998).

Social meaning is essential to the application-specific correctness of MAS. A MAS for
financial loans may model social meaning via abstractions for debt, collateral, default, and
so on. For example, from events corresponding to the issuance of a loan and a payment
against the loan, a new debt event could be inferred that reflects the outstanding debt.
Further, were the outstanding debt to be zero, it could lead to the inference of a new repaid
event. In like manner, a MAS that supports a community of toy train enthusiasts could
model social meaning via abstractions for the provenance, ownership, and desirability of a
toy train.

In MAS research, social meaning is often modeled via commitments (Bentahar, Moulin,
Meyer, & Chaib-draa, 2004; Dastani, van der Torre, & Yorke-Smith, 2017; Fornara & Colom-
betti, 2002; Meneguzzi, Magnaguagno, Singh, Telang, & Yorke-Smith, 2018; Telang, Singh,

1357

Chopra, Christie, & Singh

Reasoner

Meaning computer

Protocol filter

Reasoner

Meaning computer

Protocol filter

Meaning
Specification

Protocol
Specification

Agent Agent

Asynchronous communication infrastructure

Figure 3: MAS architecture with social meaning. Agents interoperate on the basis of
protocols and higher-level social meanings. An agent’s meaning computer infers social
events from its history.

& Yorke-Smith, 2019; Winikoff, Liu, & Harland, 2005; Yolum & Singh, 2002) and other
norms (Alechina, Halpern, Kash, & Logan, 2018; Artikis, Sergot, & Pitt, 2009; Padget,
Vos, & Page, 2018). In the rest of the paper, for reasons of concreteness and familiarity, we
use commitments as an exemplar way of modeling social meaning. Use Case 2 illustrates
the use of commitments to capture meaning.

Use Case 2 (Deliver-Payment Commitment) In the context of purchase in Use Case 1,
the meaning of an Accept from seller to buyer for some item for some price is that it
creates a commitment from buyer to seller that if seller Delivers the item by some
deadline, then buyer will make a Payment of the price by some deadline.

3. Overview of Selected Languages

For this evaluation, we select protocol specification languages that are recent, have a formal
semantics, and represent diverse doctrines. AUML notably is not in our selection: neither
is it recent nor does it have a satisfactory formal semantics. AUML is closely related
to UML Sequence Diagrams, which too lacks a formal semantics. Some of the selected
languages though adopt important intuitions behind AUML, including the idea of specifying
an interaction as a control flow of messages and using a graphical notation. One might argue
that some of the languages we discuss below seek to formalize intuitions that undergird
AUML.

Below, we introduce the main ideas of the selected languages by specifying Use Case 1.

1358

Evaluation of Communication Protocol Languages for Engineering MAS

3.1 Multiparty Session Types: Scribble

Scribble (Yoshida et al., 2013) is a practical instantiation of multiparty session types (Honda,
Yoshida, & Carbone, 2016). In Scribble, a protocol is an ordering of constituent protocols
(bottoming out at individual message specifications) using constructs such as sequence,
choice, and recursion. Scribble assumes that communication between pairs of participants
is asynchronous but ordered over FIFO channels.

Listing 1 gives an encoding of Use Case 1 as a Scribble protocol. In the listing, a
semicolon (;) indicates sequencing.

Listing 1: Purchase (Use Case 1) in Scribble.

g l o b a l p r o t o c o l Purchase (r o l e Buyer , r o l e S e l l e r) {
Request () from Buyer to S e l l e r ;
O f f e r () from S e l l e r to Buyer ;

c h o i c e a t Buyer {
Accept () from Buyer to S e l l e r ;
D e l i v e r () from S e l l e r to Buyer ;
Payment () from Buyer to S e l l e r ;
} or {

R e j e c t () from Buyer to S e l l e r ;
}

}

Given a protocol, Scribble yields projections, called local protocols, for each agent. (We
retain the term “projection” to avoid conflict with “protocol.”) The idea is that the protocol
represents computations from a unitary perspective whereas an agent’s projection represents
computations from its own local perspective. Scribble’s tools (Scribble, 2018) may be used
to generate these projections. We have used the tooling to verify all Scribble specifications
presented in this paper.

Listing 2 gives the projections for each of the agents in the Purchase protocol in Listing 1.
buyer’s projection says: send Request to seller, then receive Offer (from seller), then
send either Accept or Reject. If Accept is sent, then receive Deliver and then send Payment.
seller’s projection is read in an analogous manner.

Notice that in the protocol, the choice between Accept and Reject is indicated as
buyer’s. Therefore, in the projections, the choice is interpreted as an internal choice
for buyer and as an external choice for seller. The agent with an internal choice chooses
from the available alternatives autonomously. The agent with an external choice does not
choose but follows along. The internal choice determines the external choice. Thus, if
buyer chooses to send Accept (alternatively, Reject), its reception resolves the seller’s
choice to receive Accept (alternatively, Reject).

Listing 2: Scribble projections of Purchase (Listing 1) for buyer and seller.

l o c a l p r o t o c o l P u r c h a s e B u y e r (r o l e Buyer , r o l e S e l l e r) {
Request () to S e l l e r ;
O f f e r () from S e l l e r ;

c h o i c e a t Buyer { // i n t e r n a l c h o i c e

1359

Chopra, Christie, & Singh

Accept () to S e l l e r ;
D e l i v e r () from S e l l e r ;
Payment () to S e l l e r

} or {
R e j e c t () to S e l l e r ;

}
}

l o c a l p r o t o c o l P u r c h a s e S e l l e r (r o l e Buyer , r o l e S e l l e r) {
Request () from Buyer ;
O f f e r () to Buyer ;

c h o i c e a t Buyer { // e x t e r n a l c h o i c e
Accept () from Buyer ;
D e l i v e r () to Buyer ;
Payment () from Buyer ;

} or {
R e j e c t () from Buyer ;

}
}

The notion of realizability ties together a protocol and its projections. A protocol is
realizable if and only if the agents acting locally based on their projections jointly realize
exactly the computations of the protocol (as we shall see, this is not always the case). The
Purchase protocol in Listing 1 is realizable.

3.2 Trace-C

Castagna et al. (2012) describe a language for specifying protocols that is based upon trace
expressions, which we refer to as Trace-C. A trace is a sequence of communication events.
In Trace-C, each expression maps to a set of traces. The expression x m−→y is atomic; it
denotes the communication of message m from x to y; and it maps to the (singleton) set
of traces {m}. The ; operator denotes sequential composition; the expression e; f is the
concatenation of the traces of e with the traces of f . The ∨ operator denotes choice; the
expression e ∨ f is the union of traces of e and the traces of f . The ∧ operator denotes
the shuffle of its operands; the expression e ∧ f is the set of those traces that represent an
interleaving of a trace of e with a trace of f . Like Scribble, Trace-C assumes FIFO-based
asynchronous communication.

Listing 3 shows how Use Case 1 may be rendered in Trace-C. Although the Trace-C
specification appears more algebraic than Scribble, we can see that they are structurally
similar once we realize that the choice operator in Scribble corresponds to the ∨ operator
in Trace-C.

Listing 3: Purchase protocol in Trace-C (and Trace-F).

Buyer Request−−−−→ S e l l e r ; S e l l e r Offer−−−→ Buyer ;

((Buyer Accept−−−−→ S e l l e r ; S e l l e r Deliver−−−−→ Buyer ; Buyer Payment−−−−−→ S e l l e r) ∨
Buyer Reject−−−→ S e l l e r)

1360

Evaluation of Communication Protocol Languages for Engineering MAS

Like in Scribble, a Trace-C protocol yields projections for each agent. Listing 4 gives
the projections for Purchase in Listing 3. In the projections, ⊕, +, and ; denote internal
choice, external choice, and sequence, respectively; agent!Message and agent?Message,
respectively, denote the emission of Message to agent and the reception of Message from
agent. The projections are structurally similar to those of Purchase in Scribble, even
though the syntax is different. Notice that buyer’s choice is internal and seller’s external,
meaning that although seller could receive either Accept or Reject, the choice of what it
receives depends on what buyer sends. The protocol is realizable.

Listing 4: Trace-C projections of Purchase in Listing 3.

// Buyer ’ s p r o j e c t i o n
Buyer : S e l l e r ! Request ; S e l l e r ? O f f e r ;

((S e l l e r ! Accept ; S e l l e r ? D e l i v e r ; S e l l e r ! Payment) ⊕ S e l l e r ! R e j e c t)

// S e l l e r ’ s p r o j e c t i o n
S e l l e r : Buyer ? Request ; Buyer ! O f f e r ;

((Buyer ? Accept ; Buyer ! D e l i v e r ; Buyer ? Payment) + Buyer ? R e j e c t)

3.3 Trace-F

Ferrando et al. (2019) describe a trace expressions-based language for specifying protocols,
which we refer to as Trace-F. It builds upon earlier work on monitoring decentralized MAS
(Ferrando, Ancona, & Mascardi, 2017). Trace-F, like Trace-C, features operators for se-
quence, choice, and shuffle. In Trace-F, shuffle is represented |; however, for uniformity
with Trace-C, we use the Trace-C representation for shuffle, that is, ∧. With this simplifi-
cation, the protocol in Listing 3 serves as a specification of Use Case 1 in Trace-F.

The projections generated by Trace-F for Listing 3 though are different from the pro-
jections produced by Trace-C as shown in Listing 4. Specifically, in Trace-F, the choice in
the protocol does not reduce to internal and external choice in the projections for buyer
and seller. Instead, the choice is preserved in the projection and the distinction between
internal and external choice is captured semantically in a decision structure. In general,
Trace-F preserves all binary operators used in a protocol in the projections.

Listing 5: Trace-F projections of Purchase in Listing 3.

// Buyer ’ s p r o j e c t i o n
Buyer : S e l l e r ! Request ; S e l l e r ? O f f e r ;

((S e l l e r ! Accept ; S e l l e r ? D e l i v e r ; S e l l e r ! Payment) ∨ S e l l e r ! R e j e c t)

// S e l l e r ’ s p r o j e c t i o n
S e l l e r : Buyer ? Request ; Buyer ! O f f e r ;

((Buyer ? Accept ; Buyer ! D e l i v e r ; Buyer ? Payment) ∨ Buyer ? R e j e c t)

Ferrando et al. (2019) introduce two dimensions of variation in reasoning about the
realizability (which they term “enactability”) of a protocol. One dimension concerns the
communication infrastructure—whether it is asynchronous or synchronous and if it is asyn-
chronous what kind of ordered delivery guarantees it offers. Out of the other approaches
evaluated in this paper that support asynchrony, none requires stronger ordering guarantees

1361

Chopra, Christie, & Singh

than FIFO delivery. Hence, the interesting cases for Trace-F, for our purposes, are asyn-
chrony without any kind of ordered delivery, which we refer to as unordered asynchrony,
and asynchrony with FIFO delivery, which we refer to as FIFO asynchrony.

The other dimension that Ferrando et al. (2019) introduce (drawing upon (Desai &
Singh, 2008b)) concerns how the sequence operator is interpreted in terms of the observa-
tions of events. Take the protocol in Listing 6.

Listing 6: A Trace-F protocol.

W p−→ X ; W q−→ Y

Under the send before send (SS) interpretation, w must send p before w sends q. Under
the send before receive (SR) interpretation, w must send p before y receives q. Under the
receive before send (RS) interpretation, x must receive p before w sends q. And, under the
receive before receive (RR) interpretation, x must receive p before y receives q.

Whether a protocol is realizable depends on the communication infrastructure and the
interpretation of the sequence operator. For concreteness, let us consider the protocol in
Listing 6 under unordered asynchrony. The protocol is realizable with either SS (w being
the sender of both p and q can ensure that p is sent before q) or SR (from the facts that the
protocol is realizable under SS and the emission of a message must be prior to its reception).
However, the protocol is realizable neither under RS (w has no way of knowing when x
has received p, so it cannot ensure that q will be sent after the reception of p) nor under
RR (since the receivers are different, there is no way to ensure that q will be received after
the reception of p). Changing the interpretation to FIFO asynchrony makes no difference
(because the receivers of p and q are different).

To see how the choice of communication infrastructure makes a difference, consider the
protocol in Listing 7. Notice that both p and q are messages from w to x. Under unordered
asynchrony and with the RR interpretation, the protocol is unrealizable (there being no way
to guarantee that p will be received before q). However, under FIFO asynchrony and the
RR interpretation, the protocol is realizable (p is sent before q, so p is also received before
q).

Listing 7: A Trace-F protocol.

W p−→ X ; W q−→ X

3.4 HAPN

HAPN (Winikoff et al., 2018) is a graphical language that enables specifying a protocol as
a nested state machine in a manner similar to statecharts (Harel, 1987). As Figure 4 shows,
nodes represent states or reference other protocols to compose those protocols. Edges can
have complex annotations, supporting the specification of message transmissions, guard ex-
pressions, and changes to the state. HAPN has been implemented in tooling that animates
a state machine. Although Winikoff et al. acknowledge the importance of realizability, they
do not give a method for projecting HAPN protocols nor do they discuss the specific in-
frastructure assumptions under which a HAPN protocol would be realizable.

HAPN provides methods to flatten a hierarchical protocol into simple protocols and
finite state machines for verification.

1362

Evaluation of Communication Protocol Languages for Engineering MAS

s0 s1 s2 s3

Buyer 7→ Seller:
Accept()

s5

s6

Buyer 7→ Seller: Payment()

Seller 7→ Buyer:
Deliver()

s4

Buyer 7→ Seller: Reject()

Seller 7→ Buyer:
Offer()

Buyer 7→ Seller:
Request()

P:

Figure 4: Purchase in HAPN, starting from s0.

3.5 BSPL

BSPL (Singh, 2011a, 2012), the Blindingly Simple Protocol Language, and Splee (Chopra,
Christie, & Singh, 2017), which extends BSPL, are exemplars of information-based lan-
guages. Instead of specifying the control flow between messages, BSPL specifies information
causality and integrity constraints.

Listing 8 shows the Purchase protocol in BSPL. It specifies a set of roles, a set of
parameters, and a set of messages. In Purchase, the roles are buyer and seller; the
parameters are ID, item, price, decision, and OK; and message schemas are Request, Offer,
and so on. Request is a message from buyer to seller and has parameters ID and item.
BSPL is declarative; the order in which the messages appear in a protocol is irrelevant to
how the protocol may be enacted.

Listing 8: Purchase in BSPL.

Purchase {
role Buyer , S e l l e r
parameter out ID key , out item , out p r i c e , out d e c i s i o n , out OK

Buyer 7→ S e l l e r : Request [out ID , out i tem]
S e l l e r 7→ Buyer : O f f e r [i n ID , i n item , out p r i c e]
Buyer 7→ S e l l e r : Accept [i n ID , i n item , i n p r i c e , out d e c i s i o n , out

a d d r e s s]
Buyer 7→ S e l l e r : R e j e c t [i n ID , i n item , i n p r i c e , out d e c i s i o n , out OK]
S e l l e r 7→ Buyer : D e l i v e r [i n ID , i n item , i n a d d r e s s , out d r o p O f f]
Buyer 7→ S e l l e r : Payment [i n ID , i n p r i c e , i n dropOff , out OK]
}

A BSPL protocol may be viewed as an information object as described by the protocol
parameters, at least one of which is annotated key. The key parameters enable identifying
instances of the protocol: distinct bindings for the key parameters identify distinct instances
of the protocol. Purchase specifies ID as its key parameter. A key parameter of the protocol
is also a key parameter of the messages in which it appears and enables identifying distinct
instances of messages. Thus, parameter ID is key for all messages in Purchase. Protocol
instances are related to protocol enactment: A protocol instance is a view over correlated
(by bindings of common keys) message instances. For example, an emission of Request with
ID 1 and item fig yields a Purchase instance with ID 1 and item fig.

1363

Chopra, Christie, & Singh

A protocol instance must satisfy integrity, which is the idea that no two message in-
stances that are correlated with the protocol instance may conflict on (that is, have different
bindings for) any parameter—this is the meaning of a key. Thus for example, a Request
with ID 1 and item fig and an Offer with ID 1 and item jam would violate integrity: ID 1

may either be associated with item fig or item jam, but not both.
For any instance, causality constraints specify information flow and are expressed via

pinq and poutq adornments on parameters (we omit discussion of the pnilq adornment since
it does not feature in any BSPL specification in the present paper). Ordering between
messages falls out of these constraints. To see how, consider Request. In Request, both ID
and item are adorned poutq, meaning that in sending a Request, buyer produces bindings
for ID and item. When seller receives the Request, it comes to know those bindings unless
it knew them already. In Offer, both ID and item are adorned pinq, meaning that seller
needs to know these parameters before seller can send Offer. This means that if seller
has seen Request before, it can send Offer by producing a binding for price. When buyer
receives Offer, it may send either Accept or Reject since it knows the bindings of ID, item,
and price and it may produce a binding for address (which features in Accept but not Reject),
decision and OK (which features in Reject but not Accept). It cannot send both Accept and
Reject though because both messages produce a binding for decision, and integrity requires
a parameter to have at most one binding. When seller receives Accept, it knows address
and therefore may send Deliver by producing a binding for dropOff. Upon reception of
Deliver, buyer knows dropOff, and therefore, it can send Payment by producing a binding
for OK.

A tuple of bindings for a protocol’s parameters corresponds to a complete protocol
instance. That is the motivation for Purchase being designed such that Reject features OK
but Accept does not. On the Accept branch, the protocol completes with Payment.

Unlike the languages introduced earlier, BSPL does not give the computations of a pro-
tocol from a unitary perspective. Instead, it takes an inherently decentralized perspective.
Any computation of a protocol is a vector comprised of a history for each agent. How-
ever, the vector is conceptual (not materialized anywhere). To be able to correctly enact
a protocol, an agent needs no more than its history. Therefore projections are trivial in
BSPL.

BSPL works with asynchronous communication without any ordering guarantees.

4. Flexibility

Does a language support specifying flexible protocols? Being able to interact flexibly is
supportive of autonomy (Yolum & Singh, 2002). However, flexibility is in tension with
decentralization: Independently-constructed agents deciding locally must still be able to
interoperate. Below, we discuss concurrency and extensiblity, two aspects of flexibility.

Below, we denote enactments via sequence diagrams, as in Figure 5, where each agent’s
lifeline captures its history.

4.1 Concurrency

Does a language support specifying protocols in which agents may emit and receive messages
concurrently? Consider Use Case 3.

1364

Evaluation of Communication Protocol Languages for Engineering MAS

Use Case 3 (Flexible purchase) buyer sends Request to seller to ship some item.
After sending Request, buyer may send Payment. After receiving Request, Seller may
send Shipment. That is, Payment and Shipment are not mutually ordered.

Figure 5 shows some possible enactments for Use Case 3.

Buyer Seller

Request

Shipment

Payment

(a) Shipment first.

Buyer Seller

Request

Payment

Shipment

(b) Payment first.

Buyer Seller

Request

Payment

Shipment

(c) Concurrent.

Figure 5: Three possible enactments of Flexible purchase (Use Case 3).

Listing 9 serves as a protocol specification in both Trace-C and Trace-F that prima facie
captures Use Case 3 by not mutually ordering Payment and Shipment.

Listing 9: Flexible purchase (Use Case 3) in Trace-C and Trace-F.

// F l e x i b l e p u r c h a s e

Buyer Request−−−−→ S e l l e r ; (Buyer Payment−−−−−→ S e l l e r ∧ S e l l e r Shipment−−−−−→ Buyer)

To understand what enactments are supported by the protocol in Listing 9, following
Trace-C (Castagna et al., 2012, p. 14), we eliminate ∧ from the protocol to obtain the equiv-
alent protocol in Listing 10. Trace-C determines the protocol in Listing 10 as unrealizable.

Listing 10: A Trace-C protocol equivalent to the protocol in Listing 9.

Buyer Request−−−−→ S e l l e r ;

((Buyer Payment−−−−−→ S e l l e r ; S e l l e r Shipment−−−−−→ Buyer) ∨ (S e l l e r Shipment−−−−−→ Buyer ;

Buyer Payment−−−−−→ S e l l e r))

Let us see why. Listing 11 gives the projections that Trace-C yields for Listing 10. The
choice (denoted by ∨) in the protocol must be interpreted as external choice (denoted +)
for one agent and internal choice (denoted ⊕) for the other. Recall that an agent with
an internal choice can choose autonomously. An agent with an external choice cannot; its
choice is determined by the internal choice of another agent. In Listing 11, buyer has the
internal choice and seller the external choice (it would not matter to our analysis if it
were the other way around since the situation is symmetric).

1365

Chopra, Christie, & Singh

Listing 11: Trace-C projections of the protocol in Listing 10.

Buyer : S e l l e r ! Request .
((S e l l e r ? Shipment . S e l l e r ! Payment) ⊕

(S e l l e r ! Payment . S e l l e r ? Shipment))

S e l l e r : Buyer ? Request .
((Buyer ! Shipment . Buyer ? Payment) +

(Buyer ? Payment . Buyer ! Shipment))

Given the projections in Listing 11, if buyer chooses to send Payment, when Payment
reaches seller, it effectively determines the choice to receive Payment by seller. Such
an enactment realizes the protocol trace where Payment happens before Shipment, so no
problem here. However, if buyer chooses to receive Shipment, seller must send it. The
seller could send Shipment if it knew of buyer’s choice or it could act autonomously.
However neither is a possibility. Constraint 5 rules out covert communication and synchro-
nization and therefore rules out the possibility of the seller learning of buyer’s choice.
As seller’s choice is internal, it cannot send Shipment autonomously. This means the
system is deadlocked, which leads Trace-C to conclude that the protocol is unrealizable.
The situation where agents must make mutually compatible choices to ensure correctness
is known as nonlocal choice (Ladkin & Leue, 1995).

Listing 12 shows the projections in Trace-F for the protocol in Listing 9. Under both
unordered and FIFO asynchrony, the protocol is determined unrealizable by Trace-F, no
matter what interpretation is chosen for the sequence operator. The reason behind the
rejection is the same reason the Trace-C protocol above is rejected: a nonlocal choice that
cannot always be made in a mutually compatible manner by the agents.

Listing 12: Trace-F projections of the protocol in Listing 10.

Buyer : S e l l e r ! Request . ((S e l l e r ? Shipment . S e l l e r ! Payment) ∨
(S e l l e r ! Payment . S e l l e r ? Shipment))

S e l l e r : Buyer ? Request .
((Buyer ! Shipment . Buyer ? Payment) ∨ (Buyer ? Payment . Buyer ! Shipment))

Listing 13 shows how we might model Use Case 3 in Scribble. For the same reasons as
for Trace-C, the protocol in the listing is determined unrealizable by Scribble.

Listing 13: Flexible purchase (Use Case 3) in Scribble.

g l o b a l p r o t o c o l F l e x i b l e P u r c h a s e (r o l e Buyer , r o l e S e l l e r) {
Request () from Buyer to S e l l e r ;
c h o i c e a t Buyer {

Payment () from Buyer to S e l l e r ;
Shipment () from S e l l e r to Buyer ;

} or {
Shipment () from S e l l e r to Buyer ; // not v a l i d
Payment () from Buyer to S e l l e r ;

}
}

Some research branches of Scribble (Demangeon, Honda, Hu, Neykova, & Yoshida,
2015) have included a parallel operator, which however is absent from the main Scribble

1366

Evaluation of Communication Protocol Languages for Engineering MAS

language and implementation. We hypothesize that a parallel operator would manifest as a
problematic nonlocal choice. Our hypothesis is based on the fact that Trace-C’s ∧ operator
is in essence a parallel operator and as we showed in the analysis of flexible purchase in
Trace-C, ∧ manifests as a problematic nonlocal choice in the projections.

Figure 6’s HAPN protocol captures only the first two enactments of Figure 5, not the
concurrent one because HAPN requires synchrony.

s0 s1 s2
Buyer 7→ Seller: Request()

Buyer 7→ Seller: Payment()[unbound(paid)]/bind(paid,T)

Seller 7→ Buyer: Shipment()[unbound(shipped)]/bind(shipped,T)

[bound(paid)∧bound(shipped)]
P:

Figure 6: Flexible Purchase (Use Case 3) in HAPN.

Listing 14 gives a BSPL protocol. It supports the enactment in Figure 5c because after
buyer sends Request, it has the information needed to send Payment and, upon receiving
Request, seller has the information needed to send Shipment. The protocol also supports
the enactments in Figures 5a and 5b.

Listing 14: Flexible purchase (Use Case 3) in BSPL.

F l e x i b l e Purchase {
role Buyer , S e l l e r
parameter out ID key , out item , out sh ipped , out p a i d

Buyer 7→ S e l l e r : Request [out ID , out i tem]
S e l l e r 7→ Buyer : Shipment [i n ID , i n item , out s h i p p e d]
Buyer 7→ S e l l e r : Payment [i n ID , i n item , out p a i d]
}

4.2 Extensibility

Is the protocol language such that an agent may participate in multiple, potentially unre-
lated protocols specified in it? If the answer is yes, we refer to the language as extensible.
Technically, extensibility means that an agent may interleave observations of messages from
several protocols and yet be compliant with each of them. If an agent may participate in
only one protocol, that is, observe messages from only one protocol, then the language is
nonextensible.

Extensibility is a practical necessity. For example, an organization as an agent may
interact with other organizations using one protocol but interact with its own members
using another protocol. Further, nonextensibility would be an undue restriction on an
agent’s design and therefore its principal’s autonomy.

As basic a requirement as extensibility appears to be, we show below that several lan-
guages are in fact not extensible.

1367

Chopra, Christie, & Singh

Use Case 4 (Pricing and Catalog) seller and buyer engage in the Pricing protocol,
by which a buyer may obtain offers for requested items from seller. In addition, seller
engages with provider via the Catalog protocol to obtain information about the newest
products. Further, buyer is unaware of Catalog and provider is unaware of Pricing,
indicating that these protocols are not composed into a single protocol.

Figure 7 shows an enactment of Use Case 4 in which the messages of Pricing and
Catalog are interleaved. In particular, notice that seller observes messages from both
protocols. There is nothing in the enactment that tells us it should be deemed incorrect.
Such enactments would in fact be indicative of flexibility. If a protocol language were not
extensible, then enactments such as the one in Figure 7 would be deemed incorrect.

Buyer Seller Provider

Request
Query

Newest

Offer

Figure 7: Extensibility means supporting enactments that interleave messages from two
protocols, as shown.

Listing 15: Pricing and Catalog (Use Case 4) in Trace-C and Trace-F.

// P r i c i n g

Buyer Request−−−−→ S e l l e r ; S e l l e r Offer−−−→ Buyer

// C a t a l o g

S e l l e r Query−−−→ P r o v i d e r ; P r o v i d e r Newest−−−−→ S e l l e r

Listings 15 gives the specifications of Pricing and Catalog in Trace-C. Castagna et al.
(2012, p. 3) promote the correctness criterion of fitness with respect to a protocol, which
says that an agent correctly implements (fits) a protocol only if the agent does not observe
any message that is not in the protocol. Castagna et al. give the example of a protocol
in which seller may send buyer messages corresponding to price and descr (of an item)
and say that a seller that sent any message other than price and descr would violate the
protocol. Naturally, it follows that if an agent observes messages from two or more Trace-C
protocols, then it correctly implements none of those protocols. In essence, fitness limits
agents to implementing a single protocol.

Returning to our example, Trace-C says that to correctly implement Pricing, seller
must not observe any message from Catalog and to correctly implement Catalog, seller

1368

Evaluation of Communication Protocol Languages for Engineering MAS

must not observe any message from Pricing. An agent that engages in both Pricing and
Catalog violates both. Considering the seller’s projections for Pricing and Catalog, given
in Listing 16, helps see the violations clearly. If you consider the projection from Pricing, the
only trace that satisfies the projection is Request followed by Offer. In particular, no trace
with Query or Newest satisfies the projection from Pricing. By an analogous argument,
no trace with Request or Offer would satisfy the projection from Catalog. Based on the
foregoing analysis, we conclude that Trace-C does not support extensibility.

Listing 16: Projections of Pricing and Catalog in Trace-C (and Trace-F) for Seller.

// S e l l e r ’ s p r o j e c t i o n from P r i c i n g
S e l l e r : Buyer ? Request ; Buyer ! O f f e r

// S e l l e r ’ s p r o j e c t i o n from C a t a l o g
S e l l e r : P r o v i d e r ! Query ; P r o v i d e r ? Newest

Following an analogous line of reasoning, we can see that Trace-F and Scribble do not
support extensibility either: Pricing and Catalog yield projections for seller, none of which
entertains traces with events from the other (in fact, the projections in Listing 16 double
as projections in Trace-F as well). HAPN’s state-machine semantics rules out interleavings
with other protocols. Therefore, HAPN too does not support extensibility.

The underlying reason Trace-C, Trace-F, Scribble, and HAPN come up short on exten-
sibility is they all implicitly identify the universe of discourse (the messages that agents
may observe) with the messages specified in the protocol.

BSPL supports extensibility. In fact, BSPL refers to a universe of discourse, which for
an agent would include any messages it observes, regardless of the protocols they feature in.
Any message schema is an elementary protocol is BSPL and determining the correctness of
an observation of the message depends on the causality and integrity constraints specified
in the schema. Correctness does not depend upon the protocol in which a message schema
occurs. Listing 17 and Listing 18 specify Pricing and Catalog, respectively, in BSPL. The
role seller features in both protocols and interleaves observations of messages from both
protocols.

Listing 17: Pricing in BSPL.

P r i c i n g {
role Buyer , S e l l e r
parameter out ID key , out item , out p r i c e

Buyer 7→ S e l l e r : Request [out ID , out i tem]
S e l l e r 7→ Buyer : O f f e r [i n ID , out p r i c e]
}

Listing 18: Catalog in BSPL.

C a t a l o g {
role S e l l e r , P r o v i d e r
parameter out qID key , out req , out p r o d u c t s

S e l l e r 7→ P r o v i d e r : Query [out qID , out r e q]
P r o v i d e r 7→ S e l l e r : Newest [i n qID , i n req , out p r o d u c t s]

1369

Chopra, Christie, & Singh

}

One may argue that the problem of extensibility is rendered moot if both Pricing and
Catalog were composed into a single protocol. Composing the protocols would enable
an agent to interleave interactions from both protocols without compromising fitness. List-
ing 19 gives Pricing+Catalog, a composition of Pricing and Catalog, in Trace-C. The fitness
of seller with respect to the composed protocol is thus a possibility. However, there are
significant drawbacks to requiring explicit composition just for the sake of fitness. First, it
would create large unwieldy protocols with potentially unrelated communications and in-
troduce otherwise unrelated agents into the MAS just because they are reachable from each
other based on their interactions with common agents. Second, when protocols are large
and unwieldy, projections for agents and their implementations would become correspond-
ingly complicated. Third, it would prevent any organizational abstraction. For example,
the protocol by which an organization trades with others will have to be composed with
all the protocols pertaining to interactions internal to the organization, which would be
undesirable. Fourth, the composite protocol may turn out to be unrealizable anyway. Pric-
ing+Catalog in Listing 19 is in fact unrealizable. The reason is that the protocol sets up a
problematic nonlocal choice (seller sends Query or buyer sends Request).

Listing 19: Pricing+Catalog in Trace-C.

// P r i c i n g+C a t a l o g

(Buyer Request−−−−→ S e l l e r ; S e l l e r Offer−−−→ Buyer) ∧ (S e l l e r Query−−−→ P r o v i d e r ;

P r o v i d e r Newest−−−−→ S e l l e r)

5. Information Modeling

Does a language enable capturing the information model underlying the interactions in
a MAS? Further, does the information model captured in a protocol specification enable
computing social meaning correctly?

It is the information conveyed via messaging that enables coordination in a MAS. Such
information has a model, starting with constraints such as would be captured in a message
schema, e.g., to capture message instances, and extending to constraints between message
schemas in a protocol specification, e.g., to capture correlation and integrity in protocol
enactments, which may be viewed as groups of message instances. Further, due to Con-
straint 6, since a meaning-level event is computed as a view over one or more protocol events,
the soundness of information at the meaning-level relies on the soundness of information
generated in protocol-level events.

We elaborate below on protocol instances and the integrity of information as a lead up
to social meaning.

5.1 Protocol Instances

A practical requirement is that a protocol, being a pattern of communication, may be
instantiated several times. We refer to each instantiation as a protocol instance that would
be comprised of some appropriately correlated messages. How well does a protocol language
support—via its constructs—the modeling of protocol instances? Consider Use Case 5.

1370

Evaluation of Communication Protocol Languages for Engineering MAS

Use Case 5 (Concurrent Pricing) A buyer and seller may engage in several, possibly
concurrent engagements, in each of which a buyer sends a request for some item and the
seller responds with an offer.

Buyer Seller

Request(1, fig)

Offer(1, $5)

Request(2, jam)

Offer(2, $6)

(a) Serial: buyer sends the second Request
after receiving an Offer for the first.

Buyer Seller

Request(1, fig)

Request(2, jam)

Offer(2, $6)

Offer(1, $5)

(b) Second first: buyer sends two Requests.
They arrive at the seller in the same order
as they were sent. seller responds to each
Request with an Offer but in the reverse or-
der.

Buyer Seller

Request(1, fig)

Offer(1, $5)Request(2, jam)

Offer(2, $6)

(c) Concurrent: buyer sends a second Re-
quest; concurrently, seller responds to the
first with an Offer. The messages cross in
transit.

Buyer Seller

Request(1, fig)

Request(2, jam)

Offer(2, $6)

Offer(1, $5)

(d) Out of order: buyer sends two Requests,
which cross in transit. seller responds to
the Requests with Offers in the order they
arrive.

Figure 8: Four possible enactments of Use Case 5, in each of which buyer and seller engage
in two instances of Pricing. Messages with identifier 1 belong to one instance and messages
with identifier 2 to the other instance.

1371

Chopra, Christie, & Singh

Figure 8 illustrates some enactments involving two instances of the pattern in Use Case 5.
The messages contain identifiers (1 and 2) to help distinguish the instances from each other
and to correlate messages within an instance.

Listing 20 gives a candidate Scribble protocol capturing Use Case 5. Here, the use
of the language feature of recursion enables buyer and seller to engage repeatedly in
the pricing pattern of Use Case 5. However, each pricing engagement must happen in its
entirety before another can start; that is, the protocol does not allow interleaving of multiple
pricing engagements. Thus, although the protocol supports the enactment of Figure 8a, it
excludes the enactments of Figures 8b and 8c. The enactment of Figure 8d is also excluded
but for a different reason: it violates FIFO, which is a requirement for Scribble.

Listing 20: Concurrent Pricing (Use Case 5) in Scribble.

g l o b a l p r o t o c o l P r i c i n g (r o l e Buyer , r o l e S e l l e r) {
Request (ID : S t r i n g , i tem : S t r i n g) from Buyer to S e l l e r ;
O f f e r (ID , p r i c e : S t r i n g) from S e l l e r to Buyer ;
do P r i c i n g (Buyer , S e l l e r) ;

}

Listing 21 gives a Trace-C protocol for Use Case 5. Trace-C supports iteration via ∗,
meaning that the enclosed pattern may be repeated zero or more times. As for Scribble,
each iteration must complete before another can begin, thereby excluding the enactments
of Figures 8b and 8c due to the semantics of the language and excluding Figure 8d due to
the FIFO requirement.

Listing 21: Concurrent Pricing (Use Case 5) in Trace-C.

(Buyer Request(ID, item)−−−−−−−−−−→ S e l l e r ; S e l l e r Offer(ID, price)−−−−−−−−→ Buyer)∗

Like Scribble, Trace-F too supports recursion. Listing 22 gives a recursive Trace-
F protocol for Use Case 5. As for Scribble and Trace-C, each iteration must complete
before another can begin, thereby excluding the enactments of Figures 8b and 8c due to
the semantics of the language. Under unordered asynchrony, the protocol is unrealizable
because the enactment in Figure 8d may occur but the protocol cannot handle it. Under
FIFO asynchrony, Figure 8d is excluded, just as for Scribble and Trace-C.

Listing 22: Concurrent Pricing (Use Case 5) in Trace-F.

P = Buyer Request(ID, item)−−−−−−−−−−→ S e l l e r ; S e l l e r Offer(ID, price)−−−−−−−−→ Buyer ; P

With the aim of supporting the enactment in Figure 8c, Listing 23 gives an alternative
Trace-F protocol. This protocol has two problems. One, it would support at most two
instances. Two, and in any case, it is unrealizable. This is because the protocol would
manifest in a problematic nonlocal choice in the projections for buyer and seller: after
sending the first Request, buyer can either send the second Request or receive Offer, and
after receiving the first Request, seller can either send Offer or receive the second Request.

Listing 23: Another attempt at Concurrent Pricing (Use Case 5) in Trace-F.

(Buyer Request(ID, item)−−−−−−−−−−→ S e l l e r ; S e l l e r Offer(ID, price)−−−−−−−−→ Buyer) ∧ (Buyer
Request(ID, item)−−−−−−−−−−→ S e l l e r ; S e l l e r Offer(ID, price)−−−−−−−−→ Buyer)

1372

Evaluation of Communication Protocol Languages for Engineering MAS

Listing 24 (unclear if it is a legal Trace-F specification) improves upon Listing 23 by
allowing an unbounded number of instances; however, it remains unrealizable for the same
reason as Listing 23.

Listing 24: Concurrent Recursive Pricing (Use Case 5) in Trace-F.

P = Buyer Request(ID, item)−−−−−−−−−−→ S e l l e r ; S e l l e r Offer(ID, price)−−−−−−−−→ Buyer ∧ P

Figure 9 specifies the protocol in HAPN, which supports iteration by introducing cycles
in the state machine. As for the Scribble and Trace-C protocols, and the Trace-F protocol
in Listing 22, each iteration must complete before another can begin, thereby excluding
the enactments of Figures 8b and 8c. Notice that the requirement of synchrony eliminates
Figures 8c and 8d. That is, there are two strikes against Figure 8c.

s0 s1

Buyer 7→ Seller: Request(ID,item)
/bind(ID,ID);bind(item,item)

Seller 7→ Buyer: Offer(ID, price)
/bind(price,price)

P:

Figure 9: Concurrent Pricing in HAPN.

Because Scribble, Trace-C, and Trace-F support one of the four enactments in Figure 8,
we conclude that they partially support instances. By contrast, BSPL fully supports the
specification of instances via key parameters of protocols. Listing 17 in fact gives the BSPL
protocol that supports all the enactments in Figure 8.

To help understand why the protocol in Listing 17 supports each of the enactments in
Figure 8, the following observations suffice. First, buyer can send a Request at any point
because it can generate bindings for both parameters of Request, namely, ID and item.
However, as ID is key, no two Requests may contain the same binding for ID. Second, seller
may send Offers only for those IDs whose bindings it knows from prior communications—
here, from Request messages it has received. Further, once seller knows a binding for ID,
it can send (depending on whether its reasoner determines that it should send) an Offer
with that binding of ID at any point since the protocol allows it to generate a binding for
the only other parameter in Offer, namely, price.

As an alternative to using recursion or iteration to capture instances, one could use a
conversation identifier to capture protocol instances. In this approach, each message would
be tagged with an externally generated identifier. Specifically, let m be an instance of a
protocol message and c be a conversation identifier; then instead of merely transmitting
m, a tuple 〈c,m〉 would be transmitted. Messages with the same conversation identifier
may be considered to belong to the same instance. FIPA ACL (implemented in the JADE
platform (Bellifemine, Caire, & Greenwood, 2007)), adopts such an approach, supporting
the tagging of messages with conversation identifiers.

Consider the Scribble specification in Listing 25 (analogous specifications could be writ-
ten in Trace-C, Trace-F, and HAPN). One could argue that when used with conversation

1373

Chopra, Christie, & Singh

identifiers, the specification would capture the essence of Use Case 5, and specifically the
enactments in Figures 8a, 8b, and 8c.

Listing 25: Another attempt to model Use Case 5 in Scribble

g l o b a l p r o t o c o l P r i c i n g (r o l e Buyer , r o l e S e l l e r) {
RFQ(i tem : s t r i n g) from Buyer to S e l l e r ;
O f f e r (p r i c e : s t r i n g) from S e l l e r to Buyer ;

}

However, in being external to protocol languages, the construct of a conversation iden-
tifier constitutes an ad hoc mechanism for identifying instances. In particular, using a
conversation identifier would go against Constraint 5 by introducing additional coupling
between agents (via the particulars of the conversation identifier). Further, no language-
based support, e.g., in a protocol adapter, could be provided for managing conversations.
The burden of conversation management would fall upon the agent developer. For example,
the developer would have to ensure that no two Requests are sent with the same conver-
sation identifier; and when a 〈c,m〉 tuple is sent or received, it advances the state of the
correct instance, that is, of the instance identified by c.

Finally, consider that a single conversation identifier will be insufficient for many sce-
narios. For example, in an instance of an insurance policy subscription, there could be
several claims, each a distinct subinstance. Modeling the scenario would therefore require
two identifiers, one for the policy subscription (say, pID) and a composite one that identifies
a claim in the context of a subscription (say, 〈pID, cID〉). In general, the specification of
identifiers would depend on the scenario being modeled, which illustrates really the need
of supporting identifiers—and through them, instances—generally and systematically in
protocol languages, e.g., as BSPL does.

5.2 Integrity

Building upon instances, integrity means that information in a protocol instance must not
be inconsistent. For example, in any instance of Purchase, item must have a unique binding;
it cannot be fig in Request and jam in Offer.

Scribble does not support integrity. In Scribble, the message names and the data types
of the information carried in a message matter; however, the information carried in the
message does not matter. The motivating example of a Scribble travel booking protocol
(Yoshida et al., 2013, p. 8) is illuminating in this regard. Listing 26 reproduces the relevant
parts of that protocol.

Listing 26: Relevant parts of a Scribble travel booking protocol (Yoshida et al., 2013).

g l o b a l p r o t o c o l BookJourney (r o l e Customer as C , r o l e Agency as A, r o l e
S e r v i c e as S) {

. . .
q u e r y (j o u r n e y : S t r i n g) from C to A ;
p r i c e (I n t) from A to C ;

. . .
}

1374

Evaluation of Communication Protocol Languages for Engineering MAS

Figure 10 partially reproduces the customer’s finite state machine (FSM) that is ex-
tracted from the above protocol and that serves as the basis for compliance checking in
the agent: a deviation from the FSM is a violation of the protocol (Yoshida et al., 2013,
p. 10). Notice that the parameter journey is absent; all that matters is that customer
sends a String to agency. To drive home the point about the lack of information modeling
in Scribble, we refer the reader to the implementation of the customer agent (Yoshida et
al., 2013, p. 11), which does not mention journey.

A!query(String)

A?price(Int)

Figure 10: Part of customer’s FSM, derived from Listing 26. Here, A is the agency role
with which customer interacts.

Returning to the domain of our running examples, consider the Scribble protocol in
Listing 27, a variant of Listing 20. Specifically, in the Alt-Pricing protocol, Offer addition-
ally includes the parameter item. Figure 11 gives the seller’s FSM. Notice again that the
parameter names are absent; what matters are the data types. This machine would deter-
mine to be legal even those protocol enactments that violate integrity, e.g., where Request
contains (the item binding) fig but Offer contains (the item binding) jam.

Listing 27: Alternative Pricing in Scribble.

g l o b a l p r o t o c o l Alt−P r i c i n g (r o l e Buyer , r o l e S e l l e r) {
Request (ID : S t r i n g , i tem : S t r i n g) from Buyer to S e l l e r ;
O f f e r (ID , item , p r i c e : S t r i n g) from S e l l e r to Buyer ;
do P r i c i n g (Buyer , S e l l e r) ;

}

Buyer?Request(String, String)

Buyer!Offer(String, String, String)

Figure 11: The seller’s FSM, derived from Listing 27

Like Scribble, Trace-C does not support integrity either. Like Scribble, messages are
opaque in Trace-C: the message names matter but their contents do not, as Listing 3
illustrates.

HAPN partially guarantees information integrity. Once a variable is bound in an enact-
ment, as item is at state s1 in Figure 9, any message attempting to use that variable with a

1375

Chopra, Christie, & Singh

different value is illegal. HAPN’s “unbind” operation does not compromise integrity under
its assumptions of synchronicity and shared state; all agents would simultaneously see any
updates, and would never have inconsistent bindings for any variable. However, HAPN
does not ensure integrity when implementing the protocol in a decentralized asynchronous
environment, expecting the designer to check for realizability and to make corrections to
any problems arising.

BSPL supports integrity, as described in Section 3.5.
Some authors of Trace-F have investigated a language closely related to Trace-F that

supports parameters (Ancona, Ferrando, & Mascardi, 2017). This language (which we
dub Trace-Parameters), like HAPN, partially captures integrity by supporting parameter
bindings. Listing 28 (reproduced from (Mascardi & Ferrando, 2019)) gives a protocol in
Trace-Parameters. The expression on the right-hand side of the = may be read as a binding
for a parameter (here, ID) followed by the scope over which that binding holds. That is,
ID must have the same fresh binding throughout the specified scope. The fresh binding
mechanism is not sufficiently expressive to capture integrity, since integrity needs identifiers
(as BSPL supports via key parameters). Specifically, the protocol in Listing 28 allows two
Request messages to be sent with the same binding for ID. Not only that, it allows two
Request messages with the same binding of ID to have different bindings for item.

Listing 28: A protocol in Trace-Parameters that requires the same binding for ID throughout
in every recursion instance.

T = ID . Buyer Request(ID, item)−−−−−−−−−−→ S e l l e r ; S e l l e r Offer(ID, price)−−−−−−−−→ Buyer ; T

5.3 Social Meaning

In general, a specification of social meaning specifies the lifecycle of meaning instances, as
exemplified by recent work on commitments (Chopra & Singh, 2015). For example, the
Deliver-Payment commitment specification in Use Case 2 specifies the lifecycle of Deliver-
Payment commitment instances. Where each of the instances differ would be in their
information content, as Use Case 6 illustrates.

Use Case 6 (Commitment instances) buyer and seller repeatedly engage in pur-
chase (Use Case 1). A distinct instance of the Deliver-Payment commitment (Use Case 2)
is created for every Accept. Several commitment instances may exist at any moment.

The information content of a commitment instance would need to obey certain soundness
constraints. Each commitment instance referred to in Use Case 6 would involve a specific
item binding and a specific price binding. And in fact, those bindings must be immutable
over the entire lifecycle of the instance. In particular, it cannot be that the commitment
instance is created with item binding fig and discharged with item binding jam; such an
enactment would clearly be unsound. Notably, reasoning about the state of a commitment
instance involves reasoning about several correlated messages that satisfy integrity—e.g., a
message to create the instance and a message to discharge it.

Given that meaning-level information is derived from (is a view over) underlying protocol
events (Constraint 6), identifiers for commitment instances and the necessary correlation
and integrity must already be present in protocol enactments. For each instance of the

1376

Evaluation of Communication Protocol Languages for Engineering MAS

Deliver-Payment commitment, an instance of Purchase must generate the relevant informa-
tion in a sound manner: an identifier to identify the commitment instance and the bindings
for item and price. This means that a commitment instance created by a particular Accept
(belonging to a particular protocol instance) may be discharged only by a properly corre-
lated instance of Payment (belonging to that same protocol instance). And integrity of the
protocol instance would ensure that the bindings are immutable over the lifecycle of the
commitment instance.

It was common in early work on commitments to introduce arbitrary (syntactic) identi-
fiers for them disconnected from the underlying information. As Chopra and Singh (2009)
show, such schemes are incompatible with commitment reasoning.

In a nutshell, the soundness of computations at the commitment level and more gener-
ally meaning level imposes requirements relating to protocol instances and their integrity
on the protocol language. Scribble, Trace-C, Trace-F, and HAPN at best partially support
instances and integrity and therefore fall short on this criterion. BSPL supports both in-
stances and integrity and therefore better supports social meaning. Indeed, Singh (2011a,
p. 498) discusses social meaning and other work has applied BSPL toward commitment
consistency in decentralized settings (King, Günay, Chopra, & Singh, 2017). Listing 29
specifies the Deliver-Payment commitment in Cupid (Chopra & Singh, 2015). It says that
each instance of this specification is from buyer to seller; it is created upon an Accept;
detached upon a Deliver that happens within three days of Accept; and discharged upon
a Payment that happens within three days of Payment. Notably, the events in the com-
mitment specification refer to observations of messages of BSPL Purchase protocol given in
Listing 8. Since BSPL supports protocol instances and their integrity, as a protocol instance
progresses, the commitment instance too progresses soundly.

Listing 29: Deliver-Payment commitment in Cupid.

commitment D e l i v e r−Payment Buyer to S e l l e r
create Accept
detach D e l i v e r [, Accept + 3]
discharge Payment [, D e l i v e r + 3]

6. Operational Environment

How strong are the assumptions that a language makes of the operational environment of a
multiagent system? The properties a language requires of a communication infrastructure
are assumptions about the agent’s operational environment. The stronger the assumptions
a language makes, the more restrictive and less practical the language.

We split this criterion into two: whether a language can work over asynchronous infras-
tructures and if so, whether it can work with unordered message delivery.

6.1 Asynchronous Communication

Assuming synchronous communication would be so strong an assumption as to make the
language impractical for MAS. Asynchronous communication, on the other hand, promotes
loose coupling between agents and is also practical in that it matches real-world constraints.

1377

Chopra, Christie, & Singh

Scribble, Trace, and BSPL accommodate asynchrony but HAPN (Winikoff et al., 2018,
p. 61) does not.

6.2 Unordered Communication

Asynchronous communication though comes in many flavors. Asynchronous communication
with some kind of ordered delivery, for example, pairwise FIFO (simply FIFO, from here
on) would be a weaker assumption (and therefore better) than synchrony. FIFO in fact is
supported in practical, widely-used infrastructures such as TCP and the Advanced Message
Queuing Protocol, better known as AMQP (AMQP, 2014). An even weaker assumption
than ordered delivery would be asynchronous communication without any kind of ordered
delivery. Then, protocols in the language could be enacted directly over the Internet and
in highly resource-constrained settings such the IoT.

Relying on any kind of ordered delivery guarantees from the communication infrastruc-
ture naturally limits the kinds of infrastructure upon which a protocol may be used to
implement a multiagent system. More importantly, as we show below, ordering guarantees
are inadequate for ensuring the correct enactment of even simple protocols.

Prima facie, there appears to be a simple motivation for using FIFO channels between
agents, as illustrated by the enactments of Use Case 7.

Use Case 7 (Want+WillPay) buyer sends Want (some item) and then WillPay (some
amount) to seller.

Figure 12 shows two possible enactments of Use Case 7. Notice that in Figure 12b, the
messages are reordered in transit so that WillPay is received by seller before Want.

Listing 30 gives the protocol in Trace-C and Trace-F and its projections.

Listing 30: Want+WillPay in Trace-C and Trace-F along with projections.

// P r o t o c o l

Buyer Want−−−→ S e l l e r ; Buyer WillPay−−−−→ S e l l e r

// P r o j e c t i o n s
Buyer : S e l l e r ! Want ; S e l l e r ! W i l lP a y
S e l l e r : Buyer ?Want ; Buyer ? W i l l P a y

The protocol of Listing 30 cannot handle the enactment of Figure 12b because the
seller’s projection expects to receive Want before WillPay. The enactment of Figure 12b
though is ruled out if the infrastructure guarantees FIFO delivery; only the enactment of
Figure 12a is possible under FIFO. That is, in essence, there are two mutually exclusive
alternatives: (1) either declare the enactment with the reordered messages to be valid and
the protocol to be unrealizable; or, (2) assume FIFO channels between agents and declare
the protocol to be realizable. Scribble and Trace-C take the latter alternative. Trace-F
also effectively takes the latter alternative: the protocol is unrealizable under unordered
asynchrony but is realizable under FIFO (with the SR, SS, and RR interpretations).

Listing 31 gives a BSPL specification for Use Case 7. The protocol ensures that buyer
can send WillPay with some binding for ID only after Want; however, it does not constrain
when the messages should be received by seller. Thus, it supports both enactments of
Figure 12.

1378

Evaluation of Communication Protocol Languages for Engineering MAS

Buyer Seller

Want

WillPay

(a) Want received before WillPay.

Buyer Seller

W
ant

WillPay

(b) WillPay received before Want.

Figure 12: In the absence of ordering guarantees from the infrastructure, messages could
become reordered. If the infrastructure provided FIFO delivery, then the enactment of
Figure 12b would not be possible.

Listing 31: Want+WillPay in BSPL.

Want+Wi l l P ay {
role Buyer , S e l l e r
parameter out ID key , out item , out p r i c e

Buyer 7→ S e l l e r : Want [out ID , out i tem]
Buyer 7→ S e l l e r : W i l lP a y [i n ID , i n item , out p r i c e]
}

Assuming FIFO to help ensure correctness seems innocuous at first glance. However,
a FIFO communication infrastructure is infeasible in important application settings. For
example, in the Internet of Things (IoT), many of the devices lack a capability for anything
beyond packet-based communication and in particular lack the capability for buffering.
Buffering is the common way to implement FIFO; another implementation approach would
be to drop a message whose sequence number is not the next number to the one most recently
received—but that too is not practicable since it would waste resources and exacerbate the
latency of communication. In settings that demand fast interactions (e.g., for financial
transactions), the additional latency due to FIFO is an avoidable overhead.

Moreover, and crucially, the FIFO assumption faces a profound semantic problem: FIFO
turns out to be inadequate for correctness in settings of more than two parties, as Use Case 8
demonstrates.

Use Case 8 (Indirect payment) In an indirect-payment purchase protocol, after receiv-
ing an Offer, buyer first sends Accept to seller and then sends Instruct (a payment
instruction) to bank. Upon receiving Instruct, bank sends a funds Transfer to seller.

Figure 13 shows two enactments for Use Case 8. In Figure 13a, seller receives Ac-
cept before Transfer whereas in Figure 13b, seller receives Accept after Transfer. Both
enactments satisfy FIFO since at most one message is being sent on any channel. The enact-
ments illustrate that even with FIFO ordering, asynchrony makes ordering indeterminate
for protocols involving more than two agents.

1379

Chopra, Christie, & Singh

Buyer Seller Bank

Offer

Accept

Instruct

Transfer

(a) In-order delivery.

Buyer Seller Bank

Offer

A
ccept

Instruct

Transfer

(b) Out-of-order delivery.

Figure 13: FIFO communication does not guarantee consistent ordering across a multiagent
system with three or more agents. Each of these enactments respects FIFO because at most
one message occurs on each channel (between each pair of roles). In Figure 13b, whereas
for buyer, Accept occurs before Instruct, for seller, Accept occurs after Transfer, and
therefore, logically, after Instruct.

Listing 32 is an attempt to capture Use Case 8 in Trace-C. Following the reasoning
for Trace-C (Castagna et al., 2012, p. 16), this protocol is unrealizable. Specifically, the
projection for seller expects to receive Accept before Transfer and therefore does not
support the enactment in Figure 13b, which may arise despite using FIFO channels. In
summary, by ruling out the protocol, Trace-C rules out realistic message orders that are
simply the result of asynchrony. Listing 32 additionally serves as the specification of the
protocol in Trace-F. Under FIFO, no matter what sequence interpretation is chosen, the
protocol is unrealizable.

Listing 32: Indirect payment (Use Case 8) protocol and its projections in Trace-C and
Trace-F.

// I n d i r e c t payment

S e l l e r Offer−−−→ Buyer ; Buyer Accept−−−−→ S e l l e r ;

Buyer Instruct−−−−→ Bank ; Bank Transfer−−−−→ S e l l e r

// P r o j e c t i o n s
Buyer : S e l l e r ? O f f e r ; S e l l e r ! Accept ; Bank ! I n s t r u c t
S e l l e r : Buyer ! O f f e r ; Buyer ? Accept ; Bank? T r a n s f e r
Bank : Buyer ? I n s t r u c t ; S e l l e r ! T r a n s f e r

Listing 33 gives a Scribble protocol to capture Use Case 8. The Scribble projections
are analogous to the Trace-C and Trace-F projections in Listing 32. In particular, seller
cannot receive Transfer before Accept; it blocks on the reception of Accept on the channel
from buyer even when Transfer may have arrived earlier on the channel from bank. The

1380

Evaluation of Communication Protocol Languages for Engineering MAS

listing shows seller’s projection (other agents’ projections are elided). Effectively, the
projection enforces a reception order for the two messages that may be different from their
arrival order.

Listing 33: Indirect payment in Scribble.

g l o b a l p r o t o c o l I n d i r e c t P a y m e n t (r o l e Buyer , r o l e S e l l e r , r o l e Bank) {
O f f e r () from S e l l e r to Buyer ;
Accept () from Buyer to S e l l e r ;
I n s t r u c t () from Buyer to Bank ;
T r a n s f e r () from Bank to S e l l e r ;

}

l o c a l p r o t o c o l I n d i r e c t P a y m e n t S e l l e r (r o l e Buyer , r o l e S e l l e r , r o l e
Bank) {

O f f e r () to Buyer ;
Accept () from Buyer ;
T r a n s f e r () from Bank ;

}

The BSPL specification in Listing 34 specifies a protocol that supports both of the
enactments shown in Figure 13. The reason is that, in BSPL, an agent may receive a message
whenever the communication infrastructure delivers a message to the agent. Information
causality and integrity in BSPL constrain the emission of messages by an agent; message
reception is unconstrained.

Listing 34: Indirect payment protocol in BSPL.

I n d i r e c t Payment {
role Buyer , S e l l e r , Bank
parameter out ID key , out item , out p r i c e , out d e c i s i o n , out

i n s t r u c t i o n , out OK

S e l l e r 7→ Buyer : O f f e r [out ID , out item , out p r i c e]
Buyer 7→ S e l l e r : Accept [i n ID , i n item , i n p r i c e , out d e c i s i o n]
Buyer 7→ Bank : I n s t r u c t [i n ID , i n p r i c e , i n d e c i s i o n , out i n s t r u c t i o n]
Bank 7→ S e l l e r : T r a n s f e r [i n ID , i n p r i c e , i n i n s t r u c t i o n , out OK]

}

We omit HAPN from this discussion since it does not support asynchrony.

7. Mapping Back to Multiagent Systems

We now map the findings from our analysis of the protocol languages to multiagent systems.

7.1 Architecture

We identify the architectural assumptions that underlie the protocol languages discussed
above.

Figure 14 shows the architecture induced by Trace-C. Communication between agents
is via a FIFO-based asynchronous infrastructure. Recall that Trace-F has a pluggable

1381

Chopra, Christie, & Singh

communication infrastructure. Figure 14 also depicts the architecture induced by Trace-F
when FIFO is assumed.

Agent AgentProtocol

FIFO-based asynchronous communication infrastructure

Figure 14: Architecture induced by Trace-C. Communication is asynchronous via FIFO
channels. The architecture for Trace-F under FIFO-asynchrony is identical.

FIFO (delivery) though is a stronger assumption than Assumption 1, which requires only
noncreativity from the infrastructure. Without FIFO, Trace-C and Trace-F would violate
reception correctness (Constraint 2), which states that any reception of a message that is
correctly sent is correct. The Trace-C and Trace-F Want+WillPay protocol (Listing 30)
illustrates the violation. Even though buyer sends Want before WillPay, as required by
the protocol, seller receiving WillPay before Want is an incorrect enactment.

In fact, even with FIFO, both Trace-C and Trace-F violate reception correctness (Con-
straint 2). This is illustrated by the Trace-C and Trace-F Indirect Payment protocol (List-
ing 32). Asynchrony means that Transfer may be received by seller before Accept; how-
ever, that order of reception is incorrect according to the protocol.

Agent Agent

Channel
selector

Channel
selector

Protocol

Protocol

FIFO-based asynchronous communication infrastructure

Figure 15: Architecture induced by Scribble. Communication between agents is via FIFO
channels. At any time, the channel selector hides all channels from the agent except the
one on which the message expected by an agent at that time will arrive.

Scribble induces the architecture in Figure 15. As with the architecture for Trace-C
in Figure 14, it requires FIFO. If FIFO were to be dropped, Scribble, like Trace-C and
Trace-F, would violate reception correctness (Constraint 2).

Scribble treats the reception of a message as a logically blocking operation on the channel
on which the message is expected: an agent will not receive a message on any other channel
until it receives the message it is blocked on. The notion of blocking reception is instrumental
to Scribble’s ability to handle the arrival of Transfer before the arrival of Accept in the

1382

Evaluation of Communication Protocol Languages for Engineering MAS

indirect payment protocol. Specifically, seller blocks on the channel from buyer, on
which Accept is expected; in the meantime, if Transfer arrives on the channel from the
banker, it is ignored and thereby not considered received.

In essence, Scribble reorders message arrivals to suit the agent. Such reordering is incom-
patible with asynchrony; specifically, it is a violation of anytime reception (Constraint 4).
Scribble attempts to disguise the violation by treating the reception of a message as the
result of an agent’s decision to receive the message, distinct from the event of the arrival
of the message. Architecturally, the reordering across channels is captured in the channel
selector component in Figure 15 that mediates between the FIFO infrastructure and an
agent and hides all channels from the agent except the one on which it is expecting to
receive a message.

If the idea of reordering messages received on different channels were dropped, then even
with FIFO, Scribble would violate reception correctness (Constraint 2) (just as Trace-C and
Trace-F do).

By contrast, Figure 1 captures the architecture induced by BSPL. A multiagent system
based on BSPL satisfies all the constraints given in Section 1. In particular, BSPL works
with asynchronous communication but does not require FIFO. Given any safe BSPL proto-
col, any message sent according to the protocol is also received correctly regardless of when
that reception occurs relative to other receptions.

We omit HAPN from this discussion because HAPN does not specify the communication
assumptions under which a protocol could be correctly enacted by agents, making it difficult
to imagine it architecturally.

For completeness, we comment on some recent programming and architectural frame-
works for MAS. In JaCaMo (Boissier, Bordini, Hübner, Ricci, & Santi, 2013), agents co-
ordinate their computations by shared artifacts—components that provide “functionalities
and services” (p. 750) for agents. JaCaMo can be used to realize a MAS that satisfies the
canonical architectural style of Figure 1—or any of the others for that matter. Specifically,
messaging between agents could be realized using artifacts. The infrastructure can avoid
centralization by, for example, using a dedicated artifact for each channel and deploying
the artifacts across the system. The sender of a message would send it to the channel
artifact and the receiver would pick it from that artifact. Indeed Baldoni, Baroglio, Ca-
puzzimati, and Micalizio (2019) implement commitment-based coordination between agent
by representing commitments in a shared JaCaMo artifact.

Jason (Bordini, Hübner, & Wooldridge, 2007), the language in which agents are pro-
grammed in JaCaMo, supports specifying an agent’s reasoning about incoming and outgo-
ing messages. However, Jason’s programming model does not include protocols of the sort
motivated here.

ReST (Vinoski, 2008) is an architectural style for Web applications that has been advo-
cated as a basis for engineering MAS (Ciortea, Mayer, & Michahelles, 2018). An important
ReST constraint is that an application’s state is fully captured in the representation of the
relevant Web resources (as identified by URIs) on the server. The architectural style that
BSPL adopts is analogous to ReST but in a more general peer-peer setting (Singh, 2011b).

1383

Chopra, Christie, & Singh

7.2 Principles for MAS

We present some broad principles that are relevant for MAS but are violated by several of
the evaluated protocol languages.

Principle 1 (No unitary perspective) A protocol should avoid specifying computations
(enactments) from a unitary perspective.

Principle 1 follows from the fact that there is no valid unitary perspective in a MAS
(Gasser, 1991; Hewitt et al., 1973); the only perspectives that count are those of the agents
in the MAS. Protocols that specify computations from a unitary perspective are either (1)
unrealizable by agents acting based solely on their local knowledge or (2) unduly restrict
concurrency.

Scribble, Trace-C, Trace-F, and HAPN violate Principle 1. In each of those languages,
a protocol’s computations are given from a unitary perspective in that each computation
is a sequence of messaging events. Scribble, Trace-C, and Trace-F support asynchrony and
each describes how to derive the local perspective, that is, the projection, for each agent.
In the Scribble, Trace-C, and Trace-F approaches, extracting the projections relies on a
custom (and highly complicated) theory of causality. Despite all the machinery that goes
into specifying the semantics of protocols, projections, and realizability in these approaches,
as we saw above, they fail to model important aspects of the simple and realistic uses cases
described above.

The Scribble, Trace-C, and Trace-F protocols for Flexible Purchase (in Section 4.1)
highlight the pitfalls of the unitary perspective. From the unitary perspective, as Listing 10
illustrates, it is a clear choice between either Payment first or Shipment first. However,
when seller and buyer exercise their respective choices locally, that is, on the basis of
their projections, a deadlock may obtain. This leads to the protocols being ruled out as
unrealizable.

Protocols in BSPL satisfies Principle 1: The computations of a BSPL protocol are given
directly in terms of agent perspectives.

Any protocol is a “global” specification for a MAS in the sense that it specifies the
(public) computations of the entire MAS. And every protocol conceptually yields a “local”
specification, or projection, for every role in the protocol. Such a global-local distinction is
perfectly reasonable and not in conflict with Principle 1. Indeed, the global-local distinction
applies to BSPL as well: A BSPL protocol is a global specification in the foregoing sense
and a projection for a role in the protocol is the set of all message specifications referenced
by the protocol where the role is either sender or receiver. What Principle 1 rules out is
giving the computations of a global protocol from a unitary perspective.

In the discussion of the following principles, Trace-F stands for Trace-F under FIFO
asynchrony. We can ignore Trace-F under other communication models for two reasons.
First, under one of those models, namely, unordered asynchrony, Trace-F is too weak a
language—it is unable to capture a protocol as simple as Want+WillPay (Use Case 7).
Second, all the remaining communication models are strictly stronger than FIFO and the
conclusions we draw for Trace-F under FIFO asynchrony are valid for them as well.

Principle 2 (Noninterference) A protocol must not prevent legitimate agent reasoning.

1384

Evaluation of Communication Protocol Languages for Engineering MAS

An agent may want to process a message as soon as the message has arrived. The
agent’s motivations for doing so need not concern us since the agents are autonomous and
may adopt any preferences arbitrarily in light of their autonomy. However, Scribble, Trace-
C, and Trace-F, in requiring messages to be received in a certain other relative to other
messages, rule out such agents and, therefore, violate Principle 2.

For example, in Use Case 7, seller may want to process the WillPay message even if
Want has not yet been received. In Use Case 8, seller may want to process the Transfer
message even if Accept has not been received. The Scribble, Trace-C, and Trace-F protocols
rule out this possibility. BSPL, by contrast, satisfies Principle 2: the only constraints it
imposes on agents have to do with information causality and information integrity. Indeed,
the BSPL protocols for Use Case 7 and Use Case 8 allow seller to process WillPay before
Want is received and Transfer before Accept is received, respectively.

Principle 3 (End-to-end principle for protocols) Correct protocol enactment must not
rely on message ordering guarantees from the communication infrastructure since the ap-
propriate constraints are to be implemented and checked in agents.

Scribble, Trace-C, and Trace-F violate Principle 3 because they require a FIFO commu-
nication infrastructure. BSPL satisfies Principle 3 because it requires no ordering guarantees
from the infrastructure.

Principle 3 derives from the end-to-end argument for system design (Saltzer et al., 1984),
which originated in the early days of computer networking in the 1960s. In its networking
form, the end-to-end principle states that functionality that makes sense at a higher (“appli-
cation”) layer should not be replicated at a lower (“infrastructure”) layer. The motivation
is that if some function of a networked application can be fully and correctly implemented
only at the application’s end points standing above a communication infrastructure, then
supporting that function partially in the infrastructure (1) is not adequate (still requires
the application to work to achieve that function); (2) imposes a cost on all internal nodes;
and (3) restricts the functioning of application end points that are not concerned with
that function. We can think of FIFO as a “function” in this case—notably, Saltzer et al.
specifically discuss the disadvantages of adopting a FIFO delivery infrastructure; such an
infrastructure is also not assumed in the actor model (Agha, 1986).

A protocol can be fully and correctly implemented only by the agents who instantiate
it. Relying on the infrastructure for correctness is of little benefit. For explanation, let
us consider emissions and receptions, the two kinds of observations that a protocol may
constrain. An agent must ensure the correctness of its emissions because emissions are
driven by an agent’s internal decision-making. For the correctness of receptions, an agent
may rely on ordering guarantees from the infrastructure. However, such guarantees may
be insufficient for correctness. For example, as we saw in the modeling of indirect payment
(Use Case 8), Scribble, Trace-C, and Trace-F’s reliance on FIFO turns out be insufficient
for correctness.

In addition to being insufficient, infrastructure ordering guarantees may be excessive
since they constrain even messages that are unrelated in terms of meaning but merely con-
tingently happen to occur together. Listing 35 is illustrative of how infrastructure ordering
may be excessive. The listing specifies two protocols Just-Want and Hello-World. Each
protocol has a single message from buyer to seller; the two messages do not have any

1385

Chopra, Christie, & Singh

parameters in common, signifying that there is no causal dependency between them. Even
so, a FIFO infrastructure will necessarily deliver the messages to seller in the order in
which they are sent by buyer.

Listing 35: BSPL protocols that illustrate that ordering guarantees provided by the infras-
tructure may be excessive from the point of view of coordination. Although the messages
in the two protocols are unrelated, if the infrastructure were FIFO, the messages would
necessarily be delivered in the order sent.

Just−Want {
role Buyer , S e l l e r
parameter out ID key , out i tem

Buyer 7→ S e l l e r : Want [out ID , out i tem]
}

H e l l o−World {
role Buyer , S e l l e r
parameter out gID key , out u t t e r a n c e

Buyer 7→ S e l l e r : G r e e t i n g [out gID , out u t t e r a n c e]
}

Finally, consider that ordering guarantees from the infrastructure come with a heavy
price: increased complexity and overhead in the architecture, restrictions on the settings in
which a multiagent application may be deployed, and interference with higher-level agent
reasoning (as we discussed in the context of Principle 2).

8. Discussion

Our contribution in this paper is an evaluation of select modern, formal, and prominent
languages for specifying protocols. Our evaluation criteria have to do with representations
and operational assumptions. Our evaluation is concrete and comparative, driven by the
specification of protocols in the selected languages, followed by an analysis of the specifi-
cations. The Scribble, Trace-F, and BSPL protocols have been verified in their respective
tooling. We understand verification tools for Trace-C and HAPN are not available.

Table 1 summarizes our findings. For reasons given above, Trace-F stands for Trace-
F under FIFO-asynchrony. Our evaluation shows that BSPL is able to model the use
cases considered in all their richness despite—or because of—weaker guarantees from the
communication infrastructure.

We discussed how Scribble, Trace-C, and Trace-F violate the canonical MAS architec-
tural style presented in Section 1. Scribble, Trace-C, and Trace-F reorder messages to fit
an agent’s perspective. BSPL works with unordered asynchrony; the MAS architecture
induced by BSPL is compatible with the canonical architectural style.

Information (as captured by parameter bindings) in BSPL are immutable. For MAS
where agents communicate asynchronously, the immutability of information simplifies en-
suring correctness even though the participants make observations in different orders—as
expressed by Chandy and Lamport (1985).

1386

Evaluation of Communication Protocol Languages for Engineering MAS

Table 1: Summary of evaluation. The table indicates for each language, whether it fully
satisfies (Yes), partially satisfies (Partial), or does not satisfy (No) each criterion.

Criterion Scribble Trace-C Trace-F HAPN BSPL

Information
Instances Partial Partial Partial Partial Yes
Integrity No No Partial Partial Yes
Social meaning Partial Partial Partial Partial Yes

Flexibility
Concurrency No No No No Yes
Extensibility No No No No Yes

Operational environment
Asynchrony Yes Yes Yes No Yes
Unordered delivery No No No No Yes

The immutability of information, however, calls for a different way of specifying inter-
actions. Specifically, to achieve the effect of updates, a BSPL protocol must incorporate a
composite key such that a part of the key reflects the version ID, thereby preventing the
versions from interfering with each other. To capture finality, the protocol must incorporate
a message that conflicts with (and thus prevents) subsequent versions.

In this way, there is a tradeoff between (1) adopting a new way of modeling interac-
tion to accommodate realistic communication assumptions (asynchrony), and (2) making
unrealistic assumptions (synchrony) to support a familiar programming style (mutability).
Immutability in BSPL contrasts most clearly with HAPN, which explicitly supports both
bind and unbind operations on parameters and therefore supports rebinding a parameter.

We set out to evaluate protocol languages from the standpoint of building decentral-
ized multiagent systems. An informally but widely held attitude in the multiagent systems
research community (and in related external subcommunities) is that existing approaches
are adequate for tackling autonomy and flexibility as needed in decentralized settings. Ac-
cordingly, researchers have taken support for decentralization as a done deal and gone on to
tackle challenges such as tool support and ease of use—which are no doubt crucial challenges.
However, as we have shown in this paper, the more fundamental challenges of decentral-
ization have largely not been overcome by languages of the established paradigms. One
language from a new, information-oriented paradigm does tackle those challenges. Whether
that or another, as yet unknown, paradigm prevails remains to be seen. But what we can
conclude from this exercise is that a new way of thinking is needed to properly accommodate
decentralization.

8.1 Other Criteria for Evaluating Protocol Languages

The criteria by which we study protocol languages in this paper are not exhaustive. Winikoff
et al. (2018) compare several protocol languages, including HAPN and BSPL, for orthogonal
criteria such as precision, simplicity, graphical representation, and so on. They note that
whereas HAPN supports multiple agents playing a role, BSPL does not (Splee (Chopra et

1387

Chopra, Christie, & Singh

al., 2017), an extension of BSPL, though supports this feature). Winikoff et al. also report on
their personal experience of encoding protocols in BSPL. They observe that BSPL is “more
of a core calculus than a usable notation.” Recent work on meaning-based languages that
compile into BSPL appears to supports the idea that BSPL represents a core calculus (Singh
& Chopra, 2020). Winikoff et al. also report an extensive user study that evaluated HAPN,
AUML, and statecharts for ease of reading, understanding, and writing specifications.

Ancona, Ferrando, and Mascardi (2018) include BSPL, HAPN, and trace expressions
in an evaluation of MAS approaches for supporting remote patient monitoring. Although
their ten criteria are diverse, a predominant thrust is tooling, e.g., IDE support, static and
runtime verification, testing, code generation, and so on. In their evaluation, trace expres-
sions offer a clear advantage over both HAPN and BSPL in supporting self-adaptation. A
criterion where both trace expressions and HAPN shine over BSPL is that they come with
IDE support whereas BSPL does not.

8.2 Directions

With respect to future evaluations of protocol languages, two directions (with a more con-
tingent flavor) stand out, especially since they are informed by what would be perceived as
broad strengths of the languages that BSPL outperformed in the current evaluation. One,
perform a comparative study of protocol languages for the kinds of properties that can be
verified for both protocols and endpoints. Notably, verification (both static and runtime) has
been a primary motivation in the development of Scribble and the trace-based approaches
and both benefit from deep connections with programming language theory. Two, perform
a comparative study of the programming models supported by the languages in terms of
how they make it easier to write correct programs. Scribble, notably, has implementations
in several popular languages such as Java and Python.

A more theoretical direction would be to determine the fragment of a protocol language
that can be encoded in another with the purpose of formally establishing their relative
expressiveness. We hope that the evaluation presented in this paper, bearing as it does
solely on representational issues, will help inform such an effort.

Acknowledgments

Raymond Hu, Viviana Mascardi, and Angelo Ferrando provided extensive and helpful com-
mentary on earlier drafts of this paper. The (anonymous) reviewers also provided extensive
and helpful comments. Ulle Endriss, as the handling editor, facilitated discussion with
reviewers. We are grateful to them all.

Christie and Chopra were supported by EPSRC grant EP/N027965/1 (Turtles). Christie
and Singh were partially supported by the National Science Foundation under grant IIS-
1908374.

References

Agha, G. A. (1986). Actors. Cambridge, Massachusetts: MIT Press.
Alechina, N., Halpern, J. Y., Kash, I. A., & Logan, B. (2018). Incentive-compatible

mechanisms for norm monitoring in open multi-agent systems. Journal of Artificial

1388

Evaluation of Communication Protocol Languages for Engineering MAS

Intelligence Research, 62 , 433–458.
AMQP. (2014). Advanced Message Queuing Protocol. (http://www.amqp.org)
Ancona, D., Ferrando, A., & Mascardi, V. (2017). Parametric runtime verification of mul-

tiagent systems. In Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS) (pp. 1457–1459). IFAAMAS.

Ancona, D., Ferrando, A., & Mascardi, V. (2018). Improving flexibility and dependability
of remote patient monitoring with agent-oriented approaches. International Journal
on Agent-Oriented Software Engineering , 6 (3/4), 402–442.

Artikis, A., Sergot, M. J., & Pitt, J. V. (2009, January). Specifying norm-governed com-
putational societies. ACM Transactions on Computational Logic, 10 (1), 1:1–1:42.

Baldoni, M., Baroglio, C., Capuzzimati, F., & Micalizio, R. (2019). Process coordination
with business artifacts and multiagent technologies. Journal on Data Semantics, 8 (2),
99–112.

Baldoni, M., Baroglio, C., Marengo, E., & Patti, V. (2013). Constitutive and regulative
specifications of commitment protocols: A decoupled approach. ACM Transactions
on Intelligent Systems and Technologies, 4 (2), 22:1–22:25.

Baldoni, M., Baroglio, C., Martelli, A., & Patti, V. (2006). A priori conformance verification
for guaranteeing interoperability in open environments. In Proceedings of the 4th
International Conference on Service-Oriented Computing (ICSOC) (Vol. 4294, pp.
339–351). Chicago: Springer.

Banihashemi, B., De Giacomo, G., & Lespérance, Y. (2016). Online agent supervision in the
situation calculus. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence (IJCAI) (pp. 922–928).

Banihashemi, B., De Giacomo, G., & Lespérance, Y. (2018). Hierarchical agent supervi-
sion. In Proceedings of the 17th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (pp. 1432–1440). IFAAMAS.

Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing Multi-Agent Systems
with JADE. Wiley-Blackwell.

Bentahar, J., Moulin, B., Meyer, J.-J. C., & Chaib-draa, B. (2004). A logical model for
commitment and argument network for agent communication. In Proceedings of the
3rd International Conference on Autonomous Agents and Multiagent Systems (p. 792-
799).

Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., & Santi, A. (2013, June). Multi-agent
oriented programming with JaCaMo. Science of Computer Programming , 78 (6), 747–
761.

Bordini, R. H., Hübner, J. F., & Wooldridge, M. J. (2007). Programming Multi-Agent
Systems in AgentSpeak using Jason. Chichester, United Kingdom: John Wiley &
Sons.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004, May). Tro-
pos: An agent-oriented software development methodology. Journal of Autonomous
Agents and Multi-Agent Systems (JAAMAS), 8 (3), 203–236.

Castagna, G., Dezani-Ciancaglini, M., & Padovani, L. (2012, March). On global types and
multi-party sessions. Logical Methods in Computer Science, 8 (1), 1–45.

Chandy, K. M., & Lamport, L. (1985). Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3 (1), 63–75.

1389

Chopra, Christie, & Singh

Chopra, A. K., Christie, S. H., & Singh, M. P. (2017, May). Splee: A declarative
information-based language for multiagent interaction protocols. In Proceedings of
the 16th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS) (pp. 1054–1063). São Paulo: IFAAMAS. doi: 10.5555/3091125.3091274

Chopra, A. K., & Singh, M. P. (2009, May). Multiagent commitment alignment. In Proceed-
ings of the 8th International Conference on Autonomous Agents and MultiAgent Sys-
tems (AAMAS) (pp. 937–944). Budapest: IFAAMAS. doi: 10.5555/1558109.1558143

Chopra, A. K., & Singh, M. P. (2015). Cupid: Commitments in relational algebra. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence (pp. 2052–2059).

Chopra, A. K., & Singh, M. P. (2016). From social machines to social protocols: Soft-
ware engineering foundations for sociotechnical systems. In Proceedings of the 25th
International World Wide Web Conference (pp. 903–914). Montréal: ACM.

Ciortea, A., Mayer, S., & Michahelles, F. (2018, July). Repurposing manufacturing lines
on the fly with multi-agent systems for the Web of Things. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS)
(pp. 813–822). Stockholm: IFAAMAS.

Dastani, M., van der Torre, L. W. N., & Yorke-Smith, N. (2017, March). Commitments and
interaction norms in organisations. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS), 31 (2), 207–249. doi: 10.1007/s10458-015-9321-5

Demangeon, R., Honda, K., Hu, R., Neykova, R., & Yoshida, N. (2015). Practical inter-
ruptible conversations: Distributed dynamic verification with multiparty session types
and Python. Formal Methods in System Design, 46 (3), 197–225.

Desai, N., & Singh, M. P. (2008a, July). On the enactability of business protocols. In
Proceedings of the 23rd Conference on Artificial Intelligence (AAAI) (pp. 1126–1131).
Chicago: AAAI Press.

Desai, N., & Singh, M. P. (2008b, July). On the enactability of business protocols. In
Proceedings of the 23rd Conference on Artificial Intelligence (AAAI) (pp. 1126–1131).
Menlo Park: AAAI Press.

d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J. A., & Sierra, C. (2012, July).
Communicating open systems. Artificial Intelligence, 186 , 38–94.

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning About Knowledge.
Cambridge, Massachusetts: MIT Press.

Ferrando, A., Ancona, D., & Mascardi, V. (2017). Decentralizing MAS monitoring with
DecAMon. In Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017 (pp. 239–248).
Retrieved from http://dl.acm.org/citation.cfm?id=3091164

Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., & Mascardi, V. (2019). On en-
actability of agent interaction protocols: Towards a unified approach. In Proceedings
of the 7th International Workshop on Engineering Multi-agent Systems (Vol. 12058,
pp. 43–63). Springer.

FIPA. (2002). FIPA Agent Communication Language Specifications. (FIPA: The Founda-
tion for Intelligent Physical Agents, http://www.fipa.org/repository/aclspecs

.html)
FIPA. (2003). FIPA Interaction Protocol Specifications. (FIPA: The Foundation for Intel-

ligent Physical Agents, http://www.fipa.org/repository/ips.html)

1390

Evaluation of Communication Protocol Languages for Engineering MAS

Fornara, N., & Colombetti, M. (2002, July). Operational specification of a commitment-
based agent communication language. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS) (pp. 535–542).
Melbourne: ACM Press.

Gasser, L. (1991, January). Social conceptions of knowledge and action: DAI foundations
and open systems semantics. Artificial Intelligence, 47 (1–3), 107–138.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming , 8 , 231–274.

Hewitt, C. (1977, June). Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8 (3), 323–364.

Hewitt, C. (1991). Open information systems semantics for distributed artificial intelligence.
Artificial Intelligence, 47 , 79–106.

Hewitt, C., Bishop, P., & Steiger, R. (1973). A universal modular actor formalism for
Artificial Intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence (IJCAI) (pp. 235–245). Stanford: William Kaufmann.

Honda, K., Yoshida, N., & Carbone, M. (2016, March). Multiparty asynchronous session
types. Journal of the ACM , 63 (1), 9:1–9:67.

ITU. (2004, April). Message Sequence Chart (MSC). (http://www.itu.int/ITU-T/2005
-2008/com17/languages/Z120.pdf)

King, T. C., Günay, A., Chopra, A. K., & Singh, M. P. (2017). Tosca: Operationalizing
commitments over information protocols. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI) (pp. 256–264).

Ladkin, P. B., & Leue, S. (1995). Interpreting message flow graphs. Formal Aspects of
Computing , 7 (5), 473–509.

Mascardi, V., & Ferrando, A. (2019, April). Personal communication.
Meneguzzi, F., Magnaguagno, M. C., Singh, M. P., Telang, P. R., & Yorke-Smith, N. (2018,

July). Goco: Planning expressive commitment protocols. Journal of Autonomous
Agents and Multi-Agent Systems (JAAMAS), 32 (4), 459–502. doi: 10.1007/s10458
-018-9385-0

OASIS. (2014, October). MQTT 3.1.1 Specification Document. (OASIS Standard previously
known as the Message Queuing and Telemetry Transport; http://docs.oasis-open
.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf)

Odell, J., Parunak, H. V. D., & Bauer, B. (2001). Representing agent interaction protocols
in UML. In Proceedings of the 1st International Workshop on Agent-Oriented Software
Engineering (AOSE 2000) (Vol. 1957, pp. 121–140). Toronto: Springer.

Padget, J., Vos, M. D., & Page, C. A. (2018). Deontic sensors. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence (pp. 475–481). Stockholm.

Padgham, L., & Winikoff, M. (2005). Prometheus: A practical agent-oriented methodology.
In B. Henderson-Sellers & P. Giorgini (Eds.), Agent-Oriented Methodologies (pp. 107–
135). Hershey, PA: Idea Group.

Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984, November). End-to-end arguments
in system design. ACM Transactions on Computer Systems, 2 (4), 277–288. doi:
10.1145/357401.357402

Scribble. (2018, January). Scribble tools. (http://www.scribble.org)
Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives on an Emerging

1391

Chopra, Christie, & Singh

Discipline. Upper Saddle River, NJ: Prentice-Hall.
Shelby, Z., Hartke, K., & Bormann, C. (2014, June). The Constrained Application Protocol

(CoAP) (Tech. Rep. No. RFC 7252). Fremont, California: Internet Engineering Task
Force (IETF). (Proposed standard; https://tools.ietf.org/html/rfc7252)

Singh, M. P. (1998, December). Agent communication languages: Rethinking the principles.
IEEE Computer , 31 (12), 40–47. doi: 10.1109/2.735849

Singh, M. P. (2011a, May). Information-driven interaction-oriented programming: BSPL,
the Blindingly Simple Protocol Language. In Proceedings of the 10th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS) (pp. 491–498).
Taipei: IFAAMAS. doi: 10.5555/2031678.2031687

Singh, M. P. (2011b, July). LoST: Local State Transfer—An architectural style for the
distributed enactment of business protocols. In Proceedings of the 9th IEEE Inter-
national Conference on Web Services (ICWS) (pp. 57–64). Washington, DC: IEEE
Computer Society. doi: 10.1109/ICWS.2011.48

Singh, M. P. (2012, June). Semantics and verification of information-based protocols. In
Proceedings of the 11th International Conference on Autonomous Agents and Mul-
tiAgent Systems (AAMAS) (pp. 1149–1156). Valencia, Spain: IFAAMAS. doi:
10.5555/2343776.2343861

Singh, M. P. (2013, December). Norms as a basis for governing sociotechnical systems.
ACM Transactions on Intelligent Systems and Technology (TIST), 5 (1), 21:1–21:23.
doi: 10.1145/2542182.2542203

Singh, M. P., & Chopra, A. K. (2020). Clouseau: Generating communication protocols from
commitments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(pp. 7244–7252). New York: AAAI Press.

Singh, M. P., & Huhns, M. N. (2005). Service-Oriented Computing: Semantics, Processes,
Agents. Chichester, United Kingdom: John Wiley & Sons. doi: 10.1002/0470091509

Telang, P. R., Singh, M. P., & Yorke-Smith, N. (2019, May). A coupled operational
semantics for goals and commitments. Journal of Artificial Intelligence Research
(JAIR), 65 , 31–85. doi: 10.1613/jair.1.11494

Vieira, R., Moreira, Á. F., Wooldridge, M. J., & Bordini, R. H. (2007). On the formal
semantics of speech-act based communication in an agent-oriented programming lan-
guage. Journal of Artificial Intelligence Research, 29 , 221–267.

Vinoski, S. (2008, November). RESTful web services development checklist. IEEE Internet
Computing (IC), 12 (6), 95–96.

Winikoff, M., Liu, W., & Harland, J. (2005). Enhancing commitment machines. In Proceed-
ings of the 2nd International Workshop on Declarative Agent Languages and Tech-
nologies (DALT) (Vol. 3476, pp. 198–220). Berlin: Springer.

Winikoff, M., Yadav, N., & Padgham, L. (2018, January). A new Hierarchical Agent Proto-
col Notation. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS),
32 (1), 59–133.

XMPP. (2015). XMPP Internet of Things. XMPP Standards Foundation; http://www

.xmpp-iot.org/.
Yolum, P., & Singh, M. P. (2002, July). Flexible protocol specification and execution:

Applying event calculus planning using commitments. In Proceedings of the 1st Inter-
national Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS)

1392

Evaluation of Communication Protocol Languages for Engineering MAS

(pp. 527–534). Bologna: ACM Press. doi: 10.1145/544862.544867
Yoshida, N., Hu, R., Neykova, R., & Ng, N. (2013, August). The Scribble protocol language.

In Proceedings of the 8th International Symposium on Trustworthy Global Computing
(TGC), Revised Selected Papers (pp. 22–41). Buenos Aires: Springer.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003, July). Developing multia-
gent systems: The Gaia methodology. ACM Transactions on Software Engineering
Methodology , 12 (3), 317–370.

1393

