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Abstract

We study liquid democracy, a collective decision making paradigm that allows voters to
transitively delegate their votes, through an algorithmic lens. In our model, there are two
alternatives, one correct and one incorrect, and we are interested in the probability that the
majority opinion is correct. Our main question is whether there exist delegation mechanisms
that are guaranteed to outperform direct voting, in the sense of being always at least as
likely, and sometimes more likely, to make a correct decision. Even though we assume that
voters can only delegate their votes to better-informed voters, we show that local delegation
mechanisms, which only take the local neighborhood of each voter as input (and, arguably,
capture the spirit of liquid democracy), cannot provide the foregoing guarantee. By contrast,
we design a non-local delegation mechanism that does provably outperform direct voting
under mild assumptions about voters.

1. Introduction

Liquid democracy is a modern approach to voting in which voters can either vote directly or
delegate their vote to other voters. In contrast to the classic proxy voting paradigm (Miller,
1969), the key innovation underlying liquid democracy is that proxies — who were selected
by voters to vote on their behalf — may delegate their own vote to a proxy, and, in doing
so, further delegate all the votes entrusted to them. Put another way (to justify the liquid
metaphor), votes may freely flow through the directed delegation graph until they reach a
sink, that is, a vertex with outdegree 0. When the election takes place, each voter who did
not delegate her vote is weighted by the total number of votes delegated to him, including
her own. In recent years, this approach has been implemented and used on a large scale,
notably by eclectic political parties such as the German Pirate Party (Piratenpartei) and
Sweden’s Demoex (short for Democracy Experiment).

One reason for the success of liquid democracy is that it is seen as a practical compromise
between direct democracy (voters vote directly on every issue) and representative democracy,
and, in a sense, is the best of both worlds. Direct democracy is particularly problematic, as
nicely articulated by Green-Armytage (2015):

c©2021 AI Access Foundation. All rights reserved.



Kahng, Mackenzie, & Procaccia

“Even if it were possible for every citizen to learn everything they could possibly
know about every political issue, people who did this would be able to do little
else, and massive amounts of time would be wasted in duplicated effort. Or, if
every citizen voted but most people did not take the time to learn about the
issues, the results would be highly random and/or highly sensitive to overly
simplistic public relations campaigns.”

By contrast, under liquid democracy, voters who did not invest an effort to learn about the
issue at hand (presumably, most voters) would ideally delegate their votes to well-informed
voters. This should intuitively lead to collective decisions that are less random, and more
likely to be correct, than those that would be made under direct democracy.

Our goal is to rigorously investigate the intuition that liquid democracy “outperforms”
direct democracy from an algorithmic viewpoint. Indeed, we are interested in delegation
mechanisms, which decide how votes should be delegated based on how relatively informed
voters are, and possibly even based on the structure of an underlying social network. Our
main research question is:

Are there delegation mechanisms that are guaranteed to yield more accurate
decisions than direct voting?

1.1 Overview of the Model and Results

We focus on a (common) setting where a decision is to be made on a binary issue, i.e., one
of two alternatives must be selected (see Section 6 for a discussion of the case of more than
two alternatives). To model the idea of accuracy, we assume that one alternative is correct,
and the other is incorrect. Each voter i has a competence level pi, which is the probability
he would vote correctly if he cast a ballot himself.

To motivate this modeling assumption, consider the case of a country deciding between two
potential economic policies with the goal of making the country as a whole prosperous. If
we pick a measure by which to evaluate these policies (e.g., GDP in ten years), one policy
will be objectively better than the other.

Voters may delegate their votes to neighbors in a social network, represented as a directed
graph. At the heart of our model is the assumption that voters may only delegate their votes
to strictly more competent neighbors (and, therefore, there can be no delegation cycles).
Specifically, we say that voter i approves voter j if pj > pi+α, for a parameter α ≥ 0; voters
may only delegate to approved neighbors. In defense of this strong assumption, we note that
the first of our two theorems — arguably the more interesting of the two — is an impossibility
result, so assuming that delegation necessarily boosts accuracy only strengthens it.

As mentioned above, we are interested in studying delegation mechanisms, which decide how
votes are delegated (possibly randomly), based on the underlying graph and the approval
relation between voters. We pay special attention to local delegation mechanisms, which
make delegation decisions based only on the neighborhood of each voter. Local mechanisms
capture the spirit of liquid democracy in that voters make independent delegation deci-
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sions based solely on their own viewpoint, without guidance from a central authority. By
contrast, non-local mechanisms intuitively require a centralized algorithm that coordinates
delegations.

Recall that our goal is to design delegation mechanisms that are guaranteed to be more
accurate than direct voting. To this end, we define the gain of a mechanism with respect to
a given instance as the difference between the probability that it makes a correct decision
(when votes are delegated and weighted majority voting is applied) and the probability
that direct voting makes a correct decision on the same instance. The desired guarantee
can be formalized via two properties of mechanisms: positive gain (PG), which means that
there are some sufficiently large instances in which the mechanism has positive gain that is
bounded away from 0; and do no harm (DNH), which requires that the loss (negative gain)
of the mechanism goes to 0 as the number of voters grows. These properties are both weak;
in particular, PG is a truly minimal requirement which, in a sense, mainly rules out direct
voting itself as a delegation mechanism.

In Section 4, we study local delegation mechanisms and establish an impossibility result:
such mechanisms cannot satisfy both PG and DNH. In a nutshell, the idea is that for
any local delegation mechanism that satisfies PG we can construct an instance where few
voters amass a large number of delegated votes, that is, delegation introduces significant
correlation between the votes. The instance is such that, when the high-weight voters are
incorrect, the weighted majority vote is incorrect; yet direct voting is very likely to lead to
a correct decision.

In Section 5, we show that non-local mechanisms can circumvent the foregoing impossibility.
Specifically, we design a delegation mechanism, GreedyCap, that satisfies the PG and DNH
properties under mild assumptions about voter competencies. It does so by imposing a cap
on the number of votes that can be delegated to any particular voter, thereby avoiding
excessive correlation.

In conclusion, our work highlights the significance, and potential dangers, of delegating
many votes to few voters. Importantly, there is evidence that this can happen in practice. For
example, Der Spiegel reported1 that one member of the German Pirate Party, a linguistics
professor at the University of Bamberg, amassed so much weight that his “vote was like a
decree.” Although recent work by Kling et al. (2015) highlights the fact that, in practice,
high-weight voters vote reasonably and do not abuse their power, our results corroborate
the intuition that this situation should ideally be avoided.

2. Related Work

We first present related work that appeared before the publication of the conference version
of this paper (Kahng, Mackenzie, & Procaccia, 2018), then discuss papers that appeared
subsequently.

1. http://www.spiegel.de/international/germany/liquid-democracy-web-platform-makes-professor-most-

powerful-pirate-a-818683.html
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2.1 Previous Related Work

There is a significant body of work on delegative democracy and proxy voting (Miller, 1969;
Tullock, 1992; Alger, 2006). In particular, Cohensius et al. (2017) study a model where
voters’ positions on an issue are points in a metric space. In their version of direct democracy,
a small subset of active voters report their positions, and an aggregation method (such as
the median or mean when the metric space is the real line) outputs a single position. Under
proxy voting, each inactive voter delegates her vote to the closest active voter. Cohensius et
al. identify conditions under which proxy voting gives a more accurate outcome than direct
voting, where the measure is proximity of the outcome to the aggregation method applied
to all voters’ positions.

To the best of our knowledge, there are only two papers prior to the initial publication
of our work that provide theoretical analyses of liquid democracy. The first is a paper by
Green-Armytage (2015). He considers a setting where, similarly to Cohensius et al. (2017),
voters are identified with points on the real line, but in his model votes are noisy estimates
of those positions. Green-Armytage defines the expressive loss of a voter as the squared
distance between her vote and her position and proves that delegation (even transitive
delegation) can only decrease the expressive loss in his model. He also defines systematic
loss as the squared distance between the median vote and the median position, but discusses
this type of loss only informally (interestingly, he does explicitly mention that correlation
can lead to systematic loss in his model).

The second paper is by Christoff and Grossi (2017). They introduce a model of liquid
democracy based on the theory of binary aggregation (i.e., their model has a mathematical
logic flavor). Their results focus on two problems: the possibility of delegation cycles, and
logical inconsistencies that can arise when opinions on interdependent propositions are
expressed through proxies. Neither of these issues appears in our model (although the need
to avoid cycles is certainly a concern in practice).

Further afield, there is a rich body of work in computational social choice (Brandt, Conitzer,
Endriss, Lang, & Procaccia, 2016) on the aggregation of objective opinions. As in our
work, the high-level goal is to pinpoint the correct outcome based on noisy votes. However,
previous work in this area does not encompass any notion of vote delegation.

One seminal result in the aggregation of objective opinions — in particular, when deciding
between two options, one of which is correct and the other of which is incorrect — is the
Condorcet Jury Theorem (Grofman, Owen, & Feld, 1983), which states that if voters are
independent and each have probability greater than 1/2 of choosing the correct outcome,
then the probability of choosing correctly approaches one as the size of the electorate in-
creases. Note that the Condorcet Jury Theorem is directly applicable to the setting of direct
democracy, but not immediately to the (weighted) setting of liquid democracy.
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2.2 Subsequent Related Work

Following the initial publication of our work in AAAI 2018, several papers have explored
the theoretical foundations of liquid democracy.

Notably, a paper by Gölz et al. (2018) studies the question of reducing the maximum weight
of any voter in liquid democracy systems by permitting voters to specify multiple delegation
options and then allowing a mechanism to resolve these delegations. Under a probabilistic
model of delegation behavior based on preferential attachment, they establish a doubly-
exponential asymptotic separation between the expected maximum weight of a voter in
the single delegation and multiple delegation settings. Furthermore, they present empirical
results that corroborate the large reduction in maximum weight for a realistic number of
voters. In contrast to the present paper, their setting does not assume the existence of an
objective ground truth, and they do not consider the probability of the electorate coming to
the “right” decision; rather, they focus on decreasing the maximum weight of any voter in
the system, which is a problem faced by liquid democracy systems in practice (Kling et al.,
2015).

Another paper by Brill and Talmon (2018) considers liquid democracy in the setting of
ordinal elections in which the electorate wishes to construct a complete ordering over al-
ternatives, as opposed to deciding a binary issue as in this work. In this framework, each
voter may specify a partial ordering over the alternatives and delegate to others in order to
construct a complete ranking. However, decisions made by delegates may violate transitivity
with respect to each voter’s partial ordering, and even checking whether delegated votes
satisfy transitivity is NP-hard. In order to circumvent issues of transitivity, they introduce
a novel class of voting rules for liquid democracy based on distance rationalization, which
take as input (perhaps intransitive) delegation graphs and output the “closest” consensus
profile.

Bloembergen et al. (2019) consider a game-theoretic version of liquid democracy in which
voters must determine whether or not it is rational to delegate their votes to others. They
introduce a delegation game in which each voter has a hidden true “type” that she knows
imperfectly, and the goal of each voter is to communicate her true type to the mechanism
either directly (by voting) or indirectly (by delegating). While this setting distills the prob-
lem of finding delegates that represent one’s own opinion, it focuses on proving the existence
of Nash equilibria under certain assumptions and provides only weak performance bounds
in the setting we consider.

Additionally, Abramowitz and Mattei (2018) propose a variant of representative democracy
that incorporates ideas of liquid democracy by allowing voters to alter the voting weights of
their representatives depending on the issue at hand. Although this circumvents some issues
of liquid democracy — for instance, because delegations are no longer transitive, delegation
cycles cannot occur — the proposed system is considerably more constrained than general
liquid democracy.

Finally, Caragiannis and Micha (2019) extend the model proposed by the conference version
of this work and prove further impossibility results. In particular, they show that liquid
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democracy can be much worse than either direct democracy or a complete dictatorship,
and they also demonstrate that the problem of optimally coordinating delegations in a
centralized manner in order to maximize the probability of discovering the ground truth is
NP-hard.

3. The Model

We represent an instance of our problem using a directed, labeled graph G = (V,E, ~p).
V = {1, . . . , n} is a set of n voters, also referred to as vertices (we use the two terms
interchangeably). E represents a (directed) social network in which the existence of an edge
(i, j) means that voter i knows (of) voter j. We denote the neighborhood of voter i, NG(i),
to be the set of neighbors that i knows of. Formally, NG(i) = {j ∈ V : i knows of j}.

We assume that the voters vote on a binary issue; there is a correct alternative and an
incorrect alternative. Each voter i ∈ V is labeled by her competence level pi. This is the
probability that i has the correct opinion about the issue at hand, i.e., the probability that
i will vote correctly.

Our setting is also parameterized by α ∈ (0, 1). Given this parameter and a labeled graph
G = (V,E, ~p), we define an approval relation between voters: i ∈ V approves j ∈ V if
(i, j) ∈ E and pj ≥ pi + α. In words, i approves her neighbor j if the difference in their
competence levels is at least than α. Note that the approval relation is acyclic because
α > 0. Denote

AG(i) = {j ∈ V : i approves j}.

3.1 Delegation Mechanisms

The liquid democracy paradigm is implemented through a delegation mechanism M , which
takes as input a labeled graph G, and outputs, for each voter i, a delegation probability
distribution over AG(i)∪{i} that represents the probability that i will delegate her vote to
each of her approved neighbors, or to himself (which means she does not delegate her vote).

To determine whether a delegation mechanism M makes a correct decision on a labeled
graph G = (V,E, ~p), we use the following 4-step process (which is described in words to
avoid introducing notation that will not be used again):

1. Apply M to G to output a delegation probability distribution for each voter i.

2. Sample the probability distribution for each vertex to obtain an acyclic delegation
graph. Each sink i of the delegation graph (i.e., vertex with no outgoing edges) has
weight equal to the number of vertices with directed paths to i, including i itself.

3. Each sink i votes for the correct alternative with probability pi, and for the incorrect
alternative with probability 1− pi.

4. A decision is made based on the weighted majority vote.2

2. Ties can be broken arbitrarily.
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We denote the probability that the mechanism M makes a correct decision on graph G via
this 4-step process by PMn (G).

3.2 Local Mechanisms

We are particularly interested in a special class of delegation mechanisms that we call local
mechanisms. Intuitively, local mechanisms capture the natural setting where each voter
makes an independent delegation decision without central coordination or knowledge of
global properties about the delegation graph. Formally, a local delegation mechanism is a
delegation mechanism such that the probability distribution of each vertex i depends only
on (a) the subset AG(i) of neighbors that i approves, (b) an arbitrary ranking πi over AG(i),
and (c) NG(i), or i’s neighborhood. Note that the ranking πi does not have any inherent
meaning; it is simply a way to distinguish specific neighbors. In particular, local mechanisms
assume that each voter has knowledge of the identities of her approved and non-approved
neighbors; a local delegation mechanism is applied to πi and NG(i) in order to output a
delegation probability distribution for voter i.

For instance, say that in a setting with α = 0.15, Alice (pAlice = 0.6) has four neighbors: Bob
(pBob = 0.8), Carla (pCarla = 0.9), Dean (pDean = 0.5), and Evelyn (pEvelyn = 0.7). Alice
approves of Bob and Carla, and let πAlice = Carla � Bob. Then, the local delegation mech-
anism takes πAlice and the set of Alice’s neighbors, and returns a probability distribution
over delegating to Bob, delegating to Carla, and voting directly.

Let us give some examples of local delegation mechanisms:

• Voters do not delegate their votes. This direct voting mechanism plays a special role
in our model, and we denote it by D.

• Each voter delegates her vote to a random approved neighbor, if she has any.

• Each voter delegates her vote to a random approved neighbor, if she has approved
neighbors but has even more non-approved neighbors.

• Each voter delegates her vote deterministically to a single approved neighbor (e.g.,
the first in her local ordering πi), if she has any. The ranking πi is needed only in
order to enable this type of mechanism.

By contrast, the following delegation mechanisms are not local:

• Each voter delegates her vote to her most competent approved neighbor. (Voters
cannot distinguish between their approved neighbors, except through the information
given by the “arbitrary” ranking πi.)

• Let there exist a distinguished voter with global identifier V1. If V1 appears in the
approval set of any voter, that voter delegates to V1 with probability 1.

• Each voter delegates her vote only if all agents in her approval set have global identi-
fiers that are even integers.
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• Each voter delegates her vote to an approved neighbor who does not, in turn, delegate
her vote to anyone else.

3.3 Desiderata

Recall that we are interested in comparing the likelihood of making correct decisions via
delegative voting with that of direct voting. To this end, define the gain of delegation
mechanism M on labeled graph G as

gain(M,G) = PMn (G)− PDn (G).

We would like to design delegation mechanisms that have positive gain (bounded away from
zero) in some situations, and which never lose significantly to direct voting. Formally, we
are interested in the following two desirable axioms:

• A mechanism M satisfies the positive gain (PG) property if there exist γ > 0, n0 ∈ N
such that for all n ≥ n0 there exists a graph Gn on n vertices such that gain(M,Gn) ≥
γ.

• A mechanism M satisfies the do no harm (DNH) property if for all ε > 0, there exists
n1 ∈ N such that for all graphs Gn on n ≥ n1 vertices, gain(M,Gn) ≥ −ε.

The choice of quantifiers here is of great significance. PG asks for the existence of (large
enough) instances where the gain is at least γ, for a constant γ. By contrast, DNH essentially
requires that any loss would go to 0 as the size of the graph goes to infinity. That is, there
may certainly be small instances where delegative voting loses out to direct voting, but that
should not be the case in the large.

We note that PG and DNH are defined over worst-case instances. Another natural question
to ask is about the expected gain of delegation mechanisms: For a random graph and choice
of competence levels, is a given mechanism expected to outperform direct voting? However,
we leave this to future work.

4. Impossibility for Local Mechanisms

In our model, we make the strong assumption that voters can only delegate their vote to
other voters who are more competent than they are, and, in particular, delegation chains can
significantly boost the competence of any particular vote. Under this assumption, it seems
natural to expect that delegative voting will always do at least as well as direct voting in
every situation, and strictly better in some situations. This should intuitively be true under
local mechanisms, say, when each voter delegates her vote to an arbitrary approved neighbor
(if she has any). The following example helps build intuition for what can go wrong.

Example 1. Consider the labeled graph Gn = (V,E, ~p) over n vertices, where E = {(i, 1) :
i ∈ V \ {1}}, i.e., G is a star with 1 at the center. Moreover, p1 = 4/5, pi = 2/3 for all
i ∈ V \ {1}, and α = 1/10. Then, as n grows larger, PDn (Gn) goes to 1 by the Law of
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Large Numbers, or, equivalently, by the Condorcet Jury Theorem (Grofman et al., 1983).
By contrast, all leaves approve the center, and a näıve local delegation mechanism M would
delegate all their votes. In that case, the decision depends only on the vote of the center,
so PMn (Gn) = 4/5 for all n ∈ N, and gain(M,Gn) converges to −1/5. We conclude that M
violates the DNH property.

One might hope that there are “smarter” local delegation mechanisms, that, say, recognize
that when a voter only has one approved neighbor, her vote should not be delegated.
However, our first result shows that this is not the case: local delegation mechanisms cannot
even satisfy the two minimal requirements of PG and DNH.

Theorem 1. For any α0 ∈ (0, 1) such that i ∈ V approves j ∈ V if (i, j) ∈ E and
pj > pi + α0, there is no local mechanism that satisfies the PG and DNH properties.

The first step in the proof is to better understand the way in which local mechanisms are
constrained. This is captured by the following lemma.

Lemma 1. Let M be a local mechanism. Then M satisfies the PG property only if there
exist k,m, ρ > 0 such that, if a voter approves k out of her m total neighbors, then the total
probability of delegation to any of these approved neighbors is exactly ρ.

Proof. Suppose that PG holds. Let γ > 0 and fix a labeled graph G such that gain(M,G) ≥
γ > 0. In order for this to be the case, there must exist some vertex i that delegates with
positive probability ρ. Let k be the number of neighbors in G that i approves, and let m be
her total number of neighbors in G; this yields the desired tuple (k,m, ρ).3

The crux of the theorem’s proof is the construction of a graph that, from the local viewpoint
of many of the vertices, looks like the neighborhood prescribed by Lemma 1. Specifically,
a k-center m-uniform star consists of vertices called leaves that are each connected to k
central vertices (the centers) as well as m−k other leaves. Each leaf vertex has competence
level p`, and each center vertex has competence level pc, such that pc > p` + α. We set
the value of k and m to be the values whose existence is guaranteed by Lemma 1, which
means that the construction of a k-center m-uniform star satisfies the property that each
leaf delegates to some center vertex with probability ρ. Throughout the proof, we will let
nc = k be the number of centers, and n` will denote the number of leaves.

At a high level, we show that the loss of any local mechanism can approach (1−pc)k, which
is constant given k. We do this by constructing a graph that consists of a k-center m-uniform
star with an independent disconnected component consisting of nd vertices of competence
level pd. We set the parameters so that the direct voting mechanism D decides correctly
with high probability. By contrast, under the local delegation mechanism M , enough leaves
delegate their votes to the centers so that if all centers were to vote incorrectly, which
happens with probability (1− pc)k, then M would decide incorrectly. While the basic idea
is simple enough, the formal construction is quite delicate, as many different parameters
must be carefully balanced.

3. Note that the conclusion is invariant to the ranking πi.
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Figure 1: Graph G for n` = 6 leaves (shown in crosshatched red), nc = 3 centers (shown in
striped blue), nd = 24 disconnected vertices (shown in solid yellow), and m = 4.

Proof of Theorem 1. Let M be a local mechanism that satisfies PG. By Lemma 1, there
must exist at least one (k,m, ρ) tuple for M that satisfies the lemma’s conclusion. For any
n1 prescribed by DNH and any α0, we can construct a graph Gn with n ≥ n1 such that
DNH does not hold.

Let G be a graph of size n = nc+n`+nd, where nc = k, that consists of a k-center m-uniform
star and a disconnected component containing nd disconnected points (see Figure 1). Each
center has competence level pc, each leaf in the star has competence level p`, and each point
in the disconnected component has competence level pd. Given (k,m, ρ), n1, and α0, note
that the following constraints must hold.

n` ≥ m− nc (1)

n = n` + nc + nd ≥ n1 (2)

pc > p` + α0 (3)

We will prove that the construction above instantiated with the following parameter values
violates DNH for any input of (k,m, ρ), n1, and α = α0+ε′ for ε′ = 1−α0

2 > 0, for sufficiently
small δ (i.e., as δ → 0).

We begin by defining the sizes of each component: nc, n`, and nd.

nc = k (4)

n` =
n1m

αδ
(5)

nd = C1
n1m

αδ
(6)
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Note that nd depends on a constant C1, which, along with another constant σ, is defined
next.

C1 =

(
( p`ρσ n`−p`

√
n`)

2

)2

− nc

n`
− 1 (7)

σ =

√
−

ln
(
δ
2

)
2

(8)

Now, we define the competency values for each component, pc, p`, and pd. Note that there
is a range of acceptable compentency values for pd.

pc =
1 + α

2
(9)

p` =
1− α

2
(10)

pd ∈
[(

n/2− n`p`
nd

)
+
σ
√
n

nd
,

(
n/2− n`p`

nd

)
+

(n`ρ− τ)p` − σ
√
n

nd

]
(11)

Finally, we define τ , another constant that will be useful for establishing concentration
guarantees in the proof.

τ =

√
−
(
ln δ

2

)
n`

2
(12)

The following claim asserts that the construction is feasible.

Claim 1. C1 > 0 and the range of values for pd in (11) is nonempty.

Proof. From (7), we have

C1 =

(
( p`ρσ n`−p`

√
n`)

2

)2

− k

n`
− 1

and rearranging terms yields

2
√

(C1 + 1)n` + k =
p`ρ

σ
n` − p`

√
n`.

Now, note that nd = C1n` and therefore (C1 + 1)n` + k = nd + n` + k = n. Additionally,
note that

√
n` = τ

σ . Substituting this in, we have

2
√
n =

p`ρn` − p`τ
σ

and therefore

σ
√
n = p`(ρn` − τ)− σ

√
n. (13)
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Now, we note that σ
√
n− kpc < σ

√
n and

√
n >

√
n− k − (ρn` − τ)

because both k and ρn` − τ = 2σ
√
n/p` are greater than 0, and n − k − (ρn` − τ) >

n− k − n` ≥ 0. Now, from (13), we can conclude that

σ
√
n− kpc < σ

√
n = p`(ρn` − τ)− σ

√
n

< (ρn` − τ)p` − σ
√
n− k − (ρn` − τ),

which means

pd ∈

[(
n/2− n`p`

nd

)
+
σ
√
n− kpc
nd

,

(
n/2− n`p`

nd

)
+

(n`ρ− τ)p` − σ
√
n− k − (n`ρ− τ)

nd

]

is non-empty, and our value for pd is admissible.

Lastly, we have to show that C1 is itself admissible; i.e., that the following holds:(
( p`ρσ n`−p`

√
n`)

2

)2

− k

n`
− 1 > 0.

Rearranging and expanding, we obtain

p`n`ρ

σ
− p`
√
n` ≥ 2

√
n` + k.

Now, note that both sides are positive as δ → 0. Indeed, the right hand side consists of
positive terms and the left hand side simplifies to p`

√
n`(ρ
√
n`/σ − 1), which is positive iff

ρ
√
n` > σ, which is true as δ → 0 because 1/δ grows more quickly than ln(2/δ). Therefore,

squaring both sides yields(p`n`ρ
σ

)2
+ (p`)

2n` − 2
(p`)

2ρ(n`)
3/2

σ
≥ 4(n` + k).

Now, substituting in our value for n`, we obtain[(p`ρ
σ

)(n1m
αδ

)]2
+ (p`)

2
(n1m
αδ

)
− 2(p`)

2ρ

σ

(n1m
αδ

)3/2
− 4

(n1m
αδ

)
− 4k. (14)

As δ → 0, (14) becomes dominated by the highest-order 1/δ term, and therefore is always
positive for any assignment to the other variables because the rest of them are constrained
to be strictly positive.

Because α, δ ∈ (0, 1), the value of n` in (5) is greater than both n1 and m, hence constraints
(1) and (2) are immediately satisfied. Moreover, constraint (3) is satisfied by (9) and (10).

Turning to the proof that DNH is violated, let corD, delM , and nondelM be the random
variables corresponding to the number of correct votes under D, the number of delegated
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correct votes under M , and the number of non-delegated correct votes under M . Addition-
ally, let ε, τ (recalled again for convenience), and ξ be as follows.

ε =

√
−
(
ln δ

2

)
n

2
,

τ =

√
−
(
ln δ

2

)
n`

2
, and

ξ =

√
−
(
ln δ

2

)
(n− nc − (ρn` − τ))

2
.

Our goal is to bound the expectations of corD, delM , and nondelM . First, we examine
E[corD]. We would like to show that

E[corD] ≥ n/2 + ε. (15)

Expanding out the expected value, this is equivalent to

pcnc + p`n` + pdnd ≥ n/2 + ε.

From (11), we have

pd ≥
n/2− p`n` + ε

nd
,

so it is sufficient to show that

pcnc + p`n` + nd

(
n/2− p`n` + ε

nd

)
≥ n/2 + ε,

and simplifying this expression yields pcnc ≥ 0. This is true by Equation (9), because α and
k are both constrained to be strictly positive.

Next, we examine E[delM ]. We would like to show that

E[delM ] = n`ρ. (16)

This is trivial to see, as delM is a sum of n` Bernoulli random variables with “success”
probability ρ.

Finally, we examine the “typical case” over nondelM , or E[nondelM |delM = v] for all integers
v ∈ [n`ρ − τ, n`ρ + τ ]. Intuitively, this case considers the number of correct votes cast by
still-independent vertices after “enough” leaf vertices have delegated their votes. If these
votes do not make up a majority, then all centers voting incorrectly will cause the entire
graph to vote incorrectly. We would like to show that

E[nondelM |delM = v] ≤ n/2− ξ (17)

for all integers v ∈ [n`ρ− τ, n`ρ+ τ ]. Conditionally on delM being in the prescribed range
above, we see that in the worst case, delM = n`ρ − τ , meaning the fewest possible voters
delegate under this assumption. Given this, we would like to show that

pdnd + p`(n` − (ρn` − τ)) ≤ n/2− ξ.
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From Equation (11) we have

pd ≤
n/2− p`n` + (n`ρ− τ)p` − ξ

nd
,

which yields (
n/2− p`n` + (n`ρ− τ)p` − ξ

nd

)
nd + p`(n` − (ρn` − τ))

≤ n/2− ξ.

Simplifying yields 0 ≤ 0 — a tautology. This establishes Equation (17).

We now wish to bound the probability of corD, delM , and nondelM deviating by too much.
We use Hoeffding’s inequality (Hoeffding, 1963), which states that given n independent
Bernoulli random variables Xi ∈ [0, 1] and X =

∑
iXi, the following concentration bound

holds:

Pr [|X − E[X]| ≥ ε] ≤ 2 exp

(
−2ε2

n

)
. (18)

First, we examine corD. From (18) and a straightforward substitution for ε, we obtain

Pr (|corD − E[corD]| ≥ ε) ≤ 2 exp

(
−2ε2

n

)

= 2 exp

−
2

[√
−(ln δ

2)n
2

]2

n


= δ.

(19)

Likewise, for delM , from (18) and a straightforward substitution for τ , we obtain

Pr [|delM − E[delM ]| ≥ τ ] ≤ 2 exp

(
−2τ2

n`

)

= 2 exp

−
2

[√
−(ln δ

2)n`
2

]2

n`


= δ.

(20)

Finally, for nondelM , we are interested in upper-bounding

Pr[|nondelM − E[nondelM |delM = v]| ≥ ξ | delM = v],
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for every integer v ∈ [n`ρ− τ, n`ρ+ τ ]. As before, we apply Equation (18), and, as it turns
out, we can derive an upper bound when delM = n`ρ − τ . Therefore, we obtain that for
every v ∈ [n`ρ− τ, n`ρ+ τ ],

Pr [|nondelM − E[nondelM |delM = v]| ≥ ξ | delM = v]

≤ 2 exp

(
−2ξ2

n− nc − (ρn` − τ)

)

= 2 exp

−
2

[√
−(ln δ

2)(n−nc−(ρn`−τ))

2

]2

n− nc − (ρn` − τ)


= δ,

(21)

where the denominator comes from the (worst-case) total number of non-delegated votes
under M .

From the above, we see that

Pr[corD > n/2] ≥ 1− δ, (by (15) and (19))

Pr[delM ∈ (n`ρ− τ, n`ρ+ τ)] ≥ 1− δ, (by (16) and (20))

Pr[nondelM < n/2 | delM = v] ≥ 1− δ, (by (17) and (21))

where the last inequality holds for all integers v ∈ [n`ρ− τ, n`ρ+ τ ].

Therefore, the lower bound on the probability of D deciding correctly is pd(G) ≥ 1 − δ.
We can lower-bound the probability of M deciding incorrectly in order to upper-bound
PMn (G). We slightly overload notation and let M be the event that M decides correctly,
and ¬M be the event that M decides incorrectly. Moreover, denote by V the event that
delM ∈ [n`ρ− τ, n`ρ+ τ ]. By definition, we have

Pr[¬M ] = Pr[¬M |V ] Pr[V ] + Pr[¬M |¬V ] Pr[¬V ],

and because probabilities cannot be negative,

Pr[¬M ] ≥ Pr[¬M |V ] Pr[V ].

Now, because Pr[V ] ≥ 1− δ,

Pr[¬M ] ≥ Pr[¬M |V ](1− δ).

Furthermore, we know that Pr[¬M |V ] is also lower-bounded by (1 − pc)nc(1 − δ) because
one setting under which M decides incorrectly is exactly when all centers vote incorrectly
and nondelM < n/2. It follows that

Pr[¬M ] ≥ (1− pc)nc(1− δ)(1− δ).

Therefore, taking the complement, we have an upper bound on the probability of M voting
correctly of

Pr[M ] ≤ 1− (1− pc)nc(1− δ)2,
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and the total loss can be lower-bounded by

(1− δ)− (1− (1− pc)nc(1− δ)2) = (1− pc)nc(1− δ)2 − δ.

As δ → 0, this tends to (1− pc)nc = (1− pc)k, which is constant and bounded away from 0.
We conclude that M violates the DNH property.

We note that even if each voter had access to a ranking of her approved neighbors by
competence (which would allow voters to, for instance, delegate to their most competent
neighbor), this impossibility still holds because the construction is such that all approved
vertices have equal competence.

5. Possibility for Non-Local Mechanisms

The main idea underlying Theorem 1 is that liquid democracy can correlate the votes to the
point where the mistakes of a few popular voters tip the scales in the wrong direction. As we
show in the theorem’s proof, this is unavoidable under local delegation mechanisms, which,
intuitively, cannot identify situations in which certain voters amass a large number of votes.
However, non-local delegation mechanisms can circumvent this issue. Indeed, consider the
following delegation mechanism.

input: labeled graph G with n vertices, cap C : N→ N
1: V ′ ← V
2: while V ′ 6= ∅ do
3: let i ∈ argmaxj∈V ′ |A−1

G (j) ∩ V ′|
4: J ← A−1

G (i) ∩ V ′
5: if |J | ≤ C(n)− 1 then
6: J ′ ← J
7: else
8: let J ′ ⊆ J such that |J ′| = C(n)− 1
9: end if

10: vertices in J ′ delegate to i
11: V ′ ← V ′ \ ({i} ∪ {J ′})
12: end while

Algorithm 1: GreedyCap

In words, the mechanism GreedyCap, given as Algorithm 1, receives as input a labeled
graph G, and a cap C which is a function of n. It iteratively selects a voter with maximum
approvals, and delegates votes to him, so that no more than C(n)−1 votes are delegated to
a single voter (that is, no voter can have weight more than C(n)). All voters involved in the
current iteration are then eliminated from further consideration, which is why delegations
under this mechanism are only 1-hop.

It is obvious that GreedyCap satisfies the PG property. Intuitively, for any value of α, it is
always possible to construct large instances of graphs where a few voters delegate to more
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competent voters in a way that increases the probability of making the correct decision
overall. However, although it seems at first glance that it should satisfy DNH as well (as it
solves the excessive correlation problem), the following example shows that, without further
assumptions, it does not.

Example 2. Assume for ease of exposition that α < 1/3. For any odd n = 2k+ 1, consider
the labeled graph Gn = (V,E, ~p) on n vertices, defined as follows: E = {(1, 2)} (i.e., the
only edge in the graph is from 1 to 2), p1 = 1/3, p2 = 2/3, there are k vertices with pi = 1,
and k − 1 vertices with pi = 0. Even if C(n) ≡ 2, GreedyCap would delegate the vote of
voter 1 to voter 2. Therefore, the mechanism decides correctly if and only if voter 2 votes
correctly, which happens with probability 2/3. By contrast, under direct voting, it is enough
for either voter 1 or voter 2 to vote correctly, which happens with probability 7/9. It follows
that the loss of GreedyCap is 1/9 — a constant. We conclude that GreedyCap violates
DNH.

The reason the example works is that the outcome completely depends on voters 1 and 2,
as the others vote deterministically (competence level 0 or 1). To avoid this problem, we
make the natural assumption that competence levels are bounded away from 0 and 1, i.e.,
voters are never horribly misinformed or perfectly informed. It turns out that this additional
assumption is sufficient to guarantee that GreedyCap satisfies the DNH property.

Theorem 2. Assume that there exists β ∈ (0, 1/2) such that all competence levels are
in [β, 1 − β]. Then for any difference in competencies α ∈ (0, 1 − 2β), GreedyCap with
cap C : N → N such that C(n) ∈ ω(1) and C(n) ∈ o(

√
log n) satisfies the PG and DNH

properties.

We begin with a proof sketch, focusing on the DNH property (as PG is rather simple). Given
n voters, we denote the number of correct votes under direct voting and GreedyCap by
XD
n and XM

n , respectively, and consider two cases.

1. |E[XD
n ]− n

2 | >
n

logn .

2. |E[XD
n ]− n

2 | ≤
n

logn .

In Case 1, the direct voting mechanism has mean far away from n/2. When E[XD
n ] <

n/2− n/ log n, we can show that PDn goes to 0 as n goes to infinity. This means that DNH
is satisfied for any value of PMn . In the case where E[XD

n ] > n/2 + n/ log n, we can show
that PMn goes to 1 as n goes to infinity, which means that DNH is satisfied for any value of
PDn .

In Case 2, the direct voting setting has mean close to n/2. From here, we consider two
subcases.

1. The number of voters who delegate is greater than n/g(n), where g(n) ∈ o(log n) and
g(n) ∈ ω(C(n)2) — hence the upper bound on C(n) in the statement of Theorem 2.

2. The number of voters who delegate is at most n/g(n).

In Subcase 1, because a relatively large fraction of voters delegate their votes to more
competent neighbors, E[XM

n ] − E[XD
n ] is large enough to offset the simultaneous increase
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in the variance of XM
n , and, in the limit, PMn goes to 1. In Subcase 2, we again have

E[XM
n ] ≥ E[XD

n ] due to delegation. Additionally, because so few voters delegate, the ratio
of the variance of XM

n and that of XD
n converges to 1 as n approaches infinity, which means

that (in the worst case) the difference between PDn and PMn converges to 0.

Before presenting the theorem’s detailed proof, we establish three useful lemmas, as well as
definitions needed in the first two lemmas.

Starting with the definitions, we say that a sequence of random variables {Xk} is pairwise
mixing if for every real x,

sup
k
|Cov[1{Xk < x},1{Xk+n < x}]| → 0 as n→∞,

where 1 represents an indicator random variable. A collection of random variables {Xk} is
uniformly integrable if

sup
k

E[|Xk|1{Xk > x}]→ 0 as x→∞.

Finally, a sequence of random variables {Xk} is a martingale difference sequence if

1. For all k, E[|Xk|] <∞, and

2. For all k, E[Xk|X1, . . . , Xk−1] = 0.

Lemma 2 (Theorem 2.1 in Peligrad and Utev, 1997). Let X = {X1, . . . , Xk, . . . } be a
pairwise mixing martingale difference sequence of random variables, and let {ank : 1 ≤ k ≤
n} be a triangular array of real numbers such that

sup
n

n∑
k=1

a2
nk <∞, (22)

max
1≤k≤n

|ank| → 0 as n→∞. (23)

Furthermore, assume that {X2
k} is a uniformly integrable family and that

Var

(
n∑
k=1

ankXk

)
= 1.

Then,
n∑
k=1

ankXk → N(0, 1) as n→∞.

The next lemma adapts the previous one for our setting.

Lemma 3. Let Y = {Y1, . . . , Yn, . . . } be a sequence of independent Bernoulli random vari-
ables where Yi has success probability pi ∈ [β, 1 − β] for β ∈ (0, 1/2). Furthermore, define
C(n) ∈ o(n1/2). Now, let {bnk : 1 ≤ k ≤ n} be a triangular array of nonnegative integers
such that 0 ≤ bnk ≤ C(n) for all 1 ≤ k ≤ n and

∑n
k=1 bnk = n.

1240



Liquid Democracy: An Algorithmic Perspective

Then,
∑n

k=1 bnkYk converges to a normal distribution with mean
∑n

k=1 bnkE[Yk] and vari-
ance

∑n
k=1 b

2
nk Var[Yk] as n goes to infinity; i.e.,

n∑
k=1

bnkYk → N

(
n∑
k=1

bnkE[Yk],
n∑
k=1

b2nk Var[Yk]

)
as n→∞.

Proof. Define X = {X1, . . . , Xn, . . . } to be a sequence of independent random variables
where Xi = Yi − E[Yi]. In other words, Xi corresponds to the difference between each Yi
and its expectation. Note that E[Xi] = 0 for all i; i.e., X is a centered sequence, and that
Var[Xi] = Var[Yi] = pi(1− pi).

Let

s2
n =

n∑
k=1

Var[bnkXk] =
n∑
k=1

b2nk Var[Xk],

and let us define another triangular array of real numbers {ank : 1 ≤ k ≤ n} such that
ank = bnk

sn
. We will show that

n∑
k=1

ankXk → N(0, 1) as n→∞, (24)

and then use this fact to prove the desired result.

In order to show Equation (24), we wish to apply Lemma 2. To do that, we must make
sure that {Xk} is a pairwise mixing martingale difference sequence, {X2

k} is uniformly
integrable, our construction of {ank : 1 ≤ k ≤ n} satisfies Equations (22) and (23), and
Var [

∑n
k=1 ankXk] = 1.

First, note that it is easy to check that {Xk} is pairwise mixing, {Xk} is a martingale
differences sequence, and {X2

k} is uniformly integrable because each Xk is independent, has
expectation 0, and is bounded in [−(1− β), 1− β].

Now, we show that {ank : 1 ≤ k ≤ n} satisfies Equation (22).

sup
n

n∑
k=1

a2
nk = sup

n

n∑
k=1

(
bnk
sn

)2

= sup
n

∑n
k=1 b

2
nk

s2
n

= sup
n

∑n
k=1 b

2
nk∑n

k=1 b
2
nk Var[Xk]

≤ sup
n

∑n
k=1 b

2
nk

β(1− β)
∑n

k=1 b
2
nk

(because Var[Xk] ≥ β(1− β))

=
1

β(1− β)
<∞,

because β is a constant.
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Next, we show that {ank : 1 ≤ k ≤ n} satisfies Equation (23).

max
1≤k≤n

|ank| = max
1≤k≤n

bnk
sn

= max
1≤k≤n

bnk√∑n
k=1 b

2
nk Var[Xk]

≤ C(n)√
β(1− β)

∑n
k=1 b

2
nk

.

Applying Cauchy-Schwarz to the
∑n

k=1 b
2
nk term in the denominator yields(

n∑
k=1

12

)(
n∑
k=1

b2nk

)
≥

(
n∑
k=1

bnk

)2

= n2 =⇒
n∑
k=1

b2nk ≥ n.

Therefore,

C(n)√
β(1− β)

∑n
k=1 b

2
nk

≤ C(n)√
β(1− β)n

=
1√

β(1− β)
· C(n)

n1/2
.

Because 1√
β(1−β)

is a constant and C(n) ∈ o(n1/2), we see that this quantity goes to 0 as n

approaches infinity, and therefore max1≤k≤n |ank| → 0 as n approaches infinity.

Lastly, we must check that Var [
∑n

k=1 ankXk] = 1. Indeed, doing out the calculation yields

Var

[
n∑
k=1

ankXk

]
=

n∑
k=1

Var[ankXk]

=

n∑
k=1

a2
nk Var[Xk]

=

n∑
k=1

(
bnk
sn

)2

Var[Xk]

=

∑n
k=1 b

2
nk Var[Xk]

s2
n

=

∑n
k=1 b

2
nk Var[Xk]∑n

k=1 b
2
nk Var[Xk]

= 1,

where the last step is allowed because Var[Xk] ≥ β(1−β) for all 1 ≤ k ≤ n, 0 ≤ bnk ≤ C(n)
for all 1 ≤ k ≤ n, and

∑n
k=1 bnk = n, which means that

∑n
k=1 b

2
nk Var[Xk] > 0.
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Because our construction of {Xk} and {ank : 1 ≤ k ≤ n} satisfies the preconditions for
Lemma 2, applying Lemma 2 yields

n∑
k=1

ankXk → N(0, 1) as n→∞.

Now, by straightforward scaling and shifting arguments, we see that

n∑
k=1

ankXk → N(0, 1) as n→∞

⇐⇒ 1

sn

n∑
k=1

bnk(Yk − E[Yk])→ N(0, 1) as n→∞

⇐⇒
n∑
k=1

(bnkYk − bnkE[Yk])→ N(0, s2
n) as n→∞

⇐⇒
n∑
k=1

bnkYk −
n∑
k=1

bnkE[Yk]→ N(0, s2
n) as n→∞

⇐⇒
n∑
k=1

bnkYk → N

(
n∑
k=1

bnkE[Yk],
n∑
k=1

b2nk Var[Yk]

)
as n→∞,

as desired.

We also require the following simple lemma.

Lemma 4. Given a normally distributed variable X ∼ N (E[X],Var[X]) with E[X] ∈
[µmin, µmax] and Var[X] ∈ [σ2

min, σ
2
max], the following is true.

Case 1: if µmax > k :

Pr[X > k] ≤ Pr[Y ∼ N (µmax, σ
2
min) > k]

Pr[X > k] ≥ Pr[Y ∼ N (µmin, σ
2
max) > k]

Case 2: if µmax < k :

Pr[X > k] ≤ Pr[Y ∼ N (µmax, σ
2
max) > k]

Pr[X > k] ≥ Pr[Y ∼ N (µmin, σ
2
min) > k]

Proof. For both upper bounds, we want to minimize the value of Φ
(
k−E[X]
Var[X]

)
, where Φ is

the CDF of the standard normal distribution. Because Φ is monotonically increasing, this
is equivalent to minimizing the value of k−E[X]

Var[X] . It is clear that k − µmax < k − µmin. Now,
if k − µmax < 0, then

k − µmax
σmin

<
k − µmax
σmax

.
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However, if k − µmax > 0, then

k − µmax
σmax

<
k − µmax
σmin

.

For both lower bounds, we want to maximize the value of Φ
(
k−E[X]
Var[X]

)
. Because Φ is mono-

tonically increasing, this is equivalent to maximizing the value of k−E[X]
Var[X] . As in the above

case, it is clear that k − µmin > k − µmax. Now, if k − µmin < 0, then

k − µmin
σmax

>
k − µmin
σmin

.

However, if k − µmin > 0, then

k − µmin
σmin

>
k − µmin
σmax

.

Finally, by definition, Erf (∞) = 1 and Erf (−∞) = −1, where Erf (·) denotes the (Gauss)
error function,

Erf (z) =
2√
π

∫ z

0
e−t

2
dt.

We will use this fact repeatedly throughout the proof of the theorem, which we now turn
to.

Proof of Theorem 2. Given a total number of voters n, let us define two random variables,
XD
n and XM

n , where XD
n denotes the number of correct votes under the direct voting mech-

anism D, and XM
n represents the (weighted) number of correct votes under GreedyCap.

We are interested in comparing PDn = Pr[XD
n > n/2] and PMn = Pr[XM

n > n/2].

Let V = {V1, . . . , Vn, . . . } be a sequence of independent Bernoulli random variables in
which Vi represents the vote of voter i; i.e., each Vi has success probability pi ∈ [β, 1−β] for
β ∈ (0, 1/2). Using V , we define a sequence of instances indexed by n, where each instance
consists of the first n voters in V . Let {bDni : 1 ≤ i ≤ n} and {bMni : 1 ≤ i ≤ n} be triangular
arrays of nonnegative integers that denote the weight of each voter under direct voting and
GreedyCap, respectively. Under direct voting, bDni = 1 for all 1 ≤ i ≤ n. Note that, in
this case, 0 ≤ bDni ≤ C(n) for all voters i, where C(n) is the maximum amount of weight
any voter can accumulate, and

∑n
i=1 b

D
ni = n. Now, in the delegative case, let bMni = wni

for all 1 ≤ i ≤ n, where wni ∈ Z≥0 is the total weight accumulated by voter i in instance
n (note that voters who choose to delegate have weight zero). Because each voter cannot
accumulate weight greater than C(n), we have that 0 ≤ wni ≤ C(n) for all voters i, and∑n

i=1wni = n.

Note that, given a population of voters of size n, XD
n =

∑n
i=1 b

D
niVi =

∑n
i=1 Vi and

XM
n =

∑n
i=1 b

M
niVi =

∑n
i=1wniVi. Now, because XD

n and XM
n both satisfy the conditions
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under which Lemma 3 holds, we may apply Lemma 3 to establish that XD
n and XM

n are
approximately normally distributed as n goes to infinity; i.e.,

XD
n =

n∑
i=1

Vi → N

(
n∑
i=1

E[Vi],

n∑
i=1

Var[Vi]

)
as n→∞

and

XM
n =

n∑
i=1

wniVi → N

(
n∑
i=1

wniE[Vi],
n∑
i=1

w2
ni Var[Vi]

)
as n→∞.

Therefore, we can use the following formulas, which are well-known from normal distribu-
tions.

PDn ≈
∫ n

n/2

1√
2πVar[XD

n ]
exp

(
−(x− E[XD

n ])2

2 Var[XD
n ]

)
dx (25)

PMn ≈
∫ n

n/2

1√
2πVar[XM

n ]
exp

(
−(x− E[XM

n ])2

2 Var[XM
n ]

)
dx (26)

Indeed, throughout this proof, we will assume that PDn and PMn are exactly equal to these
quantities; this is because Lemma 3 says that as n goes to infinity, this approximation
becomes arbitrarily accurate.

Note that, from above, the PG property means that there exists ε such that PMn −PDn > ε
for at least one graph Gn on n vertices for all suitably large n. Similarly, the DNH property
corresponds to PDn − PMn < ε for all graphs Gn on n vertices for suitably large n and all
values of ε. We show that these two properties hold.

For the PG property, we construct a simple family of examples where the property is
satisfied. Let the social graph G be composed of pairs of nodes with one competent voter
and one incompetent voter with an edge pointing to the competent voter. The competent
voters have competence 1− β and the incompetent voters have competence β. If the voters
vote independently, the symmetry between the competent and incompetent voters makes
it clear that PDn = 1/2. Under Algorithm 1, the incompetent voters all delegate to the
competent voters. We now have n

2 independent voters who each have one vote of weight two
and competence 1 − β. By the Condorcet Jury Theorem (Grofman et al., 1983), it follows
that PMn approaches 1.

In the remainder of the proof, therefore, we focus on establishing the DNH property. We
first show that

Var[XD
n ] ∈ [β(1− β)n, n/4]. (27)

Indeed, XD
n =

∑n
i=1 Vi, where Vi is the Bernoulli random variable representing the vote of

voter i. In particular, Vi ∼ Bernoulli(pi), where pi ∈ [β, 1 − β] is the competence level of
voter i. Because all voters vote independently, Var[XD

n ] =
∑n

i=1 Var[Vi], and

Var[Vi] = pi(1− pi) ∈ [β(1− β), (1/2)2].
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This establishes Equation (27).

Now, let us separate the instances into two cases:

1. |E[XD
n ]− n

2 | >
n

logn .

2. |E[XD
n ]− n

2 | ≤
n

logn .

Case 1. In this case, we can give strong lower bounds on both PDn and PMn .

Subcase 1: E[XD
n ] < n/2 − n/ log n. By Equation (27), Var[XD

n ] ≤ n/4 < n. Because
E[XD

n ] < n/2, by Lemma 4 we have

PDn <

∫ n

n
2

1√
2πn

e
−(x−n2 + n

logn)
2

2n dx. (28)

This is equivalent to

PDn <
1

2

(
Erf

(√
n(2 + log n)

2
√

2 log n

)
− Erf

( √
n√

2 log n

))
.

As n approaches infinity, both arguments go to infinity, and therefore (as Erf (∞) = 1) PDn
approaches 0. This means that, no matter the value of PMn , DNH is satisfied.

Subcase 2: E[XD
n ] > n/2 + n/ log n. We now examine the maximum possible value of

Var[XM
n ] =

∑n
i=1w

2
ni Var[Vi], where wni is the total weight accumulated by voter i and,

again, Vi is the Bernoulli random variable representing the vote of voter i. Additionally,
Var[Vi] ∈ [β(1− β), 1/4], and applying this yields

Var[XM
n ] ≤ 1

4
·
n∑
i=1

w2
ni.

Because each voter can accumulate at most weight C(n), by the convexity of x2, we can
see that this is maximized when the maximum number of voters have weight exactly C(n).
Therefore, we have

Var[XM
n ] ≤ 1

4
·
dn/C(n)e∑
i=1

C(n)2 < nC(n).

Because E[XD
n ] > n/2, by Lemma 4 we have

PMn >

∫ n

n
2

1√
2πnC(n)

e
−(x−n2 + n

logn)
2

2nC(n) dx. (29)
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This simplifies to

PMn >
1

2

(
Erf

( √
n(log n− 2)

2
√

2C(n) log n

)
+ Erf

( √
n√

2C(n) log n

))
.

As n approaches infinity, both arguments go to infinity, and PMn approaches 1. Therefore,
no matter what the value of PDn , DNH is satisfied.

Case 2. In this case, we split the argument into two further subcases:

1. The number of voters who delegate is greater than n/g(n), where g(n) is o(log n) and
ω(C(n)2).

2. The number of voters who delegate is less than or equal to n/g(n).

Subcase 1: Due to delegation, we have E[XM
n ]− E[XD

n ] ≥ nα/g(n). We can now bound the
mean by

E[XM
n ] ≥ n

2
− n

log n
+

nα

g(n)
.

Therefore, because g(n) = o(log n), E[XM
n ] > n/2 as n increases. As before, we also know

that Var[XM
n ] is bounded from above by nC(n), and therefore, by Lemma 4,

PMn ≥
∫ n

n
2

1√
2πnC(n)

e

−
(
x−n2 + n

logn
− nα
g(n)

)2

2nC(n) dx. (30)

We would like to show that this integral goes to 1 as n goes to infinity.

This is equivalent to

1

2

Erf

(
n
2 −

nα
g(n) + n

logn√
2nC(n)

)
− Erf

√n
(
− α
g(n) + 1

logn

)
√

2C(n)

 .

Note that as n goes to infinity, the first argument goes to infinity and the second argument
goes to negative infinity when g(n) = o(log n). Therefore, PMn goes to 1, satisfying DNH.

Subcase 2: In this case, most voters remain independent. We will argue that although the
delegation does impact the variance, this impact will get arbitrarily small as n grows larger,
implying that the loss will get arbitrarily small.

Let us index the voters according to what happens in the delegation scheme. Let the first
n1 indexed voters represent those who remain independent and do not get delegated a vote.
Let the next n2 indexed voters be those who got delegated at least one vote. Finally, the
last n− n1 − n2 indexed voters are those who delegated their vote to another voter. Based
on our assumption above, we know that limn→∞

n1
n = 1; most voters remain independent

and unaffected by the delegation scheme.
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Additionally, note that the mean will be slightly different in the two schemes, but this is
to our advantage because the mean will improve in the delegation scheme due to “uphill”
delegation.

Therefore, given

PDn =

∫ n

n
2

1√
2πVar[XD

n ]
e

−(x−E[XDn ])
2

2Var[XDn ] dx

and

PMn =

∫ n

n
2

1√
2πVar[XM

n ]
e

−(x−E[XMn ])
2

2Var[XMn ] dx,

because E[XM
n ] ≥ E[XD

n ], we can say that

PMn ≥
∫ n

n
2

1√
2πVar[XM

n ]
e

−(x−E[XDn ])
2

2Var[XMn ] dx.

Now, we have to relate Var[XM
n ] and Var[XD

n ]. Ideally, we want to show that they are
multiplicatively close to each other.

We can decompose the variance of XD
n .

Var[XD
n ] =

n1∑
i=1

pi(1− pi) +

n∑
i=n1+1

pi(1− pi).

Likewise, we can decompose the variance of XM
n .

Var[XM
n ] =

n1∑
i=1

pi(1− pi) +

n1+n2∑
i=n1+1

w2
nipi(1− pi) +

n∑
i=n1+n2+1

0.

Therefore, we have

Var[XM
n ]−Var[XD

n ] =

n1+n2∑
i=n1+1

(w2
ni − 1)pi(1− pi)

−
n∑

i=n1+n2+1

pi(1− pi)

≤
n1+n2∑
i=n1+1

(w2
ni − 1)pi(1− pi)

≤ n2

4
(maxwni

2 − 1)
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≤ 1

4
· n

g(n)
(C(n)2 − 1),

where the last inequality holds because wni ≤ C(n), and n2, the number of voters who are
delegated to, is at most the number of voters who delegate, which is at most n/g(n) by
assumption.

This means that

Var[XM
n ] ≤ Var[XD

n ] +
1

4
· n

g(n)
(C(n)2 − 1)

and therefore

Var[XM
n ]

Var[XD
n ]
≤

Var[XD
n ] + 1

4 ·
n
g(n)(C(n)2 − 1)

Var[XD
n ]

= 1 +

n
g(n)(C(n)2 − 1)

4 Var[XD
n ]

.

Now, note that by Equation (27),

Var[XD
n ] ≥ nβ(1− β)

and therefore

Var[XM
n ] ≤ Var[XD

n ]

(
1 +

n
g(n)(C(n)2 − 1)

4nβ(1− β)

)

= Var[XD
n ]

(
1 +

1

g(n)
· C(n)2 − 1

4β(1− β)

)
.

Let

η =
1

g(n)
· C(n)2 − 1

4β(1− β)

and note that as n goes to infinity, η goes to 0 because we chose g(n) to grow asymptotically
more quickly than C(n)2.

Therefore, revisiting the original integrals, we have

PDn =

∫ n

n
2

1√
2πVar[XD

n ]
e

−(x−E[XDn ])
2

2Var[XDn ] dx

and

PMn ≥
∫ n

n
2

1√
2πVar[XD

n ](1 + η)
e

−(x−E[XDn ])
2

2Var[XDn ](1+η) dx.

Simplifying the above yields

PDn =
1

2

(
Erf

(
n− E[XD

n ]√
2 Var[XD

n ]

)
− Erf

(
n− 2E[XD

n ]

2
√

2 Var[XD
n ]

))
(31)
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and

PMn ≥
1

2

(
Erf

(
n− E[XD

n ]√
2 Var[XD

n ](1 + η)

)

−Erf

(
n− 2E[XD

n ]

2
√

2 Var[XD
n ](1 + η)

)) (32)

Furthermore, again by Equation (27), we know that Var[XD
n ] ∈ [β(1−β)n, n/4] and therefore√

Var[XD
n ] =

√
cn, where c ∈ [β(1− β), 1/4]. From this, note that as n goes to infinity, the

argument to the first error function in each expression goes to infinity.

Let

h1(n) =
n− 2E[XD

n ]

2
√

2 Var[XD
n ]

(33)

be the argument to the second error function in (31), and let

h2(n) =
n− 2E[XD

n ]

2
√

2 Var[XD
n ](1 + η)

(34)

be the argument to the second error function in (32). As n goes to infinity, note that the
argument in (33) must go to one of four states: infinity, negative infinity, zero, or a constant.
In the case that it goes to infinity, negative infinity, or zero, the presence of the extra 1√

1+η

term in (34) does nothing to change the sign of the arguments, and therefore they each
converge to the same state (infinity, negative infinity, or zero) as n approaches infinity.
When the argument in (33) goes to a constant, note that as n goes to infinity, η goes to 0,
and therefore the two converge once again.

We conclude that (an upper bound on) the difference between PDn and PMn converges to 0,
and hence DNH is satisfied.

6. Discussion

We wrap up with a discussion of two central issues.

How realistic is the model? We revisit an important point, which has already come
up several times, including in Section 1. Our assumption that voters only delegate their
votes to more competent voters is clearly restrictive. But we feel it allows us, in a sense, to
distill the essence of liquid democracy (e.g., by avoiding complications that have to do with
delegation cycles) and focus on central issues such as vote correlation. Moreover, as noted
earlier, our negative result — Theorem 1 — is especially powerful in this model, that is,
it holds despite the foregoing assumption. And the positive result — Theorem 2 — should
(informally speaking) still hold in a relaxed model where voters may delegate their votes to
less competent voters, as long as the average competence level increases by a constant due
to delegation. We view this as a realistic assumption.
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Beyond binary issues. In our model, there are only two alternatives, one correct and
one incorrect. While this setting is of practical importance, it is natural to ask whether our
results extend to the case of three or more alternatives. However, there are several obstacles.

First, a representation of the ground truth, and of voters’ perceptions thereof, is required. A
popular option is the Mallows Model (Mallows, 1957), where the ground truth is a ranking
of the alternatives, and the probability that a voter cast a given ranking as her vote de-
creases exponentially with its “distance” from the ground truth, in a way that depends on a
(competence) parameter φi. This model coincides with ours (using a suitable transformation
between φi and pi) when the number of alternatives is 2.

Second, we have assumed that votes are aggregated using the majority rule, which is the
only reasonable voting rule when there are two alternatives. By contrast, when choosing
among three or more alternatives, there are many voting rules one can use.

To conclude, any attempt to extend our model and results beyond the case of two alterna-
tives would have to address not only technical challenges, but also conceptual ones.
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