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Abstract
In Spatial Voting Theory, distortion is a measure of how good the winner is. It has been proved

that no deterministic voting mechanism can guarantee a distortion better than 3, even for simple
metrics such as a line. In this study, we wish to answer the following question: how does the
distortion value change if we allow less motivated agents to abstain from the election?

We consider an election with two candidates and suggest an abstention model, which is a gen-
eral form of the abstention model proposed by Kirchgässner. Our results characterize the distortion
value and provide a rather complete picture of the model.

1. Introduction

The goal in Social Choice Theory is to design mechanisms that aggregate agents’ preferences into
a collective decision. Voting is a well-studied method for aggregating preferences with many ap-
plications in artificial intelligence and multi-agent systems. Roughly, a voting mechanism takes the
preferences of the agents over a set of alternatives and selects one of them as the winner.

One fruitful approach to estimate the quality of a voting mechanism is to use the utilitarian
view which assumes that each agent has cost over the alternatives (Procaccia & Rosenschein, 2006;
Caragiannis & Procaccia, 2011; Boutilier et al., 2015; Benade et al., 2019; Goel et al., 2018; Benade
et al., 2017). For example, spatial models locate the voters and the alternatives in a finite metric
spaceM, and the cost of voter vi for Alternative x equals to their distance (Anshelevich et al., 2018;
Anshelevich, 2016; Anshelevich & Postl, 2017; Goel et al., 2017; Black, 1948; Barberà et al., 1993;
Merrill III et al., 1999). Considering these costs, the optimal candidate is defined to be the candidate
that minimizes the social cost (the total cost of the voters). Ideally, we would like the optimal
candidate to be the winner; however, since voting mechanisms only take the ordinal preferences of
voters as input, it is reasonable to expect that the winner is not always optimal. The question then
arises: how good is the winner, i.e., what is the worst-case ratio of the social cost of the winner to the
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social cost of the optimal candidate? This ratio is called the distortion value of a voting mechanism.
It is known that no deterministic voting mechanism can guarantee a distortion better than 3, even for
simple metrics such as a line (Anshelevich et al., 2018). To see this, consider the example shown in
Figure 1. In this example, candidate ` is the optimal candidate, and under the plurality voting rule 1

candidate r is the winner. Thus, the distortion value is

0.51(0.5− ε) + 0.49 · 1
0.51(0.5 + ε)

' 3.

ℓ r
ε

49% 51%

{
Figure 1: An example with distortion value close to 3. In this example, 49% of the voters are located
at point 0 and 51% of the voters are located at point 0.5 + ε. In addition, candidates L and R are
respectively located at points 0 and 1.

However, the example of Figure 1 seems unrealistic in some ways. Although the voters located
near the point 0.5 are closer to r, they have a very low incentive to vote for r, since their costs for
both candidates are almost equal. On the other hand, agents located at 0 have a strong incentive to
vote for `. Indeed, if voters are allowed to abstain, which is a natural assumption in many real-world
elections, we expect ` to be the winner rather than r. In this study, our goal is to tackle this problem:

How does the distortion value change, if we allow less motivated agents to abstain?

1.1 Abstention

Scientists have long studied the factors affecting participation in an election. For example, Wolfinger
and Rosenstone (1980) argue that more educated voters participate with a higher probability, or
Lijphart (1997) discusses that the voters on the left side of the political spectrum participate less
frequently. Similarly, the decision to vote may rely on variables such as income level or the sense of
civic duty (Wolfinger & Rosenstone, 1980).

Traditionally, both game-theoretic and decision-theoretic models of turnout have been proposed.
At the heart of most of these models lies the assumption that there are costs for voting.2 These
costs include the costs of collecting and processing information, waiting in the queue, and voting
itself. Presumably, if a voter decides to abstain, she does not have to pay these costs. Therefore,
a rational voter must receive utility from voting. There is evidence suggesting that voters behave
strategically when deciding to vote and take the costs and benefits into account. For example, Riker
and Ordeshook (1968) show that the turnout is inversely related to voting costs.

Apart from social-psychological traits, other studies suggest that voters’ abstention may stem
from their ideological distances from the candidates. The work of Downs (1957) initiated this line
of research. He argues that in a two-candidate election under the majority rule, the choice between

1. For two candidates, all the well-known deterministic voting mechanisms (e.g. Borda, k-approval, Copeland, etc) turn
into plurality.

2. There are other decision theoretic explanations of abstention that do not rely on costs, e.g., see (Ghirardato & Katz,
1997).
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voting and abstaining is related to the voter’s comparative evaluation of the candidates. Riker and
Ordeshook (1968) later improve this model by reformulating the original equation to incorporate
other social and psychological factors.

Many empirical studies in the spatial theory of abstention suggest that the voters are more likely
to abstain when they feel indifferent toward the candidates or alienated from them (Kirchgässner,
2003). The models introduced by Downs (1957) and Riker and Ordeshook (1968) are only capable
of explaining the indifference-based abstention which occurs when the difference between the costs
of candidates for a voter is too small to justify voting costs. On the other hand, these models cannot
justify alienation-based abstention, which occurs when a voter is too distant from the alternatives
to justify voting costs. To alleviate this, some studies argue that the relative ideological distance
plays a more critical role than the absolute distance (Kirchgässner, 2003; Geys, 2006). Our model
of abstention in this paper a generalization of the model introduced by Kirchgässner (2003) which
incorporates the relative distances.

1.2 Our Work

In this paper, we consider the effect of abstention on the distortion value. In our study, there are
two candidates, and the voters decide whether to vote or abstain based on a comparison between the
cost (i.e., distance) of their preferred alternative and the cost of the other alternative. We define the
concepts of expected winner and expected distortion to evaluate the distortion of an election in our
model. Our results characterize the distortion value and provide a complete picture of the model.
For the special case that our abstention model conforms exactly to that of Kirchgässner (2003), we
show that the distortion of the expected winner is upper bounded by 1.522.

We also give an almost tight upper bound on the expected distortion value of large elections. We
show that for any α > 0 and a large enough election (in terms of the number of voters), the expected
distortion is upper-bounded by (1 + 2α)D∗, where D∗ is the distortion of the expected winner.

Finally, we generalize our results to include arbitrary metric spaces. We show that the same
upper bounds obtained for the distortion value for the line metric also work for any arbitrary metric
space.

1.3 Related Work

The utilitarian view, which assumes that the voters have costs for each alternative, is a well-known
approach in welfare economics (Roemer, 1998; Ng, 1997) and has received attention from the AI
community during the past decade (Procaccia & Rosenschein, 2006; Boutilier et al., 2015; Brânzei
et al., 2013; Pivato, 2016; Anshelevich & Postl, 2017; Caragiannis et al., 2017; Goel et al., 2017;
Gross et al., 2017; Amanatidis et al., 2020; Caragiannis & Procaccia, 2011). Procaccia and Rosen-
schein (2006) first introduced distortion as a benchmark for measuring the efficiency of a social
choice rule in utilitarian settings. The worst-case distortion of many social choice functions is shown
to be high or even unbounded. However, imposing some mild constraints on the cost functions yields
strong positive results. One of these assumptions which is reasonable in many political and social
settings, is the spatial assumption which assumes that the agent costs form a metric space (Enelow
& Hinich, 1984; Merrill III et al., 1999; Feldman et al., 2016; Anshelevich et al., 2018; Anshelevich,
2016; Pierczynski & Skowron, 2019; Munagala & Wang, 2019).

Anshelevich, Bhardwaj and Postl (2018) were first to analyze the distortion of ordinal social
choice functions when evaluated for metric preferences. For plurality and Borda rules, they prove
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that the worst-case distortion is 2m−1, wherem is the number of alternatives. On the positive side,
they show that for the Copeland rule, the distortion value is at most 5. They also prove the lower
bound of 3 for any deterministic voting mechanism and conjecture that the worst-case distortion of
Ranked Pairs social choice rule meets this lower-bound. This conjecture is later refuted by Goel,
Krishnaswamy, and Munagala (2017). Recently, Munagala and Wang (2019) present a weighted
tournament rule with distortion of 4.236.

In addition to deterministic social choice rules, the distortion of randomized rules have been also
studied in the literature. The output of such mechanisms is a probability distribution over the set of
alternatives rather than a single winning alternative. Anshelevich and Postl (2017) show that for
α-decisive metric spaces 3 any randomized rule has a lower-bound of 1 + α on the distortion value.
For the case of two alternatives, they propose an optimal algorithm with the expected distortion of
at most 1 + α. Cheng et al. (2018) characterized the positional voting rules with constant expected
distortion value (independent of the number of candidates and the metric space).

Chen et al. (2017) consider the case that candidates are drawn randomly from the population
of voters. They prove the tight bound of 1.1716 for the distortion value in the line metric and an
upper-bound of 2 for an arbitrary metric space.

In addition to the studies mentioned in Section 1.1, there are other studies that consider the ef-
fect of abstention in various types of elections. For example, Desmedt and Elkind in (2010) propose
a game theoretic analysis of the plurality voting with the possibility of abstention and characterize
the preference profiles that admit a pure Nash equilibrium. Rabinovich et al. (2015) consider the
computational aspects of iterative plurality voting with abstention. Also, related to our work is the
concept of embedding into voting rules introduced by Caragiannis and Procaccia (2011). An em-
bedding is a set of instructions that suggests each agent how to vote, based only on the agent’s own
utility function. For example, when the voting mechanism is the majority, one possible embedding
is that voters vote for each candidate with a probability that is proportional to their utility for that
candidate. Among other results, Caragiannis and Procaccia (2011) show that this embedding results
in constant distortion. Indeed, our abstention model can be seen as an embedding for elections with
majority rule where voters are allowed to abstain.

2. Preliminaries

In our study, every election ξ consists of four ingredients:

• A set Vξ of n voters. We denote the i’th voter by vi.

• A set Cξ candidates. In this study, we suppose that there are only two candidates and denote
the candidates by ` (left candidate) and r (right candidate). 4

• A finite metric spaceMξ where the candidates and the voters are located. Unless explicitly
stated otherwise, we suppose thatMξ is a line, and ` and r are located respectively at points
0 and 1. In addition, each voter is attributed a value xi ∈ (−∞,∞) which shows her location
on the line. We denote by di,a, the distance between voter vi and alternative a ∈ {`, r}.

3. In an α-decisive metric, for every voter, the cost of her preferred choice is at most α times the cost of her second best
choice.

4. In a few cases, we also use `′ and r′ to refer to the left and right candidates.
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• A mechanism by which the winner is selected. In this paper, we consider a simple scenario
where the winning candidate is elected via the majority rule (in case of a tie, the winner is
determined by tossing a fair coin). Note that for two candidates, almost all the well-known
deterministic voting mechanisms select the candidate preferred by the majority as the winner.

Definition 2.1. For an election ξ and candidate a ∈ {`, r}, we define the social cost of a in ξ as

scξ(a) =
∑
vi∈Vξ

di,a.

The optimal candidate of election ξ, denoted by o is the candidate that minimizes the social cost,
i.e.,

oξ = arg min
a∈{`,r}

scξ(a).

We suppose that each voter either abstains or votes for one of the candidates. In Section 2.1 we
give a formal description of agents voting behavior.

2.1 Voting Behavior of Individuals

We employ a simple probabilistic model, where each voter independently decides whether to abstain
or participate by evaluating her distances from the candidates. Fix an election ξ and a voter vi ∈ Vξ
and let a ∈ {`, r} be the candidate closer to vi inMξ and ā be the other candidate. We suppose that
vi votes sincerely for her preferred candidate a with a probability pi where pi is a function of di,a
and di,ā, and abstains with probability 1− pi.

Denote by f the probability function from which pi is derived, i.e., pi = f(di,a, di,ā) . Since
f represents the probability of voting, we expect f to satisfy certain axiomatic assumptions. Recall
that in spatial voting models, there are two crucial sources of abstention (Kirchgässner, 2003):

• Indifference-based Abstention (IA): the smaller the difference between the distances of a
voter from the candidates is, the less likely it is that she casts a vote.

• Alienation-based Abstention (AA): the further a voter is located from his preferred candi-
date, the less likely it is that she casts a vote.

To illustrate, for the voters in Figure 2, we have:

• Voters v1, v2, and v3 prefer ` and voters v5 and v6 prefer r.

• Voter v1 has a strong incentive to cast a vote since her cost for ` is zero.

• Voter v4 always abstains, since her costs for both the candidates are equal (IA).

• For voters v5 and v6, we have p5 ≥ p6, since v6 is more alienated (AA).

• For voters v2 and v3, we have p2≥p3, since d2,`≤d3,`, and d2,r−d2,`≥d3,r−d3,` (IA,AA).

As mentioned, the models of Downs (1957) and Riker and Ordeshook (1968) are only capable
of explaining the Indifference-based abstention, since they only consider the absolute difference
between the distances of the candidates to a voter. To resolve this, some recent studies argue that
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ℓ r

v1 v2 v3 v4 v5 v6

Figure 2: A simple election.

Figure 3: fβ for different values of β, when two candidates ` and r are located at points 0 and 1. For
any point z, the curves show fβ(|z − 0|, |z − 1|) for different β.

the relative distance, rather than absolute distance, is relevant. In this study, we follow the model of
Kirchgässner (2003) which is based on the relative distances. The idea is that the probability that a
voter casts a vote depends on her ability to distinguish between the candidates. By Weber–Fechner’s
law (see Fechner, 2012), the ability to distinguish between the candidates depends on their relative
distances to the voter. Formally, the probability pi that voter vi votes for a is calculated via the
following formula:

pi = f(di,a, di,ā) =
|di,a − di,ā|
di,a + di,ā

. (1)

Here we consider a more general form of Equation (1). We suppose that each voter vi in election ξ
casts a vote with probability pi, where

pi = fβ(di,a, di,ā) =

( |di,a − di,ā|
di,ā + di,a

)β
, (2)

where β is a constant in [0, 1]. Figure 3 shows the behavior of fβ for different values of β and
different locations on the line. As is clear from Figure 3, for the smaller values of β, voters are more
eager to participate. Indeed, the exponent β can be seen as a quantitative measure of how much this
ideological distance matters. For the special case of β = 0, voters always participate in the election,
regardless of their location. We refer to β as the participation parameter. It can be easily observed
that for any 0 ≤ β ≤ 1, function fβ satisfies all the desired criteria.

2.2 Expected Winner and Expected Distortion

As mentioned, we assume that the winner is determined by the majority rule. However, according
to the stochastic behavior of the voters, the winner is not deterministic, i.e., each candidate has a
probability of winning. Denote by #aβ , the expected number of voters who vote for candidate a,
when the participation parameter is β. Furthermore, denote by Pa,β , the probability that candidate a
wins the election, when the participation probability is β. We define the expected winner of elec-
tion ξ for participation parameter β, denoted by ωξ,β as the candidate with the maximum expected
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number of votes.
ωξ,β = arg max

a∈Cξ
#aβ.

Definition 2.2. For election ξ and a candidate a ∈ {`, r} we define the distortion of a in election ξ,
denoted by D(a), as the ratio scξ(a)/scξ(oξ).

By definition, the distortion of the optimal candidate is 1. We discuss two approaches to evaluate
the distortion of an election ξ. In the first approach, we evaluate election ξ by the distortion of its
expected winner, i.e., D(ωξ,β). Another approach is to define the distortion of election ξ as the
expected distortion of the winner, over all possible outcomes, i.e.,

D̄β(ξ) = P`,β ·D(`) + Pr,β ·D(r). (3)

Finally, for any 0 ≤ β ≤ 1, we define worst-case distortion values D∗β and D̄∗β as:

D∗β = max
ξ∈Ω

D(ωξ,β),

and
D̄∗β = max

ξ∈Ω
D̄β(ξ),

where Ω is the set of all possible elections ξ. We dedicate two separate sections to analyze the value
of D∗β and D̄∗β . Even though the value of D∗β and D̄∗β essentially depend on β, we provide necessary
tools to analyze distortion these values for any β ∈ [0, 1].

For convenience, in the rest of the paper, when β is fixed we drop the subscript ‘β’ and simply
use P`, #a instead of P`,β, #aβ.

3. Distortion of the Expected Winner

Throughout this section, we analyze the worst-case distortion of the expected winner. Recall that
the expected winner is the candidate with a higher expected number of votes. There are two reasons
why we consider the distortion value of the expected winner. First, since the number of votes that
each candidate receives is concentrated around its expectation 5, in elections with a large number
of voters, the expected winner has a very high chance of winning; especially when there is a non-
negligible separation between the expected number of votes that each candidate receives. Secondly,
we use the tight upper-bound on the distortion value of the expected winner to prove an upper bound
on the expected distortion of the election for the second approach. Recall that the probability that a
voter vi casts a vote for his favorite candidate in election ξ is:

fβ =

( |di,` − di,r|
di,` + di,r

)β
.

In this section, we suppose without loss of generality that candidate ` is the expected winner. More-
over, we assume that the optimal candidate is r; otherwise, the distortion equals 1. We also consider
four regions A,B,C and D as in Figure 4. 6

5. We can show this claim using concentration bounds such as Hoeffding. A simple form of this inequality states that
for n independent random variables bounded by [0, 1], we have

P(Sn − E[Sn] > t) ≤ exp(−2nt2),

where Sn is the sum of the variables.
6. In the paper we suppose that the voters located in the borderlines belong to both regions.
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A B C D

ℓ r

0 11
2

Figure 4: Regions A,B,C, and D

In Theorem 3.1 we state the main result of this section.

Theorem 3.1. For any β ∈ [0, 1], there exists an election ξ, such that D(ωξ,β) = D∗β and the voters
in ξ are located at two different locations xb ∈ B and xd ∈ D.

The basic idea to prove Theorem 3.1 is as follows: we prove that for every election ξ, there
exists an election ξ′ with D(ωξ′,β) ≥ D(ωξ,β), such that the voters in ξ′ are located in at most 2
different locations. To show this, we collect the voters in ξ by carefully moving them forward and
backward via a sequence of valid displacements, as defined in Definition 3.2.

Definition 3.2. Define a displacement as the operation of moving a subset of the voters forward
or backward on the line to a new location. A displacement is valid if it does not alter the expected
winner, and furthermore, does not decrease the distortion value of the expected winner.

In Lemmas 3.3, 3.4, and 3.5 we introduce three sorts of valid displacement which help us collect
the voters. For convenience, here we only state the lemmas and defer the proofs to Section 3.2.
Figure 5, illustrates a summary of the valid displacements introduced in these lemmas. Note that
these displacements are valid for any β ∈ [0, 1].

Lemma 3.3. Moving a voter vi from xi ∈ A to 0 is a valid displacement.

Lemma 3.4. Consider voters vi and vj respectively at xi ∈ B and xj ∈ C. Then,

• If di,` ≤ dj,r, moving vi to xi + xj − 1/2 and vj to 1/2 is a valid displacement.

• If di,` > dj,r, moving vi to xi − 1 + xj and vj to 1 is a valid displacement.

Lemma 3.5. Consider voters vi, vj , where xi, xj ∈ B or xi, xj ∈ D. Then moving both the voters
to (xi + xj)/2 is a valid displacement.

We also state two simple and natural Corollaries of Lemmas 3.4, and 3.5.

Corollary 3.6 (of Lemma 3.4). We can move each voter in region C to either 1 or 1/2 by a sequence
of valid displacements.

Proof. Consider an arbitrary voter vj ∈ (1/2, 1). Since ` is the expected winner, there exists at least
one voter, say vi, in region B. By Lemma 3.4, if di,` ≤ dj,r, we can move vj to 1/2 and if di,` > dj,r,
we can move vj to 1.

Corollary 3.7 (of Lemma 3.5). We can collect all the voters of region B at some point x ∈ B via
a sequence of valid displacements. Furthermore, we can collect all the voters of region D at some
point x′ ∈ D via a sequence of valid displacements.
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ℓ rA

vi

ℓ r
CB

vjviv′i v′j

ℓ rB D

Figure 5: Valid displacements introduced in Lemmas 3.3, 3.4, 3.5.

Proof. By applying Lemma 3.5 iteratively to the furthest voters, the maximum distance between
the voters in each region decreases. This procedure can be applied until all the voters gather at one
point.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. First, we prove that by Lemma 3.3 and Corollaries 3.6, and 3.7, every elec-
tion ξ can be reduced to an election ξ′, such that

• ξ and ξ′ have the same expected winner.

• D (ωξ,β) ≤ D
(
ωξ′,β

)
.

• All the agents in ξ′ are located at two points xb ∈ B and xd ∈ D.

Consider an arbitrary election ξ. Using Lemma 3.3, we move all the voters in region A to 0. After-
wards, using Corollary 3.6 we move each voter in region C to one of the points 1/2 or 1. At this
point, all the voters belong to one of regions B or D (recall that the voters located in the borderlines
belong to both regions). Finally, using Corollary 3.7, we collect all the voters in regions B and D at
some points xb ∈ B, xd ∈ D.

Finally, let ξ be an arbitrary election such that D(ωξ,β) = D∗β . Applying the above reduction on
ξ, yields an election ξ∗ with D(ωξ∗,β) = D∗β , and the desired structure.

According to Theorem 3.1, for any β ∈ [0, 1], we can establish an election ξ∗ with the maximum
distortion, and the following structure (see Figure 6): the interior of regions A and C contain no
voter. All the voters are located at two points xb ∈ B and xd ∈ D. Note that, the maximum distortion
value and the location of xb and xd in the worst-case scenario depends on the value of β.
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ℓ r

xb xdxm

Figure 6: For any β ∈ [0, 1], there is an election ξ∗ with D(ωξ∗,β) = D∗β , and the above structure.

3.1 A Tight Upper Bound on D∗β

We now evaluate D∗β for different values of 0 ≤ β ≤ 1. Let us start by the boundary case β = 0.
For β = 0, the probability that a voter casts a vote is 1, independent of her location. It is proved that
for this case, we have D∗β = 3 (Anshelevich et al., 2018). Indeed, the same example we provided in
Figure 1 is the scenario with the highest distortion for β = 0.

Now, consider β > 0, and let ξ∗ be the election that maximizes D(ωξ∗,β). As discussed in the
previous section, we can assume without loss of generality that the voters in ξ∗ are located at two
points, namely, xb ∈ B and xd ∈ D. Suppose that qb voters are at xb and qd voters are at xd. We
have:

#` = (1− 2xb)
β qb and #r =

(
1

(2xd − 1)β

)
qd.

Since ` is the expected winner, we have

(1− 2xb)
βqb ≥

(
1

(2xd − 1)β

)
qd.

On the other hand, we have

scξ∗(`) = qbxb + qdxd,

and

scξ∗(r) = qb(1− xb) + qd(xd − 1).

Thus,

D(`) =
scξ∗(`)

scξ∗(r)

=
qbxb + qdxd

qb(1− xb) + qd(xd − 1)

=
qbxb + (n− qb)xd

qb(1− xb) + (n− qb)(xd − 1)
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Therefore, to find the maximum distortion value, we need to solve the following optimization prob-
lem:

max
qbxb + (n− qb)xd

qb(1− xb) + (n− qb)(xd − 1)

s.t. (1− 2xb)
βqb ≥

n− qb
(2xd − 1)β

,

0 ≤ qb ≤ 1,

0 ≤ xb ≤ 1/2,

1 ≤ xd.

(4)

Now consider another boundary case: β = 1. For β = 1 the answer to the above optimization
problem is (1+

√
2)2

1+2
√

2
' 1.522, which can be obtained by choosing qb = n

2+
√

2
, xb = 0, and xd =

2+
√

2
2 . A graphical representation of this construction is shown in Figure 7.

ℓ r

10 2+
√
2

2

n
2+

√
2 n 1+

√
2

2+
√
2

Figure 7: A tight example for β = 1.

In general for 0 < β < 1, the maximum distortion value equals the answer of Optimization
Problem (4). In Figure 8, we show the answer of this program for different values of β. Interestingly,
with β increasing from 0 to 1, D∗β initially decreases and then increases. As illustrated in Figure 8,
it can be seen that the minimum possible value for D∗β is '

√
2 for β ' 0.705.

Figure 8: Worst-case distortion for 0≤β≤1.
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3.2 Valid Displacements

In this section, we prove Lemmas 3.3, 3.4, and 3.5. One important tool to prove these lemmas is
Observation 3.8.

Observation 3.8. Let a, b, c, d > 0 be four positive constants. We have :7

• If ab ≥ c
d then a+c

b+d ≤ a
b and a−c

b−d ≥ a
b .

• If ab ≤ c
d then a+c

b+d ≥ a
b and a−c

b−d ≤ a
b .

Lemma 3.3. Moving a voter vi from xi ∈ A to 0 is a valid displacement.

Proof. Initially, vi votes for ` with probability
(

1
1−2xi

)β
. After moving vi to 0, she votes for ` with

probability 1. Therefore, if we move vi to 0, the value of #` does not decrease, and the expected
winner does not change. Furthermore, by this movement both scξ (`) and scξ (r) are decreased by
−xi. Let c and c′ be the contribution of v−i (that is, all voters except vi) to the social cost of ` and
r respectively. Before moving vi to 0, we have

D(`) =
c− xi

c′ + 1− xi
,

and after the movement we have

D(`) =
c

c′ + 1

=
(c− xi)− (−xi)

(c′ + 1− xi)− (−xi)
, (5)

By applying Observation 3.8 on Equation (5), we have

c− xi
c′ + 1− xi

≤ (c− xi)− (−xi)
(c′ + 1− xi)− (−xi)

which implies that moving vi to 0 is a valid displacement.

Lemma 3.4. Consider voters vi and vj respectively at xi ∈ B and xj ∈ C. Then,

• If di,` ≤ dj,r, moving vi to xi + xj − 1/2 and vj to 1/2 is a valid displacement.

• If di,` > dj,r, moving vi to xi − 1 + xj and vj to 1 is a valid displacement.

Proof. Initially, vi votes for ` with probability (1− 2xi)
β , and vj votes for r with probability

(2xj − 1)β . Since these movements do not change the regions where the voters belong, after the
movement, they vote for the same candidate but with different probabilities. Let ∆i be the differ-
ence between the contribution of vi to #`, before and after the displacement. Similarly, let ∆j be
the difference between the contribution of vj to #r before and after the movement. We consider two
cases.

7. For the second inequalities, we assume d < b.
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Case I (di,` ≤ dj,r): if we move vi to xi+xj−1/2 and vj to 1/2, vi votes for ` with probability
(2− 2xi − 2xj)

β and vj votes for r with probability 0. Thus, we have

∆i = (2− 2xj − 2xi)
β − (1− 2xi)

β and ∆j = 0β − (2xj − 1)β .

Since β ≤ 1, by straightforward calculus we have:

((1− 2xi)− (2xj − 1))β ≥ (1− 2xi)
β − (2xj − 1)β

((1− 2xi)− (2xj − 1))β − (1− 2xi)
β ≥ − (2xj − 1)β

∆i ≥ ∆j .

Case II (di,` > dj,r): if we move vi to xi + xj − 1 and vj to 1, after the displacement, vi votes
for ` with probability (3− 2xi − 2xj)

β , and vj votes for r with probability 1. Therefore, we have

∆i = (3− 2xi − 2xj)
β − (1− 2xi)

β and ∆j = 1β − (2xj − 1)β .

Since β ≤ 1, we have

((1− 2xi)− (2xj − 2))β ≥ (1− 2xi)
β − (2xj − 2)β

((1− 2xi)− (2xj − 2))β − (1− 2xi)
β ≥ − (2xj − 2)β

((1− 2xi)− (2xj − 2))β − (1− 2xi)
β ≥ 1β − (2xj − 1)β

∆i ≥ ∆j .

Hence the expected winner does not change. Besides, since we move two voters in Regions B and
C equally in the opposite directions in both cases, the distortion value of each candidate remains
unchanged.

Lemma 3.5. Consider voters vi, vj , where xi, xj ∈ B or xi, xj ∈ D. Then moving both the voters
to (xi + xj)/2 is a valid displacement.

Proof. Let ε = |xi − xj |/2. Recall the definition of ∆i and ∆j from the proof of Lemma 3.4. For
the case of xi, xj ∈ D, we have:

∆i =

(
1

2xi + 2ε− 1

)β
−
(

1

2xi − 1

)β
,

and

∆j =

(
1

2xj − 2ε− 1

)β
−
(

1

2xj − 1

)β
.

Thus, we have

∆i + ∆j =

(
1

2xi + 2ε− 1

)β
−
(

1

2xi − 1

)β
+

(
1

2xj − 2ε− 1

)β
−
(

1

2xj − 1

)β
.

Since xj > xi, these two inequalities imply ∆i + ∆j ≤ 0 (see Figure 9). Thus, value of #r does not
increase and the expected winner does not change.
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Figure 9: For every decreasing convex function g and xi < xj , we have g (xi + ε) − g (xi) ≤
g (xj)− g (xj − ε) ≤ 0

Similarly For the case of xi, xj ∈ B, we have:

∆i = (1− 2xi − 2ε)β − (1− 2xi)
β ,

and

∆j = (1− 2xj + 2ε)β − (1− 2xj)
β .

Thus, we have

∆i + ∆j = (1− 2xi − 2ε)β − (1− 2xi)
β + (1− 2xj + 2ε)β − (1− 2xj)

β .

Note that since f ′β (x) = (1− 2xi)
β is a decreasing and concave function, we have

d
(
f ′β
)

dx
≤ 0,

and
d2
(
f ′β
)

dx2
≤ 0.

Since xj > xi, these two inequalities imply ∆i + ∆j ≥ 0. Thus, value of #` does not decrease
and the expected winner does not change. In addition, since the voters move in opposite directions
and by the same distance, the distortion value of the candidates does not change. Therefore, this
modification is a valid displacement.

4. Expected Distortion

Recall that in our second approach, we define the distortion of an election as the expected distortion
of the winner, where the expectation is taken over the random behavior of the voters. Our main
result in this Section is Theorem 4.1.
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Theorem 4.1. For any α > 0, value of D̄β(ξ) for every election ξ whose candidates receive at least

φ(α) =
(α+ 1)3

α2(α−
√
α+ 1)2

expected number of votes is at most (1 + 2α)D∗β .

In this section, we suppose without loss of generality that candidate r is the optimal candidate.
Thus, Equation (3) can be rewritten as

D̄β(ξ) = P`
scξ(`)

scξ(r)
+ Pr. (6)

In this case, if ` would be the expected winner, we have:

D̄β(ξ) = P`D(`) + PrD(r)

≤ P`D(`) + PrD(`) (D(`) ≥ D(r))

= D(`). (7)

In addition, we know that the distortion of the expected winner is at most D∗β , which together with
Equation (7) implies D̄(ξ) ≤ D∗β for the case that ` is the expected winner. Therefore, throughout
this section, we suppose that r is both the optimal and the expected winner candidate.

In Theorem 4.2, we prove that there is an election with the maximum distortion value and a
simple structure.

Theorem 4.2. For any β ∈ [0, 1], there exists an election ξ∗ such that D̄β(ξ∗) is maximum, and in
ξ∗ there is no voter in the interior of regions A and C, and also all the voters in D are located at a
single point xd ∈ D.

The basic idea to prove Theorem 4.2 is as follows: we prove that for every election ξ, there
exists an election ξ′ with D̄β(ξ′) ≥ D̄β(ξ) and the desired structure. To show this, we collect some
of the the voters in ξ via a sequence of valid displacements, albeit with a new definition for valid
displacement.

Definition 4.3. A displacement is valid, if it does not decrease D̄(ξ).

The process of proving that a displacement is valid for this case is relatively tougher than the
previous model. The reason is that we do not even have a closed-form expression that represents
the winning probability of each candidate. In Lemmas 4.4 and 4.5 we explain our tools to discover
valid displacements. For brevity, we defer the proofs to these lemmas to Section 4.2.

Lemma 4.4. For each voter vi ∈ A, there is a point x′i ∈ B such that moving vi to x′i is a valid
displacement. Furthermore, for each voter vj ∈ C, there is a point x′j ∈ D such that moving vj to
x′j is a valid displacement.

Lemma 4.5. Let vi and vj be two voters located respectively at xi, xj ∈ D. Then, there exists a
point x between xi and xj , such that moving both the voters to x is a valid displacement.
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ℓ r

ℓ r

Figure 10: Valid displacements introduced in Lemmas 4.4 and 4.5.

r

xd0.5

ℓ

0 1

Figure 11: For any β ∈ [0, 1], there is an election with the maximum expected distortion and this
structure.

Figure 10, shows a summary of the displacements described in Lemmas 4.4 and 4.5. Using
these displacements, one can establish an election with the maximum expected distortion, and the
following structure (see Figure 11): the interior of regions A and C contain no voter. All the voters
in D are located at point xd ∈ D.

Proof of Theorem 4.2. Consider an election with the maximum expected distortion. By Lemma 4.4
we can suppose that the interior of regions A and C are empty. Furthermore, by iteratively applying
Lemma 4.5 on the farthest pair of points in Region D, we can collect all the voters of D into a single
point and transform the election into one with the maximum distortion, and the desired structure.

4.1 An Almost Tight Bound on D̄∗β
In this section, we discuss the value of D̄∗β , for any β ∈ [0, 1]. As mentioned, to prove our upper
and lower bounds in this section, we use the bounds obtained in Section 3.1.

Similar to Section 3.1, we begin with the boundary case of β = 0. By a similar argument as in
Section 3.1, for β = 0 all the voters vote for their preferred candidate and so we have D̄∗0 = 3. For
β > 0, we prove Theorem 4.1 which provides an asymptotic upper bound on D̄∗β for any β ∈ (0, 1].

Theorem 4.1. For any α > 0, value of D̄β(ξ) for every election ξ whose candidates receive at least

φ(α) =
(α+ 1)3

α2(α−
√
α+ 1)2

expected number of votes is at most (1 + 2α)D∗β .
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To prove Theorem 4.1, we first prove Lemmas 4.6 and 4.7.

Lemma 4.6. Let α be a constant, and ξ be an election, with the property that r is the optimal and
the expected winner candidate, and #r/#` ≤ 1 + α. Then D̄β(ξ) ≤ (1 + 2α)D∗β.

Proof. To prove this lemma we add sufficient number of agents at point 0 to alter the expected
winner to `. After this operation, since ` is the expected winner, we know that the expected distortion
of ` is at most D∗β . Next, based on the number of voters added at point 0, we bound the value of
D̄β(ξ).

Let s be the minimum number of voters we need to add at point 0 to convert ` to the expected
winner. Since #r ≤ (1 + α) · #`, and each voter at point 0 contributes 1 to #`, we have s ≤ α · #`.
Let ξ′ be the election, after adding the agents at point 0. Since the expected winner of ξ′ is `, the
expected distortion of ` is upper bounded by D∗β:

scξ′(`)

scξ′(r)
≤ D∗β. (8)

Moreover, since we add the agents at point 0, their cost for candidate ` is zero and hence,
scξ′(`) = scξ(`). Thus, we have

scξ(`)/scξ(r)

scξ′(`)/scξ′(r)
=

scξ′(r)

scξ(r)
(9)

Now, we show that the ratio scξ′(r)/scξ(r) is upper bounded by 1 + 2α. First, let us calculate
the explicit formulas of scξ(r) and scξ′(r). As discussed before, we can assume that the agents in
ξ are located either in Region B or at point xd ∈ D. Let qd be the population of the voters that are
located at xd. We have

scξ(r) =
∑

v∈Vξ:xv∈B

(1− xv) + qd(xd − 1).

Furthermore, we have scξ′(r) = scξ(r) + s, where

s ≤ α · #`
= α

∑
v∈Vξ:xv∈B

(1− 2xv)
β.

Thus, we have

scξ′(r)

scξ(r)
≤ 1 +

α
∑

v∈Vξ:xv∈B(1− 2xv)
β∑

v∈Vξ:xv∈B(1− xv) + qd(xd − 1)

≤ 1 + α ·
∑

v∈Vξ:xv∈B(1− 2xv)
β∑

v∈Vξ:xv∈B(1− xv)
,

and since for any x ≤ 1/2 we have (1−2x)β

1−x ≤ 2,

scξ′(r)

scξ(r)
≤ 1 + 2α. (10)
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Inequality (10) together with Equations (8) and (9) implies:

scξ(`)/scξ(r)

D∗β
≤ 1 + 2α.

Thus, by Equation (6), we have

D̄β(ξ) ≤ P`(1 + 2α)D∗β + Pr,

and since P` + Pr = 1 we conclude that D̄β(ξ) ≤ (1 + 2α)D∗β.

Lemma 4.7. Let α be a constant, and ξ be an election, with the property that r is the optimal and
the expected winner candidate, and #r/#` > 1 + α. Then, if the number of candidates would be
large enough, we have D̄β(ξ) ≤ (1 + 2α)D∗β .

Proof. To prove Lemma 4.7, we use the fact that the number of votes that a candidate receives is
concentrated around it’s expected value. By definition, we have

D̄β(ξ) = P`
scξ(`)

scξ(r)
+ (1− P`)

= P`(
scξ(`)

scξ(r)
− 1) + 1

= P`

∑
v∈Vξ:xv∈B(2xv − 1) + qd∑

v∈Vξ:xv∈B(1− xv) + qd(xd − 1)
+1

≤ P`
qd∑

v∈Vξ:xv∈B(1− xv)
+ 1 (xv < 1/2)

≤ P`
qd∑

v∈Vξ:xv∈B(1− 2xv)
+ 1. (11)

Let ˆ̀ and r̂ be two random variables indicating the number of votes that ` and r receive in ξ,
respectively. These two variables are the sum of i.i.d. Bernoulli variables each indicating whether a
voter casts a vote or not. Note that all the voters that contribute to r̂ are located at the same point,
but voters contributing to ˆ̀ might have different locations. Using these facts we can calculate the
expected value and the variance of ˆ̀and r̂. We have:

E[r̂] = #r =
qd

(2xd − 1)β
,

Var(r̂) = σ2
r =

qd
(2xd − 1)β

× (1− 1

(2xd − 1)β
),

E[ˆ̀] = #` =
∑

v∈Vξ:xv∈B

(1− 2xv)
β,

Var(ˆ̀) = σ2
` =

∑
v∈Vξ:xv∈B

(1− 2xv)
β × (1− (1− 2xv)

β).

Let t = #`+ #r√
1+α

. Since t ∈ [#`, #r], we have

P(ˆ̀≥ r̂) ≤ P(ˆ̀≥ t) + P(r̂ ≤ t). (12)
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Now, since we know both the expected value and the variance of r̂ and ˆ̀, we can use Chebyshev’s
inequality to provide an upper bound on P(ˆ̀≥ r̂).

Chebyshev’s inequality states that for a random variable T with finite expected value µ and
finite non-zero variance σ2, and for any real number k > 0,

P(|T − µ| ≥ k) ≤ σ2

k2
. (13)

Therefore we have:

P(ˆ̀≥ t) ≤ P(|ˆ̀− #`| ≥ #r√
1 + α

)

≤ σ2
`

1
1+α#r

2

≤
∑

v∈Vξ:xv∈B(1− 2xv)
β × (1− (1− 2xv)

β)

#r × #`

≤
∑

v∈Vξ:xv∈B(1− 2xv)
β × (1− (1− 2xv)

β)

#r ×∑v∈Vξ:xv∈B(1− 2xv)β

≤ 1

#r
. (14)

On the other hand,

P(r̂ ≤ t) ≤ P(|r̂ − #r| ≥ #r − #`− #r√
1 + α

))

≤ P(|r̂ − #r| ≥ #r − #r

1 + α
− #r√

1 + α
))

≤ σ2
r

α2+1+α−2α
√

1+α
(1+α)2

#r2

=

qd
(2xd−1)β

× (1− 1
(2xd−1)β

)

(α−
√
α+1)2

(1+α)2
#r2

=
(1− 1

(2xd−1)β
)

(α−
√
α+1)2

(1+α)2
#r

. (15)

Let

φ(α) =
(α−

√
α+ 1)2

(1 + α)2
.

Putting Equations (12), (14) and (15) together we have:

P(ˆ̀≥ r̂) ≤ 1

#r
+

1− 1
(2xd−1)β

f(α)#r
,
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and by Equation (11) we have:

D̄β(ξ) ≤
(

1

#r
+

1− 1
(2xd−1)β

f(α)#r

)
× qd∑

v∈Vξ:xv∈B(1− 2xv)
+ 1

=

(
(2xd − 1)β +

(2xd − 1)β − 1

f(α)

)
× 1

#`
+ 1. (16)

Note that since xd is the only location more distant to ` than r, even for qd = 1 the distortion
of candidate ` and consequently the distortion of the election is upper-bounded by xd/(xd − 1).
Therefore, if xd ≥ 1

2α + 1, the distortion of the election is upper bounded by 1 + 2α (i.e. D̄β(ξ) ≤
(1 + 2α)D∗β). So here we assume xd < 1

2α + 1. If we substitute 1
2α + 1 for xd in (16) we have:

D̄β(ξ) ≤
((

1

α
+ 1

)β
+

( 1
α + 1)β − 1

f(α)

)
× 1

#`
+ 1

≤
(

1

α
+ 1

)
×
(

1 +
1

f(α)

)
× 1

#`
+ 1

=
1 + α

α
×
(

1 +
(1 + α)2

(α−
√
α+ 1)2

)
× 1

#`
+ 1

≤ 2(α+ 1)3

α(α−
√
α+ 1)2

× 1

#`
+ 1, (17)

where the last line is due to the fact that

1 ≤ (1 + α)2

(α−
√
α+ 1)2

.

Now, suppose that the the expected number of votes that each candidate receives is large enough,
so that

#` ≥ (α+ 1)3

α2(α−
√
α+ 1)2

.

By Equation (17) we have:

D̄β(ξ) ≤ 2(α+ 1)3

α(α−
√
α+ 1)2

× α2(α−
√
α+ 1)2

(α+ 1)3
+ 1

≤ 1 + 2α

≤ (1 + 2α)D∗β.

This completes the proof.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Fix any α > 0 and β ∈ [0, 1], and let ξ ∈ Ωβ be an arbitrary election whose
candidates receive at least

(α+ 1)3

α2(α−
√
α+ 1)2
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expected number of votes. Recall that our assumption is that r is both the optimal and the expected
winner. Now, based on the value of #r/#`, there are two cases: either #r/#` ≤ 1 + α or #r/#` >
1 + α. For the first case, by Lemma 4.6 value of D̄β(ξ) is upper bounded by (1 + 2α)D∗β . For the
second case, since

#` ≥ (α+ 1)3

α2(α−
√
α+ 1)2

,

by Lemma 4.7, the expected distortion is upper bounded by (1+2α)D∗β . Combining these two cases
yields the upper-bound of (1 + 2α)D∗β on D̄β(ξ).

As an example, for α = 0.1, Theorem 4.1 states that for every election ξ whose candidates
receive at least 148 expected number of votes, the expected distortion is upper bounded by 1.2D∗β
which for β = 1 is ' 1.83.

We complement Theorem 4.1 by describing how to construct bad examples with expected dis-
tortion value near D∗β .

Example 1. Consider Optimization Problem 4, with an additional constraint that #` ≥ #r(1 +
ε) for a fixed constant ε, and let D∗∗β be the answer of this optimization problem and ξ∗∗ be its
corresponding election. By Chernoff bound, for a large enough value of #`, candidate ` wins the
election with a high probability, i.e.,

lim
#`→∞

D̄β(ξ∗∗) ' D(`) ' D∗β.

Note that, the bound provided by Theorem 4.1 is almost tight; as the election size grows, the
upper bounds of Theorem 4.1 tends to the distortion value of Example 1. However, for elections
with a small number of voters, the distortion value might be larger. For example, consider a simple
scenario where there is one voter located at point 1 + ε ∈ D and β = 1 (see Figure 12). For this
case, the distortion value is

P` ·
scξ(`)

scξ(r)
+ Pr = P` ·

1 + ε

ε
+ Pr

=
ε

1 + 2ε
· 1 + ε

ε
+

1 + ε

1 + 2ε

=
2 + 2ε

1 + 2ε
,

which tends to 2 as ε→ 0. We conjecture that this example is the worst possible scenario and value
of D̄∗β is upper bounded by 2 for any election with any size while β = 1.

rℓ

0 1 1 + ε

Figure 12: An example with maximum expected distortion. D̄β(ξ) for β = 1 tends to 2 as ε→ 0.
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4.2 Valid Displacements

In this section, we prove Lemmas 4.4 and 4.5.

Lemma 4.4. For each voter vi ∈ A, there is a point x′i ∈ B such that moving vi to x′i is a valid
displacement. Furthermore, for each voter vj ∈ C, there is a point x′j ∈ D such that moving vj to
x′j is a valid displacement.

Proof. We prove the statement of Lemma 4.4 for regions A and B. Similar arguments can be used to
prove the lemma for regions C and D. Let xi be the current location of vi in region A (xi < 0). By
definition, vi casts a vote with probability 1/ (1− 2xi)

β . Now, consider point x = −xi/ (1− 2xi).
We claim that an agent at x, votes for ` with the same probability as vi. First, note that since xi < 0,

0 ≤ −xi/ (1− 2xi) ≤ 1/2.

Hence, the preferred candidate of the voter located at x is `. Furthermore, for any agent at x, the
probability of casting a vote is

(1− 2x)β =

(
1− −2xi

1− 2xi

)β
=

(
1− 2xi + 2xi

1− 2xi

)β
=

(
1

1− 2xi

)β
.

Therefore, by moving vi from xi ∈ A to x′i = −xi
1−2xi

, the probability that vi votes for ` remains
the same. Let ξ′ be the election, after moving vi to x. We have

scξ′(`)

scξ′(r)
=

scξ (`)−
[
− xi − (−xi/ (1− 2xi))

]
scξ (r)−

[
(1− xi)− (−xi/ (1− 2xi))

] .
Since we have

−xi − (−xi/ (1− 2xi))

(1− xi)− (−xi/ (1− 2xi))
≤ 1 ≤ sc (`)

sc (r)
,

using Observation 3.8 we conclude that
scξ′ (`)

scξ′ (r)
≥ scξ(`)

scξ(r)
which in turn implies that moving vi to x

is a valid displacement.

Lemma 4.5. Let vi and vj be two voters located respectively at xi, xj ∈ D. Then, there exists a
point x between xi and xj , such that moving both the voters to x is a valid displacement.

Proof. Assume without loss of generality that xi < xj . We show that we can move both the voters
to point

t =

√
(2xi − 1) (2xj − 1) + 1

2
.

Let v̂k be a random variable which is equal to 1, if vk casts a vote and 0 otherwise. In addition,
let

Ak = P (r wins the election|v̂i + v̂j = k)
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where 0 ≤ k ≤ 2. Trivially, we have A0 ≤ A1 ≤ A2, and

Pr = A0 · P (v̂i + v̂j = 0)

+A1 · P (v̂i + v̂j = 1)

+A2 · P (v̂i + v̂j = 2) . (18)

Furthermore, note that we have

P (v̂i + v̂j = 0) =

(
1− 1

(2xi − 1)β

)(
1− 1

(2xj − 1)β

)
=

1 + (2xi − 1)β (2xj − 1)β − (2xi − 1)β − (2xj − 1)β

(2xi − 1)β (2xj − 1)β
,

P (v̂i + v̂j = 2) =
1

(2xi − 1)β (2xj − 1)β
.

Let v̂′i and v̂′j be variables indicating whether vi and vj cast a vote or not, after the displacement.
We have

P
(
v̂′i + v̂′j = 0

)
=

(
1− 1

(2t− 1)β

)2

=

(
1− 1

(
√

(2xi − 1) (2xj − 1))β

)2

=
1 + (2xi − 1)β (2xj − 1)β − 2

√
(2xi − 1)β (2xj − 1)β

(2xi − 1)β (2xj − 1)β
,

P
(
v̂′i + v̂′j = 2

)
=

1

(2t− 1)2β
=

1

(2xi − 1)β (2xj − 1)β
.

Thus, we have
P (v̂i + v̂j = 2) = P

(
v̂′i + v̂′j = 2

)
.

Now, we show
P(v̂i + v̂j = 0) ≤ P(v̂′i + v̂′j = 0).

We have

P(v̂i + v̂j = 0)− P(v̂′i + v̂′j = 0) =
2
√

(2xi − 1)β (2xj − 1)β − (2xi − 1)β − (2xj − 1)β

(2xi − 1)β (2xj − 1)β
.

Since (2xi − 1)β(2xj − 1)β > 0 we just need to show

2

√
(2xi − 1)β (2xj − 1)β − (2xi − 1)β − (2xj − 1)β ≤ 0,

which is trivial due to the fact that

2

√
(2xi − 1)β (2xj − 1)β − (2xi − 1)β − (2xj − 1)β = −

(√
(2xi − 1)β −

√
(2xj − 1)β

)2

.
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Furthermore, since ∑
0≤k≤2

P
(
v̂′i + v̂′j = k

)
= 1,

we have
P (v̂i + v̂j = 1) > P

(
v̂′i + v̂′j = 1

)
.

Considering Equation (18), and the fact that A0 ≤ A1 we conclude that after this movement,
the value of Pr decreases and the value of P` increases.

Finally, let C and C ′ be the cost of the agents other than vi and vj for ` and r, respectively. By
definition, before the displacement, we have

D (`) =
C + [xi + xj ]

C ′ + [xi + xj − 2]

and after moving vi and vj to point t, we have:

D (`) =
C + [

√
(2xi − 1) (2xj − 1) + 1]

C ′ + [
√

(2xi − 1) (2xj − 1)− 1]
.

Again, by straightforward calculus, one can easily verify that

xi + xj ≥
√

(2xi − 1) (2xj − 1) + 1,

Thus, after this displacement, both D (`) and P` increases, and so does the value of D̄β (ξ).

5. General Metric

We now extend our results to general metric spaces. Suppose that the voters and candidates are
located in an arbitrary metricM. By definition, for every voter vi and candidates `, r we have:

• di,`, di,r ≥ 0.

• di,` + di,r ≥ d`,r (triangle inequality).

We suppose without loss of generality that d`,r = 1. For this case, we prove Theorem 5.1, which
states that for every 0 ≤ β ≤ 1, the same upper bounds we obtained on the distortion value for the
line metric also work for any arbitrary metric space.

Theorem 5.1. For every election ξ in an arbitrary metric space, there exists an election ξ′ in line
metric, such that D(ωξ,β) ≤ D

(
ωξ′,β

)
and D̄β (ξ) ≤ D̄β (ξ′).

Proof. Let ξ be an election in an arbitrary metric space Mξ. Assume w.l.o.g. that candidate r is
the optimal candidate and let Vξ be the set of voters in election ξ. For each voter vi ∈ Vξ, let
γi = di,`/di,r. Based on the value of γi, we partition the voters into two subsets V+

ξ and V−ξ , where

V−ξ = {vi|γi ≤ D (`)}

V+
ξ = {vi|γi > D (`)}.
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Now, we construct election ξ′ as follows: consider a line and two candidates `′, r′ located respec-
tively at 0 and 1. For each voter vi ∈ V−, we consider a voter v′i in ξ′, located at point x′i = γi

γi+1 .
Since

( |di,`′ − di,r′ |
di,`′ + di,r′

)β
=

( |2x′i − 1|
1

)β
=

∣∣∣∣2 γi
γi + 1

− 1

∣∣∣∣β
=

∣∣∣∣2 di,`/di,r
di,`/di,r + 1

− 1

∣∣∣∣β
=

∣∣∣∣di,` − di,Rdi,` + di,R

∣∣∣∣β,
both vi and v′i participate in their corresponding elections with equal probabilities. Similarly, for
each voter vi ∈ V+, we consider a voter v′i located at point xi = γi

γi−1 . Again, it can be observed
that ( |di,`′ − di,r′ |

di,`′ + di,r′

)β
=

( |di,` − di,r|
di,` + di,r

)β
.

In conclusion, for every i, voters vi and v′i cast a vote in their corresponding elections with equal
probabilities. Thus, expected winners of ξ′ and ξ are the same, and we have

P`′ = P`, Pr′ = Pr. (19)

Now, we prove D (`) ≤ D (`′). For convenience, let

A =
∑
vi∈V−

di,` A′ =
∑
vi∈V−

di,`′

B =
∑
vi∈V−

di,r B′ =
∑
vi∈V−

di,r′

C =
∑
vi∈V+

di,` C ′ =
∑
vi∈V+

di,`′

D =
∑
vi∈V+

di,r D′ =
∑
vi∈V+

di,r′ .

Hence we can further assume that A − A′, B − B′, C ′ − C and D′ − D are positive. Note that
for each vi ∈ V−, di,`′ = di,`/(di,r + di,`), di,r′ = di,r/(di,r + di,`), and di,r + di,` ≥ 1. Hence
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di,` ≥ di,`′ and di,r ≥ di,r′ . Therefore we have A−A′ ≥ 0 and B −B′ ≥ 0. In addition,

A−A′
B −B′ =

∑
i∈V− di,` − γi

γi+1∑
i∈V− di,r − 1

γi+1

=

∑
i∈V−

di,`+γidi,`−γi
γi+1∑

i∈V−
di,r+γidi,r−1

γi+1

≤ max
i∈V−

di,` + γidi,` − γi
di,r + γidi,r − 1

= max
i∈V−

γidi,r + γidi,` − γi
di,r + di,` − 1

(γidi,r = di,`)

≤ max
i∈V−

γi

≤ D (`) (20)

On the other hand, for each vi ∈ V+, di,`′ = di,`/(di,` − di,r), di,r′ = di,r/(di,` − di,r), and
di,`− di,r ≤ 1. Hence di,` ≤ di,`′ and di,r ≤ di,r′ . Therefore we have C ′−C ≥ 0 and D′−D ≥ 0.
Furthermore, we have:

C ′ − C
D′ −D =

∑
i∈V+

γi
γi−1 − di,`∑

i∈V+
1

γi−1 − di,r

=

∑
i∈V+

γi−γidi,`+di,`
γi−1∑

i∈V+
1−γidi,r+di,r

γi−1

≥ min
i∈V+

γi − γidi,` + di,`
1− γidi,r + di,r

= min
i∈V+

γi − γidi,` + γidi,r
1− di,` + di,r

(γidi,r = di,`)

≥ min
i∈V+

γi

≥ D(`). (21)

We have

D (`) =
A+ C

B +D

≤ (A+ C) + (C ′ − C)

(B +D) + (D′ −D)
(Observation 3.8 and Equation (21))

≤ (A+ C) + (C ′ − C)− (A−A′)
(B +D) + (D′ −D)− (B −B′) (Observation 3.8 and Equation (20))

=
C ′ +A′

D′ +B′

= D(`′). (22)

Since the expected winner is the same in ξ and ξ′, Inequality (22) immediately implies that
D (ωξ,β) ≤ D

(
ωξ′,β

)
. Furthermore, considering Equations (3) ,(19), and (22) we have D̄β (ξ) ≤

D̄β (ξ′) .
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6. Future Directions

In this study, we analyzed the distortion value in a spatial voting model with two candidates, when
the voters are allowed to abstain. The set of results in this paper provides a rather complete picture
of the model. Nevertheless, some important open questions remain open.

• The most immediate open question is to analyze the expected distortion value of the elections
for a small number of voters. The counter-example in Section 4.1 refutes the existence of
an upper bound better than 2. We believe that this example is the worst possible scenario.
However, we don’t have formal proof for this claim.

• Another direction is to provide a closed-form expression for the distortion of the expected
winner. Currently, the maximum distortion is obtained via a mathematical program, which is
not even convex 8.

Beyond the above direct questions, this research also initiates an interesting line of work and
opens a fruitful direction for future research. In the following, we discuss two of these directions:

• In this paper, we focused on a majority election between two candidates. When more than two
candidates are running, vote aggregation becomes more complex. One interesting direction is
to generalize the models in this paper for elections with more than two candidates and analyze
the performance of different well-established voting mechanisms such as Borda, k-approval,
Veto, Ranked pairs, and Copland under abstention assumption. One can also consider absten-
tion in evaluating the distortion of different randomized mechanisms.

• Similar to the elections with no abstention, it seems that high distortion scenarios stem from
the issue of representativeness of candidates. Cheng et al. (2018) show that when the candi-
dates are of the people (i.e., they have the same distribution as the voters), the distortion ratio
improves to a constant upper-bound strictly better than 2 for general metrics. The question is,
how does the distortion value change if we allow abstention in the societies that voters and
candidates have the same distribution?
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