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Abstract
This paper explores techniques to quickly solve the maximum weight clique problem (MWCP)

in very large scale sparse graphs. Due to their size, and the hardness of MWCP, it is infeasible
to solve many of these graphs with exact algorithms. Although recent heuristic algorithms make
progress in solving MWCP in large graphs, they still need considerable time to get a high-quality
solution. In this work, we focus on solving MWCP for large sparse graphs within a short time limit.
We propose a new method for MWCP which interleaves clique finding with data reduction rules.
We propose novel ideas to make this process efficient, and develop an algorithm called FastWClq.
Experiments on a broad range of large sparse graphs show that FastWClq finds better solutions than
state-of-the-art algorithms while the running time of FastWClq is much shorter than the competitors
for most instances. Further, FastWClq proves the optimality of its solutions for roughly half of the
graphs, all with at least 105 vertices, with an average time of 21 seconds.

1. Introduction

The proliferation of large data sets brings with it a series of special computational challenges. Many
data sets can be modeled as graphs, and the research of large real-world graphs has grown enor-
mously in last decade. A clique of a graph is a subset of the vertices that are all pairwise adjacent.
Cliques are an important graph-theoretic concept, and are often used to represent dense clusters.
The maximum clique problem (MCP) is a long-standing problem in graph theory, for which the task
is to find a clique with the maximum number of vertices in the given graph. An important general-
ization of MCP is the maximum weight clique problem (MWCP), in which each vertex is associated
with a positive integer weight, and the goal is to find a clique with the largest weight. MWCP has
valuable applications in many fields (Ballard & Brown, 1982; Balasundaram & Butenko, 2006;
Gomez Ravetti & Moscato, 2008).
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The decision version of MCP (and thus MWCP) is one of Karp’s prominent 21 NP-complete
problems (Karp, 1972), and is complete for the class W[1], the parameterized analog of NP (Fellows
& Downey, 1998). Moreover, MCP (and thus MWCP) is not approximable within n1−ε for any
ε > 0 unless P = NP (Zuckerman, 2007). Nevertheless, these negative theoretical results have been
established for a “worst case” that is not often observed in practice. We therefore still have hope of
solving MWCP problems which arise in specific problem domains.

1.1 Related Work

Given their theoretical importance and practical relevance, considerable effort has been devoted
to the development of various methods for MCP and MWCP, mainly including exact algorithms
and heuristic algorithms. Exact algorithms are dedicated to find an exact solution and prove its
optimality, while heuristic algorithms have been devised with the purpose of providing (potentially)
sub-optimal solutions within an acceptable time.

Almost all existing exact algorithms for MCP are branch-and-bound (BnB) algorithms, and they
differ from each other mainly by their techniques to determine the upper bounds and their branching
strategies. A large family of BnB algorithms use coloring to compute upper bounds (Tomita &
Seki, 2003; Tomita & Kameda, 2007; Konc & Janezic, 2007; Tomita et al., 2010; San Segundo
et al., 2013). Another paradigm encodes MCP into a MaxSAT instance and then applies MaxSAT
reasoning to improve the upper bound (Li & Quan, 2010; Li, Fang, & Xu, 2013; Li, Jiang, & Manyà,
2017).

There are also numerous works on heuristic algorithms for MCP, most of which are local search
algorithms (Singh & Gupta, 2006b; Pullan & Hoos, 2006; Pullan, 2006; Guturu & Dantu, 2008;
Benlic & Hao, 2013). A milestone local search algorithm for MCP is the Dynamic Local Search
(DLS) algorithm due to Pullan and Hoos (2006), which was later improved to the Phased Local
Search (PLS) algorithm by Pullan (2006). Pullan (2009) later adapted PLS to weighted problems.

Recently, there have been some dedicated algorithms for solving MCP in large graphs. These
MCP algorithms (Rossi et al., 2014; Verma et al., 2015; San Segundo et al., 2016) heavily depend
on the concept of the k-core (Seidman, 1983), which is a subgraph where all vertices have degree
at least k, which can be computed in O(m) (m is the number of edges) using bin sorting (Batagelj
& Zaveršnik, 2003). We are not aware of any work using the k-core concept to develop MWCP
algorithms, except implicitly by using an initial ordering of the vertices (Jiang, Li, & Manyà, 2017).
Moreover, an analogous concept in vertex-weighted graphs requires prohibitive space (O(w ·m),
where w is the average weight of vertices) for bin sorting, and does not allow fast computation.

MWCP is more complicated than MCP and some powerful techniques for MCP are not appli-
cable or ineffective for solving MWCP due to the vertex weights. This partly explains the fact that
there are relatively fewer algorithms for MWCP. Some exact algorithms for MWCP come from and
generalize previous BnB methods designed for MCP (Östergård, 1999; Kumlander, 2004). The
MaxSAT-based method was also generalized to MWCP by Fang et al. (2014), resulting in an ex-
act MWCP algorithm named MaxWClq. Jiang et al. (2017) proposed an exact BnB algorithm for
MWCP called WLMC, which is especially designed for large scale graphs. WLMC incorporates
two important techniques. The first is a preprocessing to derive an initial vertex ordering and to
reduce the size of the graph, and the other is the incremental vertex-weight splitting to reduce the
number of branches in the search space. In parallel with WLMC, Li et al. (2018) proposed a new
upper bound for MWCP which is based on the notion of a weight cover. The idea of a weight cover
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is to compute a set of independent sets of the graph and define a weight function for each indepen-
dent set so that the weight of each vertex of the graph is covered by such weight functions. This
upper bound is used to develop a BnB-based exact algorithm named WC-MWC (Li et al., 2018).
These two exact algorithms WLMC and WC-MWC achieve good results on large sparse graphs,
and their performance is similar according to their experimental evaluation (Li et al., 2018). More
recently, Jiang et al. (2018) proposed a BnB algorithm that combines a novel two-stage MaxSAT
reasoning approach with effective BnB techniques for large graphs, and the resulting algorithm is
called TSM-MWC, which significantly outperforms WLMC on a broad range of large real-world
benchmarks. Therefore, TSM-MWC is the state of the art in this direction.

For solving MWCP, many researchers are devoted to designing effective heuristic algorithms,
aiming to find a good quality solution in short time. Massaro, Pelillo, and Bomze (2002) pro-
posed a complementary pivoting algorithm based on the corresponding linear complementarity
problem. Busygin (2006) presented a heuristic method using a nonlinear programming formulation
for MWCP. A hybrid evolutionary approach was offered by Singh and Gupta (2006a). An efficient
local search algorithm for MCP called Phased Local Search (PLS) was extended to MWCP (Pullan,
2008), which interleaves different modes of local search. A local search algorithm called MN/NT in-
tegrates a combined neighborhood and a dedicated tabu mechanism, and shows better performance
than previous heuristic algorithms on a broad range of benchmarks (Wu, Hao, & Glover, 2012).
Afterwards, Wang, Cai, and Yin (2016) developed an improved local search algorithm called LSCC
based on the configuration checking strategy and further improves MN/NT on a wide range of
benchmarks. Based on LSCC, efficient local search MWCP algorithms for large graphs were devel-
oped. The LSCC+BMS algorithm improved LSCC by including a probabilistic heuristic called Best
from Multiple Selection (BMS) (Cai, 2015), leading to much better performance on large graphs
from the Network Data Repository. Fan et al. (2017) introduced the RRWL algorithm, another im-
proved algorithm from LSCC, which incorporates restart, random walk and hash techniques, and
shows better performance than LSCC+BMS. Besides the line of configuration-checking-based local
search, Zhou, Hao, and Goëffon (2017) presented the generalized push operator for MWCP and then
used this operator to develop two restarting tabu search algorithms ReTS1 and ReTS2. Neverthe-
less, ReTS1 and ReTS2 were mainly evaluated on medium- and small-sized graphs. Very recently,
the authors of LSCC+BMS proposed the walk perturbation technique and several heuristics to di-
versify the search, resulting in an improved version named SCCWalk4L (Wang et al., 2020) for
solving MWCP on large graphs. SCCWalk4L showed obviously better performance than previous
heuristic algorithms on a broad range of large graphs (Wang et al., 2020), and thus represents the
latest state of the art in heuristic MWCP algorithms for large graphs.

Further algorithms exist for solving MWCP, however, they are not feasible for solving large
sparse graphs. San Segundo, Furini, and Artieda (2019) recently introduced an exact BnB algorithm
for MWCP that uses a bitboard representation of the adjacency matrix, together with more advanced
lower and upper bounds. However, as they use an adjacency matrix representation, their algorithm is
not feasible for graphs with more than thousands of vertices. Of note here is that maximum weight
independent set and minimum weight vertex cover solvers, many of which use data reductions, can
also be used to solve MWCP (Lamm et al., 2019; Li et al., 2020; Cai et al., 2019). However, these
algorithms would need to be run on the complement graph. For the graphs we consider here, the
complement is dense and again infeasible to store in memory.
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1.2 Contributions and Paper Organization

In many applications, either the time limit for computation is very short or computational resources
are limited; however, the input graphs may be very large. This motivates us to develop algorithms
for solving MWCP for large graphs within a short time limit (e.g., 100 seconds). In this work, we
focus on solving MWCP for large sparse graphs. For such graphs, we show that we can make use
of the sparsity to develop efficient algorithms that can solve MWCP quickly.

As the main contribution, we propose a method that interleaves clique finding and graph reduc-
tion, which is very effective for solving large sparse graphs. In a graph reduction procedure, we
reduce the size of the graph by removing vertices that are proved to be in no clique of maximum
weight. For large sparse graphs, their size can be reduced significantly by using a clique of certain
quality in hand as a lower bound together with effective upper bound functions. On the other hand,
the remaining smaller graph presents smaller search space and the algorithm may find better cliques
more easily, which can then be used to further reduce the graph. As far as we know, this is the
first algorithm that interleaves clique finding and graph reduction. Some existing algorithms for
MCP (Rossi et al., 2014; Verma et al., 2015; San Segundo et al., 2016) and MWCP (Jiang et al.,
2017) reduce the graph in a preprocessing procedure, which is done just one time. Moreover, the
proposed framework interleaving clique finding and graph reduction allows us to develop semi-
exact algorithms — the graph shrinks as the algorithm proceeds, and if the graph becomes empty,
the found clique is proved to be optimal.

Besides the semi-exact algorithmic framework, we propose some ideas to make the method
more efficient. The first two ideas are used in the clique finding phase:

• We propose a construct-and-cut algorithm for clique finding, in which an evaluation function
is proposed for estimating the benefit of adding a vertex. The construct-and-cut method is
proposed for the first time, which uses pruning techniques but differs from the BnB method.

• We also propose a dynamic version of the BMS heuristic, which is used in choosing a solution
vertex.

The other two ideas are used in the graph reduction phase, including two novel upper bounds.
The reduction rules based on these upper bounds significantly improve the ability of proving the
optimality.

• We propose a branching-based upper bound, which makes use of the maximum weight neigh-
boring vertex.

• We also propose a weighted-coloring-based upper bound, which relies on an algorithm to
color the vertex-weighted graph.

Based on these ideas, we develop an algorithm called FastWClq1. To evaluate our algorithm,
we consider two benchmarks of large graphs, the Network Data Repository benchmark (Rossi &
Ahmed, 2015) and the KONECT benchmark (Kunegis, 2013). Also, to study the performance
on these graphs with different weight distributions, we not only test the instances with weights
generated according to the ‘mod200’ method used in the literature (Pullan, 2009), but also test them

1. Note that although this name has been used to denote an early version of the algorithm in the conference paper, here
FastWClq refers to the final version as presented in this work.
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with weights generated according to a normal distribution. Finally, we obtain four benchmarks for
our experiments.

We compare our FastWClq algorithm with state-of-the-art algorithms for solving very large
MWCP instances, including both exact and heuristic algorithms. Experiments show that FastWClq
significantly outperforms previous algorithms in terms of the solution quality and run time. Further,
as a semi-exact algorithm, FastWClq proves the optimality of its solutions for more than half of
the challenging large graphs with more than 100 000 vertices, achieving similar (yet worse) perfor-
mance with the state-of-the-art exact MWCP algorithm TSM-MWC in terms of the proving ability.

Note that an early version of FastWClq has been published in a conference paper (Cai & Lin,
2016). We describe the new contributions in this article below. We optimize the framework of
FastWClq and propose two new ideas to improve FastWClq, including a clique-improving method
during the clique finding phase and a weighted-coloring-based upper bound during the reduction
phase. In addition, we add more experiments to evaluate performance of FastWClq, and compare
with the latest state-of-the-art algorithms.

In the next section, we introduce some necessary background knowledge. Then, we describe
the framework of the semi-exact method in Section 3. The details of the clique finding phase and
the graph reduction phase are presented in Section 4 and 5 respectively. Experimental evaluations
of our algorithm, FastWClq, are presented in Section 6. Finally, we give some concluding remarks
and outline the future work in Section 7.

2. Preliminaries

Let G = (V,E) be an undirected graph where V = {v1,v2, . . . ,vn} is the set of vertices and E ⊂
{{u,v} | u,v ∈ V} is the set of edges in G. We denote their cardinalities by n = |V | and m = |E|.
We use V (G) and E(G) to denote the vertex set and the edge set of graph G. A vertex-weighted
undirected graph is an undirected graph G = (V,E) combined with a mapping w : V 7→ N (where
N is the set of natural numbers) so that each vertex v ∈V is associated with a natural number w(v)
as its weight. We use a triple to denote a vertex-weighted graph, i.e., G = (V,E,w). For a subset
S ⊆ V , we let G[S] denote the subgraph induced by S, which is formed from S and all the edges
{{u,v} ∈ E | u,v ∈ S} connecting pairs of vertices in S. The weight of S is w(S) = ∑v∈S w(v).
The (open) neighborhood of a vertex v is N(v) = {u ∈ V | {u,v} ∈ E}, and we denote the closed
neighborhood by N[v] = N(v)∪{v}. The degree of v is d(v) = |N(v)|.

Given a graph G, a clique C ⊆ V is a set of pairwise adjacent vertices, while an independent
set I is a set of pairwise nonadjacent vertices. A clique or independent set is maximal if it is not
included in a larger clique or independent set. The maximum clique problem (MCP) is to find a
clique of maximum cardinality in a graph, and the maximum weight clique problem (MWCP) is to
find a clique of the maximum weight in a vertex-weighted graph. We say a vertex is “bad” if it is
proved to be in no optimal solution.

For a graph, a proper vertex coloring is an assignment of colors to all vertices of the graph such
that no two adjacent vertices share the same color. Equivalently, a proper vertex coloring of a graph
G is a partition {A1,A2, ...,Ak} of the vertex set V (G) into independent sets. Under a proper vertex
coloring, the set of vertices for a color forms an independent set. Therefore, any clique can contain
at most one vertex from one color. This can be used to compute an upper bound for MCP and
MWCP.
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A clique 𝐶 s.t.
𝑤 𝐶 > 𝑤 𝐶∗

Simplified 
graph 𝐺

If 𝑉 𝐺 = ∅,
then 𝐶∗is proved 
optimal solution

FindClique(𝑮)

ReduceGraph(𝐺,𝒘(𝑪∗))

Figure 1. A semi-exact method for MWCP

The BMS (Best from Multiple Selection) heuristic by Cai (2015) is a sampling technique, which
is used to choose a good-quality element from a large set. It randomly picks k elements and returns
the best one with respect to some criterion. We use a dynamic BMS heuristic in our algorithm.

3. A Semi-Exact Method for MWCP: The Framework

In this section, we introduce the framework of our semi-exact method for solving MWCP, which
interleaves clique finding and graph reduction. The algorithmic framework is illustrated in Figure 1.

This semi-exact method is composed of two sub-algorithms, a clique finding algorithm and a
graph reduction algorithm. The clique finding algorithm aims to find a larger-weight clique than
the best found clique C∗; once such a clique is found, C∗ is updated to this new clique. As w(C∗)
is a lower bound on the optimal clique weight, when w(C∗) is updated to a larger value, a tighter
lower bound is obtained, and then the graph reduction algorithm is called to further simplify the
graph. The graph reduction algorithm aims to simplify the graph by detecting “bad” vertices (i.e.
those vertices that cannot be in any clique of maximum weight) and removing as many of them as
possible. Additionally, if the graph becomes empty after reduction, then the best found solution C∗

is proved to be optimal. Hence, our method is a semi-exact method.
Based on this framework, we develop an algorithm called FastWClq. The pseudocode of

FastWClq is shown in Algorithm 1. After the initialization, the algorithm executes a main loop until
a limited time is reached, or an exact solution is found and proved. In the main loop, FastWClq
works by interleaving the two sub-algorithms, as shown in Figure 1. The algorithm for clique find-
ing in FastWClq adopts a construct-and-cut technique. In each iteration (line 4), it constructs a
maximal clique step by step. Also, the construction procedure may be cut before reaching a maxi-
mal clique, using pruning techniques by computing upper bounds. We introduce the details of the
two sub-algorithms in the next two sections.

4. Clique Finding

In this section, we describe our algorithm for clique finding. We propose a novel method called
construct-and-cut for quickly finding a high quality clique. Also, when a clique of higher weight
(compared to the best found one) is located, we further improve the clique by trying possible local
modifications.
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Algorithm 1: FastWClq(G, cutoff)
Input: vertex-weighted graph G = (V,E,w), the cutoff time
Output: A clique of G
initialization;1

while elapsed time < cutoff do2

while w(C)≤ w(C∗) do3

C := FindClique(G);4

C∗ :=C;5

G := ReduceGraph(G, w(C∗));6

if G becomes empty then7

return C∗; //exact solution8

return C∗;9

Before going to the details of the construct-and-cut algorithm, let us first introduce some nota-
tion and definitions.

• C: the current clique under construction.

• StartSet: the set containing candidate vertices which can serve as a starting vertex to construct
a clique. In the beginning of the algorithm, StartSet is initialized as V (G).

• CandSet =
⋂

v∈C N(v) , i.e., each vertex in CandSet is adjacent to all vertices in C. This is the
set of candidate vertices that can be added to extend the current clique.

• The effective neighborhood of vertex v: is defined as N(v)∩CandSet. The concept is very
important, as w(N(v)∩CandSet) is used in both pruning a construction procedure and evalu-
ating the quality of candidate vertices.

In our clique construction procedure (Algorithm 2), the algorithm first pops a random vertex
from StartSet to serve as the starting vertex from which a clique will be extended, if StartSet is not
empty (line 4). If StartSet becomes empty, which means all vertices have been used as the starting
vertex, then another round of clique construction begins by resetting StartSet to V (G), and we adjust
our strategy parameter (lines 1-3). After the starting vertex u is chosen, the clique is initialized with
the vertex, and CandSet is initialized as N(u) (lines 5-6). Then the clique is extended iteratively by
each time adding a vertex v ∈ CandSet, until CandSet becomes empty (lines 7-12). Also, we use
a cost-effective upper bound to prune the procedure (line 9) — the construction procedure is cut
before the normal termination. Obviously, w(C)+w(v)+w(N(v)∩CandSet) is an upper bound on
weight of any clique extended from C by adding v and more vertices. We would like to note that,
the construct-and-cut method has recently been used to generate initial assignments for the Boolean
Satisfiability (SAT) problem (Cai, Luo, Zhang, & Zhang, 2021), which is parallel to this work.

4.1 Choosing a Solution Vertex

An important component in FindClique is the procedure ChooseSolutionVertex (Algorithm 3),
which selects a vertex from CandSet to extend the current clique. We call such a vertex a solu-
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Algorithm 2: FindClique(G)

if StartSet = /0 then1

StartSet :=V (G);2

Adjust BMS parameter t;3

u := pop a random vertex from StartSet;4

C := {u};5

CandSet := N(u);6

while CandSet 6= /0 do7

v := ChooseSolutionVertex(CandSet, t);8

if w(C)+w(v)+w(N(v)∩CandSet)≤ w(C∗) then break;9

C :=C∪{v};10

CandSet :=CandSet \{v};11

CandSet :=CandSet ∩N(v);12

if w(C)≥ w(C∗) then13

C := ImproveClique(C);14

return C;15

Algorithm 3: ChooseSolutionVertex(CandSet, t)

if |CandSet|< t then1

return a vertex v ∈CandSet with the greatest b̂ value;2

v∗ := a random vertex in CandSet;3

for iteration := 1 to t−1 do4

v := a random vertex in CandSet;5

if b̂(v)> b̂(v∗) then v∗ := v;6

return v∗;7

tion vertex. To this end, we propose a novel function to estimate the benefit of vertices, and a
dynamic BMS heuristic to choose a solution vertex.

Benefit Estimation Function. For choosing a vertex to add into the current clique, we need to
estimate the benefit of adding a vertex, and then we choose the one with the best estimated benefit.
We define the benefit of adding a vertex v as bene f it(v) =w(C f )−w(C), where C f is the final clique
grown from C∪{v} by the construction procedure.

An ideal strategy is to pick the vertex with the best benefit at each iteration to extend the clique.
However, we cannot know the true benefit value of a vertex until we finish the construction pro-
cedure. In order to compare candidate vertices at the current iteration, we propose a function to
estimate the benefit of adding a vertex. The function is based on two considerations:

1. If a candidate vertex v is added into the clique C, the weight of C is increased by w(v), which
is a trivial lower bound of bene f it(v).

2. Suppose a candidate vertex v is selected to be added into the clique C. The best possible
weighted clique grown from C∪{v} is C∪{v}∪ (N(v)∩CandSet), for which the weight is
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w(C)+w(v)+w(N(v)∩CandSet). Thus, an upper bound of bene f it(v) is w(v)+w(N(v)∩
CandSet).

An estimation function should take into account both the lower bound and upper bound of
bene f it(v). A simple and intuitive function which embodies this principle is to take the average
over these two bounds:

b̂(v) =
w(v)+w(v)+w(N(v)∩CandSet)

2
= w(v)+w(N(v)∩CandSet)/2.

Dynamic BMS Heuristic. We choose the solution vertex based on the b̂ values of candidates,
according to a dynamic BMS heuristic. The original BMS heuristic is a probabilistic strategy which
returns the best element from multiple samples. Cai (2015) theoretically showed that BMS can ap-
proximate the best selection strategy very well in O(1) time. The probability that the BMS heuristic
chooses a vertex whose b̂(v) value is better than ρ of the vertices in CandSet is Pr(E) > 1− ρ t .
Another advantage of the BMS heuristic is that we can control the greediness of the algorithm by
adjusting the parameter t. However, this has not been exploited previously, and previous algorithms
with BMS adopt a static parameter, that is, the number of samplings t stays the same (Cai, 2015;
Wang et al., 2016).

In general, a greater t value indicates a greater greediness and more computation time. Based
on this observation, we propose a dynamic BMS heuristic. In our algorithm, we start from a small
t value (denoted as t0), so that the algorithm works fast. Whenever StartSet becomes empty, which
means we do not find a better clique with this t value, we double t (i.e., t := 2t), with a upper bound
limitation tmax, to make the algorithm construct cliques in a greedier way.

4.2 Improving the Clique

In the clique construction procedure, if a better clique C (compared to the best-found one) is ob-
tained, we try to further improve it by examining the possible improvement with respect to each
vertex in the clique. Specifically, for each vertex v ∈C, we examine whether the following modifi-
cation results in a larger-weight clique:

We remove v from C, and then CandSet is set to the common neighborhood of C \{v} accord-
ingly. Then, find a maximum weight clique C′v from CandSet, using a branch-and-bound method
(the bound is given by weighted coloring, which will be introduced in Section 5.2 in detail). If
w(C′v)> w(v), then a better clique (C \{v})∪C′v is found and we update C accordingly. Otherwise,
C remains unchanged.

Such examinations of possible improvements are executed for all vertices v ∈ C, and C is up-
dated whenever a modification with improvement is identified. This procedure terminates when all
vertices v ∈C are examined. As the size of CandSet is relatively small, this procedure is very fast.

5. Graph Reduction

By applying sound data reduction rules (which usually depend on a clique in hand), a graph can
be reduced to a (sometimes significantly) smaller graph while keeping the optimal solution. This is
desirable as algorithms can solve the original instance by solving a smaller and easier one. Many
existing reduction rules for weighted problems rely on local structure (Lamm et al., 2019; Li et al.,
2020), whereas our data reduction rules exploit lower bounds and upper bounds to reduce the graph
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globally. While the lower bound is simply the weight of the current best clique, much effort is de-
voted to designing upper bound functions. In this section, we introduce a graph reduction algorithm,
which relies on three upper bounds: a trivial bound, a branching-based bound and a coloring-based
bound; the latter two bounds are proposed in this work.

Definition 1 (A Generic Upper Bound, UB). Given a vertex-weighted graph G = (V,E,w) and
a vertex v ∈ V (G), we let UB(v) denote an (integer) upper bound on the weight of any clique
containing v. That is, UB(v)≥max{w(C) |C is a clique of G,v ∈C}.

Now, we consider the below reduction rule, which is a general rule and should be used with the
help of a lower bound and a upper bound.

General Reduction Rule. Given a vertex-weighted graph G = (V,E,w) and a clique C0 in G,
∀v∈V (G), if there is an upper bound UB(v) such that UB(v)≤w(C0), then delete v and its incident
edges from G.

The above rule indeed represents a family of reduction rules. In order to obtain an applicable
concrete rule, we need to specify the upper bound function and the input clique. We use the notation
Rule(UB,C0) to denote a concrete rule where UB is the upper bound function and C0 is the input
clique.

Proposition 1 (Soundness of the General Reduction Rule). Let G be a vertex-weighted graph, G′

the resulting graph by applying Rule(UB,C0) on G, and let w∗ be the weight of a maximum weight
clique of graph G, and C∗G′ the maximum weight clique of G′. Then, w∗ = max{w(C0),w(C∗G′)}.

Proof. If w(C0) = w∗, then the proposition obviously holds. Now we consider the case w(C0)< w∗.
For graph G and a vertex v ∈ V (G), let C∗v be a clique with the maximum weight among cliques
containing vertex v. If a function UB satisfies Definition 1, we have w(C∗v ) ≤UB(v). On the other
hand, any vertex deleted by Rule(UB,C0) satisfies UB(v) ≤ w(C0), and thus w(C∗v ) ≤ UB(v) ≤
w(C0)< w∗, meaning that v cannot be contained in any clique with weight w∗. Thus, any vertex that
is in a clique with weight w∗ remains in G′, so w∗ = w(C∗G′).

The above proposition shows that any specialization of the general reduction rule (for any valid
upper bound) is sound with respect to keeping the optimal solution of the instance. Additionally,
the proposition leads to the following corollary.

Corollary 1. Let G′ be the resulting graph after applying Rule(UB,C0) on vertex-weighted graph
G, if V (G′) = /0, then C0 is a maximum weight clique of G.

5.1 The Trivial Upper Bound and a Branching-Based Upper Bound

Given a clique in hand (found by a clique-finding algorithm), in order to apply reduction rules, the
focus is how to compute an upper bound. Since any clique grown from vertex v can only contain
vertices in N(v), a trivial upper bound function is

UB0(v) = w(N[v]).

A tighter bound can be obtained by considering a branching-based upper bound function. For a
vertex v, we consider its neighboring vertex with the maximum weight (denoted as n∗). The idea is
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that, for any clique C containing v, it either contains n∗ or it does not. For either case, we can have
a tighter upper bound than UB0(v), and finally we get the larger (worse) one as the upper bound.
We divide the cases on n∗ in order to balance the bounds of the two cases. Formally, we propose a
branching-based upper bound as follows:

UB1(v) = max{w(N[v])−w(n∗),w(v)+w(n∗)+w(N(v)∩N(n∗))}
= w(v)+max{w(N(v))−w(n∗),w(n∗)+w(N(v)∩N(n∗))}.

This upper bound can be easily understood: for any clique containing v, if it does not contain
n∗, then an upper bound on the weight of the clique is w(N[v])−w(n∗); if the clique contains n∗,
then, besides v and n∗, the clique can only contain those vertices that are adjacent to both v and n∗.
Thus, an upper bound on the weight of the clique is w(v)+w(n∗)+w(N(v)∩N(n∗)). Finally, the
worst case can be used as an upper bound on the weight of any clique containing v.

Note that we use an adjacency list instead of an adjacency matrix representation, to ensure that
the graph fits into memory. So, checking whether a vertex y∈N(v) is in N(n∗), i.e., whether y and n∗

are neighbors, requires O(min{d(y),d(n∗)}) time. Note that a straightforward, but inefficient, way
to compute N(v)∩N(n∗) is by checking for each vertex y ∈ N(v) if y ∈ N(n∗)—which is quadratic
in the degree. Rather than use the above implementation, we compute N(v)∩N(n∗) in linear time
with two scans on the smaller set and one on the larger one, using indicators.

5.2 Improving Branching-Based Upper Bound by Weighted Coloring

The branch-based upper bound UB1 can be improved by further using coloring on each situation,
leading to a tighter upper bound. We describe this new upper bound in this subsection.

For a vertex-weighted graph G, suppose we have a proper vertex coloring A1,A2, . . . ,Ak of the
graph, where Ai is the set of vertices with color i, then an upper bound on the weight of the maximum
clique weight is as follows:

UBc(G) =
k

∑
i=1

max
u∈Ai
{w(u)}.

This is easy to understand, as vertices with the same color composes an independent set and thus
at most one of them can be selected in a valid clique. By integrating this weighted-coloring-based
upper bound, we can further make the branching-based upper bound tighter:

UB2(v) = w(v)+max{UBc(G[N(v)\{n∗}]),w(n∗)+UBc(G[N(v)∩N(n∗)])}.

The quality of the UB2 upper bound depends on the coloring solution to obtain the UBc values.
To leverage the power of this upper bound function, we need to compute a UBc value as small
as possible. This indeed is a variant of the vertex coloring problem, which is referred to as the
weighted-vertex coloring problem (Demange et al., 2002) or max-coloring problem (Hsu & Chang,
2016).

Definition 2 (Weighted-Coloring Problem). The max-coloring problem is, for a given vertex-weighted

graph, to find a proper vertex coloring A1,A2, ...,Ak which minimizes
k
∑

i=1
max
u∈Ai
{w(u)}.

In this work, since the algorithm for solving Weighted-Coloring is called many times, we em-
ploy a light-weight algorithm, which is described as follows. Sort the vertices in a weight decreasing
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order, breaking ties by vertex degree. According to this order, the vertices are colored one by one.
For each vertex v, suppose that k is the number of colors have been used so far, we find a color with
the lowest value in [1,k] that gives a proper coloring for v. If no such proper coloring exists, we
color v with a new color k+1.

5.3 The Graph Reduction Algorithm

The graph reduction algorithm is depicted in Algorithm 4. All the three upper bounds are used.
UB0 requires little overhead, while UB1 and UB2 require more computation time but are tighter.
Therefore, when considering a vertex, we first use the UB0-based reduction rule, and if this cannot
delete the vertex then we apply the rule based on UB1 and UB2

2.

Algorithm 4: ReduceGraph(G, C0)
Input: vertex-weighted graph G = (V,E,w), a clique C0
Output: A simplified graph of G
foreach v ∈V (G) do1

if UB0(v)≤ w(C0) or UB1(v)≤ w(C0) or UB2(v)≤ w(C0) then2

RmQueue := RmQueue∪{v};3

while RmQueue 6= /0 do4

u := dequeue a vertex from RmQueue;5

delete u and its incident edges from G;6

foreach v ∈ Nr(u) do7

if UB0(v)≤ w(C0) or UB1(v)≤ w(C0) or UB2(v)≤ w(C0) then8

RmQueue := RmQueue∪{v};9

return G;10

Our reduction algorithm works in an iterative fashion, with a queue called RmQueue which
contains vertices to be deleted. In the beginning, the algorithm enqueues into RmQueue all vertices
satisfying at least one of the reduction rules. Then, a loop is carried out until RmQueue becomes
empty. Each iteration of the loop dequeues a vertex u from RmQueue, and deletes u and all its
incident edges from G. After a vertex u is deleted, we check its remained neighborhood Nr(u) (the
set containing all neighbors of u that have not been removed from the graph yet), and enqueue to
RmQueue all vertices in Nr(u) that satisfy at least one of the reduction rules.

According to Corollary 1, if the ReduceGraph algorithm returns an empty graph, that means
the clique found is a maximum weight clique of the input graph. However, there are cases that
FastWClq finds a maximum weight clique but ReduceGraph cannot reduce the graph to empty,
because the reduction rules are incomplete3.

2. In practice, a trick to accelerate the procedure (slightly) for large-sized graphs is to first use UB0 to reduce the graph
to a certain size, after which UB1 and UB2 are used.

3. Note that if this weren’t the case and the reduction rules always resulted in an empty graph, then this would give a
polynomial time algorithm for the decision variant of MWCP and P = NP.
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6. Experimental Evaluation

In this section, we carry out experiments to evaluate our proposed algorithm, FastWClq, on a broad
range of large sparse real-world graphs. First, we introduce the benchmarks used in our experiments,
and present some preliminaries about our experimental evaluation. We then compare FastWClq with
state-of-the-art exact and heuristic algorithms. Our experiments show that FastWClq performs very
well on a considerable portion of the selected instances.

6.1 Benchmarks

For our experiments, we collect two benchmarks of large sparse graphs, which are originally un-
weighted, and then we generate weights for vertices in these graphs. The two benchmarks of large
sparse graphs are introduced as follows:

• Network Data Repository: This benchmark was downloaded from the Network Data Repos-
itory4 (Rossi & Ahmed, 2015). We consider the 187 graphs used in testing WLMC (Jiang
et al., 2017), and select the graphs with at least 100 000 vertices and 1000 000 edges. Some
graphs in this benchmark are bipartite graphs, and we choose to ignore them. All these
graphs are generated from real-world applications, which can be grouped into eleven classes,
including biological networks, collaboration networks, interaction networks, infrastructure
networks, Amazon recommendation networks, scientific computation networks, social net-
works, technological networks, and web-crawl graphs. Many of these real-world graphs have
millions of vertices and tens of millions of edges, and each graph is quite sparse. Calculating
the density m/

(n
2

)
of each graph, the average density of these graphs is 0.00859, while the

maximum density is 0.347. We also calculate the average degree 2m/n for each graph; over
all graphs, this figure is 26.15 on average, while the maximum is 181.19.

• Koblenz Network Collection: This benchmark was downloaded from the Koblenz Network
Collection (KONECT)5 (Kunegis, 2013), which was collected by the Institute of Web Sci-
ence and Technologies at the University of Koblenz-Landau in order to perform research in
network science and related fields. The networks of KONECT cover many diverse areas such
as social networks, hyperlink networks, authorship networks, physical networks, interaction
networks, and communication networks. We downloaded all the graphs from KONECT and
converted them into undirected graphs, except the bipartite graphs. These large graphs are
also quite sparse. The average density is 0.000916, while the maximum one is 0.022332. The
average degree is 18.25, while the maximum one is 211.44.

In our experiments, we focus on the large graphs, so we select those graphs with at least 100 000
vertices from each benchmark, resulting in 65 graphs from Network Data Repository and 80 graphs
from KONECT benchmark. The sizes of these large graphs are given in Tables 1 and 2.

To obtain the corresponding vertex-weighted graphs, we generate vertex weights to the graphs
of the above two benchmarks in two different ways.

• v mod 200: For the ith vertex vi, w(vi) = (i mod 200)+1.

4. http://www.networkrepository.com
5. http://konect.uni-koblenz.de
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Table 1. Details of graphs with at least 100 000 vertices from Network Data Repository

Instance |V | |E| Instance |V | |E|

bn-human-BNU 1 0025865 session 1-bg 1 398 408 42 296 922 soc-buzznet 101 163 2 763 066
bn-human-BNU 1 0025865 session 2-bg 1 717 207 22 855 526 soc-delicious 536 108 1 365 961
ca-coauthors-dblp 540 486 15 245 729 soc-digg 770 799 5 907 132
ca-dblp-2012 317 080 1 049 866 soc-dogster 426 820 8 543 549
ca-hollywood-2009 1 069 126 56 306 653 soc-flickr-und 1 715 255 15 555 041
channel-500x100x100-b050 4 802 000 42 681 372 soc-flickr 513 969 3 190 452
dbpedia-link 11 621 692 78 621 046 soc-flixster 2 523 386 7 918 801
delaunay n22 4 194 304 12 582 869 soc-lastfm 1 191 805 4 519 330
delaunay n23 8 388 608 25 165 784 soc-livejournal-user-groups 7 489 073 112 305 407
delaunay n24 16 777 216 50 331 601 soc-livejournal 4 033 137 27 933 062
friendster 8 658 744 45 671 471 soc-ljournal-2008 5 363 186 49 514 271
hugebubbles-00020 21 198 119 31 790 179 soc-orkut-dir 3 072 441 117 185 083
hugetrace-00010 12 057 441 18 082 179 soc-orkut 2 997 166 106 349 209
hugetrace-00020 16 002 413 23 998 813 soc-pokec 1 632 803 22 301 964
inf-europe osm 50 912 018 54 054 660 soc-sinaweibo 58 655 849 261 321 033
inf-germany osm 11 548 845 12 369 181 soc-twitter-higgs 456 631 12 508 442
inf-road-usa 23 947 347 28 854 312 soc-youtube-snap 1 134 890 2 987 624
inf-roadNet-CA 1 957 027 2 760 388 soc-youtube 495 957 1 936 748
inf-roadNet-PA 1 087 562 1 541 514 socfb-A-anon 3 097 165 23 667 394
rec-dating 168 792 17 351 416 socfb-B-anon 2 937 612 20 959 854
rec-epinions 755 761 13 396 042 socfb-uci-uni 58 790 782 92 208 195
rec-libimseti-dir 220 970 17 233 144 tech-as-skitter 1 694 616 11 094 209
rgg n 2 23 s0 8 388 608 63 501 393 tech-ip 2 250 498 21 643 497
rgg n 2 24 s0 16 777 216 132 557 200 twitter mpi 9 862 152 99 940 317
rt-retweet-crawl 1 112 702 2 278 852 web-arabic-2005 163 598 1 747 269
sc-ldoor 952 203 20 770 807 web-baidu-baike 2 141 300 17 014 946
sc-msdoor 415 863 9 378 650 web-it-2004 509 338 7 178 413
sc-pwtk 217 891 5 653 221 web-uk-2005 129 632 11 744 049
sc-rel9 5 921 786 23 667 162 web-wikipedia-growth 1 870 709 36 532 531
sc-shipsec1 140 385 1 707 759 web-wikipedia2009 1 864 433 4 507 315
sc-shipsec5 179 104 2 200 076 web-wikipedia link 2 936 413 86 754 664
soc-FourSquare 639 014 3 214 986 wikipedia link en 27 154 756 31 024 475
soc-LiveMocha 104 103 2 193 083
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Table 2. Details of graphs with at least 100 000 vertices from KONECT benchmark

Instance |V | |E| Instance |V | |E|

actor-collaboration 382 219 15 038 083 petster-dog-uniq 426 820 8 543 549
amazon0601 403 394 2 443 408 roadNet-CA 1 965 206 2 766 607
as-skitter 1 696 415 11 095 298 roadNet-PA 1 088 092 1 541 898
citeseer 384 413 1 736 145 roadNet-TX 1 379 917 1 921 660
com-amazon 334 863 925 872 slashdot-threads 141 428 206 918
com-dblp 317 080 1 049 866 soc-LiveJournal1 4 846 609 42 851 237
com-youtube 1 134 890 2 987 624 soc-pokec-relationships 1 632 803 22 301 964
dbpedia-all 3 966 895 12 610 982 trec-wt10g 1 601 787 6 679 248
dbpedia-link 18 268 991 126 890 209 web-BerkStan 685 230 6 649 470
digg-friends 1 923 999 3 192 495 web-Google 875 713 4 322 051
douban 154 908 327 162 web-NotreDame 325 729 1 090 108
elec 105 144 200 184 web-Stanford 281 903 1 992 636
email-EuAll 265 214 364 481 wikipedia-growth 1 872 907 36 534 729
enron 307 636 517 819 wikipedia link de 3 225 565 65 759 634
epinions 132 768 713 088 wikipedia link en 12 150 976 288 257 813
facebook-wosn-links 397 655 1 150 959 wikipedia link fr 3 023 165 83 455 052
facebook-wosn-wall 914 890 1 051 350 wikipedia link it 1 865 965 68 022 541
flickrEdges 105 938 2 316 948 wikipedia link ja 1 610 638 56 231 610
flickr-growth 2 303 059 22 838 410 wikipedia link pl 1 529 135 42 188 631
flickr-links 1 715 254 15 551 249 wikipedia link pt 1 603 222 38 633 429
flixster 2 523 386 7 918 801 wikipedia link ru 2 853 118 63 058 425
hyves 1 402 673 2 777 419 wikisigned-k2 138 593 482 888
lasagne-yahoo 653 260 2 931 698 wiki-Talk 2 394 385 4 659 565
libimseti 220 970 10 131 013 wiki talk ar 2 868 931 3 307 474
link-dynamic-dewiki 19 521 519 61 151 432 wiki talk de 6 757 916 7 744 939
link-dynamic-frwiki 14 371 085 44 187 494 wiki talk en 26 373 842 31 532 851
link-dynamic-itwiki 8 549 267 28 858 941 wiki talk es 2 661 000 3 228 049
link-dynamic-nlwiki 6 126 550 18 873 552 wiki talk fr 5 637 678 6 484 425
link-dynamic-plwiki 6 231 281 20 768 067 wiki talk it 3 671 312 4 309 561
link-dynamic-simplewiki 380 731 1 137 693 wiki talk nl 1 615 381 1 900 124
livejournal-links 5 204 175 48 709 621 wiki talk pt 2 694 832 3 533 288
livemocha 104 103 2 193 083 wiki talk ru 2 470 379 2 862 384
lkml-reply 909 627 1 041 696 wiki talk zh 3 175 241 3 644 578
loc-gowalla edges 196 591 950 327 wordnet-words 146 005 656 999
munmun digg reply 114 340 169 097 youtube-links 1 138 494 2 990 287
munmun twitter social 465 017 833 540 youtube-u-growth 3 223 788 9 375 577
orkut-links 3 072 441 117 184 899 zhishi-baidu-internallink 2 141 300 17 014 946
patentcite 3 774 768 16 518 947 zhishi-baidu-relatedpages 415 641 2 374 044
petster-carnivore 623 766 15 695 166 zhishi-hudong-internallink 1 984 484 14 428 382
petster-cat-uniq 149 700 5 448 197 zhishi-hudong-relatedpages 2 452 715 18 690 759
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• normal random: w(v) subjects to truncated normal distribution: w(v) ∼ N(µ,σ2), where
w(v) ∈ (1,+∞), µ = 100 and σ = 25.

Therefore, we obtain totally four benchmarks of vertex-weighted graphs, which are denoted by
“Repository 200”, “Repository normal”, “KONECT 200” and “KONECT normal”, respectively.

We realize that the way of generating weights may have considerable impact on the performance
of algorithms. Indeed, a recent paper has commented on this phenomenon (McCreesh et al., 2017).
In particular, McCreesh et al. (2017) mentioned that, when weights are chosen to be between 1 and
200, the vertex weights would be expected to be more important than degree. So, we also use a
normal distribution method to generate weights, for which we would expect degrees become more
important. We use these two ways to generate weights, in order to evaluate algorithms with two
typical situations.

6.2 Competitors

In the following experimental comparison, we compare FastWClq with three state-of-the-art MWCP
algorithms, namely WLMC (Jiang et al., 2017), TSM-MWC (Jiang et al., 2018) and SCCWalk4L (Wang
et al., 2020).

• WLMC (Jiang et al., 2017) is an exact algorithm for solving the MWCP problem on large
graphs. It is the first exact solver that can obtain very good solution values on large graphs,
compared with some heuristic solvers. WLMC contains a preprocess procedure to order the
vertex and then to reduce the size of graph. It also uses the incremental vertex-weight splitting
technique to reduce the number of branches in the search space. The source code of WLMC
is available online6.

• TSM-MWC (Jiang et al., 2018) is a recent BnB-based exact MWCP algorithm which incorpo-
rates a novel two-stage MaxSAT reasoning approach. According to the literature, TSM-MWC
is the currently best exact algorithm for MWCP on large instances. As reported by Jiang
et al. (2018), TSM-MWC significantly outperforms the WLMC algorithm on a broad range
of large real-world graphs. This is the only exact algorithm that shows significantly better
performance than the milestone exact MWCP algorithm WLMC on large real-world graphs.
The source code of TSM-MWC is available online7.

• SCCWalk4L (Wang et al., 2020) is a very recent local search algorithm for MWCP, which
shows significantly better performance on large graphs than previous heuristic algorithms.
SCCWalk4L integrates powerful local search techniques including configuration checking,
walk perturbation as well as BMS. The source code of SCCWalk4L was provided by the
authors.

Seen from the literature, WLMC and TSM-MWC establish the latest state of the art in exact
algorithms for MWCP on large graphs. As for heuristic algorithms, SCCWalk4L represents the
latest state of the art in solving large graphs. It is reported that SCCWalk4L outperforms other
recent heuristic algorithms including RRWL (Fan et al., 2017), ReTS1 and ReTS2 (Zhou et al.,
2017).

6. http://www.mis.u-picardie.fr/˜cli/wlmc2.zip
7. http://home.mis.u-picardie.fr/˜cli/tsm-release.zip
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6.3 Experimental Preliminaries

FastWClq is implemented in C++, and its source code is available online8. Parameters t0 and tmax

for dynamic BMS heuristic are set to 4 and 64 (= 26). Three competitors including WLMC, TSM-
MWC and SCCWalk4L were implemented in C++ by their authors. For SCCWalk4L, we used the
following default values: `= 4000 and r = 50 (Wang et al., 2020). All algorithms are complied with
g++ version 4.7 with the -O3 optimization flag. FastWClq and SCCWalk4L both are run 10 times
on each graph. For the exact algorithms TSM-MWC and WLMC, we run them once on each graph.
We test the algorithms with time limit of 100 seconds, 300 seconds and 600 seconds, where the
run time of each algorithm includes the time for reading graphs (as some algorithms do non-trivial
works including building complex data structure and some initializations during reading the graph).
We report the detailed results for the time limit of 100 seconds, while give a summary on all time
limits.

The experiments are carried out on a computing cluster consisting of computing nodes equipped
with dual 56-core, 2.00GHz Intel Xeon E7-4830 CPUs, 35 MB L3 cache and 256 GB RAM, running
Ubuntu version 16.04.5 LTS.

For each graph, we report the largest clique weight (“best”) found by each algorithm, the average
clique weight over all runs (“avg”) and the average run time when algorithm obtains the largest
clique weight. If an algorithm fails to provide a solution for an instance, then the corresponding
column is marked as “N/A”. If an algorithm proves the optimality of its solution, the corresponding
column is marked with a “*”.

6.4 Experimental Results

In this subsection, we will report the experiment results of FastWClq and the state-of-the-art com-
petitors on large sparse graphs.

6.4.1 RESULTS ON REPOSITORY 200

The results on Repository 200 are presented in Table 3. FastWClq performs better on 29 instances
than SCCWalk4L under the same cutoff time (100s). For the remaining instances, FastWClq finds
better average solution values than SCCWalk4L, with only three exceptions. Observed from the re-
sults, FastWClq computes larger-weight cliques than the two exact solvers TSM-MWC and WLMC
for 18 and 11 instances, respectively, while TSM-MWC and WLMC find better cliques for only
the two instances soc-flickr-und and web-wikipedia link. FastWClq computes the optimal solution
for 53 instances, more than any other algorithm; although, it only proves the optimality of its solu-
tions in 36 cases. Although they find fewer optimal solutions, TSM-MWC, and WLMC are highly
successful at proving optimality, proving optimality in 45 and 52 instances, respectively.

6.4.2 RESULTS ON REPOSITORY NORMAL

The comparison of FastWClq, TSM-MWC, WLMC and SCCWalk4L on Repository normal is
given in Table 4. Once again, FastWClq has the best performance. Firstly, FastWClq finds cliques
of larger weight than SCCWalk4L for 32 graphs, while FastWClq finds a worse solution than SC-
CWalk4L for only one graph. FastWClq finds solutions of the same or higher quality than the two
exact solvers TSM-MWC and WLMC on all but one instance (instance soc-flickr-und), and on 46

8. http://lcs.ios.ac.cn/˜caisw/CLQ.html
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Table 3. Experiment results of FastWClq and the state-of-the-art competitors on Repository 200
benchmark.

Instance FastWClq TSM-MWC WLMC SCCWalk4L

size time size time size time size time
bn-human. . . 1-bg 20184 (19678) 31.08 19547 (19547) 89.88 19185 (19185) 81.88 14506 (13568.6) 99.53
bn-human. . . 2-bg 19189 (19189) 16.54 16396 (16396) 70.58 16102 (16102) 99.19 11804 (9478.8) 99.51
ca-coauthors-dblp 37884* (37884) 5.07 37884* (37884) 13.09 37884* (37884) 13.09 37884* (37884) 26.88
ca-dblp-2012 14108* (14108) 0.96 14108* (14108) 1.29 14108* (14108) 1.39 14108* (14108) 2.11
ca-hollywood-2009 222720* (222720) 55.18 222720* (222720) 67.36 222720* (222720) 69.48 15367 (11009.9) 99.61
channel-500x100x100-b050 796* (796) 5.72 796* (796) 43.78 796* (796) 41.89 796 (796) 69.47
dbpedia-link 4156 (2507.2) 93.54 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
delaunay n22 796* (796) 5.58 796* (796) 15.22 796* (796) 14.72 796* (750.3) 47.86
delaunay n23 798* (798) 12.78 798* (798) 29.99 798* (798) 29.68 798* (672) 80.99
delaunay n24 797* (797) 25.36 N/A (N/A) N/A 797* (797) 65.73 566 (465.9) 97.28
friendster 5511* (4982.4) 86.42 5511* (5511) 79.09 5511* (5511) 81.97 567 (500) 99.91
hugebubbles-00020 400* (400) 49.83 N/A (N/A) N/A 400* (400) 60.6 399 (384.8) 92.18
hugetrace-00010 400* (400) 19.5 N/A (N/A) N/A 400* (400) 28.19 399 (399) 56.15
hugetrace-00020 400* (400) 29.17 N/A (N/A) N/A 400* (400) 43.19 400 (398.9) 79.99
inf-europe osm 646* (646) 55.99 N/A (N/A) N/A 646* (646) 85.98 267 (267) 91.65
inf-germany osm 597* (597) 14.3 N/A (N/A) N/A 597* (597) 19.89 597* (524.6) 63.96
inf-road-usa 766* (766) 29.89 N/A (N/A) N/A 766* (766) 51.19 766* (537.4) 88.23
inf-roadNet-CA 752* (752) 1.56 752* (752) 4.19 752* (752) 4.38 752* (752) 6.98
inf-roadNet-PA 669* (669) 0.92 669* (669) 2.18 669* (669) 2.39 669 (669) 3.12
rec-dating 1699 (1524.2) 40.39 1699* (1699) 24.59 1699* (1699) 25.14 1699 (1699) 24.96
rec-epinions 1054 (998.4) 42.36 1054* (1054) 73.79 1054* (1054) 76.12 1054 (1054) 50.33
rec-libimseti-dir 1938 (1781.2) 44.83 1938* (1938) 29.16 1938* (1938) 28.90 1938 (1938) 27.94
rgg n 2 23 s0 2407* (2407) 27.18 2407* (2407) 65.94 2407* (2407) 64.92 1103 (1042.67) 97.21
rgg n 2 24 s0 2514* (2514) 59.37 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
rt-retweet-crawl 1367* (1367) 4.47 1367* (1367) 3.63 1367* (1367) 3.85 1367 (1367) 19.4
sc-ldoor 4081* (4081) 3.91 4081* (4081) 17.39 4081* (4081) 17.48 4081 (4054.4) 60.65
sc-msdoor 4088* (4088) 1.46 4088* (4088) 7.49 4088* (4088) 7.49 4088 (4086.6) 29.51
sc-pwtk 4620* (4620) 0.49 4620* (4620) 4.34 4620* (4620) 4.48 4620 (4620) 8.28
sc-rel9 572* (572) 34.39 572* (572) 29.14 572* (572) 28.79 572 (417.2) 62.06
sc-shipsec1 3540* (3540) 0.23 3540* (3540) 1.21 3540* (3540) 1.48 3540* (3540) 2.57
sc-shipsec5 4524* (4524) 0.18 4524* (4524) 1.74 4524* (4524) 1.91 4524* (4524) 3.36
soc-FourSquare 3064 (3064) 50.64 3064* (3064) 12.08 3064* (3064) 12.07 2025 (1873.9) 93.66
soc-LiveMocha 1784 (1784) 11.71 1784* (1784) 2.58 1784* (1784) 2.63 1784 (1784) 7.88
soc-buzznet 2981 (2981) 33.14 2981* (2981) 8.4 2981* (2981) 8.59 2981 (2977) 56.51
soc-delicious 1547 (1547) 1.03 1547* (1547) 1.25 1547* (1547) 1.48 1547 (1546.3) 34
soc-digg 5303 (5302.6) 48.5 5303* (5303) 14.41 5303* (5303) 14.98 5303 (5051.8) 58.17
soc-dogster 4418 (4400.8) 65.82 4418* (4418) 10.16 4418* (4418) 9.86 4418 (4364.8) 87.2
soc-flickr 7083 (7083) 40.22 7083* (7083) 4.08 7083* (7083) 4.55 7083 (7083) 18.53
soc-flickr-und 10126 (9860.6) 32.88 10127* (10127) 44.94 9329 (9329) 89.83 6906 (5309) 99.35
soc-flixster 3805 (3805) 10.29 3805* (3805) 10.87 3805* (3805) 10.93 3805 (3805) 32.43
soc-lastfm 1773 (1773) 10.62 1773* (1773) 6.26 1773* (1773) 5.72 1773 (1773) 14.51
soc-livejournal 21368* (21368) 43.02 21368* (21368) 39.31 21368* (21368) 39.27 9183 (3009.6) 95.03
soc-livejournal-user-groups 957 (860.4) 76.83 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-ljournal-2008 40432 (40432) 57.37 40432* (40432) 68.06 40432* (40432) 70.63 2709 (1649.5) 95.48
soc-orkut 4439 (3628.8) 91.29 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-orkut-dir 4262 (3656.8) 90.43 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-pokec 3191* (3191) 37.64 3191* (3191) 33.42 3191* (3191) 31.85 2994 (1990.9) 86.46
soc-sinaweibo N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-twitter-higgs 8039* (8039) 13.31 8039* (8039) 17.98 8039* (8039) 17.88 4727 (4699.7) 68.63
soc-youtube 1961* (1961) 2.49 1961* (1961) 2.39 1961* (1961) 2.88 1961 (1961) 8.13
soc-youtube-snap 1787* (1787) 4.71 1787* (1787) 4.78 1787* (1787) 4.88 1787 (1787) 13.87
socfb-A-anon 2872* (2872) 36.84 2872* (2872) 34.27 2872* (2872) 34.42 2295 (1992.3) 75.76
socfb-B-anon 2662 (2662) 41.77 2662* (2662) 30.48 2662* (2662) 29.88 2513 (2075.4) 81.32
socfb-uci-uni 453 (331.6) 93.28 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
tech-as-skitter 5703 (5703) 9.42 5703* (5703) 22.55 5703* (5703) 22.89 5703 (5666.8) 78.48
tech-ip 668 (585) 48.4 N/A (N/A) N/A N/A (N/A) N/A 249 (162) 44.21
twitter mpi 6510 (3085.2) 91.25 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
web-arabic-2005 10558* (10558) 0.16 10558* (10558) 1.49 10558* (10558) 1.28 10558* (10558) 2.17
web-baidu-baike 3814* (3814) 22.46 3814* (3814) 25.89 3814* (3814) 26.09 1743 (1656.2) 81.93
web-it-2004 45477* (45477) 1.28 45477* (45477) 5.89 45477* (45477) 5.99 45477* (45477) 15.68
web-uk-2005 54850* (54850) 1.55 54850* (54850) 9.28 54850* (54850) 9.39 54850* (54850) 15.08
web-wikipedia-growth 4741 (4741) 54.21 4741* (4741) 63.98 4741* (4741) 64.08 1714 (1380.3) 97.7
web-wikipedia2009 3891* (3891) 8.68 3891* (3891) 7.38 3891* (3891) 7.59 3891 (3891) 15.18
web-wikipedia link 51331 (25964.8) 76.25 89544 (89544) 99.78 89545 (89545) 99.99 N/A (N/A) N/A
wikipedia link en 4624 (4618.1) 75.55 N/A (N/A) N/A 4624* (4624) 68.78 1002 (707) 93.85
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instances it finds these solutions faster. Focusing on the ability of proving optimality, FastWClq,
TSM-MWC and WLMC prove the optimality of 36, 45 and 52 instances, respectively. The total
number of instances provably solved to optimality by the exact algorithms TSM-MWC and WLMC
is more than FastWClq for 17 instances. FastWClq proves the optimality of instance rgg n 2 24 s0,
while the two exact algorithms fail to find any solution within the time limit.

6.4.3 RESULTS ON KONECT 200

The experimental results are presented in Table 5, which shows that FastWClq is clearly the best
solver on the KONECT 200 benchmark. FastWClq finds the largest-weight cliques for all instances
in KONECT 200 except for the two instances flickr-link and libimseti. Furthermore, FastWClq
finds larger-weight cliques than TSM-MWC, WLMC and SCCWalk4L for 31, 32, and 38 instances,
respectively. For instances where FastWClq and a corresponding competitor obtain the same solu-
tion quality (i.e., the same maximum and same average solution values), FastWClq is faster than the
other three algorithms, except for six instances. FastWClq proves the optimality of nine solutions
that neither TSM-MWC and WLMC prove to be optimal, but FastWClq fails to prove optimality on
16 instances where TSM-MWC and WLMC both succeed in proving optimality.

Table 5. Experiment results of FastWClq and the state-of-the-art competitors on KONECT 200
benchmark.

Instance
FastWClq TSM-MWC WLMC SCCWalk4L

size time size time size time size time
actor-collaboration 25500* (25500) 9.54 25500* (25500) 25.99 25500* (25500) 25.55 25500 (25500) 76.5
amazon0601 2127* (2127) 1.6 2127* (2127) 2.79 2127* (2127) 2.96 2127* (2127) 3.9
as-skitter 5703 (5703) 8.32 5703* (5703) 22.79 5703* (5703) 22.49 5703 (5703) 73.96
citeseer 1679* (1679) 1.72 1679* (1679) 2.29 1679* (1679) 2.38 1679 (1679) 5.34
com-amazon 1301* (1301) 0.51 1301* (1301) 1.18 1301* (1301) 1.46 1301* (1301) 1.38
com-dblp 10668* (10668) 0.32 10668* (10668) 1.26 10668* (10668) 1.39 10668* (10668) 1.48
com-youtube 1967* (1967) 5.6 1967* (1967) 4.28 1967* (1967) 4.88 1967 (1967) 11.3
dbpedia-all 2547* (2547) 15.95 N/A (N/A) N/A N/A (N/A) N/A 2547* (1196) 97.25
dbpedia-link 1258 (701.111) 95.1 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
digg-friends 3668 (3666.5) 43.72 N/A (N/A) N/A N/A (N/A) N/A 203 (141.2) 12.15
douban 1197* (1197) 0.06 1197* (1197) 0.01 1197* (1197) 0.71 1197 (1197) 0.73
elec 1936 (1936) 0.14 1936* (1936) 2.79 1936* (1936) 2.88 1936 (1936) 7.32
email-EuAll 2082* (2082) 0.19 2082* (2082) 0.79 2082* (2082) 0.99 2082 (2082) 0.81
enron 3496 (3496) 0.24 3496* (3496) 18.59 3496* (3496) 18.75 3496 (3496) 16.41
epinions 10037 (10037) 0.14 10037* (10037) 0.98 10037* (10037) 1.08 10037 (10037) 6.88
facebook-wosn-links 3618 (3618) 0.35 3618* (3618) 42.18 3618* (3618) 42.31 3618 (3618) 27.5
facebook-wosn-wall 1175* (1175) 0.35 N/A (N/A) N/A N/A (N/A) N/A 526 (232.1) 49
flickr-growth 11508 (11268.7) 36.04 10917 (10917) 97.25 10678 (10678) 96.47 7924 (5498.4) 85.11
flickr-links 10027 (9904) 47.29 10036* (10036) 44.09 9242 (9242) 94.46 9225 (7940.7) 99.86
flickrEdges 60280* (60280) 1.07 60280* (60280) 2.48 60280* (60280) 2.58 60280* (60280) 14.7
flixster 3399 (3399) 10.29 3399* (3399) 10.29 3399* (3399) 10.27 3399 (3399) 26.39
hyves 1953* (1953) 2.5 1953* (1953) 4.67 1953* (1953) 4.88 1953 (1953) 7.76
lasagne-yahoo 457* (457) 10.76 457* (457) 32.5 457* (457) 31.83 444 (431.9) 52.35
libimseti 1092 (999) 60.69 1099* (1099) 94.78 1099* (1099) 95.47 1099 (1099) 31.22
link-dynamic-dewiki 11669 (11669) 70.89 N/A (N/A) N/A N/A (N/A) N/A 178 (102.556) 94.81
link-dynamic-frwiki 8637* (8637) 66.24 N/A (N/A) N/A N/A (N/A) N/A 662 (174) 71.39
link-dynamic-itwiki 5776 (5776) 25.58 N/A (N/A) N/A N/A (N/A) N/A 538 (203.4) 43.15
link-dynamic-nlwiki 5118* (5118) 15.18 N/A (N/A) N/A N/A (N/A) N/A 199 (126.4) 28.93
link-dynamic-plwiki 5202 (5202) 52.07 N/A (N/A) N/A N/A (N/A) N/A 191 (135.5) 30.78
link-dynamic-simplewiki 3988* (3988) 0.48 3988* (3988) 23.44 3988* (3988) 23.7 3988 (3988) 19.79

(Continued on next page)
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Table 5. (Continued) Experiment results of FastWClq and the state-of-the-art competitors on
KONECT 200 benchmark.

Instance
FastWClq TSM-MWC WLMC SCCWalk4L

size time size time size time size time
livejournal-links 38550 (38550) 66.03 38550* (38550) 71.09 38550* (38550) 69.23 5106 (2126) 96.6
livemocha 1784 (1784) 10.63 1784* (1784) 2.24 1784* (1784) 2.9 1784 (1784) 7.04
lkml-reply 4763 (4763) 0.59 N/A (N/A) N/A N/A (N/A) N/A 202 (191.5) 41.54
loc-gowalla edges 3053* (3053) 0.24 3053* (3053) 1 3053* (3053) 1.19 3053 (2834.6) 20.51
munmun digg reply 686* (686) 0.02 686* (686) 2.9 686* (686) 3.08 686 (686) 6.92
munmun twitter social 750* (750) 0.4 750* (750) 1.12 750* (750) 1.3 750 (750) 1.95
orkut-links 5290 (4429.4) 90.24 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
patentcite 1438* (1438) 32.47 1438* (1438) 27.99 1438* (1438) 28.19 1355 (1006.8) 79.43
petster-carnivore 119297* (119297) 11.79 119188 (119188) 98.38 119210 (119210) 99.39 5251 (4802.7) 95.82
petster-friendships-cat-uniq 9364 (9293.8) 40.05 9364* (9364) 45.79 9364* (9364) 52.09 1962 (1858.7) 93.33
petster-friendships-dog-uniq 4418 (4411.8) 75.91 4418* (4418) 22.58 4418* (4418) 21.99 4418 (4404.2) 77.56
roadNet-CA 790* (790) 1.46 790* (790) 4.09 790* (790) 4.19 790* (790) 5.88
roadNet-PA 774* (774) 0.71 774* (774) 2.09 774* (774) 2.2 774* (774) 2.77
roadNet-TX 772* (772) 0.9 772* (772) 2.79 772* (772) 2.58 772* (772) 3.41
slashdot-threads 720* (720) 0.06 720* (720) 3.19 720* (720) 3.39 720 (720) 4.87
soc-LiveJournal1 31814 (31814) 58.17 31814* (31814) 68.18 31814* (31814) 63.99 5881 (2904.5) 95.94
soc-pokec-relationships 2993* (2993) 24.59 2993* (2993) 34.09 2993* (2993) 34.19 2584 (1992) 75.2
trec-wt10g 9180* (9180) 1.99 9180* (9180) 7.99 9180* (9180) 8.49 9180 (9180) 14.78
web-BerkStan 21079* (21079) 1.25 21079* (21079) 25.49 21079* (21079) 26.78 21079* (21079) 38.13
web-Google 5044* (5044) 2.25 5044* (5044) 4.79 5044* (5044) 4.74 5044* (5044) 6.86
web-NotreDame 19133* (19133) 0.27 19133* (19133) 1.19 19133* (19133) 1.4 19133* (19133) 2.47
web-Stanford 7753* (7753) 0.48 7753* (7753) 4.69 7753* (7753) 4.75 7753 (7753) 16.65
wiki-Talk 2985 (2985) 10.37 2985* (2985) 15.09 2985* (2985) 15.09 2985 (2985) 21.62
wiki talk ar 3292* (3292) 1.74 N/A (N/A) N/A N/A (N/A) N/A 354 (172) 3.65
wiki talk de 4391 (4390) 33.56 N/A (N/A) N/A N/A (N/A) N/A 215 (136.5) 8.3
wiki talk en 4452 (4431.3) 72.65 N/A (N/A) N/A N/A (N/A) N/A 3371 (2590.8) 99.71
wiki talk es 3831 (3831) 2.29 N/A (N/A) N/A N/A (N/A) N/A 594 (188.8) 3.24
wiki talk fr 4141 (4141) 4.25 N/A (N/A) N/A N/A (N/A) N/A 179 (115.6) 7.22
wiki talk it 4665 (4665) 3.69 N/A (N/A) N/A N/A (N/A) N/A 306 (131.2) 4.5
wiki talk nl 4771 (4771) 0.96 N/A (N/A) N/A N/A (N/A) N/A 277 (173.5) 5.34
wiki talk pt 4916 (4916) 1.76 N/A (N/A) N/A N/A (N/A) N/A 318 (135.3) 3.65
wiki talk ru 3364 (3364) 1.69 N/A (N/A) N/A N/A (N/A) N/A 270 (134) 8.13
wiki talk zh 3897* (3897) 2.02 N/A (N/A) N/A N/A (N/A) N/A 254 (136) 16.39
wikipedia-growth 4741 (4741) 48.08 N/A (N/A) N/A N/A (N/A) N/A 1927 (1784.2) 98.07
wikipedia link de 83708* (76772.2) 89.54 N/A (N/A) N/A N/A (N/A) N/A 1382 (860) 99.46
wikipedia link en N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
wikipedia link fr 106234 (37249.6) 96.1 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
wikipedia link it 87969* (87969) 71.33 N/A (N/A) N/A N/A (N/A) N/A 2097 (1152.5) 98.28
wikipedia link ja 89015* (89015) 73.69 N/A (N/A) N/A N/A (N/A) N/A 2447 (1769.4) 97.33
wikipedia link pl 82993 (82993) 42.08 N/A (N/A) N/A N/A (N/A) N/A 1946 (1782.5) 97.76
wikipedia link pt 103625* (103625) 40.46 N/A (N/A) N/A N/A (N/A) N/A 14706 (4158.2) 86.07
wikipedia link ru 82613 (82613) 71.78 N/A (N/A) N/A N/A (N/A) N/A 1820 (1388.62) 98.98
wikisigned-k2 1192* (1192) 0.21 1192* (1192) 3.39 1192* (1192) 4.08 1192 (1192) 14.15
wordnet-words 5037* (5037) 0.21 5037* (5037) 0.78 5037* (5037) 0.79 5037* (5037) 0.94
youtube-links 1837 (1837) 4.13 1837* (1837) 4.49 1837* (1837) 4.59 1837 (1837) 10.37
youtube-u-growth 2321 (2321) 17.68 2321* (2321) 27.89 2321* (2321) 27.09 2321 (2321) 55.32
zhishi-baidu-internallink 3814* (3814) 21 3814* (3814) 48.09 3814* (3814) 46.98 1823 (1624.6) 64.88
zhishi-baidu-relatedpages 8938 (8938) 1.14 8938* (8938) 49.78 8938* (8938) 49.8 8938 (8938) 37.7
zhishi-hudong-internallink 26110* (26110) 20.25 26110* (26110) 33.19 26110* (26110) 32.79 26110 (26110) 81.06
zhishi-hudong-relatedpages 2262* (2262) 28.38 2262* (2262) 50.19 2262* (2262) 49.97 2262 (1710.1) 81.73
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Table 4. Experiment results of FastWClq and the state-of-the-art competitors on
Repository normal benchmark.

Instance FastWClq TSM-MWC WLMC SCCWalk4L

size time size time size time size time
bn-human. . . 1-bg 19840 (19395.9) 41.78 17886 (17886) 89.03 17792 (17792) 83.39 15556 (12576.9) 99.04
bn-human. . . 2-bg 19981 (19981) 15.8 15761 (15761) 74.44 15761 (15761) 94.46 12268 (9862.4) 99.52
ca-coauthors-dblp 33511* (33511) 4.87 33511* (33511) 12.92 33511* (33511) 12.94 33511* (33511) 29.74
ca-dblp-2012 11761* (11761) 0.9 11761* (11761) 1.28 11761* (11761) 1.25 11761* (11761) 2.26
ca-hollywood-2009 221751* (221751) 54.05 221751* (221751) 67.31 221751* (221751) 68.95 43588 (17032) 96.95
channel-500x100x100-b050 683* (683) 18.54 683* (683) 45.89 683* (683) 46.29 654 (601.7) 85.36
dbpedia-link 2971 (2478.1) 92.99 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
delaunay n22 612* (612) 5.22 612* (612) 15.19 612* (612) 15.11 612* (486.6) 69.33
delaunay n23 610* (610) 11.33 610* (610) 30.39 610* (610) 31.06 491 (454.3) 72.54
delaunay n24 612* (612) 22.47 N/A (N/A) N/A 612* (612) 63.58 448 (413.889) 91.03
friendster 3886 (3886) 84.21 3886* (3886) 77.84 3886* (3886) 77.98 794 (493) 98.84
hugebubbles-00020 434* (434) 52.86 N/A (N/A) N/A 434* (434) 61.48 316 (290.3) 82.02
hugetrace-00010 434* (434) 22.26 N/A (N/A) N/A 434* (434) 30.59 434 (344.8) 60.92
hugetrace-00020 410* (410) 33.51 N/A (N/A) N/A 410* (410) 42.99 317 (301) 75.88
inf-europe osm 515* (515) 61.91 N/A (N/A) N/A 515* (515) 90.69 263 (201.2) 98.41
inf-germany osm 447* (447) 14.48 N/A (N/A) N/A 447* (447) 20.19 447* (447) 44.81
inf-road-usa 521* (521) 31.59 N/A (N/A) N/A 521* (521) 53.99 521* (351.9) 90.63
inf-roadNet-CA 507* (507) 1.72 507* (507) 4.29 507* (507) 4.29 507 (507) 6.22
inf-roadNet-PA 507* (507) 0.86 507* (507) 2.23 507* (507) 2.49 507* (507) 3.25
rec-dating 1305 (1203.1) 37.59 1305* (1305) 25.45 1305* (1305) 26.37 1305 (1305) 27.12
rec-epinions 923 (889.4) 55.6 947* (947) 71.73 947* (947) 75.67 947 (947) 45.18
rec-libimseti-dir 1465 (1409.2) 28.52 1465* (1465) 27.79 1465* (1465) 27.77 1465 (1465) 30.27
rgg n 2 23 s0 2245* (2245) 25.8 2245* (2245) 62.89 2245* (2245) 64.76 1194 (961.75) 99.3
rgg n 2 24 s0 2359* (2359) 58.1 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
rt-retweet-crawl 1477* (1477) 4.41 1477* (1477) 3.74 1477* (1477) 3.67 1477 (1411.5) 26.43
sc-ldoor 2589* (2589) 5.45 2589* (2589) 18.55 2589* (2589) 18.68 2554 (2485.8) 67.93
sc-msdoor 2592* (2592) 2.21 2592* (2592) 8.28 2592* (2592) 8.57 2591 (2528.1) 41.77
sc-pwtk 2876* (2876) 0.74 2876* (2876) 4.79 2876* (2876) 5.01 2876 (2831.1) 53.78
sc-rel9 441* (441) 39.1 441* (441) 28.74 441* (441) 28.44 378 (359.1) 78.15
sc-shipsec1 2514* (2514) 0.18 2514* (2514) 1.14 2514* (2514) 1.21 2514 (2514) 4.42
sc-shipsec5 2754* (2754) 0.31 2754* (2754) 1.93 2754* (2754) 2.09 2754 (2754) 4.37
soc-FourSquare 3198 (3198) 17.54 3198* (3198) 12.19 3198* (3198) 11.84 2008 (1955.2) 95.76
soc-LiveMocha 1599 (1599) 7.21 1599* (1599) 2.36 1599* (1599) 2.61 1599 (1599) 8.18
soc-buzznet 2944 (2943) 65.3 2944* (2944) 6.33 2944* (2944) 6.48 2944 (2944) 36.85
soc-delicious 2158 (2158) 0.87 2158* (2158) 1.25 2158* (2158) 1.25 2158 (2158) 11.82
soc-digg 5036 (5036) 12.38 5036* (5036) 15.02 5036* (5036) 14.48 5036 (4965) 63.64
soc-dogster 4581 (4574.1) 91.23 4581* (4581) 10.18 4581* (4581) 9.82 4581 (4579.4) 83.73
soc-flickr 5930 (5927.9) 14.97 5930* (5930) 4.13 5930* (5930) 4.48 5930 (5930) 19.77
soc-flickr-und 9856 (9712.5) 33.85 9929* (9929) 75.5 9317 (9317) 99.99 9222 (7654.8) 99.74
soc-flixster 3200 (3200) 10.87 3200* (3200) 10.68 3200* (3200) 10.99 3200 (3200) 35.95
soc-lastfm 1720* (1720) 4.82 1720* (1720) 6.03 1720* (1720) 6.03 1720 (1720) 15.41
soc-livejournal 21935* (21935) 42.96 21935* (21935) 39.17 21935* (21935) 38.35 21935* (5755.6) 89.72
soc-livejournal-user-groups 877 (828.7) 76.43 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-ljournal-2008 39789 (39789) 57.33 39789* (39789) 59.38 39789* (39789) 60.74 1448 (948.222) 97.51
soc-orkut 4980 (3559.8) 91.36 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-orkut-dir 4263 (3596.22) 88.26 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-pokec 2925* (2925) 29.58 2925* (2925) 36.08 2925* (2925) 36.1 2003 (1613.6) 65.06
soc-sinaweibo N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
soc-twitter-higgs 7054* (7054) 12.56 7054* (7054) 18.27 7054* (7054) 18.09 3892 (3865.3) 55.38
soc-youtube 1645 (1645) 2.87 1645* (1645) 2.38 1645* (1645) 2.79 1645 (1645) 8.72
soc-youtube-snap 1796 (1796) 4.25 1796* (1796) 4.59 1796* (1796) 4.79 1796 (1796) 12.73
socfb-A-anon 2582* (2582) 49.02 2582* (2582) 35.47 2582* (2582) 34.58 2582 (1847.2) 81.47
socfb-B-anon 2451* (2451) 24.43 2451* (2451) 32.51 2451* (2451) 31.28 2322 (1722.4) 78.65
socfb-uci-uni 307 (238.833) 91.19 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
tech-as-skitter 6627* (6627) 7.32 6627* (6627) 22.69 6627* (6627) 22.79 6627 (6627) 76.24
tech-ip 475 (456.6) 61.49 N/A (N/A) N/A N/A (N/A) N/A 276 (237.7) 42.95
twitter mpi 4229 (2922.9) 90.29 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
web-arabic-2005 10266* (10266) 0.11 10266* (10266) 1.42 10266* (10266) 1.49 10266* (10266) 2.17
web-baidu-baike 2967* (2967) 22.02 2967* (2967) 25.89 2967* (2967) 25.59 1509 (1434.3) 66.08
web-it-2004 43259* (43259) 1.08 43259* (43259) 5.89 43259* (43259) 5.99 43259* (43259) 17.54
web-uk-2005 49947* (49947) 1.6 49947* (49947) 10.39 49947* (49947) 9.77 49947* (49947) 12.98
web-wikipedia-growth 3107 (3107) 64.75 3107* (3107) 66.91 3107* (3107) 68.09 1675 (1382.33) 98.06
web-wikipedia2009 3308* (3308) 8.02 3308* (3308) 7.79 3308* (3308) 7.49 3308 (3308) 16.68
web-wikipedia link 85807 (37968.8) 78.38 N/A (N/A) N/A 85694 (85694) 99.58 N/A (N/A) N/A
wikipedia link en 4389 (4386.5) 75.8 N/A (N/A) N/A 4389* (4389) 70.19 604 (453.7) 91.14
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6.4.4 RESULTS ON KONECT NORMAL

The results on the KONECT normal benchmark are given in Table 6. Once again, the results of
FastWClq are significantly better than those of the three competitors for most instances. FastWClq
finds cliques of the same quality or better for all graphs except two: instance wikipedia link en that
no algorithm is able to solve in the time limit, and instance flickr-links for which SCCWalk4L finds
the better solution. FastWClq again computes the most number of optimal solutions, in this case
56, although it only proves 44 of these solutions to be optimal. TSM-MWC and WLMC find fewer
optimal solutions, at 48 each; however, all of these solutions are proved optimal. FastWClq also
significantly outperforms the exact algorithms in terms of being able to produce any solution in the
100-second time limit: whereas FastWClq only fails to give a solution to one graph, TSM-MWC,
WLMC fail on 29 instances each. SCCWalk4L fails to solve only 3 instances; however, its solution
quality is worse than FastWClq on 38 instances.

Table 6. Experiment results of FastWClq and the state-of-the-art competitors on KONECT normal
benchmark.

Instance
FastWClq TSM-MWC WLMC SCCWalk4L

size time size time size time size time
actor-collaboration 29128* (29128) 9.1 29128* (29128) 27.39 29128* (29128) 27.69 29128 (29128) 80.24
amazon0601 1387* (1387) 1.54 1387* (1387) 2.88 1387* (1387) 3.09 1387* (1387) 4.07
as-skitter 6540* (6540) 6.81 6540* (6540) 22.71 6540* (6540) 22.27 6540 (6540) 72.63
citeseer 1292* (1292) 1.32 1292* (1292) 2.45 1292* (1292) 2.46 1292 (1267.1) 20.87
com-amazon 813* (813) 0.52 813* (813) 1.18 813* (813) 1.27 813* (813) 1.36
com-dblp 11025* (11025) 0.26 11025* (11025) 1.27 11025* (11025) 1.35 11025* (11025) 1.64
com-youtube 1672 (1672) 4.21 1672* (1672) 4.19 1672* (1672) 4.7 1672 (1672) 11.73
dbpedia-all 1670* (1670) 16.29 N/A (N/A) N/A N/A (N/A) N/A 1116 (767.6) 92.63
dbpedia-link 784 (563.667) 95.24 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
digg-friends 3420 (3420) 25.4 N/A (N/A) N/A N/A (N/A) N/A 323 (233.5) 9.64
douban 1073* (1073) 0.06 1073* (1073) 0.52 1073* (1073) 0.68 1073 (1073) 0.61
elec 1895* (1895) 0.15 1895* (1895) 2.68 1895* (1895) 2.79 1895 (1895) 8.89
email-EuAll 1637* (1637) 0.12 1637* (1637) 0.69 1637* (1637) 0.96 1637 (1637) 0.98
enron 3389* (3389) 0.14 3389* (3389) 18.55 3389* (3389) 18.64 3389 (3389) 19.41
epinions 10002 (10002) 0.24 10002* (10002) 0.96 10002* (10002) 1.05 10002 (10002) 4.88
facebook-wosn-links 2993* (2993) 0.48 2993* (2993) 42.29 2993* (2993) 42.29 2993 (2993) 27.45
facebook-wosn-wall 1088* (1088) 0.55 N/A (N/A) N/A N/A (N/A) N/A 428 (313.7) 24.55
flickr-growth 10094 (9970.9) 37.88 8797 (8797) 42.65 8797 (8797) 40.93 8749 (7097.2) 98.49
flickr-links 9760 (9577.7) 26.2 8699 (8699) 98.45 8272 (8272) 86.9 9822 (8619) 99.3
flickrEdges 57102* (57102) 1.27 57102* (57102) 2.45 57102* (57102) 2.68 57102* (57102) 13.48
flixster 3255 (3255) 10.48 3255* (3255) 10.18 3255* (3255) 10.84 3255 (3255) 23.51
hyves 1798* (1798) 2.62 1798* (1798) 4.82 1798* (1798) 4.58 1798 (1798) 6.68
lasagne-yahoo 469* (469) 16.01 469* (469) 31.87 469* (469) 31.85 469 (457.6) 46.21
libimseti 2028 (1910.3) 56.71 2028* (2028) 94.61 2028* (2028) 94.34 2028 (2028) 27.41
link-dynamic-dewiki 9961 (9748) 75.16 N/A (N/A) N/A N/A (N/A) N/A 285 (239.714) 94.32
link-dynamic-frwiki 7832 (7816) 81.91 N/A (N/A) N/A N/A (N/A) N/A 312 (224.2) 74.16
link-dynamic-itwiki 4808 (4808) 28.04 N/A (N/A) N/A N/A (N/A) N/A 438 (275.7) 42.23
link-dynamic-nlwiki 5059* (5059) 15.42 N/A (N/A) N/A N/A (N/A) N/A 234 (202.7) 29.23
link-dynamic-plwiki 5183* (5183) 33.43 N/A (N/A) N/A N/A (N/A) N/A 229 (207.1) 32.42
link-dynamic-simplewiki 2697* (2697) 0.43 2697* (2697) 23.38 2697* (2697) 23.35 2697 (2697) 18.06
livejournal-links 36124 (36124) 66.94 36124* (36124) 67.58 36124* (36124) 64.08 2150 (1422.1) 95.43
livemocha 1736 (1736) 7.41 1736* (1736) 2.59 1736* (1736) 2.73 1736 (1736) 7.04
lkml-reply 4992 (4992) 0.78 N/A (N/A) N/A N/A (N/A) N/A 325 (290.9) 42.32
loc-gowalla edges 2767* (2767) 0.33 2767* (2767) 1.26 2767* (2767) 1.46 2767 (2662.8) 39.42
munmun digg reply 493* (493) 0.06 493* (493) 2.88 493* (493) 3 493 (493) 9.73
munmun twitter social 617* (617) 0.41 617* (617) 1.19 617* (617) 1.29 617 (617) 2.78

(Continued on next page)
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Table 6. (Continued) Experiment results of FastWClq and the state-of-the-art competitors on
KONECT normal benchmark.

Instance
FastWClq TSM-MWC WLMC SCCWalk4L

size time size time size time size time
orkut-links 5246 (4109.6) 92.27 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
patentcite 1150* (1150) 28.84 1150* (1150) 28.28 1150* (1150) 29.39 1004 (809.1) 71.91
petster-carnivore 115803* (115803) 11.49 115803* (115803) 53.78 115803* (115803) 53.88 6159 (5547.7) 99.38
petster-friendships-cat-uniq 8453 (8415.9) 22.36 8453* (8453) 45.78 8453* (8453) 44.79 2435 (2325.8) 95.58
petster-friendships-dog-uniq 4622 (4622) 65.45 4622* (4622) 22.49 4622* (4622) 22.09 4622 (4622) 52.4
roadNet-CA 503* (503) 1.52 503* (503) 4.19 503* (503) 4.29 503* (503) 6.23
roadNet-PA 480* (480) 0.77 480* (480) 2.09 480* (480) 2.29 480* (480) 2.91
roadNet-TX 484* (484) 0.89 484* (484) 2.59 484* (484) 2.69 484 (484) 3.59
slashdot-threads 740* (740) 0.08 740* (740) 3.19 740* (740) 3.5 740 (740) 8.31
soc-LiveJournal1 32219 (32219) 56.21 32219* (32219) 58.65 32219* (32219) 57.59 4426 (2005.4) 94.61
soc-pokec-relationships 2940* (2940) 24.95 2940* (2940) 33.69 2940* (2940) 34.49 2197 (1664.8) 66.32
trec-wt10g 9009* (9009) 2.07 9009* (9009) 7.89 9009* (9009) 8.59 9009 (9009) 16.11
web-BerkStan 20098* (20098) 1.31 20098* (20098) 25.68 20098* (20098) 25.49 20098 (20098) 41.84
web-Google 4110* (4110) 2.33 4110* (4110) 4.79 4110* (4110) 4.97 4110 (4110) 7.09
web-NotreDame 15838* (15838) 0.17 15838* (15838) 1.29 15838* (15838) 1.39 15838* (15838) 2.65
web-Stanford 6280* (6280) 0.48 6280* (6280) 4.59 6280* (6280) 4.67 6280 (6280) 20.59
wiki-Talk 2714 (2714) 16.98 2714* (2714) 14.79 2714* (2714) 14.29 2714 (2714) 23.78
wiki talk ar 3338* (3338) 2.12 N/A (N/A) N/A N/A (N/A) N/A 336 (229.5) 10.65
wiki talk de 5040 (5040) 8 N/A (N/A) N/A N/A (N/A) N/A 244 (214.9) 8.5
wiki talk en 4061 (4055.8) 68.7 N/A (N/A) N/A N/A (N/A) N/A 1494 (1375.8) 97.68
wiki talk es 3675 (3675) 4.21 N/A (N/A) N/A N/A (N/A) N/A 388 (249.4) 6.57
wiki talk fr 3879 (3879) 5.76 N/A (N/A) N/A N/A (N/A) N/A 262 (211) 7.2
wiki talk it 4784 (4784) 3.81 N/A (N/A) N/A N/A (N/A) N/A 288 (224.5) 13.71
wiki talk nl 3891 (3891) 2.62 N/A (N/A) N/A N/A (N/A) N/A 341 (253.6) 6.62
wiki talk pt 4498 (4498) 2.28 N/A (N/A) N/A N/A (N/A) N/A 333 (222.9) 13.03
wiki talk ru 3359 (3359) 2.07 N/A (N/A) N/A N/A (N/A) N/A 341 (232.8) 2.99
wiki talk zh 3062 (3062) 2.42 N/A (N/A) N/A N/A (N/A) N/A 333 (220.7) 6.93
wikipedia-growth 3286 (3286) 46.35 N/A (N/A) N/A N/A (N/A) N/A 1638 (1478.9) 97.73
wikipedia link de 83398* (83398) 90.27 N/A (N/A) N/A N/A (N/A) N/A 1276 (805.5) 99.62
wikipedia link en N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
wikipedia link fr 105526 (40333.1) 95.66 N/A (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A
wikipedia link it 84676* (84676) 74.06 N/A (N/A) N/A N/A (N/A) N/A 1710 (862.333) 99.1
wikipedia link ja 84792* (84792) 76.13 N/A (N/A) N/A N/A (N/A) N/A 2561 (1687.5) 98.5
wikipedia link pl 82737 (82737) 40.42 N/A (N/A) N/A N/A (N/A) N/A 1985 (1585.9) 94.31
wikipedia link pt 104461* (104461) 40.61 N/A (N/A) N/A N/A (N/A) N/A 13939 (3933.1) 88.49
wikipedia link ru 80185 (80185) 73.62 N/A (N/A) N/A N/A (N/A) N/A 1771 (872.125) 98.65
wikisigned-k2 1192 (1192) 1.01 1192* (1192) 3.99 1192* (1192) 4.09 1192 (1192) 17.92
wordnet-words 3274* (3274) 0.2 3274* (3274) 0.69 3274* (3274) 0.79 3274* (3274) 1.09
youtube-links 1648 (1648) 2.86 1648* (1648) 4.58 1648* (1648) 4.7 1648 (1648) 12.43
youtube-u-growth 2015 (2015) 11.06 2015* (2015) 28.79 2015* (2015) 28.19 1999 (1999) 51.05
zhishi-baidu-internallink 3166* (3166) 21.65 3166* (3166) 49.58 3166* (3166) 47.39 1476 (1464) 66.6
zhishi-baidu-relatedpages 9154* (9154) 1.33 9154* (9154) 49.89 9154* (9154) 49.59 9154 (5904.3) 65.04
zhishi-hudong-internallink 26627* (26627) 21.2 26627* (26627) 33.19 26627* (26627) 31.79 26627* (24272.3) 82.93
zhishi-hudong-relatedpages 1566* (1566) 29.66 1566* (1566) 48.49 1566* (1566) 50.98 1566 (1121.5) 70.15

6.5 The Effectiveness of Three Upper Bound Functions

To determine the effectiveness of three upper bound functions (i.e., UB0, UB1 and UB2), we com-
pare FastWClq with its five alternative versions, each of which uses a different subset of the upper
bound functions, given as follows: (1) FastWClq0 (only UB0); (2) FastWClq1 (only UB1); (3)
FastWClq2 (only UB2); (4) FastWClq01 (only UB0 and UB1); and (5) FastWClq02 (only UB0 and

61



CAI, LIN, WANG, & STRASH

Table 7. Comparative results of solving ability of FastWClq and its variants with each upper bound
and each combination of two upper bounds on all benchmarks

Benchmark #inst.
FastWClq FastWClq02 FastWClq01 FastWClq2 FastWClq1 FastWClq0

#win time #win time #win time #win time #win time #win time
Repository 200 65 47 32.53 46 32.97 47 33.51 48 29.9 49 29.72 48 32.25
Repository normal 65 49 32.34 49 33.32 48 33.24 48 29.2 51 29.42 48 32.54
KONECT 200 80 71 22.34 70 23.21 68 22.46 54 20.93 54 20.65 68 22.62
KONECT normal 80 70 21.27 70 21.84 69 21.63 51 20.59 58 20.39 70 21.34

Table 8. Comparative results of proving ability of FastWClq and its variants with each upper
bound and each combination of two upper bounds on all benchmarks

Benchmark #inst. FastWClq FastWClq02 FastWClq01 FastWClq2 FastWClq1 FastWClq0
#prov #prov #prov #prov #prov #prov

Repository 200 65 36 36 22 35 22 12
Repository normal 65 36 36 19 36 19 14
KONECT 200 80 42 41 17 34 14 16
KONECT normal 80 44 44 14 38 11 13

UB2). For each algorithm, we report the number of instances where it performs best among all
algorithms on the metric of maximum and average weight of cliques, denoted by ‘#win’, and the
number of instances where the algorithm proves the optimality of its solution, denoted as ‘#prov’.

Table 7 summarizes the comparative results in terms of solution quality and run time for FastWClq
and the five alternative versions on all four benchmarks. Overall, FastWClq gives the best perfor-
mance on these benchmarks, thus showing that all upper bounds contribute to its performance.

Although FastWClq is slightly outperformed in terms of quality by other variations on some
individual benchmarks, FastWClq outperforms these other variants on all benchmarks in terms of
proving optimality. In Table 8 we present the number of solutions for which FastWClq and its five
versions prove optimality. Observed from Table 8, FastWClq shows the best proving ability, while
the version using UB0 and UB2 has very close proving ability with FastWClq. This indicates that
with UB0 and UB2 , the contribution of UB1 on the proving ability can be omitted. This can be well
understood as UB2 is an enhanced bound built on the basis of UB1.

To further analyze the upper bound functions of FastWClq, we report the percent of remaining
vertices after the last successful call of graph reduction and the time at which the last successful
reduction procedure finishes (Table 9). The detailed information of all instances is presented in
Figure 2. Observed from the results, the upper bound functions can make a significant contribution
for FastWClq in a short time.

6.6 Summary of Experiments

Table 10 summarizes the experimental results of FastWClq and three competitors on the four bench-
marks. To further provide a better understanding of the performance of the algorithms, besides the
time limit of 100 seconds, we also test the algorithms with the time limit of 300 seconds and 600
seconds. For these four benchmarks of large graphs, FastWClq has the top performance in terms of
solution quality, followed by TSM-MWC, WLMC and SCCWalk4L (in this order).
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Table 9. Information on the effectiveness of graph reduction in FastWClq. (RVavg is the average
number of remaining vertices, RVavg% is the percent of remaining vertices among all the vertices,

and tavg is the time at which the last successful reduction procedure finishes.)

Benchmark FastWClq
RVavg RVavg% tavg

Repository 200 2025185.44 10.52% 40.12
Repository normal 2031723.03 11% 41.13
KONECT 200 413092.01 4.65% 29.68
KONECT normal 412874.82 4.58% 29.19
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Figure 2. A plot comparing the time of the last successful graph reduction and the percentage of
vertices remaining in the graph.

The density of these large real-world graphs ranges from 0.000004% to 0.139%. For 75 large
real-world graphs whose density is less than 0.001%, FastWClq steadily obtains the same or better
solution values, compared to all competitors. For the remaining graphs whose density, FastWClq is
also competitive, and gives the best solution for those instances with only 7 exceptions.

We now turn to compare the ablity of proving the optimality. Compared with FastWClq, exact
algorithms TSM-MWC and WLMC prove the optimality of more solutions, which is not surprising.
Nevertheless, we note that our semi-exact algorithm FastWClq also shows competitive proving
ability. It proves the optimality of its solutions for about half of the tested graphs including graphs
with millions of vertices, and the average time for doing this is less than 22 seconds.

7. Conclusions and Future Work

This paper presented a novel semi-exact method for the maximum weight clique problem (MWCP),
which aims to solve large graphs within a short time limit. The method interleaves clique finding
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Table 10. Experimental results of FastWClq and the competitors on all benchmarks with different
time limits.

Benchmark #inst. Time FastWClq TSM-MWC WLMC SCCWalk4L

Limit #win time #prov #win time #prov #win time #prov #win time
Repository 200 65

100s

55 32.53 36 45 26.19 45 53 31.32 52 22 54.7
Repository normal 65 54 32.34 36 45 25.28 45 52 31.6 52 23 54.81
KONECT 200 80 75 22.34 42 48 22 48 47 23.09 47 37 39.34
KONECT normal 80 75 21.27 44 48 20.9 48 48 20.58 48 34 39.67
Repository 200 65

300s

55 50.26 43 52 46.66 51 62 53.38 62 37 121.37
Repository normal 65 54 45.35 45 51 43.58 51 62 48.77 62 33 131.74
KONECT 200 80 76 31.86 52 59 61.8 58 58 62.19 58 47 86.47
KONECT normal 80 76 30.31 52 61 58.6 61 59 57.83 59 50 89.68
Repository 200 65

600s

59 67.88 43 52 46.66 51 62 55.49 62 38 182.67
Repository normal 65 58 81.34 45 52 49.29 52 62 48.77 62 36 210.17
KONECT 200 80 77 39.52 52 62 70 62 61 75.23 61 57 140.92
KONECT normal 80 77 50 52 62 63.07 62 61 80.43 61 55 140.7

and graph reduction. Several ideas were proposed to improve the clique finding algorithm and the
graph reduction algorithm. The resulting algorithm is called FastWClq. Experiments on large real-
world graphs show that FastWClq finds better solutions than state-of-the-art algorithms while using
less time on most instances. Also, FastWClq proves the optimality of its solutions for about half of
the tested graphs including graphs with millions of vertices, and the average time for doing this is
less than 22 seconds.

As shown in this work, semi-exact algorithms take the advantage of solving and proving, and
seem a promising direction for solving large combinatorial optimization problems. A significant
direction for future work is to apply the semi-exact method to other combinatorial optimization
problems problems.
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