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Abstract

This paper considers multi-stage optimization problems under uncertainty that involve distinct
offline and online phases. In particular it addresses the issue of integrating these phases to show
how the two are often interrelated in real-world applications. Our methods are applicable under
two (fairly general) conditions: 1) the uncertainty is exogenous; 2) it is possible to define a greedy
heuristic for the online phase that can be modeled as a parametric convex optimization problem.
We start with a baseline composed by a two-stage offline approach paired with the online greedy
heuristic. We then propose multiple methods to tighten the offline/online integration, leading to sig-
nificant quality improvements, at the cost of an increased computation effort either in the offline or
the online phase. Overall, our methods provide multiple options to balance the solution quality/time
trade-off, suiting a variety of practical application scenarios. To test our methods, we ground our
approaches on two real cases studies with both offline and online decisions: an energy manage-
ment problem with uncertain renewable generation and demand, and a vehicle routing problem
with uncertain travel times. The application domains feature respectively continuous and discrete
decisions. An extensive analysis of the experimental results shows that indeed offline/online inte-
gration may lead to substantial benefits.

1. Introduction

Optimization under uncertainty arises in many application areas, such as project scheduling, trans-
portation systems, financial systems, and energy management: fuel prices, electrical power, activity
durations, travel times, etc. are effectively stochastic in the real world. Optimization problems in
this class can be seen as a sequence of multiple stages, such that at each stage part of the uncertainty
is revealed and some decisions must be made. Such decisions are irrevocable and made without full
knowledge of the future: they should therefore account for multiple (ideally all) possible outcomes,
and optimize a probabilistic performance measure (e.g.the expected value of a relevant cost metric).

The need to account for multiple future developments makes stochastic optimization incredi-
bly challenging, which explains how approximate (sampling-based) methods and heuristics are the
most popular solution techniques (Powell, 2016; Van Hentenryck & Bent, 2009). Due to such a
complexity, the applicable approaches depend on the temporal granularity of the decisions to be
made. Long-term “strategic” decisions (which are often very impactful) are typically solved via ex-
pensive, but more accurate, sampling-based approaches. Short-term “operational” decisions often
need to be made over multiple steps, within a short time frame: they are commonly addressed via
polynomial-time heuristics, while more advanced sampling-based methods are applicable only if
their computational cost is carefully managed. We will broadly refer to the first class of problems
(and solution approaches) as offline and to the second as online.
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In this paper, we move from the observation that many practical application scenarios require
to make interdependent offline and online decisions. For example, we may need to define a daily
production schedule for an industrial plant, and then manage its power supply on a hour by hour
basis; or we may assign customers to vehicles for delivering goods, and then adjust their routes
dynamically as the traffic conditions reveal themselves over time. The simplest approach to tackle
such problems is to deal with the offline and online phase separately, (e.g.) via a sampling-based
method and a heuristic respectively. However, we will show that substantial improvements can be
obtained by treating the two phases in an integrated fashion.

This paper builds over and substantially extends our previous work (De Filippo, Lombardi, &
Milano, 2018b, 2018a). In particular, the first and the fourth methods (respectively ANTICIPATE
and ACTIVE) are already presented in the two mentioned conference papers, while the second and
the third (i.e. TUNING and ACKNOWLEDGE) are new methods proposed in this work to fill the
gap between online and offline phases in optimization under uncertainty. The main focus of these
new methods is how to manage the (high) offline computational effort of ACTIVE by maintaining
an efficient online heuristic by ensuring robust solutions. The results of our previous cited works
(related to VPP and VRP cases study for ANTICIPATE and ACTIVE) are presented in this paper to
compare them with the results of the new proposed methods and to make a more extensive overview
on integrated offline/online optimization methods under uncertainty. The paper is structured as
follows: Section 2 provides a review of methods for optimization under uncertainty, both in an
offline and online setting, and then focuses on motivating examples for offline/online integration.
Section 3 describes the starting baseline model which is designed to be representative of this state
of the art. Section 4 describes in details our proposed methods (as improvements of the baseline
model) by pointing out the importance of both the offline and the online part for each method.
Finally, in Section 5 and Section 6 we ground our methods on two real cases study and we provide
an exhaustive analysis and discussion of the results. Section 7 concludes with final remarks and
future work.

1.1 Contribution

In pure offline and online methods for optimization under uncertainty, if we fail to realize that we
have a tight integration between these two phases, we may often have undesirable side effects and
missed opportunities. For example, the solutions produced by pure offline methods may conflict
with the behavior of the approach used for making online decisions; conversely, an online solver
may struggle with producing solutions within a reasonable time budget, not realizing that some de-
gree of offline preparation could greatly simplify the issue. For these reasons, our contribution is
focused on how to manage the delicate tradeoff between the solution quality and the computational
effort, either via approximations or by shifting part of the computational load to the offline phase.
Generally, increasing the quality of the solution by making it robust, for example to unexpected
events, requires a higher computational cost. By integrating the offline and online phases and tak-
ing into account the information available in advance, it is possible to choose where to move the
computational load for high-quality solutions (De Filippo, Lombardi, & Milano, 2020b, 2020a).

To compare our methods with existing literature, we consider a baseline composed by an ap-
proach that deals with offline decisions via a sampling-based method (e.g. a two-stage stochastic
optimization model is used for the offline phase), and with online decisions via a greedy heuristic,
that is representative of best practices in real problems. This baseline is not problem specific, instead
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we simply assume that: 1) the uncertainty is exogenous; 2) the online heuristic can be stated as con-
vex optimization problem. We then show how to improve the baseline in different directions, each
altering either the offline or the online component of the solution process, so that the two play better
together. All our methods are applicable under the same (general) assumptions as the baseline.

We believe our techniques represent a significant step toward integrated offline/online optimiza-
tion: we propose four methods to improve the baseline in different directions. First, we try to
improve the online solver by adding some anticipatory capabilities: this is the key idea in our AN-
TICIPATE method. Second, we try to make the offline solver explicitly aware of the limitations of the
online approach: we mitigate the discrepancy by translating the online greedy heuristic as a set of
constraints, which can be injected in the offline model. When stringent time constraints exist, it may
be better to improve the greedy heuristic by simply adjusting its parameters (this is the main idea
in the TUNING approach). Then, shifting our attention to the offline decisions, this technique (of
injecting constraints in the offline model to translate the online heuristic) leads to our ACKNOWL-
EDGE method and, by combining this approach with an offline parameter tuning to achieve even
deeper integration, to our ACTIVE method.

To test our methods, we ground them on two case studies, matching the examples mentioned
earlier: 1) an energy system management problem, where load shifts are planned offline (the day
ahead) and power flows must be controlled online (e.g. hour by hour); and 2) a Vehicle Routing
Problem where customer are assigned offline, but the routes can be chosen online (i.e. based on
the uncertain travel times). The first problem features a continuous (and hence non-enumerable)
decision space, while the second has pure discrete decisions. In our experiments, all the proposed
methods significantly improve over the baseline in terms of solution quality. While the computation
cost is always higher than the baseline, each approach hits a different trade-off in terms of offline
and online solution time. It is important to stress that the first problem features a decision space that
is not enumerable (e.g. with continuous decision variables) while the second has the possibility to
enumerate the decision space since it features discrete variables and its results (for the method that
presents online anticipatory algorithm) can be compared with existing algorithms in literature.

2. Background and Motivation

In this section we provide a brief overview of methods for optimization under uncertainty, both in
an offline and online setting, and then provide motivating examples to show how the two are often
interrelated in real-world applications. The distinction between offline and online problems in the
literature is somewhat blurry: in this paper, we will refer as “online” to problems that need to be
solved repeatedly over time, with the outcome of each solution attempt affecting the subsequent
ones. In practice, online problems often need to be solved within strict time limits, while this
requirement is relaxed for offline problems.

2.1 Optimization Under Uncertainty: General Concepts

A key difficulty in optimization under uncertainty is in dealing with an uncertainty space that is
huge and frequently leads to very large-scale optimization models, and decision-making process
is often further complicated by the presence of decisions in a multi-period or multi-stage setting.
Due to their complexity and the need of complete knowledge of the future, stochastic problems are
traditionally solved via offline methods. There is however a growing interest in online algorithms to
make decisions over time (without complete knowledge of the future), so as to take advantage of the
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information that is slowly revealed. Generally, in optimization under uncertainty, both approaches
make sense: “strategic” decisions can be taken off-line, while “operational” decisions are better left
to an online approach.

The need to make decisions without complete knowledge about the problem data is an extremely
common situation, and there is a growing realization that dealing with uncertainty in optimization
is necessary to achieve real-world impact in many domains. The field has been extensively investi-
gated, and we refer the reader to Kall and Wallace (1994); Birge and Louveaux (1997); Shapiro and
Philpott (2007); Sahinidis (2004); and Powell (2016) for a historical perspective and comprehensive
overview.

Data subject to uncertainty is usually represented via random variables (see, e.g., Birge & Lou-
veaux, 1997; Kall & Wallace, 1994). A random variable £ does not take value, but is instead sampled
to obtain realizations, from a continuous or discrete set called support (i.e. the variable domain). A
probability distribution defines how likely each value in the support is to be sampled. As mentioned
in Section 1, stochastic optimization problems can be viewed as composed of multiple stages. At
each stage, some uncertain elements are observed (i.e. one or more random variables are sampled),
and some decisions must be made (i.e. some decision variables need to be assigned). The uncer-
tainty is said to be exogenous if the distribution of the random variables in a stage does not depend
on the decisions made in previous stages (e.g. weather conditions), and endogenous in the opposite
case (e.g. recovering from an illness, while receiving cures).

The goal is to optimize a probabilistic performance measure (e.g. the expected problem cost),
subject to both deterministic and probabilistic constraints. Probabilistic constraints can be further
divided on constraints over expectation (e.g. the expected stock of certain goods in a warehouse
should be above a given level) or chance constraints (e.g. the probability that the stock is above a
given level should be higher than a threshold). For more details, see, e.g., Zhang and Li (2011); Li,
Arellano-Garcia, and Wozny (2008); and Sahinidis (2004).

Robust Optimization Sometimes, when a deterministic model is clearly inappropriate, and there
are few clues to the probabilities to use a stochastic model, it is useful to work with ranges of
uncertainty. Uncertain parameters, in this case, are assumed as restricted to particular intervals,
without an associated probability distribution. This is the key idea in so-called robust optimization
and has the additional benefit of reducing even further the computational costs (Bertsimas & Sim,
2004; Bertsimas, Brown, & Caramanis, 2011; Zheng, Wang, & Liu, 2015). Instead of minimizing
the total expected cost as in stochastic optimization, robust optimization reduces the worst-case
costs for all possible results of uncertain parameters.

Hybrid stochastic/robust models have been proposed in recent years (see, e.g., Zhao & Guan,
2013) to combine the advantages and compensate for the disadvantages of pure robust and stochastic
approaches to make better decisions in complex domains under uncertainty.

Sampling and the Sample Average Approximation (SAA) With a few exceptions, the probabil-
ity distributions of the random variables are approximated by drawing a finite number of samples
(Shapiro, 2013): this yields a collection of realizations referred to as scenarios. This sampling step
can be done prior to the solution process in case of exogenous uncertainty, but must be performed
at search time for endogenous uncertainty. Sampling and scenarios allow to tackle stochastic op-
timization via the Sample Average Approximation (Shapiro & Philpott, 2007; Shapiro, 2013). In
this approach, a set (i.e. a copy) of deterministic decisions is associated to each scenario, which
allows to deal with expected values and chance constraints via summations and averages. To ensure
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meaningful solutions, it is important to add so-called non-anticipativity constraints to ensure that
no decision is made with perfect knowledge of the future. Indeed, a model with non-anticipativity
constraints has no knowledge (information) on how the uncertainty will resolve in the (future) re-
maining stages and they only know the inputs and the state of the system in the current stage. In
practice, if two scenarios share the same realization for the random variables in stages 1 to k, then
their decisions for the stages 1 to £ 4+ 1 must be identical.

The SAA is a powerful and general method, but also very expensive from a computational point
of view (Walsh, 2002). For this reason, its application has been historically limited to offline, two-
stage, problems. This is in fact the context for which the SAA was originally developed, and the
focus of many acceleration techniques such as the classical L-shaped method (Laporte & Louveaux,
1993). Applying the SAA to a two stage problem requires to determine a single set of decisions for
stage 1, and one set of decisions (the so-called recourse actions) per scenario for stage 2 (Shapiro,
2008). This structure is depicted in Figure 1.

Robust and stochastic optimization methods have traditionally focused on strategic (offline) op-
timization, under relaxed time constraints. Indeed, offline approaches are concerned with making
decisions before the uncertainty is revealed: they can obtain high quality and robust solutions, but
they have a significant computational cost.

Online Stochastic Optimization When dealing with a problem with more than two stages, opti-
mizing at run time provides the opportunity to adapt the solutions to unexpected events (since those
can be observed) and to reduce the computational cost (since there is no need to plan for every
possible outcome). This line of reasoning is at the basis of stochastic online optimization that, due
to the frequent presence of tight time limit on the solution process, has been traditionally tackled
via heuristics.

In recent years, the availability of improved algorithms and computing power has enabled the
application of sampling-based algorithm also in an online setting: these are often referred to as
anticipatory algorithms, many of which received excellent coverage in Van Hentenryck and Bent
(2009). Generally speaking, these algorithms need to be run at each stage and rely on scenarios to
obtain approximate information about the future: this enable significant improvements in terms of
quality, but comes with a substantial computational cost that must be carefully managed.

For example, the EXPECTATION algorithm (Bent & Van Hentenryck, 2004a) attempts to reduce
the solution time by optimizing each scenario independently (and therefore as a deterministic prob-
lem), for all possible decisions; the method then selects the decision which maximizes the expected
profit. The CONSENSUS algorithm (Bent & Van Hentenryck, 2004c) improves over this scheme by
solving a deterministic problem per scenario. Every time a decision for the current stage is picked
as optimal in one of those problems it receives a votes; once the process ends, the algorithm chooses
the decision with the highest number of “votes”.

The technique employed by CONSENSUS has some adverse effects on the solution quality, which
are addressed in REGRET algorithm (Bent & Van Hentenryck, 2004b) by extracting more informa-
tion from each solved problem; this leads to a more reliable selection of the optimal decision for
the current stage. The AMSAA method (Mercier & Van Hentenryck, 2008) instead hybridizes SAA
and Markov Decision Processes techniques to improve the solution quality at the expense of the
computational cost. All the anticipatory online algorithms mentioned so far are applicable only to
problems with discrete, enumerable, decisions.
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Stage 1 decision Observe Stage 2 decision
(now) L uncertainty (recourse)

Figure 1: Two-Stage Stochastic Programming (Van Hentenryck & Bent, 2009)

There is always a trade-off between the computation cost and the quality and robustness of the
provided solution. This trade-off is the primary object of investigation in Mercier and Van Hen-
tenryck (2007), and can be tuned by adjusting the number scenarios and the so-called look ahead
horizon, i.e. the number of future stages that are taken into account in each scenario. More in
general, the method for generating the scenarios can be adapted to the given problem and the user
goals, as described for example in Kaut and Wallace (2003).

2.2 Work Position in the Current Literature

In previous sections we overviewed purely offline and online methods. Offline approaches are
concerned with making decisions before the uncertainty is revealed: they can obtain high quality and
robust solutions, but they have a significant computational cost. Online algorithms focus on reacting
to unexpected events once they are observed, but often run under strict time constraints, making it
challenging to compute high-quality solutions.This distinction in offline and online optimization has
led to consider the two modes separately in recent literature. However, in many cases multi-stage
optimization problems under uncertainty can be considered composed of both an offline “strategic”
phase and an “operational” online phase, as shown in the following Section 2.3. Strict constraints on
the available decision time-to-solution are often present in the online phase, but are absent (or very
relaxed) on the offline one. Since the available solution methods in literature tend to be polarized
between offline and online approaches, all our integrated offline/online proposed methods are not
directly related to the current literature. Below we list all the points in common with the current
literature. We consider the usual setup for multi-stage stochastic problems: 1) the number of stages
is priori-known; 2) uncertainty is represented via random variables with known distributions; 3)
uncertainty is exogenous (i.e. the distributions do not depend on the decisions). These assumptions
hold in a great variety of applications and have significant computational advantages, as shown
in the cited references. Moreover, our work is related to all the general concepts presented in
Section 2.1: 1) we deal with uncertainty via sampling (i.e. we sample realizations by assuming that
the error for our forecasts can be considered as an independent random variable.); 2) we focus on
a number of extreme scenarios, thus making our model somewhat close to robust optimization; 3)
online stochastic optimization literature is cited and analyzed to introduce (and compare) our online
anticipatory algorithm. However, all our other methods are not directly comparable because they
focus on problems that feature both strategic and operational decisions and the objective is to control
offline decisions in such a way (e.g. parameter tuning, optimality conditions) so that they synergize
with the online solver. To the best of our knowledge, these methods have been a first attempt in the
direction of a real integration between offline (strategic) and online (operational) decision phases.
In details, related to the previous works cited in Section 2.1, the only method that is suitable for a
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Figure 2: Position of our work in the current state of the art in Optimization under Uncertainty

comparison is ANTICIPATE. In particular, the online phase of our method has the same semantic of
EXPECTATION which obtains the same results by enumerating the feasible decisions for the current
stage, and evaluating the expected cost by solving the problem on each scenario. However, when
the decision space is not enumerable (e.g. for continuous variables), EXPECTATION, REGRET (and
even CONSENSUS and AMSAA) cannot be applied in a straightforward fashion, while our method
is applicable also in the case of numeric decisions. It is important to consider also that when each
online stage requires to take multiple decisions, enumeration may be expensive and associating an
expected cost to each decision in isolation may lead to an underestimation of the expected cost.
Moreover, the most important improvement given by our method is the integration of the online
anticipatory algorithm with offline decisions (i.e. customer assignment or load shift planning in the
offline phase of ANTICIPATE).

2.3 Motivating Examples for Offline/Online Decision-Making

In this section, we review some real world use cases that are typically solved via either offline or
online models, while in fact they are integrated offline/online problems. In the model descriptions in
the following section, y will represents the offline decisions; z* will represent the online decisions
for stage k; s® (resp. &¥) will represent the system state (resp. the uncertainty) revealed at the
beginning (resp. the end) of stage k. We will show them in the following motivating examples.

o FEnergy Management Systems (EMS) are key components of the electrical grid that maintain its
stability both by shifting consumption (over time) and routing power flows from the available
generators. EMS need to tackle a very challenging problem, due to the progressive shift
towards decentralized generation, the strong penetration of (uncontrollable and stochastic)
Renewable Energy Sources (RES) that represent the uncertainty for each stage ¢, and the
integration of flexible (deterministic) energy systems. In practice, the load shifts must be
planned offline with offline decisions y (the day ahead) and the power flow balance should
be maintained online (e.g. hour by hour) z*, so as to minimize the costs (see, e.g., Morales,
Conejo, Madsen, Pinson, & Zugno, 2013; Clavier, Bouffard, Rimorov, & Jos, 2015).
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e In transportation systems, a central role is played by the Vehicle Routing Problem and its
variants (Toth & Vigo, 2002), which consists in establishing the paths for a set of vehicles
to serve a set of customers. In a real world setting, many aspects (e.g. customer demands
and travel times) are also subject to uncertainty fk (Manzo, Nielsen, & Prato, 2014). Several
transportation companies focus on assigning customers to smaller scale operators (offline y),
which are then in charge of choosing the routes (online z*). In the next section we will use
this case study to build a running example to present and clarify our methods.

e In project scheduling the goal is to generate a feasible schedule that optimizes some per-
formance metric (i.e. the project duration), in presence of limited resources. This schedule
can serve as a basis for planning external activities such as material procurement, preven-
tive maintenance and delivery of orders to external or internal customers. During execution,
project activities are subject to considerable uncertainty £* that may lead to schedule disrup-
tions (Herroelen & Leus, 2005). A disrupted schedule incurs higher costs due to missed dead-
lines, resource idleness, higher work-in-process inventory and possible frequent rescheduling.
Like in the previous examples, it is possible to plan project activities offline () and then to
use online algorithms to improve (online z*) solutions as the elements of uncertainty reveal
themselves.

e In reservation systems requests arrive online and must be dynamically allocated to limited
resources in order to maximize profit (Van Hentenryck, Bent, & Vergados, 2006). Example
include hotel of flight booking systems, which are both subject to considerable uncertainty
¢* in the real world. Once again, a base reservation plan is usually devised offline (y), but
it then needs to be integrated with an online dynamic system (z*) to cope with unexpected
disruptions.

All such problems feature both offline and online phases, which are typically solved in isolation,
despite being strongly interconnected. In this paper, we will show that a tighter integration between
the two phases can lead to substantial improvements: this will be done via an empirical evaluation
using the first two examples (energy management and transportation system) as case studies.

Generally, increasing the quality of the solution and the robustness (e.g.) to unexpected events
requires a higher computational cost. The integration of the offline and online phases allows to
obtain higher quality solutions compared to the Baseline. In general this is achieved by making sure
that the offline decisions synergize with the online solver, by tuning the behavior of the online solver
itself, or by making the online solver anticipatory. In practice, as shown in the final experiment
sections, our method based on online anticipatory algorithms (i.e. ANTICIPATE) yields substantially
high-quality solutions but, being also MILP-based, it takes non-negligible time during the online
phase. The remaining methods are based on the idea of controlling offline decisions so that they
synergize with the online (fast) solver. They obtain solutions whose quality matches or beats that
of ANTICIPATE, at the cost of a higher offline computation time, though it has the same online
computational cost of the baseline.

3. Baseline Offline/Online Model

We can now proceed to describe our baseline method, which will bee improved in Section 4 via three
broad ideas: 1) improving the online heuristic by adding an anticipatory component; 2) making
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the offline solver aware of the online heuristic and its limitations; 3) tuning the parameters of the
online heuristic to alter its behavior. The first idea is closely related to existing online anticipatory
algorithms (e.g. EXPECTATION); the second and third ideas exploit the mixed nature of the problem
to enable improvements via a deeper integration of the offline and online phases. We formalize our
methods to propose general approaches that can be applied to different real world use cases, as long
as a few basic assumptions are satisfied.

Historically, methods such as stochastic optimization (see, e.g., Shapiro & Philpott, 2007; Birge
& Louveaux, 1997; Kall & Wallace, 1994) have been used for the offline phase, while the online
phase has often been tackled via simple, non-anticipatory, heuristics. Our baseline method is de-
signed to be representative of this state of the art. In particular, we use a sampling-based model for
the offline decision that is already capable of taking into account the existence of the online phase,
albeit in a limited fashion. For the online phase itself, we use instead a fast greedy heuristic.

Offline (scenario based)
Strategic Decisions
I |

Online Operational Decisions

OO

Figure 3: Baseline Offline and Online Integration (De Filippo et al., 2018a)

We assume exogenous uncertainty, and that the overall management system is composed by two
macro steps: the offline decisions are made by a two-stage stochastic optimization model, based on
sampling and scenarios. The second step is an online algorithm, implemented within a simulator,
that tries to make optimal online choices, by building over the offline decisions. We make the
assumption that the online algorithm is based on a convex parametric optimization model. Since
our methods use (offline) parameter tuning techniques, we consider an online parametric heuristic:
the heuristic parameters could be costs, resource availability or weights, depending on the semantic
used. In our case studies (i.e. an Energy Management System and a Vehicle Routing Problem), we
use parametric costs associated to the storage system for the EMS, and travel times for the VRP.

Formal Problem Description We view mixed offline/online problems as on n-stage problems
where the first-stage decisions are strategic (and can be taken with relative leisure), while the re-
maining n - 1 stages involve operational decisions (with tighter temporal constraints).

In the model descriptions, y will represents the offline decisions; z* will represent the online
decisions for stage k; s* (resp. £€¥) will represent the system state (resp. the uncertainty) revealed at
the beginning (resp. the end) of stage k. All variables are assumed to be vector-valued; they can be
either continuous or discrete, and have either finite or infinite domain.

We will refer to F(y, z*, s*) as the cost incurred at stage k for taking decisions 2. The cost
directly associated to the offline decisions is instead referred to as F,(y). Therefore, the total cost
for a single run over all the stages is given by:

Foly)+ Y Fly,a*, ") (1)
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The transition from the state in stage & to the state in stage k£ + 1 is defined by means of a transition
function T, i.e.:
E+1 k k ¢k
S+ :T(y,LE,S 75)

where it can be seen that the effect of the uncertainty (i.e. the random variable) is encoded in the
state.

Flattened Problem Before introducing the model for the offline phase, it is useful to discuss a
common approximation technique employed to reduce the computational cost of solving a multi-
stage problem.

Let 2 be a set of scenarios w for & = (£0,...¢"~1). Given a single scenario w, it is possible to
collapse the constraint and cost of each stage to obtain a flattened (online) problem:

min Z]—"(y,azi, s¥) (PF)
k=1
stoe(y,zt s) =0 Vk=1.n 2)
gly,xk, k) <0 Vk=1.n 3)
sEHL = T(y, 2k 8 k) Vk=1.n—1 4)

where ¥ /s¥ /€% are the online decisions/state/realizations for stage k in scenario w. Functions e and
g are vector-valued in general and define the constraints for each stage.

Since PF assumes the availability of all ¥ values, it is effectively a clairvoyant approach, due to
the lack of non-anticipativity constraints. In the online optimization literature the flattened problem
is better known as the offline problem (Van Hentenryck & Bent, 2009): we adopt a different name
to avoid ambiguity with the actual offline phase.

Note that the flattened problem is obtained by collapsing online stages, for which we have made
a convexity assumption. This implies that ¢ must be convex and e linear. From a computational
standpoint, this also means that PF is largely convex itself, and that its complexity depends heavily
on the properties of the state transition function. If 7" is linear, then the flattened problem will be
convex and relatively easy to solve. Non-linear transition functions are conversely much harder to
handle.

Offline Problem As a baseline to deal with the offline decisions we consider a two-stage stochas-
tic optimization problem obtained by instantiating PF once per scenario:

win Z,(5) + g 30 - Flnabst)  (PO)

weN k=1
s.t. Eq. 2) — (4) Yw € Q
sh=To(y.£0) Vw € Q (5)
ye)y (6)

where we recall that F,(y) represents the cost that depends directly on the offline decisions. The
remainder of the cost function is given by the Sample Average Approximation of the expected cost
of the subsequent stages. The function T,(y, £0) determines the initial state for the online stages,
based on the value of y and on the uncertainty revealed at the end of the offline stage (i.e. £°).
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Finally, ) is the feasible space for the offline decision variables . We make no special assumption
on Y, Fo(y), and T,(y,£Y), meaning that even when the flattened problem is convex the offline
problem may be NP-complete (or harder). Still, the fact that the problem is solved offline makes its
complexity less critical.

Online Heuristic Since we assume that the online heuristic can be modeled as a parametric con-
vex optimization problem, we have that:

min £y, 2%, s*; o) (PH)
s.t. e(y,mk,sk) =0 @)
g(y, 2", ") <0 (8)

where f is the cost function with parameter vector o, while e and g are the same constraint func-
tions appearing in PF.

Note that the objective function f is not in general the same as the actual cost F(y, z¥, s¥)
incurred at stage k: using a modified cost function is actually a common technique employed by

domain experts to control the behavior of a heuristic.

Problem PH is general enough to capture heuristics of practical interest, such as shortest link
selection in routing, or Priority Rule Based scheduling (aka List Scheduling): in this cases, the
constraints define the available actions and the cost function allows to rank them.

3.0.1 RUNNING EXAMPLE ON VRP FOR THE BASELINE

From here we will use a running example on a mini use case (related to a Vehicle Routing Problem)
to clarify the methods, their offline/online decisions and the effectiveness of their integration.

We consider a representative instance of a VRP composed by 5 clients € C, 2 vehicles € V and
1 Depot. Each vehicle must start/end its route from/to the Depot. Each client has a demand € D and
each vehicle is characterized by its capability € C'P. Each route (arc) between two clients (nodes)
has a cost (travel time) that is represented with a cost matrix M for all routes. Each cell (i.e. ¢;;) of
the cost matrix represents the travel time from client i to client j. These costs are considered as a
runtime instance (i.e. the online realization to be solved). The offline decisions (based on scenarios)
are represented by the assignment of the clients (based on their demand) to the available vehicles
(based on their capability). Each step of the online routing decisions is represented by a route from
client i to client j. We will show, based on the chosen offline assignment for each method, the
different online routing decisions for all our proposed methods.

We define:
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C =[C1,C2,C3,C4,C5)
D =[10,5,10,5, 8]

vV =1[V1,V2

CP = [30,20]
0 25 2 2 32
30 1 4 33
p_|6 15 0 3524
“l25 2 1 0 14
4 1 2 3 02

2 3 25 5 30

Each cell of T represents an online parameter cost (travel time) ¢; ; (e.g. to,1 = 2.5 is the travel
time from O (the depot) to client 1, ¢4 o = 2 is the travel time from client 4 to client 2

The offline decisions y are the client assignments to the available vehicles. In the Baseline,
these decisions are taken by the two-stage stochastic model. Let us assume that such model assigns
clients C1, C2 and C4 to vehicle V1 and clients C3 and C5 to vehicle V2 to satisfy the capability
constraints and to minimize the expected total cost over all the scenarios:

<V1: C1,C2, C4>

V2 (3.0 ©)

The online decisions xj, are the online routings that minimize the total cost (travel time) for all
vehicles. In the Baseline, these decisions are taken by a greedy heuristic.

CostV1 =105
CostV2=9.5

Cost TOT =20

Figure 4: Baseline Offline and Online Integration

We can observe that the online stage of the Baseline method makes online routing decisions with
a cost of 10.5 for vehicle 1 (i.e. 2+1.5+3+4 by considering the cost matrix T) and 9.5 for vehicle 2
(i.e. 2+2.5+5 by considering the cost matrix T) for a total cost of 20.
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4. Offline/Online Integration Methods

The biggest drawback of the approach from Section 3 is that using the flattened problem to estimate
the effect of the offline decision on the future is equivalent to assuming the availability of perfect
information. However, the greedy heuristic employed for the online phase is instead completely
myopic. This creates a discrepancy between the estimates made by the offline solver and the ca-
pabilities of the online solver, which intuitively should have an adverse effect on the cost/quality
tradeoff on the overall problem.

Such a discrepancy can be addressed by following two strategies. First, we can improve the
online solver by adding some anticipatory capabilities. Second, we can make the offline solver
explicitly aware of the limitations of the online approach. Both methods have the effect of bridging
the gap between the tools used in the offline and online phase. They are also not mutually exclusive,
and in fact one of the approaches proposed here acts in both directions.

Probably the most natural way to improve online decision making consists in replacing the
greedy heuristic with a sampling-based anticipatory algorithm: this is the key idea in our ANTIC-
IPATE method (see Section 4.1). However, increasing the computational load of the online phase
may not a good idea when stringent time constraints exist. In such a situation, it may be better
to improve the greedy heuristic by simply adjusting its parameters. This is the main idea in the
TUNING approach: this maintains the efficiency of the original greedy heuristic, at the price of
a computationally expensive parameter tuning process, which is however performed offline (see
Section 4.2).

Shifting our attention to the offline decision, we can mitigate the discrepancy by translating
the online greedy heuristic as a set of constraints, which can be injected in the offline model PO.
This techniques leads to our ACKNOWLEDGE method (see Section 4.3). Interestingly, we show
in Section 4.4 that the approach can be combined with parameter tuning to achieve even deeper
integration: this idea is explored in our ACTIVE method (see Figure 5).

4.1 Anticipate

We can derive a sampling-based anticipatory algorithms for the online phase via the same method
employed for the offline problem in our baseline, i.e. instantiating PF for the remaining stages (and
for all samples). Formally, let 2 be a set of scenarios w for & = (¢°,...£"71), and h be the index
of the current stage, then we consider:

1 n
min F(y, 2", s") + 9] Z Z Fy,zk k) (PA)
weN k=h+1
s.t. Eq. (7,8) — online problem constraints — for stage h

Eq. (2,3) - flattened problem constraints —  for k > h

Eq. (4) — state transitions — for k > h, with s" = s" and 2" = 2"

The offline decisions are taken like in the baseline, i.e. by using PO. This first approach, referred
to as ANTICIPATE, improves the accuracy of the online component at the expense of its solution
time. In particular, the need to take into account state transitions may make PA NP-hard even if the
constraints for each online stage are convex.

PA has the same semantic as the EXPECTATION algorithm, except that this is done by solving
a single optimization problem rather than one problem for each scenario and for each possible
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BASELINE

Technique What to Where is the
9 improve? effort?
Oniine) Offline
component component

(Anticipatory Heuristi(a Online Online

Online Offline

Heuristic Aware
Offline Decisions

Anticipatory

Heuristic

Heuristic Aware
Offline Decisions

L ed o

ANTICIPATE TUNING ACTIVE ACKNOWLEDGE

Online Offline

Figure 5: (left) General used techniques. (right) Techniques and component to generate our methods

decision in the current stage. As a main drawback, the problem that our method needs to solve
may be considerably larger (as it takes into account all scenarios simultaneously): in many cases,
this trait makes our approach less efficient than EXPECTATION (and therefore than CONSENSUS and
REGRET).

However, there are two important practical cases where our approach has a substantial advan-
tage. First, when at each stage we have to take multiple decisions (e.g. choosing subsets of items
in a knapsack problem) the number of potential alternatives may grow very large. As an example,
Chisca, Lombardi, Milano, and O’Sullivan (2018) show that problems such as the online Kidney
Exchange (i.e. a multi-stage stochastic problem) have clear scalability issues and their exact solution
is a policy tree that recursively specifies the best matching for each step and every possible uncer-
tain outcome. In such a situation, EXPECTATION algorithm may become rather costly (due to the
need to enumerate all subsets), while CONSENSUS and REGRET may have difficulties in obtaining a
valid estimate of the expected impacts (since costs cannot be readily ascribed to individual items).
Second (and more importantly), when the decision space is not enumerable (e.g. for continuous z*
variables), EXPECTATION, REGRET (and even CONSENSUS and AMSAA) cannot be applied directly,
while our method is still viable with no modification.

4.1.1 RUNNING EXAMPLE ON VRP FOR ANTICIPATE

Given the same setting of Section 3.0.1, with C, D, V, CP, and T, we show the behavior of ANTICI-
PATE (i.e. offline decisions, online decisions and total costs):

The offline decisions y are the client assignments and they are decided by the same two-stage
stochastic model as the Baseline. Since ANTICIPATE use the same offline step of the Baseline,
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it produces the same offline assignments:

<V1: C1,C2, C4> (10)

V2: C3,C5

The online decisions xj, are the routings to minimize the total cost (travel time) for all vehicles (we
recall that ANTICIPATE is composed by an online anticipatory algorithm:

X:

CostV1=8
CostV2=38

Cost TOT =16

[ c2 |
2 —
[ ca ‘\ / \ |
Vi [ ca )
¢t

Figure 6: ANTICIPATE Offline and Online Integration

We can notice different online decisions compared to the Baseline (see Figure 4). In particular,
V1 moves from C2 to C4 (instead of C1) because it anticipates that it will have two minor costs
(i.e. ca,1 =1 c1,0 = 3). Similar decisions are taken for V2 that moves from C3 to C5 because, even
if costs cg 3 and co 5 are the same, by choosing C3 first it will have a total lower cost to reach the
depot (node 0). This leads to an improvement in the solution quality (i.e. in terms of lower total
travel times of 16 compared to 20 of the Baseline) with the same offline assignment.

4.2 Tuning

Our second technique for improving the online decision making consists in applying a parameter
tuning phase (computed offline) to the greedy heuristic. In principle, this could be done by any suit-
able algorithm available from the literature, such as those from Lépez-Ibéiiez et al. (2016) or Hutter,
Hoos, Leyton-Brown, and Stiitzle (2009). However, we can take advantage of the convexity of PH
to tackle the tuning problem in a principled fashion and obtain a guaranteed optimal parameters.

In particular, any decision made a stage k by the heuristic is a global optimum for PH. Now,
convexity implies that any local minimum must be a global minimum. Local minima can be char-
acterized in terms of the Karush-Kuhn-Tucker (KKT) optimality conditions (Winston, 2004). Es-
sentially, those conditions give us a set of constraints that must be satisfied by any solution that is
compatible with the behavior of the greedy heuristic. We can exploit this property to formulate the
tuning problem as a Mathematical program. In our case, we add the KKT conditions for the greedy
heuristic as constraints in the offline model. Once the KKT conditions have been added, the online
decisions are forced to take the values that the greedy heuristic would actually assign to them. The
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optimality conditions are specified through the use of a Lagrangian Function by introducing a mul-
tiplier p; > 0 for each inequality constraint and a multiplier A; for each equality constraint. Then,
if z* is an optimal solution, there are corresponding values of the multipliers p* = (u3, ..., ,u;) >0
and A\* = (A}, ..., \}) that: 1) cancel out the gradient of the Lagrangian Function, and additionally
2) satisfy the so-called complementary slackness conditions.

As a first step, we need to consider the form of the KKT conditions for PH in a given scenario
w. Those are given by:

le| lg|
_vxkf(yv Liys wvak ZAw 1ka€z+ZHw zk Ji (1D
1o igi =0 Vi = 1--|g| (12)
poi >0 Vi =1.g] (13)
Eq. (7,8) — online problem constraints —

where, for sake of readability, f(y,z", s"; o) has been shortened to f, the i-th component (out
of |e!) of e(y,zk, s¥) to e;, and the i-th component (out of |g|) of g(y,x",sk) to g;. The AZZ-
and “w,i variables represent dual multipliers. These are dual multipliers as in classical duality
theory (Diewert, 1974): weights associated to the constraints that must satisfy specific conditions
in optimal solutions. Eq. (11) corresponds to the gradient cancellation condition, Eq. (12) to
complementary slackness, Eq. (13) to dual feasibility ()\w i is free), and Eq. (7), (8) to primal
feasibility. Note that here we use the heuristic cost function f rather than the “real” cost F.
Then, we rely on the KKT conditions to define a model for an additional offline processing step,
whose goal is to find the optimal values of the oy, parameters for a given set of scenarios. Such
model is given by:

mln@ZZ}" y, zk sk (PT)

weN k=1
st. Eq. 2) — (4) — flattened problem and state transitions — Yw €
Eq. (5),(6) — initial state and feasible space for 1 —
Eq. (11) — (13) — KKT conditions — YwoeQ,VE=1...n

This is a stochastic two-stage model where the first stage variables are the o, parameters (appearing
in the equations for the KKT conditions), and the recourse actions (i.e. second stage variables) are
the decisions a:ff, that the heuristic would make in the considered scenarios — plus the related states
sk and the )\fj’i and le,,i multipliers. The problem goal is to minimize the expected cost over all
stages and scenarios.

Solving PT yields an optimal parameter vector for the considered scenario set €). The offline
decisions y are still made using PO, while the online decisions are made via PH, with the optimized
parameters. We refer to this method as TUNING. Intuitively, this approach should allow to retain
some of the benefits of ANTICIPATE, without increasing the online computational cost. The price to
pay is a considerably larger offline cost.
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4.2.1 RUNNING EXAMPLE ON VRP FOR TUNING

Given the same setting of Section 3.0.1, with C, D, V, CP, and T, we show the behavior of TUNING
(i.e. offline decisions, online decisions and total costs).

As explained above, the offline phase of TUNING is split in two different step: the first part de-
cides the client assignment and the second one produces virtual travel times o, to guide the online
heuristic. The first offline step is the same of the Baseline, while the second one applies the KKT
conditions to make parameter tuning. The offline client assignment will be the same of the Baseline
but we have the ability to guide online routing decisions with ay.

The offline decisions y represented below are the client assignments:

(14

V1: C1,02,C4
V2: (3,05

We can notice the same client assignment of the Baseline (see Figure 4). The virtual travel times oy
are a cost matrix as 7' composed by virtual cost. We represent (in yellow) in Figure 7 only the oy,
elements needed for the TUNING online routing decisions.

The online decisions x, are always the routings to minimize the total cost (travel time) for all vehi-
cles, and we recall that TUNING is composed by the same online greedy heuristic as the Baseline):

/ .,\\
— 1*2 ‘,‘a. c2 l 0.7 *2
[ cs T\
V2 Depot Vi [ c4 )
x c1 },/ 1
CostV1=8
CostV2=9.5

Cost TOT =17.5

Figure 7: TUNING Offline and Online Integration

We can notice an improvement in the solution quality (i.e. in terms of lower total travel times
compared to the Baseline) with the same online heuristic as the Baseline. However, the use of ay
allows the online heuristic to choose different routes in order to obtain a solution relatively close
to ANTICIPATE (see Figure 6) but reached with a (fast) online heuristic. Indeed, the oy, are able to
guide the online greedy solver to move from C2 to C4 (as ANTICIPATE) by improving the travel cost
of V1 (from 10.5 of the Baseline to 8).
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4.3 Acknowledge

We now move to explore the second improvement direction: rather than trying to overcome the
limitations of the online approach, we make the offline solver aware of the online heuristic.

We achieve this by simply injecting the KKT conditions from Eq. (11) - (13) as constraints in
PO. Similarly to what done to PT, this forces all 2 variables in the offline problem to take the
values that would be actually assigned by the heuristic. Overall, we get the following problem:

min fo(y) + = 5O Fly,ak, ) (PACK)

|Q| weN k=1
st. Eq. 2) — (4) — flattened problem and state transitions — Yw €
Eq. (5),(6) — initial state and feasible space for 1 —
Eq. (11) — (13) - KKT conditions — YwoeQ,VE=1...n

Similarly to PO, this is a two-stage stochastic program. The first stage variables are the offline
decisions y, while the recourse actions are z¥ — plus s¥, )\Z,i, and ,uf”

Once an offline decision vector has been found via PACK, the online decisions can be made via
the original heuristics. We refer to this method as ACKNOWLEDGE. The method achieves integration
at the cost of offline solution time, because of the additional variables in PACK and the presence of

non-linearities in Eq. (12).

4.3.1 RUNNING EXAMPLE ON VRP FOR ACKNOWLEDGE

Given the same setting of Section 3.0.1, with C, D, V, CP, and T, we show the behavior of AC-
KNOWLEDGE (i.e. offline decisions, online decisions and total costs).

As explained above, the applicability of KKT conditions to the offline phase can produce differ-
ent offline assignment wrt the Baseline (see Figure 4) and ANTICIPATE (see Figure 6) to guide the
online heuristic.

The offline decisions y are the client assignments:

5)

V1: C1,C3,C4,C5
V2: C2

We can notice a different offline assignment (compared to all the previous methods based on an
offline phase such as the Baseline for the offline assignment) with the use of KKT optimality con-
ditions in the offline phase: C1, C3, C4 and C5 are assigned to V1 and only C2 is assigned to
V2. These decisions are different from those of the other models because the offline solver of AC-
KNOWLEDGE is aware of the limitations of the online greedy heuristic by translating it as a set of
constraints injected into the offline model.

The online decisions xj are the routings to minimize the total cost (travel time) for all vehicles (we

recall that ACKNOWLEDGE is composed by the same greedy heuristic of the Baseline in the online
phase:
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f’ '\"\ _— «'/1

CostV1=9
CostVvV2=8

Cost TOT =17

Figure 8: ACKNOWLEDGE Offline and Online Integration

We can notice in Figure 7 an improvement in the solution quality (i.e. in terms of lower total
travel times) with the same online heuristic but with a different offline assignment wrt the Baseline.
Indeed, since the offline assignment is made by a solver aware of the limitation of the following
online greedy heuristic, the offline assignment allows the greedy heuristic to improve the total travel
time by always choosing the lower arc.

4.4 Active

Finally, we can combine these two methods to obtain the ACTIVE method that is composed by an
offline part with KKT conditions that optimizes the offline decisions y and o* (i.e. PACT).

min fo(y) + ‘é, SN ek sb)  (PACT)

weN k=1
s.t. Eq. 2) — (4) — flattened problem and state transitions — Yw € Q
Eq. (5),(6) — initial state and feasible space for y —
Eq. (11) — (13) — KKT conditions — YweQ,VE=1...n

The decision variables of PACT are, in this case, y, :IJZZ, sf}, )‘fm" ,ufm- and crucially aF. The
online decisions are then taken using the original heuristics, but its behavior will be affected also
in this case by the “parameter schedule” a!,...a™ produced by solving PACT. The difference
in this case is that 4 and o* are both optimized at the same time and by considering the KKT. The
computational time will be higher but with, hopefully, better solution quality to steer online heuristic

behavior.

4.4.1 RUNNING EXAMPLE ON VRP FOR ACTIVE

Given the same setting of Section 3.0.1, with C, D, V, CP, and T, we show the behavior of ACTIVE
(i.e. offline decisions, online decisions and total costs).
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As explained above, the applicability of KKT conditions to the offline phase can produce differ-
ent offline assignment wrt the Baseline and ANTICIPATE. Moreover, in the same offline phase,
ACTIVE produces also virtual travel times oy, (in yellow) to guide the online heuristic. Differently
from TUNING, the offline is phase not split in two different steps but the client assignment and the
virtual travel times are optimized in one offline step.

The offline decisions are the client assignments:

(16)

V1: C1,C3,C4,C5
V2 C2

We can notice the same offline assignment as ACKNOWLEDGE (see Figure 8).

The online decisions x, are the online routings to minimize the total cost (travel time) for all vehicles
(we recall that ACTIVE is composed by an efficient greedy heuristic in the online phase guided also
by the oy, parameters):

CostV1 =85
CostV2=8

Cost TOT =16.5

Figure 9: ACTIVE Offline and Online Integration

We can notice an improvement in the solution quality (i.e. in terms of lower total travel times)
with the same online heuristic w.r.t. the Baseline, and ACKNOWLEDGE with the same offline client
assignment. In particular, differently from ACKNOWLEDGE, ACTIVE chooses a different routing for
V1 due to the « virtual travel times (e.g. C1 instead of C3 as first served client). This online routing
allows to reach a cost very close to ANTICIPATE (i.e. costTOT = 16.5 w.r.t. costTOT = 16) but with
a fast greedy heuristic in the online phase (instead of an online anticipatory algorithm).

4.5 Wrap-Up

In this paper, we start from the observation that many practical applications require to make inter-
dependent offline and online decisions. The simplest and most common approach to tackle such
problems is to deal with the offline and online phase separately, respectively (e.g.) via a sampling-
based method and a heuristic: we consider these methods as components of our baseline. However,
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we will show that substantial improvements can be obtained by treating the two phases in an inte-
grated fashion.

We propose four methods to improve the baseline in different directions, each altering either
the offline or the online component of the solution process, so that the two play better together.
Our methods are applicable provided that some simple but important assumptions are satisfied: 1)
the uncertainty is exogenous; 2) in the baseline, a two-stage stochastic optimization model is used
for the offline phase; 3) in the baseline, the online heuristic can be stated as convex optimization
problem.

Selecting the suitable technique requires to consider the available time constraints for all offline
and online decisions to use the most suitable method. Generally, we can define some basic guide-
lines on time constraints, all based on the assumption of reaching high quality solutions: 1) if the
problem does not present stringent time constraints in the online phase, ANTICIPATE is the recom-
mended method; 2) if the problem presents stringent time constraints in the online phase and no time
limits in the offline phase, ACTIVE is the recommended method; 3) if the problem presents stringent
time constraints in the online phase and time limits in the offline phase, we can choose between two
methods based on the more or less stringent time limits in the offline phase (i.e. TUNING is slightly
faster in the offline phase, with a slight loss of solution quality compared to ACKNOWLEDGE). We
believe our techniques represent a significant step toward integrated offline/online optimization in
complex systems.

Figure 10 summarizes the design of our methods, highlighting the techniques used in each phase,
their decision variables and the output:

Offline Online

Baseline:

Anticipate:

Stochastic Model with KKT y
Acknowledge: optimality conditions >
y=variables, a=constants ;

-
A\

Tuning:

Active:

b
o

Figure 10: Proposed methods for Offline and Online integration

The following sections show the case studies (i.e. VPP system and VRP) that we used to ground
and test our methods.
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5. Virtual Power Plant Case Study

In this section we present our first case study, an energy management system, that was originally
considered in De Filippo, Lombardi, Milano, and Borghetti (2017): since it features continuous on-
line decision variables, it is not amenable to existing approaches such as EXPECTATION or REGRET.

5.1 Energy Management System

The progressive shift towards decentralized generation in power distribution networks has made the
problem of optimal Distributed Energy Resources (DERs) operation increasingly constrained. This
is due to the integration of flexible (deterministic) energy systems with the strong penetration of (un-
controllable and stochastic) Renewable Energy Sources (RES). The integration of these resources
into power system operation requires a major change in the current network control structure. This
challenge can be met by using the Virtual Power Plant (VPP) concept, which is based on the idea
of aggregating the capacity of many DERs, (i.e. generation, storage, or demand) to create a single
operating profile and manage the uncertainty. A typical VPP is a large plant with high (partially
shiftable) electric and thermal loads, renewable and Combined Heat and Power (CHP) generators
and electric and thermal storages (see Figure 11).

Making decisions under uncertainty pervades the planning and operation of energy systems
(Wallace & Fleten, 2003). Optimization techniques have a long tradition in supporting planning and
operational decisions in the energy sector, but the recent literature highlights the need for increasing
both the scope and the granularity of the decisions, including new factors like distributed generation
by renewable sources and smart grids (Morales et al., 2013).

Both the most popular methods to deal with uncertainty in mathematical programming (i.e. ro-
bust optimization and stochastic programming) have been widely applied in energy systems (Reddy,
Sandeep, & Jung, 2017; Zhou et al., 2013; Jurkovié, Pandsi¢, & Kuzle, 2015). One of the most used
assumption is that the distribution of future uncertainty is available for sampling, e.g. thanks to
historical data and/or predictive models. In particular, the assumption that the distribution of future
(exogenous) uncertainty is independent of current decisions is present in a variety of applications
(Van Hentenryck & Bent, 2009).
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Figure 12: Offline/Online Decision Making in VPP

We consider a VPP Energy Management System (EMS) (see, e.g., Morales et al., 2013) with
partially shiftable loads, renewable energy generators, storage systems, and grid-connection. The
goal is to decide the minimum-cost energy flows at each online stage (see, e.g., Clavier et al., 2015).
The uncertainty stems from uncontrollable deviations from the planned shifts and from the presence
of Renewable Energy Sources (RES) (see, e.g., Palma-Behnke et al., 2011; Bai, Miao, Ran, & Ye,
2015). We assume that the RES production forecast is good enough that its error in each stage can
be considered an independent random variable, that is the most common assumption in literature
(Palma-Behnke et al., 2011; Bai et al., 2015). This is also a reasonable hypothesis, provided that the
predictor is good enough, and this allows us to define our uncertainty ranges based on confidence
intervals (Gamou, Yokoyama, & Ito, 2002). Based on actual energy prices and on the availability of
DERs, the EMS decides: 1) how much energy should be produced; 2) which generators should be
used for the required energy; 3) whether the surplus energy should be stored or sold to the energy
market; 4) the load shifts planned offline. Optimizing the use of energy can lead to significant
economic benefits, and improve the efficiency and stability of the electric system (see, e.g., Palma-
Behnke et al., 2011). Unlike in most of the existing literature, we acknowledge that in many practical
cases, the load shifts can be planned offline, while the energy balance should be maintained online
by managing energy flows among the grid, the renewable and traditional generators, and the storage
systems. This is depicted in Section 2.3. Intuitively, handling these two phases in an integrated
fashion should lead to some benefits, thus making the VPP EMS a good candidate for grounding
our approach (see Figure 12): integrating the two is likely to lead to better results, as it is often
the case when a complex problem is partitioned. Whenever distinct offline and online phases are
present, as in this case study, a tighter integration can lead to substantial improvements in terms of
both solution quality and computational costs. The idea is that by injecting knowledge of offline
load decisions in a greedy online simulator, we can achieve better solution quality by maintaining a
fast (greedy) heuristic in the online phase.

5.1.1 BASELINE OFFLINE PROBLEM

Generally, a typical distributed energy system like the one considered in this first case study is
composed by several distributed nodes (our set represented by ). Each of these nodes (i.e. g) can
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be a generator (traditional generator such as a CHP or renewable generator such as a photovoltaic
system); a battery-based system (storage or electric vehicles); or the external grid which, in these
cases, can be associated with the energy market for buying and selling energy. All these generators
have an associated cost (e.g. the diesel cost for the CHP generator) and this is the meaning of c’;
(i.e. the generation cost for each stage k and for each generator g). The state of the system for each
stage k is represented by the charge state of the storage system ~*. The system tries to minimize
the total costs obtained by the energy flow from each generator g (i.e. the online decisions xk)
associated to the relative cost c . The system tries also to maintain the power balance in each step

k by satisfying the requested (ofﬂlne) shifted load L* with the available resources. The y* variable
represents the (offline planned) shift from the estimated load. Eq. (23) ensures that the shifts respect
alocal balance. The initial battery charge 7! is identical for all scenarios. n is the number of stages,
and a:’; represents the flow from g to the VPP (if positive) or in the reverse direction (if negative).

All flows must respect the physical bounds z, and 4. The state variables are the RES energy flow

a:’f , the load to be satisfied L*, and the battery charge ~*. The battery upper limit is T and 7 is the
charging efficiency.
The offline problem is modeled via Mixed Integer Programming (MILP) and it is given by:

‘ ZZZCQ Lgw (P1.2)

weN gelG k=1
s.t. f/w = ng,w YoeQ,Vk=1,...n (17)
geG

z, <ap, <7 VweQVk=1,...n (18)
0<qk<T Vk=1,...n (19)
75+1—fyf+77x}5,w VweQVk=1,...n—-1 (20)
af il = Ry + &, VweQVk=1,...n Q1)
LK =Ly+yp+&f, YWweQVk=1,...n (22)
t+m
> u=0 Vt=1,...n—m (23)
k=t
yF <y <7 Vk=1,...n (24)

where Eq.(17) — (22) define the flattened problem, and Eq. (23) — (24) the feasible space for the
offline variables y. In particular, Eq.(20) — (22) represent the transition function, where R}, and L*
are the estimated RES production and load, and &% p and 13 t are the corresponding errors (random
variables). We assume that the errors follow roughly a Normal distribution N (0, 02), and that the
variance o is such that the 95% confidence interval corresponds to £20% of the estimated value

(Gamou et al., 2002).

5.1.2 BASELINE HEURISTIC

Based on the shifts produced by the offline step, and taking into account the uncertainty, the online
heuristic minimizes the operational cost and covers the energy demand by manipulating flows be-
tween nodes in g € G. We assume the index 0 refers to the storage system and index 1 to the RES
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generators. The stages represent periods long enough to treat the corresponding flow decisions as
independent. The heuristic can be formulated as an LP model:

min Zn: Z clg“xlgC (P1.1)

k=1geG
st LF =Y "ab (25)
geG
0<~,+nzk <T (26)
T, < :U’; < Ty 27)

where n is the number of online stages, and the flow costs c]; correspond to the problem parameters
k .
o in PH.

5.1.3 INSTANTIATING ANTICIPATE FOR THE VPP

A model for the ANTICIPATE approach can be obtained by applying in an almost straightforward
fashion the definitions from Section 4.1:

min Zcm —&—@Z Z ch Tg,, (P1.3)

geG weN k=h+1 geG

s.t. Eq. (25) — (27) — online problem constraints —
Eq. (17) — (19) Vk > h — flattened problem constraints —
Eq. (20) — (22) Vk > h, with 52 = s" and xf} = zh — state transitions —

Note that P1.3, although potentially large, is a Linear Program and can be solved in polynomial
time.
5.1.4 INSTANTIATING ACTIVE/TUNING/ACKNOWLEDGE FOR THE VPP

We start by formulating the KKT conditions for the online heuristic in a single scenario, thus ob-
taining:

— c]; = u’;,w - Vg’w Vge G (28)
py L (ah 4+ 7g) = Vge G (29)
Vi (z, —ab ) = Vge G (30)
e (nzg, +7 =T) =0 31)
5 (nag ., +") =0 (32)
ugw, ngO Vge G (33)
iy, 75 2 0 (34)

where u’;w and u;iw are the multipliers associated to the physical flow bounds, while /¥ and D*
are associated to the battery capacity bounds. The multiplier \¥ is associated to the balancing
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constraint, i.e. Eq. (25), and can be eliminated with a few algebraic transformations. Injecting the
conditions in the offline model yields:

min |512’ Z Z z”: c’g“a:lgiw (P1.4)

weN geCG k=1
s.t. Eq. (17) — (24) — offline problem constraints —
Eq. (28) — (34) YweQ,Vk=1,...n — KKT conditions —

where the decision variables are yk , xlg“’w, Mg,w’ V;CM, [Lﬁ, ﬁf,, based on the considered method. To
those, we add the cost clg associated to the flow between the VPP and the storage system (the only
parameter that we allow the solver to adjust). Normally, since the online (myopic) solver has the
ability to sell energy on the market and storing energy has no profit, it ends up in always selling
unless the virtual cost is employed.

We recall that in ACKNOWLEDGE we consider y* as decision variables and c’g as constant pa-
rameters using P1.4 as offline phase; in TUNING we use P1.2 to solve the y* variables and then
we use P1.4 for clg (i.e. our offline phase is divided in two parts); finally in ACTIVE we use P1.4
with both y* and clg as decision variables of the same offline phase. As a side effect, the naive P1.1
heuristic will always choose to sell the surplus energy. ACTIVE allows the offline solver to associate
a “virtual cost” to storing energy, which enables addressing the original limitation at no online com-
putational cost. In details, the virtual cost is a parameter and in particular a cost associated to the
use of the storage system. We called it “virtual” because it does not correspond to a real economic
cost: it is introduced to encourage or discourage the use of the storage system. In the energy system,
since the online solver has the ability to sell energy on the market and storing energy has no profit,
it ends up always selling unless the virtual cost is employed. By using the offline phase to choose
different virtual costs for each online stage, we are able to “guide” the online greedy heuristic to
store energy (e.g.) in view of an increase in energy market prices in the future stages. By changing
these scores, an offline method can effectively alter (hopefully for the better) the behavior of the
online heuristic.

5.2 Results

We performed an experimentation to compare the solution quality and run times of our methods.
As references for comparison we use the baseline approach, plus an optimal solver operating under
perfect information.

5.2.1 EXPERIMENTAL SETUP

Our methods are evaluated over different uncertainty realizations, obtained by sampling the random
variables for the loads and RES generation. We consider a sample of 100 realizations for six dif-
ferent instances of each problem. We then run each approach on each realization and measure the
cost and run time. The scenarios in our models, conversely, are not sampled, but programmatically
chosen: we consider four “extreme” scenarios where (resp.) the load and the RES generation are at
low/high values. Concerning the uncertainty in our models, we deal with: 1) uncertainty via sam-
pling (i.e. we sample realizations by assuming that the error for our forecasts can be considered an
independent random variable); 2) a number of “edge” scenarios, thus making our model somewhat
close to robust optimization. The problem has 24 online stages.
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We solve our LPs and MILPs using Gurobi, while for the non-linear problems we use BARON
via the GAMS modeling system on the Neos server for optimization. The time limit is 100 seconds
and we use data from two public datasets to define problem instances: a residential plant (Espinosa
& Ochoa, 2015) ! with only PV energy production for renewable sources and an industrial plant >
with wind and PV production. We modify these datasets to obtain use cases for testing our mod-
els (see Table 1):1) Use Case 1 (RB) is the baseline residential dataset (with no modifications); 2)
RR is the residential dataset with an increase of 15% (for each t) of the renewable production (i.e.
PV production in this dataset); 3) RP is dataset RB where the market prices are different for the
sale/purchase of energy from/to the grid with an increase of 10% (for each); 4) IB is the industrial
dataset (with no modifications), differently from RB, this dataset presents also eolic renewable pro-
duction; 5) in IR we increase the renewable production as in RR (by increasing also eolic production
by a 10% for each t); 6) in IP we consider RB with different market prices exactly as in RP.

Methodologies for the estimation of hourly global solar radiation have been proposed by many
researchers and in this work, we consider as a prediction the average hourly global solar radiation
from Kaplanis and Kaplani (2007) and we use assumption for wind prediction from Hodge et al.
(2012). We then assume that the prediction errors in each timestamp can be modeled again as
random variables. Specifically, we assume normally distributed variables with a variance such that
the 95% confidence interval corresponds to +10% of the prediction value. We assume physical
bounds on CHP due to its Electrical Capability based on real generation data (Bai et al., 2015;
Espinosa & Ochoa, 2015). The initial battery states and the efficiency values are based on real
generation data (Bai et al., 2015; Espinosa & Ochoa, 2015) and we assume there are physical
bounds for storage system based on real data (Bai et al., 2015; Espinosa & Ochoa, 2015).

Load Baseline Renewable Different
demand ‘ dataset ‘ peak ‘ market Prices
Residential RB RR RP
Industrial 1B IR 1P

Table 1: Different use cases

5.2.2 RESULT DISCUSSION

In Tables 2 and 3 we show the average costs and run times over the 100 input realizations for each
approach. Online times refer to the sum of the stages. We show the solution quality (cost(K€)) for
each method and for the baseline and the oracle. In the other columns, we show (respectively) the
computation total time and then the two computation times for the offline and online optimization.
This information allows to understand the most suitable method to use by evaluating the cost/quality
tradeoff for each considered case study. The baseline model (being an LP) appears to be rather
efficient in terms of computation time, but yields solutions of limited quality. The ANTICIPATE
method comes much closer to the oracle solver, at the cost of a higher, but still reasonable, online
run time. The ACTIVE method incurs substantially larger offline solution times, but it manages
to beat or match the ANTICIPATE solution quality by making use of the original, straightforward,

1. Available at https://www.enwl.co.uk/lvns)
2. Available at https://data.lab.fiware.org/dataset/smart_energy_data-_aachen_
_cologne_virtual_power_plant
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Instance Oracle Baseline ANTICIPATE
c(K€) | c(K€) tot t(s) | offline t(s) | online t(s) | c(K€) tot t(s) | offline t(s) | online t(s)
RB 331.36 | 404.62 | 0.962 0.184 0.778 342.06 | 5.195 0.184 5.011
RR 247.21 | 311.14 | 0.962 0.190 0.772 265.32 | 5.207 0.190 5.017
RP 393.81 | 462.57 | 0.960 0.185 0.775 404.32 | 5.194 0.185 5.009
1B 798.38 | 923.24 | 1.185 0.346 0.839 822.24 | 5.776 0.346 5.430
IR 565.60 | 684.19 1.173 0.341 0.832 580.17 | 5.764 0.341 5.423
1P 856.95 | 98490 | 1.183 0.348 0.835 874.58 | 5.768 0.348 5.420
Table 2: Cost/computation time for the Oracle, Baseline and ANTICIPATE
Instz TUNING ACKNOWLEDGE ACTIVE
nstance —oRE) T totts) | offfine t(s) | online ts) | o(K&) | toti(s) | offiine t(s) | onlinet(s) | o(KE) | totis) | offiine ((s) | online (s)
RB 39118 | 11758 | 10.980 0778 38244 | 11231 | 10453 0.778 346,60 | 28.662 | 27.8%4 0.778
RR 29475 | 10245 | 9473 0.772 297.77 | 10768 | 9.996 0.772 26680 | 32.764 | 31.092 0.772
RP 47292 | 11996 | 11221 0.775 43511 | 11719 | 10.944 0.775 40872 | 31547 | 30772 0.775
B 88399 | 14305 | 13.466 0.839 80433 | 16276 | 15437 0.839 8T7.11 | 39.752 | 38013 0.839
R 60981 | 13826 | 12.994 0832 67583 | 17.609 | 16,777 0832 577.93 | 40016 | 39.184 0832
P 90127 | 16278 | 15.443 0.835 95081 | 16.603 | 15.768 0.835 888,76 | 38.612 | 37.777 0.835

Table 3: Cost/computation time for TUNING, ACKNOWLEDGE and ACTIVE

online heuristic. Tables 2 and 3 also show a comparison among the computational times of all the
proposed method to help understanding the potential of each method both in terms of offline and
online computational cost.

We show the average values of each hourly optimized flow over the 100 realizations for each
proposed model in instance RR. We use a barchart representation where the positive values represent
all the energy generation flows (energy production by the internal sources of the VPP, thus outgoing
from the VPP), and the negative values represent the energy stored in the storage system or sold to
the grid, thus incoming to the VPP. Each barchart shows the average values over the 100 realizations
for a tested model (e.g. the first barchart in Figure 13 shows the results of the Oracle (on the left)
and of the Baseline model (on the right). Each color represents a component of the VPP, the blue
line is the shifted load to be satisfied from the VPP, and the red dot line represents the market
energy prices. We remember that the shifted load is optimized in the offline phase in the Demand
Side Management step. With this representation, it is possible to see when we have a surplus of
energy PV production (e.g. at midday, as expected) and we can note that the system tends to sell
energy to the grid or (if it is able to have a certain degree of anticipation) to store energy into the
storage system. Moreover, with this representation, we can clearly observe, for each timestamp,
the contribution of each component to satisfy the load requested to the system. The aim is also
to show the different (sometimes absent) use of the storage system in models with no degree of
anticipation. In Figure 13, the limits of using a non anticipatory algorithm, compared (e.g.) to the
Oracle optimization, are clearly represented: it is not possible to acquire energy from the grid in
advance (i.e. when the cost is lower) and/or to sell energy to the grid in periods of highest price on
the market or when more energy is available from renewable sources. In order to stress this point,
we also add (Figure 16) that represents only the flows (the incoming and outgoing flows) of the
storage system in the two most representative cases (i.e. Baseline and ACTIVE).

Moreover the exchange of energy with the storage system is almost never used, i.e. to store
RES energy. In Figure 15, it is possible to see that, near the peak of renewable energy production,
the ACTIVE model accumulates energy in the storage and uses in a more balanced way the energy
present in the storage system compared to the baseline model represented in Figure 13 (that never
uses the storage system). Furthermore, still looking at Figure 15, it can be seen that ANTICIPATE
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has peaks of energy sold on the network near the increase in electricity prices on the market. In
Figure 14 and Figure 15 it is possible to notice the more consistent use of the storage system. We
can see that, by optimizing the virtual storage cost in the offline phase, we can improve solution
quality in term of cost (see Tables 2 and 3) by using the storage system. Since the online solver has
the ability to sell energy on the market, and storing energy has no profit, it ends up in always selling
unless the virtual cost is employed.

Figure 16 shows the comparison between the optimized « in the two methods ACTIVE and
TUNING. Moreover, we show also the market price trend to compare the trends of the two methods.
It is interesting to notice how both the methods try to increase or decrease the virtual cost of the
storage to promote it in anticipation of future increases of energy price. In Figure 17 it is possible
to observe the different use of the storage system due to the optimized parameters injected in the
online solver to guide the heuristic decisions. We recall, as explained for Figure 13, that the storage
Sflow is negative (for convenience) when the storage system is in charging mode, while it is positive
when the storage system is in discharging mode. Since the online (baseline) solver has the ability
to sell energy on the market and storing energy has no profit, it ends up in always selling unless the
virtual cost is employed (ACTIVE).

6. Vehicle Routing Problem Case Study

The second use case (a Vehicle Routing Problem variant) is meant to provide a realistic, dramatically
different, example of how the methods can be instantiated: it features discrete online decisions, and
allows a quality comparison with classical algorithms because in such cases ANTICIPATE leads to
the same results as EXPECTATION (although with different solution times). The case studies have
been chosen to show that our methods work with both discrete and numerical decision variables.

6.1 VRP Problem Description

We consider a variant of the Capacitated VRP with uncertain travel times (see, e.g., Toth & Vigo,
2002; Bertsimas & Simchi-Levi, 1996; Lee, Lee, & Park, 2012; Tacs, Dellaert, Van Woensel, &
De Kok, 2013). The problem consists in establishing the paths of a set of vehicles to serve a set
of customers. All vehicles have a finite capacity, and customers have a known demand and can be
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Figure 13: Oracle (left) and Baseline (right) optimal power flows for instance RR
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Figure 14: ACKNOWLEDGE (left) and TUNING (right) optimal power flows for instance RR
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Figure 15: (left) ANTICIPATE and ACTIVE (right) optimal power flows for instance RR

visited by a single vehicle. There are n fully connected customers/nodes, with node O being the
(single) depot.

Customer assignments must be done offline, while the vehicle routes are chosen online. In our
experimental setup, whenever a node is reached, its binary “state” becomes known, and with that
the (uniform) distributions followed by the travel times of all its outgoing arcs.

Formally, this translates in bi-modally distributed, statistically dependent, travel times. The
objective is to minimize the total travel time.

6.1.1 BASELINE HEURISTIC AND TRANSITION FUNCTION

The online heuristic consists in simply picking the next node to be visited based on the outgoing arc
with the shortest travel time. This can be modeled also as a simple Integer Program. Let h be the
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Figure 17: Baseline (left) and ACTIVE (right) online storage flow for instance RB

current node, then we have:

min g ChjThj

JEVR

S.t. Z Thj = 1
JEVR
Th,j S {0, 1}

where xp; = 1 iff we choose to move from £ to j, V}, is the set of nodes that still needs to be visited
(and it always include the depot), and the travel times cy,; are the heuristic parameters: they represent
In some cases we refer to them as virtual,
since they may be modified by the offline solver. P2.1 does not apparently satisfy our assumptions,
has always an integer solution, banning
degenerate cases (i.e. arcs with the same cost). We can therefore relax the integrality requirement

the cost associated to each route in terms of travel times.

due to the integer variables. However, its LP relaxation
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Figure 18: An Example of Vehicle Routing Problem

without loss of generality. The transition function is given by:

Vie = Vi \ {R"} (37)
Chrj = En+j (38)

where h* is the index of the next node selected by the heuristic and &« ; is the travel time from
h* to j (a random variable). Note also that in this case the index of the online stage is implicitly
given by h. We take advantage of this and reduce the notation clutter by moving the w index to apex
position.

6.1.2 BASELINE OFFLINE PROBLEM

We tackle the offline problem via Mixed Integer Linear Programming, which forbids us to directly
embed the non-linear Eq. (37) in the model. In practice, however, the equation states that 1) each
vehicle should serve only its assigned customers, and 2) the visit should form a single loop. Both
are well known VRP constraints and can be linearized. In the VRP model, K is the set of vehicles
indexed with k, V' is set of arrival nodes for each route (with index j), while in the online problem
V}, is the set of nodes that still needs to be visited (with additional index h for representing the
current node). yy; is a binary variable (between k and j nodes) that represents the offline assignment
decisions: it is y;; = 1 iff node j should be visited by vehicle k. C}, is the upper bound for the
capacity of each vehicle k, and ¢; is the quantity requested by each customer i. In particular, we use
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the model:

min |§12 SN e, (P22)

weQ kEK i,jEV

LY@ = Yk Vke K,YieV (39)
jev
> @i = vk, Vke KNjeV (40)
eV
Yro =1 Vk e K (41)
w w w Vk € K,
ko =0 Vk € K (43)
Z%’Z/k,i < Cg Vk e K (44)
i€V
Z Yki =1 Vie V't (45)
keK

where all constraints where an w apex refers to as Vw € ). All x and y variables are binary. We
have M = |V|,and V" = V' \ {0}. Eq.(39) — (43) define the flattened problem, and Eq. (44) — (45)
define the feasible space of the offline decision variables. For sake of simplicity, we eliminate sub-
loops by keeping track of the visiting order ¢, of each node for each vehicle: this is a simple, but not
particularly effective method, because it relies on big-Ms and reduces the quality of the LP bound.
We eliminate sub-loops in our VRP problem (Equation (42)) by keeping track of the visiting node
order by adding a variable t and by imposing that node i must be visited before node i for each node
and for each vehicle: this is a simple and well-known method that relies on big-Ms (Miller, Tucker,
& Zemlin, 1960) but that also reduces the quality of the LP bound. We used it to avoid too complex
constraints and to give priority to the insertion and applicability of KKT optimality conditions in
order to better understand their effective computational cost.

6.1.3 INSTANTIATING ANTICIPATE FOR THE VRP

The ANTICIPATE method can be instantiated for each vehicle k separately, by first restricting the
focus to the set of nodes V4, and then by applying the definition from Section 4.1 and linearizing
Eq. (37) in the baseline offline problem, we get:

. 1
min Z Ch,jThij + 9] Z Z § i i (P2.3)

JEV, weNi,jEV)
s.t. Eq. (35) — online problem constraints —
Eq. (39) restricted to V4, \ {0} (46)
Eq. (40) — (42) restrictedto V},  — state transition —
t5, =0 @7)

where Eq. (47) means that the vehicle path should start from the current node i (and end as usual
in the depot).
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6.1.4 INSTANTIATING ACTIVE/TUNING/ACKNOWLEDGE FOR THE VRP

As usual, the first step in the ACTIVE is formulating the KKT conditions for P2.1. In this case after
some algebraic transformations, for a given vehicle k, node &, and scenario w we obtain:

(chj + )\f’h)xf’mj =0 VieW, 48)
(Chj + )“lch,h) >0 Vi e W, 49)

where A\{, is the multiplier for Eq. (35): it is derived from the equality constraint in Eq. (30) fol-
lowing the definition of KKT conditions (Winston, 2004). Since this problem features no inequality
constraints, the associated multipliers are simply absent. The main difficulty is again dealing with
the set V}, which is part of the state and should be constructed dynamically in the offline problem.
Here, we handle V}, by introducing fresh variables rz’ji such that r‘,;’ji = 1 iff node 7 has been visited
when node j is reached. The semantic is enforced via additional non-linear constraints in the offline
model. The latter is given by:

min |§12‘ Z Z Z §iTh i (P2.4)

wEQ kEK i,jEV
s.t. Eq. (39) — (45) — offline problem constraints —
(cij + )\fz):v‘j:”(l — ki) =0 Vke K,Vi,jeV
(cij + N i) (1 —rpji) >0 Vke K,\Vi,j eV
i = Uk VieV
Thii = ThhiThh Vie V,VheV,VjeV
Cij < Cij < Cij Vi,jevVv

The decision variables are yy;, T3 I i ry;ji, plus the “virtual travel times” c¢;;, i.e. the parameters
for the online heuristic, always based on the method considered: they represent the cost associated
to each route in terms of travel times. In some cases we refer to them as “virtual”, since they
may be modified by the offline solver and they do not correspond to a real travel time: as already
discussed in Section 5.1, this is done to encourage or discourage the use of a most promising route.
Concerning the meaning of the underbar and overbar versions of ¢;;, we underline that bounding
the virtual travel times is necessary to prevent the solver from building degenerate parameterizations
for P2.1 on purpose. This means, for example, that the offline solver may trivially satisfy the KKT
constraints by setting all the travel times to 0. Finally, the constraints on the r‘,:ji variables enforce
the transitive property on the set of visited nodes.

Also here, we recall that in ACKNOWLEDGE we consider yy; as decision variables and c;; as
parameters using P2.4 as offline phase; in TUNING we use P2.2 to solve the y; variables and then
we use P2.4 for ¢;; (i.e. our offline phase is divided in two parts); finally in ACTIVE we use P2.4
with both yi; and ¢;; as decision variables of the same offline phase.

6.2 Results

Also in this case, as references for comparison we use the baseline approach, plus an optimal solver
operating under perfect information. Additionally, we underline that, on the VRP (discrete deci-
sions), ANTICIPATE obtains the same solution quality as EXPECTATION, which gives a third term of
comparison.
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6.2.1 EXPERIMENTAL SETUP

Our methods are evaluated over different uncertainty realizations, obtained by sampling the random
variables for the travel times in the VRP model. We consider a sample of 100 realizations for six
different instances of each problem. We then run each approach on each realization and measure
the cost (total travel time) and run time.

We solve our LPs and MILPs using Gurobi, while for the non-linear problems we use BARON
via the GAMS modeling system on the Neos server for optimization. The time limit is 500 seconds.
We use classical SolomonTSPTW instances?. In particular, from the cited dataset, we chose instance
I1 with 4 customers, 12 with 10 customers, I3 with 14 customers, I4 with 20 customers, 15 with 25
customers, and the last instance 16 with 30 customers (see Table 5). We always consider 2 available
vehicles.

Concerning the scenarios, we assume that, whenever a node is reached, its binary state becomes
known, and with that the (uniform) distributions followed by the travel times of all its outgoing arcs.
Formally, this results in bimodally distributed, statistically dependent, travel times. The number of
stages depends on how many customers are assigned to each vehicle.

‘ Inst. # of Customers
11 4
12 10
I3 14
14 20
15 25
16 30

Table 4: Different instances for VRP

6.2.2 RESULT DISCUSSION

Tables 5 and 6 report the results in terms of costs (i.e. the total travel time t(s)) and computation
time for the VRP. Here the online times are summed over all the vehicles. The original online
heuristic is very efficient, but coupled with the baseline offline model it does not come close to
the oracle quality. The offline model (a Mixed Integer Linear Program) takes also considerably
more time to be solved. ANTICIPATE, which in this case yields the same results as EXPECTATION
with no time limit, yields substantially better solutions, but, being also MILP-based, it takes non-
negligible time during the online phase. The online phase of ANTICIPATE has the same semantic
of EXPECTATION, which obtains the same results by enumerating the feasible decisions for the
current stage, and evaluating the expected cost by solving the problem on each scenario. Since each
scenario is considered in isolation, EXPECTATION is arguably much more efficient than (the online
phase of) ANTICIPATE whenever the current stage decisions can be enumerated reasonably fast.
The same argument applies to the REGRET algorithm, an efficient approximation of EXPECTATION.
The improvement given by our methods is the integration with offline decisions (i.e. customer
assignment in the offline phase of ANTICIPATE). Moreover, when each online stage requires to take
multiple decisions, enumeration may be expensive and associating an expected cost to each decision
in isolation leads to underestimations if the costs are not additive (Awasthi & Sandholm, 2009).

3. https://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm

111



DE FILIPPO, LOMBARDI & MILANO

Instance Oracle Baseline ANTICIPATE
c(t(s)) c(t(s)) tot t(s) offline t(s) | online t(s) | c(t(s)) tot t(s) offline t(s) | online t(s)
11 146.10 | 165.83 | 1.954 1.699 0.255 151.23 | 8.833 1.699 7.134
12 278.37 | 347.28 | 2.646 2477 0.169 299.67 | 17.699 2477 15.222
13 372.82 | 561.66 | 3.086 2.532 0.554 477.16 | 20.556 2.532 18.024
14 321.57 | 381.45 | 190.242 | 186.798 3.444 342.94 | 442.73 186.798 255.932
15 503.65 | 670.86 | 248.578 | 243.330 5.248 559.22 | 556.986 | 243.330 313.656
16 448.53 | 871.87 | 366.879 | 361.537 5.342 470.99 | 778.182 | 361.537 416.645
Table 5: Cost/computation time for the Oracle, Baseline and ANTICIPATE.
Instanc TUNING ACKNOWLEDGE ACTIVE
nstance @) tot t(s) offline t(s) online ((s) c(1(s)) tot t(s) offline t(s) online t(s) c(t(s)) tot t(s) offline t(s) online t(s)
1] 158.01 | 4611 4356 0.255 162.88 | 3.697 3.442 0.255 14884 | 6510 6.255 0.255
2 31233 | 12546 12.377 0.169 32043 | 10.398 10.229 0.169 29543 | 17.614 17.445 0.169
3 52232 | 19.877 19.323 0.554 53043 | 16.553 15.999 0.554 507.80 | 26492 25.938 0.554
4 35532 | 298.691 | 295.47 3.444 368.94 | 291.788 | 288.344 3.444 340.85 | 342442 | 338998 3.444
15 63233 | 317470 | 312.222 5243 65922 | 30548 300.232 5248 54392 | 362.791 | 357.543 5248
16 58433 | 427.642 | 422300 5342 605.88 | 410.575 | 405.233 5342 504.82 | 496.198 | 490.856 5342

Table 6: Cost/computation time for TUNING, ACKNOWLEDGE and ACTIVE.

The ACTIVE results follow the same trend as the VPP: the solution quality matches or beats that of
ANTICIPATE, at the cost of a higher offline computation time, though the gap wrt the baseline is now
much smaller. We want to stress again that our emphasis is on comparing different offline/online
integration methods. EXPECTATION and REGRET all achieve a small amount of integration by
relying on the same basic idea (making the online solver anticipatory). This is the same strategy
used by our ANTICIPATE method which (for convenience reasons) was chosen as representative for
this class of approaches. Additionally ANTICIPATE has the same semantic of EXPECTATION on the
VRP problem, but it is applicable also in the VPP use case.

From Figure 19 to Figure 20 we show the average online routing decisions over the 100 real-
izations for the same instance 12 (10 customers, one depot and two vehicles). The heat maps shown
below represent different colors for each vehicle and different color intensity for the number of
times that each route has been chosen over the 100 realizations. We show only the heat maps for the
two references (i.e. the Oracle and the Baseline) and for ANTICIPATE and ACTIVE that are the most
significant results in terms of differences in offline/online decisions. We remember that our mod-
els make first offline decisions (i.e. assignment of clients for each vehicle) and then make routing
(online) decisions. We remember also that in ACTIVE model we can have different offline decisions
(compared to those made from the other three models) since we inject KKT conditions in the offline
part. We therefore propose an instance as example where the offline decisions are the same for all
the models with the aim to observe the different online routing decisions. Indeed, we have different
trends with the same offline decisions. In particular, the Baseline model makes different routing
decisions compared to the Oracle decisions: routes 2 -> 10, 3 -> 2, 6 -> 5 are never considered
in the Baseline decisions while they are (with a certain probability) considered in the ANTICIPATE
decisions. We can also notice that, the Baseline and ANTICIPATE models assume a (low) probability
also for different routing decisions of vehicle 0 and this is not present in ACTIVE routing decisions.
The ACTIVE routing decisions are equals to the Oracle ones for vehicle 0 in terms of probability and,
for the other vehicle, they present routes (with the relative probability) never used by ANTICIPATE
(e.g. 0-> 6,5 -> 7). Moreover, we can notice that ANTICIPATE presents online decisions with a
higher probability but, in general, different from the most frequent decisions of the Oracle. Instead,
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Figure 19: (left) Oracle and (right) Baseline routing decisions for instance 12

ACTIVE makes more decisions with lower probability than ANTICIPATE, but considering more often
decisions similar to the Oracle.
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Figure 20: (left) ANTICIPATE and (right) ACTIVE routing decisions for instance 12

7. Conclusion and Future Work

This paper makes a first significant step toward generic integrated offline/online optimization. We
propose four alternative approaches, based on the idea of making the offline and online solvers
operate synergistically. In the ANTICIPATE method this is done by providing the online solver
with the approximation of an oracle (i.e. replacing the greedy heuristic with a sampling-based
anticipatory algorithm). However, increasing the computational load of the online phase may not a
good idea when stringent time constraints exist. In such a situation, it may be better to improve the
greedy heuristic by simply adjusting its parameters. This is the main idea in the TUNING approach
which maintains the efficiency of the original greedy heuristic, at the price of a computationally
expensive parameter tuning process, which is however performed offline. In the remaining methods,
we instead make the offline solver aware of the limitations of the online one (i.e. ACKNOWLEDGE),
and capable of controlling its behavior by adjusting parameters (i.e. ACTIVE). Indeed, shifting our
attention to the offline decision, we can mitigate the discrepancy by translating the online greedy
heuristic as a set of constraints, which can be injected in the offline model.
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All the proposed techniques yield substantially improved solutions: ANTICIPATE matches the
quality level of EXPECTATION, but it is applicable under more general assumptions. Unfortunately,
the method is also less efficient. ACTIVE often manages to beat ANTICIPATE (and therefore EX-
PECTATION) in terms of solution quality. While this comes at the price of a substantially increased
offline computation time, the method achieves these results by using naive and very efficient online
heuristics.

Whenever distinct offline and online phases are present, a tighter integration can lead to substan-
tial improvements in terms of both solution quality and computational costs. It would be very useful
for the applicability of our methods to define a set of guidelines in order to choose one over another
method, based on the problem under consideration. For this reason, we are working as current re-
search direction, on the automatic recommendation of an approach based on the characteristics of
the problem under consideration.

Regarding the limitations of our methods, we could make some discussion about their scalabil-
ity. In particular, the scalability of several of our methods is adversely affected by the need to include
additional variables and constraints to model the KKT conditions. Similarly to other stochastic op-
timization problems, large scenario sizes or look-ahead horizons result in better estimates, but also
in more and/or bigger (possibly NP-hard) problems to be solved. However, this scalability issue
is present mostly in the offline phase where computational resources are more available. We are
working on research directions to improve the scalability of our methods by replacing sampling
with (e.g.) ML predictors.

We also believe there is room for improving the efficiency of our methods (similarly to how
EXPECTATION was improved in REGRET), and achieving this goal is part of our current research
directions (De Filippo, Lombardi, & Milano, 2019). We also plan to apply our approaches to dif-
ferent problems, such as resource allocation and scheduling with Simple Temporal Networks under
Uncertainty.
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