
Journal of Artificial Intelligence Research 73 (2022) 535-552 Submitted 08/2020; published 02/2022

Sum-of-Products with Default Values:
Algorithms and Complexity Results

Robert Ganian rganian@ac.tuwien.ac.at
Algorithms and Complexity Group, TU Wien, Vienna, Austria

Eun Jung Kim eun-jung.kim@lamsade.dauphine.fr
LAMSADE/CNRS, Université Paris-Dauphin, Paris, France

Friedrich Slivovsky fs@ac.tuwien.ac.at

Stefan Szeider sz@ac.tuwien.ac.at

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract

Weighted Counting for Constraint Satisfaction with Default Values (#CSPD) is a
powerful special case of the sum-of-products problem that admits succinct encodings of
#CSP, #SAT, and inference in probabilistic graphical models. We investigate #CSPD
under the fundamental parameter of incidence treewidth (i.e., the treewidth of the incidence
graph of the constraint hypergraph). We show that if the incidence treewidth is bounded,
#CSPD can be solved in polynomial time. More specifically, we show that the problem is
fixed-parameter tractable for the combined parameter incidence treewidth, domain size, and
support size (the maximum number of non-default tuples in a constraint). This generalizes
known results on the fixed-parameter tractability of #CSPD under the combined parameter
primal treewidth and domain size. We further prove that the problem is not fixed-parameter
tractable if any of the three components is dropped from the parameterization.

1. Introduction

Sum-of-products is a well-studied framework that captures many important tasks (Dechter,
1999; Bacchus, Dalmao, & Pitassi, 2009). Among others, it captures problems such as
the counting constraint satisfaction problem (#CSP), the propositional model counting
problem (#SAT), and inference problem in probabilistic graphical models (PGMs). Here,
we consider a natural formalization of sum-of-products in the terminology of Constraints
Satisfaction Problem (CSP): Weighted Counting for Constraint Satisfaction with Default
Values (#CSPD). #CSPD extends the standard CSP formalism by adding

(i) a rational weight to each tuple in a constraint relation, as well as

(ii) a default weight for each constraint, indicating the weight of assignments not repre-
sented by a tuple in the relation.

The weight of an assignment is the product over the weights of all constraints under that
assignment, and the value of a #CSPD instance is the sum of these weights taken over all
total assignments. For example, an instance of #SAT can be represented by introducing,
for each clause, a constraint with default weight 1 containing a single tuple with weight 0.
Conditional probability tables of a Bayesian Network (Pearl, 1988) can be directly encoded

©2022 AI Access Foundation. All rights reserved.

Ganian, Kim, Slivovsky, & Szeider

as constraints with tuple weights corresponding to conditional probabilities. Additionally,
default values can be used to represent uniform probability distributions succinctly.

Canonical algorithms for the sum-of-products problem run in polynomial time for
instances of bounded primal treewidth, which is the treewidth of the graph whose vertices
are variables, and where two variables are adjacent if and only if they appear together in
the scope of a constraint (Dechter, 1999; Bacchus et al., 2009; Kask, Dechter, Larrosa, &
Dechter, 2005). A runtime bound of this kind also holds for a variable elimination procedure
tailored to #CSPD (Capelli, 2016). However, an instance of primal treewidth k may only
contain relations of arity up to k+ 1, so one can afford to expand any succinctly represented
relation to a table of size nO(k). We, therefore, need a more fine-grained measure than primal
treewidth to capture advantages afforded by the use of default values.

Our main contribution is an algorithm, laid out in detail in Section 3, that solves
#CSPD in polynomial time for instances of bounded incidence treewidth (the treewidth
of the bipartite graph on variables and constraints where a variable and a constraint are
adjacent if and only if the variable appears in the scope of the constraint).1 This result is
significant since the incidence treewidth is more general than primal treewidth: an instance
of primal treewidth k has incidence treewidth at most k + 1, but there are instances of
bounded incidence treewidth but arbitrarily large primal treewidth (see, e.g., Samer &
Szeider, 2010b).

In the context of CSP and inference in PGMs, efforts toward obtaining even finer-
grained measures have led to the development of generalized hypertree decompositions
(GHDs) (Gottlob et al., 2005) and GHD-based inference algorithms (Kask et al., 2005).
Recently, it was shown that the sum-of-products problem can be solved in polynomial time
if a measure of GHDs known as the fractional hypertree width is bounded (Khamis, Ngo, &
Rudra, 2016). This bound requires that factors/constraints are given in a format where each
nonzero tuple is represented explicitly. It is unlikely that a similar bound can be obtained
for #CSPD because #SAT (and thus #CSPD) is #P-hard already for instances with acyclic
constraint hypergraphs (Samer & Szeider, 2010a).

Our algorithm is elementary and combinatorial. It is based on dynamic programming
along a tree decomposition, with the key ingredient being a notion of projection, which allows
us to store the effect of partial assignments locally in dynamic programming tables (Paulusma,
Slivovsky, & Szeider, 2016; Slivovsky & Szeider, 2013; Sæther, Telle, & Vatshelle, 2015). The
running time of our algorithm for #CSPD is polynomial, where the order of the polynomial
depends on the incidence treewidth. In Section 4, we identify additional restrictions under
which the algorithm runs in uniform polynomial time, i.e., where the degree of the polynomial
does not depend on the incidence treewidth. Problems that such an algorithm can solve
are called fixed-parameter tractable (Carbonnel & Cooper, 2016; Cygan, Fomin, Kowalik,
Lokshtanov, Marx, Pilipczuk, Pilipczuk, & Saurabh, 2015; Downey & Fellows, 1999; Gottlob
& Szeider, 2008). More specifically, we show that #CSPD is fixed-parameter tractable for
the combined parameter consisting of the incidence treewidth, the domain size, and the

1. Inference in PGMs is known to be tractable for instances whose incidence graph is a tree (Barber, 2012,
Ch.5). CSP without counting or weights, where constraints can either be represented by allowed or
forbidden tuples, has also be addressed by Cohen, Green, and Houghton (2009) and by Chen and Grohe
(2010); the latter work also obtains tractability results for such variants of CSP when the incidence
treewidth is bounded.

536

Sum-of-Products with Default Values: Algorithms and Complexity Results

maximum number of tuples present in a constraint. We also show that none of these three
components of the parameter can be dropped without losing fixed-parameter tractability.

2. Preliminaries

In this section, we formalize the sum-of-products problem in terms of a weighted constraint
satisfaction problem. Constraints are specified by weighted tuples; a default weight is
provided for missing tuples. It is crucial to represent constraints of large arity succinctly.
In such cases, we can utilize default values for a succinct representation. We also define
the graph invariant treewidth and apply it to weighted constraint satisfaction instances via
primal and incidence graphs. Since the treewidth of incidence graphs does not bound the
arity of constraints, a succinct representation of constraints is critical in that setting.

2.1 Weighted Constraint Satisfaction with Default Values

Let V be a set of variables and D a finite set of values (the domain). A weighted constraint
C of arity ρ over D with default value η is a tuple C = (S, F, f, η) where

� the scope S = (x1, . . . , xρ) is a sequence2 of variables from V,

� η ∈ Q is the default value,

� F ⊆ Dρ is called the support and

� f : F → Q is a mapping that assigns rational weights to the support.

Here, Q denotes the set of rational numbers.3 We define |C| = |S|+ |F |+ 1 and var(C) = S.
Since all the weighted constraints we consider will have a default value, we will use weighted
constraint for brevity instead of weighted constraint with default value. On the other hand, a
constraint is defined analogously as a weighted constraint, but without the components f
and η.

An assignment α : X → D is a mapping defined on a set X ⊆ V of variables; if X = V
then α is a total assignment. An assignment α′ then extends α if ∀x ∈ X : α(x) = α′(x).
A weighted constraint C = (S, F, f, η) naturally induces a total function on assignments
of its scope S = (x1, . . . , xρ): for each assignment α : X → D where X ⊇ S, we define
the value C(α) of C under α as C(α) = f(α(x1), . . . , α(xρ)) if (α(x1), . . . , α(xρ)) ∈ F and
C(α) = η otherwise.

An instance I of #CSPD is a tuple (V,D, C) where V = var(I) is the set of variables of
I, D is its domain, and C is a set of weighted constraints over D. We define |I| as the sum of
|V|, |D|, and |C| for each C ∈ C. The task in #CSPD is to compute the total weight of all
assignments of V, i.e., to compute the value

sol(I) =
∑

α:V→D

∏
C∈C

C(α).

2. We note that even though S is a sequence, we slightly abuse notation by sometimes treating it as a set;
for example, we may write X ⊆ S.

3. The original definition of #CSPD only considers nonnegative rational weights and default values (Brault-
Baron, Capelli, & Mengel, 2015). This restriction is not required for the present work.

537

Ganian, Kim, Slivovsky, & Szeider

We observe that every instance of the classical #CSP problem can be straightforwardly
translated into an instance of #CSPD: for each constraint in the #CSP instance, we create
a weighted constraint, add the tuples of the constraint into F , have f map these to the value
1, and set the default value to 0. Similarly, every instance of #SAT can also be represented
as an instance of #CSPD: for each clause, we create a corresponding weighted constraint,
set F to be the only tuple that does not satisfy that clause. Let f map this tuple to 0 and
set η = 1. Naturally, #CSPD also generalizes the weighted counting variants for #CSP
and #SAT, but is also significantly more powerful than each of these formalisms on their
own; indeed, it, for instance, allows us to perform weighted counting for the Mixed CSP
problem (Cohen et al., 2009), where each constraint can be represented explicitly or by a
clause.

We use standard graph terminology, see Diestel’s textbook (2012). The primal graph of
a #CSPD instance I is the graph whose vertices correspond to the variables of I and where
two variables a, b are adjacent if and only if there exists a weighted constraint in I whose
scope contains both a and b. The incidence graph of I is the bipartite graph whose vertices
correspond to the variables and weighted constraints of I, and where vertices corresponding
to a variable x and a weighted constraint C are adjacent if and only if x ∈ var(C).

2.2 Treewidth

Let G be a graph. A tree decomposition of G is a pair (T, χ) where T is a tree and
χ : T → 2V (G) is a mapping from tree nodes to subsets of V (G) such that:

� ∀e = uv ∈ E(G),∃t ∈ V (T) : {u, v} ⊆ χ(t), and

� ∀v ∈ V (G), T [{t | v ∈ χ(t)}] is a non-empty connected subtree of T .

We call the vertices of T nodes and the sets in χ(t) bags of the tree decomposition (T, χ).
The width of (T, χ) is equal to max{|χ(t)| − 1 | t ∈ V (T)}. The treewidth of G, denoted
tw(G), is the minimum width over all tree decompositions of G. A tree decomposition (T, χ)
is called nice if T is rooted and the following conditions hold:

� Every node of the tree T has at most two children;

� if a node t has two children t1 and t2, then t is called a join node and χ(t) = χ(t1) =
χ(t2);

� if a node t has one child t1, then either |χ(t)| = |χ(t1)|+ 1 and χ(t1) ⊂ χ(t) (in this
case we call t an introduce node) or |χ(t)| = |χ(t1)| − 1 and χ(t) ⊂ χ(t1) (in this case
we call t a forget node);

� the root r of T satisfies χ(r) = ∅.

It is possible to transform a tree decomposition (T, χ) into a nice tree decomposition
(T ′, χ′) of the same width in time O(|V |+ |E|) (Kloks, 1994). Furthermore, it is possible to
construct near-optimal tree decompositions for graphs of low treewidth efficiently:

Fact 1 (Bodlaender et al., 2016). There exists an algorithm which, given an n-vertex graph
G and an integer k, in time 2O(k) · n either outputs a tree-decomposition of G of width at
most 5k + 4 and O(n) nodes, or determines that tw(G) > k.

538

Sum-of-Products with Default Values: Algorithms and Complexity Results

The primal treewidth (tw) of a #CSPD instance I is the treewidth of its primal graph,
and similarly, the incidence treewidth (tw∗) of I is the treewidth of its incidence graph.

3. Solving #CSPD Using Incidence Treewidth

Here we show that #CSPD can be solved in polynomial time when restricted to instances
of bounded incidence treewidth. We remark that, in parameterized complexity terminology,
the algorithm is an XP algorithm. However, before we proceed to the algorithm itself, we
will need to introduce projections, which are instrumental in defining the records used by
our dynamic programming algorithm.

3.1 Projections

Let C = (S, F) be an unweighted constraint where S = (x1, . . . , xl) and let τ : X → D be an
assignment. The projection of C with respect to assignment τ is the constraint C|τ = (S, F ′),
where F ′ is the set of tuples of F compatible with τ , formally

F ′ = { (s1, . . . , sl) ∈ F : τ(xi) = si for all xi ∈ X ∩ S }.

The algorithm presented in Section 3.2 groups assignments based on their projections. The key
insight is that two assignments τ and σ are indistinguishable for a constraint C if the projec-
tions C|τ and C|σ are identical. The projection C|τ of a weighted constraint C = (S, F, η, f)
with respect to an assignment τ is simply the projection of its associated unweighted
constraint (S, F) with respect to τ .

We write C[X] to denote the set of projections of C with respect to assignments of X.
The following observation notes that C[X] is not too large; this contrasts with the fact that
the number of assignments of X may be exponential in the size of X.

Observation 1. Let C = (S, F) be a constraint and let X be a set of variables. The
following (in)equalities hold:

1. |C[X]| ≤ |F |+ 1.

2.
⋃

(S,F ′)∈C[X] F
′ = F .

Moreover, the union in the second bound is disjoint.

For example, consider a clause (x∨y∨ z̄) of a CNF formula. One possible way to represent
this clause in the #CSPD format is C = ((x, y, z), {0, 1}3 \ {(0, 0, 1)}, f, 0), where f : s 7→ 1
assigns value 1 to each tuple s ∈ F in the support, and the default value 0 is assigned to the
“missing” tuple. If α : {x} → {0, 1} is an assignment with α(x) = 0, then the projection of C
with respect to α is C|α = ((x, y, z), {(0, 0, 0), (0, 1, 0), (0, 1, 1)}). In the case where α(x) = 1
we get C|α = ((x, y, z), {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}).

The projection of a constraint with respect to the union of two assignments can be
computed from the projections of this constraint with respect to the individual assignments.
We define the intersection of two unweighted constraints C1 = (S, F1) and C2 = (S, F2)
with the same scope (which in the following will be projections of the same constraint)
as C1 ∩ C2 = (S, F1 ∩ F2).

539

Ganian, Kim, Slivovsky, & Szeider

Observation 2. If C is a constraint and τ : X → D, σ : Y → D are assignments such that
τ(x) = σ(x) for each variable x ∈ X ∩ Y , then

1. (C|τ)|σ = (C|σ)|τ = C|τ∪σ, and

2. C|τ ∩ C|σ = C|τ∪σ.

The value C(τ) of a constraint under a complete assignment τ can be obtained from
the projection C|τ in the following way. Let C = (S, F, η, f) be a weighted constraint
and B = (S, F ′) a projection of C under an assignment of X ⊇ S; note that F ′ is either
empty or contains a single tuple s. We define val(C,B) as val(C,B) = η in the former case
and val(C,B) = f(s) in the latter case.

Observation 3. For every assignment τ : X → D and constraint C with scope S ⊆ X we
have val(C,C|τ) = C(τ).

3.2 The Algorithm

For this section, let I = (V,D, C) be an arbitrary but fixed instance of #CSPD, and let (T, χ)
be a nice tree decomposition of its incidence graph. Let t ∈ V (T) be a node of this tree
decomposition. We refer to a vertex v (variable or constraint) as forgotten below t if there
is a forget node t′ in the subtree rooted at t such that χ(t′) = χ(t′′) \ {v}, where t′′ is the
child node of t′. We write Xt = χ(t) ∩ V for the set of variables in the bag of t, Yt for
the set of variables forgotten below t, and Zt = Xt ∪ Yt for their union. Furthermore, we
write Ct = χ(t) ∩ C for the set of constraints in the bag of t and Ft for the set of constraints
forgotten below t. Our goal is to compute the weight of assignments τ : Zt → D restricted
to Ft, that is, we want to compute the value of the following expression:∑

τ :Zt→D

∏
C∈Ft

C(τ). (1)

Since every variable and constraint is eventually forgotten, expression (1) computes sol(I) at
the root of T . To perform dynamic programming, we will split the set DZt into equivalence
classes that keep track of the influence of assignments on constraints in C\Ft (i.e., constraints
that have not yet been forgotten). Let τ : Zt → D be an assignment and let C ∈ C \ Ft.
How can τ affect the constraint C? If C /∈ Ct then var(C) cannot contain variables forgotten
below t since (T,X) is a tree decomposition, so the effect of τ on C can be determined purely
in terms of the restricted assignment τ |Xt . On the other hand, if C ∈ Ct then the effect of τ
on C can be characterized by a projection of C with respect to Zt (recall that the projection
of a weighted constraint is simply the projection of the underlying unweighted constraint).
To simplify the presentation of the following arguments, we will assume an ordering on the
set of constraints in each bag. Let Ct = (C1, . . . , Cp) be the constraints associated with

node t. Let σ ∈ DXt be an assignment and let ~B = (B1, . . . , Bp) be a vector where each
component Bi is a projection of Ci with respect to Zt, formally Bi ∈ Ci[Zt] for each i ∈ [p].
We define At(σ, ~B) as the set of assignments of Zt compatible with the assignment σ and
projections Bi, that is

At(σ, ~B) = { τ : Zt → D : τ |Xt = σ and Ci|τ = Bi for i ∈ [p] }.

540

Sum-of-Products with Default Values: Algorithms and Complexity Results

The sets At(σ, ~B) yield a partition of the assignments in DZt , since σ varies over all
assignments to Xt, the Bi vary over all projections of a constraint under an assignment
of Zt, and the projection of any constraint with respect to an assignment is unique. One can
think of the pair (σ, ~B) as the “state” of the bag Xt ∪ Ct induced by an assignment of Zt
and of At(σ, ~B) as the set of all assignments of Zt which result in a particular state (σ, ~B) at
node t. For each node t ∈ T and each pair (σ, ~B), we will compute and store values Qt(σ, ~B)
where

Qt(σ, ~B) :=
∑

τ∈At(σ, ~B)

∏
C∈Ft

C(τ).

In the following, we will argue that the values Qt(σ, ~B) can be computed from val-
ues Qt′(σ

′, ~B′) associated with child nodes t′ of t. To simplify notation, we may omit
the names of nodes in the subscripts for nodes t with a single child node t′. For instance, we
will write X instead of Xt, A instead of At, and so forth. Moreover, we will use primes when
referring to objects associated with t′ and write X ′ instead of Xt′ , A

′ instead of At′ , and
so on. Further, for a variable x and an assignment σ whose domain includes x, we let σx
denote the restriction of σ to x. For each domain value d ∈ D, we let σdx : {x} → D denote
the assignment such that σdx(x) = d. For a vector ~B = (B1, . . . , Bl) of constraints and a
single constraint B we will write (~B,B) = (B1, . . . , Bl, B) for their concatenation.

We first consider variable introduce nodes, that is, nodes t with a unique child node t′

such that X = X ′ ∪ {x} for some variable x. Variable x is also included in the set Z, and
each assignment τ : Z → D is obtained from an assignment τ ′ : Z ′ → D by extending with
the singleton assignment σx : {x} → D, where σx(x) = τ(x). If τ ′ ∈ A′(σ′, ~B′), we can
simply extend by σdx and take the projection of each Bi ∈ ~B′ with respect to σx to obtain
the assignment σ and tuple ~B such that τ ∈ A(σ, ~B). Since the new variable x cannot occur
in forgotten constraints, the values Q(σ, ~B) and Q′(σ′, ~B′) coincide.

Lemma 1. Let t be a variable introduce node with child t′, and let x be the variable
introduced by t. Further, let C = (C1, . . . , Cp), let σ : X → D be an assignment, and

let ~B = (B1, . . . , Bp) be a vector such that Bi ∈ Ci[Z] for each i ∈ [p]. If A(σ, ~B) is

nonempty, then there is a unique vector ~B′ = (B′1, . . . , B
′
p) satisfying Bi = B′i|σx for each

i ∈ [p] such that the mapping f : τ 7→ τ |Z′ is a bijection between A(σ, ~B) and A′(σ′, ~B′),
where σ′ = σ|X′. Moreover, Q(σ, ~B) = Q′(σ′, ~B′) in this case.

Proof. Suppose A(σ, ~B) is nonempty and let ξ ∈ A(σ, ~B). We let ξ′ = ξ|Z′ and define B′i =
Ci|ξ′ for each i. Since Ci|ξ = Bi for each i this definition clearly satisfies Bi = B′i|σx . Let

τ ∈ A(σ, ~B) be an assignment and let τ ′ = τ |Z′ denote its image under f . It is trivially the
case that τ ′ ∈ A′(σ′, ~C), where ~C = (C1|τ ′ , . . . , Cp|τ ′). We argue that B′i = Ci|τ ′ for each
i ∈ [p]. Observe that

(Ci|τ ′)|σx = Ci|τ = Bi = Ci|ξ = (Ci|ξ′)|σx = B′i|σx

for τ, ξ ∈ A(σ, ~B). If the projections B′i = Ci|ξ′ and Ci|τ ′ are distinct then by Observation 1
they must be disjoint. But since (Ci|τ ′)|σx = Ci|τ ′ ∩ Ci|σx and (Ci|ξ′)|σx = Ci|ξ′ ∩ Ci|σx
by Observation 2, in that case the projections Ci|τ and Ci|ξ would have to be disjoint

541

Ganian, Kim, Slivovsky, & Szeider

as well, a contradiction. We conclude that Ci|τ ′ = B′i and thus τ ′ ∈ A′(σ′, B′i). This
proves that f is into. Since f is clearly injective, it remains to show that the mapping is
surjective as well. Let τ ′ ∈ A′(σ′, ~B′) and let τ = τ ′ ∪ σx so that f(τ) = τ ′. Then τ |X = σ
and Ci|τ = (Ci|τ ′)|σx = B′i|σx = Bi, so τ ∈ A(σ, ~B). We conclude that f is a bijection as
claimed. Since (T,X) is a tree decomposition, the newly introduced variable x does not
occur in any constraint forgotten below t, so the assignments τ and f(τ) always have the
same weight. It follows that Q(σ, ~B) = Q′(σ′, ~B′).

Next, we consider constraint introduce nodes t such that C = C′ ∪ {C} for a constraint C.
A newly introduced constraint C cannot contain forgotten variables, so its projection with
respect to an assignment τ of Z is just the projection with respect to the restriction of τ
to X.

Lemma 2. Let t be an introduce node with child node t′ such that C′ = (C1, . . . , Cp−1) and

C = (C1, . . . , Cp−1, C). Further, let σ : Xt → D be an assignment, let ~B = (B1, . . . , Bp) be a

vector of constraints, and let ~B′ = (B1, . . . , Bp−1) be the vector consisting of its first p− 1
components. The following statements hold:

1. Q(σ, ~B) is nonzero only if Bp = C|σ.

2. If Bp = C|σ then Q(σ, ~B) = Q′(σ, ~B′).

Proof. We must have Bp = C|σ in order for Q(σ, ~B) to be nonzero since the newly introduced
constraint C cannot contain variables forgotten below t. If Bp = C|σ then it is readily

verified that A(σ, ~B) = A′(σ, ~B′). Since F = F ′ the lemma follows.

A variable forget node t satisfies X = X ′ \ {x} for some variable x. Upon forgetting a
variable x, we sum up the values Q′(σ ∪ σdx, ~B) for all possible assignments σdx.

Lemma 3. Let t be a variable forget node with child t′, and let x be the variable forgotten
by t. Let σ : X → D be an assignment and let ~B = (B1, . . . , Bp) be a vector of constraints.
Then

Q(σ, ~B) =
∑
d∈D

Q′(σ ∪ σdx, ~B).

Proof. We show that A(σ, ~B) =
⋃
d∈D A

′(σ∪σdx, ~B). If τ ∈ A(σ, ~B) then τ ∈ A′(σ∪στ(x)
x , ~B).

Conversely, if τ ∈ A′(σ′, ~B) then τ ∈ A(σ, ~B), where σ = σ′|X . The lemma now follows
since F = F ′ and the union is disjoint.

For a constraint forget node t we have C = C′ \{C} for some constraint C. As C is added
to the set of forgotten constraints, we have to include it in our weight calculations for Q(σ, ~B).
Recall that (~B,B) denotes the vector (B1, . . . , Bk, B) that results from adding B as the last
component to vector ~B = (B1, . . . , Bk).

Lemma 4. Let t be a constraint forget node with child t′ such that C′ = (C1, . . . , Cp−1, C)

and C = (C1, . . . , Cp−1). Let σ : X → D be an assignment and let ~B = (B1, . . . , Bp−1) be a
vector of constraints. Then

Q(σ, ~B) =
∑

B∈C[Z]

val(C,B)Q′(σ, (~B,B)).

542

Sum-of-Products with Default Values: Algorithms and Complexity Results

Proof. We first show that

A(σ, ~B) =
⋃̇

B∈C[Z]

A′(σ, (~B,B)). (2)

The inclusion A(σ, ~B) ⊇
⋃
B∈C[Z] A

′(σ, (~B,B)) is trivial. For the other direction, let τ ∈
A(σ, ~B) and let B = C|τ . Clearly, τ ∈ A′(σ, (~B,B)). Moreover, the union is disjoint since
the sets A′(σ, ~B′) are pairwise disjoint.

Let B ∈ C[Z] be a projection and let τ ∈ A′(σ, (~B,B)). Since C is forgotten at node t we
have ∏

C′∈F
C ′(τ) = C(τ)

∏
C′∈F ′

C ′(τ). (3)

Moreover, var(C) ⊆ Z since we are forgetting C, so val(C,B) is defined and val(C,B) = C(τ)
by Observation 3. Putting everything together, we get

Q(σ, ~B) =
∑

τ∈A(σ, ~B)

∏
C′∈F

C ′(τ)

=
∑

τ∈A(σ, ~B)

C(τ)
∏
C′∈F ′

C ′(τ) by (3)

=
∑

B∈C[Z]

∑
τ∈A′(σ,(~B,B))

C(τ)
∏
C′∈F ′

C ′(τ) by (2)

=
∑

B∈C[Z]

∑
τ∈A′(σ,(~B,B))

val(C,B)
∏
C′∈F ′

C ′(τ) by Observation 3

=
∑

B∈C[Z]

val(C,B)
∑

τ∈A′(σ,(~B,B))

∏
C′∈F ′

C ′(τ)

=
∑

B∈C[Z]

val(C,B)Q′(σ, (~B,B)).

Finally, we deal with join nodes t that have child nodes t1, t2 such that χ(t) = χ(t1) =
χ(t2). In keeping with the presentation of the previous lemmas, we will simplify subscripts
by writing, for instance, Zi instead of Zti , and Ai instead of Ati , for i ∈ {1, 2}. Further, we
use the following notation: given two vectors ~B1 = (B1, . . . , Bp) and ~B2 = (B′1, . . . , B

′
p) of

constraints such that Bi and B′i have the same scope for each i ∈ [p], we write ~B1 ∩ ~B2 =
(B1 ∩B′1, . . . , Bp ∩B′p) for the vector obtained by taking the componentwise intersections.

Lemma 5. Let t be a join node with children t1 and t2, let σ : X → D be an assignment,
and let ~B = (B1, . . . , Bp) be a vector of constraints. We have

Q(σ, ~B) =
∑

~B1∩ ~B2= ~B

Q1(σ, ~B1)Q2(σ, ~B2).

543

Ganian, Kim, Slivovsky, & Szeider

Proof. We first show that

A(σ, ~B) = { τ ∈ DZ : τ |Z1 ∈ A1(σ, ~B1), τ |Z2 ∈ A2(σ, ~B2), ~B = ~B1 ∩ ~B2 }. (4)

Let τ1 ∈ A1(σ, ~B1) and τ2 ∈ A2(σ, ~B2) such that ~B1∩ ~B2 = ~B. Since Y1∩Y2 = ∅, the combined
assignment τ = τ1∪τ2 is well defined. We have Ci|τ = Ci|τ1∪τ2 = Ci|τ1∩Ci|τ2 by Observation 2
and thus Ci|τ = Bi for each i ∈ [p], so τ ∈ A(σ, ~B). Conversely, let τ ∈ A(σ, ~B) and
let τ1 = τ |Z1 and let τ2 = τ |Z2 . Let ~B1 = (C1|τ1 , . . . , Cp|τ1) and ~B2 = (C1|τ2 , . . . , Cp|τ2). We

have τ1 ∈ A1(σ, ~B1) and τ2 ∈ A2(σ, ~B2) by construction and ~B = ~B1 ∩ ~B2 by Observation 2.
Each constraint C ∈ F forgotten below t is either forgotten below t1 or below t2.

If C ∈ F1 then var(C) ∩ Y2 = ∅ by the connectivity properties of a tree decomposition.
Conversely, if C ∈ F2 then var(C) ∩ Y1 = ∅. Therefore for each τ ∈ A(σ, ~B) we get∏

C∈F
C(τ) =

∏
C∈F1

C(τ)
∏
C∈F2

C(τ) =
∏
C∈F1

C(τ |Z1)
∏
C∈F2

C(τ |Z2), (5)

and thus ∑
τ∈A(σ, ~B)

∏
C∈F

C(τ)

=
∑

τ1∈A1(σ, ~B1),

τ2∈A2(σ, ~B2),
~B1∩ ~B2= ~B

∏
C∈F

C(τ1 ∪ τ2) by (4)

=
∑

τ1∈A1(σ, ~B1),

τ2∈A2(σ, ~B2),
~B1∩ ~B2= ~B

∏
C∈F1

C(τ1)
∏
C∈F2

C(τ2) by (5)

=
∑

~B1∩ ~B2= ~B

∑
τ1∈A1(σ, ~B1)

∑
τ2∈A2(σ, ~B2)

∏
C∈F1

C(τ1)
∏
C∈F2

C(τ2)

=
∑

~B1∩ ~B2= ~B

 ∑
τ1∈A1(σ, ~B1)

∏
C∈F1

C(τ1)

 ∑
τ2∈A2(σ, ~B2)

∏
C∈F2

C(τ2)


=

∑
~B1∩ ~B2= ~B

Q1(σ, ~B1)Q2(σ, ~B2).

Lemma 6. Let t be a leaf node such that Ct = (C1, . . . , Cp). Let σ : Xt → D be an assignment

and let ~B = (B1, . . . , Bp) be a vector of constraints. Then Q(σ, ~B) = 1 if Bi = Ci|σ for

all i ∈ [p] and Q(σ, ~B) = 0 otherwise.

Proof. No variable is forgotten below t, so each set A(σ, ~B) is either the singleton {σ} (if
~B is the vector of projections of Ct with respect to σ) or empty (if the projections do not
match). The set F of forgotten constraints is empty, so Q(σ, ~B) = 1 in the first case, and
Q(σ, ~B) = 0 in the second case.

544

Sum-of-Products with Default Values: Algorithms and Complexity Results

Let I = (V,D, C) be an instance of #CSPD and let (T, χ) be a nice tree decomposition
of I’s incidence graph. The following algorithm computes values Rt(σ, ~B)—which can be
shown to be equivalent to the values Qt(σ, ~B)—for each tree node t:

1. For each leaf node t with Ct = (C1, . . . , Cp), enumerate the assignments σ ∈ DXt ,

compute projections Ci|σ for each i ∈ [p], and initialize Rt(σ, ~B) = 1, where ~B =
(C1|σ, . . . , Cp|σ). Mark t done.

2. Do the following until the root r ∈ T is marked done. If t ∈ T is an unmarked node
all of whose children t′ are marked done, compute the records Rt based on the node
type of t:

(a) If t introduces a variable x, go through all nonzero records Rt′(σ
′, ~B′). For each

assignment σdx = {x 7→ d}, compute the assignment σ = σ′ ∪ σdx, as well as the
vector ~B = (B′1|σd

x
, . . . , B′p|σd

x
), and set Rt(σ, ~B) = Rt′(σ

′, ~B′). Mark t done.

(b) If t introduces a constraint C such that Ct′ = (C1, . . . , Cp) and Ct = (C1, . . . , Cp, C),

enumerate the nonzero records Rt′(σ
′, ~B′) and then set Rt(σ

′, ~B) = Rt′(σ
′, ~B′),

where ~B = (B1, . . . , Bp, C|σ′). Mark t done.

(c) If t is a variable forget node, go through all nonzero records Rt′(σ
′, ~B′) and

add Rt′(σ
′, ~B′) to the entry Rt(σ

′|Xt , ~B
′). If the entry does not exist, create it

and initialize with 0. Mark t done.

(d) If t is a forget node such that Ct′ = (C1, . . . , Cp−1, C) and Ct = (C1, . . . , Cp−1),

go through all nonzero records Rt′(σ
′, ~B′) for ~B′ = (B1, . . . , Bp−1, B) and for

each one add the product val(C,B)Rt′(σ
′, ~B′) to the entry Rt(σ

′, ~B), where ~B =
(B1, . . . , Bp−1). Again, create and initialize records with 0 whenever necessary.
Mark t done.

(e) For a join node t, go through all pairs of nonzero records Rt1(σ, ~B1) and Rt2(σ, ~B2)
of its children t1 and t2, and add the product Rt1(σ, ~B1)Rt2(σ, ~B2) to the
record Rt(σ, ~B1 ∩ ~B2). Create and initialize records with 0 if necessary. Mark t
done.

3. Once the root is marked done, there are two possibilities. If the record Rr(ε, ()) exists,
output its value; otherwise, output 0. Here, ε : ∅ → D denotes the empty assignment
and () the empty tuple;

Lemma 7. The above algorithm outputs sol(I).

Proof. We prove thatRt(σ, ~B) = Qt(σ, ~B) whenever the entryRt(σ, ~B) exists, andQt(σ, ~B) =
0 otherwise. For leaf nodes t this is immediate from Lemma 6. Inductively assume the
statement holds for the children of a node t.

(a) Let t be a node that introduces variable x. The entry Rt(σ, ~B) exists if, and only if, there
is a record Rt′(σ

′, ~B′) with σ = σ′ ∪σdx and Bi = B′i|σd
x

for each i. If the entry Rt(σ, ~B)

exists then Rt(σ, ~B) = Rt′(σ
′, ~B′) and by assumption, Rt′(σ

′, ~B′) = Qt′(σ
′, ~B′), so we

have Rt(σ, ~B) = Qt(σ, ~B) by Lemma 1. If the entry does not exist then there is no
entry Rt′(σ

′, ~B′), so Qt′(σ, ~B
′) = 0 by assumption and Qt(σ, ~B) = 0 by Lemma 1.

545

Ganian, Kim, Slivovsky, & Szeider

(b) Let t be a constraint introduce node with Ct = (C1, . . . , Cp−1, C) and Ct′ = (C1, . . . , Cp−1).

An entry Rt(σ, ~B) exists if, and only if, there is a record Rt′(σ, ~B
′) and Bp = C|σ. If

the entry exists then Rt(σ, ~B) = Rt′(σ, ~B
′). By assumption, Rt′(σ, ~B

′) = Qt′(σ, ~B
′)

and by Lemma 2 Qt(σ, ~B) = Qt′(σ, ~B
′), so Rt(σ, ~B) = Qt(σ, ~B) as required. If the

record does not exist then there is no record Rt′(σ, ~B
′) or Bp 6= C|σ. In the former

case Qt′(σ, ~B
′) = 0 by assumption and thus Qt(σ, ~B) = 0 by Lemma 2. In the latter

case Qt(σ, ~B) = 0 by Lemma 2.

(c) Let t be a variable forget node and let x be the variable that is forgotten. A
record Rt(σ, ~B) exists if, and only if, there is a nonzero record Rt′(σ ∪ σdx, ~B) for
some d ∈ D, and Rt(σ, ~B) corresponds to their sum in this case. By assumption,
Rt′(σ∪σdx, ~B) = Qt′(σ∪σdx, ~B) if the record Rt′(σ∪σdx, ~B) exists, and Qt′(σ∪σdx, ~B) = 0
otherwise. Therefore we have Rt(σ, ~B) = Qt(σ, ~B) by Lemma 3. If there is no record
Rt(σ, ~B) then there is no record Rt′(σ ∪ σdx, ~B) and thus Qt′(σ ∪ σdx, ~B) = 0 for each
d ∈ D by assumption. Thus again Qt(σ, ~B) = 0 by Lemma 3.

(d) Let t be a forget node such that Ct = (C1, . . . , Cp−1) and Ct′ = (C1, . . . , Cp−1, C).

There is a record Rt(σ, ~B) if, and only if, there is a nonzero record Rt′(σ, (~B,B)), and
in that case

Rt(σ, ~B) =
∑

Rt′ (σ,(
~B,B)) 6=0

val(C,B)Rt′(σ, ~B,B)).

By assumption we have Rt′(σ, (~B,B)) = Qt′(σ, (~B,B)) for each such record and
otherwise Qt′(σ, (~B,B)) = 0, so Rt(σ, ~B) = Qt(σ, ~B) by Lemma 4. If there is no record
Rt(σ, ~B) then there is no nonzero record Rt′(σ, (~B,B)) and therefore Qt′(σ, (~B,B)) = 0
for all B by assumption. Thus Qt(σ, ~B) = 0 by Lemma 4.

(e) Let t be a join node with children t1 and t2. The entry Rt(σ, ~B) exists if, and only if,
there is a pair of nonzero records Rt1(σ, ~B1) and Rt2(σ, ~B2) such that ~B1 ∩ ~B2 = ~B. If
such a pair exists we have

Rt(σ, ~B) =
∑

Rt1 (σ, ~B1)6=0,

Rt2 (σ, ~B2)6=0,
~B1∩ ~B2= ~B

Rt1(σ, ~B1)Rt2(σ, ~B2).

By assumption, each term satisfies Rti(σ,
~Bi) = Qti(σ,

~Bi) for i ∈ {1, 2}. Moreover,
Rt1(σ, ~B1)Rt2(σ, ~B2) = 0 for every pair Rt1(σ, ~B1), Rt2(σ, ~B2) with ~B1 ∩ ~B2 = ~B that
does not appear as a term in the above sum. The equivalence Rt(σ, ~B) = Qt(σ, ~B) is
immediate from Lemma 5. If there is no record Rt(σ, ~B) there is no pair of nonzero
records Rt1(σ, ~B1), Rt2(σ, ~B2) with ~B1 ∩ ~B2 = ~B. Thus, by assumption, Qt1(σ, ~B1) = 0
or Qt2(σ, ~B2) = 0 for each pair ~B1, ~B2 such that ~B1 ∩ ~B2 = ~B. It again follows from
Lemma 5 that Qt(σ, ~B) = 0.

We conclude that, once the root node r ∈ T is marked done, we have Rr(ε, ()) = Qr(ε, ())
if the record Rr(ε, ()) exists and Qr(ε, ()) = 0 otherwise. Since Ar(ε, ()) = DV we get
Qr(ε, ()) = sol(I) and the output is correct.

546

Sum-of-Products with Default Values: Algorithms and Complexity Results

Let sup be the largest size of a support over all constraints in C, let dom denote |D|, and
let k be the width of the tree decomposition (T, χ).

Lemma 8. The runtime of the above algorithm is (dom + sup + 1)O(k)|I|.

Proof. For each node t we may have entries Rt(σ, ~B) indexed by pairs (σ, ~B), where σ ∈ D|Xt|

and ~B ∈ C1[Zt]×· · ·×Cp[Zt]. By Observation 1, |C[Zt]| ≤ sup + 1 for any constraint C ∈ Ct
and thus the number of entries at node t is bounded by dom|Xt| ·(sup+1)|Ct|. It is not difficult
to see that computing the entries for join nodes t is the computationally most demanding
step. For each fixed assignment σ of Xt we compute the product of Qt1(σ, ~B1) and Qt2(σ, ~B2)
and add it to Qt(σ, ~B1 ∩ ~B2). Therefore, the update at t takes O∗(dom|Xt| · (sup + 1)2|Ct|),
where O∗() suppresses polynomial factors. As the number of tree nodes is O(|I|) by Fact 1,
the overall running time of the dynamic programming algorithm is O∗(domk · (sup + 1)2k)|I|
and thus in (dom + sup + 1)ck|I| for large enough c.

One can compute a nice tree-decomposition of the incidence graph of width at most
5tw∗+ 4 in time O(tw∗ · ctw∗ |I|) by running the algorithm of Fact 1 tw∗ times. In combination
with the preceding lemmas, this proves the main result of this section.

Theorem 1. #CSPD can be solved in time

(dom + sup + 1)O(tw∗)|I|.

4. Fixed-Parameter Tractability of #CSPD

We use the framework of Parameterized Complexity (Cygan et al., 2015; Downey & Fel-
lows, 1999, 2013; Flum & Grohe, 2006; Gottlob & Szeider, 2008; Niedermeier, 2006) to
provide a fine-grained complexity analysis of the algorithm presented in Subsection 3.2.
A parameterized problem P takes a tuple (I, k) as an input instance, where k ∈ N is
called the parameter. A parameterized problem is fixed-parameter tractable (FPT in short),
parameterized by k, if it can be solved by an algorithm which runs in time f(k) · |I|O(1)

for some computable function f . Algorithms with a running time of this form are called
fixed-parameter algorithms. On the other hand, an algorithm which solves P in time |I|f(k)

for some computable function f is called an XP algorithm, and parameterized problems
which admit such an algorithm are said to belong to the class XP. The complexity class XP
properly contains the class FPT. A parameterized problem belongs to the class para-NP if
it admits a non-deterministic fixed-parameter algorithm.

In the parameterized complexity perspective, the algorithm of Subsection 3.2 is an XP
algorithm for #CSPD parameterized by incidence treewidth. For a tuple σ of parameters, let
us denote by #CSPD(σ) the problem #CSPD parameterized by the combined parameter σ.
The following is immediate from Theorem 1, which states that #CSPD(tw∗) can be solved
in time |I|O(tw∗).

Corollary 1. #CSPD(tw∗) admits an XP algorithm.

Consider the combined parameter (tw∗, dom, sup), or simply take the sum of the three as
the parameter. It is easy to see that the same analysis of Theorem 1 establishes that with
respect to this combined parameter, #CSPD is fixed-parameter tractable.

547

Ganian, Kim, Slivovsky, & Szeider

Corollary 2. #CSPD(σ) is FPT for the combined parameter σ = (tw∗, dom, sup).

Corollary 2 generalizes a result to the effect that #CSPD(tw, dom) is FPT (Capelli, 2016).
Before proceeding, we introduce the notion of parameter domination (Samer & Szeider,
2010b). Let σ = (p1, . . . , pr) and σ′ = (p′1, . . . , p

′
s) be two combined parameters. We say

that σ dominates σ′, and write as σ � σ′, if for each 1 ≤ i ≤ r there exists a computable
function f that is monotonically increasing in each argument such that for each instance I
we have pi(I) ≤ f(p′1(I), . . . , p′s(I)). It is not difficult to see that the parameter domination
propagates fixed-parameter tractability:

Lemma 9 (Samer & Szeider, 2010b). Let σ and σ′ are two combined parameters such that
σ � σ′. If #CSPD(σ) is fixed-parameter tractable, then so is #CSPD(σ′).

Hence, to see that Corollary 2 implies fixed-parameter tractability of #CSPD(tw, dom),
we only need to settle the parameter dominance (tw∗, dom, sup) � (tw, dom). First, it is known
that tw∗ ≤ tw + 1 (Kolaitis & Vardi, 2000). Second, the maximum arity d of a #CSPD
instance provides a lower bound on the primal treewidth tw since any constraint of arity d
yields a clique of size d in the primal graph. Therefore we have d ≤ tw + 1. Now, we have
sup ≤ domd ≤ domtw+1. Therefore, the parameter domination holds as claimed.

A natural follow-up question to Corollaries 1 and 2 is whether #CSPD is fixed-parameter
tractable when we drop some component(s) out of (tw∗, dom, sup). To answer this question,
we introduce some terminology of parameterized complexity.

An fpt-reduction from a parameterized problem P to a parameterized problem Q is a
fixed-parameter algorithm that maps an instance (I, k) of P to an equivalent instance (I′, k′)
of Q such that k′ ≤ g(k) for some computable function g. The notion of fpt-reduction in
parameterized complexity plays an analogous role of polynomial-time many-one reduction in
classic complexity theory. Under fpt-reduction, a canonical hierarchy of complexity classes
is well defined, which is called W-hierarchy. Namely, we have

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP.

The standard assumption is FPT 6= W[1] and it is known that FPT = W[1] implies the
failure of Exponential Time Hypothesis (Chen, Huang, Kanj, & Xia, 2006). Therefore, if a
parameterized problem is W[i]-hard (under an fpt-reduction), it is unlikely that the said
problem admits a fixed-parameter algorithm.

On the other hand, W[P] ⊆ para-NP holds as well. A classic example of para-NP-
complete problem is q-Coloring parameterized by q. One can verify whether a given
q-coloring of a graph is proper in (uniform) polynomial time, and thus the problem is in
para-NP. It is known that NP-completeness of q-Coloring implies para-NP-completeness.
The class para-NP is not contained in XP unless P = NP. We refer the reader to other
sources (Downey & Fellows, 1999, 2013; Flum & Grohe, 2006; Cygan et al., 2015) for
in-depth treatment of parameterized complexity.

Now, we consider the problem CSPD, the decision version of #CSPD asking whether
sol(I) > L where L is a part of the input. Clearly, #CSPD is at least as hard as CSPD. The
problem CSPD is NP-hard even when (dom, sup) are bounded by a constant (i.e., the problem
is para-NP-hard). We can observe this by encoding 3CNF Satisfiability as CSPD with
dom = 2 and sup = 1; a given 3-CNF formula is satisfiable if and only if sol(I) > 0 for

548

Sum-of-Products with Default Values: Algorithms and Complexity Results

the corresponding instance I of CSPD. This implies that CSPD(dom, sup) is para-NP-hard.
On the other hand, CSPD(tw∗, dom) generalizes CSP(tw∗, dom) and hence is known to be
W[1]-hard (Samer & Szeider, 2010b). This implies W[1]-hardness of CSPD(tw∗) by Lemma 9.
The remaining case, the parameterization by (tw∗, sup), is settled by the next proposition.

Proposition 1. CSPD(tw∗, sup) is W[1]-hard even when all weighted constraints have arity
at most 2 and sup = 1.

Proof. We give a reduction from Multicolored Clique, which is well known to be W[1]-
hard (Pietrzak, 2003). An instance of Multicolored Clique consists of a graph G whose
vertex set is partitioned into k independent sets V1, . . . , Vk of the same cardinality. The aim
is to decide whether there exists a clique in G of size k; note that such a clique must take a
single vertex from each V1, . . . , Vk.

Given an instance G of Multicolored Clique where each Vi contains n vertices
v1
i , . . . , v

n
i , we construct an instance of CSPD as follows. First, we set D = [n] and for each

vertex subset Vi, i ∈ [k], we create a variable zi. Next, for each non-edge {vqi , v
p
j } with i < j,

we create the constraint ((zi, zj), {(q, p)}, {(q, p) 7→ 0}, 1). This completes the construction
of a CSPD instance I = (S,C). Since I has k variables, its incidence treewidth is at most
k (Samer & Szeider, 2010b, Lemma 2).

We claim that sol(I) > 0 if and only if G is a YES-instance. For the forward direction,
consider an assignment α such that

∏
C∈C C(α) 6= 0. This means that for each 1 ≤ i <

j ≤ n, none of the constraints whose scope is (zi, zj) is evaluated to 0, and in particular

{vα(zi)
i , v

α(zj)
j } is not a non-edge in G. Hence {vα(z1)

1 , . . . , v
α(zn)
n } forms a clique of size k in

G. For the backward direction, it suffices to reverse the above argument: given a k-clique
{vui1 , . . . , v

un
n } in G, the assignment α(zi) = ui is easily verified to satisfy

∏
C∈C C(α) = 1.

Hence the claim holds and the proof is complete.

5. Concluding Remarks

We have (i) presented an algorithm for #CSPD that runs in polynomial time for instances of
bounded incidence treewidth, and (ii) identified additional restrictions that make the problem
fixed-parameter tractable, and (iii) shown that none of the restrictions can be dropped
without losing fixed-parameter tractability. Our algorithmic result entails tractability for
several special cases of #CSPD:

1. Fixed-parameter tractability of CSP parameterized by domain size and primal
treewidth (Gottlob, Scarcello, & Sideri, 2002).

2. Fixed-parameter tractability of sum-of-products parameterized by domain size and
primal treewidth (Dechter, 1999).

3. Fixed-parameter tractability of #CSPD parameterized by domain size and primal
treewidth (Capelli, 2016).

4. Polynomial-time tractability of sum-of-products for instances whose incidence graph is
a tree (Barber, 2012).

549

Ganian, Kim, Slivovsky, & Szeider

5. Fixed-parameter tractability of CSP parameterized by domain size, support size, and
incidence treewidth (Samer & Szeider, 2010a).

6. Fixed-parameter tractability of #SAT parameterized by incidence treewidth (Fischer,
Makowsky, & Ravve, 2008; Samer & Szeider, 2010a).

Moreover, our algorithm can be easily adapted to compute a maximum of sums (rather than
a sum of products) and deal with valued constraint satisfaction problems (VCSP) (Cohen,
Cooper, Jeavons, & Krokhin, 2006).

Tractability of #CSPD for instances with β-acyclic constraint hypergraphs was shown
through an intricate variable elimination algorithm (Brault-Baron et al., 2015). This
procedure naturally gives rise to a width parameter called the cover-width (Capelli, 2016).
There are currently no efficient algorithms for computing this parameter. Whether bounds
on the incidence treewidth can be translated into bounds on the cover-width (thus relating
our dynamic programming algorithm to variable elimination) is an intriguing open question.

Acknowledgments

This research was supported by Austrian Science Fund (FWF), via grants P27721 and
P31336.

References

Bacchus, F., Dalmao, S., & Pitassi, T. (2009). Solving #SAT and Bayesian inference with
backtracking search. J. Artif. Intell. Res., 34, 391–442.

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.

Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin, F. V., Lokshtanov, D., & Pilipczuk,
M. (2016). A ckn 5-approximation algorithm for treewidth. SIAM J. Comput., 45 (2),
317–378.

Brault-Baron, J., Capelli, F., & Mengel, S. (2015). Understanding model counting for
beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical Aspects
of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, Vol. 30 of
LIPIcs, pp. 143–156. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Capelli, F. (2016). Structural restrictions of CNF-formulas: applications to model counting
and knowledge compilation. Ph.D. thesis, Université Paris Diderot.

Carbonnel, C., & Cooper, M. C. (2016). Tractability in constraint satisfaction problems: a
survey. Constraints, 21 (2), 115–144.

Chen, H., & Grohe, M. (2010). Constraint satisfaction with succinctly specified relations. J.
of Computer and System Sciences, 76 (8), 847–860.

Chen, J., Huang, X., Kanj, I. A., & Xia, G. (2006). Strong computational lower bounds via
parameterized complexity. J. of Computer and System Sciences, 72 (8), 1346–1367.

Cohen, D. A., Cooper, M. C., Jeavons, P., & Krokhin, A. A. (2006). The complexity of soft
constraint satisfaction. Artif. Intell., 170 (11), 983–1016.

550

Sum-of-Products with Default Values: Algorithms and Complexity Results

Cohen, D. A., Green, M. J., & Houghton, C. (2009). Constraint representations and structural
tractability. In Gent, I. P. (Ed.), Principles and Practice of Constraint Programming
- CP 2009, Vol. 5732 of Lecture Notes in Computer Science, pp. 289–303. Springer
Verlag.

Cygan, M., Fomin, F. V., Kowalik, L. u., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized algorithms. Springer, Cham.

Dechter, R. (1999). Bucket elimination: a unifying framework for reasoning. Artificial
Intelligence, 113 (1-2), 41–85.

Diestel, R. (2012). Graph Theory, 4th Edition, Vol. 173 of Graduate texts in mathematics.
Springer.

Downey, R. G., & Fellows, M. R. (1999). Parameterized Complexity. Monographs in
Computer Science. Springer Verlag, New York.

Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Texts
in Computer Science. Springer Verlag.

Fischer, E., Makowsky, J. A., & Ravve, E. R. (2008). Counting truth assignments of formulas
of bounded tree-width or clique-width.. Discr. Appl. Math., 156 (4), 511–529.

Flum, J., & Grohe, M. (2006). Parameterized Complexity Theory, Vol. XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin.

Gottlob, G., Grohe, M., Musliu, N., Samer, M., & Scarcello, F. (2005). Hypertree decompo-
sitions: Structure, algorithms, and applications. In Kratsch, D. (Ed.), Proceedings of
the 31st International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’05), Vol. 3787 of Lecture Notes in Computer Science, pp. 1–15. Springer Verlag.

Gottlob, G., Scarcello, F., & Sideri, M. (2002). Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138 (1-2), 55–86.

Gottlob, G., & Szeider, S. (2008). Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction, and database problems. The Computer Journal, 51 (3), 303–325.
Survey paper.

Kask, K., Dechter, R., Larrosa, J., & Dechter, A. (2005). Unifying tree decompositions for
reasoning in graphical models. Artificial Intelligence, 166 (1-2), 165–193.

Khamis, M. A., Ngo, H. Q., & Rudra, A. (2016). FAQ: questions asked frequently. In Milo, T.,
& Tan, W. (Eds.), Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems - PODS 2016, pp. 13–28. Assoc. Comput. Mach.,
New York.

Kloks, T. (1994). Treewidth: Computations and Approximations. Springer Verlag, Berlin.

Kolaitis, P. G., & Vardi, M. Y. (2000). Conjunctive-query containment and constraint
satisfaction. J. of Computer and System Sciences, 61 (2), 302–332.

Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford.

Paulusma, D., Slivovsky, F., & Szeider, S. (2016). Model counting for CNF formulas of
bounded modular treewidth. Algorithmica, 76 (1), 168–194.

551

Ganian, Kim, Slivovsky, & Szeider

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference.
The Morgan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann,
San Mateo, CA.

Pietrzak, K. (2003). On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. J. of Computer and System
Sciences, 67 (4), 757–771.

Sæther, S. H., Telle, J. A., & Vatshelle, M. (2015). Solving #SAT and MAXSAT by dynamic
programming. J. Artif. Intell. Res., 54, 59–82.

Samer, M., & Szeider, S. (2010a). Algorithms for propositional model counting. J. Discrete
Algorithms, 8 (1), 50–64.

Samer, M., & Szeider, S. (2010b). Constraint satisfaction with bounded treewidth revisited.
J. of Computer and System Sciences, 76 (2), 103–114.

Slivovsky, F., & Szeider, S. (2013). Model counting for formulas of bounded clique-width.
In Cai, L., Cheng, S., & Lam, T. W. (Eds.), Algorithms and Computation - 24th
International Symposium, ISAAC 2013, Vol. 8283 of Lecture Notes in Computer
Science, pp. 677–687. Springer Verlag.

552

	Introduction
	Preliminaries
	Weighted Constraint Satisfaction with Default Values
	Treewidth

	Solving #CSPD Using Incidence Treewidth
	Projections
	The Algorithm

	Fixed-Parameter Tractability of #CSPD
	Concluding Remarks
	References

