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Abstract

In many real-world scenarios, the time it takes for a mobile agent, e.g., a robot, to
move from one location to another may vary due to exogenous events and be difficult to
predict accurately. Planning in such scenarios is challenging, especially in the context of
Multi-Agent Pathfinding (MAPF), where the goal is to find paths to multiple agents and
temporal coordination is necessary to avoid collisions. In this work, we consider a MAPF
problem with this form of time uncertainty, where we are only given upper and lower bounds
on the time it takes each agent to move. The objective is to find a safe solution, which
is a solution that can be executed by all agents and is guaranteed to avoid collisions. We
propose two complete and optimal algorithms for finding safe solutions based on well-known
MAPF algorithms, namely, A∗ with Operator Decomposition (A∗ + OD) and Conflict-
Based Search (CBS). Experimentally, we observe that on several standard MAPF grids
the CBS-based algorithm performs better. We also explore the option of online replanning
in this context, i.e., modifying the agents’ plans during execution, to reduce the overall
execution cost. We consider two online settings: (a) when an agent can sense the current
time and its current location, and (b) when the agents can also communicate seamlessly
during execution. For each setting, we propose a replanning algorithm and analyze its
behavior theoretically and empirically. Our experimental evaluation confirms that indeed
online replanning in both settings can significantly reduce solution cost.

1. Introduction

Multi-Agent Pathfinding (MAPF) is the problem of finding how to move a team of agents
over edges in a graph from an initial configuration to a goal configuration. The key con-
straint is that agents must not occupy the same vertex or traverse the same edge at the same
time during plan execution. A solution to a MAPF problem is a set of single-agent plans for
all the agents that do not violate this constraint. MAPF problems arise in real-world appli-
cations, such as aircraft towing vehicles (Morris et al., 2016), video game characters (Silver,
2005), office robots (Veloso et al., 2015), and warehouse robots (Wurman et al., 2007).
Modern MAPF solvers can optimally solve problems with over a hundred agents (Sharon
et al., 2015; Boyarski et al., 2015b; Felner et al., 2018).
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However, most of the earlier work assumed the time it takes an agent to traverse an
edge is fixed and known a priori. In reality, exogenous events may cause the edge traversal
time to be non-deterministic. One approach to address this is to gather statistics over these
exogenous events and reason about them (Wagner & Choset, 2017; Atzmon et al., 2020a;
Ma et al., 2017). However, gathering sufficiently accurate statistics of exogenous events is
often difficult. For example, in many automated warehouses, humans are responsible for
packing items into boxes and the robots move the packages. The time it takes a human
to pack a box may depend on many factors, such as the number of items in the box, their
weight, and the human’s fatigue. Creating an accurate statistical model for the packing
time is a challenging problem on its own. In this work, we consider weaker knowledge about
such exogenous events, in the form of upper and lower bounds.1 That is, we consider the
case where each edge is associated with a time range that bounds the duration it takes an
agent to traverse it. This form of uncertainty poses a challenge to current MAPF solvers,
especially if one wants to find a safe solution. A solution is safe if it is guaranteed that
when executing it there will not be any collision.2 We call the problem of finding a safe
solution in this setting, the Multi-Agent Pathfinding with Time Uncertainty (MAPF-TU)
problem.

In the first part of this work, we adapt two popular MAPF solvers, namely A∗ + OD
(Standley, 2010) and Conflict-Based Search (CBS) (Sharon et al., 2015), to solve the MAPF-
TU problem. We call the adapted algorithms A∗ + ODTU and CBSTU. Both A∗ + ODTU

and CBSTU are sound and complete, in the sense that any solution they return is safe, and
if a safe solution exists they will return it. In addition, they can guarantee various forms
of optimality. We implemented A∗ + ODTU and CBSTU, and compared them on a set of
standard MAPF benchmarks adapted to include time uncertainty. Our results show that
CBSTU performs significantly better in almost all cases.

A∗ + ODTU and CBSTU are both offline algorithms, that is, they output a solution
before the agents start to move. In the second part of this paper, we explore the option of
online replanning to improve the solution returned by an offline MAPF-TU solver, i.e., the
option to modify the given plan while executing it.

Specifically, we consider two possible capabilities the agents may have that can be used
for online replanning: sensing and communication. Sensing in our context is the ability
of an agent to observe, during execution, its current time and location. Communication
in our context is the ability to send the sensed information to all the other agents. We
demonstrate that online replanning can reduce the overall execution cost even if the agents
only sense and cannot communicate. We also demonstrate that the ability to communicate
can lead to further reduction of execution costs. Then, we propose two fast online replanning
techniques that preserve safety and can reduce the overall execution cost. We implemented
both techniques and evaluated the benefit of using them on several benchmark domains.
The results show that these online replanning techniques, especially when the agents can
communicate, can reduce execution cost by a factor of 1.5 less than the cost of following the
original offline solution. Moreover, the time overhead of using them is negligible compared
to the time required to compute the original offline solution.

1. We show a way to obtain such bounds from observations in Section 9.
2. Such a solution is known as a strong solution in the planning literature (Cimatti et al., 2018).
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The paper is structured as follows. In Section 2, we provide details on relevant back-
ground and related work. In Section 3, we define formally the MAPF-TU problem. Sec-
tions 4 and 5 introduce the A∗ + ODTU and CBSTU algorithms for solving MAPF-TU,
respectively, and in Section 6 we evaluate them empirically. Then, in Section 7, we analyze
the benefit of online replanning in MAPF-TU and propose two fast algorithms for this pur-
pose. In Section 8, we evaluate these online replanning algorithms experimentally. Finally,
in Section 9, we discuss and outline several key extensions, such as creating an individual
execution policy for each agent and bounding edge traversal time from experience.

2. Background and Related Work

This work is related to two areas in Artificial Intelligence: multi-agent pathfinding (MAPF)
and planning under temporal uncertainty. We briefly discuss the relevant literature below.

2.1 Multi-Agent Pathfinding (MAPF)

An instance of a classical MAPF problem (Stern et al., 2019) is defined by a tuple 〈G, s, t〉
where G = (V, E) is a graph, s : [1, . . . , k] → V maps an agent to its initial location, and
t : [1, . . . , k]→ V maps an agent to its goal location. Time is assumed to be discretized. At
the beginning of each time step, each agent is located in one of the graph vertices. Then,
the agent can perform a single action: either wait in its current location, or move to one
of the vertices that is adjacent to its current location. An action is a pair (u, v) where for
a wait action u = v and for a move action (u, v) is an edge in the graph. A single-agent
plan for an agent ai is a sequence of actions that move ai to its goal, i.e., a sequence of
actions π = ((v0, v1), (v1, v2), . . . , (vn−1, vn)) where v0 = s(i) and vn = t(i). A solution to
a MAPF instance is a vector of k single-agent plans. A solution is said to have a conflict
〈ai, aj , x, t〉 iff the two agents ai and aj are planned to occupy the same vertex or edge x
at the same time step t. We assume that edges are undirected, so a conflict also arises if
agents swap locations over the same edge. We say that a solution to a MAPF instance is
valid if it does not have any of these conflicts. That is, we consider only vertex, edge, and
swapping conflicts, and do not consider other types of conflicts (Stern et al., 2019).

Traditionally, the cost of a single-agent plan π in MAPF is the number of its constituent
actions. In this work, we define the cost of a solution to be the sum of costs of its constituent
single-agent plans. This solution cost function is known as the sum-of-costs (SOC). A valid
solution is optimal when there is no other valid solution with a lower cost. A range of algo-
rithms have been proposed in the past decade for finding optimal solutions to such MAPF
instances (Felner et al., 2017), such as A∗ + OD (Standley, 2010), ICTS (Sharon et al.,
2013), M* (Wagner & Choset, 2015), CBS (Sharon et al., 2015), BCP (Lam et al., 2019b),
as well as several algorithms that find optimal solutions by compiling the problem to Boolean
satisfiability (Surynek, 2012; Surynek et al., 2016), Constraint programming (Barták et al.,
2017), or Answer set programming (Erdem et al., 2013).

The problem addressed by these optimal solvers has been termed classical MAPF (Stern
et al., 2019). In classical MAPF, there is no uncertainty in the edge traversal time, and the
edge traversal and the wait action have unit duration. These latter assumptions have been
relaxed in recent work. Cohen et al. (2019) and Walker et al. (2018, 2020) suggested optimal
and suboptimal algorithms for solving MAPF problems with non-unit edge traversal time
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and non-unit but fixed wait action duration. Andreychuk et al. (2019) proposed an optimal
algorithm to further allow wait actions with arbitrary durations. However, none of the
above algorithms considers time uncertainty over edge durations.

Various forms of MAPF with time uncertainty have also been studied in the past.
Several algorithms were proposed for the MAPF Problem with Delay Probabilities (MAPF-
DP) problem, which is a variant of MAPF in which each agent is delayed with some given
probability, which is known to the problem solver.

The UM* (Wagner & Choset, 2017) algorithm returns a solution for a MAPF-DP prob-
lem in which the probability for every potential collisions to occur is below a given threshold.
The pR-CBS (Atzmon et al., 2020a) algorithms returns a solution for a MAPF-DP prob-
lem in which the probability for successful execution (i.e., having no collisions) is above a
given threshold. Neither algorithms guarantee that the solutions they return are safe, in
the sense that a collision might still occur while executing these solutions. Approximate
Minimization in Expectation (AME) is another algorithm for MAPF-DP, which aims to
minimize the expected cost of a solution. However, it only guarantees no collisions occur in
the next time step. Thus, it must have online communication to avoid conflicts, and hence
is not safe.

kR-CBS (Atzmon et al., 2020b) is an algorithm that creates solutions that can be
executed without collisions, but only if each agent is not delayed more than k times. MAPF-
POST (Hönig et al., 2016) is an algorithm that gets a valid MAPF solution and reschedules
the times in which agents visit their locations to avoid collisions. Thus, MAPF-POST is
safe and can be applied to the MAPF-TU setting (which is defined later). However, it does
not provide any solution quality guarantees and a lower cost solution or execution may
exist, while the algorithms we propose in this work also provide optimality guarantees.

2.2 Planning under Temporal Uncertainty

The type of time uncertainty addressed in our work has been considered in the context of
the Simple Temporal Problem under Uncertainty (STPU) (Vidal & Fargier, 1999). Simple
Temporal Problem (STP) (Dechter et al., 1991) is the problem of finding a schedule for a
set of activities, where each activity has a set of temporal constraints over when it can be
scheduled. In STP with Uncertainty (STPU), the duration of an activity may lie within
some bounds but cannot be decided upfront, just like in MAPF-TU. However, MAPF-TU
is a planning problem while STPU is a scheduling problem: a solution to MAPF-TU is a
set of single-agent plans, one per agent, while a solution for STPU is a schedule for a given
set of activities.

The MAPF-TU problem is a non-deterministic planning problem, where the non-determinism
manifests in the edges traversal durations. Cimatti et al. (2003) identified three types of
solutions to non-deterministic planning problems: weak solutions, strong solutions, and
strong cyclic solutions. A weak solution is a plan that may achieve the goal, a strong solu-
tion is a plan that must achieve the goal under any outcome of the non-determinism, and a
strong cyclic solution is a plan that must achieve the goal but may do so via trial-and-error,
and that trial-and-error may be infinitely long. In this work we aim to find a safe solution,
which is a solution that leads all the agents to their respective goals without collisions as

926



Safe Multi-Agent Pathfinding with Time Uncertainty

long as the edge traversal durations are in their specified time ranges. Thus, a safe solution
is a strong solution.

Temporal planning (Coles et al., 2008; Coles & Coles, 2014; Cashmore et al., 2019)
is a popular and well-researched sub-area of AI planning in which actions have durations.
Cimatti et al. (2018) recently defined the Strong Temporal Planning with Uncertain ac-
tion Durations (STPUD) problem, which is a temporal planning problem in which action
durations are uncontrollable. In particular, they propose a planning approach that can
handle cases where actions have uncertain durations that are within known bounds. The
MAPF-TU problem can be seen as a special case of the STPUD problem, and it may be
possible to translate the MAPF-TU problem to the single-agent STPUD problem and use
their planner to provide strong solutions to MAPF-TU. However, the algorithms we pro-
pose also guarantee optimality, while their strong temporal planning algorithm does not.
Moreover that it is evident from the planning literature that factored-approaches are often
very efficient for multi-agent planning problems (Brafman & Domshlak, 2008; Pajarinen &
Peltonen, 2011; Shekhar et al., 2019). This has especially been observed in MAPF, where
all state of the art algorithms directly exploit the decoupled nature of the problem (Sharon
et al., 2015, 2013; Lam et al., 2019a; Gange et al., 2019).

3. Safe MAPF with Time Uncertainty

An instance of the Multi-Agent Pathfinding with Time Uncertainty problem (MAPF-TU)
for k agents is defined by a tuple 〈G, s, t, w−, w+〉, where G = (V, E), s, and t, are the
same as in classical MAPF; and w− : E → N and w+ : E → N are functions that return
the minimal and maximal duration it takes an agent to traverse a given edge. That is, the
time it takes an agent to traverse an edge e is a number in the range [w−(e), w+(e)]. We
refer to w−(e) and w+(e) as the lower and upper bounds of the edge duration, respectively.
Note that if an agent traversed the same edge twice, the durations of these traversals may
be different. The only requirement is that these durations are in the specified time range
[w−(e), w+(e)].

Time is assumed to be discretized, and a solution is a vector of single-agent plans as
defined for classical MAPF. A solution is said to have a potential conflict if there are two
agents that may occupy the same vertex or edge at the same time. In this work, we aim
to find a solution for a given MAPF-TU instance has no potential conflicts. We call such a
solution a safe solution.

3.1 Computing the Potential Presence

To identify a safe solution, we need to formally define what is a potential conflict. To this
end, we introduce the notion of potential presence. The potential presence induced by a
single-agent plan π at a vertex v, denoted τ(π, v), is defined as the set of time intervals in
which an agent may be at v when following π. The potential presence is similarly defined
for an edge.

Example 1. (Figure 1) Consider a single-agent plan π in which the agent moves from its
initial vertex s to its goal vertex g through vertices v1 and v2 without waiting. The time
interval depicted above each edge is the range of possible edge durations. The potential
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s v1 v2 g

τ(π, s) = [0, 0] τ(π, v1) = [1, 3] τ(π, v2) = [2, 4] τ(π, g) = [3, 6]

[1, 3] [1, 1] [1, 2]

Figure 1: An example of the potential presence of the agent when moving from s to g.

presences induced by π at vertices s, v1, v2, and g are {[0, 0]}, {[1, 3]}, {[2, 4]}, and {[3, 6]},
respectively.

Computing the potential presence can be done as follows. Let π =
(
(v0, v1) . . . (vn−1, vn)

)
be a single-agent plan for some agent. For every vi 6= v0, the potential presence induced by
π is given by

τ(π, v) =
⋃

0≤i≤n
vi=v

∑
0≤j<i

w−(vj , vj+1),
∑

0≤j<i
w+(vj , vj+1)

 (1)

The potential presence induced by π on edge (u, v) is given by

τ(π, u, v)=
⋃

0≤i<n
vi=u
vi+1=v

∑
0≤j<i

w−(vj , vj+1),
∑

0≤j≤i
w+(vj , vj+1)

 (2)

In both of these formulas, when i = 0 there are no values of j that satisfy 0 ≤ j < i. In this
case, we consider the empty sum to be zero.

3.2 Potential Conflicts

We are now equipped to define the different types of potential conflict that can occur in
the MAPF-TU problem. Two distinct single-agent plans have a potential vertex conflict at
some vertex v ∈ V if their potential presences in v intersect. They have a potential edge
conflict at a pair of vertices (u, v) if their potential presences intersect when traversing the
edge in the same direction. They have a potential swapping conflict at a pair of vertices
(u, v) if their potential presences intersect when traversing the edge in opposite directions.
A solution (π1, . . . , πk) is safe if it does not contain any potential conflict of these three
types. That is, a solution is safe iff it satisfies the following

⋃
1≤i<j≤k

[ ⋃
v∈V

τ(πi, v) ∩ τ(πj , v)

∪
⋃

u,v∈V
τ(πi, u, v) ∩ τ(πj , u, v)

∪
⋃

u,v∈V
τ(πi, u, v) ∩ τ(πj , v, u)

]
= ∅

(3)
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3.3 Solution Cost

In classical MAPF, it is common to define the cost of a solution as the sum-of-costs (SOC)
of its constituent single-agent plans. However, in MAPF-TU the cost of a single-agent plan
is ill-defined: the duration required to execute a single-agent plan is not known a-priori due
to the uncertainty over edge duration. Therefore, we consider two alternative cost functions:
optimistic and pessimistic. The optimistic cost of a single-agent plan is the sum of lower
bound (w−) durations of all its constituent actions. This represents the earliest time in
which the agent can reach its goal. The pessimistic cost of a single-agent plan is the sum of
upper bound (w+) durations of all its constituent actions. This represents the latest time
in which the agent will reach its goal.

Correspondingly, we consider two cost functions for a MAPF-TU solution: optimistic
SOC and pessimistic SOC, denoted SOCopt and SOCpes, respectively. Other solution cost
functions can also be envisioned, e.g., reducing the average cost of a solution or minimizing
the size of the solution cost interval.

4. A∗ + OD under Time Uncertainty (A∗ + ODTU)

The first algorithm we propose for finding a safe solution to a MAPF-TU instance, called
A∗ + ODTU, builds on the A∗ + OD algorithm (Standley, 2010) for classical MAPF. For
completeness, we first provide a brief background on A∗ + OD.

4.1 A∗ + OD

As its name suggests, A∗ + OD consists of running the A∗ algorithm and using a technique
called the Operator Decomposition (OD) technique (Standley, 2010). Specifically, A∗ + OD
runs the well-known A∗ algorithm to search the k-agent search space. A state in this search
space is a vector of k vertices representing the current location of each agent. An action
in this search space is a joint action of all agents, i.e., a vector of k actions, one for each
agent, which are performed concurrently in a single time step. A joint action is not legal
if performing it would create a conflict between the agents. The number of joint actions
applicable in a given state is exponential in the number of agents.

OD is a technique for keeping the branching factor of this search-space manageable by
constructing joint actions in an incremental manner. Concretely, the agents are arranged
in some fixed order. Then, when expanding a state, OD selects a single agent according to
this order and generates child states by only considering the actions of the selected agent
that are legal. An action of the ith agent is legal if it does not conflict with the i − 1
previously selected actions. Since the agents are selected in a fixed order, a sequence of k
actions constitutes a joint action for all agents, and states generated by such a joint action
are standard states of the k-agent search space. All other states are called intermediate
states, which represent the locations of some agents at some time step and the locations of
the other agents at the next time step. Given an admissible heuristic, A∗ + OD is a sound,
complete, and optimal algorithm for classical MAPF.
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4.2 A∗ + ODTU

A∗ + ODTU runs A∗ in a search space in which a state is a vector of k tuples(
〈a1, v1, T1〉, · · · , 〈ak, vk, Tk〉

)
where every tuple 〈ai, vi, Ti〉 represents that the potential presence of agent ai at vertex vi
is Ti. Like OD, when a state is expanded A∗ + ODTU chooses a single agent and generates
a child state for every legal action that agent can perform. However, in A∗ + ODTU the
agents are not chosen in a round-robin manner and the definition of a legal action is more
complex, as we explain below.

4.2.1 Choosing the Next Agent in A∗ + ODTU

s1 s2/g2 g1

w

[10, 10] [1, 1]

[20, 20]

Figure 2: This is an example where a trivial round-robin order of A∗ + ODTU returns an
illegal solution for a weighted graph, even without uncertainty.

Choosing agents in a round-robin manner as done by A∗ + OD may lead to an unsafe
solution for MAPF-TU. For example, consider the MAPF-TU instance depicted in Figure 2.
Agent a2 is at its goal location (g2) which is also its initial location (s2) and agent a1’s goal is
g1 and its initial location is s1. Suppose a round-robin order is followed, and a1 is followed
by a2. The search begins, a1 moves to s2 and occupies it at [10, 10]. Next, a2 waits at
its goal, since it is already at its goal location. Consequently, the resulting state would
be
(
〈a1, s2, {[10, 10]}〉, 〈a2, s2, {[1, 1]}〉

)
. Then, a1 again moves to g1 and a2 waits at g2,

resulting in a goal state, sg =
(
〈a1, s2, {[11, 11]}〉, 〈a2, s2, {[2, 2]}〉

)
. All moves taken up to

this point are valid but the resulting solution is not safe, since a2 cannot continue waiting
there indefinitely.

To avoid this problem, in every iteration of A∗ + ODTU the agent with the potential
presence having the minimal optimistic bound is selected. 3 For example, in a A∗ + ODTU

state
(
〈a1, v1, {[1, 6]}〉, 〈a2, v2, {[2, 4]}〉

)
we will choose to expand this state with agent a1. If

this approach is applied in the example above (Figure 2), a1 still moves first and a2 performs
the second action, but then a2 continues waiting at g2 until [9, 9]. Then, waiting in g2 will
raise a conflict, which will eventually lead the search to find a safe solution. Note that the
distinction between standard states and intermediate states is not relevant for A∗ + ODTU

as the same agent may move multiple times and the number of actions has no inherent
value. A similar form of OD-style expansion was suggested by Walker (2018) in the E-ICTS
algorithm.

3. This is similar to tracking the agent controller that complete its assigned task first in a multi-robot
navigation setup, as done by Wagner et al. (2016).
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4.3 Identifying Legal Actions

The second significant difference between A∗ + OD and A∗ + ODTU is what constitutes a
legal action for an agent. In A∗ + OD, it is sufficient to check that the chosen action of
agent ai does not conflict with one of the i−1 agents that were already chosen for an action
in this time step. In A∗ + ODTU, we must check if an action creates a conflict with any of
the actions performed by the other agents in any of the predecessors of the current state.
This is done by traversing up the parent and parent-of-parent of the current node until
either we find a conflict or can guarantee that such a conflict does not exist. This can be
guaranteed when reaching a predecessor state in which the maximum time of the potential
presences of all other agents is lower than the minimum time of the potential presence of
the current agent.

4.4 Optimality

A∗ + ODTU runs A∗ over the search space defined above, computing for every generated
state N its g and h values, and expanding in every iteration a state with the minimal g+h
value in the open list. The definition of g and h depends on the objective function we want
to optimize, SOCopt or SOCpes. If we aim to optimize SOCopt, then the g value is the sum
over the lower time-bound in each potential presence. If we aim to optimize SOCpes, then
the g value is the sum over the upper time bound in each potential presence.

Let C∗ be the optimal solution cost for the chosen objective. A heuristic for a state N
is admissible if it is a lower bound on C∗− g(N). The admissible heuristic we used is based
on the Sum of Individual Costs (SIC) heuristic, which is commonly used in classical MAPF.
SIC is the sum of costs of the agents’ lowest-cost single-agent plans when ignoring all other
agents. For MAPF-TU, the costs in the SIC computation depend on the objective function.
When computing SIC for the SOCopt objective, then it is the sum of the optimistic cost of
the single-agent plans that have the lowest optimistic cost. When computing SIC for the
SOCpes objective, then it is the sum of the pessimistic cost of the single-agent plans that
have the lowest pessimistic costs.

Theorem 1. A∗ + ODTU is guaranteed to return an optimal safe solution if such a solution
exists, such that it is sound, complete, and optimal.

Proof outline. Soundness follows directly from the fact that a state is generated only if it
does not create any potential conflict with the previously chosen actions according to their
potential presences. A∗ + ODTU is a best-first search, maintaining all non-conflicting nodes
it generates in the open list. Thus completeness follows. A∗ + ODTU halts when a goal
state Ng is expanded. Since we expand in every iteration the state with the minimal g + h
and the h of every goal state is zero, then g(Ng) ≤ g(N) + h(N) for every state N in the
open list. Since h is admissible, we have that g(Ng) is optimal, as required.

5. CBS under Time Uncertainty (CBSTU)

The second algorithm we propose for MAPF-TU is called CBSTU. CBSTU is based on the
Conflict-Based Search (CBS) algorithm (Sharon et al., 2015). For completeness, we provide
a brief description of CBS.
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5.1 Conflict Based Search (CBS)

CBS (Sharon et al., 2015) is a complete and optimal MAPF solver, designed for classical
MAPF. CBS finds a solution by iteratively planning for each agent separately, detecting
conflicts between these single-agent plans, and resolving them by replanning for the individ-
ual agents subject to specific constraints. A CBS conflict is defined by a tuple 〈ai, aj , x, t〉,
representing that there is a conflict between agents ai and aj at vertex/edge x at time t. A
CBS constraint is defined by a tuple 〈ai, x, t〉, representing that agent ai cannot occupy x
at time step t, where x is either a vertex or an edge. To choose which constraints to add
to which agent, CBS maintains a Constraint Tree (CT). The CT is a binary tree, in which
each node N represents a solution (N.solution) and a set of constraints (N.constraints).
If N.solution is a valid solution then N is referred to as a goal CT node. Therefore, if N
is not a goal CT node then N.solution has a conflict. Expanding a non-goal CT node N
means choosing a conflict 〈ai, aj , x, t〉, and generating two child CT nodes Ni and Nj . The
constraints of Ni and Nj are all the constraints of N , as well as the constraints 〈ai, x, t〉 and
〈aj , x, t〉, respectively. Then, a search algorithm such as A∗ is used to generate a single-
agent plan for agent ai that satisfies the constraints in Ni, and to generate a single-agent
plan for agent aj that satisfies the constraints in Nj . The search algorithm used for finding
these single-agent plans is referred to as the CBS low-level search. These single-agent plans
are used in their respective CT nodes instead of the single-agent plans for the constrained
agent in N .

CBS searches the CT in a best-first manner according to the cost of the solution in each
CT node. The search halts when a goal CT node is chosen for expansion. This best-first
search is referred to as the CBS high-level search. Many improvements have been suggested
to the basic CBS algorithm over the years (Felner et al., 2018; Gange et al., 2019; Lam
et al., 2019a; Li et al., 2019).

5.2 From CBS to CBSTU

CBSTU is an adaptation of CBS for solving MAPF-TU instances. It requires changing how
conflicts are defined, how they are resolved, and how the low-level search operates. We
describe these changes in detail next.

5.2.1 Conflicts over Potential Presences

There is a CBSTU conflict in a solution Π iff there is a potential conflict in Π. A CBSTU

constraint is defined by a tuple 〈ai, aj , x, T 〉, where ai and aj are the conflicting agents, x is
the vertex or edge in which the potential conflict exists, and T is the intersection between
the potential presences of ai and aj on x. That is, if πi and πj are the single-agent plans
for aj and aj then T = τ(πi, x) ∩ τ(πj , x). Recall that in MAPF-TU there may be edge,
vertex, and swapping potential conflicts. Thus, there are respective CBSTU conflicts that
may occur.

5.2.2 Resolving a Conflict

One may be tempted to resolve a CBSTU conflict 〈ai, aj , v, T 〉 by imposing range constraints,
which are constraints that prevent an agent from occupying any time step in time range T .
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Range constraints have been shown to be useful in CBS (Atzmon et al., 2020b; Li et al.,
2019). Unfortunately, using these kind of range constraints in our context would lead to a
suboptimal or even incomplete algorithm, as shown in the following example.

s1

A

g2 s2

B

g1

[1, 1]

[1, 4]

[1, 1]
[1, 1]

[1, 5]

[2, 2]

[1, 1]

Figure 3: A MAPF-TU instance showing that using naive range constraints in CBSTU leads
to suboptimal solutions.

Example 2. Consider the MAPF-TU instance depicted in Figure 3, and assume the objec-

tive is to minimize optimistic SOC. The initial solution
{(

(s1, g2), (g2, g1)
)
,
(
(s2, g2)

)}
has

a vertex conflict 〈a1, a2, g2, [1, 4]〉. However, imposing the constraints that agent a1 or agent
a2 cannot visit g2 at any time step in [1, 4] rules outs all optimal solutions. Specifically, in
all optimal solutions agent a1 has the single-agent plan

(
(s1, A), (A, g2), (g2, g1)

)
and agent

a2 has a single-agent plan in which a2 arrives to g2 at time step 4 (either by waiting at s2

for 3 time steps of by moving through B).

In fact, we can even show that sometimes even restricting an agent for two consecutive
time steps t and t + 1, such that t and t + 1 belong to T , makes the approach suboptimal
or even incomplete. Thus, we resolve a vertex conflict 〈ai, aj , v, T 〉 by choosing a single
time step t ∈ T , and creating two Constraint Tree (CT) nodes Ni and Nj with the added
constraints 〈ai, v, t〉 and 〈aj , v, t〉 respectively. Any time step t in T is a valid choice. The
same strategy is used for resolving edge and swapping conflicts.4 The above approach
preserves optimality and completeness, since we know that in any valid solution at most
one of the conflicting agents can occupy the conflict location at a given instant.

One may consider imposing range constraints over edges to indirectly resolve a vertex
conflict. This can by done by imposing constraints on all the edges leading to or originating
from that vertex. However, the resulting range constraints are not more powerful than a
single time-step constraint over a single vertex. To see this, consider constraining a vertex
v at some time step t. This vertex constraint restricts taking any action that reaches v
with a potential presence that includes the time step t. Thus, one may view constraining a
vertex at a time step as an implicit range constraint over edges that reach that vertex.

5.2.3 Low-Level Search

The low-level search of CBSTU is invoked for a given CT node to find the lowest cost
single-agent plan for an agent that satisfies a given set of constraints. We implemented the
CBSTU low-level search using the A∗ algorithm over the following search space. A state in

4. See Appendix B for an example similar to Figure 3, demonstrating why range constraints cannot be
trivially used to resolve a swapping conflicts.
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this search space is a pair of a vertex and potential presence. The set of actions in a state
(v, T ) is the set of all single-agent action applicable from v that do not violate the given
set of constraints. To optimize the pessimistic SOC, the g value of a state is its pessimistic
cost. As an admissible heuristic, we used the shortest single-agent plan to the goal when
considering only w+ for all edges. To optimize the optimistic SOC, one can set g to be the
optimistic cost and the same admissible heuristic, except that it considers w− instead of
w+. In our implementation of the CBSTU low-level search, we break ties between in favor
of states that have fewer conflicts with the single-agent plans of the other agents. This
tie-breaking technique, often referred to as using a conflict avoidance table, is known to be
effective in CBS-based algorithms (Sharon et al., 2015) and is indeed effective in CBSTU as
well.

5.2.4 The CBSTU Algorithm

Algorithm 1 lists the pseudo code for CBSTU, focusing on the high-level search. The root
of the search is a CT node without any constraints on the agents. Initially, OPEN contains
only this root node (line 4). Then, in every iteration we extract the best (minimal cost) node
N from OPEN (line 6). If N.solution does not contain a conflict, we return this solution
(lines 8-9). Otherwise, we choose one of the conflicts in that solution (line 10). In our basic
implementation of CBSTU, we chose the conflict that manifested earliest in the solution.
For each agent ai in this conflict, we create a new CT node Ni and add an appropriate
constraint (lines 11-16). Then, we call the low-level solver to find a new single-agent plan
that satisfies the old and new constraints (line 18). Finally, we compute the solution cost
for Ni and insert the node to OPEN (lines 19-20).

Theorem 2. CBSTU is sound, complete, and optimal.

Proof outline. If CBSTU returns a solution, it is associated with a goal CT node, i.e., a CT
node without conflicts. Since the conflicts are computed w.r.t. the potential presence, then
a solution without a conflict must be a safe solution. Thus, CBSTU is sound. Whenever
CBSTU expands a CT node, it means that the CT node is not a solution and it has a conflict.
Since the conflict cannot occur in any solution, the solution must exist in one of that node’s
children. Since the search is done in a best-first manner according to our objective, and it
can only increase when adding constraints, then CBSTU is complete and optimal.

5.3 CBS Enhancements in CBSTU

Many enhancements have been proposed for CBS in recent years, including heuristics for
searching the constraint tree (Felner et al., 2018), symmetry detection mechanisms (Li et al.,
2019), and conflict prioritization (Boyarski et al., 2015b). Migrating all these enhancements
to CBSTU is beyond the scope of this work. Nevertheless, we chose to incorporate in CBSTU

two CBS enhancements, Bypassing Conflicts (Boyarski et al., 2015a) and Prioritizing Con-
flicts (Boyarski et al., 2015b). Both enhancements are known to have a dramatic effect on
CBS performance in classical MAPF.

Bypassing Conflicts (BP): BP is a technique for avoiding a conflict by finding a differ-
ent single-agent plan for one of the conflicting agents that has the same cost as the original
plan but bypasses the conflict. The main benefit in BP is that it reduces the number of
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Algorithm 1: The CBSTU Algorithm.

Input: A MAPF-TU instance with k agents; An optimization criteria, f
Output: A set of collision-free single-agent plans

1 root.constraints = ∅
2 root.solution ← individual single-agent plans returned by low-level() approach
3 root.cost← SOC(root.solution)
4 Add root to OPEN
5 while OPEN not empty do
6 N ← the best node from OPEN // based on some objective function
7 Validate single-agent plans in N until the first conflict occurs
8 if no conflict found then
9 return N .solution

10 conflict ← FindConflict(N .solution)
11 for agent ai belongs to the conflict do
12 Ni ← Create a new CT node
13 if vertex-conflict(conflict) then
14 Ni.constraints ← N.constraints ∪ (ai, v, t)
15 else
16 Ni.constraints ← N.constraints ∪ (ai, e, t)
17 Ni.solution ← N.solution
18 Update Ni.solution with a single-agent plan returned by low-level(Ni) for ai

19 Ni.cost = SOC(Ni.solution)
20 Add node Ni to OPEN

21 return No solution found

nodes in the constraint tree. Let N be a non-goal CT node, i.e., N contains a conflict
C = 〈ai, aj , v, T 〉 (or, similarly, a common edge e). Following (Boyarski et al., 2015a), three
conditions must be satisfied for single-agent plan πi

′ to be a valid bypass for the single-agent
plan πi: (1) πi

′ does not cause the conflict C; (2) both πi and πi
′ have the same length; and

(3) πi
′ is also consistent with N.constraints. Let solution′ be a vector of all single-agent

plans in N.solution, except for πi, which is replaced with πi
′. Bypassing C means setting

N.solution ← solution′. We perform a bypassing only when the number of conflicts in
N.solution is higher than the number of conflicts in solution′. The main difference between
BP in CBS and BP in CBSTU is how we count the number of conflicts in a given solution.
In CBSTU, for a conflict C = 〈ai, aj , v, T 〉, we count one conflict for each time step t ∈ T
such that 〈ai, aj , v, t〉 is a classical MAPF conflict.

Prioritizing Conflicts (PC): PC is a technique for choosing which conflict to resolve
in a given CT node. Following (Boyarski et al., 2015b), we divide conflicts into three types:
(1) a Cardinal conflict, for which a resolution must increase the solution cost in both child
CT nodes; (2) a Semi-cardinal conflict, for which a resolution must increase the solution
cost in one of the two child CT nodes; and (3) a Non-cardinal conflict, which is not cardinal
or semi-cardinal. It has been shown that resolving cardinal conflicts first, then resolving
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(a) Open (b) DAO (c) Warehouse

Figure 4: The Open (left), DAO (middle), and Warehouse (right) grids we used in our
experiments. For the Warehouse grid, the gray cells mark the locations where uncertainty
is introduced.

semi-cardinal conflicts, and, finally, resolving non-cardinal conflicts, reduces the number of
CT nodes that need to be expanded. To implement PC in CBSTU, we perform the following
modification to Algorithm 1. When a CT node N is chosen such that N.cost = c, we find
all conflicts in N.solution, unlike the basic approach where we choose the first conflict
encountered. In this process, if a cardinal conflict is encountered, it is immediately chosen
for the split action. A possible advantage of this approach is that, since each child N ′ of
node N would have as its cost N ′.cost > c, if there exists a node N ′′ in OPEN such that
N ′′.cost = c, it can further be developed without expanding N at this point in time. This
is safe to do since the cardinal conflict will reappear in all of the nodes in the subtree below
N until it is chosen and resolved. However, if the algorithm decides to apply split to N ,
then it generates all the children for every cardinal conflict in N .

In a preliminary set of experiments, we evaluated the impact of these two CBS improve-
ments on the performance of CBSTU. The results showed that CBSTU with PC performs
much better than basic CBSTU. CBSTU with BP also performed better than the basic
CBSTU, but adding it on top of PC did not yield significant gains. Therefore, unless stated
otherwise hereinafter, we assume that CBSTU is implemented only with PC.

6. Empirical Evaluation

In this section, we evaluate empirically the performance of A∗ + ODTU and CBSTU by
performing a set of experiments.

6.1 Experimental Setup

All our experiments were performed over the following 4-neighborhood grids:

• Open. An 8×8 grid with no obstacles.

• DAO. A grid from the ost003d map of the game Dragon Age Origins (DAO), made
publicly available by Sturtevant (Sturtevant, 2012).

• Warehouse. A grid structured like an automated warehouse.

Figure 4 depicts these grids, where black cells and green cells are obstacles.
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k U = 0 U = 1 U = 2 U = 4

CBSTU A∗ + ODTU CBSTU A∗ + ODTU CBSTU A∗ + ODTU CBSTU A∗ + ODTU

3 100% 100% 100% 100% 100% 100% 100% 100%
7 100% 100% 100% 88% 94% 72% 58% 46%
10 100% 87% 80% 43% 54% 13% 12% 0%
15 100% 13% 18% 3% 0% 0% 0% 0%

Table 1: Success rates results for CBSTU and A∗ + ODTU algorithms on the Open grid.

k U = 0 U = 1 U = 2 U = 4

CBSTU A∗ + ODTU CBSTU A∗ + ODTU CBSTU A∗ + ODTU CBSTU A∗ + ODTU

4 100% 100% 52% 17% 44% 23% 22% 13%
7 92% 93% 14% 0% 2% 0% 0% 0%
10 80% 70% 4% 0% 3% 0% 0% 0%
13 70% 27% 0% 0% 0% 0% 0% 0%

Table 2: Success rates results for CBSTU and A∗ + ODTU algorithms on the DAO grid.

To define w−(e) and w+(e) for every edge e we introduce a parameter U called the
uncertainty rate. For a given value of U , we set w−(e) to be a value chosen uniformly at
random from the range [1, U + 1], and set w+(e) to be a value chosen uniformly at random
from the range [w−(e), U + 1]. Thus, the uncertainty rate parameter U allows control over
the amount of uncertainty in the generated experiment, where U = 0 means no uncertainty.
For each grid, we run experiments with an increasing number of agents, starting from 2 and
going up to 20 agents. For each configuration of grid type, U , and number of agents, we
created 50 experiments. These 50 experiments differ in the start and goal locations of the
agents, which were randomly selected. We set a timeout of five minutes for each solving
each MAPF-TU instance. The success rate of an algorithm is the ratio of problems solved
before reaching this timeout. Unless stated otherwise, the objective function we optimized
for was SOCpes.

The existing MAPF code frameworks that we explored were not easily adaptable to the
MAPF-TU setting. So, we implemented all algorithms from scratch, including the two CBS
enhancements mentioned in Section 5.3. As such, the performance of our algorithms is not
directly comparable to state-of-the-art implementations of algorithms for classical MAPF,
even when U = 0, and scales less gracefully. Nevertheless, the source code for running all our
experiments is publicly available at https://github.com/Tomer-Shahar/Conformant-CBS.

6.2 Experimental Results

Table 1 and Table 2 show the success rates of CBSTU and A∗ + ODTU for different values
of U and numbers of agents on the Open and DAO grids, respectively. Rows correspond to
different numbers of agents, and columns represent different U values and algorithms. Each
inner cell contains success rates.

We observe the following trends. First, increasing U significantly decreases the success
rates of the algorithms. For example, in the DAO grid with 7 agents, CBSTU solves all prob-
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Figure 5: Success rates results for CBSTU on the Open grid.

lem instances with U = 0, but solves only 14% for U = 1. This trend is expected, as adding
U means more conflicts and a longer runtime to resolve new conflicts. Similarly, adding
more agents makes problems harder for both algorithms, reducing the overall success rates.
Another clear trend is that CBSTU outperforms A∗ + ODTU for all the instances except for
the case when 7 agents with U = 0 on a DAO map. Indeed, CBS is also known to outper-
form A∗ in classical MAPF on similar domains, and thus, the superior performance of its
time uncertainty counter-part is expected. As CBSTU generally outperformed A∗ + ODTU,
we show results of only CBSTU hereinafter.

Figure 5 shows the success rate of CBSTU with more agents than in Table 1. As expected
adding more agents or increasing the uncertainty rate decreases the success rate. We note
that CBSTU’s performance when U = 0 is similar to the performance of Improved CBS
(ICBS) on a similar grid (Boyarski et al., 2015b).

6.2.1 Sum of Costs Results

To have a deeper understanding of the impact of U on CBSTU’s behavior, Table 3 shows the
results of experiments with a wider range of uncertainty rate values (U). These experiments
were conducted on the Open grid with 9 agents. The table columns show the SOCopt (the
“Opt.” column), SOCpes (“Pes.”), the difference between them (“Range”), the CBSTU

computational runtime (“Time”) in seconds, and the success rate (“Success”).

As seen in Tables 1 and 2, increasing U in general decreases the success rate. However,
this relation between U and success rate is noisy, indicating that the complexity of MAPF-
TU is affected by other problem features as well. Similarly, the computational time does
not fully correlate with U , but the general trend clearly indicates that higher uncertainty
rate makes the problem, in general, harder to solve for CBSTU.

Next, consider the difference between SOCopt and SOCpes (shown in the “Range” col-
umn), which we will refer to as the uncertainty range of the solution. The results clearly
show that the uncertainty range increases significantly with U . For example, the uncertainty
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U
Sum of Cost (SOC)

Time Success
Opt. Pes. Range

0 47.7 47.7 0.0 0.04 100%
1 59.5 70.3 10.8 2.59 100%
2 73.6 96.9 23.3 5.59 98%
3 86.4 122.2 35.8 20.2 84%
4 104.0 146.7 42.7 19.4 70%
5 107.3 166.0 58.7 34.3 67%
6 122.5 179.4 56.0 30.1 69%
7 137.3 205.2 67.9 23.9 69%
8 145.9 232.8 86.9 32.6 53%
9 171.5 286.5 115.0 42.0 50%

Table 3: SOCopt, SOCpes, runtime, and success rate results for Open grid with 9 agents.

k U = 0 U = 1 U = 2 U = 4

CU PU CU PU CU PU CU PU

4 100% 100% 96% 100% 92% 98% 86% 96%
7 98% 98% 84% 96% 68% 92% 48% 80%
10 94% 94% 48% 76% 34% 68% 10% 56%
13 82% 82% 18% 42% 6% 28% 0% 18%

Table 4: Success rates results for CBSTU on the Warehouse grid in the complete uncertainty
(CU) and the partial uncertainty (PU) experiment types.

range is 23.3, 42.7, and 86.9 for U=2, 4, and, 8, respectively. More generally, the results
show that the uncertainty range increases linearly with U , with an increase of around 11 per
U . Note that CBSTU and A∗ + ODTU are both optimal and thus their solutions will have
exactly the same SOCpes. Their SOCopt, however, can differ. While this is not reported
these results, we have observed that both algorithms yielded solutions with SOCpes that
were almost identical for all the problems, and thus have almost identical uncertainty range.

6.2.2 Warehouse Results

Finally, we present results for the Warehouse grid. Here we performed two types of exper-
iments: Complete Uncertainty (CU) and Partial Uncertainty (PU). CU experiments are
the same as those described above. PU experiments are different in that they introduce
uncertainty only on a specific set of edges. These edges are marked in gray in Figure 4
(right). The motivation for PU experiments is to simulate automated warehouse scenarios,
where most of the uncertainty is condensed in specific areas such as the pickup depots and
packaging areas. Obviously, experiments under PU and CU settings would be the same
when U = 0.
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Table 4 shows the success rate for different number of agents (k) and uncertainty rate
(U). The results show that CBSTU performed better with PU than with CU in terms of the
success rate. For example, 10 agents and U = 4, CBSTU with PU received a success rate of
56%, while CBSTU with CU received only a success rate of 10%. A similar trend was also
observed on other grids. This is expected, since PU has strictly less uncertainty than CU.

To summarize, we demonstrated that both CBSTU and A∗ + ODTU can be applied to
find safe and optimal solutions on real MAPF benchmarks. Increasing the uncertainty
rate lowers the success rate and increases the SOC and uncertainty range of the returned
solutions. If we compare the CBSTU and A∗ + ODTU approaches, from the experiments we
conducted, we observe that CBSTU performs significantly better.

7. Safe Replanning

In some scenarios, acting agents can sense their environment, i.e., observe during the exe-
cution something that was unknown previously, and replan based on their updated knowl-
edge (Seuken & Zilberstein, 2008). In this section, we consider how sensing and online
replanning can be useful in the context of MAPF-TU. The type of sensing we focus on is
where an agent can sense the current time when it arrives at a vertex v. This eliminates the
uncertainty embodied by the potential presence of that agent at v. Therefore, replanning
at this stage may yield a better solution.

In the rest of this section, we investigate two sensing and replanning settings. In the first,
every agent attempts to improve its current single-agent plan individually while ensuring
safety of the resulting overall solution. In the second setting, the agents share sensing
information with a central controller that may replan for multiple agents at once. We refer
to the first setting as SENSE and the second setting as SENSE+COM. In both settings, we
assume that the agents are initially given a safe solution to the current MAPF-TU instance,
computed offline using a MAPF-TU algorithm such as CBSTU or A∗ + ODTU.

For each setting, we provide theoretical examples showcasing the potential gains of re-
planning and propose concrete replanning algorithms. Section 8 shows experimental results
that measure the performance of these algorithms on MAPF-TU instances. The results con-
firm that our algorithms for SENSE and SENSE+COM can result in executing a solution
with a lower cost.

7.1 The SENSE Setting

s1

s2

g2 g1

w

[1 + n, 1 + n] [1, 1]
[1, 1]

[1, 1 + n]

Figure 6: MAPF-TU instance showing the benefits of replanning when sensing might occur.
Compared to the optimal, purely offline solution, the replanning solution decreases the
pessimistic sum-of-costs from 4 + 3n to 4 + 2n, when sensing actually occurs at vertex w.
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The following example demonstrates the potential benefit of sensing in the SENSE
setting.

Example 3. Consider the MAPF-TU instance shown in Figure 6, and the solution compris-
ing the single-agent plan

(
(s1, g2)(g2, g1)

)
for a1 and the single-agent plan

(
(s2, w) . . . (w, g2)

)
for a2, where the agent waits in w for n time steps. This solution is safe. Moreover, it is
an optimal solution, in terms of both optimistic and pessimistic SOC (which are 4 + 2n and
4 + 3n respectively). However, if we allow replanning then when agent a2 reaches vertex w
it can decide to reduce the amount of waiting based on how long it actually took to go from
s2 to w. For example, assume that it took n time steps for a2 to reach w. Following the
original safe solution, the agent would wait in w for n additional time steps before moving
to g2, reaching its goal at time 2n + 1. By sensing that it reached w at time step n, the
agent can reduce the planned wait time to a single time step, reaching its goal at time n+ 2.
In general, through sensing and replanning optimistic and pessimistic SOC can be reduced
down to 4 + 2n and 4 + 2n, respectively.

7.1.1 Replanning Algorithm

We propose the following replanning algorithm for the SENSE setting. Let ai be an agent
following a single-agent plan πi that senses it has just reached vertex v and the current
time is t. Our replanning algorithm searches for the lowest-cost single-agent plan from v
to the goal of ai, that is guaranteed to avoid conflicts with the other agents’ execution of
their single-agent plans. To this end, we restrict the new single-agent plan π′i such that the
potential presences it induces are subsets of the potential presences induced by πi. This
means we can only choose to decrease the duration of its planned wait actions. Finding an
optimal way to do this is a trivial—each agent simply waits until it reaches the lower time
bound of its next non-wait action.

7.1.2 Theoretical Analysis

Let Π be the MAPF-TU solution prior to replanning and let Π′ be the MAPF-TU solution
after replanning. Since the potential presences according to Π′ are either the same or a
subset of the potential presences in Π, the solution Π′ must be safe. Introducing replanning
cannot lead to worse SOC bounds since the search space for each agent during replanning
includes its original single-agent plan. Thus, in the worst case the replanning will not change
the current single-agent plan and SOC(Π) = SOC(Π′). Since our replanning algorithm only
removes wait actions, the best-case reduction in SOC (i.e., SOC(Π)−SOC(Π′)) is bounded
by the number of wait moves in the offline solution.

7.2 The SENSE+COM Setting

In the SENSE+COM setting, agents share the information they sensed. This sharing occurs
when an agent reaches a vertex and it is able to sense. Thus, the input to replanning here
is a set of agents that arrived at a vertex at the same time and were able to sense. We call
this set of agents the replanning agents. The following example demonstrates the potential
benefit of sensing in the SENSE+COM setting, showing that this setting allows further
reduction in SOC over what is possible in the SENSE setting.
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s1

s2

g2 g1

w

[1, 1 + n]

[1, 1]

[1, 1]
[1, 1]

Figure 7: MAPF-TU instance showing the benefits of replanning when sensing and com-
munication might occur. Compared to the optimal, purely offline solution, the replanning
solution decreases the optimistic SOC from 4 + n to 4, when sensing occurs by agent a1 in
vertex g2.

Example 4. Consider the MAPF-TU instance shown in Figure 7, and the solution compris-
ing the single-agent plan

(
(s1, g2)(g2, g1)

)
for a1 and the single-agent plan

(
(s2, w) . . . (w, g2)

)
for a2, where the agent waits in w for n time steps. This solution is safe and optimal in
terms of SOC (the pessimistic and optimistic SOC is 4 + n and 4 + 2n, respectively).

However, if we allow replanning and communications, and if agent a1 senses when
reaching vertex g2 and broadcasts its arrival time, then agent a2 can decide to reduce the
amount of waiting based on how long it took going from s1 to g2. In the optimal case where
agent a1 reaches g2 at time 1, the SOC range for the replanning approach is [4, 4 + 2n].

7.2.1 Replanning Algorithm

We propose to use CBSTU to generate a solution for the replanning agents that takes
them from their current locations to their respective goal locations. To maintain safety, we
initialize CBSTU with a set of CBSTU constraints that cover every potential presences of
every agent that is not a replanning agent. This ensures that the agents with new single-
agent plans will never conflict with agents that have not sensed. This is true even when the
replanning phase assigns the agents a completely different solution to execute. This is why
communication adds a facet of flexibility to replanning.

7.2.2 Theoretical Analysis

Let Π be the MAPF-TU solution prior to replanning, ΠWOC be the MAPF-TU solution
created after replanning under the SENSE setting, and ΠWC be the MAPF-TU solution
created after replanning under the SENSE+COM setting. The ability to communicate
expands the set of single-agent plans that may be assigned to the replanning agents. Thus,

SOC(Π) ≥ SOC(ΠWOC) ≥ SOC(ΠWC) (4)

for the SOC being optimized (pessimistic or optimistic). Note, that SOC(Π) is the SOC of
the plan Π, as oppose to the cost of executing Π. For example, it may be that SOC(Π)=10
but executing Π would cost more. Thus, Equation 4 does not mean executing Π will
necessarily cost more than executing ΠWOC , and that executing ΠWC will necessarily cost
less than ΠWOC .

Time complexity Since this variant uses a centralized planner, the runtime of every re-
planning step is in the worst-case exponential in the number of replanning agents. However,
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the overall computation time is typically dominated by the time it takes to compute the
initial solution since it always takes into consideration all the agents simultaneously with
maximal uncertainty. At a certain time-step, even if all the agents were to sense and re-
plan simultaneously sometime during the execution, this would still be a considerably easier
MAPF-TU instance to solve compared to the initial, offline solution that was already found.
This is because much of the time uncertainty is removed from the solution up to this point
leading to fewer potential conflicts over shorter time intervals across the entire solution.
Indeed, we observed in our experiments that all subsequent replanning stages were on an
average several times faster than the time required to compute the initial solution.

Safety The output of each replanning stage is guaranteed to be safe. This occurs because
whenever replanning happens, each agent either sensed (and subsequently replans) or it
did not sense (since it is currently traveling or did not sense for any other reason). For
all agents that did not sense, their current single-agent plans are treated as constraints for
all the agents that will replan. Then, the central planner computes new single-agent plans
for the sensing agents, using a safe MAPF-TU algorithm. Since the other agents are taken
into account through constraints, and a safe MAPF-TU solver is used, the solution found
is guaranteed to contain no collisions in the future. Thus, the output for each replanning
stage is a safe MAPF-TU solution.

8. Empirical Evaluation: Online Replanning

In this section, we experimentally evaluate the benefit of using our online replanning algo-
rithms for the SENSE and SENSE+COM setting. We performed a range of experiments
and report here only a representative subset of them. Specifically, we report here the results
only for the Open grid and for the Warehouse grid with partial uncertainty (PU). In each
experiment, we first obtained an initial safe solution using CBSTU. Then, we simulated the
execution of this solution by sampling uniformly the edges’ durations within their ranges.
Whenever an agent finishes traversing an edge, it applies the appropriate replanning algo-
rithm. Two types of experiments were performed, one where the objective is to minimize
SOCopt and one where the objective is to minimize SOCpes. The main performance metric
we consider here is the Final SOC which is the SOC (either SOCopt or SOCpes) of the
solution the agents ended up executing, following all the performed replanning.

8.1 Results for the Open grid

Table 5 shows the Final SOC results for 8 agents in the Open Grid when optimizing
for SOCopt (left) and for SOCpes (right). The Initial SOC is the SOC (either SOCopt

or SOCpes) of the initial solution. The SENSE and S+C columns represent the SENSE
and SENSE+COM settings, respectively. Each line corresponds to a different uncertainty
rates (U = 0, 1, . . . , 8). Every data cell is an average over 50 problem instances. Note that
increasing U inherently increases the SOC since it increases the edge traversal duration.

The results in Table 5 show that online replanning in this set of experiments is only
marginally beneficial. This can be seen when comparing the Final SOC with the Initial
SOC—if they are the same then there is no benefit to online replanning. The largest
difference between the average Final SOC and Initial SOC is for U = 7 in the SENSE
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U Initial SOC
Final SOC

SENSE S+C

0 43.06 43.06 43.06
1 59.32 58.22 58.05
2 72.89 72.61 72.96
3 93.45 90.79 91.10
4 111.09 109.10 107.64
5 115.60 118.67 111.07
6 129.53 137.96 127.33
7 155.57 150.10 148.57
8 166.89 163.47 159.22

U Initial SOC
Final SOC

SENSE S+C

0 43.06 43.06 43.06
1 58.58 58.16 58.63
2 74.44 75.70 73.56
3 93.76 92.74 91.88
4 116.04 116.41 114.13
5 124.07 125.02 120.04
6 137.63 138.90 134.60
7 163.10 158.98 160.68
8 176.07 173.42 173.81

Table 5: Initial and Final SOC results for 8 agents in the Open grid, for the SENSE and
SENSE+COM (S+C) settings. The left side shows results for SOCopt and the right side
shows results for SOCpes.

Agents U=1 U=2 U=3 U=4

2 11% 9% 12% 17%
3 11% 9% 11% 15%
4 9% 9% 10% 14%
5 8% 8% 9% 13%
6 7% 7% 9% 11%
7 7% 8% 9% 9%
8 6% 7% 9% 10%
9 6% 7% 9% -
10 5% 7% 9% -
11 4% - - -
12 4% - - -

Agents U=1 U=2 U=3 U=4

2 0% 0% 0% 0%
3 0% 0% 0% 1%
4 0% 0% 0% 0%
5 0% 0% 1% 1%
6 0% 1% 1% 2%
7 0% 2% 1% 2%
8 0% 1% 2% 2%
9 0% 2% 2% 3%
10 0% 2% 2% 2%
11 1% 1% 1% 2%
12 1% 1% 1% 1%

Table 6: Overall SOC reduction, SENSE+COM setting, Open grid. (left) Results for
optimizing SOCopt, (right) Results for optimizing SOCpes.

setting (150.10 Final SOC vs. 155.57 Initial SOC) and for U = 8 in the SENSE+COM
setting (159.22 Final SOC vs. 166.89 Initial SOC). In almost all cases, the Final SOC when
in the SENSE+COM setting is smaller than the Final SOC in the SENSE setting, which
supports our theoretical analysis in the previous section.

Next, we focus on the SENSE+COM setting and consider the impact of changing the
number of agents on the ratio between the Final SOC and the Initial SOC. We refer to this
ratio as the reduction in SOC due to online replanning. Table 6 shows the reduction in
SOC for different numbers of agents (the table rows) and values of U (the columns), in the
SENSE+COM setting. The left and right sides show results when optimizing for SOCopt

and SOCpes, respectively. Cells marked with “-” indicate that the success rate is 10% or
less, to avoid drawing conclusions from such experiments.5

5. Table 5 shows results for experiments with fewer agents, and so in all cases there the success rate was
higher than 10%.
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U Initial SOC
Final SOC

SENSE S+C

0 240.00 240.00 240.00
1 265.31 265.11 255.83
2 283.29 282.79 257.88
3 305.43 305.10 260.95
4 316.17 315.39 254.78
5 338.43 337.57 264.29
6 346.46 345.85 264.46
7 368.38 367.62 267.15
8 423.10 421.91 280.60

U Initial SOC
Final SOC

SENSE S+C

0 240.00 240.00 240.00
1 248.70 251.07 248.50
2 262.55 266.12 262.05
3 264.44 272.18 264.56
4 268.30 268.30 268.47
5 270.45 270.45 270.66
6 272.97 272.97 273.84
7 276.68 276.68 276.54
8 285.80 285.80 284.39

Table 7: Initial and Final SOC results for 8 agents in the Warehouse grid with PU, for the
SENSE and SENSE+COM (S+C) settings. The left side shows results for SOCopt and the
right side shows results for SOCpes.

The results in this table show several interesting trends. First, we see that the effective-
ness of online replanning (i.e,. the reduction in SOC) increases with U . This occurs because
online replanning benefits from reducing the uncertainty through sensing (and communica-
tion in the SENSE+COM setting). Having more uncertainty (higher U) therefore provides
more opportunities for the online replanning to improve on the initial safe solution.

The second trend we observe is that here online replanning was significantly more effec-
tive when optimizing for SOCopt then when optimizing for SOCpes. For example, for U = 2
and 7 agents, in the SOCopt setting the reduction in SOC is 8% while in the SOCpes the
reduction in SOC is only 2% for the same U and number of agents. We conjecture that
this difference between the objective functions is because aiming to minimize SOCpes has
an indirect effect of decreasing the SOC range of the initial solution. Since the Final SOC
is planned to be within the SOC range, a smaller SOC range means limited opportunity for
online replanning to improve over the Initial SOC. Thus, the reduction in SOC for SOCopt

is significantly larger.

8.2 Warehouse Domain

We performed a similar experiment on the Warehouse grid with 8 agents, where Table 7
follows the same format as Table 5. The results here emphasizes the trends observed
for Open grid. First, the reduction in SOC when optimizing for the SOCpes objective
is negligible. Similarly, there is no significant reduction in SOC in the SENSE setting,
i.e, when agents cannot communicate. However, there is significant reduction SOC in the
SENSE+COM setting when optimizing for SOCopt. This reduction increases with U , where
for U = 8, the Initial SOC was 423.10 while the Final SOC is 280.60. This is expected,
as a higher U means more uncertainty, a larger SOC range, and thus more opportunity for
sensing to reduce uncertainty and lead to a better solution.

8.3 Experiments Summary

In all experiments, we observed the following trends.
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• A larger SOC reduction in the SENSE+COM setting compared to the SENSE setting.

• Very limited SOC reduction in the SENSE setting.

• A larger SOC reduction when optimizing for SOCopt than when optimizing for SOCpes

• A larger SOC reduction when there is a higher uncertainty rate (U)

The first trend corroborates our theoretical analysis, demonstrating that having the ability
to share sensing information and coordinate with other agents is beneficial in MAPF-TU.
The second trend suggests that the practical benefit in the SENSE setting with our replan-
ning algorithm is limited. The third and fourth trends are related to the “size” of the initial
uncertainty. When there is limited uncertainty over the duration of the initial solution,
exhibited by a small SOC range, then there is limited opportunity for online replanning to
improve the Final SOC by gaining information during execution.

9. Discussion

There can be many variants and extensions to the MAPF-TU problem and the MAPF-TU
solvers we proposed. In this section, we outline several key extensions.

9.1 Offline Planning for MAPF-TU with Sensing

v1

v2

v3 v4

S = 〈(v1, v2), (v2, v3), (v4, v1)〉[1, 1] [1, 1]

[1, 1]

[1, 2]

Figure 8: MAPF-TU with sensing instance showing that replanning is not complete. The
initial and goal vertices of the three agents are indicated in the bottom right. A policy-
based solution consists in Agents 1 and 2 waiting for 2 time steps, then moving to their
goal vertices, and Agent 3 moves immediately to v3, then depending on the sense elapsed
time, moves to its goal vertex or waits one time step and then moves.

In Section 7, we proposed an online approach to consider agents’ ability to sense their
current location and time. An alternative approach is to consider the agents’ ability to
sense their location offline, i.e., when executing the solution. This means the planning
algorithm will output an execution policy for each agent instead of a sequence of moves
and waits. A policy may instruct the agent to perform different actions depending on the
information it obtains via sensing. Considering sensing opportunities in this way can lead
to significant cost reductions, compared to the replanning approach proposed in Section 7.
Some problems cannot be solved with the replanning approaches we proposed, but can be
solved with a carefully crafted offline policy.
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Figure 8 illustrates an example of such an MAPF-TU problem instance. For this problem
instance, there exists no safe, offline solution. This implies that we cannot perform online
replanning. For safety, our current online approach begins by executing an offline solution
and improves upon it. However, creating offline policies for multi-agent problems can be
extremely difficult, e.g., in models such as Decentralized-POMDP (Bernstein et al., 2002).
Developing efficient offine algorithms for MAPF-TU is left for future work.

9.2 Bounding Edge Traversal Time From Experience

The main assumption in a MAPF-TU problem is that the upper and lower bounds on
edges’ durations are given as input. While in some cases such information is given as input,
another approach is to learn these upper and lower bounds from experience. We describe
here one way to do so.

Consider a setting where the time it takes to traverse an edge e is independent across
executions and drawn from some unknown distribution De of edge-traversal durations. For
every edge e, we collect M(e) samples e1, . . . eM(e) from De. Each sample is collected from a
different execution, since multiple traversals of e may be correlated with each other. Note,
however, that we do assume that every traversal of e, taken in isolation, has the same
distribution De.

Let L(e) = mini∈{1,...,M(e)} ei and U(e) = maxi∈{1,...M(e)} ei be the minimum and maxi-
mum observed duration it took to traverse e. The probability that the duration of a future
traversal of e will be outside the interval [L(e), U(e)] is given by the following theorem.

Theorem 3. If M(e) ≥ Ω(1
ε log 1

δ ), then with probability 1 − δ over the prior executions,
the delay on edge e lies in the interval [L(e), U(e)] with probability 1− ε.

In other words, if the number of samples M(e) is at least Ω(1
ε log 1

δ ), then with probabil-
ity higher than 1−δ the L and U of our sample satisfies that the probability that traversing
e will take a duration not in [L(e), U(e)] is smaller than ε. The proof of Theorem 3 is given
in Appendix A.

Now, consider a MAPF-TU instance in which we set the lower and upper bounds edge
durations of every edge e to be the observed lower and upper bounds L(e) and U(e),
respectively. I.e., setting w−(e) and w+(e) to be L(e) and U(e). We call this MAPF-TU
instance an empirical MAPF-TU instance. We can use Theorem 3 to upper bound on
the probability that a solution to an empirical MAPF-TU instance will cause a collision.
In other words, we can compute a lower bound to the probability that a solution to an
empirical MAPF-TU instance is indeed safe w.r.t. the real world.

To do so, we introduce some additional notation. Let Π be a solution to an empirical
MAPF-TU instance and let E be the number of distinct edges in Π. For any δ′ ∈ (0, 1),
let ε(e, δ′) be the minimum ε for which the bound of Theorem 3 holds for the number of
examples we possess for e and δ set to δ′/E. That is,

ε(e) = O

(
1

M(e)
log

E

δ′

)
(5)

Theorem 4. Let Π = {π1, . . . , πk} be a solution to an empirical MAPF-TU problem. Then
for δ, ε > 0 with probability 1− δ we obtain lower and upper bounds for every edge such that
the probability that Π can be safely executed is at least 1−

∑k
i=1

∑
e∈πi ε(e).
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Proof. Π is a safe solution to the corresponding empirical MAPF-TU instance. Therefore, if
executing Π leads to a collision, then the duration of at least one move action in π exceeded
the lower or upper bound of the corresponding edge duration. Taking the union bound over
all move actions of all agents, we obtain that the probability of this occurring is at most∑k

i=1

∑
e∈πi ε(e). Hence the probability no collisions occur is as claimed.

The bound [L(e), U(e)] is always valid for the given ε(e) we obtain as a function of δ and
M(e). However, if we are seeking a particular safety level, say some target ε′ for each edge
giving an overall bound that the solution is safe with probability 1 − ε, then the bounds
thus obtained may be too conservative. Eventually, especially with a large sample size, our
examples will include “outlier” events that occur with probability far less than ε′. Here
is an alternative for large sample sizes that will allow us to approach an optimal interval
[L,U ] for a given safety bound 1− ε.

Theorem 5. For any α > 1, δ ∈ (0, 1), and ε ∈ (0, 1), let [L(e), U(e)] be any interval
containing at least (1 − ε

α)M(e) examples for e where M(e) ≥ Ω( α
ε(α−1)2

(log α
ε + log 1

δ )).

Then, with probability 1 − δ over prior executions, the delay for edge e lies in the interval
[L(e), U(e)] with probability 1− ε.

The proof for Theorem 5 is also given in Appendix 9.2. This theorem provides greater
flexibility when constructing a MAPF-TU instance from empirical data, as one can take for
every e any interval in [L(e), U(e)] that captures a sufficient number of samples. Then, one
can use this more refined bound in Theorem 4 to obtain a more refined bound on the safety
of the generate plans. A deeper study of this is a topic of future work.

10. Conclusion and Future Work

In this paper, we studied the Multi-Agent Pathfinding with Time Uncertainty (MAPF-TU)
problem, which is a Multi-Agent Pathfinding (MAPF) problem in which there is uncertainty
over the time it takes an agent to traverse an edge. Specifically, for every edge we are given
a lower and upper bound on the duration it takes to traverse it. We focused on the problem
of finding a safe solution to a MAPF-TU instance, which is a solution that is guaranteed
to avoid a conflict. To this end, we introduce the notion of potential presence and potential
conflicts, where a solution is safe iff it has no potential conflicts. Then, we propose two
algorithms, called A∗ + ODTU and CBSTU, that find safe and optimal solutions to a MAPF-
TU instance. We implemented these algorithms and compared them experimentally on a
variety of settings and maps. The results show that on our benchmark set of instances
CBSTU significantly outperforms A∗ + ODTU in terms of success rate.

Then, we considered two online replanning settings, SENSE and SENSE+COM, where
the agents have sensing or communicating capabilities while executing a solution. We
demonstrate the potential benefit of online replanning in both settings, and propose on-
line replanning algorithms that can improve the executed solution cost. We analyze these
replanning algorithms theoretically, showing that using them is always advantageous. How-
ever, experimentally, we observed that signifcant benefit for replanning only appeared in
the SENSE+COM when optimizing for the optimistic SOC.

Finally, we discussed possible extensions to MAPF-TU. One such extension is to con-
sidering offline the possibility that the agents will sense new information and replan online.
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Another extension suggests a statistical analysis that allows extracting from observed data
the lower and upper bound edge traversal times. Yes another extension is where there lower
and upper bound also on wait actions, e.g., for cases where an agent is not allowed to stay
too long in some locations.

There are many directions for future work. One can explore other objective functions
to the MAPF-TU problem, such as minimizing the expected cost (assuming the traversal
time distribution is known). Another direction is to adapt additional MAPF solvers to
solve MAPF-TU, e.g., ICTS (Sharon et al., 2013), EPEA* (Goldenberg et al., 2014), or
M* (Wagner & Choset, 2015). Finally, one may explore how to extend MAPF-TU to cases
in which time is not discretized and the environment is continuous (Andreychuk et al.,
2019), or when the bounds over the edge traversal durations change over time.
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Appendix A. Sample Complexity Proofs

In this appendix, we provide formal proofs for the main Theorems in Section 9.2.

A.1 Proof for Theorem 3

This confidence bound is an easy consequence of basic statistical learning theory. We recall
the number of examples needed to fit a class of Boolean functions is determined by the
VC-dimension (Vapnik & Chervonenkis, 1971) of that class:

Definition 1. A set of points of a domain X is shattered by a class C of Boolean functions
on X if for every Boolean labeling of the set, there is some c ∈ C that gives each point in
the set the desired label. C is then said to have VC-dimension d if the size of the largest set
shattered by C contains d points.

The exact asymptotic dependence of the confidence δ and accuracy ε obtainable for
classes of a given VC-dimension and a given number of examples was recently determined
by Hanneke (2016). We state this in slightly simplified form for our purposes6:

Theorem 6 (cf. (Hanneke, 2016)). Let C be a class of Boolean functions of VC-dimension d.
Then, for every δ, ε ∈ (0, 1), with probability 1− δ every c ∈ C that is true on Ω(1

ε (d+ log 1
δ )

examples independently drawn from a distribution D on X satisfies Prx∈D[c(x) = 1] ≥ 1−ε.

This bound is asymptotically optimal, but the constants hidden by the Ω are large.
Other forms of this bound that feature an additional log 1

ε factor may give a better quanti-
tative guarantee for the concrete values of ε that occur in practice.

Theorem 3 is now an immediate consequence:

6. We obtain this statement from the usual form by fixing the “labels” to be all 1, since we are looking for
a set that contains all of the examples seen so far.
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Proof. Recall that the set of intervals has VC-dimension 2: it is easy to verify that no set
of three points on the real line can be shattered (either two are identical or we can label
the max/min points 1 and the middle point 0). It then follows from Hanneke’s bound
(Theorem 6) that with probability 1 − δ, any interval that contains Ω(1

ε log 1
δ ) examples

drawn independently from some common distribution D will contain further points drawn
from D with probability 1− ε. In particular, [L,U ] is such an interval.

A.2 Proof for Theorem 5

To prove this Theorem, we will need the relative-error “agnostic”/“non-realizable” version of
the VC-dimension bound (Li et al., 2001), again stated in simplified form for our purposes7:

Theorem 7 (cf. (Li et al., 2001)). Let C be a class of Boolean functions of VC-dimension
d, let ε, δ ∈ (0, 1), and let α > 1. With probability 1 − δ every c ∈ C that is true at least a
(1− ε) fraction of m ≥ Ω( 1

ε(α−1)2
(d log 1

ε + log 1
δ )) examples satisfies Pr[c(x) = 1] ≥ 1− αε.

Theorem 5 is now immediate:

Proof. Again, the class of intervals has VC-dimension 2. Thus, by Theorem 7 with ε set
to ε/α, we see that if M(e) ≥ Ω( α

ε(α−1)2
(log α

ε + log 1
δ )), every interval [L,U ] that is true of

(1− ε
α)M(e) examples indeed satisfies Pr[e ∈ [L,U ]] ≥ 1− α ε

α = 1− ε.

Appendix B. Unsound Range Constraints for Edge Conflicts

The following example demonstrate that using a naive way to set range constraints to resolve
a swapping conflict may lead to finding a suboptimal solution.

s1

A

g2 C s2

B

g1

[1, 1]

[1, 4]

[1, 1] [1, 1]

[1, 5]

[2, 2]

[1, 1]

[1, 1]

Figure 9: A MAPF-TU instance showing that using naive range constraints for edge-based
conflicts in CBSTU leads to suboptimal solutions.

Example 5. Consider the MAPF-TU instance depicted in Figure 9, and assume the ob-
jective is to minimize optimistic SOC. The initial solution{(

(s1, g2), (g2, C), (C, g1)
)
,
(
(s2, C), (C, g2)

)}
has a swapping conflict 〈a1, a2, (g2, C), [2, 5]〉. However, imposing the constraints that agent
a1 or agent a2 cannot traverse the edge (g2, C) at any time step in [2, 5] rules outs all

7. In Li et al’s statement, we actually put ν = 2ε and replace α by α−1
4+(α−1)

≥ α−1
4

, so that if r is the true

error and s < ε is the empirical error, the obtained bound on dν(r, s) = |r−s|
r+s+ν

of α−1
4+(α−1)

implies r < αε.
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optimal solutions. Specifically, in all optimal solutions agent a1 has the single-agent plan(
(s1, A), (A, g2), (g2, C)(C, g1)

)
and agent a2 has a single-agent plan in which a2 arrives to

C at time step 4 and moves along (g2, C) immediately after.
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