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Abstract

Eye gaze has the potential to provide insight into the minds of individuals, and this idea
has been used in prior research to improve human goal recognition by combining human’s
actions and gaze. However, most existing research assumes that people are rational and
honest. In adversarial scenarios, people may deliberately alter their actions and gaze,
which presents a challenge to goal recognition systems. In this paper, we present new
models for goal recognition under deception using a combination of gaze behaviour and
observed movements of the agent. These models aim to detect when a person is deceiving
by analysing their gaze patterns and use this information to adjust the goal recognition.
We evaluated our models in two human-subject studies: (1) using data collected from
30 individuals playing a navigation game inspired by an existing deception study and (2)
using data collected from 40 individuals playing a competitive game (Ticket To Ride). We
found that one of our models (Modulated Deception Gaze+Ontic) offers promising results
compared to the previous state-of-the-art model in both studies. Our work complements
existing adversarial goal recognition systems by equipping these systems with the ability
to tackle ambiguous gaze behaviours.

1. Introduction

The problem of goal recognition involves inferring an agent’s goal by observing their actions.
There are numerous methods identified by Sukthankar et al. (2014), and among these is
the model-based approach. There are at least two conventional approaches to model-based
goal recognition. The first approach uses the ontic actions (physical actions that change
the state of the world) of agents to estimate the probabilities of candidate goals (Ramı́rez
& Geffner, 2010; Masters & Sardina, 2017a; Pereira et al., 2017).

More recently, Singh et al. (2018, 2020) have exploited the fact that visual behaviour
is intrinsically linked to the way that people plan and execute actions. In short: the gaze
of our eyes gives information to observers about our future actions and people use this to
determine our actions, even when we are trying to be deceptive. Singh et al. (2018, 2020)
define a goal recognition model that incorporates the gaze behaviour of human agents to
infer goals. However, this model assumes that individuals are rational and honest; for
example, people may minimise action costs when achieving their goals. As such, these
works do not consider people deliberately altering their actions.

In deceptive or adversarial scenarios, people may intentionally exhibit ambiguous ac-
tions, physical or gaze, posing a clear challenge for goal recognition systems that assume
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(a) Example of Natural Gaze (b) Example of Deceptive Gaze

Figure 1: An example of the natural gaze and deceptive gaze in the first study. Blue
circles are the fixation points (the points on which the eyes are focused for at least 200ms).
Bigger circle implies a higher fixation duration. Red x represents the agent’s ontic actions.
Notations of the maps: S is the starting point, B is the bogus goal, R is the real goal and
W is the wall.

Figure 2: An example of gaze visualization in the second study (Ticket To Ride game).
This figure is taken from Newn et al. (2017). The gaze visualization is displayed between
Boston and Miami (on the right of the board).
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rationality. An example from our first study is in Figure 1, which shows a participant’s
deceptive and natural gaze as they navigate a vehicle from cell S to cell R. In these figures,
the circles represent where a person’s gaze was fixated. A larger circle means the duration
of the fixation was longer. In Figure 1a, the gaze naturally follows the ontic actions (red)
and the fixations are higher for the real goal (R). But when the participant was instructed
to be deceptive with their gaze in Figure 1b, fixation points are located far from the ontic
actions and the participant mostly fixated for a longer period at one of the bogus goals (B).
Figure 2 shows an example of how gaze is presented in the second study, which was based on
a multiplayer board game called Ticket to Ride (discussed in detail in Section 4.2). In this
game, players have to claim train routes to connect cities. In the example instance of this
game shown in Figure 2, the gaze (heatmap) shows that the player might have an intention
to claim any routes between Boston and Miami. We can combine the information derived
from the gaze data with information about completed in-game actions, for example, the
red player has already claimed a route between cities Boston and Washington, to predict
players intentions. In this case, probably the player is interested in claiming routes between
Boston and Miami.

Masters and Sardina (2019) tackle deceptive ontic actions by quantifying the degree
of rationality of a sequence of actions using a rationality measure (RM). The basis of the
model is that if a sequence of actions is far from optimal for any candidate goal, the agent
is behaving irrationally. Their rationality measure is used to moderate the confidence of
a prediction. As far as we are aware, there is no work along the lines of Masters and
Sardina (2017b) for deceptive gaze behaviours. Earlier work, such as shown by Newn
et al. (2018) that identified various deceptive gaze strategies in digital board games do not
propose how to infer goals algorithmically. However, they argued that the players could not
prevent leaking information through their gaze, highlighting the prospects of utilising gaze
for goal recognition even in the presence of ambiguous gaze. While there are some works
on adversarial and exploratory goal recognition (Gal et al., 2012; Geib & Goldman, 2001),
none of them incorporated gaze.

In this paper, we propose a goal recognition model that combines model-based (ontic-
based) goal recognition with gaze-based goal recognition to infer goals of people acting
deceptively. This model extends an existing model for gaze-based goal recognition (Singh
et al., 2018, 2020) by identifying and formalising two key measures: (1) honesty degree; and
(2) visual acuity. The honesty degree measure aims to detect and categorise potentially
deceptive gaze behaviours and quantify deception when we do not know the goal of a
person. Like Masters and Sardina (2019)’s rationality measure, we use the honesty degree
to moderate the prediction confidence by modulating the likelihood of the candidate goals.
The purpose of modulating the probability distribution is to increase the probability of
a true goal, and at the same time lower the probabilities of deceptive goals. The visual
acuity measure considers the non-central foveal vision (Duchowski, 2018); that is, the field
of vision outside of the central areas. We use these factors to devise gaze models to tackle
deceptive gaze behaviours, and evaluate the performance of these models individually and
in combination with existing models, such as those by Singh et al. (2018) and Singh et al.
(2020), by replacing their gaze model with gaze models that explicitly consider deception.
Singh et al. (2018) combined gaze and ontic actions to predict goals more accurately and
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earlier. An ontic action is an action that changes the state of the world. Gaze is not an
ontic action since it does not change the state of the world.

The key contribution of this work is a goal recognition model and variations designed
that combines both gaze actions and ontic actions under deceptive gaze behaviours. We
build our model by extending the earlier work from Masters and Sardina (2017b), Singh
et al. (2018, 2020) to take into account the deceptive actions. Even though gaze is a
noisy signal, we can infer useful information under deception, including when the gaze
itself is deceitful. Further, we have defined new deceptive models, such as: Deception Gaze
(DG), Modulated Deception Gaze (MDG), Deception Gaze + Ontic (DGO) and Modulated
Deception Gaze+Ontic (MDGO), which have never been defined in the previous work (Singh
et al., 2018, 2020). These models are defined based on two new measures honesty degree and
visual acuity. We evaluated the models on two different studies while the participants’ gaze
data and game actions were being recorded. The first game is a single-player VIP routing
game, in which participants must navigate a vehicle containing a VIP to a destination. The
second game is a multi-player game Ticket To Ride that was used in previous works (Newn
et al., 2017, 2018; Singh et al., 2018). We compared our models against a recent gaze-based
goal recognition model (Singh et al., 2018, 2020). Although the model proposed in Singh
et al. (2018, 2020) is reasonably accurate goal recognition model that incorporates gaze, our
results showed that our enhanced gaze-model more accurately predicted the goals of players
in deceptive scenarios (p < 0.05), while remaining robust in non-deceptive scenarios. These
contributions are significant because they advance the capabilities of existing gaze-based
predictive systems at tackling uncertainty in gaze, and the extreme case, deceptive gaze
behaviours.

This paper is organised as follows. In Section 2, we discuss the relevant background
of model-based goal recognition, gaze recognition, deceptive gaze strategies and detecting
deception. In Section 3, we present the proposed models to handle deceptive gaze behaviours
by explaining honesty degree and visual acuity measures. Section 4 describes the design of
two human-subject experiments: the first study is a simple single-player navigational game
and the second study is a more complex multi-player board game (Ticket To Ride). In
Section 5, we explain the results of our proposed models compared to previous state-of-the-
art models. Section 6 presents our discussion on the results.

2. Background and Related Work

In this section, we review related works on goal and intentions recognition, such as model-
based and gaze-based approaches, and deceptive gaze behaviours.

2.1 Model-Based Goal Recognition

In a Goal recognition (GR) problem, we aim to find an agent’s (human or artificial) goal by
observing their behaviour. Goal recognition can be classified into three categories (Carberry,
2001): keyhole recognition, in which an agent does not intend to change its behaviour;
intended recognition, whereby the agent attempts to reveal its real goal; and adversarial
recognition when an agent hides its real goal. There are many keyhole goal recognition
algorithms for honest, natural and rational behaviours (Ramı́rez & Geffner, 2009; Masters
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& Sardina, 2017a; Vered, Kaminka, & Biham, 2016; Singh et al., 2018), as well as for
adversarial settings, such as (Keren, Gal, & Karpas, 2015; Masters & Sardina, 2019).

The basic approach to model-based goal recognition is to observe a sequence of actions
performed by an agent, and for each of the candidate goals, identify whether this behaviour
is rational. In these models, ‘rational’ typically means that the observed behaviour is low
cost or high quality for a given goal. The relative rationality of the sequence relative to
goals is used to derive a probability distribution over the goals, estimating the likelihood
that each candidate goal is the real goal.

Most of these models assume that an agent is behaving honestly or rationally. However,
Masters and Sardina (2019) propose the rationality measure (RM) to quantify the degree of
rationality, and apply this measure to the posterior probabilities of the goals to self-regulate
and lower confidence in the predictions when the irrational behaviour is detected. When
the behaviour becomes more irrational, the probabilities are distributed more uniformly.
This model can be applied when agents are deceptive.

The variable β is what is novel about the model. This refers to the rationality measure,
defined as follows:

β =

(
max
g∈G

optc(s, g)

optc(s, g, O)

)γ
(1)

where G is the set of all goals and γ regulates how much the certainty should decrease when
the irrational behaviour is detected; s and g are the start and goal locations, respectively,
O is the sequence of observations, optc(s, g,O) is the sum of the cumulative cost from the
start location to the current location and the optimal cost from the current location to the
goal, optc(s, g) is the optimal cost of solution path from a starting point s to a goal g.

The likelihood of a goal is defined as:

P (O | g) =
1

eβ·costdiff (s, g, O)
(2)

where costdiff (s, g,O) = optc(s,O, g)− optc(s, g) is the difference between the optimal and
observed costs.

And the posterior probability of a goal is:

P (g | O) = κP (O | g) (3)

where κ is the normalising constant that normalises the probability of each goal relative
to the others. Thus, the probability assigned to each goal is proportional to how much it
explains the observed behaviour.

Thus, β = 1 if the observed sequence O is optimal for at least one goal, however β < 1
if the sequence O is non-optimal for all goals, and becomes lower the less optimal it is.
The influence of β on Equation 3 is to modulate the goal recognition, pushing down the
probability of likely goals relative to less likely goals, because the agent is deemed more
irrational, therefore, their behaviour is harder to predict.

In the event that β = 1, Equation 3 is a goal recognition model that assumes rationality,
which is called Ontic (O) model. Moreover, we assign γ = 1 and then calculate β based
on γ as in Equation 1 to have Modulated Ontic (MO) model.
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2.2 Gaze and Intention Recognition

Human vision has different visual acuity that depends on the visual angle. High visual
acuity is limited to the central of 2◦, which is called the foveal vision. Outside the foveal
vision, the vision area is classified into parafoveal vision (5◦), perifoveal vision (10◦) and
peripheral vision (80◦) (Duchowski, 2018). Due to the limited angle of foveal vision (2◦),
our eyes constantly move to reposition the fovea. These movements result in various types
of eye movements, such as fixations and saccades (Qvarfordt, 2017; Duchowski, 2007, 2018).
During a fixation, gaze maintains at a single position. Saccades are eye movements from one
point to another point. The non-foveal vision and deceptive fixation points are common in
sports, for example, martial arts (Hausegger, Vater, & Hossner, 2019). As such, we believe
that intention recognition model needs to be able to leverage an understanding of different
types of eye movements and non-foveal vision to tackle ambiguous gaze behaviours.

The idea that visual behaviour is linked to how humans plan and execute actions (Land,
2009) has inspired several computational models for gaze-based intention recognition, both
machine learning based (Bednarik et al., 2013; Huang et al., 2015; Koochaki & Najafizadeh,
2019) and model based (Admoni & Srinivasa, 2016; Singh et al., 2018).

Singh et al. (2018) propose a model that combines gaze input with a model-based goal
recognition approach for intention and goal recognition. Formally, for each intention i,
they record the accumulated fixation count and fixation duration. The standard fixation
duration is 200ms (Singh et al., 2020), counti and natural durationi respectively where
natural durationi =

∑counti
j=1 durationi,j . Here counti represents the number of times the

intention i was signalled and durationi,j represents the fixation duration of gaze point j at
intention i, where 1 ≤ j ≤ counti. Using these two gaze features, they compute the fixation
score of an intention i as follows:

si = log (λ · natural durationi + (1− λ) · counti) (4)

The parameter λ ∈ [0, 1] is the relative weight between fixation duration and fixation
count. To get the probability of each goal, i, the fixation scores are normalised using the sum
of fixation score of all intentions. We call this the Natural Gaze (G) model. Formally:

P (i | Og) =
si∑

j∈I
sj

(5)

where I is a set of possible intentions (goals); Og is a set of gaze observations, in which
includes a set of fixation points. A fixation point is measured based on fixation duration
and count. Finally, they compute the posterior probability of each intention based on both
gaze and physical actions as follows:

P (i | Oa, Og) = P (i | Og) · P (Oa | i) (6)

where P (Oa | i) is a default model-based goal recognition model, such as Ramı́rez and
Geffner (2010). Evaluations of their model show that incorporating gaze increases predicted
accuracy, enables correct predictions to be made earlier, and has no additional computa-
tional cost in the game Ticket to Ride (Singh et al., 2018). We call this the Natural
Gaze+Ontic (GO) model.

However, Singh et al. (2018) assume that the gaze action of the player is truthful. In
this paper, we build on this model to take into account the deceitful gaze.
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2.3 Deceptive Gaze Strategies

In a general theory of deception, Whaley (1982) and Bell (2003) define simulation and
dissimulation as two basic strategies. Dissimulation is obscuring the truth, such as hiding
our real goal from an observer; whereas simulation is displaying the false, such as trying to
make an observer believe a bogus goal is our real goal. Based on these two foundations, we
could define the strategies of deceptive behaviours.

Many gaze features have been explored to detect deception. For example, pupil dilation
is higher for deceivers than truthful people (Proudfoot et al., 2016). Similarly, in penalty
shootouts, players had extended fixation duration on the side to which they did not shoot,
fooling the goalkeeper (Wood et al., 2017). Student cheating in exams often uses peripheral
vision (Aravena et al., 2017). These works demonstrate the promise of used gaze as a means
to detect and quantify gaze-based deception.

Newn et al. (2018) investigate deceptive gaze behaviours in an online competitive game-
play environment. They identified and classified gaze-based deception behaviours into eight
distinct strategies: Gaze Averting, Gaze Scattering, Information Reduction, Risk Reduction,
Obstruction, Gaze Misdirection, Decoys and Gaze Camouflage. For example, Gaze Averting
is one of the dissimulation strategies in which players try to avoid looking at their intended
goals in the game. A key result of this work was that even players who knew their gaze
was being tracked and displayed to their adversary could not prevent leaking information
through their gaze, making gaze a useful indicator of human goals, even though they are
deceiving. However, they did not build a computational model of this.

2.4 Detecting Deception

Detecting deception is a challenging problem. Although the eye gaze is useful to infer others’
intentions, we can make false judgements when observing behavioural cues. For example,
people tend to believe that avoiding eye contact is a sign of deceit, but gaze aversion can be
a signal of lacking confidence or cultural norms. Therefore, Wheeler (2004) indicated that
we should avoid this mistake when concluding a person is whether truthful or deceitful.
Moreover, it is hard to distinguish between deceptive and honest gaze, as deceivers often
have a desire to persuade people by maintaining their eye contact. To solve this problem,
Mann et al. (2012) classified two types of eye contact: traditional eye contact and deliberate
eye contact. The authors define that deliberate eye contact happens when someone looks
into the eyes in a longer amount of time than it would be normally expected. By considering
the deliberate eye contact, they found that deceptive people imposed more deliberate eye
gaze than honest ones. This finding is similar to the Gaze Misdirection strategy as defined
by Newn et al. (2018).

Although most of the studies have used multimodal features as the effective inputs to
detect deception, Bhaskaran et al. (2011) only used eye movements as the input and could
predict deception with 82.5% accuracy. They conducted a study to extract the normal be-
haviours and deceptive behaviours of the subjects in an interrogation. A dynamic Bayesian
model was employed to differentiate between deceptive and non-deceptive behaviours. This
study shows that using multimodal features might be unnecessary as some features are not
correlated with the deceptive behaviour.
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Typically, machine learning is used to solve the detecting deception problems. Zhou
and Zhang (2012) showed that verbal and nonverbal cues can be used in the classification
task to detect deception. Although this study focused on extracting linguistic features, it
suggested that machine learning can be used to recognise deception based on nonverbal
behaviour. Demyanov et al. (2015) employed logistic regression to classify between truthful
and deceptive people based on the movements of eyebrows, eyes and mouth. This research
also contributed a large Mafia database for future work. Pérez-Rosas et al. (2015) con-
ducted a study to differentiate between honest and dishonest statements of the testimonies
from real-life trials. They used both verbal and non-verbal features; then applied Decision
Trees and Random Forest approaches to build the deception classifiers. A drawback of this
approach is that it requires sufficient training data, which may not always be available.
In this paper, we design new models based on scientific studies, which allows use in new
situations without obtaining new data sets.

3. Gaze Model for Deceptive Gaze Behaviours

In this section, we first introduce two key measures: Honesty Degree and Visual Acuity.
The main purposes of the Honesty Degree are to modulate the probability distribution of
all intentions and allow us to detect and quantify gaze-based deceptive behaviours. The
Visual Acuity measure is proposed to increase the fixation score of the intentions outside
the foveal vision and therefore increase the probability of the real goal. Using these, we
extend earlier work from Masters and Sardina (2017b), Singh et al. (2018, 2020) to obtain
more accurate goal recognition. Our gaze models enhance the previous models in terms of
the ability of the models to handle deceptive gaze behaviours.

3.1 Problem Formulation

We formulate the problem of goal recognition based on existing definitions (Vered et al.,
2016; Singh et al., 2018, 2020). We have a set of possible goals, a set of actions that
achieve the goals, and a sequence of actions that form a partial plan to one of the goals.
The goal recognition problem is to determine the likelihood of the different goals given the
observations. In our problem, we receive two types of observations: (1) ontic actions; and
(2) gaze actions. Ontic actions modify the ‘physical’ world, while gaze observations tell us
which ‘regions’ of the world the human is looking at. For example, in an online game, gaze
actions are those that look at the different areas of the game that a person is looking at,
such as pieces and game elements. Thus, we consider fixations on regions as the possible
gaze actions G on those regions defined in the context of the online goal recognition problem
as follows.

Formally, Singh et al. (2018, 2020) define an online goal recognition problem R as a
tuple R = 〈W, s0, I, A,G,Oa, Og〉. W is the world in which the agent operates, s0 ∈ W is
the initial state of the observations, I is the possible set of intentions (goals), A is the set of
ontic actions available to achieve the intentions, G is the set of possible gaze actions, Oa is
the sequence of ontic action observations (made up of actions from A), and Og is the set of
gaze observations (made up of observations from G). The problem is to derive a probability
distribution over I that estimates the likelihood that each intention is the agent’s potential
intention (relative to each other) based on the observed sequence Oa and Og.
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The solution for this problem proposed by Singh et al. (2018, 2020) assumes that Og is
honest, that is, the gaze observations are natural without ambiguity or deception. However,
our model relaxes this assumption and incorporates the Honesty Degree and Visual Acuity
to handle deceptive gaze behaviours.

3.2 Honesty Degree

We propose the honesty degree of a single intention with two main purposes: 1) to detect
deception; and 2) to use as a parameter to modulate the certainty over the probability dis-
tribution of candidate intentions. The modulation will assist in moderating the confidence
of the predictions, similar to Masters and Sardina (2019).

The average fixation duration of a human is around 300 milliseconds (Qvarfordt, 2017).
Therefore, we consider high values to be an indicator of deceptive behaviour; that is, the
higher the average fixation duration, the higher the chance of deception. There are many
examples in sports for this, such as martial arts (Hausegger et al., 2019), where fighters
have been known to use longer fixations on bogus goals and peripheral vision. Based on
this idea, we provide a definition of honesty degree h(natural durationi) of an intention i
in the gaze-based context as follows:

h(natural durationi) =
1

1 + eα(natural durationi−DurationThreshold)
(7)

where natural durationi is the fixation duration value (ms) of intention i, which is defined
as natural durationi =

∑counti
j=1 durationi,j (based on Equation 4). DurationThreshold is

the fixation duration threshold such that at the threshold point, the honesty degree is 0.5;
and α is the rate parameter. In our experiments, we chose DurationThreshold = 350 (ms)
based on prior work on normal human fixation duration (Qvarfordt, 2017) and α = 0.05,
however, these can be adjusted depending on the particular application.

3.3 Visual Acuity

The model from Singh et al. (2018) assumes that one fixation point represents only one
target area. However, when people deliberately intend to deceive, they can use indirect
vision to avoid looking at their true goal, but can also see it to claim the true goal accurately.
This is because although the people do not keep their fixation points located at the true
target, they can use parafoveal, perifoveal and peripheral vision to see the target outside
the foveal vision (Duchowski, 2018). In this section, we propose the visual acuity function
that considers whether goals are valid depending on where they are located outside of the
foveal vision.

The function to calculate the visual angle of two fixation points is:

θ = 2tanh

(
d

2D

)
(8)

where θ is the angular distance between the gaze point and the target point (◦/s), d is the
distance in pixels between the gaze point and the target point, D is the distance in pixels
between the screen and the eyes.
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Figure 3: Illustration of the visual angle θ
based on Equation 8. F1 and F2 are the two
fixation points. Figure 4: Illustration of the visual acuity

function based on Equation 9

The visual acuity function fv(θ) illustrates the probabilities of the intentions outside
the foveal vision as follows:

fv(θ) =
1

e(θ−C)2
(9)

where C (radians) is the visual angle threshold, which represents the maximum visual angle
that our vision can see the object. In our study, since the peripheral vision’s maximum
visual angle is 80◦, we choose C = π × 80/180 ≈ 1.4 (radians).

The visual acuity function increases the probability for intentions around the gaze point,
then decreases after the visual angle threshold C. In this case, fv(θ) → 0 as θ → ∞ and
fv(θ) → 1 as θ → C. Substitute the function of θ as above, we propose the visual acuity
formula based on the Euclidean distance between two points (d).

fv(d) =
1

e(2 tanh( d
2D

)−C)2
(10)

Singh et al. (2020) also defined a different version of the visual acuity function in the
previous work, which they called the foveal vision function. However, their function cannot
increase the fixation duration and count outside the foveal vision as they define the acuity
is greatest at the location of a gaze point and then decreases the acuity as the distance
d increases. On the other hand, we define the maximum value of the visual acuity at the
visual angle threshold C (Figure 4). The reason for this is that the deceptive person would
try to avoid looking at the real goal. Thus, the location of the deceptive gaze point is not
the real goal in most cases. Therefore, if the visual acuity is greatest at the location of
a gaze point, the fixation duration and count of the bogus goal would be maximum. So
we re-define the visual acuity in this paper to show that the visual acuity of the deceptive
person is minimum at the gaze point, then increases gradually up to C, which represents
the maximum visual angle that our eyes can see the object. When the distance is greater
than C (i.e. d > C), we cannot see anything so the visual acuity reduces.

Using the visual acuity function fv(d), we define new fixation duration and count as
shown in Equation 11 and Equation 12.
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deceptive durationi =

counti∑
j=1

durationi,j + fv(di,a) ·

(1− h(natural durationa)) ·
counta∑
j=1

durationa,j (11)

deceptive counti = counti + fv(di,a) · (1− h(natural durationa)) · counta (12)

where i, a are intentions, di,a is the distance between regions that infers intention i and a,
for example, the region of an intention in navigational game is the cell where the gaze point
located, j is the gaze point index, 1 ≤ j ≤ counti; deceptive durationi and deceptive counti
are the proposed fixation duration and fixation count of intention i for deception models.

Fundamentally Equation 11 and 12 allow us to measure the strength of a person’s
interest in an intention by considering not just how many times they look at a target that
signals it (counts), but also the times they look at the target’s area. The same change is
applied for how long they look at the target (duration). In short, intention a is inferred
from the current gaze point, while intention i is not directly inferred by the current gaze
point. Equation 11 increases the fixation duration of the intention i, which is indirectly
inferred by nearby areas, by adding the fixation duration of intention a. The increase of
the fixation duration for i is based on how far it is from the intention a (fv(di,a)), and how
much deception is happening in the game or task. If intention a is likely deceptive (low
h(natural durationa)), then there is a greater increase in the fixation duration of intention
i, that we get by taking a product of fv(di,a) and fixation duration of a. Equation 12 also
increases the fixation count of the intention i in the same way as Equation 11.

3.4 Models

In this section, we present three new models of goal-recognition under deception: (1) a gaze-
only model that uses the visual acuity measure; (2) a modulated gaze-only model that uses
the honesty degree to moderate confidence in predictions; and (3) a model that combines
the gaze-only models with a model-based intention recognition algorithm that uses ontic
actions.

Deception Gaze Model (DG) Using Equation 11 and Equation 12, we define our first
gaze model, Deception Gaze, as follows:

sdi = λ · deceptive durationi + (1− λ) · deceptive counti (13)

where λ is the relative weight as defined in Equation 4. We do not use the log function
as in Equation 4 because Singh et al. (2018, 2020) applied the log function to limit the
importance of old intentions. They argued that the order of intentions are less relevant
since people change their intentions over time. However, in the deceptive scenarios, people
would have to find the real goal at the beginning of the task and deliberately hide their
real intentions since then. Therefore, the early intention is the most reliable one so the log
function should not be applied in Equation 13.
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We then normalise the fixation score function in Equation 13 to get the posterior prob-
ability of an intention i:

PD(i | Og) =
sdi∑

j∈I
sdj

(14)

Modulated Deception Gaze Model (MDG) We can modulate the posterior proba-
bility of the Deception Gaze model by multiplying the probabilities with the honesty degree
resulting in our second gaze model, the Modulated Deception Gaze. The modulation can
be seen as the ability of the model to moderate its confidence in the predictions; that
is, the posterior probabilities, similar to the strategy proposed by Masters and Sardina
(2019). Intuitively, the more the deceptive a person’s gaze, the more uniform the posterior
probabilities. Formally:

PMDG(i | Og) = κ · h(natural durationi) · PD(i | Og) (15)

where PD(i | Og) is the posterior of deception gaze-only, calculated in Equation 14, κ is the
normalising constant to ensure that all probabilities add up to 1, h(natural durationi) is the
honesty degree of intention i based on the fixation duration in Equation 7, and PMDG(i | Og)
is the modulated posterior probability of intention i. Note that, h(natural durationi) in
Equation 15 is responsible to modulate the confidence. That means when the goal seems to
be bogus, its confidence will be lower. Whereas (1 − h(natural durationa)) (Equation 11,
12) in the deceptive count and duration formulas is for increasing the fixation count and
duration within the peripheral vision in case the gaze is deceptive (i.e. low honesty degree).

Deception Gaze+Ontic Model (DGO) Based on Natural Gaze+Ontic model defined
in Equation 6, the posterior probability of Deception Gaze+Ontic is calculated as follows:

PDGO(i | Oa, Og) = κ · P (Oa | i) · PD(i | Og) (16)

in which PD(i | Og) is Equation 14, P (Oa | i) is the likelihood of an intention i, defined
in Equation 2 where β = 1 (Masters & Sardina, 2017a), κ is the normalising constant.
P (Oa | i) is the probability of observing actions Oa if i was the intention of the agent,
calculated using any method for model-based goal recognition (Vered et al., 2016).

Modulated Deceptive Gaze+Ontic (MDGO) We can also modulate the Deception
Gaze+Ontic probability by substituting PMDG for PD. We then have Modulated Deceptive
Gaze+Ontic model as follows:

PMDGO(i | Oa, Og) = κ · P (Oa | i) · PMDG(i | Og) (17)

Modulated Deception Gaze+Modulated Ontic (MDGMO) We can further mod-
ulate the ontic-action by assigning γ = 1 in Equation 1. We call this Modulated Deception
Gaze+Modulated Ontic. The MDGO model that involves the honesty degree is more robust
under deception. However, when we include the rationality measure β (Masters & Sardina,
2019), the MDGMO model does not perform better than the MDGO model (Section 5).
Masters and Sardina (2019)’s model is good for irrationality, but not necessarily under de-
ception, which is intentional. The reason for including β does not improve the performance
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of MDGMO is that β is a measure to flatten out the probability distribution in the case of
irrationality. But β cannot increase the probability of the real goal.

3.5 Quantifying Deception

Besides the main purpose of modulating the confidence of candidate intentions in Sec-
tion 3.2, the honesty degree of all intentions at a single time step can also be used to:
1) distinguish between different deceptive gaze strategies; and 2) quantify gaze deception
without knowing the goals. Besides the fixation duration, we use the Euclidean distance
between the ontic-action and the gaze point as another useful feature to formulate honesty
degree. Note that we use the fixation duration as a parameter to measure the honesty
degree of a single intention. On the other hand, we use both the fixation duration and the
distance between the fixation point and the location of ontic-action to calculate the honesty
degree of all intentions at a time step.

We expect a person’s gaze to follow or be close to their source of physical actions, par-
ticularly when people are deliberately performing actions. For example, consider someone
playing a racing car game. They have to concentrate and keep their eyes focus on their
moving car. Based on this, we define the honesty degree based on the distance between the
fixation point and location of the ontic-action:

h(distancet) =
1

1 + eα(distancet−DistanceThreshold)
(18)

where distancet (pixels) is the average distance between the gaze point and the location
of current action at time step t; DistanceThreshold is the distance threshold to ensure that
at the threshold point, the honesty degree is 0.5; and α is also a rate parameter. In our
studies, we chose DistanceThreshold = 150 (pixels) (39.69 mm), and α = 0.05.

The average honesty degree of all intentions based on fixation duration at time step t
is:

h̄(step durationt) =
1

|It|
∑
i∈It

h(step durationi) (19)

where It is a set of all intentions at time step t; h(step durationt) is the honesty degree in
Equation 7 where step durationi represents the accumulated fixation duration of intention
i at time step t, defined as follows:

step durationi =
∑
j∈Gt

durationi,j

where Gt is a set of gaze points up to time step t.
Based on these two expectations around natural gaze behaviours, that is, using the

notions of fixation duration and distance between gaze-point and ontic-action, we define Ht

below that we use to quantify deception.

Ht =

{
h̄(step durationt) (t− t0) < X

min(h̄(step durationt), h(distancet)) Otherwise
(20)

where (t − t0) is the time difference between the beginning of the task (e.g. game) (t0)
and the current time step (t), therefore the distance feature may not be as important to
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(a) The threshold point is (350, 0.5) (b) The threshold point is (150, 0.5)

Figure 5: The rate parameter changes the shape of the sigmoid function

determine the deceptive behaviour during this period. The time of planning is dependant on
the domain and the experience of the agent, that is, X. In our study, we choose X = 2(s).

Note that while Equation 7 represents the honesty degree of one intention at each time
step, Equation 20 defines the honesty degree of all intentions at each time step. We use
Equation 20 to detect and quantify deception by measuring the honesty degree at each time
step. We use Equation 7 for our models defined in Section 3.3 and 3.4.

To quantify deception, we define the deceptive magnitude, which is calculated using the
average degree of honesty of all time steps, defined as follows:

deceptive magnitude = 1− 1

n

n∑
t=1

Ht (21)

where n is the total number of time steps and Ht is Equation 20.

3.6 The Effect of Rate Parameter

Figure 5 shows how changing the rate parameter α affects the shape of the honesty degree.
There is no “optimal” rate parameter α. Based on the purposes of the honesty degree,
changing the rate parameter will not change the results when using the honesty degree as
a measure to detect deception because the threshold of the sigmoid function is always 0.5
regardless the value of the rate parameter. Also, the expected accuracy of DG model and
DGO model will not change. However, it affects the honesty degree to modulate probability
distribution, that is, the measures of MDG model and MDGO model.

4. Experiment Design

In this section, we present the design of our two experiments, which includes data from the
games of two human-subject experiments.
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4.1 Case Study 1: Single-Player Navigational Game

4.1.1 Conditions and game design

In our first case study, we created a straightforward navigational game that required minimal
training of participants, and is based on the VIP problem discussed in Masters and Sardina
(2017b). In this game, players attempt to go to a specific goal from a starting point. They
can move either horizontally or vertically in a grid-based map. All moves cost 1. The
game is designed in JavaScript language and can be played in a web browser1. Each player
plays three rounds with 10 maps per round in the order below. Each round has a specific
instruction that will impact the player’s gaze and ontic strategies. Before the experiment,
the players’ gaze was calibrated using the default calibration of the eye tracker. Therefore,
the players knew that their gaze was being tracked. But they did not know it was being
used to infer their intentions so they had no incentive to deliberately change their gaze
actions. Three study conditions are illustrated as follows:

1. Condition 1 (Natural Gaze + Ontic Action): In the first round, the participants
were told to go to the goal. The condition served as a baseline to record the natural
actions of the player.

2. Condition 2 (Natural Gaze + Deceptive Ontic Action): In the second round,
the participants were told to find the path to the real goal as if they were trying to
deceive an observer who did not know the real goal. At this stage, they were not
aware that their gaze was being tracked and used to infer intentions. Therefore, the
objective of this condition is to record the deceptive path-planning, but with natural
gaze.

3. Condition 3 (Deceptive Gaze + Deceptive Ontic Action): In the third round,
the participants were again told to deceive the path, but also that their gaze was being
tracked and would be used to infer their intentions. Therefore, they would know that
they can manipulate their gaze and intentionally mislead through both ontic moves
and gaze.

4.1.2 Map Design

There are 10 maps per round. The first 5 maps are the same in all three conditions, while
the last 5 maps are different between conditions. In total, we designed 20 different maps.
We varied some map parameters to give non-uniform maps, including:

• number of goals ranges from three to six;

• size of the map is either small (10x10) or big (13x13);

• distance between different goals — the goals are designed to be either close or far
from each other;

• number of obstacles is either none or many; and

1. https://github.com/thaole25/vip-routing
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• number of different ways to reach the goal from the starting point — some maps are
designed to have only one way to achieve the goal.

Each tile is a square of size 58 pixels. The border between two adjacent tiles has a size
of 12 pixels. This gives enough space between tiles to take accurate readings of which tile
people’s gaze was focused on. Figure 1 in the introduction shows one of the simplest maps
used in our experiment.

4.1.3 Case study 1 data collection

The study was conducted in a university lab, with one player in each session. The resolution
of the screen is (1920 x 1080) and the diagonal is approximately 58 cm. Thus, the PPI
is about 96 pixels per inch. The computer is fitted with a Tobii Pro X3-120 eye tracker
(120Hz)2. We also used Tobii Studio software to record the entire study session and generate
the gaze data for later analysis. The log file of gaze contains (x, y) coordinate of the fixation,
the fixation duration and the timestamp of the fixations.

At the beginning of the study, the participant was allocated to the university lab with
one researcher. They were also given a written document of the study and consent form.
Following this, the participants’ eyes were calibrated using default calibration of the eye
tracker and Tobii Studio software. After this, the researcher would give a brief introduction
about the game. The game was started by accessing to an URL in the web browser. There
are three rounds for the game. For each round, the players were requested to play a tutorial
until they understood the game. In this tutorial, before each round (condition), the players
were asked if they understood the requirements of this round (condition) and then a map
was shown (different to other maps in the game) and they were told if they can press the key
(up, down, left, right) to reach the goal. Participants then play a game of three rounds with
10 different maps for each round. During the game session, the moves of the players were
also recorded and stored for later analysis. The movement log file contains (x,y) coordinate
and timestamp of each move. In total, we recruited 30 players (8F/22M) from the same
university, aged between 22 and 35, resulting in 30 (participants) × 10 (games) = 300
(games) in each condition, which makes a total of 900 (data points) for all three conditions.

4.2 Case Study 2: Ticket To Ride Multi-Player Game

In this section, we describe our second study on a multi-player game called Ticket to Ride
(TTR) — a competitive multi-player game in which deception can be used by players to
gain advantages against their opponent.

4.2.1 Ticket to Ride

We employed the use of a multi-player game called Ticket to Ride3 (TTR) to elicit human
intention in a controlled environment, as used in previous works (Newn et al., 2017, 2018;
Singh et al., 2018). A screenshot of this game is shown in Figure 2.

The goal of this game is to build routes between cities across the United States and
southern Canada. At the beginning of the game, the player picks either two or three

2. https://www.tobiipro.com/product-listing/tobii-pro-x3-120/
3. http://www.daysofwonder.com/tickettoride/en/
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Destination Ticket Cards, each of which has a pair of cities that they need to build a route
to connect. In each turn, the player has an option of either draw a new card or place a train
card on the map. When the player finishes a route, he receives points assigned in the ticket
card. Otherwise, he loses the same number of points if he cannot connect the destinations
before the game ends. A player can block their opponent’s route as each route can only be
claimed by one player. Therefore, a player can gain significant advantage by inferring his
opponent’s path. We chose this game as one of our studies because a player can infer his
opponent’s objectives by looking at their gaze.

4.2.2 Case Study 2 Data

The data was collected and used by Newn et al. (2018) and Singh et al. (2020). The
study was conducted in a university lab, with two players in each session. A total of 40
participants were recruited and randomly assigned into 20 pairs of players. At the beginning
of the study, the players were given a written overview of the study and consent form. After
this, participants played the tutorial that comes with the Ticket To Ride game to ensure
they understood the rules. This shows the players where to choose cards, how to place the
card on the route, etc. The map in this tutorial is different from the map on which they
play the real game. Participants then played a short practice round to guarantee that they
are comfortable with the game. Each pair was required to play two rounds of the game
against each other. Each round corresponds to a condition that we want to test. The two
conditions are explained as follows.

1. Condition 1: Natural Gaze: The gaze of the unaware player was tracked. They
were unaware that the gaze was being displayed to their opponent. This condition
was designed to record the natural gaze of the players.

2. Condition 2: Deceptive Gaze: The gaze of the aware player was tracked. Aware
players deliberately altered their gaze and they were aware that their opponent (the
unaware player) could see their gaze. The unaware player was not told that their
gaze was being displayed to the aware player. The objective of this condition was to
record the deceptive gaze when the aware players attempted to manipulate their gaze
behaviour.

In total, we had 40 game data corresponds to 40 participants with an average of 21
minutes per game.

4.3 Independent Variables

We evaluated five models, which are:

1. Deception Gaze (DG): Equation 14, PD(i | Og)

2. Modulated Deception Gaze (MDG): Equation 15, PMDG(i | Og)

3. Deception Gaze+Ontic (DGO): Equation 16, PDGO(i | Oa, Og)

4. Modulated Deception Gaze+Ontic (β = 1) (MDGO): Equation 17, PMDGO(i | Oa, Og)
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5. Modulated Deception Gaze+Modulated Ontic (MDGMO) (with γ = 1 in Equation 1)

We compare the five models with with the three baseline models from Singh et al. (2018):
Ontic (O), Natural Gaze (G) and Natural Gaze+Ontic (GO).

4.4 Measures

To evaluate the results and compare the different models as proposed, we used the following
measures:

1. Accuracy: This evaluates how successful our model is when predicting the real goal
of the player. Accuracy is measured based on two metrics:

• Precision/Recall Curve is the precision against recall plot. We choose this mea-
sure because (1) the output is a probabilistic value, therefore we can measure
the performance of models without a classification threshold and (2) the data are
highly imbalanced between the real and the bogus goals as there is only one real
goal and multiple bogus goals in one map in the first study. Thus, using Pre-
cision/Recall Curve is suitable when we focus on the performance of predicting
the real goal.

• Average ground truth probability is calculated based on the probability of the
real goal at every time step. The formula to calculate this measure is defined as
follows:

ac =
1

|Zc|
∑
z∈Zc

(
1

|Tz|
∑
t∈Tz

P (gr)z,t

)
where ac is the accuracy of condition c, Zc is a set of games in condition c, Tz
is the set of time steps in game z, P (gr)z,t is the probability that the model
assigned to the real goal at time step t in game z.

Note that in the first study, ground truths are the real goals and non ground
truths are the bogus goals. In the second study, ground truths are the routes
of the tracked player that they claim. Non ground truths are all other routes
and other targets, such as opponent’s profile, drawn tickets, drawn cards, own
profile, tickets and possible cards to select from.

2. Inference horizon (Singh et al., 2018): This measures the time in seconds between
when the game ends and when a model begins to return the correct prediction for the
remainder of the game. Higher inference horizon implies earlier prediction.

5. Results

In this section, we present the results from our experiments.

5.1 Single-Player Navigational Game

5.1.1 Accuracy and Inference Horizon

We describe the accuracy summary for all models as shown in Figure 6, 7 and 8. The
results are summarised in Table 1 and the Wilcoxon signed-rank test is shown in Table 3
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Condition 1 Condition 2 Condition 3

PRC Prob PRC Prob PRC Prob

O 0.829 0.62 0.319 0.35 0.427 0.40
MO 0.831 0.57 0.292 0.34 0.398 0.37

G 0.758 0.62 0.423 0.38 0.232 0.24
DG 0.498 0.42 0.350 0.35 0.268 0.28
MDG 0.497 0.43 0.385 0.37 0.326 0.33

GO 0.697 0.64 0.377 0.38 0.284 0.30
DGO 0.775 0.65 0.325 0.38 0.409 0.40
MDGO 0.753 0.64 0.336 0.39 0.425 0.41
MDGMO 0.723 0.60 0.328 0.37 0.388 0.37

Table 1: Accuracy of the navigational game: PRC is the area under the curve of the
precision-recall curve, Prob is the average ground truth probability. Condition 1 = Nat-
ural Gaze, Natural Ontic; Condition 2 = Natural Gaze, Deceptive Ontic; Condition 3 =
Deceptive Gaze, Deceptive Ontic. Winners are highlighted (including the results that are
insignificantly different).

and Table 4. We applied the Wilcoxon signed-rank test for the statistical hypothesis test
because this is a non-parametric test used when the data is not normally distributed. We
tested the data normality using the Shapiro-Wilk test and found that our data was not
normally distributed. More details for the Wilcoxon signed-rank test can be found in
Appendix A.

Table 1 shows the results of all models in the three conditions. Overall, using two metrics
(PRC and the average ground truth probability), we can see that O and MDGO have the
best performance among other models. However, in condition 1 (natural condition), O
model still offers higher accuracy than other models. Moreover, MO model is slightly worse
than O model. Also, MDGMO model does not offer higher accuracy than the MDGO
model.

For more details, in Figure 6, the previous model G performs better in condition 1 and
2 (natural gaze data) than our models. However, our model MDG offers slightly higher area
under the curve (0.326) than G model (0.232) in condition 3. To compare between different
Gaze+Ontic models, as shown in Figure 7, in condition 1 and 2 (natural gaze data), MDGO
performs similarly to GO model. However, in condition 3 (deceptive gaze data), MDGO
has significantly higher area under the curve (auc) value (0.425) compared to GO model
(0.284). When comparing to O model, MDGO model performs similarly in condition 2 and
3 (deceptive ontic data). But MDGO is insignificantly worse than O model when running
on condition 1 with natural ontic data.

Figure 8 shows the average ground truth probability for eight models to evaluate how
different models change the absolute probabilistic value of the real goal. First, we consider
three models for gaze: Natural Gaze (G), Deception Gaze (DG) and Modulated Decep-
tion Gaze (MDG). Our DG offered significantly higher probability (28%) than G (24%)
(p < 0.05, d = 0.25) in predicting the real goal when the gaze behaviour is dishonest in con-
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Figure 6: Case study 1: Precision/Recall Curves in three condition of three models: G =
Natural Gaze, DG = Deception Gaze, MDG = Modulated Deception Gaze. The labels are
the area under the curves (AUCs).
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Figure 7: Case study 1: Precision/Recall Curves in three condition of 6 models: O = On-
tic, MO = Modulated Ontic, GO = Natural Gaze+Ontic, DGO = Deception Gaze+Ontic,
MDGO = Modulated Deception Gaze+Ontic, MDGMO = Modulated Deception Gaze +
Modulated Ontic. The labels are the area under the curves (AUCs).
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Figure 8: Case study 1: Average probability of the ground truth for 9 models in 3 conditions:
O = Ontic, MO = Modulated Ontic, G = Natural Gaze, DG = Deception Gaze, MDG =
Modulated Deception Gaze, GO = Natural Gaze+Ontic, DGO = Deception Gaze+Ontic,
MDGO = Modulated Deception Gaze+Ontic, MDGMO = Modulated Deception Gaze +
Modulated Ontic. The error bars show 95% confidence interval.

dition 3. Moreover, in this condition, our MDG model offered the best probability (33%).
In addition, Wilcoxon signed-rank test shows that this model has significantly better per-
formance than DG model (p < 0.05, d = 0.35) and G (p < 0.05, d = 0.39) in condition 3.
However, MDG performed significantly worse in condition 1 than G and DG. In condition
2, there is insignificant difference in the ground truth probabilistic value between MDG and
G (p = 0.6, d = 0.03). There is also minimal difference between DG and G in condition 2
(p = 0.05, d = 0.12).

Considering four Gaze+Ontic models: Natural Gaze+Ontic (GO), Deception Gaze+Ont-
ic (DGO), Modulated Deception Gaze+Ontic (MDGO) and Modulated Deception Gaze+Mo-
dulated Ontic (MDGMO). Our enhanced models DGO and MDGO did not improve the
ground truth probability in condition 1 and 2, in which we have natural gaze behaviours;
but the differences of these two models with GO in both natural conditions is insignificant
(p > 0.05, d ≤ 0.14). Moreover, MDGO offered significantly better probability (41%) of the
real goal when agents intentionally altered their gaze actions in condition 3 than GO model
(30%). In condition 3, Wilcoxon signed-rank test shows that there is minimal difference
between MDGO (41%) and DGO (40%) (p = 0.01, d = 0.15), also between MDGO and O
(p > 0.05, d = 0.0). Regarding the MDGMO, MDGO offers significantly higher probability
in all conditions (p < 0.05, d ≥ 0.2). Therefore, modulating ontic action by setting γ = 1
in Equation 1 did not improve the results. Overall, Gaze+Ontic models offered a higher
probability than Gaze models in all three conditions, while the Ontic models only offered
higher accuracy than Gaze models in conditions 1 and 3. MO model performs slightly
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Figure 9: Case study 1: Inference horizon of 5 models Ontic (O), Modulated Ontic (MO),
Natural Gaze+Ontic (GO), Modulated Deception Gaze+Ontic (MDGO) and Modulated De-
ception Gaze + Modulated Ontic (MDGMO) in three conditions.

worse than O model and MDGMO also offers lower probability than MDGO in all three
conditions.

Regarding the inference horizon measures, as seen in Figure 9, MDGO returned the
correct prediction significantly earlier than GO in condition 3 (p < 0.05, d = 0.42). In
the second condition, there is no significant difference between these two models (p >
0.05, d = 0.1) because the effect size (d = 0.06) is trivial. Also, when the actions are
honest in condition 1, MDGO is slightly worse than GO (d = 0.1). Comparing with O
model, MDGO predicts the real goal significantly earlier than O model in all conditions
(p < 0.05, d > 0.11). There is no difference between O and MO. Also, MDGMO performs
significantly worse than MDGO model.

In summary, MDGO model improves the accuracy significantly compared to GO model,
which is the previous state-of-the-art gaze-based and ontic-based model. However, MDGO
offers similar accuracy to Ontic model in this case. Regarding the MO and MDGMO model,
they do not perform better than the O and MDGO model. Also, MDGO returns the correct
prediction significantly earlier than all other models. Thus, in this study, gaze is useful to
return the prediction earlier, but not improve the accuracy overall. We will discuss later in
the discussion section on how gaze is useful in different cases.

5.1.2 Gaze Feature Analysis

In this section, we analyse two gaze features empirically: the fixation and the distance
between the gaze point and the ontic action. This analysis aims to back up our claim that
these two features are important to distinguish between natural and deceptive gaze.

719



Le, Singh, & Miller

(a) The average fixation count (b) The average fixation duration

(c) The average distance between the gaze point
and the moving object. (pixels)

(d) The average honesty degree

Figure 10: Gaze Features in three conditions
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Figure 10a and 10b show the fixation count and fixation duration statistics at the real
goal and the bogus goal. Wilcoxon signed-rank test shows that there is no significant
difference of the fixation count and duration at the real goal between condition 1 and 2
(p > 0.05, d < 0.1). This is because the gaze behaviour in these two conditions is natural.
But we can see the significant difference at the bogus goal due to the player must attempt
to plan a deceptive path in condition 2, which influenced the gaze to look at the bogus
goal more often. To compare the natural gaze and deceptive gaze behaviours, we look
for the difference between condition 2 and 3, in which we have the same ontic action.
The fixation count and duration at the real goal is significantly lower for the deceptive
gaze (p < 0.05, d > 0.35); meanwhile, at the bogus goal, these two fixation features are
significantly higher (p < 0.05, d > 0.38). This result shows that the deceptive gaze is using
both simulation (focusing attention on the bogus goal) and dissimulation (avoiding the real
goal) strategy. Masters and Sardina (2017b) and Bell (2003) indicated that simulation
involves dissimulation because focusing on the bogus goal also means avoiding looking at
the real goal.

Regarding the distance between the gaze point and the ontic action in Figure 10c,
the distance of natural gaze in condition 1 and 2 are almost equal (p > 0.05, d = 0.07).
However, the distance of deceptive gaze is significantly greater than the distance of the
natural gaze (p < 0.05, d = 1.19). Thus, distance from gaze point to action is a useful
feature to distinguish between natural and deceptive gaze behaviours.

Figure 10d shows the average honesty degree in three conditions based on Equation 20.
The lower honesty degree implies stronger deceptive strategy. As shown in this figure, the
honesty degree is significantly lower in condition 3 (deceptive gaze) than in condition 1
and 2 (natural gaze). Also, the honesty degree in the deceptive gaze condition is less than
0.5, which is the threshold of the sigmoid function that helps identify the deception. For
further discussion of how the rate parameter α changes the shape of the honesty degree, see
Section 3.6.

5.1.3 Deceptive Gaze Strategies

In our game, we observed three fundamental gaze deception strategies:

• Gaze Scattering: This involves players either scattering the gaze across the entire
screen or all of the goals (destinations).

• Gaze Averting: This strategy is similar to both Gaze Averting and Gaze Camouflage
described by Newn et al. (2018). Players try to avoid looking at the true goal by
looking at the nearby locations, but not at the bogus goal. They used the peripheral
vision or brief glances the true goal to achieve the goal.

• Gaze Misdirection: Here the players fixated on one of the bogus goals, increasing
the probability of the bogus goal.
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Figure 11: Case study 2: Precision/Recall Curves in two condition. 9 models: O = Ontic,
MO = Modulated Ontic, G = Natural Gaze, DG = Deception Gaze, MDG = Modulated
Deception Gaze, GO = Natural Gaze+Ontic, DGO = Deception Gaze+Ontic, MDGO =
Modulated Deception Gaze+Ontic, MDGMO = Modulated Deception Gaze + Modulated
Ontic. The labels are the area under the curves (AUCs).

5.2 Case Study 2: Multi-Player Game

5.2.1 Accuracy and Inference Horizon

In this section, the results are summarised in Table 2. The Wilcoxon signed-rank test is
shown in Table 5 and Table 6. As we can see in this table, MDGO performs significantly
better than other models in both conditions. Also, there is no difference between MDGO
and MDGMO.

For more details, we show the precision-recall curve for all models as in Figure 11.
In both conditions (natural and deceptive gaze), MDGO and MDGMO offer significantly
higher area under the curve (auc) value (0.740 and 0.949) compared to O (0.307 and 0.301)

722



Goal Recognition for Deceptive Human Agents

Figure 12: Case study 2: Average ground truth probability of 9 models in 2 conditions:
O = Ontic, MO = Modulated Ontic, G = Natural Gaze, DG = Deception Gaze, MDG =
Modulated Deception Gaze, GO = Natural Gaze+Ontic, DGO = Deception Gaze+Ontic,
MDGO = Modulated Deception Gaze+Ontic, MDGMO = Modulated Deception Gaze +
Modulated Ontic. The error bars show 95% confidence interval.

Figure 13: Case study 2: Inference Horizon of 9 models in 2 conditions: O = Ontic, MO =
Modulated Ontic, G = Natural Gaze, DG = Deception Gaze, MDG = Modulated Deception
Gaze, GO = Natural Gaze+Ontic, DGO = Deception Gaze+Ontic, MDGO = Modulated
Deception Gaze+Ontic, MDGMO = Modulated Deception Gaze + Modulated Ontic. The
error bars show 95% confidence interval.
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Condition 1 Condition 2

PRC Prob PRC Prob

O 0.307 0.2 0.301 0.12
MO 0.308 0.2 0.301 0.12

G 0.396 0.49 0.307 0.42
DG 0.307 0.5 0.309 0.5
MDG 0.649 0.52 0.921 0.57

GO 0.457 0.49 0.308 0.45
DGO 0.721 0.51 0.800 0.52
MDGO 0.740 0.54 0.949 0.59
MDGMO 0.740 0.54 0.949 0.59

Table 2: Accuracy of the Ticket To Ride game: PRC is the area under the curve of the
precision-recall curve, Prob is the average ground truth probability. Condition 1 = Natural
gaze; Condition 2 = Deceptive gaze. Winners are highlighted (including the results that
are insignificantly different).

and GO (0.457 and 0.308). There is also no difference between O and MO. When comparing
between three Gaze models, MDG performs better than G model. Thus, our proposed
models improve the performance in natural and deceptive gaze conditions.

Figure 12 describes the average ground truth probability for nine models in Ticket to
Ride game. We applied Wilcoxon signed-rank for the statistical hypothesis test. First,
we compare three gaze models: Natural Gaze (G), Deception Gaze (DG) and Modulated
Deception Gaze (MDG). Our MDG model offers significantly higher probability than G
model on deceptive gaze data (p < 0.05, d = 0.99). However, there is no difference between
MDG and G models on natural data (p > 0.05, d = 0.29). Considering four Gaze+Ontic
models, our proposed model MDGO improves significantly the ground truth probability
(59%) compared to GO model (45%) in deceptive condition (p < 0.05, d = 1.03). In natural
condition, there is no significant difference between MDGO model (54%) and GO model
(49%) (p = 0.08 > 0.05, d = 0.39). In both conditions, there is no difference between O and
MO ; also no difference between MDGO and MDGMO.

Considering the inference horizon measures as in Figure 13, there is insignificant differ-
ence between GO and MDGO in condition 1 (p > 0.05). However, MDGO offers signifi-
cant higher inference horizon than GO in condition 2 (p < 0.05). To sum up, our model
MDGO performed significantly better in terms of the accuracy when comparing with Natu-
ral Gaze+Ontic and Ontic models. MDGO also provides the correct prediction significantly
earlier that O model. However, there is no difference in inference horizon between MDGO
and GO and also no difference between MDGMO and MDGO.

What these results further show is the power of using gaze for intention recognition. In
both conditions, the inclusion of gaze data improves both the accuracy and the inference
horizon.
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6. Discussion

The results show that our new model Modulated Deception Gaze+Ontic (MDGO) is robust
on both natural and deceptive data in two case studies. An advantage of our model is that
it does not require data collection in a new domain; instead, we simply need a model of
the link between intentions and gaze, which is straightforward to define. Moreover, our
model provides significantly better accuracy and the inference horizon than the previous
state-of-the-art model (Singh et al., 2018, 2020) in both conditions.

In the first case study, we can see that Gaze+Ontic models do not offer higher accuracy
than Ontic model. So it is fine to just use the Ontic model in this case. On the other hand,
in the second study, Gaze+Ontic models significantly increase the accuracy compared to
Ontic model. Therefore, gaze is a useful feature to improve performance in predicting the
agents’ intentions. The reason for this is because the first study is an easier game, so players
might remember the location of the real goal easily without much effort. Thus, they did
not have to look at the real goal very often, and as a result the fixation score of the real
goal cannot be increased; therefore the probability of this goal cannot be improved when
applying the gaze-based model compared to the Ontic model. In contrast, the second study
is a complex multi-player game and it requires players to find multiple routes on a map.
In this case, remembering the map of North America is a much harder task compared to
remembering a single red cell in the first study. Therefore, a player would have to look at
the correct routes more often, which expose their real goals.

Moreover, gaze data could be useful at the beginning of the game in the first study.
Figure 14 shows the average probability of the ground truth when calculating at a first
fifth of the game. Gaze-based models are significantly better than the Ontic model in all
three conditions. Although Modulated Deception Gaze+Ontic model does not offer a higher
probability than Natural Gaze+Ontic model in the deceptive condition in Figure 14, the
main reason is that most players would alter their gaze later when they are more familiar
with the task. One thing to note is that gaze data are useful in predicting the real goal
earlier in both studies as the inference horizon of gaze-based models is significantly higher
than Ontic model. To sum up, gaze data is useful to infer agents’ intentions in a complex
task requiring them to find their real goals constantly. In a much simpler task, gaze data
is useful at the early stage of the task when combining with the planning model. Also, the
inclusion of gaze data is valuable for recognising intention earlier in both studies.

One drawback of our model is that it depends on two parameters DistanceThreshold
and DurationThreshold. These two measures were selected from the previous work on gaze
behaviour (Qvarfordt, 2017). We then evaluate these two parameters on our collected
data by making the comparisons between honest and deceptive gaze behaviours in terms
of the fixation and distance between the gaze point and the current location of moving
action. We find that the natural gaze behaviour in the first study is close to what was
proposed in Qvarfordt (2017) (i.e. the average fixation duration of a human is around 300
milliseconds). Given that the domain in Qvarfordt (2017) is a different domain, this result
gives empirical support for the use of 300 milliseconds. Also, the fixation count and duration
are significantly different between natural and deceptive gaze. A dishonest person would
extend fixation duration at the bogus goal and avoid looking at the real one. Furthermore,
the distance between the gaze point and the action is significantly greater in deceptive
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Figure 14: Case study 1: Average ground truth probability of 4 models in 2 conditions at a
first fifth of the game: O= Ontic, G = Natural Gaze, GO = Natural Gaze+Ontic, MDGO
= Modulated Deception Gaze+Ontic. The error bars show 95% confidence interval.

behaviour. Based on these results, we argue that the fixation and the distance features are
two important features to distinguish between honest and deceptive gaze behaviour.

7. Conclusion

In this paper, we present a goal recognition model that uses a combination of human plan-
ning and gaze to improve a model-based goal recognition model under deception. Engineers
of intelligent systems could use the enhanced models to predict agents’ intentions with
better accuracy and earlier. This paper is the first investigation that defines probabilistic
computational models for deceptive gaze. Our Modulated Deception Gaze+Ontic model
achieves promising results and it is a significant improvement to the previous proposed
Natural Gaze+Ontic model in deceptive condition. Moreover, the proposed honesty degree
is effective to detect and quantify deception in goal recognition.

In the future, we can apply our models in other domains to further assess the generality
of our models. Moreover, the honesty degree was designed by using a sigmoid function with
a rate parameter α. Currently, there is no approach to find the optimal rate parameter,
but we can research more on this to find the suitable rate parameter based on the task.
Also, we can examine different threshold value of gaze feature (DistanceThreshold and
DurationThreshold) empirically in the honesty degree function to check how the threshold
value affects the results.

Finally, goal recognition models that use ontic actions could be extended to handle
deceptive actions. Given a more accurate ontic goal recognition model, the accuracy of our
combined models should improve too.
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Appendix A. Wilcoxon signed-rank test

Condition 1 Condition 2 Condition 3

G vs. DG

W = 7196.0,Z = −10.23

p = 1.5× 10−24,d = 0.59
W = 19575.0, Z = −2.0
p = 0.046, d = 0.12

W = 16110.0,Z = −4.3

p = 1.71× 10−5,d = 0.25

G vs. MDG

W = 7413.0,Z = −10.08

p = 6.58× 10−24,d = 0.58
W = 21783.0, Z = −0.53
p = 0.60, d = 0.03

W = 12535.0,Z = −6.68

p = 2.44× 10−11,d = 0.39

DG vs. MDG
W = 18427.5,Z = −2.76
p = 0.006,d = 0.16

W = 17278.0,Z = −3.52
p = 0.0004,d = 0.2

W = 13566.0,Z = −5.99

p = 2.08× 10−9,d = 0.35

GO vs. DGO
W = 20440.0, Z = −1.42
p = 0.16, d = 0.08

W = 21921.0, Z = −0.43
p = 0.66, d = 0.03

W = 13372.0,Z = −6.12

p = 9.36× 10−10,d = 0.35

GO vs. MDGO
W = 18924.0,Z = −2.43
p = 0.015,d = 0.14

W = 22474.0, Z = −0.07
p = 0.95, d = 0.0

W = 11517.0,Z = −7.35

p = 1.93× 10−13,d = 0.42

GO vs. MDGMO

W = 15529.0,Z = −4.69

p = 2.79× 10−6,d = 0.27
W = 21294.0, Z = −0.85
p = 0.39, d = 0.05

W = 14683.0,Z = −5.25

p = 1.54× 10−7,d = 0.3

DGO vs. MDGO
W = 21285.5, Z = −0.86
p = 0.39, d = 0.05

W = 18763.5,Z = −2.53
p = 0.01,d = 0.15

W = 18744.0,Z = −2.55
p = 0.01,d = 0.15

DGO vs. MDGMO

W = 11106.5,Z = −7.63

p = 2.41× 10−14,d = 0.44
W = 19665.5, Z = −1.93
p = 0.053, d = 0.11

W = 14690.0,Z = −5.24

p = 1.58× 10−7,d = 0.3

MDGO vs. MDGMO

W = 7661.5,Z = −9.92

p = 3.49× 10−23,d = 0.57

W = 16103.5,Z = −4.3

p = 1.7× 10−5,d = 0.25

W = 9483.5,Z = −8.71

p = 3.15× 10−18,d = 0.5

O vs. MO

W = 5318.5,Z = −11.48

p = 1.71× 10−30,d = 0.66

W = 16153.5,Z = −4.27

p = 1.95× 10−5,d = 0.25

W = 10622.5,Z = −7.95

p = 1.88× 10−15,d = 0.46

O vs. GO

W = 16374.5,Z = −4.12

p = 3.73× 10−5,d = 0.24
W = 19892.5, Z = −1.78
p = 0.07, d = 0.1

W = 13992.0,Z = −5.71

p = 1.14× 10−8,d = 0.33

O vs. DGO

W = 15174.0,Z = −4.92

p = 8.58× 10−7,d = 0.28
W = 18935.0,Z = −2.42
p = 0.015,d = 0.14

W = 18477.0,Z = −2.73
p = 0.006,d = 0.16

O vs. MDGO
W = 17733.0,Z = −3.22
p = 0.001,d = 0.19

W = 17563.0,Z = −3.33
p = 0.0009,d = 0.19

W = 22465.0, Z = −0.07
p = 0.94, d = 0.0

O vs. MDGMO
W = 22341.0, Z = −0.16
p = 0.88, d = 0.01

W = 20396.0, Z = −1.45
p = 0.15, d = 0.08

W = 17185.0,Z = −3.58
p = 0.0003,d = 0.21

MO vs. GO

W = 14526.5,Z = −5.35

p = 8.68× 10−8,d = 0.31
W = 19110.5,Z = −2.3
p = 0.02,d = 0.13

W = 15749.0,Z = −4.54

p = 5.64× 10−6,d = 0.26

MO vs. DGO

W = 10604.0,Z = −7.96

p = 1.71× 10−15,d = 0.46

W = 15442.0,Z = −4.74

p = 2.1× 10−6,d = 0.27
W = 17648.0,Z = −3.28
p = 0.001,d = 0.19

MO vs. MDGO

W = 13556.0,Z = −6.0

p = 2.0× 10−9,d = 0.35

W = 15100.0,Z = −4.97

p = 6.66× 10−7,d = 0.29

W = 16114.0,Z = −4.3

p = 1.73× 10−5,d = 0.25

MO vs. MDGMO
W = 18045.0,Z = −3.01
p = 0.0026,d = 0.17

W = 18833.0,Z = −2.49
p = 0.013,d = 0.14

W = 21124.0, Z = −0.96
p = 0.33, d = 0.06

Table 3: The Wilcoxon signed-rank test of the average probability of the ground truth in
the single-player navigational game. Significant differences (p < 0.05) are highlighted.
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Condition 1 Condition 2 Condition 3

O vs. MO
W = 22575.0, Z = 0.0
p = 1.0, d = 0.0

W = 22575.0, Z = 0.0
p = 1.0, d = 0.0

W = 22575.0, Z = 0.0
p = 1.0, d = 0.0

O vs. GO

W = 16698.5,Z = −3.96

p = 7.65× 10−5,d = 0.23
W = 22562.5, Z = −0.01
p = 0.99, d = 0.0

W = 11656.0,Z = −7.38

p = 1.62× 10−13,d = 0.43

O vs. MDGO
W = 18538.5,Z = −2.72
p = 0.007,d = 0.16

W = 17875.5,Z = −3.19
p = 0.001,d = 0.18

W = 19743.0, Z = −1.95
p = 0.052, d = 0.11

O vs. MDGMO
W = 22386.5, Z = −0.13
p = 0.90, d = 0.01

W = 17100.0,Z = −3.66
p = 0.0003,d = 0.21

W = 14687.5,Z = −5.29

p = 1.24× 10−7,d = 0.31

MO vs. GO

W = 16698.5,Z = −3.96

p = 7.65× 10−5,d = 0.23
W = 22562.5, Z = −0.01
p = 0.99, d = 0.0

W = 11656.0,Z = −7.38

p = 1.62× 10−13,d = 0.43

MO vs. MDGO
W = 18538.5,Z = −2.72
p = 0.007,d = 0.16

W = 17875.5,Z = −3.19
p = 0.001,d = 0.18

W = 19743.0, Z = −1.95
p = 0.052, d = 0.11

MO vs. MDGMO
W = 22386.5, Z = −0.13
p = 0.90, d = 0.01

W = 17100.0,Z = −3.66
p = 0.0003,d = 0.21

W = 14687.5,Z = −5.29

p = 1.24× 10−7,d = 0.31

GO vs. MDGO
W = 19781.5, Z = −1.88
p = 0.06, d = 0.11

W = 19940.5, Z = −1.77
p = 0.08, d = 0.1

W = 11224.5,Z = −7.62

p = 2.60× 10−14,d = 0.44

GO vs. MDGMO

W = 16458.5,Z = −4.11

p = 3.95× 10−5,d = 0.24

W = 16661.0,Z = −3.96

p = 7.63× 10−5,d = 0.23
W = 18669.5,Z = −2.62
p = 0.009,d = 0.15

MDGO vs. MDGMO
W = 18455.5,Z = −2.96
p = 0.003,d = 0.17

W = 11802.0,Z = −7.34

p = 2.17× 10−13,d = 0.42

W = 10812.5,Z = −8.04

p = 9.18× 10−16,d = 0.46

Table 4: The Wilcoxon signed-rank test of the inference horizon in the single-player navi-
gational game. Significant differences (p < 0.05) are highlighted.
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Condition 1 Condition 2

G vs. DG W = 70.0, Z = −1.27, p = 0.20, d = 0.29 W = 0.0,Z = −4.76,p = 1.91× 10−6,d = 1.07

G vs. MDG W = 69.0, Z = −1.31, p = 0.19, d = 0.29 W = 3.0,Z = −4.43,p = 9.54× 10−6,d = 0.99

DG vs. MDG W = 57.0, Z = −1.78, p = 0.08, d = 0.4 W = 17.0,Z = −3.54,p = 0.0004,d = 0.79

GO vs. DGO W = 63.0, Z = −1.54, p = 0.12, d = 0.34 W = 0.0,Z = −4.76,p = 1.91× 10−6,d = 1.07

GO vs. MDGO W = 58.0, Z = −1.74, p = 0.08, d = 0.39 W = 1.0,Z = −4.62,p = 3.81× 10−6,d = 1.03

GO vs. MDGMO W = 59.0, Z = −1.7, p = 0.09, d = 0.38 W = 1.0,Z = −4.62,p = 3.81× 10−6,d = 1.03

DGO vs. MDGO W = 50.0,Z = −2.05,p = 0.04,d = 0.46 W = 18.0,Z = −3.49,p = 0.0005,d = 0.78

DGO vs. MDGMO W = 50.0,Z = −2.05,p = 0.04,d = 0.46 W = 18.0,Z = −3.49,p = 0.0005,d = 0.78

MDGO vs. MDGMO W = 18.0, Z = −0.97, p = 0.33, d = 0.22 W = 6.0, Z = −1.95, p = 0.051, d = 0.44

O vs. MO W = 10.0, Z = −1.12, p = 0.26, d = 0.25 W = 12.0, Z = −0.34, p = 0.74, d = 0.08

O vs. GO W = 16.0,Z = −3.6,p = 0.0003,d = 0.8 W = 10.0,Z = −3.94,p = 8.2× 10−5,d = 0.88

O vs. DGO W = 12.0,Z = −3.82,p = 0.0001,d = 0.85 W = 5.0,Z = −4.28,p = 1.91× 10−5,d = 0.96

O vs. MDGO W = 14.0,Z = −3.71,p = 0.0002,d = 0.83 W = 3.0,Z = −4.43,p = 9.54× 10−6,d = 0.99

O vs. MDGMO W = 15.0,Z = −3.65,p = 0.0003,d = 0.82 W = 3.0,Z = −4.43,p = 9.54× 10−6,d = 0.99

MO vs. GO W = 16.0,Z = −3.6,p = 0.0003,d = 0.8 W = 8.0,Z = −4.07,p = 4.77× 10−5,d = 0.91

MO vs. DGO W = 12.0,Z = −3.82,p = 0.0001,d = 0.85 W = 5.0,Z = −4.28,p = 1.91× 10−5,d = 0.96

MO vs. MDGO W = 14.0,Z = −3.71,p = 0.0002,d = 0.83 W = 5.0,Z = −4.28,p = 1.91× 10−5,d = 0.96

MO vs. MDGMO W = 14.0,Z = −3.71,p = 0.0002,d = 0.83 W = 5.0,Z = −4.28,p = 1.91× 10−5,d = 0.96

Table 5: The Wilcoxon signed-rank test of the average probability of the ground truth in
the multi-player game. Significant differences (p < 0.05) are highlighted.

Condition 1 Condition 2

O vs. MO W = 10.0, Z = −1.12, p = 0.26, d = 0.25 W = 12.0, Z = −0.34, p = 0.74, d = 0.08

O vs. GO W = 16.0,Z = −3.6,p = 0.0003,d = 0.8 W = 10.0,Z = −3.94,p = 8.20× 10−5,d = 0.88

O vs. MDGO W = 14.0,Z = −3.71,p = 0.0002,d = 0.83 W = 3.0,Z = −4.43,p = 9.54× 10−6,d = 0.99

O vs. MDGMO W = 15.0,Z = −3.65,p = 0.0003,d = 0.82 W = 3.0,Z = −4.43,p = 9.54× 10−6,d = 0.99

MO vs. GO W = 16.0,Z = −3.6,p = 0.0003,d = 0.8 W = 8.0,Z = −4.07,p = 4.77× 10−5,d = 0.91

MO vs. MDGO W = 14.0,Z = −3.71,p = 0.0002,d = 0.83 W = 5.0,Z = −4.28,p = 1.91× 10−5,d = 0.96

MO vs. MDGMO W = 14.0,Z = −3.71,p = 0.0002,d = 0.83 W = 5.0,Z = −4.28,p = 1.91× 10−5,d = 0.96

GO vs. MDGO W = 58.0, Z = −1.74, p = 0.08, d = 0.39 W = 1.0,Z = −4.62,p = 3.81× 10−6,d = 1.03

GO vs. MDGMO W = 59.0, Z = −1.7, p = 0.09, d = 0.38 W = 1.0,Z = −4.62,p = 3.81× 10−6,d = 1.03

MDGO vs. MDGMO W = 18.0, Z = −0.97, p = 0.33, d = 0.22 W = 6.0, Z = −1.95, p = 0.051, d = 0.44

Table 6: The Wilcoxon signed-rank test of the inference horizon in the multi-player game.
Significant differences (p < 0.05) are highlighted.
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