Approximating Perfect Recall when Model Checking Strategic Abilities: Theory and Applications

Francesco Belardinelli
Imperial College London, United Kingdom
and Laboratoire IBISC, Université d’Evry, France

Alessio Lomuscio
Imperial College London
United Kingdom

Vadim Malvone
 Télécom Paris
France

Emily Yu
Imperial College London, United Kingdom
and Johannes Kepler University Linz, Austria

Abstract

The model checking problem for multi-agent systems against specifications in the alternating-time temporal logic ATL, hence ATL^*, under perfect recall and imperfect information is known to be undecidable. To tackle this problem, in this paper we investigate a notion of bounded recall under incomplete information. We present a novel three-valued semantics for ATL^* in this setting and analyse the corresponding model checking problem. We show that the three-valued semantics here introduced is an approximation of the classic two-valued semantics for ATL^* in this setting and analyse the corresponding model checking problem. We extend MCMAS, an open-source model checker for ATL and other agent specifications, to incorporate bounded recall; we illustrate its use and present experimental results.

1. Introduction

Alternating-time Temporal Logic (ATL) and its extension ATL^* are widely used formalisms to reason about strategic abilities of autonomous agents in multi-agent systems (Alur et al., 2002). Central to ATL and related formalisms is the notion of the sequence of events a coalition of agents can jointly bring about, or avoid, in a system, irrespective of the actions of the other agents outside the coalition. ATL has been extended in various directions giving rise to even more expressive formalisms, for example, by taking into account continuous time (Knapić et al., 2019), bounded resources (Alechina et al., 2015, 2018), epistemic concepts (Hoek & Wooldridge, 2003; Jamroga, 2004; Lomuscio & Raimondi, 2006; Ágotnás et al., 2015), and beyond.

A key consideration when using expressive specification languages, including ATL, is the computational complexity of the resulting model checking problem. In the case of ATL, this was shown to be $PTIME$-complete under perfect information (Alur et al., 2002). Agents in a multi-agent system (MAS), however, typically operate under imperfect information about
the other agents and the environment. Once imperfect information is assumed, the resulting model checking problem becomes Δ^2_P-complete under memoryless semantics (Jamroga & Dix, 2006), and it is undecidable under perfect recall (Dima & Tiplea, 2011). The latter case is particularly problematic since it hinders the development of any verification toolkit.

Recent approaches have attempted to overcome these difficulties. For instance, if agents can only communicate via broadcasting, decidability can be retained (Belardinelli et al., 2020a). Further, hierarchical systems, where information is shared in a strictly predetermined manner, have also been shown to provide decidable fragments (Berthon et al., 2021). These contributions analyse the verification problem under perfect recall and imperfect information, but they restrict the class of MAS considered. Here we take a different approach: we consider the whole class of MAS, but define an approximation of perfect recall that we call bounded recall. Informally, an agent’s recall is bounded, if in her deliberations she disregards explicit information acquired more than a certain number of timestamps before. Therefore, under n-bounded recall, an agent’s strategy does not depend on her whole history, but only on her last n visited states. This is a natural assumption when reasoning about the abilities of agents in a concrete setting, as opposed to a purely theoretical one. Indeed, similar notions of resource-bounded strategies have been previously investigated in the literature as we discuss in detail below.

Contributions. In this paper we make three main contributions. Firstly, in Section 3 we develop a novel three-valued semantics for ATL^* under bounded recall, which covers perfect recall as well as a limit case. We study the corresponding model checking problem, and analyse the formal properties of three-valued ATL^* against the classic, two-valued, semantics. The main finding of this section is that – in terms of verification – bounded recall provides a provably sound approximation of perfect recall. This is shown in Corollary 2 below, which states that MAS properties under perfect recall can be decided by analysing their bounded recall approximations. Secondly, these theoretical results lay the foundations for a verification procedure for model checking MAS under imperfect information and perfect recall, by iteratively checking bounded recall versions of the same MAS in the three-valued semantics, with increasing amounts of memory. While the algorithm is incomplete in general, we show that if a bound on recall is assumed, it terminates in EXPTIME. Section 5 reports on an implementation of the algorithm, realised by extending MCMAS (Lomuscio et al., 2017), an open-source model checker for MAS, to bounded recall. Thirdly, we define the three-valued model checking procedure for ATL^* in terms of a reduction to two-valued model checking. We deem the translations provided in Section 3 of general interest to reduce the model checking problem for multi-valued logic in general to classic two-valued model checking.

Related Work. We now discuss our work in the context of recent contributions on logic-based languages for the specification and verification of strategic abilities of agents in multi-agent systems (Alur et al., 2002).

Three-valued ATL. Three-valued temporal logics have been extensively explored in the literature on system verification, for example (Bruns & Godefroid, 1999; Godefroid & Jagadeesan, 2003; Ball & Kupferman, 2006; Shoham & Grumberg, 2004; Huth et al., 2004; Huth & Pradhan, 2004), including run-time verification (Bauer et al., 2006, 2007). Our approach differs from that of Bruns & Godefroid (1999); Godefroid & Jagadeesan (2003) in that it is not based on the definition of under- and over-approximations of transition
Approximating Perfect Recall when Model Checking Strategic Abilities

systems. Ball & Kupferman (2006); Shoham & Grumberg (2004) put forward 3-valued abstraction techniques for CTL and the alternating μ-calculus (AP_μ), which assumes that agents have perfect information about their environment; instead, we consider the more complex case of imperfect information and perfect recall.

A related line of work, closely related to the present approach, is the one on three-valued semantics for ATL. Lomuscio & Michaliszyn (2014, 2015) introduce three-valued abstractions for interpreted systems to address the complexity of MAS verification. These investigations were developed further by Belardinelli et al. (2016); Lomuscio & Michaliszyn (2016) by means of predicate abstraction. While we take our inspiration from this line, our present contribution differs significantly. Firstly, the semantics and the underlying classes of systems we study here are different from those by Lomuscio & Michaliszyn (2014, 2015, 2016). Specifically, these works assume non-uniform strategies (Lomuscio & Raimondi, 2006), with significant implications on the decidability and complexity of the corresponding model checking problem. In particular, under non-uniform strategies model checking ATL with imperfect information on interpreted systems is decidable in PTIME both for the memory full and memoryless case (which is the whole point of considering non-uniform strategies). Hence, approximating perfect recall is not an issue in the setting of Lomuscio & Michaliszyn (2014, 2015, 2016). On the contrary, we here consider uniform strategies, as this is the framework commonly used when analysing strategic abilities of agents in MAS and game-theoretical contexts (Jamroga & van der Hoek, 2004). Secondly, the aims of the respective lines are different as we here seek an approximation of perfect recall via bounded recall.

A three-valued semantics for strategic abilities is also used by Belardinelli & Lomuscio (2017). However, similarly to the above, the authors focus on imperfect recall and their ATL operators are interpreted differently from what we do here. More formally, according to Belardinelli & Lomuscio (2017), the falsehood of a formula of type $\langle \langle \Gamma \rangle \rangle \psi$ is given in terms of may-strategies of coalition Γ, whereas we here define it in terms of the strategic abilities of the complement coalition $\bar{\Gamma}$. This is a key feature of our semantics, as it allows us to preserve defined truth values when adding recall (Lemma 2). Furthermore, Belardinelli et al. (2019); Belardinelli & Malvone (2020) present a three-valued semantics for ATL in the context of imperfect information and perfect recall strategies. In particular, the authors present an approximation of imperfect information to recover decidability. On the other hand, in this work we adopt the symmetric point of view by approximating perfect recall.

Multi-valued Logics for Verification. Multi-valued semantics have long been explored in the modal logic literature (Fitting, 1991, 1992). Since the early 2000s, multi-valued temporal logics have been used in the verification of distributed and multi-agent systems. Multi-valued semantics for the verification of specifications expressed in the temporal logic CTL^* was first proposed by Vijzelaar & Fokkink (2017), and then extended to the modal μ-calculus (Gurfinkel & Chechik, 2003; Bruns & Godefroid, 2003; Shoham & Grumberg, 2012; Pan et al., 2016). In this line formulas are interpreted on a possibly infinite algebraic structure, and modal operators correspond to operations on the values in the structure.

A similar approach has also been applied to temporal-epistemic logics for multi-agent systems (Konikowska & Penczek, 2002, 2004, 2006), including ATL^* under imperfect information (Jamroga et al., 2020). However, a key difference w.r.t. our contribution is that
none of the works above mentioned concerns the approximation of perfect recall by using bounded recall.

Bounded Recall. Classic, two-valued bounded recall and bounded strategies have been studied quite extensively in the literature. Ågotnes & Walther (2009) consider strategies according to two different notions of bound: over the set of histories and over the length of histories. In this framework, they show that ATL with bounded memory is strictly more expressive than standard ATL. (Brihaye et al., 2009) extend ATL in two directions: strategy contexts and bounded memory. Then, the model checking problem is proved to be in $EXPSPACE$. Further, Jamroga et al. (2019c,d) define strategies as a list of condition-action rules. Then, the authors present a variant of ATL that makes use of strategy operators with a bound on the size of this list. In these contributions boundedness is studied from an expressiveness and complexity perspective, not as an approximation of perfect recall, which is the main focus of the present work. In some cases, the semantics are incomparable to ours even in a two-valued setting (Ågotnes & Walther, 2009; Brihaye et al., 2009). Finally, approximations to model check ATL under imperfect information (i) have also appeared in the work of Jamroga et al. (2019b) with some significant differences. Jamroga et al. (2019b) consider syntactic approximation, rather than semantical, under the assumption of imperfect recall (r). So, their aim is to improve the performance of model checking ATL_{ir}, rather than approximating an undecidable problem.

Related to the line above, Vester (2013) presents an account of bounded strategies via finite-memory transducers. It is instructive to compare his treatment to ours. We explore this in Section 2.4 where we show that some finite-memory transducers cannot be translated polynomially into our bounded recall strategies and some bounded recall strategies cannot be polynomially recast as transducers. The two accounts are therefore incomparable in general. A further key point of departure is that our notion of bounded recall is intended to provide a basis for an iterative verification procedure for MAS based on a novel three-valued semantics, whereas Vester (2013) focus specifically on the theoretical properties of bounded recall.

Lastly, and unrelated to the above, Deuser & Naumov (2020) study how bounded recall affects the agents’ abilities to execute plans composition. While their logic has the flavour of ATL and strategic concepts, the machinery employed is different from ours and so are the overall goals of the investigation: axiomatisations in their case, verification in ours.

Previous work. This paper builds upon and extends previous contributions by the authors. Belardinelli et al. (2020b) consider bounded recall on interpreted systems but for a temporal epistemic logic, whose temporal part CTL is strictly less expressive than ATL. In that work no notion of bounded recall on strategies is present and the verification algorithms are therefore different. More closely related to this contribution is the work by Belardinelli et al. (2018), where a three-valued semantics for ATL^* was introduced. This article substantially extends the work of Belardinelli et al. (2018) by providing the complexity analysis of the various verification problems studied, full proofs for all main results, and additional details. Moreover, this article contains a reduction from three-valued model checking to the two-valued instance, which is original of this work and a stand-alone contribution in itself. Finally, no implementation was provided by Belardinelli et al. (2018), while here we are able to extend an open-source model checker and evaluate experimentally the performance of the proposed approach.
Structure of the paper. The rest of the paper is organised as follows. In Section 2 we introduce the notion of bounded recall in the context of interpreted systems and ATL*, and compare bounded and perfect recall from the perspective of verification. In Section 3 we present our novel three-valued semantics for bounded and perfect recall, study the corresponding model checking problems, and analyse its formal properties against its classic formulation. Section 5 reports an implementation of the algorithm, realised by extending MCMAS to bounded recall. We conclude in Section 6.

2. Classic Bounded Recall

In this section we introduce a new two-valued semantics for ATL* under imperfect information and bounded recall, based on the standard interpretation of ATL* Alur et al. (2002). Then, we study the complexity of the corresponding model checking problem, and compare it with the case of perfect recall. Hereafter we assume sets $A_g = \{1, \ldots, m\}$ of indices for agents and AP of atomic propositions. Given a set U, \overline{U} denotes its complement. We denote the length of a tuple v of elements as $|v|$, and its ith element either as v_i or $v.i$. Then, let $last(v) = v_{|v|}$ be the last element in v. For $i \leq |v|$, let $v_{\geq i}$ be the suffix $v_i, \ldots, v_{|v|}$ of v starting at v_i and $v_{\leq i}$ the (finite) prefix v_1, \ldots, v_i of v starting at v_1. Finally, $\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$ is the set of positive naturals.

2.1 Interpreted Systems

We follow the presentation of interpreted systems as given by Fagin et al. (1995). We will use them as a semantics for ATL* as originally put forward by Lomuscio & Raimondi (2006), rather than concurrent game structures. Nonetheless, the two accounts are closely related (Goranko & Jamroga, 2004).

Definition 1 (Agent). Given a set A_g of indices for agents, an agent is a tuple $i = \langle L_i, Act_i, P_i, t_i \rangle$ such that

- L_i is the finite set of local states;
- Act_i is the finite set of individual actions;
- $P_i : L_i \rightarrow (2^{Act_i} \setminus \emptyset)$ is the protocol function;
- $t_i : L_i \times ACT \rightarrow L_i$ is the local transition function, where $ACT = Act_1 \times \cdots \times Act_{|A_g|}$ is the set of joint actions, such that for every $l \in L_i$, $a \in ACT$, $t_i(l, a)$ is defined iff $a_i \in P_i(l)$.

By Def. 1 an agent i is situated in some local state $l \in L_i$, which represents the information she has about the current state of the system. At any state she can perform the actions in Act_i according to protocol P_i. A joint action brings about a change in the state of the agent, according to the local transition function t_i. Hereafter, with an abuse of notation, we identify an agent index i with the corresponding agent.

Given set A_g of agents, a global state $s \in \mathcal{G}$ is a tuple $\langle l_1, \ldots, l_{|A_g|} \rangle$ of local states, one for each agent in A_g. Notice that an agent’s protocol and transition function depend only on her local state, which might contain strictly less information than the global state. In
this sense agents have imperfect information about the system. A history \(h \in \mathcal{G}^+ \) is a finite (non-empty) sequence of global states. For \(n \geq 1 \), \(\mathcal{G}^n \) denotes the set of histories of length \(n \), and \(\mathcal{G}^{<1+n} = \bigcup_{1 \leq m \leq n} \mathcal{G}^m \) is the set of histories of length at most \(n \); whereas \(\mathcal{G}^{<\omega} \) denotes the set of all finite histories, that is, \(\mathcal{G}^{<\omega} = \mathcal{G}^+ \).

For every agent \(i \in \mathcal{A}_g \), we define an indistinguishability relation \(\sim_i \) between global states based on the identity of local states, that is, \(s \sim_i s' \) iff \(s_i = s'_i \) (Fagin et al., 1995). This indistinguishability relation is extended to histories in a synchronous, pointwise way, that is, histories \(h, h' \in \mathcal{G}^+ \) are indistinguishable for agent \(i \in \mathcal{A}_g \), or \(h \sim_i h' \), iff (i) \(|h| = |h'| \) and (ii) for every \(j \leq |h| \), \(h_j \sim_i h'_j \).

Definition 2 (IS). An interpreted system is a tuple \(M = (\mathcal{A}_g, s_0, T, \Pi) \), where
- \(\mathcal{A}_g \) is the set of agents;
- \(s_0 \in \mathcal{G} \) is the (global) initial state;
- \(T : \mathcal{G} \times \text{ACT} \rightarrow \mathcal{G} \) is the global transition function such that \(s' = T(s, a) \) iff for every \(i \in \mathcal{A}_g \), \(s'_i = t_i(s_i, a) \);
- \(\Pi : \mathcal{G} \times \text{AP} \rightarrow \{\mathit{tt}, \mathit{ff}\} \) is the (two-valued) labelling function.

Intuitively, an interpreted system describes the interactions of a group \(\mathcal{A}_g \) of agents, starting from the initial state \(s_0 \), according to the transition function \(T \). Notice that \(T \) is defined on state \(s \) for joint action \(a \) iff \(a_i \in P_i(s_i) \) for every \(i \in \mathcal{A}_g \).

2.2 ATL with Bounded Recall

We make use of the Alternating-time Temporal Logic ATL* (Alur et al., 2002) to reason about the strategic abilities of agents in interpreted systems.

Definition 3 (ATL*). State (\(\varphi \)) and path (\(\psi \)) formulas in \(\text{ATL}^* \) are defined as follows, for \(q \in \text{AP} \) and \(\Gamma \subseteq \mathcal{A}_g \):

\[
\varphi ::= q \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle \Gamma \rangle \rangle \psi
\]

\[
\psi ::= \varphi \mid \neg \psi \mid \psi \land \psi \mid X \psi \mid (\psi U \psi)
\]

Formulas in \(\text{ATL}^* \) are all and only the state formulas.

As customary, a formula \(\langle \langle \Gamma \rangle \rangle \psi \) is read as ‘the agents in coalition \(\Gamma \) have a strategy to achieve goal \(\psi \)’. The meaning of \(\text{LTL} \) operators ‘next’ \(X \) and ‘until’ \(U \) is standard (Baier & Katoen, 2008). Operators ‘unavoidable’ \([\Gamma] \), ‘eventually’ \(F \), and ‘always’ \(G \) can be introduced as usual.

Formulas in the ATL fragment of \(\text{ATL}^* \) are obtained from Def. 3 by restricting path formulas \(\psi \) as follows, where \(\varphi \) is a state formula and \(R \) is the release operator\(^1\):

\[
\psi ::= X \varphi \mid (\varphi U \varphi) \mid (\varphi R \varphi)
\]

In the rest of the paper we consider two other relevant fragments of \(\text{ATL}^* \): the existential and universal fragments.

1. Notice that the release operator \(R \) can be defined in \(\text{ATL}^* \) as the dual of until \(U \) (indeed, it does not appear in the syntax of Def. 3), while it must be assumed as a primitive operator in \(\text{ATL} \). We refer to Laroussinie et al. (2008) for more details on this point.
Definition 4. Let $q \in AP$ and $\Gamma \subseteq Ag$. State (φ) and path (ψ) formulas in the existential fragment $\exists ATL^*$ of ATL^* are defined as follows:

\[
\varphi ::= q | \neg q | \varphi \lor \varphi | \varphi \land \varphi | \langle\langle \Gamma \rangle\rangle \psi \\
\psi ::= \varphi | \psi \lor \psi | \psi \land \psi | X \psi | (\psi U \psi) | (\psi R \psi)
\]

Path formulas (ψ) in the universal fragment $\forall ATL^*$ of ATL^* are defined as for $\exists ATL^*$; whereas state formulas (φ) are defined as follows:

\[
\varphi ::= q | \neg q | \varphi \lor \varphi | \varphi \land \varphi | [\Gamma] \psi
\]

By Def. 4 in the existential (resp. universal) fragment, formulas are only of the form $\langle\langle \Gamma \rangle\rangle \psi$ (resp. $[\Gamma] \psi$) or boolean combinations thereof. In particular, operator $[\Gamma]$ (resp. $\langle\langle \Gamma \rangle\rangle$) is no longer definable in the existential (resp. universal) fragment.

Since the behaviour of agents in interpreted systems depends only on their local state, we assume agents employ uniform strategies (Jamroga & van der Hoek, 2004). That is, they perform the same action whenever they have the same information. Moreover, we assume that agents have some bounded recall of the local states visited during an execution. This is formalised as follows.

Definition 5 (Uniform Strategy with Bounded Recall). For $n \in \mathbb{N}^+ \cup \{\omega\}$, a uniform strategy with n-bounded recall for agent $i \in Ag$ is a function $f^a_i : \mathcal{G}^{<1+n} \rightarrow Act_i$ such that for all histories $h, h' \in \mathcal{G}^{<1+n}$, (i) $f^a_i(h) \in P_i(last(h).i)$; and (ii) $h \sim_i h'$ implies $f^a_i(h) = f^a_i(h')$.

By Def. 5 any strategy for agent i has to return actions that are enabled for i. Also, whenever two histories are indistinguishable for agent i, then the same action is returned. Notice that for $n = 1$, we obtain memoryless (or imperfect recall) strategies; whereas for $n = \omega$, $1 + n = \omega$ and we have memoryful (or perfect recall) strategies.

Given an IS M, a path p is an infinite sequence $s_1 s_2 \ldots$ of global states. For a set $F^n_\Gamma = \{f^a_i | i \in \Gamma\}$ of strategies, one for each agent in coalition Γ, a path p is F^n_Γ-compatible iff for every $j > 0$, $p_{j+1} = T(p_j, a)$ for some joint action $a \in ACT$ such that for every $i \in \Gamma$, $a_i = f^a_i(p_1, \ldots, p_j)$ for $j \leq n$, $a_i = f^a_i(p_{j-n}, \ldots, p_j)$ otherwise. Hence, for $n \in \mathbb{N}^+$, n-bounded recall strategies take into account at most the n previously visited states. This modelling choice is meant to account for agents with finite recall of past events (Agotnes & Walther, 2009; Vester, 2013). In particular, any actual implementation of MAS with some sort of recall can only employ bounded recall, for some bound determined by the system’s memory capacity. Finally, let $out(s, F^n_\Gamma)$ be the set of all F^n_Γ-compatible paths starting with some s' such that $s' \sim_i s$ for some agent $i \in \Gamma$.

We can now assign a meaning to ATL^* formulas on interpreted systems based on a semantics with two truth values: ff and tt.

Definition 6 (Satisfaction). Let $n \in \mathbb{N}^+ \cup \{\omega\}$. The two-valued satisfaction relation \models_n^2 for an IS M, state s, path p, and ATL^* formula ϕ is defined as follows:

\[
(M, s) \models_n^2 q \iff \Pi(s, q) = tt \\
(M, s) \models_n^2 \neg \varphi \iff (M, s) \not\models_n^2 \phi
\]
in shell before submitting her guess. The Guesser wins the game if she successfully guesses the

Example 1. We consider a revised version of the Shell Game by Bulling et al. (2014) in

2. Note that: i stands for imperfect information, r stands for memoryless strategies, and R for memoryful

strategies, as introduced by Schobbens (2004).
Figure 1: The IS M for a revisited version of the Shell Game. Here, we consider the general setting in which there are n steps of hiding before the choice of the Guesser.

function and the labelling function are given in Figure 1 for the case of $N = 2$. In particular, each global state is represented as a rectangle where the pair (l_s, l_g) includes the Shuffler’s local state (l_s) and the Guesser’s local state (l_g). Further, in each rectangle, below the pair of local states, we have the true atoms in accordance with the labelling function.

The property “the Guesser has a winning strategy to guess the correct location of the ball” can be represented as follows:

$$\varphi_1 = \langle \langle \text{Guesser} \rangle \rangle F \varphi_{g,\text{win}}$$

where $\varphi_{g,\text{win}} = \bigvee_{i=1}^{N}(\text{guess}_i \land \text{shell}_i)$.

We observe that φ_1 is false w.r.t. memoryless strategies since to make the property true the Guesser is supposed to perform different actions in indistinguishable states. However, the Guesser has a $m + 1$-bounded recall strategy to win the game. More formally, we have that $(M, s_0) \models_2 \varphi_1$ holds iff $n > m$.

Example 2. We consider the simple voting scenario presented by Jamroga et al. (2019a) comprising of ℓ voters, k candidates, and a single coercer. Every voter $i \leq \ell$ votes in
turn for one candidate $j \leq k$ (action $vote_{ij}$), and after casting her ballot, voter i can either give a proof of vote to the coercer (action $give_{ij}$), or refrain from doing so (action n_give_i), assuming the proof is trustworthy. The coercer receives the proof, and decides whether to punish voter i or not (actions $punish_i$ and n_punish_i). The decision is made t timestamps after the proof is submitted by the voter (the coercer delays decision by performing the $wait$ action). More formally, this scenario can be represented as the IS $M = \langle G, s_0, T, \Pi \rangle$, such that $Ag = \{Coercer, Voter_1, \ldots, Voter_\ell\}$, $Act_{Coercer} = \{receive_1, \ldots, receive_\ell, punish_1, \ldots, punish_\ell, n_punish_1, \ldots, n_punish_\ell, wait, I\}$, where by action $receive_i$ the coercer receives the response from voter i, and $Act_{Voter_i} = \{vote_i, \ldots, vote_{ik}, give_i, \ldots, give_{ik}, n_give_i, I\}$, where by action n_give_i the voter i gives no proof, whereas by action $give_{ij}$ voter i gives proof of having voted for candidate j. Finally, I is the idle action. For the sake of clarity, the global transition function and the labelling function are given in Figure 2 in the case with a single voter, two candidates, and one waiting step. In particular, each global state is represented as a rectangle where the pair (l_c, l_v) includes the coercer’s local state (l_c) and the voter’s local state (l_v). Further, in each rectangle, below the pair of local states, we have the atoms in accordance with the labelling function. Note that, since we have a single voter, in Figure 2 we omit the index i for the voter’s actions.

This IS M is useful to analyse the expressive power of bounded-recall strategies. In particular, the property “for each voter i, for all the strategies for voter i, at the next step the coercer has a strategy such that voter i is not punished if she votes for candidate 1 and provides the proof, otherwise she is punished” can be represented as follows:

$$\varphi_3 = \bigwedge_{i=1}^\ell \Box_{\langle Coercer \rangle} F((\text{vote}_{i1} \land n_punish_i) \lor \bigvee_{j=2}^k (\text{vote}_{ij} \land \text{punish}_i) \lor (n_\text{give}_i \land \text{punish}_i))$$

We observe that φ_3 is false w.r.t. memoryless strategies, since for this property to hold, the coercer is supposed to perform two different actions in indistinguishable states (the states connected with dotted lines in Figure 2 are indistinguishable for the coercer). However, the coercer has a $t+1$-bounded recall strategy to win the game, where t is the number of waiting steps. More formally, we have that $(M, s_0) \models 2^n \varphi_3$ holds iff $n > t$.

2.3 Model Checking Bounded Recall

We now analyse the model checking problem for bounded recall within the two-valued semantics, defined as follows.

Definition 7 (Model Checking). The model checking (MC) problem concerns determining whether, given an IS M, ATL^* formula ϕ, bound $n \in \mathbb{N}^+ \cup \{\omega\}$, truth value $v \in \{tt, ff\}$, it is the case that $(M \models 2^n \phi) = v$.

Fix a constant $n \in \mathbb{N}^+ \cup \{\omega\}$, the n-fixed-recall MC problem concerns determining whether, given an IS M, ATL^* formula ϕ, truth value $v \in \{tt, ff\}$, it is the case that $(M \models 2^n \phi) = v$.

906
Approximating Perfect Recall when Model Checking Strategic Abilities

Figure 2: The IS M for the simple voting scenario. We consider the setting of one waiting step before the Coercer makes a decision for punishment. Here, action $*$ represents any action available for the agent.

We show that the model checking ATL with perfect recall (i.e., n-fixed-recall for $n = \omega$) and imperfect information is undecidable.

Theorem 1. The ω-fixed-recall model checking problem for ATL on the two-valued semantics with imperfect information is undecidable.

Proof. Dima & Tiplea (2011) prove that the model checking problem for ATL with perfect recall (i.e., n-fixed-recall for $n = \omega$) over concurrent game structure with imperfect information (iCGS) is undecidable. Then, the result follows from the fact that IS and iCGS can be translated one into the other in polynomial time. Specifically, every IS M induces an iCGS G_M that satisfies exactly the same formulas in ATL^*. For the other direction, given a iCGS G satisfying some non-restrictive condition, called being square by Belardinelli et al. (2020a) (which is fulfilled by the iCGS used in the undecidability proof by Dima & Tiplea...
(2011)), we can extract an IS M_G such that G and M_G satisfy the same formulas in ATL^*. The details of both translations can be found in Belardinelli et al. (2020a).

As an immediate consequence of Theorem 1, model checking ATL^* under the same conditions is also undecidable. We record these results in the following corollary.

Corollary 1. The ω-fixed-recall model checking problem for ATL^* on the two-valued semantics with imperfect information is undecidable.

In contrast we show that model checking ATL^* with bounded recall and imperfect information is decidable.

Theorem 2. For $n \in \mathbb{N}^+$, the model checking problem for ATL^* under n-bounded recall and imperfect information is in EXPTIME. Moreover, the corresponding n-fixed-recall MC problem is PSPACE-complete.

Proof. First, we provide the upper bound for the general case. In particular, given an IS $M = \langle Ag, s_0, T, \Pi \rangle$, a formula φ, and a bound $n \in \mathbb{N}^+$, we describe a labelling algorithm to decide the corresponding model checking instance and we show it to be in EXPTIME. Given an agent $i = \langle L_i, Act_i, P_i, t_i \rangle$ in Ag and $n \in \mathbb{N}^+$, we define a new agent $i' = \langle L_i^{\leq n}, Act_i, P_i', t_i' \rangle$ such that $L_i^{\leq n}$ is the set of sequences h of local states in L_i of length at most n. Then, for every sequence $h \in L_i^{\leq n}$, $a \in P_i'(h)$ iff $a \in P_i(last(h))$. Finally, $h' = t_i'(h, a)$ iff $|h'| = |h| + 1$; for every $j \leq |h|$, $h_j' = h_j$; and $last(h') = t_i(last(h), a)$. Then, consider IS $M' = \text{Inflate}(M, n) = \langle Ag', s_0, T', \Pi' \rangle$, where Ag' is the set of all and only agents i' defined as above from agents $i \in Ag$, and $\Pi'(h, q) = \Pi(last(h), q)$. That is, the states in M' are the histories in M of length at most n, and transitions and assignments in M' mirrors those in M. Clearly, the size $|M'|$ of IS M' defined as the number $|G'|$ of states, is exponential in the size $|M| = |G|$ of the original IS M, that is $M' = |G|^n$. Moreover, by induction on the structure of formulas in ATL^* we can prove the following result:

Lemma 1. For every formula φ in ATL^*, state s in M, and history h in M' such that $last(h) = s$, we have

$$(M, s) \models^2_n \varphi \iff (M', h) \models^2 \varphi$$

The base of induction is immediate as, for $\varphi = q$, $(M, s) \models^2_n \varphi$, iff $\Pi(s, q) = tt = \Pi'(h, q)$, iff $(M', h) \models^2 \varphi$. The inductive cases for Boolean connectives are also immediate. The case of interest is obviously for formulas of type $\varphi = \langle \langle \psi \rangle \rangle \psi'$. In this case, the result follows by the remark that a (uniform) strategy with n-bounded recall defined on states in M is the same as a (uniform) memoryless strategy defined on histories in M'. This completes the proof of the lemma.

By Lemma 1, to determine whether $(M, s) \models^2_n \varphi$, it is sufficient to model check φ on IS $M' = \text{Inflate}(M, n)$ under the assumptions of imperfect information and imperfect recall, as shown in Figure 3. The latter problem is known to be in PSPACE (Schobbens, 2004). Hence, the whole procedure is in EXPTIME, as it is dominated by the construction of IS M'.

On the other hand, if we consider model checking ATL^* for a fixed bound $n \in \mathbb{N}^+$, we obtain a PSPACE upper bound. To prove this, we consider the general procedure provided
Algorithm \(MC(M, \varphi, n) : \)
\[
\begin{align*}
1 & \; M' = \text{Inflate}(M, n) ; \\
2 & \; \text{return } MC_{\text{ATL}}^* (M', \varphi) ;
\end{align*}
\]

Figure 3: Algorithm to decide \(\text{ATL}^* \) Model checking.

above applied for a given bound \(n \). Fixing \(n \), the size of \(M' = |G|^n \) becomes polynomial in the size of the input. This removes the exponential blow-up in the construction of IS \(M' \) from \(M \), and therefore, all we need to consider is the complexity of model checking \(\text{ATL}^* \) formulas under imperfect information and imperfect recall. We know this to be in \(\text{PSPACE} \). As for the lower bound with \(n \) fixed, it follows by the complexity of model checking formulas in linear-time temporal logic (LT(L)), which is known to be \(\text{PSPACE}-hard \).

As regards the \(\text{ATL} \) fragment of \(\text{ATL}^* \), we prove the following result.

Theorem 3. For \(n \in \mathbb{N}^+ \), the model checking problem for \(\text{ATL} \) under \(n \)-bounded recall and imperfect information is in \(\text{EXPTIME} \). Moreover, the corresponding \(n \)-fixed-recall MC problem is \(\Delta^P_2 \)-complete.

Proof. The upper bound for the general case follows immediately from Theorem 2.

As regards the upper bound for \(\text{ATL} \) with a fixed \(n \in \mathbb{N}^+ \), we adapt the proof for \(\text{ATL}^* \) described above. Specifically, model checking \(\text{ATL} \) under imperfect information and imperfect recall is known to be in \(\Delta^P_2 \) (Jamroga & Dix, 2006). This complexity dominates the procedure of inflating and model-checking, once the value \(n \in \mathbb{N}^+ \) has been fixed. As for the lower bound, we can use the same reduction to the problem \(\text{SNSAT}_2 \) of sequential satisfiability as in Jamroga & Dix (2006).

We remark that for \(n \in \mathbb{N}^+ \), the complexity of \(n \)-fixed-recall model checking \(\text{ATL} \) and \(\text{ATL}^* \) with \(n \)-bounded recall (and imperfect information) is the same as for the imperfect recall case, that is, for \(n = 1 \) (Schobbens, 2004; Jamroga & Dix, 2006). Moreover, we provided tight complexity results only for a fixed \(n \). Indeed, here we are mainly interested in the fact that, differently from the case of perfect recall, the model checking problem for bounded recall is decidable, irrespectively of its actual complexity (which we believe to be also \(\text{EXPTIME}-hard \), but outside the scope of the present contribution).

The decidability results above can be the basis of a partial model checking procedure for perfect recall consisting in increasing the bound \(n \) on the recall of agents. However, as the following demonstrates, increasing recall only preserves rather limited fragments of \(\text{ATL}^* \) and may, therefore, only be of limited interest.

Lemma 2. Let \(m, n \in \mathbb{N}^+ \cup \{ \omega \} \) be such that \(m \leq n \); let \(\psi \) be an existential and \(\phi \) an universal formula in \(\text{ATL}^* \). Then,
\[
\begin{align*}
(M, p) \models^2_m \psi & \implies (M, p) \models^2_n \psi \quad (1) \\
(M, p) \not\models^2_m \phi & \implies (M, p) \not\models^2_n \phi \quad (2)
\end{align*}
\]

Proof. The proofs for (1) and (2) are both by induction on the structure of the formula. We only consider the case where the main operator is the strategic modality. The other cases are immediate and thus omitted.
(1) By Def. 6 \((M,s) \models^2_m \langle \Gamma \rangle \psi\) iff for some joint strategy \(F^m_\Gamma\), for all paths \(p \in out(s,F^m_\Gamma)\), \((M,p) \models^2_m \psi\). Given \(F^m_\Gamma\) we construct a set \(F^n_\Gamma\) of \(n\)-bounded recall strategies as follows: for every agent \(i \in \Gamma\) and history \(h \in \mathcal{G}^{<1+n}\), define \(f^m_i(h) = f^n_i(h_{\lfloor \text{length}(h)-m \rfloor}, \ldots, h_{\lfloor |h|\rfloor})\) for \(m < |h|\), \(f^m_i(h) = f^n_i(h)\) otherwise. Notice that each \(f^m_i\) so defined is uniform, provided that \(f^m_i\) is. Given such \(F^n_\Gamma\), we obtain that \(out(s,F^n_\Gamma) = out(s,F^m_\Gamma)\). In particular, for all paths \(p \in out(s,F^n_\Gamma)\), \((M,p) \models^2_n \psi\) implies \((M,p) \models^2_m \psi\) by induction hypothesis, and therefore \((M,s) \models^2_m \langle \Gamma \rangle \psi\).

(2) By Def. 6 \((M,s) \not\models^2_m \langle \Gamma \rangle \phi\) iff for some joint strategy \(F^m_\Gamma\), for all paths \(p \in out(s,F^m_\Gamma)\), \((M,p) \not\models^2_m \phi\). Given \(F^m_\Gamma\) we can construct a set \(F^n_\Gamma\) of strategies as in point (1). Again, each \(f^m_i\) so defined is uniform, provided that \(f^m_i\) is. Given \(F^n_\Gamma\) thus defined, we obtain that \(out(s,F^n_\Gamma) = out(s,F^m_\Gamma)\). In particular, for all paths \(p \in out(s,F^n_\Gamma)\), \((M,p) \not\models^2_m \phi\) implies \((M,p) \not\models^2_n \phi\) by induction hypothesis, and therefore \((M,s) \not\models^2_n \langle \Gamma \rangle \phi\). ∎

By Lemma 2 adding memory preserves the truth of existential formulas as well as falsehood of universal formulas. However, it is not difficult to find counterexamples to the extensions of (1) and (2) even in ATL.

Lemma 3. Let \(m, n \in \mathbb{N}^+ \cup \{\omega\}\) be such that \(m < n\). There exists formulas \(\varphi\) and \(\varphi' = \neg \varphi\) in ATL such that

\[(M,p) \not\models^2_m \varphi\quad \text{and} \quad (M,p) \models^2_n \varphi\quad \text{(3)}\]

\[(M,p) \models^2_m \varphi'\quad \text{and} \quad (M,p) \not\models^2_n \varphi'\quad \text{(4)}\]

Proof. We only provide a proof for (3). Then, (4) follows immediately by considering \(\varphi' = \neg \varphi\). Consider the revisited version of the Shell Game, as described in Example 1. Let \(\varphi = \langle \text{Guesser} \rangle F \varphi_{g, \text{win}}\), where \(\varphi_{g, \text{win}} = \bigvee_{i=1}^{n} (\text{guess}_i \land \text{shell}_i)\) and \(m, n \in \mathbb{N}^+ \cup \{\omega\}\) with \(m < M + 1 \leq n\). Clearly, the Guesser has no \(m\)-bounded recall strategy to win the game, but she has a \(n\)-bounded recall strategy. ∎

By Lemmas 2 and 3 any naive attempt to approximate perfect recall by increasing bounded recall is severely restricted in two ways. Firstly, Lemma 2 holds only for the existential and universal fragments of ATL*. Secondly, only the truth of existential formulas is preserved by adding memory, whereas negative results can only be lifted for the universal fragment. In Section 3, we present a three-valued semantics to overcome these difficulties.

2.4 A Comparison between Bounded Recall and Deterministic Finite-State Transducers

The treatment of strategies with finite memory was put forward by Vester (2013). We here compare that approach to the one here pursued. Vester (2013) represents finite-memory strategies as deterministic finite-state transducers (DFST) \(^3\).

We show that bounded strategies and DFST cannot always be translated (polynomially) into the other; hence, the two formalisms are orthogonal. We begin by introducing the definition of DFST, but refer to Vester (2013) for more details.

\(^3\) We remark that the structures defined as DFST by Vester (2013) are actually Mealy machines. For clarity, we keep the original terminology in this section, as Mealy machines are particular versions of DFSTs. This slight looseness of terminology does not affect the validity of the results presented.
Definition 8 (DFST). A deterministic finite-state transducers is a tuple $D = \langle V, v_0, In, Out, F_{in}, F_{out} \rangle$, where

- V is a finite non-empty set of states, with initial state v_0;
- In is the input alphabet;
- Out is the output alphabet;
- $F_{in} : V \times In \rightarrow V$ is the transition function;
- $F_{out} : V \times In \rightarrow Out$ is the output function.

When strategies are represented as DFST, the set V of states can be seen as the possible values of the internal memory of the strategy, and the initial state v_0 corresponds to the initial memory value. The input symbols in In are the states of the interpreted system, and the output symbols in Out are its actions. In each round of the strategy execution the DFST reads the current state. Then, it updates its memory based on the current memory value and the input state according to F_{in}. Finally, it outputs an action based on the current memory value and the input state according to F_{out}.

A function $\sigma : \mathcal{G}^+ \rightarrow Act$ is a finite-memory strategy if there exists a DFST such that for all histories $h \in \mathcal{G}^+$:

$$\sigma(h) = F_{out}(G(v_0, h_{\leq|h|-1}), last(h))$$

where for every state v and history h, function G is defined recursively as follows:

$$G(v, h) = \begin{cases} F_{in}(v, h) & \text{for } |h| = 1; \\ F_{in}(G(v, h_{\leq|h|-1}), last(h)) & \text{otherwise.} \end{cases}$$

That is, G is the function that repeatedly applies the transition function F_{in} on a sequence of inputs to calculate the state of the DFST after reading a given history h.

We now compare formally our definition of bounded strategy with finite-memory strategies given via DFST. Hereafter we say that two strategies (possibly given via DFST) are equivalent if they correspond to the same function $\sigma : \mathcal{G}^+ \rightarrow Act$. In the rest of this section we say that an IS M is non-trivial if some agent has at least two states and two actions.

Proposition 1. Given a non-trivial IS M, for every bound $n \in \mathbb{N}^+$, there exists some DFST D for which there is no equivalent strategy with $g(n)$-bounded memory, for any polynomial function g.

Proof. We construct a DFST D such that for some history h of length exponential in n, and different states s, s' in M, it is the case that $F_{out}(G(v_0, s \cdot h_{\leq|h|-1}), last(h)) \neq F_{out}(G(v_0, s' \cdot h_{\leq|h|-1}), last(h))$. Specifically, consider the DFST $D = \langle \{v_0, v_1, v_2\}, v_0, S, Act, F_{in}, F_{out} \rangle$ such that:

1. for all $\bar{s} \in \mathcal{G} \setminus \{s, s'\}$, $F_{in}(v_0, \bar{s}) = v_0$;
2. $F_{in}(v_0, s) = v_1$ and $F_{in}(v_0, s') = v_2$;
3. for all \(\bar{s} \in \mathcal{G}\), \(F_{in}(v_1, \bar{s}) = v_1\) and \(F_{in}(v_2, \bar{s}) = v_2\);

4. for all \(\bar{s} \in \mathcal{G}\), \(F_{out}(v_1, \bar{s}) = a\) and \(F_{out}(v_2, \bar{s}) = b\), where \(a, b \in Act\) and \(a \neq b\) (these exists as \(M\) is non-trivial by assumption).

By the construction above, we ensure that \(F_{out}(G(v_0, s \cdot h_{|h| - 1}, last(h)) \neq F_{out}(G(v_0, s' \cdot h_{|h| - 1}, last(h))\). In fact, by (1) from the initial state \(v_0\) of \(D\) by reading \(s\) (resp., \(s'\), the DFST \(D\) goes in \(v_1\) (resp., \(v_2\)). By (2), from \(v_1\) (resp., \(v_2\)) by reading any state of the IS, \(D\) stays on \(v_1\) (resp., \(v_2\)). By (3), we have \(F_{out}(G(v_0, s \cdot h_{|h| - 1}, last(h)) = a\) and \(F_{out}(G(v_0, s \cdot h_{|h| - 1}, last(h)) = b\), and therefore \(F_{out}(G(v_0, s \cdot h_{|h| - 1}, last(h)) \neq F_{out}(G(v_0, s' \cdot h_{|h| - 1}, last(h))\) as required.

However, this memory-bounded strategy cannot be captured by any strategy whose recall is bounded by some polynomial \(g(n)\). In fact, by hypothesis history \(h\) is exponential in \(n\), and since any bounded-recall strategy only considers the last \(g(n)\) states of histories \(s \cdot h\) and \(s' \cdot h\) respectively at most, then it returns the same action for both of them. \(\square\)

As regards translating bounded-recall strategies into DFST we have the following result.

Proposition 2. Given a non-trivial IS \(M\), for every bound \(n \in \mathbb{N}\), there exists some \(n\)-bounded recall strategy \(f\) for which there is no equivalent DFST with \(g(n)\) states, for any polynomial function \(g\).

Proof. We provide a proof by contradiction. Given an \(n\)-bounded recall strategy \(f\), suppose that we can always construct a DFST \(D\) with \(m\) states, where \(m < |S|^n - 1\). In particular, by considering all the possible \(|S|^n\) histories of length \(n\) in \(M\) \(4\), by the pigeonhole principle there are at least two different histories \(h\) and \(h'\) in \(\mathcal{G}^n\), in which at some points \(k, j \leq n\), the function \(G\) returns the same state of memory, that is, \(G(v_0, h_{|j|}) = G(v_0, h'_{|j|})\).

Suppose further that \(h_j = h'_j\), then we have that \(F_{out}(G(v_0, h_{|j - 1|}, h_j) = F_{out}(G(v_0, h'_{|j - 1|}, h'_j)\), that is, the same action is returned when reading histories \(h_{|j|}\) and \(h'_{|j|}\). Since we supposed that our strategies have \(n\)-bounded recall, then w.l.o.g. we can assume that \(f\) assigns different actions to \(h_{|j|}\) and \(h'_{|j|}\). But this contradicts the fact that \(m < |S|^n - 1\) states of memory in a DFST are sufficient to describe a \(n\)-bounded strategy. \(\square\)

In other words, Proposition 2 states that an \(n\)-bounded strategy can in principle return a different action for every history of length \(n\), that is, \(|S|^n\) different actions. But to do this in a DFST \(D\), we might need \(|S|^n\) states.

Intuitively, Propositions 1 and 2 lead to the following observations. While DFST can be seen as representing strategies with finite memory, bounded strategies as here introduced express recall. Memory and recall are related, but orthogonal notions.

3. Three-Valued Bounded Recall

In Section 2 we remarked that model checking \(ATL^*\) under imperfect information and perfect recall is undecidable in general (Dima & Tiplea, 2011). Moreover, any naive attempt to approximate perfect recall by increasing bounded recall is severely restricted by the results

4. Note that, in a non-trivial IS we have \(|S|^n\) different histories of length \(n\), this is because we define histories as any sequence of states, without considering the transition function (see Subsection 2.1).
in Lemma 2 and 3 in two dimensions. Firstly, Lemma 2 holds only for the existential and universal fragments of \(\text{ATL}^* \). Secondly, only the truth of existential formulas is preserved by adding memory, whereas negative results can only be lifted for the universal fragment.

To tackle these issues, in this section we lay the theoretical foundations of a partial model checking procedure based on a three-valued semantics. The procedure is partial as in some cases it returns “undefined” (\(\text{uu} \)) as truth value. On the other hand, differently from Lemma 2, the satisfaction of all \(\text{ATL}^* \) formulas is preserved by adding memory.

3.1 Three-Valued ATL with Bounded Recall

We start by providing the three-valued satisfaction relation for \(\text{ATL}^* \), where we consider a third truth value \(\text{uu} \) ‘undefined’, besides truth \(\text{tt} \) and falsehood \(\text{ff} \).

First of all, in the rest of the paper we consider an interpreted system as a tuple \(\text{M} = (\text{Ag}, s_0, T, \Pi) \), where \(\text{Ag} \), \(s_0 \), and \(T \) are defined as in Def. 2, whereas a labelling is now a function \(\Pi : \mathcal{G} \times \text{AP} \to \{\text{tt}, \text{ff}, \text{uu}\} \). Notice that an IS \(\text{M} \) according to Def. 2 is in particular an IS as here defined, simply all atoms are either true or false.

Definition 9 (Three-valued Satisfaction). Let \(n \in \mathbb{N}^+ \cup \{\omega\} \). The three-valued satisfaction relation \(\models^3_n \) for an IS \(\text{M} \), state \(s \), path \(p \), \(\text{ATL}^* \) formula \(\psi \), and \(v \in \{\text{tt}, \text{ff}\} \) is defined as follows, where \(\neg \text{tt} = \text{ff} \) and \(\neg \text{ff} = \text{tt} \):

\[
\begin{align*}
(M, s) &\models^3_n q = v \quad \text{iff} \quad \Pi(s, q) = v \\
(M, s) &\models^3_n \neg \varphi = v \quad \text{iff} \quad ((M, s) \models^3_n \varphi) = \neg v \\
(M, s) &\models^3_n \varphi \land \varphi' = \text{tt} \quad \text{iff} \quad ((M, s) \models^3_n \varphi) = \text{tt} \quad \text{and} \quad ((M, s) \models^3_n \varphi') = \text{tt} \\
(M, s) &\models^3_n \varphi \lor \varphi' = \text{ff} \quad \text{iff} \quad ((M, s) \models^3_n \varphi) = \text{ff} \quad \text{or} \quad ((M, s) \models^3_n \varphi') = \text{ff} \\
(M, s) &\models^3_n X \psi = \text{tt} \quad \text{iff} \quad (M, p) \models^3_n \psi = \text{ff} \\
(M, s) &\models^3_n u \psi' = \text{ff} \quad \text{iff} \quad (M, p) \models^3_n \psi = \text{ff} \\
(M, s) &\models^3_n [\Gamma] \psi = \text{tt} \quad \text{iff} \quad \text{for some } k \geq 1, ((M, p_{\geq k}) \models^3_n \psi') = \text{tt} \quad \text{and} \quad \text{for all } j, 1 \leq j < k \text{ implies } ((M, p_{\geq j}) \models^3_n \psi) = \text{tt} \\
(M, s) &\models^3_n [\Gamma] \psi = \text{ff} \quad \text{iff} \quad \text{for all } k \geq 1, \text{ either } ((M, p_{\geq k}) \models^3_n \psi') = \text{ff} \quad \text{or for some } j, 1 \leq j < k \text{ and } ((M, p_{\geq j}) \models^3_n \psi) = \text{ff}.
\end{align*}
\]

In all other cases the value of \(\psi \) is undefined (\(\text{uu} \)).

For clarity, we also state the derived meaning of formulas \([\Gamma] \psi ::= \neg \langle \Gamma \rangle \neg \psi \):

\[
\begin{align*}
(M, s) &\models^3_n [\Gamma] \psi = \text{tt} \quad \text{iff} \quad \text{for some } F^s_1, \text{ for all } p \in \text{out}(s, F^s_1), (M, s) \models^3_n \psi = \text{tt} \\
(M, s) &\models^3_n [\Gamma] \psi = \text{ff} \quad \text{iff} \quad \text{for some } F^s_1, \text{ for all } p \in \text{out}(s, F^s_1), (M, s) \models^3_n \psi = \text{ff} \\
\end{align*}
\]

Notice that all clauses for the three-valued semantics mirror the corresponding two-valued clauses, with a notable exception: for \(\langle \Gamma \rangle \psi \) to be false we require the existence of a joint strategy for the complement coalition \(\bar{\Gamma} = \text{Ag} \setminus \Gamma \) that enforces \(\psi \) to be false. Similar conditions have previously been proposed (Lomuscio & Michaliszyn, 2014). It is a stronger...
requirement than the usual clause on the coalition Γ not being able to enforce ψ (see Def. 6). However, it has the advantage of being preserved when adding memory, as it will become apparent in Lemma 7. Further, as for the two-valued semantics, we normally refer to the cases for $n = 1$ and $n = \omega$ as imperfect, resp. perfect, recall. Also notice that, as regards the Boolean operators, our semantics correspond to Kleene’s three-valued logic.

We say that formula φ is true (resp. false) in an IS M (for n-bounded recall), or $(M \models_n^3 \varphi) = \text{tt}$ (resp. ff), iff $((M, s_0) \models_n^3 \varphi) = \text{tt}$ (resp. ff); otherwise φ is undefined. Again, we observe that Def. 9 corresponds to the subjective, three-valued interpretation of ATL *. The corresponding objective semantics can be obtained with minor modification, but it is beyond the scope of the present contribution.

We immediately prove that the three-valued notion of satisfaction in Def. 9 is an extension of the two-valued relation in Def. 6, in the sense that truth and falsehood in the three-valued semantics correspond respectively to truth and falsehood in the two-valued one.

Lemma 4. For every $n \in \mathbb{N}^+ \cup \{\omega\}$, formula ϕ in ATL *,

\[
((M, s) \models_n^3 \phi) = \text{tt} \quad \Rightarrow \quad (M, s) \models_n^2 \phi \quad (5)
\]

\[
((M, s) \models_n^3 \phi) = \text{ff} \quad \Rightarrow \quad (M, s) \not\models_n^2 \phi \quad (6)
\]

Proof. The proofs for both (5) and (6) are by simultaneous induction on the structure of the formula. We present the case where the main operator is the strategic modality. The cases for the other operators are immediate.

(5) By Def. 9 $((M, s) \models_n^3 \langle\Gamma\rangle\psi) = \text{tt}$ iff for some joint strategy F^n_Γ, for all paths $p \in \text{out}(s, F^n_\Gamma), ((M, p) \models_n^3 \psi) = \text{tt}$. Fix such a joint strategy F^n_Γ. By induction hypothesis we obtain that for all paths $p \in \text{out}(s, F^n_\Gamma), (M, p) \not\models_n^2 \psi$. Then, $(M, s) \not\models_n^2 \langle\Gamma\rangle\psi$ as required.

(6) By Def. 9 $((M, s) \models_n^3 \langle\Gamma\rangle\psi) = \text{ff}$ iff for some joint strategy F^n_Γ, for all paths $p \in \text{out}(s, F^n_\Gamma), ((M, p) \models_n^3 \psi) = \text{ff}$. Fix such a joint strategy F^n_Γ. By induction hypothesis we obtain that for all paths $p \in \text{out}(s, F^n_\Gamma), (M, p) \not\models_n^2 \psi$. In particular, for every joint strategy F^\ast_Γ we can construct some path $p' \in \text{out}(s, F^n_\Gamma)$ (which is obtained when coalition Γ plays according to F^n_Γ) such that $(M, p') \not\models_n^2 \psi$ by hypothesis. As a result, $(M, s) \not\models_n^2 \langle\Gamma\rangle\psi$. \(\square\)

On the other hand, the three-valued semantics is not a conservative extension of the two-valued one, in the sense that truth and falsehood in the two-valued semantics might sometimes correspond to undefined uu in the three-valued one. Specifically, the following lemma provides counterexamples to the converse of (5) and (6).

Lemma 5. For $n \in \mathbb{N}^+ \cup \{\omega\}$, there exists an IS M with state s, and ATL formulas φ and $\varphi' = \neg \varphi$ such that

\[
(M, s) \not\models_n^2 \varphi \quad \text{and} \quad ((M, s) \models_n^3 \varphi) = \text{uu} \quad (7)
\]

\[
(M, s) \not\models_n^2 \varphi' \quad \text{and} \quad ((M, s) \models_n^3 \varphi') = \text{uu} \quad (8)
\]

Proof. As regards (7) consider again the Shell Game with n hidden steps presented in Example 1. We remarked therein that $\langle\langle \text{Guesser}\rangle\rangle F\varphi_{g,\text{win}}$, where $\varphi_{g,\text{win}} = \bigvee_{i=1}^{N}(\text{guess}_i \land \ldots)$.
Approximating Perfect Recall when Model Checking Strategic Abilities

shell_i), is false in the n-bounded, two-valued semantics, and therefore \((M, s_1) \models^2_n \varphi\), for \(\varphi = \neg(\langle\langle \text{Guesser} \rangle\rangle F \varphi_{\text{g,win}})\). However, in the same game the Shuffler has no n-bounded strategy to enforce the Guesser to lose, that is, \(((M, s) \models^3_n \langle\langle \text{Guesser} \rangle\rangle F \varphi_{\text{g,win}}) \neq \text{ff}\) (actually, the value is uu), and therefore \(((M, s_1) \models^3_n \varphi) = \text{uu}\).

To check (8) it is sufficient to take \(\varphi' = \neg \varphi\). Then, \((M, s_1) \not\models^2_n \varphi'\) and \(((M, s_1) \models^3_n \varphi') = \text{uu}\).

By Lemma 4 and 5 the three-valued semantics can be thought of as an approximation of the two-valued one, as defined truth values in the former correspond to the same values in the latter, but not always vice versa.

3.2 The Complexity of Model Checking

We now analyse the model checking problem for the three-valued semantics.

Definition 10 (Three-valued Model Checking). The *model checking (MC) problem* concerns determining whether, given an IS \(M\), \(ATL^*\) formula \(\phi\), bound \(n \in \mathbb{N}^+ \cup \{\omega\}\), truth value \(v \in \{\text{tt, ff, uu}\}\), it is the case that \((M \models^3_n \phi) = v\).

Fix a constant \(n \in \mathbb{N}^+ \cup \{\omega\}\), the *n-fixed-recall MC problem* concerns determining whether, given an IS \(M\), \(ATL^*\) formula \(\phi\), truth value \(v \in \{\text{tt, ff, uu}\}\), it is the case that \((M \models^3_n \phi) = v\).

Similarly as in the two-valued semantics, we immediately obtain the following undecidability result.

Theorem 4. The \(\omega\)-fixed-recall model checking problem for \(ATL\) on the three-valued semantics with imperfect information is undecidable.

Proof. The proof again follows by adapting the undecidability result by Dima & Tiplea (2011), which makes use of the \(ATL\) formula \(\varphi = \langle\langle \{1, 2\}\rangle\rangle \text{Gok}\) to express that a Turing machine does not halt on the empty word. Specifically, we observe that the two- and three-valued interpretations coincide for this particular formula \(\varphi\) on the iCGS \(M_T\) introduced by Dima & Tiplea (2011) to represent the execution of a Turing machine \(T\). That is, we have that \((M_T \models^3_\omega \varphi) = \text{tt}\) iff \(M_T \models^2_\omega \varphi\). Indeed, the value of atom \(\text{ok}\) is always defined, and the structure of the clauses for operator \(\langle\langle \{1, 2\}\rangle\rangle\) being true is the same in the two- and three-valued semantics. As a consequence, we obtain that a Turing machine \(T\) does not halt on the empty word iff \((M_T \models^3_\omega \varphi) = \text{tt}\).

Given the above, note that the MC problem is also undecidable.

By Theorem 4, model checking \(ATL^*\) under the same assumptions is also undecidable. But again, by assuming bounded recall we retrieve decidability. To present this result, we make use of two auxiliary procedures to update the model and the formula, in order to handle three-valued atoms. In particular, given a model \(M\) we use the procedure \(\text{Duplicate atoms}(M)\) to produce a new model \(M'\) that differs from \(M\) as for atoms and the labeling function as follows:

1. For each atom \(q \in AP\), the procedure generates two new atoms \(q_{\text{tt}}\) and \(q_{\text{ff}}\) and add them to the new set of atoms \(AP' = \{q_{\text{tt}}, q_{\text{ff}} \mid q \in AP\}\).

915
Algorithm Transl(\(\varphi, v\)):

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch((\varphi))</td>
</tr>
<tr>
<td>2</td>
<td>case (\varphi = q):</td>
</tr>
<tr>
<td>3</td>
<td>switch((v))</td>
</tr>
<tr>
<td>4</td>
<td>case (v = tt): return (q_{tt});</td>
</tr>
<tr>
<td>5</td>
<td>case (v = ff): return (q_{ff});</td>
</tr>
<tr>
<td>6</td>
<td>case (\varphi = \neg \varphi'):</td>
</tr>
<tr>
<td>7</td>
<td>switch((v))</td>
</tr>
<tr>
<td>8</td>
<td>case (v = tt): return Transl((\varphi', ff));</td>
</tr>
<tr>
<td>9</td>
<td>case (v = ff): return Transl((\varphi', tt));</td>
</tr>
<tr>
<td>10</td>
<td>case (\varphi = \varphi' \land \varphi''):</td>
</tr>
<tr>
<td>11</td>
<td>switch((v))</td>
</tr>
<tr>
<td>12</td>
<td>case (v = tt): return Transl((\varphi', tt)) \land Transl((\varphi'', tt));</td>
</tr>
<tr>
<td>13</td>
<td>case (v = ff): return Transl((\varphi', ff)) \lor Transl((\varphi'', ff));</td>
</tr>
<tr>
<td>14</td>
<td>case (\varphi = \LTL{\Gamma}\psi):</td>
</tr>
<tr>
<td>15</td>
<td>switch((v))</td>
</tr>
<tr>
<td>16</td>
<td>case (v = tt): return (\LTL{\Gamma}) Transl((\psi, tt));</td>
</tr>
<tr>
<td>17</td>
<td>case (v = ff): return (\LTL{\Gamma}) Transl((\psi, ff));</td>
</tr>
<tr>
<td>18</td>
<td>case (\varphi = X\psi):</td>
</tr>
<tr>
<td>19</td>
<td>switch((v))</td>
</tr>
<tr>
<td>20</td>
<td>case (v = tt): return (X) Transl((\psi, tt));</td>
</tr>
<tr>
<td>21</td>
<td>case (v = ff): return (X) Transl((\psi, ff));</td>
</tr>
<tr>
<td>22</td>
<td>case (\varphi = \psi U \psi'):</td>
</tr>
<tr>
<td>23</td>
<td>switch((v))</td>
</tr>
<tr>
<td>24</td>
<td>case (v = tt): return Transl((\psi, tt)) (U) Transl((\psi', tt));</td>
</tr>
<tr>
<td>25</td>
<td>case (v = ff): return Transl((\psi, ff)) (R) Transl((\psi', ff));</td>
</tr>
<tr>
<td>26</td>
<td>case (\varphi = \psi R \psi'):</td>
</tr>
<tr>
<td>27</td>
<td>switch((v))</td>
</tr>
<tr>
<td>28</td>
<td>case (v = tt): return Transl((\psi, tt)) (R) Transl((\psi', tt));</td>
</tr>
<tr>
<td>29</td>
<td>case (v = ff): return Transl((\psi, ff)) (U) Transl((\psi', ff));</td>
</tr>
</tbody>
</table>

Figure 4: Translation of a formula \(\varphi\) to verify the truth value \(v\).

2. For each state \(s \in \mathcal{G}\), the procedure defines the labeling function \(\Pi'\) on \(s\) as \(\Pi'(s) = \{ q_{tt} \mid q \in \mathcal{AP} \) and \(q \in \Pi(s) \}\) \cup \{ q_{ff} \mid q \in \mathcal{AP} \) and \(q \not\in \Pi(s) \}\).

Since the following results are not dependent on a particular bound \(n \in \mathbb{N}^+ \cup \{\omega\}\) assumed, in the following we fix \(n\) and omit it.

As regards the formula update, in Figure 4 we present an algorithm that, given an \(\textit{ATL}^*\)-formula \(\varphi\) on \(\mathcal{AP}\) and a truth value \(v\), returns a new formula \(\text{Transl}(\varphi, v)\) on \(\mathcal{AP}'\), which handles the new atoms generated by \texttt{Duplicate_atoms()}. Intuitively, the procedures above are meant to reduce model checking the three-valued semantics for \(\textit{ATL}^*\) to model checking two-valued semantics. To this end, we prove the following result.
Lemma 6. Given an IS M and ATL^* formula φ, let $M' = \text{Duplicate}_{\text{atoms}}(M)$, $\varphi_{tt} = \text{Transl}(\varphi, tt)$, and $\varphi_{ff} = \text{Transl}(\varphi, ff)$. Then, we have that:

\[
\begin{align*}
(M', s) \models^2 \varphi_{tt} & \iff ((M, s) \models^3 \varphi) = \text{tt} \quad (9) \\
(M', s) \models^2 \varphi_{ff} & \iff ((M, s) \models^3 \varphi) = \text{ff} \quad (10) \\
(M', s) \models^2 \neg(\varphi_{tt} \lor \varphi_{ff}) & \iff ((M, s) \models^3 \varphi) = \text{uu} \quad (11)
\end{align*}
\]

Proof. The proofs of (9) and (10) are by mutual induction on the structure of formula φ. For the inductive steps, we do not present the case where the main operator is a temporal modal. For the latter operators, the cases are immediate.

(9) Base case. For $\varphi = q$ and $\varphi_{tt} = q_{tt}$, $(M', s) \models^2 \varphi_{tt}$ iff $\Pi'(s, q_{tt}) = \text{tt}$ by Def. 6. By point (2) in the definition of $\text{Duplicate}_{\text{atoms}}(M)$, $\Pi'(s, q_{tt}) = \text{tt}$ iff $\Pi(s, q) = \text{tt}$. By Def. 9, this is equivalent to $((M, s) \models^3 q) = \text{tt}$.

Inductive cases.

For $\varphi_{tt} = \text{Transl}(\neg \varphi', tt) = \text{Transl}(\varphi', ff) = \varphi_{ff}$, we have that $(M', s) \models^2 \varphi_{tt}$ iff $(M', s) \models^2 \varphi_{ff}$, iff by induction hypothesis $((M, s) \models^3 \varphi') = \text{ff}$. By Def. 9, this is the case iff $(M, s) \models^3 \varphi = \text{tt}$.

For $\varphi_{tt} = \text{Transl}(\varphi' \land \varphi'', tt) = \text{Transl}(\varphi', tt) \land \text{Transl}(\varphi'', tt)$, we have that $(M', s) \models^2 \varphi_{tt}$ iff $(M', s) \models^2 \varphi_{tt}$ and $(M', s) \models^2 \varphi_{tt}$, iff by induction hypothesis $((M, s) \models^3 \varphi') = \text{tt}$ and $((M, s) \models^3 \varphi') = \text{tt}$. By Def. 9, this is the case iff $(M, s) \models^3 \varphi = \text{tt}$.

For $\varphi_{tt} = \text{Transl}(\langle\langle \Gamma \rangle \rangle \psi, tt) = \langle\langle \Gamma \rangle \rangle \text{Transl}(\psi, tt)$, by Def. 6, $(M', s) \models^2 \varphi_{tt}$ iff there exists a joint strategy F^n_s, such that for all paths $p \in \text{out}(s, F^n_s)$, $(M', p) \models^2 \psi_{tt}$. By induction hypothesis we have that $((M, p) \models^3 \psi) = \text{tt}$. By Def. 9 this is the case iff $((M', s) \models^3 \langle\langle \Gamma \rangle \rangle \psi) = \text{tt}$.

(10) Base case. For $\varphi = q$ and $\varphi_{ff} = q_{ff}$, $(M', s) \models^2 \varphi_{ff}$ iff $\Pi'(s, q_{ff}) = \text{tt}$ by Def. 6. By point (2) in the definition of $\text{Duplicate}_{\text{atoms}}(M)$, $\Pi'(s, q_{ff}) = \text{tt}$ iff $\Pi(s, q) = \text{ff}$. By Def. 9, this is equivalent to $((M, s) \models^3 q) = \text{ff}$.

Inductive cases.

For $\varphi_{ff} = \text{Transl}(\neg \varphi', ff) = \text{Transl}(\varphi', tt) = \varphi_{tt}$, we have that $(M', s) \models^2 \varphi_{ff}$ iff $(M', s) \models^2 \varphi_{tt}$, iff by induction hypothesis $((M, s) \models^3 \varphi') = \text{tt}$. By Def. 9, this is the case iff $(M, s) \models^3 \varphi = \text{ff}$.

For $\varphi_{ff} = \text{Transl}(\varphi' \land \varphi'', ff) = \text{Transl}(\varphi', ff) \lor \text{Transl}(\varphi'', ff)$, we have that $(M', s) \models^2 \varphi_{ff}$ iff $(M', s) \models^2 \varphi_{ff}$ or $(M', s) \models^2 \varphi_{ff}$, iff by induction hypothesis $((M, s) \models^3 \varphi') = \text{ff}$ or $((M, s) \models^3 \varphi') = \text{ff}$. By Def. 9, this is the case iff $(M, s) \models^3 \varphi = \text{ff}$.

For $\varphi_{ff} = \text{Transl}(\langle\langle \Gamma \rangle \rangle \psi, ff)$, by Def. 6, $(M', s) \models^2 \varphi_{ff}$ iff there exists a joint strategy F^n_s, such that for all paths $p \in \text{out}(s, F^n_s)$, $(M', p) \models^2 \psi_{ff}$. By induction hypothesis we have that $((M, p) \models^3 \psi) = \text{ff}$. By Def. 9 this is the case iff $((M', s) \models^3 \langle\langle \Gamma \rangle \rangle \psi) = \text{ff}$.

(11) We have that $(M', s) \models^2 \neg(\varphi_{tt} \lor \varphi_{ff})$ iff $(M', s) \not\models^2 \varphi_{tt}$ and $(M', s) \not\models^2 \varphi_{ff}$. By (9) and (10) this is the case iff $(M, s) \models^3 \varphi \not= \text{tt}$ and $(M, s) \models^3 \varphi \not= \text{ff}$, that is, $(M, s) \models^3 \varphi = \text{uu}$.

Given Lemma 6, we can present the algorithm to decide the model checking problem for the three-valued semantics with bounded recall and analyse its complexity.
Algorithm MC3(M, ϕ, n):

1. M’ = Inflate(M, n);
2. M'' = Duplicate_atoms(M’);
3. ϕtt = Transl(ϕ, tt);
4. ϕff = Transl(ϕ, ff);
5. if MC_ATL∗ir(M'', ϕtt) then return tt;
6. else if MC_ATL∗ir(M'', ϕff) then return ff;
7. else return uu;

Figure 5: Algorithm to decide ATL∗ three-valued model checking.

Theorem 5. For n ∈ N+, the model checking problem for ATL∗ on the three-valued semantics with n-bounded recall and imperfect information is in EXPTIME. Moreover, the corresponding n-fixed-recall MC problem is PSPACE-complete.

Proof. As regards the general case for n ∈ N+, we extend the model checking procedure outlined in the proof of Theorem 2 by the procedure in Figure 5. As in the proof of Theorem 2, we “inflate” the original IS M to create a new IS M’ whose states are histories of length at most n, with an exponential blow-up. In line 2, we add in M’ atoms qtt and qff, for each atom q ∈ AP, and update the labeling function as explained above: if Π(s, q) = tt then Π(s, qtt) = tt, otherwise Π(s, qff) = tt. The latter can be done in polynomial time in the size of M. Then, in lines 3-4, we call twice the translation procedure in Figure 4 to generate formulas ϕtt = Transl(ϕ, tt) and ϕff = Transl(ϕ, ff) that will be used in the model checking procedure in two-valued semantics for imperfect information and imperfect recall. Note that, each translation can be done in polynomial time in the size of formula ϕ. In lines 5-7 we determine the truth value of both formulas. In particular, if the model checking procedure in two-valued semantics returns true when considering ϕtt (line 5), our algorithm returns true since by Lemma 6.(9) formula ϕ holds in M under the three-valued semantics. Otherwise, in line 6 our algorithm checks whether the model checking procedure for ϕff returns true and then it returns false by Lemma 6.(10). Consequently, if both model checking calls return false, the algorithm returns undefined (line 7). Since, checking ATL∗ formulas on the IS M'' can be done in polynomial space Schobbens (2004), then the whole procedure is in EXPTIME.

For a fixed n ∈ N+, the procedure above is in PSPACE. As regards the lower bound, we make use of the same reduction as in Theorem 2. In particular, we can reduce model checking an LTL formula ψ to the verification of the truth of the ATL∗ formula ⟨⟨∅⟩⟩ψ in the three-valued semantics.

By Theorems 2 and 5 model checking ATL∗ on the two- and three-valued semantics has the same complexity. This is also the case for ATL.

Theorem 6. For n ∈ N+, the model checking problem for ATL in the three-valued semantics with n-bounded recall and imperfect information is in EXPTIME. Moreover, the corresponding n-fixed-recall MC problem is ∆2P-complete.

Proof. Clearly, the EXPTIME upper bound for the general case still holds.
As for a fixed \(n \in \mathbb{N}^+ \), we adapt the proof of Theorem 5. In particular, we modify lines 5-6 in Algorithm 5 by calling procedure \(\text{MC}_\text{ATL}^* \) instead, which is known to be in \(\Delta^P_{3} \) (Jamroga & Dix, 2006).

Again, for \(n \in \mathbb{N}^+ \), the complexity of the \(n \)-fixed-recall model checking problem for three-valued \(\text{ATL}^* \) with \(n \)-bounded recall (and imperfect information) is the same as for imperfect recall. Also, as in Section 2, in providing these results, we are primarily interested in the decidability of the model checking problem for bounded recall, irrespectively of tight complexity bounds for the general case.

We conclude by observing that translation \(\text{Transl}() \) is of interest in its own, as it allows to reduce three-valued model checking to the corresponding two-valued problem. We envisage to introduce similar translations for other multi-valued logics, by using the same procedure of adding new atomic propositions (one for each truth value), and then defining translations mirroring the truth conditions for each value. However, such general reduction of multi-valued model checking to the two-valued instance is beyond the scope of the present contribution. We leave it for future work.

4. Approximating Perfect Recall

In this section we lay the theoretical foundations of a partial model checking procedure to verify \(\text{ATL}^* \) under the assumptions of imperfect information and perfect recall. In Section 4.1 we present a result on the preservation of defined truth values in \(\text{ATL}^* \) when increasing recall. Then, in Section 4.2 we present the model checking procedure to approximate perfect recall.

4.1 Preservation of Three-Valued \(\text{ATL}^* \)

The main result of this section, which is akin to Lemma 2, details the preservation of \(\text{ATL}^* \) formulas when increasing the amount of recall. However, differently from Lemma 2, Lemma 7 hereafter holds for all \(\text{ATL}^* \) formulas.

Lemma 7. Let \(m,n \in \mathbb{N}^+ \cup \{ \omega \} \) be such that \(m \leq n \); let \(\psi \) be a formula in \(\text{ATL}^* \). Then,

\[
((M,s) \models^3_m \psi) = tt \implies ((M,s) \models^3_n \psi) = tt \quad (12)
\]

\[
((M,s) \models^3_m \psi) = ff \implies ((M,s) \models^3_n \psi) = ff \quad (13)
\]

Proof. The proofs for both (12) and (13) are by simultaneous induction on the structure of formula \(\psi \). We only present the case where the main operator is the strategic modality, the other cases being immediate.

(12) By Def. 9 \(((M,s) \models^3_m \langle \Gamma \rangle \psi) = tt \) if for some joint strategy \(F^n_\Gamma \), for all paths \(p \in out(s,F^n_m) \), \(((M,p) \models^3_m \psi) = tt \). Given \(F^n_\Gamma \) we can construct a joint strategy \(F^n_\Gamma \) as for Lemma 2: for all \(i \in \Gamma \) and all histories \(h \in G^{<1+n} \), we define \(f^n_i(h) = f^n_i(h_{|h|\sim m}, \ldots, h_{|h|}) \) for \(m < |h| \), \(f^n_i(h) = f^n_i(h) \) otherwise. Notice that each \(f^n_i \) so defined is uniform, provided that \(f^n_i \) is. Given \(F^n_\Gamma \) thus defined, we obtain that \(out(s,F^n_\Gamma) = out(s,F^n_m) \). In particular, for all paths \(p \in out(s,F^n_\Gamma) \), \(((M,s) \models^3_n \psi) = tt \) by induction hypothesis, and therefore \(((M,s) \models^3_n \langle \Gamma \rangle \psi) = tt \).

(13) By Def. 9 \(((M,s) \models^3_m \langle \Gamma \rangle \psi) = ff \) if for some joint strategy \(F^n_\Gamma \), for all paths \(p \in out(s,F^n_m) \), \(((M,p) \models^3_m \psi) = ff \). Given \(F^n_\Gamma \) we can construct...
Algorithm Iterative\textsubscript{MC}(M,ψ,n):

1. \(j = 0 \), \(k = \text{uu} \);
2. while \(j < n \) and \(k = \text{uu} \)
 3. \(j = j + 1 \);
 4. \(k = \text{MC3}(M,ψ,j) \);
5. end while;
6. if \(k \neq \text{uu} \) then return \((j,k)\);
7. else return \(-1\);

Figure 6: The procedure Iterative\textsubscript{MC} to decide \(ATL^* \) iteratively.

as in point (12). Again, each \(f^n_i \) so defined is uniform, provided that \(f^m_i \) is. Given such \(F^n_i \), we obtain that \(\text{out}(s,F^n_i) = \text{out}(s,F^m_i) \). In particular, for all paths \(p \in \text{out}(s,F^n_i) \), \((M,p) \models^3_n \psi = \text{ff} \) by induction hypothesis, and therefore \((M,s) \models^3_n (\langle \Gamma \rangle \psi) = \text{ff} \).

By Lemma 7 adding memory preserves defined truth values for all formulas in \(ATL^* \). This is in contrast with Lemma 2. Indeed, even though in some cases the value of an \(ATL^* \) formula may be undefined in the three-valued semantics, whenever it is defined, it does not change when memory is added.

By combining together Lemmas 4 and 7 we obtain our main result on the relationship between bounded recall and the two- and three-valued semantics.

Corollary 2. Let \(m, n \in \mathbb{N}^+ \cup \{\omega\} \) be such that \(m \leq n \); let \(\psi \) be a formula in \(ATL^* \). Then,

\[
((M,p) \models^3_m \psi) = \text{tt} \implies ((M,p) \models^2_n \psi) \tag{14}
\]

\[
((M,p) \models^3_m \psi) = \text{ff} \implies ((M,p) \not\models^2_n \psi) \tag{15}
\]

Of particular interest is the case for \(m \in \mathbb{N}^+ \) and \(n = \omega \). By Corollary 2 we can outline a verification procedure for perfect recall, whereby \(ATL^* \) formulas are checked in the three-valued semantics iteratively. If either the value true or false is returned, then by Corollary 2 this is also the truth value for the two-valued semantics under perfect recall. We explore this intuition in the verification procedure defined below.

4.2 A Partial Decision Procedure for \(ATL^*_{iR} \)

We now present a partial decision procedure for model checking \(ATL^* \) under the assumptions of imperfect information and \(n \)-bounded recall. It is partial, as it is not guaranteed to terminate for the case of perfect recall, that is, for \(n = \omega \). This procedure is described in algorithm Iterative\textsubscript{MC}(M,ψ,n) in Figure 6. It takes as input an IS \(M \), an \(ATL^* \) formula \(\psi \), and a bound \(n \in \mathbb{N}^+ \cup \{\omega\} \). It includes a while-loop (lines 2-6), whose guard checks whether the bound has not yet been attained \((j < n)\) and \(\psi \) has not yet been decided \((k = \text{uu})\). Within the loop, formula \(\psi \) is model-checked in \(M \) according to the three-valued semantics by subroutine \text{MC3}(), and variable \(k \) stores the result. On exiting the loop, variable \(k \) is tested (line 6). If \(k \neq \text{uu} \), the loop was exited because of a defined answer for the three-valued model checking problem with \(j \)-bounded recall (and possibly bound \(n \) was reached). By Corollary 2 we can then transfer the value returned to the corresponding model checking problem for the two-valued semantics. On the other hand, if \(k = \text{uu} \) then
the bound has been attained in the loop and the default value -1 is returned to signal exit without a defined truth value. We now prove the termination of the algorithm in Figure 6 for $n \in \mathbb{N}^+$, as well as its soundness.

Theorem 7. For $n \in \mathbb{N}^+$, $\text{Iterative}_{MC}()$ terminates in \textit{EXPTIME}. Moreover, $\text{Iterative}_{MC}()$ is sound: if the value returned is different from -1, then $M \models _n \phi$ iff $k = \text{tt}$ and $M \not\models _n \phi$ iff $k = \text{ff}$.

Proof. As regards termination in \textit{EXPTIME}, notice that for $n \in \mathbb{N}^+$ the algorithm in Figure 6 calls procedure $MC3()$, which is in \textit{EXPTIME} (Theorem 5), a bounded number of times. Then, the overall complexity is also in \textit{EXPTIME}.

As for soundness, suppose that the value returned is different from -1. In particular, this means that either $k = \text{tt}$ or $k = \text{ff}$. If $k = \text{tt}$ then by the structure of $\text{Iterative}_{MC}()$, $((M, s) \models _j \psi) = \text{tt}$ for some $j \leq n$. By Corollary 2.(14) we obtain $M \models _n \phi$. On the other hand, suppose that $M \models _n \phi$ and assume $k = \text{ff}$ to derive a contradiction. Then, by the structure of $\text{Iterative}_{MC}()$, $((M, s) \models _j \psi) = \text{ff}$ for some $j \leq n$, and by Corollary 2.(15) we have $M \not\models _n \phi$, a contradiction. Hence, $k = \text{tt}$ as required. The cases for $M \not\models _n \phi$ iff $k = \text{ff}$ is similar.

Incidentally, we observe that, for a fixed $n \in \mathbb{N}^+$, algorithm $\text{Iterative}_{MC}()$ actually runs in \textit{PSPACE}.

An important application of $\text{Iterative}_{MC}()$ is for the case $n = \omega$, namely model checking perfect recall. In such a case, termination is no longer guaranteed, but soundness still is.

Theorem 8. For $n = \omega$, $\text{Iterative}_{MC}()$ does not necessarily terminate. However, $\text{Iterative}_{MC}()$ is sound: if the value returned is different from -1, then $M \models _n \phi$ iff $k = \text{tt}$ and $M \not\models _n \phi$ iff $k = \text{ff}$.

Proof. We have remarked that in several games, for example, the matching pennies game by Bulling et al. (2008), neither player has a strategy to win the game, no matter how much recall we assume on our players. So, algorithm $\text{Iterative}_{MC}()$ will never return a defined truth value for any $j \in \mathbb{N}^+$, and therefore it will never exit the \textit{while} loop.

Soundness follows again by Corollary 2.

As a result, by Theorem 8 we have a sound, albeit incomplete, decision procedure for model checking ATL^* with perfect recall and imperfect information. Observe that no complete procedure can be obtained as the problem is undecidable in general (Dima & Tripea, 2011).

Example 3. In relation with the IS M for the voting scenario in Example 2, consider again the specification $\varphi_3 = \bigwedge_{i=1}^\ell \varphi_{3i}$, where $\varphi_{3i} = ((\text{vote}_{i1} \land \text{n_punish}_i) \lor (\bigvee_{j=2}^{k} \text{vote}_{ij} \land \text{punish}_i) \lor (\text{n_give}_i \land \text{punish}_i))$, which intuitively states that no matter what voter i does, at the next step the coercer has a strategy such that eventually either voter i votes for candidate 1 or the coercer punishes her. This specification is neither existential nor universal, and therefore does not fall within the hypothesis of Lemma 2. Nevertheless, φ_3 is amenable to algorithm $\text{Iterative}_{MC}()$ in Figure 6. Specifically, given the IS M in Example 2, formula φ_3, and bound $n > t$, where t is the number of waiting steps, the
algorithm \textit{Iterative}_{MC}(M, \varphi_3, n) initializes the bound on recall to 0 and the value of \(k\) to undefined \(\text{uu}\). Then, in the \textbf{while} loop the subroutine \textit{MC3}(M, \varphi_3, 1) returns \(\text{uu}\) because, according to the three-valued semantics, the coercer does not have a memoryless strategy to enforce \(F\varphi_i\) at the next step, nor voter \(i\) has a (memoryless) strategy to prevent \(F\varphi_i\) at the next step. On the other hand, in the \(t+1\) iteration of the function call, \textit{MC3}(M, \varphi_3, t+1) returns true, as the coercer has a \(t+1\)-bounded recall strategy to enforce \(F\varphi_i\) at the next step, and therefore \(\varphi_3\) holds. Thus, we conclude that the IS \(M\) in Example 2 satisfies specification \(\varphi_3\) under the assumptions of imperfect information and perfect recall.

5. Experimental Results

In this section we present the MCMAS\(_{BR}\) model checker to verify ATL-specifications according to the bounded recall semantics, which can also be used to approximate perfect recall. Then, we evaluate it empirically on the two examples introduced in Section 2.

5.1 The MCMAS\(_{BR}\) Model Checker

We implemented the algorithms in Section 4 in MCMAS\(_{BR}\) MCMAS\(_{BR}\) (2021), an experimental model checker that extends the open-source verification tool MCMAS (Lomuscio et al., 2017) by supporting the bounded recall semantics introduced in Section 2, while maintaining full functionality for memoryless semantics. In summary, agents in MCMAS\(_{BR}\) recall a bounded number of the latest states visited in the run, which is given as input by the user. Protocol functions are defined as for the memoryless semantics. Given the notion of recall here adopted, the agents’ strategies are based on bounded local histories, rather than on their present state only, as it is the case under the memoryless semantics. MCMAS\(_{BR}\) takes as input an ISPL file describing the multi-agent system under analysis and a set of formulas to be verified. The syntax of the ISPL file is the same as for standard MCMAS. The present version of the checker only supports ATL specifications, which is the case for MCMAS too.

Verification under three-valued bounded recall semantics is carried out by invoking the tool with the command:

```
python mcmas.br.py [k] [file.ispl]
```

where \(k\) is the bound on recall specified by user and \textit{file.ispl} is the ISPL file containing the model and the specification. In the present version of MCMAS\(_{BR}\) all agents have the same bound on recall; extending this feature would not be problematic, but it is beyond the scope of the current contribution.

Upon invocation, the tool parses the input ISPL file, and for each specification \(\varphi\) appearing in the ISPL file, it generates two translated formulas \(\varphi_U\) and \(\varphi_F\), according to function \textit{Trans1()} described in Figure 4. The tool then makes model checking calls iteratively until it reaches the maximum recall bound \(k\); after each check, the tool displays the verification result. At each iteration, the tool constructs the model, where the agents’ recall has its dimension fixed by the bound, and new atomic propositions are also duplicated and added to the model according to algorithm \textit{MC3()} in Figure 5. For each variable in the local state, an array of BDD variables of the length at most \(k\) is generated for encoding the local histories. Since we have a fixed memory window of \(k\), at the initialisation stage where the history is
less than k, an additional unused state is used as a place holder. The model construction phase generates the set of bounded histories which are of arbitrary lengths up to the bound on recall. For certain formulas with undefined values for smaller bounds, the tools allows early termination once a true or false value is obtained.

MCMAS$_{BR}$ implements several methods to minimise the memory and computational overheads generated by the bounded recall semantics. We adopt an efficient usage of BDD variables, which allows us to manipulate individual observations of each local history. For example, at each time step in a run, the symbolic encoding of each local history contains the composition of the previous history with the new variable assignments representing portions of the local history. At each execution step, only the oldest observation is discarded and the rest of the observations in the state only shifts by one position in the BDD variables of the next state. The new variable assignment is applied to the set of BDD variables encoding the latest observation. This optimises the BDD memory used for computing and storing large local histories, notably during the subset construction stage where Boolean variables are generated to encode the bounded history space. Agents’ protocols are also optimised to account for the bounded recall semantics, and are used to generate history-based strategies. The model checking algorithm is adapted from Busard et al. (2015) which contains practical optimisations such as early termination and caching for speeding up the model checking process under uniformity conditions.

5.2 Evaluation

Intuitively, the increased expressivity of the bounded recall semantics comes at the computational cost of a larger number of Boolean variables required to encode histories when compared against the standard memoryless semantics. This is expected to cause a performance degradation in the verification step. Note that, however, the problem remains decidable, differently from the case of unbounded recall, which is undecidable in general.

To evaluate experimentally the cost of bounded recall, we now report the experiments conducted on the scalability of MCMAS$_{BR}$ as we increase the value of the bound and the example size, starting with the Shell Game described in Example 1 in ISPL.

Here, we generalise the ATL specification “the Guesser has a winning strategy to guess the correct location of the ball” shown in the proof of Lemma 3, to an arbitrary number N of shells:

$$\varphi_1 = \langle \langle \text{Guesser} \rangle \rangle F\varphi_{g_win}$$

where $\varphi_{g_win} = \bigvee_{i=1}^{N} (\text{guess}_i \land \text{shell}_i)$.

As a further specification, we check whether “the Shuffler has a strategy to enforce that the Guesser will not guess the correct location of the ball and thus cannot win”:

$$\varphi_2 = \langle \langle \text{Shuffler} \rangle \rangle G \neg \varphi_{g_win}$$

Intuitively, the truth of φ_1 depends on whether the bound on recall is large enough for the agent to distinguish the states that contain information of the shell location, that is, when the bound is greater than the number of waiting steps. On the other hand, φ_2 should be false whenever the bound exceeds the number of waiting steps and undefined for smaller bounds.
Table 1: Experimental results for the Shell Game.

Table 1 shows the experimental results obtained with MCMAS\textsubscript{BR} running on an Intel CoreTM i7-2600 CPU 3.40GHz machine with 16GB RAM running Ubuntu v18.04.2 (Linux kernel v4.15). The table displays the following information in each column:

1. the number of shells and of waiting steps;
2. the bound on recall given as a user parameter;
3. the number of reachable histories of the particular game instance (Note our implementation treats histories as states, and therefore in practice on MCMAS\textsubscript{BR} this is the number of reachable states);
4. the total number of (possible) histories in the instance’s state space;
5. the amount of BDD memory usage for the instance (in Mb);
6. for each formula φ_1 and φ_2, its verification time, inclusive of both the model construction step and the model checking algorithm running time (in seconds), as well as the verification result obtained.

As reported in Table 1, we ran experiments with a varying bound on recall between 5 and 25, and 20 to 30 shells. As expected, φ_1 was evaluated to undefined when the bound was smaller than the number of waiting steps, as Guesser was not able to remember the location of the ball and thus did not have a winning strategy in such scenarios. The experiments confirmed the correctness of the implementation. The verification performance degrades as the bound increases, leading to an increase in the associated state space. Note that

<table>
<thead>
<tr>
<th>(shells, waiting)</th>
<th>bound</th>
<th>reachable histories</th>
<th>possible histories</th>
<th>BDD memory</th>
<th>φ_1 time</th>
<th>φ_2 time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>value</td>
<td>value</td>
</tr>
<tr>
<td>(20,20)</td>
<td>5</td>
<td>2421</td>
<td>1.7×10^{15}</td>
<td>17912816</td>
<td>1.473 uu</td>
<td>1.326 uu</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4021</td>
<td>1.6×10^{28}</td>
<td>46451184</td>
<td>15.117 uu</td>
<td>12.164 uu</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5621</td>
<td>5.7×10^{40}</td>
<td>63613616</td>
<td>66.635 uu</td>
<td>63.478 uu</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7221</td>
<td>2.0×10^{53}</td>
<td>65742672</td>
<td>97.402 uu</td>
<td>94.056 uu</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8821</td>
<td>6.8×10^{65}</td>
<td>63289776</td>
<td>72.788 uu</td>
<td>63.855 uu</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10421</td>
<td>2.3×10^{78}</td>
<td>71859312</td>
<td>180.324 tt</td>
<td>170.324 ff</td>
</tr>
<tr>
<td>(20,24)</td>
<td>5</td>
<td>2301</td>
<td>6.5×10^{14}</td>
<td>29185392</td>
<td>4.018 uu</td>
<td>3.125 uu</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4101</td>
<td>2.9×10^{28}</td>
<td>38615600</td>
<td>9.115 uu</td>
<td>9.463 uu</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5701</td>
<td>1.3×10^{41}</td>
<td>45592752</td>
<td>62.780 uu</td>
<td>60.856 uu</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7301</td>
<td>5.7×10^{53}</td>
<td>50125520</td>
<td>179.450 uu</td>
<td>132.888 uu</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8901</td>
<td>2.5×10^{66}</td>
<td>62261144</td>
<td>276.825 uu</td>
<td>296.082 uu</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10501</td>
<td>1.1×10^{79}</td>
<td>67699408</td>
<td>212.931 tt</td>
<td>173.577 ff</td>
</tr>
<tr>
<td>(30,20)</td>
<td>5</td>
<td>5131</td>
<td>1.2×10^{14}</td>
<td>30722752</td>
<td>3.455 uu</td>
<td>4.270 uu</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8731</td>
<td>5.9×10^{38}</td>
<td>49796544</td>
<td>70.410 uu</td>
<td>88.731 uu</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>15931</td>
<td>2.8×10^{44}</td>
<td>68732322</td>
<td>214.854 uu</td>
<td>256.994 uu</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>15571</td>
<td>1.3×10^{58}</td>
<td>75444064</td>
<td>256.938 uu</td>
<td>322.090 uu</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>23131</td>
<td>6.3×10^{73}</td>
<td>65889200</td>
<td>94.542 tt</td>
<td>108.452 ff</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>22771</td>
<td>3.0×10^{85}</td>
<td>83397840</td>
<td>278.351 tt</td>
<td>355.215 ff</td>
</tr>
<tr>
<td>(30,24)</td>
<td>5</td>
<td>5251</td>
<td>1.6×10^{14}</td>
<td>31004400</td>
<td>5.978 uu</td>
<td>23.686 uu</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8851</td>
<td>9.1×10^{30}</td>
<td>51694640</td>
<td>30.242 uu</td>
<td>35.217 uu</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>12451</td>
<td>5.2×10^{44}</td>
<td>60624528</td>
<td>218.773 uu</td>
<td>244.457 uu</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16051</td>
<td>3.0×10^{58}</td>
<td>62232976</td>
<td>527.586 uu</td>
<td>638.194 uu</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-</td>
<td>1.7×10^{72}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>9.7×10^{85}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Approximating Perfect Recall when Model Checking Strategic Abilities

<table>
<thead>
<tr>
<th>(voters, waiting)</th>
<th>bound</th>
<th>reachable histories</th>
<th>possible histories</th>
<th>BDD memory</th>
<th>φ_3 time</th>
<th>φ_4 time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2, 6)</td>
<td>3</td>
<td>253</td>
<td>5.5×10^9</td>
<td>10257156</td>
<td>0.421 uu</td>
<td>0.077 uu</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>285</td>
<td>1.7×10^{16}</td>
<td>12675360</td>
<td>0.550 uu</td>
<td>0.045 uu</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>317</td>
<td>5.3×10^{22}</td>
<td>30666656</td>
<td>0.187 uu</td>
<td>0.433 uu</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>365</td>
<td>1.7×10^{29}</td>
<td>36925408</td>
<td>0.109 uu</td>
<td>0.638 uu</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>285</td>
<td>5.2×10^{35}</td>
<td>39708256</td>
<td>0.202 uu</td>
<td>1.425 uu</td>
</tr>
<tr>
<td>(2, 8)</td>
<td>3</td>
<td>301</td>
<td>8.7×10^{4}</td>
<td>10895424</td>
<td>0.427 uu</td>
<td>0.189 uu</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>333</td>
<td>3.7×10^{46}</td>
<td>13422420</td>
<td>1.052 uu</td>
<td>0.230 uu</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>365</td>
<td>1.6×10^{31}</td>
<td>32857328</td>
<td>10.084 uu</td>
<td>0.475 uu</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>397</td>
<td>6.6×10^{29}</td>
<td>50865928</td>
<td>463.351 tt</td>
<td>0.921 ff</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>445</td>
<td>2.8×10^{36}</td>
<td>35314128</td>
<td>3130.008 tt</td>
<td>1.1720 ff</td>
</tr>
<tr>
<td>(3, 6)</td>
<td>3</td>
<td>1209</td>
<td>4.5×10^{14}</td>
<td>13346960</td>
<td>1.741 uu</td>
<td>0.260 uu</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1401</td>
<td>2.7×10^{21}</td>
<td>27770800</td>
<td>622.877 uu</td>
<td>0.633 uu</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7025</td>
<td>3.3×10^{29}</td>
<td>12781792</td>
<td>* -</td>
<td>4.179 ff</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7616</td>
<td>8.9×10^{27}</td>
<td>18676640</td>
<td>* -</td>
<td>72.874 ff</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>8256</td>
<td>2.4×10^{36}</td>
<td>18148672</td>
<td>* -</td>
<td>121.720 ff</td>
</tr>
<tr>
<td>(3, 8)</td>
<td>3</td>
<td>1433</td>
<td>7.1×10^{14}</td>
<td>13631024</td>
<td>1.860 uu</td>
<td>0.274 uu</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1625</td>
<td>2.6×10^{21}</td>
<td>33152144</td>
<td>796.670 uu</td>
<td>0.734 uu</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1817</td>
<td>9.6×10^{29}</td>
<td>27577424</td>
<td>* -</td>
<td>5.652 uu</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2009</td>
<td>3.6×10^{38}</td>
<td>28857328</td>
<td>* -</td>
<td>75.669 ff</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2297</td>
<td>1.3×10^{47}</td>
<td>35314128</td>
<td>* -</td>
<td>192.040 ff</td>
</tr>
</tbody>
</table>

Table 2: Experimental results for the Simple Voting Scenario.

undefined formulas can sometimes require a longer computation time, with an exhaustive search in the state space. However, when the bound reaches a value where the formula becomes defined, the computation time is shorter, which is likely due to early termination when a winning strategy is found. In Table 1 we used a time-out of 60 minutes, which is represented as a star *.

To further evaluate the scalability of MCMAS\(_{BR}\), we implemented and verified the Simple Voting Scenario in Example 2, where we consider multiple agents. We evaluate the voting protocol against specification φ_3 in Example 3. It expresses that no matter what voter i does, at the next step, Coercer has a strategy whereby they can enforce each voter to vote for Candidate 1, otherwise the voter will be punished:

$$\varphi_3 = \bigwedge_{i=1}^{n_v} [\text{Voter}_i] X [\text{Coercer}] F((\text{vote}_{i1} \land n_punish_i) \lor (\bigvee_{j=2}^k \text{vote}_{ij} \land \text{punish}_i) \lor (n_give_{i} \land \text{punish}_i))$$

Further, we evaluate the ATL specification φ_4 stating that the voters collectively have a strategy to avoid being punished:

$$\varphi_4 = \langle all_voters \rangle G \neg (\bigvee_{i=1}^{n_v} (n_give_{i} \land n_punish_i) \lor (\text{give}_i \land \text{punish}_i))$$

Table 2 reports the verification results obtained by evaluating the Simple Voting Scenario with different numbers of voters and waiting steps. Formula φ_3 is evaluated as undefined for bounds smaller than 9, corresponding to the fact that Coercer can no longer recall the voting proof he received from the Voter. By increasing the bound on recall, the formula is then evaluated to true. Formula φ_4 is also evaluated to undefined for bounds smaller than 9, but then is evaluated to false when the bound is increased to 9 or above, corresponding again to a situation where the Coercer has sufficient memory to recall the proof that has been received earlier. As for the Shell Game, the performance of the model checker degrades as we increase the bound on recall, hence the model size. The memory footprint of the tool
increases at a slower rate compared with the increase in verification time, indicating an efficient usage of BDD variables.

6. Conclusions

Model checking multi-agent systems against alternating-time temporal logic is known to be undecidable under the assumptions of perfect recall and imperfect information. In this paper we put forward a sound, albeit incomplete, verification procedure for perfect recall based on a notion of bounded recall. To do so, we introduced bounded recall on interpreted systems by providing both a two- and a three-valued semantics. By using the three-valued semantics for bounded recall we were able to prove Lemma 4 on the preservation of defined truth values from the bounded to the perfect recall case for all ATL* specifications. As shown in Lemma 2, in the classic two-valued semantics, preservation holds only for the rather restricted universal and existential fragments of ATL*. These results lay the foundation for the iterative procedure illustrated in Section 4, which can, in some cases, solve the model checking problem under perfect recall by considering a bounded amount of memory for the agents in the system. Since model checking perfect recall under incomplete information is undecidable in general, the procedure discussed is necessarily incomplete. Yet, to the best of our knowledge, this constitutes the first procedure available which can provide solutions in cases of practical interest. We illustrated our method by extending MCMAS to support bounded recall functionalities. The resulting tool, MCMASBR, which employs symbolic structures to encode recall histories, was evaluated experimentally. The analysis showed that, for some protocols of interest, recall bounds of approximately 20 steps, corresponding to over 10^{85} possible histories can be practically checked. The time effort required for the resulting checks appears to be exponential, in line with the EXPTIME bound provided at theoretical level. Finally, with translation function Trans1() in Section 3 we provided a method to reduce three-valued model checking to the corresponding two-valued problem. We believe that such a reduction is of independent interest and might find applications beyond the scope of the present contribution.

In further work we would like to explore combinations of bounded recall with other notions of interest in specifications for multi-agent systems, including Strategy Logic and epistemic logic. In a further line we would like to explore the combination between recall bounds and bounded resources.

Acknowledgements. F. Belardinelli acknowledges the support of ANR JCJC Project SVeDaS (ANR-16-CE40-0021). A. Lomuscio is supported by a Royal Academy of Engineering Chair in Emerging Technology. E. Yu acknowledges the support of the Austrian FWF grant W1255-N23 and the LIT AI Lab funded by the State of Upper Austria.

References

