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Abstract

The model checking problem for multi-agent systems against specifications in the
alternating-time temporal logic ATL, hence ATL∗, under perfect recall and imperfect in-
formation is known to be undecidable. To tackle this problem, in this paper we investigate
a notion of bounded recall under incomplete information. We present a novel three-valued
semantics for ATL∗ in this setting and analyse the corresponding model checking problem.
We show that the three-valued semantics here introduced is an approximation of the clas-
sic two-valued semantics, then give a sound, albeit partial, algorithm for model checking
two-valued perfect recall via its approximation as three-valued bounded recall. Finally, we
extend MCMAS, an open-source model checker for ATL and other agent specifications, to
incorporate bounded recall; we illustrate its use and present experimental results.

1. Introduction

Alternating-time Temporal Logic (ATL) and its extension ATL∗ are widely used formalisms
to reason about strategic abilities of autonomous agents in multi-agent systems (Alur et al.,
2002). Central to ATL and related formalisms is the notion of the sequence of events a
coalition of agents can jointly bring about, or avoid, in a system, irrespective of the actions
of the other agents outside the coalition. ATL has been extended in various directions
giving rise to even more expressive formalisms, for example, by taking into account contin-
uous time (Knapik et al., 2019), bounded resources (Alechina et al., 2015, 2018), epistemic
concepts (Hoek & Wooldridge, 2003; Jamroga, 2004; Lomuscio & Raimondi, 2006; Ågotnes
et al., 2015), and beyond.

A key consideration when using expressive specification languages, including ATL, is the
computational complexity of the resulting model checking problem. In the case of ATL, this
was shown to be PTIME-complete under perfect information (Alur et al., 2002). Agents in
a multi-agent system (MAS), however, typically operate under imperfect information about

©2022 AI Access Foundation. All rights reserved.



Belardinelli, Lomuscio, Malvone, & Yu

the other agents and the environment. Once imperfect information is assumed, the resulting
model checking problem becomes ∆P

2 -complete under memoryless semantics (Jamroga &
Dix, 2006), and it is undecidable under perfect recall (Dima & Tiplea, 2011). The latter
case is particularly problematic since it hinders the development of any verification toolkit.

Recent approaches have attempted to overcome these difficulties. For instance, if
agents can only communicate via broadcasting, decidability can be retained (Belardinelli
et al., 2020a). Further, hierarchical systems, where information is shared in a strictly pre-
determined manner, have also been shown to provide decidable fragments (Berthon et al.,
2021). These contributions analyse the verification problem under perfect recall and imper-
fect information, but they restrict the class of MAS considered. Here we take a different
approach: we consider the whole class of MAS, but define an approximation of perfect recall
that we call bounded recall. Informally, an agent’s recall is bounded, if in her deliberations
she disregards explicit information acquired more than a certain number of timestamps be-
fore. Therefore, under n-bounded recall, an agent’s strategy does not depend on her whole
history, but only on her last n visited states. This is a natural assumption when reasoning
about the abilities of agents in a concrete setting, as opposed to a purely theoretical one.
Indeed, similar notions of resource-bounded strategies have been previously investigated in
the literature as we discuss in detail below.

Contributions. In this paper we make three main contributions. Firstly, in Section 3 we
develop a novel three-valued semantics for ATL∗ under bounded recall, which covers perfect
recall as well as a limit case. We study the corresponding model checking problem, and anal-
yse the formal properties of three-valued ATL∗ against the classic, two-valued, semantics.
The main finding of this section is that – in terms of verification – bounded recall provides
a provably sound approximation of perfect recall. This is shown in Corollary 2 below, which
states that MAS properties under perfect recall can be decided by analysing their bounded
recall approximations. Secondly, these theoretical results lay the foundations for a verifica-
tion procedure for model checking MAS under imperfect information and perfect recall, by
iteratively checking bounded recall versions of the same MAS in the three-valued semantics,
with increasing amounts of memory. While the algorithm is incomplete in general, we show
that if a bound on recall is assumed, it terminates in EXPTIME. Section 5 reports on an
implementation of the algorithm, realised by extending MCMAS (Lomuscio et al., 2017), an
open-source model checker for MAS, to bounded recall. Thirdly, we define the three-valued
model checking procedure for ATL∗ in terms of a reduction to two-valued model checking.
We deem the translations provided in Section 3 of general interest to reduce the model
checking problem for multi-valued logic in general to classic two-valued model checking.

Related Work. We now discuss our work in the context of recent contributions on logic-
based languages for the specification and verification of strategic abilities of agents in multi-
agent systems (Alur et al., 2002).

Three-valued ATL. Three-valued temporal logics have been extensively explored in
the literature on system verification, for example (Bruns & Godefroid, 1999; Godefroid &
Jagadeesan, 2003; Ball & Kupferman, 2006; Shoham & Grumberg, 2004; Huth et al., 2004;
Huth & Pradhan, 2004), including run-time verification (Bauer et al., 2006, 2007). Our
approach differs from that of Bruns & Godefroid (1999); Godefroid & Jagadeesan (2003)
in that it is not based on the definition of under- and over-approximations of transition
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systems. Ball & Kupferman (2006); Shoham & Grumberg (2004) put forward 3-valued
abstraction techniques for CTL and the alternating µ-calculus (AµC), which assumes that
agents have perfect information about their environment; instead, we consider the more
complex case of imperfect information and perfect recall.

A related line of work, closely related to the present approach, is the one on three-
valued semantics for ATL. Lomuscio & Michaliszyn (2014, 2015) introduce three-valued
abstractions for interpreted systems to address the complexity of MAS verification. These
investigations were developed further by Belardinelli et al. (2016); Lomuscio & Michaliszyn
(2016) by means of predicate abstraction. While we take our inspiration from this line, our
present contribution differs significantly. Firstly, the semantics and the underlying classes
of systems we study here are different from those by Lomuscio & Michaliszyn (2014, 2015,
2016). Specifically, these works assume non-uniform strategies (Lomuscio & Raimondi,
2006), with significant implications on the decidability and complexity of the corresponding
model checking problem. In particular, under non-uniform strategies model checking ATL
with imperfect information on interpreted systems is decidable in PTIME both for the
memoryfull and memoryless case (which is the whole point of considering non-uniform
strategies). Hence, approximating perfect recall is not an issue in the setting of Lomuscio
& Michaliszyn (2014, 2015, 2016). On the contrary, we here consider uniform strategies, as
this is the framework commonly used when analysing strategic abilities of agents in MAS
and game-theoretical contexts (Jamroga & van der Hoek, 2004). Secondly, the aims of the
respective lines are different as we here seek an approximation of perfect recall via bounded
recall.

A three-valued semantics for strategic abilities is also used by Belardinelli & Lomuscio
(2017). However, similarly to the above, the authors focus on imperfect recall and their
ATL operators are interpreted differently from what we do here. More formally, according
to Belardinelli & Lomuscio (2017), the falsehood of a formula of type 〈〈Γ〉〉ψ is given in
terms of may-strategies of coalition Γ, whereas we here define it in terms of the strategic
abilities of the complement coalition Γ̄. This is a key feature of our semantics, as it allows us
to preserve defined truth values when adding recall (Lemma 2). Furthermore, Belardinelli
et al. (2019); Belardinelli & Malvone (2020) present a three-valued semantics for ATL in
the context of imperfect information and perfect recall strategies. In particular, the authors
present an approximation of imperfect information to recover decidability. On the other
hand, in this work we adopt the symmetric point of view by approximating perfect recall.

Multi-valued Logics for Verification. Multi-valued semantics have long been ex-
plored in the modal logic literature (Fitting, 1991, 1992). Since the early 2000s, multi-valued
temporal logics have been used in the verification of distributed and multi-agent systems.
Multi-valued semantics for the verification of specifications expressed in the temporal logic
CTL∗ was first proposed by Vijzelaar & Fokkink (2017), and then extended to the modal
µ-calculus (Gurfinkel & Chechik, 2003; Bruns & Godefroid, 2003; Shoham & Grumberg,
2012; Pan et al., 2016). In this line formulas are interpreted on a possibly infinite algebraic
structure, and modal operators correspond to operations on the values in the structure.

A similar approach has also been applied to temporal-epistemic logics for multi-agent
systems (Konikowska & Penczek, 2002, 2004, 2006), including ATL∗ under imperfect in-
formation (Jamroga et al., 2020). However, a key difference w.r.t. our contribution is that
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none of the works above mentioned concerns the approximation of perfect recall by using
bounded recall.

Bounded Recall. Classic, two-valued bounded recall and bounded strategies have been
studied quite extensively in the literature. Ågotnes & Walther (2009) consider strategies
according to two different notions of bound: over the set of histories and over the length
of histories. In this framework, they show that ATL with bounded memory is strictly
more expressive than standard ATL. (Brihaye et al., 2009) extend ATL in two directions:
strategy contexts and bounded memory. Then, the model checking problem is proved to be
in EXPSPACE. Further, Jamroga et al. (2019c,d) define strategies as a list of condition-
action rules. Then, the authors present a variant of ATL that makes use of strategy
operators with a bound on the size of this list. In these contributions boundedness is
studied from an expressiveness and complexity perspective, not as an approximation of
perfect recall, which is the main focus of the present work. In some cases, the semantics
are incomparable to ours even in a two-valued setting (Ågotnes & Walther, 2009; Brihaye
et al., 2009). Finally, approximations to model check ATL under imperfect information (i)
have also appeared in the work of Jamroga et al. (2019b) with some significant differences.
Jamroga et al. (2019b) consider syntactic approximation, rather than semantical, under the
assumption of imperfect recall (r). So, their aim is to improve the performance of model
checking ATLir, rather than approximating an undecidable problem.

Related to the line above, Vester (2013) presents an account of bounded strategies via
finite-memory transducers. It is instructive to compare his treatment to ours. We explore
this in Section 2.4 where we show that some finite-memory transducers cannot be translated
polynomially into our bounded recall strategies and some bounded recall strategies cannot
be polynomially recast as transducers. The two accounts are therefore incomparable in
general. A further key point of departure is that our notion of bounded recall is intended to
provide a basis for an iterative verification procedure for MAS based on a novel three-valued
semantics, whereas Vester (2013) focus specifically on the theoretical properties of bounded
recall.

Lastly, and unrelated to the above, Deuser & Naumov (2020) study how bounded recall
affects the agents’ abilities to execute plans composition. While their logic has the flavour
of ATL and strategic concepts, the machinery employed is different from ours and so are
the overall goals of the investigation: axiomatisations in their case, verification in ours.

Previous work. This paper builds upon and extends previous contributions by the
authors. Belardinelli et al. (2020b) consider bounded recall on interpreted systems but
for a temporal epistemic logic, whose temporal part CTL is strictly less expressive than
ATL. In that work no notion of bounded recall on strategies is present and the verification
algorithms are therefore different. More closely related to this contribution is the work
by Belardinelli et al. (2018), where a three-valued semantics for ATL∗ was introduced.
This article substantially extends the work of Belardinelli et al. (2018) by providing the
complexity analysis of the various verification problems studied, full proofs for all main
results, and additional details. Moreover, this article contains a reduction from three-valued
model checking to the two-valued instance, which is original of this work and a stand-alone
contribution in itself. Finally, no implementation was provided by Belardinelli et al. (2018),
while here we are able to extend an open-source model checker and evaluate experimentally
the performance of the proposed approach.
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Structure of the paper. The rest of the paper is organised as follows. In Section 2 we
introduce the notion of bounded recall in the context of interpreted systems and ATL∗,
and compare bounded and perfect recall from the perspective of verification. In Section 3
we present our novel three-valued semantics for bounded and perfect recall, study the cor-
responding model checking problems, and analyse its formal properties against its classic
formulation. Section 5 reports an implementation of the algorithm, realised by extending
MCMAS to bounded recall. We conclude in Section 6.

2. Classic Bounded Recall

In this section we introduce a new two-valued semantics for ATL∗ under imperfect informa-
tion and bounded recall, based on the standard interpretation of ATL∗ Alur et al. (2002).
Then, we study the complexity of the corresponding model checking problem, and compare
it with the case of perfect recall. Hereafter we assume sets Ag = {1, . . . ,m} of indices for
agents and AP of atomic propositions. Given a set U , U denotes its complement. We de-
note the length of a tuple v of elements as |v|, and its ith element either as vi or v.i. Then,
let last(v) = v|v| be the last element in v. For i ≤ |v|, let v≥i be the suffix vi, . . . , v|v| of v
starting at vi and v≤i the (finite) prefix v1, . . . , vi of v starting at v1. Finally, N+ = N \ {0}
is the set of positive naturals.

2.1 Interpreted Systems

We follow the presentation of interpreted systems as given by Fagin et al. (1995). We
will use them as a semantics for ATL∗ as originally put forward by Lomuscio & Raimondi
(2006), rather than concurrent game structures. Nonetheless, the two accounts are closely
related (Goranko & Jamroga, 2004).

Definition 1 (Agent). Given a set Ag of indices for agents, an agent is a tuple i =
〈Li, Acti, Pi, ti〉 such that

• Li is the finite set of local states;

• Acti is the finite set of individual actions;

• Pi : Li → (2Acti \ ∅) is the protocol function;

• ti : Li×ACT → Li is the local transition function, where ACT = Act1× · · ·×Act|Ag|
is the set of joint actions, such that for every l ∈ Li, a ∈ ACT , ti(l, a) is defined iff
ai ∈ Pi(l).

By Def. 1 an agent i is situated in some local state l ∈ Li, which represents the informa-
tion she has about the current state of the system. At any state she can perform the actions
in Acti according to protocol Pi. A joint action brings about a change in the state of the
agent, according to the local transition function ti. Hereafter, with an abuse of notation,
we identify an agent index i with the corresponding agent.

Given set Ag of agents, a global state s ∈ G is a tuple 〈l1, . . . , l|Ag|〉 of local states, one
for each agent in Ag. Notice that an agent’s protocol and transition function depend only
on her local state, which might contain strictly less information than the global state. In
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this sense agents have imperfect information about the system. A history h ∈ G+ is a finite
(non-empty) sequence of global states. For n ≥ 1, Gn denotes the set of histories of length
n, and G<1+n =

⋃
1≤m≤n Gm is the set of histories of length at most n; whereas G<ω denotes

the set of all finite histories, that is, G<ω = G+.
For every agent i ∈ Ag, we define an indistinguishability relation ∼i between global

states based on the identity of local states, that is, s ∼i s
′ iff si = s′i (Fagin et al., 1995).

This indistinguishability relation is extended to histories in a synchronous, pointwise way,
that is, histories h, h′ ∈ G+ are indistinguishable for agent i ∈ Ag, or h ∼i h

′, iff (i) |h| = |h′|
and (ii) for every j ≤ |h|, hj ∼i h

′
j .

Definition 2 (IS). An interpreted system is a tuple M = 〈Ag, s0, T,Π〉, where

• Ag is the set of agents;

• s0 ∈ G is the (global) initial state;

• T : G × ACT → G is the global transition function such that s′ = T (s, a) iff for every
i ∈ Ag, s′i = ti(si, a);

• Π : G ×AP → {tt,ff} is the (two-valued) labelling function.

Intuitively, an interpreted system describes the interactions of a group Ag of agents,
starting from the initial state s0, according to the transition function T . Notice that T is
defined on state s for joint action a iff ai ∈ Pi(si) for every i ∈ Ag.

2.2 ATL with Bounded Recall

We make use of the Alternating-time Temporal Logic ATL∗ (Alur et al., 2002) to reason
about the strategic abilities of agents in interpreted systems.

Definition 3 (ATL∗). State (ϕ) and path (ψ) formulas in ATL∗ are defined as follows, for
q ∈ AP and Γ ⊆ Ag:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)

Formulas in ATL∗ are all and only the state formulas.

As customary, a formula 〈〈Γ〉〉ψ is read as ‘the agents in coalition Γ have a strategy
to achieve goal ψ’. The meaning of LTL operators ‘next’ X and ‘until’ U is standard
(Baier & Katoen, 2008). Operators ‘unavoidable’ [[Γ]], ‘eventually’ F , and ‘always’ G can
be introduced as usual.

Formulas in the ATL fragment of ATL∗ are obtained from Def. 3 by restricting path
formulas ψ as follows, where ϕ is a state formula and R is the release operator1:

ψ ::= Xϕ | (ϕUϕ) | (ϕRϕ)

In the rest of the paper we consider two other relevant fragments of ATL∗: the existential
and universal fragments.

1. Notice that the release operator R can be defined in ATL∗ as the dual of until U (indeed, it does not
appear in the syntax of Def. 3), while it must be assumed as a primitive operator in ATL. We refer to
Laroussinie et al. (2008) for more details on this point.
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Definition 4. Let q ∈ AP and Γ ⊆ Ag. State (ϕ) and path (ψ) formulas in the existential
fragment ∃ATL∗ of ATL∗ are defined as follows:

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ψ ∨ ψ | ψ ∧ ψ | Xψ | (ψUψ) | (ψRψ)

Path formulas (ψ) in the universal fragment ∀ATL∗ of ATL∗ are defined as for ∃ATL∗;
whereas state formulas (ϕ) are defined as follows:

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | [[Γ]]ψ

By Def. 4 in the existential (resp. universal) fragment, formulas are only of the form
〈〈Γ〉〉ψ (resp. [[Γ]]ψ) or boolean combinations thereof. In particular, operator [[Γ]] (resp. 〈〈Γ〉〉)
is no longer definable in the existential (resp. universal) fragment.

Since the behaviour of agents in interpreted systems depends only on their local state,
we assume agents employ uniform strategies (Jamroga & van der Hoek, 2004). That is, they
perform the same action whenever they have the same information. Moreover, we assume
that agents have some bounded recall of the local states visited during an execution. This
is formalised as follows.

Definition 5 (Uniform Strategy with Bounded Recall). For n ∈ N+ ∪ {ω}, a uniform
strategy with n-bounded recall for agent i ∈ Ag is a function fni : G<1+n → Acti such
that for all histories h, h′ ∈ G<1+n, (i) fni (h) ∈ Pi(last(h).i); and (ii) h ∼i h

′ implies
fni (h) = fni (h′).

By Def. 5 any strategy for agent i has to return actions that are enabled for i. Also,
whenever two histories are indistinguishable for agent i, then the same action is returned.
Notice that for n = 1, we obtain memoryless (or imperfect recall) strategies; whereas for
n = ω, 1 + n = ω and we have memoryful (or perfect recall) strategies.

Given an IS M , a path p is an infinite sequence s1s2 . . . of global states. For a set
Fn

Γ = {fni | i ∈ Γ} of strategies, one for each agent in coalition Γ, a path p is Fn
Γ -compatible

iff for every j > 0, pj+1 = T (pj , a) for some joint action a ∈ ACT such that for every
i ∈ Γ, ai = fni (p1, . . . , pj) for j ≤ n, ai = fni (pj−n, . . . , pj) otherwise. Hence, for n ∈ N+,
n-bounded recall strategies take into account at most the n previously visited states. This
modelling choice is meant to account for agents with finite recall of past events (Ågotnes &
Walther, 2009; Vester, 2013). In particular, any actual implementation of MAS with some
sort of recall can only employ bounded recall, for some bound determined by the system’s
memory capacity. Finally, let out(s, Fn

Γ ) be the set of all Fn
Γ -compatible paths starting with

some s′ such that s′ ∼i s for some agent i ∈ Γ.
We can now assign a meaning to ATL∗ formulas on interpreted systems based on a

semantics with two truth values: ff and tt.

Definition 6 (Satisfaction). Let n ∈ N+ ∪ {ω}. The two-valued satisfaction relation |=2
n

for an IS M , state s, path p, and ATL∗ formula φ is defined as follows:

(M, s) |=2
n q iff Π(s, q) = tt

(M, s) |=2
n ¬ϕ iff (M, s) 6|=2

n ϕ
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(M, s) |=2
n ϕ ∧ ϕ′ iff (M, s) |=2

n ϕ and (M, s) |=2
n ϕ
′

(M, s) |=2
n 〈〈Γ〉〉ψ iff for some joint strategy Fn

Γ , for all paths p ∈ out(s, Fn
Γ ), (M,p) |=2

n ψ
(M,p) |=2

n ϕ iff (M,p1) |=2
n ϕ

(M,p) |=2
n ¬ψ iff (M,p) 6|=2

n ψ
(M,p) |=2

n ψ ∧ ψ′ iff (M,p) |=2
n ψ and (M,p) |=2

n ψ
′

(M,p) |=2
n Xψ iff (M,p≥2) |=2

n ψ
(M,p) |=2

n ψUψ
′ iff for some k ≥ 1, (M,p≥k) |=2

n ψ
′, and

for all j, 1 ≤ j < k implies (M,p≥j) |=2
n ψ

Def. 6 is parameterised by n for bounded recall. It can be checked that for n = 1
(resp. n = ω) we obtain the standard satisfaction clauses for ATL∗ir and ATL∗iR for
imperfect information and imperfect (resp. perfect) recall2. We say that formula ϕ is true
in an IS M (for n-bounded recall), or M |=2

n ϕ, iff (M, s0) |=2
n ϕ. Furthermore, in Def. 6 we

use 6|=2
n to represent that it is not the case that |=2

n.

Finally, we observe that Def. 6 corresponds to the subjective interpretation of ATL∗,
whereby formulas 〈〈Γ〉〉ψ are evaluated w.r.t. all paths p ∈ out(s, Fn

Γ ) compatible with some
s′ indistinguishable from s for some agent in Γ (as well as the joint strategy Fn

Γ ). This
is a well-established semantical account in logics for strategies (Jamroga & van der Hoek,
2004), which has found applications in MAS verification (Busard et al., 2015). Intuitively,
a formula 〈〈Γ〉〉ψ is true in a state s according to the subjective interpretation if the strategy
used by coalition Γ is not merely successful in achieving goal ψ, but all the agents in Γ know
it to be successful as well. Moreover, the subjective interpretation allows us to introduce
an epistemic operator as follows: Kiψ ::= 〈〈{i}〉〉ψUψ, whose semantics is derived as:

(M, s) |=2
n Kiψ iff for every s′ ∈ S, s′ ∼i s implies (M, s′) |=2

n ψ

The epistemic operator Ki expresses an external notion of knowledge as described in the
literature on epistemic logic (Fagin et al., 1995; Meyer & Hoek, 1995).

Now, we exemplify the formal machinery introduced so far with two examples.

Example 1. We consider a revised version of the Shell Game by Bulling et al. (2014) in
which a Shuffler and a Guesser participate in a game with N shells on the table. The
Shuffler places a ball in one of the shells. The shells are initially placed in such a way that
the Guesser can see the location of the ball. Then the Shuffler turns the shells over, so that
the ball becomes hidden. From that point, the Guesser needs to wait for m timestamps
before submitting her guess. The Guesser wins the game if she successfully guesses the
location of the ball. The atom shelli is assigned to states where the Shuffler places the ball
in shell i ≤ N , and atom guessi is true when the Guesser guesses shell i (but this does not
mean that the choice of the Guesser is correct).

More formally, this game can be represented as the IS M = 〈Ag, s0, T,Π〉, such that
Ag = {Shuffler ,Guesser}, ActShuffler = {place1, . . . , placeN , H1, . . . ,Hm, I} where by action
placei the shuffler places the ball in shell i, whereas by action Hi he does the i-th step of
hiding, and ActGuesser = {guess1, . . . , guessN , I}, where by action guessi the Guesser
guesses the location of the ball in i. Finally, I is the idle action. The global transition

2. Note that: i stands for imperfect information, r stands for memoryless strategies, and R for memoryful
strategies, as introduced by Schobbens (2004).
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(−,−)

(shell1,shell1)

shell1
(shell2,shell2)

shell2

(shell1,wait1)

shell1
(shell2,wait1)

shell2

(shell1,waitM )

shell1
(shell2,waitM )

shell2

(shell1,guess1)

shell1, guess1
(shell1,guess2)

shell1, guess2
(shell2,guess1)

shell2, guess1
(shell2,guess2)

shell2, guess2

(place1, I) (place2, I)

(H1, I) (H1, I)

(H2, I) (H2, I)

(HM , I) (HM , I)

(I, guess1) (I, guess2) (I, guess1) (I, guess2)

Guesser

Guesser

Figure 1: The IS M for a revisited version of the Shell Game. Here, we consider the general
setting in which there are n steps of hiding before the choice of the Guesser.

function and the labelling function are given in Figure 1 for the case of N = 2. In particular,
each global state is represented as a rectangle where the pair (ls, lg) includes the Shuffler’s
local state (ls) and the Guesser’s local state (lg). Further, in each rectangle, below the pair
of local states, we have the true atoms in accordance with the labelling function.

The property “the Guesser has a winning strategy to guess the correct location of the
ball” can be represented as follows:

ϕ1 = 〈〈Guesser〉〉Fϕg win

where ϕg win =
∨N

i=1(guessi ∧ shelli).
We observe that ϕ1 is false w.r.t. memoryless strategies since to make the property true

the Guesser is supposed to perform different actions in indistinguishable states. However,
the Guesser has a m+ 1-bounded recall strategy to win the game. More formally, we have
that (M, s0) |=2

n ϕ1 holds iff n > m.

Example 2. We consider the simple voting scenario presented by Jamroga et al. (2019a)
comprising of ` voters, k candidates, and a single coercer. Every voter i ≤ ` votes in
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turn for one candidate j ≤ k (action voteij), and after casting her ballot, voter i can
either give a proof of vote to the coercer (action giveij), or refrain from doing so (ac-
tion n givei), assuming the proof is trustworthy. The coercer receives the proof, and de-
cides whether to punish voter i or not (actions punishi and n punishi). The decision
is made t timestamps after the proof is submitted by the voter (the coercer delays deci-
sion by performing the wait action). More formally, this scenario can be represented as
the IS M = 〈Ag, s0, T,Π〉, such that Ag = {Coercer, Voter1, . . . , Voter`}, ActCoercer =
{receive1, . . . , receive`, punish1, . . . , punish`, n punish1, . . . , n punish`, wait, I}, where by
action receivei the coercer receives the response from voter i, and ActVoteri = {votei1, . . . ,
voteik, givei1, . . . , giveik, n givei, I}, where by action n givei the voter i gives no proof,
whereas by action giveij voter i gives proof of having voted for candidate j. Finally, I
is the idle action. For the sake of clarity, the global transition function and the labelling
function are given in Figure 2 in the case with a single voter, two candidates, and one
waiting step. In particular, each global state is represented as a rectangle where the pair
(lc, lv) includes the coercer’s local state (lc) and the voter’s local state (lv). Further, in each
rectangle, below the pair of local states, we have the atoms in accordance with the labelling
function. Note that, since we have a single voter, in Figure 2 we omit the index i for the
voter’s actions.

This IS M is useful to analyse the expressive power of bounded-recall strategies. In
particular, the property “for each voter i, for all the strategies for voter i, at the next step
the coercer has a strategy such that voter i is not punished if she votes for candidate 1 and
provides the proof, otherwise she is punished” can be represented as follows:

ϕ3 =
∧̀
i=1

[[V oteri]]X〈〈Coercer〉〉F ((votei1 ∧ n punishi) ∨

(
k∨

j=2

voteij ∧ punishi) ∨ (n givei ∧ punishi))

We observe that ϕ3 is false w.r.t. memoryless strategies, since for this property to hold,
the coercer is supposed to perform two different actions in indistinguishable states (the states
connected with dotted lines in Figure 2 are indistinguishable for the coercer). However, the
coercer has a t+1-bounded recall strategy to win the game, where t is the number of waiting
steps. More formally, we have that (M, s0) |=2

n ϕ3 holds iff n > t.

2.3 Model Checking Bounded Recall

We now analyse the model checking problem for bounded recall within the two-valued
semantics, defined as follows.

Definition 7 (Model Checking). The model checking (MC) problem concerns determining
whether, given an IS M , ATL∗ formula φ, bound n ∈ N+ ∪ {ω}, truth value v ∈ {tt,ff}, it
is the case that (M |=2

n φ) = v.

Fix a constant n ∈ N+ ∪ {ω}, the n-fixed-recall MC problem concerns determining
whether, given an IS M , ATL∗ formula φ, truth value v ∈ {tt,ff}, it is the case that
(M |=2

n φ) = v.
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(−,−)

(vote1,−) (vote2,−)

(n give,unknown)(give1,rec1) (give2,rec2)

(n give,waited)(give1,waited) (give2,waited)

(give1,punish)

punish, vote1

(give1,n punish)

vote1

(n give,punish)

n give, punish
(n give,n punish)

n give
(give2,n punish)

vote2

(give2,punish)

vote2, punish

(I, vote1) (I, vote2)

(rec, give1) (rec, n give) (rec, give2)(rec, n give)

(wait, ∗) (wait, ∗) (wait, ∗)

(p, ∗)

(n p, ∗)

(p, ∗)(n p, ∗)

(p, ∗)

(n p, ∗)

V oter V oter

{(I, give1), (I, n give)} {(I, give2), (I, n give)}

(∗, ∗)

(∗, ∗)

(∗, ∗)(∗, ∗)

(∗, ∗)

(∗, ∗)

Figure 2: The IS M for the simple voting scenario. We consider the setting of one waiting
step before the Coercer makes a decision for punishment. Here, action ∗ represents
any action available for the agent.

We show that the model checking ATL with perfect recall (i.e., n-fixed-recall for n = ω)
and imperfect information is undecidable.

Theorem 1. The ω-fixed-recall model checking problem for ATL on the two-valued se-
mantics with imperfect information is undecidable.

Proof. Dima & Tiplea (2011) prove that the model checking problem for ATL with
perfect recall (i.e., n-fixed-recall for n = ω) over concurrent game structure with imperfect
information (iCGS) is undecidable. Then, the result follows from the fact that IS and iCGS
can be translated one into the other in polynomial time. Specifically, every IS M induces an
iCGS GM that satisfies exactly the same formulas in ATL∗. For the other direction, given
a iCGS G satisfying some non-restrictive condition, called being square by Belardinelli et al.
(2020a) (which is fulfilled by the iCGS used in the undecidability proof by Dima & Tiplea
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(2011)), we can extract an IS MG such that G and MG satisfy the same formulas in ATL∗.
The details of both translations can be found in Belardinelli et al. (2020a).

As an immediate consequence of Theorem 1, model checking ATL∗ under the same
conditions is also undecidable. We record these results in the following corollary.

Corollary 1. The ω-fixed-recall model checking problem for ATL∗ on the two-valued se-
mantics with imperfect information is undecidable.

In contrast we show that model checking ATL∗ with bounded recall and imperfect
information is decidable.

Theorem 2. For n ∈ N+, the model checking problem for ATL∗ under n-bounded recall
and imperfect information is in EXPTIME. Moreover, the corresponding n-fixed-recall MC
problem is PSPACE-complete.

Proof. First, we provide the upper bound for the general case. In particular, given
an IS M = 〈Ag, s0, T,Π〉, a formula φ, and a bound n ∈ N+, we describe a labelling
algorithm to decide the corresponding model checking instance and we show it to be in
EXPTIME. Given an agent i = 〈Li, Acti, Pi, ti〉 in Ag and n ∈ N+, we define a new agent
i′ = 〈L≤ni , Acti, P

′
i , t
′
i〉 such that L≤ni is the set of sequences h of local states in Li of length

at most n. Then, for every sequence h ∈ L≤ni , a ∈ P ′i (h) iff a ∈ Pi(last(h)). Finally,
h′ = t′i(h, a) iff |h′| = |h|+ 1; for every j ≤ |h|, h′j = hj ; and last(h′) = ti(last(h), a). Then,
consider IS M ′ = Inflate(M,n) = 〈Ag′, s0, T

′,Π′〉, where Ag′ is the set of all and only
agents i′ defined as above from agents i ∈ Ag, and Π′(h, q) = Π(last(h), q). That is, the
states in M ′ are the histories in M of length at most n, and transitions and assignments in
M ′ mirrors those in M . Clearly, the size |M ′| of IS M ′ defined as the number |G′| of states,
is exponential in the size |M | = |G| of the original IS M , that is M ′ = |G|n. Moreover, by
induction on the structure of formulas in ATL∗ we can prove the following result:

Lemma 1. For every formula ϕ in ATL∗, state s in M , and history h in M ′ such that
last(h) = s, we have

(M, s) |=2
n ϕ iff (M ′, h) |=2

1 ϕ

The base of induction is immediate as, for ϕ = q, (M, s) |=2
n ϕ, iff Π(s, q) = tt = Π′(h, q),

iff (M ′, h) |=2
1 ϕ. The inductive cases for Boolean connectives are also immediate. The case

of interest is obviously for formulas of type ϕ = 〈〈Γ〉〉ψ′. In this case, the result follows by
the remark that a (uniform) strategy with n-bounded recall defined on states in M is the
same as a (uniform) memoryless strategy defined on histories in M ′. This completes the
proof of the lemma.

By Lemma 1, to determine whether (M, s) |=2
n ϕ, it is sufficient to model check ϕ on IS

M ′ = Inflate(M,n) under the assumptions of imperfect information and imperfect recall,
as shown in Figure 3. The latter problem is known to be in PSPACE (Schobbens, 2004).
Hence, the whole procedure is in EXPTIME, as it is dominated by the construction of IS
M ′.

On the other hand, if we consider model checking ATL∗ for a fixed bound n ∈ N+, we
obtain a PSPACE upper bound. To prove this, we consider the general procedure provided
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Algorithm MC(M,ϕ, n) :

1 M ′ = Inflate(M,n) ;
2 return MC ATL∗ir(M

′, ϕ) ;

Figure 3: Algorithm to decide ATL∗ Model checking.

above applied for a given bound n. Fixing n, the size of M ′ = |G|n becomes polynomial in
the size of the input. This removes the exponential blow-up in the construction of IS M ′

from M , and therefore, all we need to consider is the complexity of model checking ATL∗

formulas under imperfect information and imperfect recall. We know this to be in PSPACE.
As for the lower bound with n fixed, it follows by the complexity of model checking formulas
in linear-time temporal logic (LTL), which is known to be PSPACE-hard.

As regards the ATL fragment of ATL∗, we prove the following result.

Theorem 3. For n ∈ N+, the model checking problem for ATL under n-bounded recall
and imperfect information is in EXPTIME. Moreover, the corresponding n-fixed-recall MC
problem is ∆P

2 -complete.

Proof. The upper bound for the general case follows immediately from Theorem 2.
As regards the upper bound for ATL with a fixed n ∈ N+, we adapt the proof for

ATL∗ described above. Specifically, model checking ATL under imperfect information and
imperfect recall is known to be in ∆P

2 (Jamroga & Dix, 2006). This complexity dominates
the procedure of inflating and model-checking, once the value n ∈ N+ has been fixed. As
for the lower bound, we can use the same reduction to the problem SNSAT2 of sequential
satisfiability as in Jamroga & Dix (2006).

We remark that for n ∈ N+, the complexity of n-fixed-recall model checking ATL and
ATL∗ with n-bounded recall (and imperfect information) is the same as for the imperfect
recall case, that is, for n = 1 (Schobbens, 2004; Jamroga & Dix, 2006). Moreover, we
provided tight complexity results only for a fixed n. Indeed, here we are mainly interested
in the fact that, differently from the case of perfect recall, the model checking problem for
bounded recall is decidable, irrespectively of its actual complexity (which we believe to be
also EXPTIME-hard, but outside the scope of the present contribution).

The decidability results above can be the basis of a partial model checking procedure for
perfect recall consisting in increasing the bound n on the recall of agents. However, as the
following demonstrates, increasing recall only preserves rather limited fragments of ATL∗

and may, therefore, only be of limited interest.

Lemma 2. Let m,n ∈ N+ ∪ {ω} be such that m ≤ n; let ψ be an existential and φ an
universal formula in ATL∗. Then,

(M,p) |=2
m ψ ⇒ (M,p) |=2

n ψ (1)

(M,p) 6|=2
m φ ⇒ (M,p) 6|=2

n φ (2)

Proof. The proofs for (1) and (2) are both by induction on the structure of the formula.
We only consider the case where the main operator is the strategic modality. The other
cases are immediate and thus omitted.
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(1) By Def. 6 (M, s) |=2
m 〈〈Γ〉〉ψ iff for some joint strategy Fm

Γ , for all paths p ∈
out(s, Fm

Γ ), (M,p) |=2
m ψ. Given Fm

Γ we construct a set Fn
Γ of n-bounded recall strategies as

follows: for every agent i ∈ Γ and history h ∈ G<1+n, define fni (h) = fmi (h(|h|−m), . . . , h|h|)
for m < |h|, fni (h) = fmi (h) otherwise. Notice that each fni so defined is uniform, provided
that fmi is. Given such Fn

Γ , we obtain that out(s, Fn
Γ ) = out(s, Fm

Γ ). In particular, for
all paths p ∈ out(s, Fn

Γ ), (M,p) |=2
m ψ implies (M,p) |=2

n ψ by induction hypothesis, and
therefore (M, s) |=2

n 〈〈Γ〉〉ψ.

(2) By Def. 6 (M, s) 6|=2
m [[Γ]]φ iff for some joint strategy Fm

Γ , for all paths p ∈ out(s, Fm
Γ ),

(M,p) 6|=2
m φ. Given Fm

Γ we can construct a set Fn
Γ of strategies as in point (1). Again,

each fni so defined is uniform, provided that fmi is. Given Fn
Γ thus defined, we obtain that

out(s, Fn
Γ ) = out(s, Fm

Γ ). In particular, for all paths p ∈ out(s, Fn
Γ ), (M,p) 6|=2

m φ implies
(M,p) 6|=2

n φ by induction hypothesis, and therefore (M, s) 6|=2
n [[Γ]]φ.

By Lemma 2 adding memory preserves the truth of existential formulas as well as
falsehood of universal formulas. However, it is not difficult to find counterexamples to
the extensions of (1) and (2) even in ATL.

Lemma 3. Let m,n ∈ N+∪{ω} be such that m < n. There exists formulas ϕ and ϕ′ = ¬ϕ
in ATL such that

(M,p) 6|=2
m ϕ and (M,p) |=2

n ϕ (3)

(M,p) |=2
m ϕ′ and (M,p) 6|=2

n ϕ
′ (4)

Proof. We only provide a proof for (3). Then, (4) follows immediately by considering
ϕ′ = ¬ϕ. Consider the revisited version of the Shell Game, as described in Example 1. Let
ϕ = 〈〈Guesser〉〉Fϕg win, where ϕg win =

∨N
i=1(guessi ∧ shelli) and m,n ∈ N+ ∪ {ω} with

m < M + 1 ≤ n. Clearly, the Guesser has no m-bounded recall strategy to win the game,
but she has a n-bounded recall strategy.

By Lemmas 2 and 3 any naive attempt to approximate perfect recall by increasing
bounded recall is severely restricted in two ways. Firstly, Lemma 2 holds only for the
existential and universal fragments of ATL∗. Secondly, only the truth of existential formulas
is preserved by adding memory, whereas negative results can only be lifted for the universal
fragment. In Section 3, we present a three-valued semantics to overcome these difficulties.

2.4 A Comparison between Bounded Recall and Deterministic Finite-State
Transducers

The treatment of strategies with finite memory was put forward by Vester (2013). We here
compare that approach to the one here pursued. Vester (2013) represents finite-memory
strategies as deterministic finite-state transducers (DFST) 3.

We show that bounded strategies and DFST cannot always be translated (polynomially)
into the other; hence , the two formalisms are orthogonal. We begin by introducing the
definition of DFST, but refer to Vester (2013) for more details.

3. We remark that the structures defined as DFST by Vester (2013) are actually Mealy machines. For
clarity, we keep the original terminology in this section, as Mealy machines are particular versions of
DFSTs. This slight looseness of terminology does not affect the validity of the results presented.
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Definition 8 (DFST). A deterministic finite-state transducers is a tuple D = 〈V, v0, In,
Out, Fin, Fout〉, where

• V is a finite non-empty set of states, with initial state v0;

• In is the input alphabet;

• Out is the output alphabet;

• Fin : V × In→ V is the transition function;

• Fout : V × In→ Out is the output function.

When strategies are represented as DFST, the set V of states can be seen as the possible
values of the internal memory of the strategy, and the initial state v0 corresponds to the
initial memory value. The input symbols in In are the states of the interpreted system,
and the output symbols in Out are its actions. In each round of the strategy execution the
DFST reads the current state. Then, it updates its memory based on the current memory
value and the input state according to Fin. Finally, it outputs an action based on the
current memory value and the input state according to Fout.

A function σ : G+ → Act is a finite-memory strategy if there exists a DFST such that
for all histories h ∈ G+:

σ(h) = Fout(G(v0, h≤|h|−1), last(h))

where for every state v and history h, function G is defined recursively as follows:

G(v, h) =

{
Fin(v, h) for |h| = 1;

Fin(G(v, h≤|h|−1), last(h)) otherwise.

That is, G is the function that repeatedly applies the transition function Fin on a
sequence of inputs to calculate the state of the DFST after reading a given history h.

We now compare formally our definition of bounded strategy with finite-memory strate-
gies given via DFST. Hereafter we say that two strategies (possibly given via DFST) are
equivalent if they correspond to the same function σ : G+ → Act. In the rest of this section
we say that an IS M is non-trivial if some agent has at least two states and two actions.

Proposition 1. Given a non-trivial IS M , for every bound n ∈ N+, there exists some DFST
D for which there is no equivalent strategy with g(n)-bounded memory, for any polynomial
function g.

Proof. We construct a DFST D such that for some history h of length exponential
in n, and different states s, s′ in M , it is the case that Fout(G(v0, s · h≤|h|−1), last(h)) 6=
Fout(G(v0, s

′ ·h≤|h|−1), last(h)). Specifically, consider the DFST D = 〈{v0, v1, v2}, v0, S,Act,
Fin, Fout〉 such that:

1. for all s̄ ∈ G \ {s, s′}, Fin(v0, s̄) = v0;

2. Fin(v0, s) = v1 and Fin(v0, s
′) = v2;
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3. for all s̄ ∈ G, Fin(v1, s̄) = v1 and Fin(v2, s̄) = v2;

4. for all s̄ ∈ G, Fout(v1, s̄) = a and Fout(v2, s̄) = b, where a, b ∈ Act and a 6= b (these
exists as M is non-trivial by assumption).

By the construction above, we ensure that Fout(G(v0, s·h≤|h|−1), last(h)) 6= Fout(G(v0, s
′·

h≤|h|−1), last(h)). In fact, by (1) from the initial state v0 of D by reading s (resp., s′),
the DFST D goes in v1 (resp., v2). By (2), from v1 (resp., v2) by reading any state of
the IS, D stays on v1 (resp., v2). By (3), we have Fout(G(v0, s · h≤|h|−1), last(h)) = a
and Fout(G(v0, s · h≤|h|−1), last(h)) = b, and therefore Fout(G(v0, s · h≤|h|−1), last(h)) 6=
Fout(G(v0, s

′ · h≤|h|−1), last(h)) as required.

However, this memory-bounded strategy cannot be captured by any strategy whose
recall is bounded by some polynomial g(n). In fact, by hypothesis history h is exponential
in n, and since any bounded-recall strategy only considers the last g(n) states of histories
s · h and s′ · h respectively at most, then it returns the same action for both of them.

As regards translating bounded-recall strategies into DFST we have the following result.

Proposition 2. Given a non-trivial IS M , for every bound n ∈ N, there exists some n-
bounded recall strategy f for which there is no equivalent DFST with g(n) states, for any
polynomial function g.

Proof. We provide a proof by contradiction. Given an n-bounded recall strategy f ,
suppose that we can always construct a DFST D with m states, where m < |S|n−1. In
particular, by considering all the possible |S|n histories of length n in M 4, by the pigeonhole
principle there are at least two different histories h and h′ in Gn, in which at some points
k, j ≤ n, the function G returns the same state of memory, that is, G(v0, h≤j) = G(v0, h

′
≤k).

Suppose further that hj = h′k, then we have that Fout(G(v0, h≤j−1), hj) = Fout(G(v0,
h′≤k−1), h′k), that is, the same action is returned when reading histories h≤j and h′≤k. Since
we supposed that our strategies have n-bounded recall, then w.l.o.g. we can assume that
f assigns different actions to h≤j and h′≤k. But this contradicts the fact that m < |S|n−1

states of memory in a DFST are sufficient to describe a n-bounded strategy.

In other words, Proposition 2 states that an n-bounded strategy can in principle return
a different action for every history of length n, that is, |S|n different actions. But to do this
in a DFST D, we might need |S|n states.

Intuitively, Propositions 1 and 2 lead to the following observations. While DFST can be
seen as representing strategies with finite memory, bounded strategies as here introduced
express recall. Memory and recall are related, but orthogonal notions.

3. Three-Valued Bounded Recall

In Section 2 we remarked that model checking ATL∗ under imperfect information and
perfect recall is undecidable in general (Dima & Tiplea, 2011). Moreover, any naive attempt
to approximate perfect recall by increasing bounded recall is severely restricted by the results

4. Note that, in a non-trivial IS we have |S|n different histories of length n, this is because we define
histories as any sequence of states, without considering the transition function (see Subsection 2.1).
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in Lemma 2 and 3 in two dimensions. Firstly, Lemma 2 holds only for the existential and
universal fragments of ATL∗. Secondly, only the truth of existential formulas is preserved
by adding memory, whereas negative results can only be lifted for the universal fragment.

To tackle these issues, in this section we lay the theoretical foundations of a partial
model checking procedure based on a three-valued semantics. The procedure is partial as
in some cases it returns “undefined” (uu) as truth value. On the other hand, differently
from Lemma 2, the satisfaction of all ATL∗ formulas is preserved by adding memory.

3.1 Three-Valued ATL with Bounded Recall

We start by providing the three-valued satisfaction relation for ATL∗, where we consider a
third truth value uu ‘undefined’, besides truth tt and falsehood ff.

First of all, in the rest of the paper we consider an interpreted system as a tuple M =
〈Ag, s0, T,Π〉, where Ag, s0, and T are defined as in Def. 2, whereas a labelling is now a
function Π : G ×AP → {tt,ff, uu}. Notice that an IS M according to Def. 2 is in particular
an IS as here defined, simply all atoms are either true or false.

Definition 9 (Three-valued Satisfaction). Let n ∈ N+∪{ω}. The three-valued satisfaction
relation |=3

n for an IS M , state s, path p, ATL∗ formula φ, and v ∈ {tt,ff} is defined as
follows, where ¬tt = ff and ¬ff = tt:

((M, s) |=3
n q) = v iff Π(s, q) = v

((M, s) |=3
n ¬ϕ) = v iff ((M, s) |=3

n ϕ) = ¬v
((M, s) |=3

n ϕ ∧ ϕ′) = tt iff ((M, s) |=3
n ϕ) = tt and ((M, s) |=3

n ϕ
′) = tt

((M, s) |=3
n ϕ ∧ ϕ′) = ff iff ((M, s) |=3

n ϕ) = ff or ((M, s) |=3
n ϕ
′) = ff

((M, s) |=3
n 〈〈Γ〉〉ψ) = tt iff for some Fn

Γ , for all p ∈ out(s, Fn
Γ ), ((M,p) |=3

n ψ) = tt
((M, s) |=3

n 〈〈Γ〉〉ψ) = ff iff for some Fn
Γ̄

, for all p ∈ out(s, Fn
Γ̄

), ((M,p) |=3
n ψ) = ff

((M,p) |=3
n ϕ) = v iff ((M,p1) |=3

n ϕ) = v
((M,p) |=3

n ¬ψ) = v iff ((M,p) |=3
n ψ) = ¬v

((M,p) |=3
n ψ ∧ ψ′) = tt iff ((M,p) |=3

n ψ) = tt and ((M,p) |=3
n ψ
′) = tt

((M,p) |=3
n ψ ∧ ψ′) = ff iff ((M,p) |=3

n ψ) = ff or ((M,p) |=3
n ψ
′) = ff

((M,p) |=3
n Xψ) = v iff ((M,p≥2) |=3

n ψ) = v
((M,p) |=3

n ψUψ
′) = tt iff for some k ≥ 1, ((M,p≥k) |=3

n ψ
′) = tt, and

for all j, 1 ≤ j < k implies ((M,p≥j) |=3
n ψ) = tt

((M,p) |=3
n ψUψ

′) = ff iff for all k ≥ 1, either ((M,p≥k) |=3
n ψ
′) = ff

or for some j, 1 ≤ j < k and ((M,p≥j) |=3
n ψ) = ff.

In all other cases the value of φ is undefined (uu).

For clarity, we also state the derived meaning of formulas [[Γ]]ψ ::= ¬〈〈Γ〉〉¬ψ:

((M, s) |=3
n [[Γ]]ψ) = tt iff for some Fn

Γ̄
, for all p ∈ out(s, Fn

Γ̄
), (M, s) |=3

n ψ) = tt

((M, s) |=3
n [[Γ]]ψ) = ff iff for some Fn

Γ , for all p ∈ out(s, Fn
Γ ), ((M, s) |=3

n ψ) = ff

Notice that all clauses for the three-valued semantics mirror the corresponding two-
valued clauses, with a notable exception: for 〈〈Γ〉〉ψ to be false we require the existence of a
joint strategy for the complement coalition Γ = Ag \ Γ that enforces ψ to be false. Similar
conditions have previously been proposed (Lomuscio & Michaliszyn, 2014). It is a stronger
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requirement than the usual clause on the coalition Γ not being able to enforce ψ (see Def. 6).
However, it has the advantage of being preserved when adding memory, as it will become
apparent in Lemma 7. Further, as for the two-valued semantics, we normally refer to the
cases for n = 1 and n = ω as imperfect, resp. perfect, recall. Also notice that, as regards
the Boolean operators, our semantics correspond to Kleene’s three-valued logic.

We say that formula ϕ is true (resp. false) in an IS M (for n-bounded recall), or (M |=3
n

ϕ) = tt (resp. ff), iff ((M, s0) |=3
n ϕ) = tt (resp. ff); otherwise ϕ is undefined. Again,

we observe that Def. 9 corresponds to the subjective, three-valued interpretation of ATL∗.
The corresponding objective semantics can be obtained with minor modification, but it is
beyond the scope of the present contribution.

We immediately prove that the three-valued notion of satisfaction in Def. 9 is an ex-
tension of the two-valued relation in Def. 6, in the sense that truth and falsehood in the
three-valued semantics correspond respectively to truth and falsehood in the two-valued
one.

Lemma 4. For every n ∈ N+ ∪ {ω}, formula φ in ATL∗,

((M, s) |=3
n φ) = tt ⇒ (M, s) |=2

n φ (5)

((M, s) |=3
n φ) = ff ⇒ (M, s) 6|=2

n φ (6)

Proof. The proofs for both (5) and (6) are by simultaneous induction on the structure
of the formula. We present the case where the main operator is the strategic modality. The
cases for the other operators are immediate.

(5) By Def. 9 ((M, s) |=3
n 〈〈Γ〉〉ψ) = tt iff for some joint strategy Fn

Γ , for all paths
p ∈ out(s, Fn

Γ ), ((M,p) |=3
n ψ) = tt. Fix such a joint strategy Fn

Γ . By induction hypothesis
we obtain that for all paths p ∈ out(s, Fn

Γ ), (M,p) |=2
n ψ. Then, (M, s) |=2

n 〈〈Γ〉〉ψ as
required.

(6) By Def. 9 ((M, s) |=3
n 〈〈Γ〉〉ψ) = ff iff for some joint strategy Fn

Γ̄
, for all paths

p ∈ out(s, Fn
Γ̄

), ((M,p) |=3
n ψ) = ff. Fix such a joint strategy Fn

Γ̄
. By induction hypothesis

we obtain that for all paths p ∈ out(s, Fn
Γ̄

), (M,p) 6|=2
n ψ. In particular, for every joint

strategy Fn
Γ we can construct some path p′ ∈ out(s, Fn

Γ ) (which is obtained when coalition Γ
plays according to Fn

Γ̄
) such that (M,p′) 6|=2

n ψ by hypothesis. As a result, (M, s) 6|=2
n 〈〈Γ〉〉ψ.

On the other hand, the three-valued semantics is not a conservative extension of the
two-valued one, in the sense that truth and falsehood in the two-valued semantics might
sometimes correspond to undefined uu in the three-valued one. Specifically, the following
lemma provides counterexamples to the converse of (5) and (6).

Lemma 5. For n ∈ N+ ∪{ω}, there exists an IS M with state s, and ATL formulas ϕ and
ϕ′ = ¬ϕ such that

(M, s) |=2
n ϕ and ((M, s) |=3

n ϕ) = uu (7)

(M, s) 6|=2
n ϕ
′ and ((M, s) |=3

n ϕ
′) = uu (8)

Proof. As regards (7) consider again the Shell Game with n hidden steps presented in
Example 1. We remarked therein that 〈〈Guesser〉〉Fϕg win, where ϕg win =

∨N
i=1(guessi ∧
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shelli), is false in the n-bounded, two-valued semantics, and therefore (M, s1) |=2
n ϕ, for ϕ =

¬(〈〈Guesser〉〉Fϕg win). However, in the same game the Shuffler has no n-bounded strategy
to enforce the Guesser to lose, that is, ((M, s) |=3

n 〈〈Guesser〉〉Fϕg win) 6= ff (actually, the
value is uu), and therefore ((M, s) |=3

n ϕ) 6= tt.

To check (8) it is sufficient to take ϕ′ = ¬ϕ. Then, (M, s1) 6|=2
n ϕ
′ and ((M, s1) |=3

n ϕ
′) =

uu.

By Lemma 4 and 5 the three-valued semantics can be thought of as an approximation
of the two-valued one, as defined truth values in the former correspond to the same values
in the latter, but not always viceversa.

3.2 The Complexity of Model Checking

We now analyse the model checking problem for the three-valued semantics.

Definition 10 (Three-valued Model Checking). The model checking (MC) problem concerns
determining whether, given an IS M , ATL∗ formula φ, bound n ∈ N+ ∪ {ω}, truth value
v ∈ {tt,ff,uu}, it is the case that (M |=3

n φ) = v.

Fix a constant n ∈ N+ ∪ {ω}, the n-fixed-recall MC problem concerns determining
whether, given an IS M , ATL∗ formula φ, truth value v ∈ {tt,ff,uu}, it is the case that
(M |=3

n φ) = v.

Similarly as in the two-valued semantics, we immediately obtain the following undecid-
ability result.

Theorem 4. The ω-fixed-recall model checking problem for ATL on the three-valued se-
mantics with imperfect information is undecidable.

Proof. The proof again follows by adapting the undecidability result by Dima & Tiplea
(2011), which makes use of the ATL formula ϕ = 〈〈{1, 2}〉〉Gok to express that a Turing
machine does not halt on the empty word. Specifically, we observe that the two- and three-
valued interpretations coincide for this particular formula ϕ on the iCGS MT introduced
by Dima & Tiplea (2011) to represent the execution of a Turing machine T . That is, we
have that (MT |=3

ω ϕ) = tt iff MT |=2
ω ϕ. Indeed, the value of atom ok is always defined,

and the structure of the clauses for operator 〈〈{1, 2}〉〉 being true is the same in the two-
and three-valued semantics. As a consequence, we obtain that a Turing machine T does
not halt on the empty word iff (MT |=3

ω ϕ) = tt.

Given the above, note that the MC problem is also undecidable.

By Theorem 4, model checking ATL∗ under the same assumptions is also undecidable.
But again, by assuming bounded recall we retrieve decidability. To present this result,
we make use of two auxiliary procedures to update the model and the formula, in or-
der to handle three-valued atoms. In particular, given a model M we use the procedure
Duplicate atoms(M) to produce a new model M ′ that differs from M as for atoms and
the labeling function as follows:

1. For each atom q ∈ AP , the procedure generates two new atoms qtt and qff and add
them to the new set of atoms AP ′ = {qtt, qff | q ∈ AP}.
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Algorithm Transl(ϕ, v) :

1 switch(ϕ)
2 case ϕ = q :
3 switch(v )
4 case v = tt : return qtt ;
5 case v = ff : return qff ;
6 case ϕ = ¬ϕ′ :
7 switch(v )
8 case v = tt : return Transl(ϕ′,ff) ;
9 case v = ff : return Transl(ϕ′, tt) ;

10 case ϕ = ϕ′ ∧ ϕ′′ :
11 switch(v )
12 case v = tt : return Transl(ϕ′, tt) ∧ Transl(ϕ′′, tt) ;
13 case v = ff : return Transl(ϕ′,ff) ∨ Transl(ϕ′′,ff) ;
14 case ϕ = 〈〈Γ〉〉ψ :
15 switch(v )
16 case v = tt : return 〈〈Γ〉〉 Transl(ψ, tt) ;
17 case v = ff : return 〈〈Γ̄〉〉 Transl(ψ,ff) ;
18 case ϕ = Xψ :
19 switch(v )
20 case v = tt : return X Transl(ψ, tt) ;
21 case v = ff : return X Transl(ψ,ff) ;
22 case ϕ = ψUψ′ :
23 switch(v )
24 case v = tt : return Transl(ψ, tt) U Transl(ψ′, tt) ;
25 case v = ff : return Transl(ψ,ff) R Transl(ψ′,ff) ;
26 case ϕ = ψRψ′ :
27 switch(v )
28 case v = tt : return Transl(ψ, tt) R Transl(ψ′, tt) ;
29 case v = ff : return Transl(ψ,ff) U Transl(ψ′,ff) ;

Figure 4: Translation of a formula ϕ to verify the truth value v.

2. For each state s ∈ G, the procedure defines the labeling function Π′ on s as Π′(s) =
{qtt | q ∈ AP and q ∈ Π(s)} ∪ {qff | q ∈ AP and q 6∈ Π(s)}.

Since the following results are not dependent on a particular bound n ∈ N+ ∪ {ω}
assumed, in the following we fix n and omit it.

As regards the formula update, in Figure 4 we present an algorithm that, given an
ATL∗-formula ϕ on AP and a truth value v, returns a new formula Transl(ϕ, v) on AP ′,
which handles the new atoms generated by Duplicate atoms(). Intuitively, the procedures
above are meant to reduce model checking the three-valued semantics for ATL∗ to model
checking two-valued semantics. To this end, we prove the following result.
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Lemma 6. Given an IS M and ATL∗ formula ϕ, let M ′ = Duplicate atoms(M), ϕtt =
Transl(ϕ, tt), and ϕff = Transl(ϕ,ff). Then, we have that:

(M ′, s) |=2 ϕtt ⇔ ((M, s) |=3 ϕ) = tt (9)

(M ′, s) |=2 ϕff ⇔ ((M, s) |=3 ϕ) = ff (10)

(M ′, s) |=2 ¬(ϕtt ∨ ϕff) ⇔ ((M, s) |=3 ϕ) = uu (11)

Proof. The proofs of (9) and (10) are by mutual induction on the structure of formula ϕ.
For the inductive steps, we do not present the case where the main operator is a temporal
modality. For the latter operators, the cases are immediate.

(9) Base case. For ϕ = q and ϕtt = qtt, (M ′, s) |=2 ϕtt iff Π′(s, qtt) = tt by Def. 6.
By point (2) in the definition of Duplicate atoms(M), Π′(s, qtt) = tt iff Π(s, q) = tt. By
Def. 9, this is equivalent to ((M, s) |=3 q) = tt.

Inductive cases.

For ϕtt = Transl(¬ϕ′, tt) = Transl(ϕ′,ff) = ϕ′ff , we have that (M ′, s) |=2 ϕtt iff
(M ′, s) |=2 ϕ′ff , iff by induction hypothesis ((M, s) |=3 ϕ′) = ff. By Def. 9, this is the case
iff ((M, s) |=3 ϕ) = tt.

For ϕtt = Transl(ϕ′∧ϕ′′, tt) = Transl(ϕ′, tt)∧Transl(ϕ′′, tt), we have that (M ′, s) |=2

ϕtt iff (M ′, s) |=2 ϕ′tt and (M ′, s) |=2 ϕ′′tt, iff by induction hypothesis ((M, s) |=3 ϕ′) = tt
and ((M, s) |=3 ϕ′′) = tt. By Def. 9, this is the case iff ((M, s) |=3 ϕ) = tt.

For ϕtt = Transl(〈〈Γ〉〉ψ, tt) = 〈〈Γ〉〉Transl(ψ, tt), by Def. 6, (M ′, s) |=2 ϕtt iff there
exists a joint strategy Fn

Γ , such that for all paths p ∈ out(s, Fn
Γ ), (M ′, p) |=2 ψtt. By

induction hypothesis we have that ((M,p) |=3 ψ) = tt. By Def. 9 this is the case iff
((M ′, s) |=3 〈〈Γ〉〉ψ) = tt.

(10) Base case. For ϕ = q and ϕff = qff , (M ′, s) |=2 ϕff iff Π′(s, qff) = tt by Def. 6.
By point (2) in the definition of Duplicate atoms(M), Π′(s, qff) = tt iff Π(s, q) = ff. By
Def. 9, this is equivalent to ((M, s) |=3 q) = ff.

Inductive cases.

For ϕff = Transl(¬ϕ′,ff) = Transl(ϕ′, tt) = ϕ′tt, we have that (M ′, s) |=2 ϕff iff
(M ′, s) |=2 ϕ′tt, iff by induction hypothesis ((M, s) |=3 ϕ′) = tt. By Def. 9, this is the case
iff ((M, s) |=3 ϕ) = ff.

For ϕff = Transl(ϕ′ ∧ϕ′′,ff) = Transl(ϕ′,ff)∨ Transl(ϕ′′,ff), we have that (M ′, s) |=2

ϕff iff (M ′, s) |=2 ϕ′ff or (M ′, s) |=2 ϕ′′ff , iff by induction hypothesis ((M, s) |=3 ϕ′) = ff or
((M, s) |=3 ϕ′′) = ff. By Def. 9, this is the case iff ((M, s) |=3 ϕ) = ff.

For ϕff = Transl(〈〈Γ〉〉ψ,ff) = 〈〈Γ̄〉〉Transl(ψ,ff), by Def. 6, (M ′, s) |=2 ϕff iff there
exists a joint strategy Fn

Γ̄
, such that for all paths p ∈ out(s, Fn

Γ̄
), (M ′, p) |=2 ψff . By

induction hypothesis we have that ((M,p) |=3 ψ) = ff. By Def. 9 this is the case iff
((M ′, s) |=3 〈〈Γ〉〉ψ) = ff.

(11) We have that (M ′, s) |=2 ¬(ϕtt ∨ ϕff) iff (M ′, s) 6|=2 ϕtt and (M ′, s) 6|=2 ϕff . By (9)
and (10) this is the case iff (M, s) |=3 ϕ) 6= tt and (M, s) |=3 ϕ) 6= ff, that is, (M, s) |=3

ϕ) = uu.

Given Lemma 6, we can present the algorithm to decide the model checking problem
for the three-valued semantics with bounded recall and analyse its complexity.
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Algorithm MC3(M,ϕ, n) :

1 M ′ = Inflate(M,n) ;
2 M ′′ = Duplicate atoms(M ′) ;
3 ϕtt = Transl(ϕ, tt) ;
4 ϕff = Transl(ϕ,ff) ;
5 if MC ATL∗ir(M

′′, ϕtt)
6 then return tt ;
7 else if MC ATL∗ir(M

′′, ϕff)
8 then return ff ;
9 else return uu ;

Figure 5: Algorithm to decide ATL∗ three-valued model checking.

Theorem 5. For n ∈ N+, the model checking problem for ATL∗ on the three-valued
semantics with n-bounded recall and imperfect information is in EXPTIME. Moreover, the
corresponding n-fixed-recall MC problem is PSPACE-complete.

Proof. As regards the general case for n ∈ N+, we extend the model checking procedure
outlined in the proof of Theorem 2 by the procedure in Figure 5. As in the proof of
Theorem 2, we “inflate” the original IS M to create a new IS M ′ whose states are histories
of length at most n, with an exponential blow-up. In line 2, we add in M ′ atoms qtt and qff ,
for each atom q ∈ AP , and update the labeling function as explained above: if Π(s, q) = tt
then Π(s, qtt) = tt, otherwise Π(s, qff) = tt. The latter can be done in polynomial time
in the size of M . Then, in lines 3-4, we call twice the translation procedure in Figure 4
to generate formulas ϕtt = Transl(ϕ, tt) and ϕff = Transl(ϕ,ff) that will be used in the
model checking procedure in two-valued semantics for imperfect information and imperfect
recall. Note that, each translation can be done in polynomial time in the size of formula
ϕ. In lines 5-7 we determine the truth value of both formulas. In particular, if the model
checking procedure in two-valued semantics returns true when considering ϕtt (line 5), our
algorithm returns true since by Lemma 6.(9) formula ϕ holds in M under the three-valued
semantics. Otherwise, in line 6 our algorithm checks whether the model checking procedure
for ϕff returns true and then it returns false by Lemma 6.(10). Consequently, if both model
checking calls return false, the algorithm returns undefined (line 7). Since, checking ATL∗

formulas on the IS M ′′ can be done in polynomial space Schobbens (2004), then the whole
procedure is in EXPTIME.

For a fixed n ∈ N+, the procedure above is in PSPACE. As regards the lower bound,
we make use of the same reduction as in Theorem 2. In particular, we can reduce model
checking an LTL formula ψ to the verification of the truth of the ATL∗ formula 〈〈∅〉〉ψ in
the three-valued semantics.

By Theorems 2 and 5 model checking ATL∗ on the two- and three-valued semantics has
the same complexity. This is also the case for ATL.

Theorem 6. For n ∈ N+, the model checking problem for ATL in the three-valued se-
mantics with n-bounded recall and imperfect information is in EXPTIME. Moreover, the
corresponding n-fixed-recall MC problem is ∆P

2 -complete.

Proof. Clearly, the EXPTIME upper bound for the general case still holds.
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As for a fixed n ∈ N+, we adapt the proof of Theorem 5. In particular, we modify
lines 5-6 in Algorithm 5 by calling procedure MC ATLir instead, which is known to be in ∆P

2

(Jamroga & Dix, 2006).

Again, for n ∈ N+, the complexity of the n-fixed-recall model checking problem for three-
valued ATL and ATL∗ with n-bounded recall (and imperfect information) is the same as for
imperfect recall. Also, as in Section 2, in providing these results, we are primarily interested
in the decidability of the model checking problem for bounded recall, irrespectively of tight
complexity bounds for the general case.

We conclude by observing that translation Transl() is of interest in its own, as it
allows to reduce three-valued model checking to the corresponding two-valued problem. We
envisage to introduce similar translations for other multi-valued logics, by using the same
procedure of adding new atomic propositions (one for each truth value), and then definining
translations mirroring the truth conditions for each value. However, such general reduction
of multi-valued model checking to the two-valued instance is beyond the scope of the present
contribution. We leave it for future work.

4. Approximating Perfect Recall

In this section we lay the theoretical foundations of a partial model checking procedure to
verify ATL∗ under the assumptions of imperfect information and perfect recall. In Sec-
tion 4.1 we present a result on the preservation of defined truth values in ATL∗ when
increasing recall. Then, in Section 4.2 we present the model checking procedure to approx-
imate perfect recall.

4.1 Preservation of Three-Valued ATL∗

The main result of this section, which is akin to Lemma 2, details the preservation of
ATL∗ formulas when increasing the amount of recall. However, differently from Lemma 2,
Lemma 7 hereafter holds for all ATL∗ formulas.

Lemma 7. Let m,n ∈ N+ ∪ {ω} be such that m ≤ n; let ψ be a formula in ATL∗. Then,

((M, s) |=3
m ψ) = tt ⇒ ((M, s) |=3

n ψ) = tt (12)

((M, s) |=3
m ψ) = ff ⇒ ((M, s) |=3

n ψ) = ff (13)

Proof. The proofs for both (12) and (13) are by simultaneous induction on the structure
of formula ψ. We only present the case where the main operator is the strategic modality,
the other cases being immediate.

(12) By Def. 9 ((M, s) |=3
m 〈〈Γ〉〉ψ) = tt if for some joint strategy Fm

Γ , for all paths
p ∈ out(s, Fm

Γ ), ((M,p) |=3
m ψ) = tt. Given Fm

Γ we can construct a joint strategy Fn
Γ as for

Lemma 2: for all i ∈ Γ and all histories h ∈ G<1+n, we define fni (h) = fmi (h(|h|−m), . . . , h|h|)
for m < |h|, fni (h) = fmi (h) otherwise. Notice that each fni so defined is uniform, provided
that fmi is. Given Fn

Γ thus defined, we obtain that out(s, Fn
Γ ) = out(s, Fm

Γ ). In particular,
for all paths p ∈ out(s, Fn

Γ ), ((M, s) |=3
n ψ) = tt by induction hypothesis, and therefore

((M, s) |=3
n 〈〈Γ〉〉ψ) = tt.

(13) By Def. 9 ((M, s) |=3
m 〈〈Γ〉〉ψ) = ff if for some joint strategy Fm

Γ̄
, for all paths

p ∈ out(s, Fm
Γ̄

), ((M,p) |=3
m ψ) = ff. Given Fm

Γ̄
we can construct a joint strategy Fn

Γ̄
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Algorithm Iterative MC(M,ψ, n) :

1 j = 0 , k = uu ;
2 while j < n and k = uu
3 j = j + 1 ;
4 k = MC3(M,ψ, j) ;
5 end while ;
6 if k 6= uu then return (j, k) ;
7 else return −1;

Figure 6: The procedure Iterative MC to decide ATL∗ iteratively.

as in point (12). Again, each fni so defined is uniform, provided that fmi is. Given such
Fn

Γ̄
, we obtain that out(s, Fn

Γ̄
) = out(s, Fm

Γ̄
). In particular, for all paths p ∈ out(s, Fn

Γ̄
),

((M,p) |=3
n ψ) = ff by induction hypothesis, and therefore ((M, s) |=3

n 〈〈Γ〉〉ψ) = ff.

By Lemma 7 adding memory preserves defined truth values for all formulas in ATL∗.
This is in contrast with Lemma 2. Indeed, even though in some cases the value of an ATL∗

formula may be undefined in the three-valued semantics, whenever it is defined, it does not
change when memory is added.

By combining together Lemmas 4 and 7 we obtain our main result on the relationship
between bounded recall and the two- and three-valued semantics.

Corollary 2. Let m,n ∈ N+∪{ω} be such that m ≤ n; let ψ be a formula in ATL∗. Then,

((M,p) |=3
m ψ) = tt ⇒ ((M,p) |=2

n ψ) (14)

((M,p) |=3
m ψ) = ff ⇒ ((M,p) 6|=2

n ψ) (15)

Of particular interest is the case for m ∈ N+ and n = ω. By Corollary 2 we can outline
a verification procedure for perfect recall, whereby ATL∗ formulas are checked in the three-
valued semantics iteratively. If either the value true or false is returned, then by Corollary 2
this is also the truth value for the two-valued semantics under perfect recall. We explore
this intuition in the verification procedure defined below.

4.2 A Partial Decision Procedure for ATL∗iR

We now present a partial decision procedure for model checking ATL∗ under the assump-
tions of imperfect information and n-bounded recall. It is partial, as it is not guaranteed
to terminate for the case of perfect recall, that is, for n = ω. This procedure is described in
algorithm Iterative MC(M,ψ, n) in Figure 6. It takes as input an IS M , an ATL∗ formula
ψ, and a bound n ∈ N+ ∪ {ω}. It includes a while-loop (lines 2-6), whose guard checks
whether the bound has not yet been attained (j < n) and ψ has not yet been decided
(k = uu). Within the loop, formula ψ is model-checked in M according to the three-valued
semantics by subroutine MC3(), and variable k stores the result. On exiting the loop, vari-
able k is tested (line 6). If k 6= uu, the loop was exited because of a defined answer for
the three-valued model checking problem with j-bounded recall (and possibly bound n was
reached). By Corollary 2 we can then transfer the value returned to the corresponding
model checking problem for the two-valued semantics. On the other hand, if k = uu then
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the bound has been attained in the loop and the default value −1 is returned to signal exit
without a defined truth value. We now prove the termination of the algorithm in Figure 6
for n ∈ N+, as well as its soundness.

Theorem 7. For n ∈ N+, Iterative MC() terminates in EXPTIME. Moreover, Iterati
ve MC() is sound: if the value returned is different from −1, then M |=2

n φ iff k = tt and
M 6|=2

n φ iff k = ff.

Proof. As regards termination in EXPTIME, notice that for n ∈ N+ the algorithm in
Figure 6 calls procedure MC3(), which is in EXPTIME (Theorem 5), a bounded number
of times. Then, the overall complexity is also in EXPTIME.

As for soundness, suppose that the value returned is different from −1. In particular,
this means that either k = tt or k = ff. If k = tt then by the structure of Iterative MC(),
((M, s) |=3

j ψ) = tt for some j ≤ n. By Corollary 2.(14) we obtain M |=2
n φ. On the other

hand, suppose that M |=2
n φ and assume k = ff to derive a contradiction. Then, by the

structure of Iterative MC(), ((M, s) |=3
j ψ) = ff for some j ≤ n, and by Corollary 2.(15)

we have M 6|=2
n φ, a contradiction. Hence, k = tt as required. The cases for M 6|=2

n φ iff
k = ff is similar.

Incidentally, we observe that, for a fixed n ∈ N+, algorithm Iterative MC() actually
runs in PSPACE.

An important application of Iterative MC() is for the case n = ω, namely model check-
ing perfect recall. In such a case, termination is no longer guaranteed, but soundness still
is.

Theorem 8. For n = ω, Iterative MC() does not necessarily terminate. However, Iterati
ve MC() is sound: if the value returned is different from −1, then M |=2

n φ iff k = tt and
M 6|=2

n φ iff k = ff.

Proof. We have remarked that in several games, for example, the matching pennies
game by Bulling et al. (2008), neither player has a strategy to win the game, no matter how
much recall we assume on our players. So, algorithm Iterative MC() will never return a
defined truth value for any j ∈ N+, and therefore it will never exit the while loop.

Soundness follows again by Corollary 2.

As a result, by Theorem 8 we have a sound, albeit incomplete, decision procedure
for model checking ATL∗ with perfect recall and imperfect information. Observe that no
complete procedure can be obtained as the problem is undecidable in general (Dima &
Tiplea, 2011).

Example 3. In relation with the IS M for the voting scenario in Example 2, consider again
the specification ϕ3 =

∧`
i=1 [[V oteri]]X〈〈Coercer〉〉Fφi, where φi = ((votei1 ∧ n punishi) ∨

(
∨k

j=2 voteij ∧ punishi)∨ (n givei ∧ punishi)), which intuitively states that no matter what
voter i does, at the next step the coercer has a strategy such that eventually either voter
i votes for candidate 1 or the coercer punishes her. This specification is neither existential
nor universal, and therefore does not fall within the hypothesis of Lemma 2. Nevertheless,
ϕ3 is amenable to algorithm Iterative MC() in Figure 6. Specifically, given the IS M in
Example 2, formula ϕ3, and bound n > t, where t is the number of waiting steps, the
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algorithm Iterative MC(M,ϕ3, n) initializes the bound on recall to 0 and the value of k to
undefined uu. Then, in the while loop the subroutine MC3(M,ϕ3, 1) returns uu because,
according to the three-valued semantics, the coercer does not have a memoryless strategy
to enforce Fφi at the next step, nor voter i has a (memoryless) strategy to prevent Fφi at
the next step. On the other hand, in the t+1 iteration of the function call, MC3(M,ϕ3, t+1)
returns true, as the coercer has a t+ 1-bounded recall strategy to enforce Fφi at the next
step, and therefore ϕ3 holds. Thus, we conclude that the IS M in Example 2 satisfies
specification ϕ3 under the assumptions of imperfect information and perfect recall.

5. Experimental Results

In this section we present the MCMASBR model checker to verify ATL-specifications ac-
cording to the bounded recall semantics, which can also be used to approximate perfect
recall. Then, we evaluate it empirically on the two examples introduced in Section 2.

5.1 The MCMASBR Model Checker

We implemented the algorithms in Section 4 in MCMASBR MCMASBR (2021), an exper-
imental model checker that extends the open-source verification tool MCMAS (Lomuscio
et al., 2017) by supporting the bounded recall semantics introduced in Section 2, while
maintaining full functionality for memoryless semantics. In summary, agents in MCMASBR

recall a bounded number of the latest states visited in the run, which is given as input by the
user. Protocol functions are defined as for the memoryless semantics. Given the notion of
recall here adopted, the agents’ strategies are based on bounded local histories, rather than
on their present state only, as it is the case under the memoryless semantics. MCMASBR

takes as input an ISPL file describing the multi-agent system under analysis and a set of
formulas to be verified. The syntax of the ISPL file is the same as for standard MCMAS.
The present version of the checker only supports ATL specifications, which is the case for
MCMAS too.

Verification under three-valued bounded recall semantics is carried out by invoking the
tool with the command:

python mcmas br.py [k] [file.ispl]

where k is the bound on recall specified by user and file.ispl is the ISPL file containing
the model and the specification. In the present version of MCMASBR all agents have the
same bound on recall; extending this feature would not be problematic, but it is beyond
the scope of the current contribution.

Upon invocation, the tool parses the input ISPL file, and for each specification ϕ appear-
ing in the ISPL file, it generates two translated formulas ϕtt and ϕff , according to function
Transl() described in Figure 4. The tool then makes model checking calls iteratively until
it reaches the maximum recall bound k; after each check, the tool displays the verification
result. At each iteration, the tool constructs the model, where the agents’ recall has its di-
mension fixed by the bound, and new atomic propositions are also duplicated and added to
the model according to algorithm MC3() in Figure 5. For each variable in the local state, an
array of BDD variables of the length at most k is generated for encoding the local histories.
Since we have a fixed memory window of k, at the initialisation stage where the history is
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less than k, an additional unused state is used as a place holder. The model construction
phase generates the set of bounded histories which are of arbitrary lengths up to the bound
on recall. For certain formulas with undefined values for smaller bounds, the tools allows
early termination once a true or false value is obtained.

MCMASBR implements several methods to minimise the memory and computational
overheads generated by the bounded recall semantics. We adopt an efficient usage of BDD
variables, which allows us to manipulate individual observations of each local history. For
example, at each time step in a run, the symbolic encoding of each local history contains the
composition of the previous history with the new variable assignments representing portions
of the local history. At each execution step, only the oldest observation is discarded and
the rest of the observations in the state only shifts by one position in the BDD variables
of the next state. The new variable assignment is applied to the set of BDD variables
encoding the latest observation. This optimises the BDD memory used for computing and
storing large local histories, notably during the subset construction stage where Boolean
variables are generated to encode the bounded history space. Agents’ protocols are also
optimised to account for the bounded recall semantics, and are used to generate history-
based strategies. The model checking algorithm is adapted from Busard et al. (2015) which
contains practical optimisations such as early termination and caching for speeding up the
model checking process under uniformity conditions.

5.2 Evaluation

Intuitively, the increased expressivity of the bounded recall semantics comes at the com-
putational cost of a larger number of Boolean variables required to encode histories when
compared against the standard memoryless semantics. This is expected to cause a per-
formance degradation in the verification step. Note that, however, the problem remains
decidable, differently from the case of unbounded recall, which is undecidable in general.
To evaluate experimentally the cost of bounded recall, we now report the experiments con-
ducted on the scalability of MCMASBR as we increase the value of the bound and the
example size, starting with the Shell Game described in Example 1 in ISPL.

Here, we generalise the ATL specification “the Guesser has a winning strategy to guess
the correct location of the ball” shown in the proof of Lemma 3, to an arbitrary number N
of shells:

ϕ1 = 〈〈Guesser〉〉Fϕg win

where ϕg win =
∨N

i=1(guessi ∧ shelli).
As a further specification, we check whether “the Shuffler has a strategy to enforce that

the Guesser will not guess the correct location of the ball and thus cannot win”:

ϕ2 = 〈〈Shuffler〉〉G¬ϕg win

Intuitively, the truth of ϕ1 depends on whether the bound on recall is large enough for
the agent to distinguish the states that contain information of the shell location, that is,
when the bound is greater than the number of waiting steps. On the other hand, ϕ2 should
be false whenever the bound exceeds the number of waiting steps and undefined for smaller
bounds.
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(shells, waiting) bound reachable histories possible histories BDD memory
ϕ1

time value
ϕ2

time value

5 2421 4.7× 1015 17912816 1.473 uu 1.326 uu
9 4021 1.6× 1028 46451184 15.117 uu 12.163 uu

(20,20) 13 5621 5.7× 1040 63613616 66.635 uu 63.478 uu
17 7221 2.0× 1053 65742672 97.402 uu 94.056 uu
21 8821 6.8× 1065 63289776 72.788 tt 63.855 ff
25 10421 2.3× 1078 71859312 180.324 tt 170.324 ff

5 2501 6.5× 1015 29185392 4.018 uu 3.125 uu
9 4101 2.9× 1028 38615600 9.115 uu 9.463 uu

(20,24) 13 5701 1.3× 1041 45592752 62.780 uu 60.856 uu
17 7301 5.7× 1053 50125520 179.450 uu 132.888 uu
21 8901 2.5× 1066 62216144 276.825 uu 296.082 uu
25 10501 1.1× 1079 67699408 212.931 tt 173.577 ff

5 5131 1.2× 1017 30722752 3.455 uu 4.270 uu
9 8731 5.9× 1030 49790544 70.410 uu 88.751 uu

(30,20) 13 15931 2.8× 1044 68733232 214.854 uu 256.994 uu
17 15571 1.3× 1058 75444064 256.938 uu 322.090 uu
21 23131 6.3× 1071 65889200 94.542 tt 108.452 ff
25 22771 3.0× 1085 83397840 278.351 tt 355.215 ff

5 5251 1.6× 1017 31004400 5.978 uu 23.686 uu
9 8851 9.1× 1030 51694640 30.242 uu 35.217 uu

(30,24) 13 12451 5.2× 1044 60624528 218.773 uu 244.457 uu
17 16051 3.0× 1058 62232976 527.586 uu 638.194 uu
21 - 1.7× 1072 - * - * -
25 - 9.7× 1085 - * - * -

Table 1: Experimental results for the Shell Game.

Table 1 shows the experimental results obtained with MCMASBR running on an Intel
Coretm i7-2600 CPU 3.40GHz machine with 16GB RAM running Ubuntu v18.04.2 (Linux
kernel v4.15). The table displays the following information in each column:

1. the number of shells and of waiting steps;

2. the bound on recall given as a user parameter;

3. the number of reachable histories of the particular game instance (Note our imple-
mentation treats histories as states, and therefore in practice on MCMASBR this is
the number of reachable states);

4. the total number of (possible) histories in the instance’s state space;

5. the amount of BDD memory usage for the instance (in Mb);

6. for each formula ϕ1 and ϕ2, its verification time, inclusive of both the model construc-
tion step and the model checking algorithm running time (in seconds), as well as the
verification result obtained.

As reported in Table 1, we ran experiments with a varying bound on recall between 5
and 25, and 20 to 30 shells. As expected, ϕ1 was evaluated to undefined when the bound was
smaller than the number of waiting steps, as Guesser was not able to remember the location
of the ball and thus did not have a winning strategy in such scenarios. The experiments
confirmed the correctness of the implementation. The verification performance degrades
as the bound increases, leading to an increase in the associated state space. Note that
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(voters, waiting) bound reachable histories possible histories BDD memory
ϕ3

time value
ϕ4

time value

3 253 5.5× 109 10527136 0.421 uu 0.077 uu
5 285 1.7× 1016 12675360 0.550 uu 0.205 uu

(2, 6) 7 317 5.3× 1022 30666656 18.697 tt 0.433 ff
9 365 1.7× 1029 36925408 109.035 tt 0.638 ff
11 285 5.2× 1035 39708256 202.593 tt 1.425 ff

3 301 8.7× 109 10895424 0.427 uu 0.089 uu
5 333 3.7× 1016 13422240 1.052 uu 0.230 uu

(2, 8) 7 365 1.6× 1023 32387328 10.084 uu 0.475 uu
9 397 6.6× 1029 50866528 463.351 tt 0.921 ff
11 445 2.8× 1036 35314128 3130.008 tt 1.720 ff

3 1209 4.5× 1012 13346960 1.741 uu 0.260 uu
5 1401 1.2× 1021 27770800 622.87 uu 0.633 uu

(3, 6) 7 7025 3.3× 1029 12781792 ∗ - 4.179 ff
9 7616 8.9× 1037 18676640 ∗ - 72.874 ff
11 8256 2.4× 1046 18148672 ∗ - 121.720 ff

3 1433 7.1× 1012 15651024 1.860 uu 0.273 uu
5 1625 2.6× 1021 33152144 796.670 uu 0.734 uu

(3, 8) 7 1817 9.6× 1029 27577424 ∗ - 5.652 uu
9 2009 3.6× 1038 28857328 ∗ - 75.669 ff
11 2297 1.3× 1047 35314128 ∗ - 192.040 ff

Table 2: Experimental results for the Simple Voting Scenario.

undefined formulas can sometimes require a longer computation time, with an exhaustive
search in the state space. However, when the bound reaches a value where the formula
becomes defined, the computation time is shorter, which is likely due to early termination
when a winning strategy is found. In Table 1 we used a time-out of 60 minutes, which is
represented as a star ∗.

To further evaluate the scalability of MCMASBR, we implemented and verified the
Simple Voting Scenario in Example 2, where we consider multiple agents. We evaluate the
voting protocol against specification ϕ3 in Example 3. It expresses that no matter what
voter i does, at the next step, Coercer has a strategy whereby they can enforce each voter
to vote for Candidate 1, otherwise the voter will be punished:

ϕ3 =
∧nv

i=1 [[V oteri]]X〈〈Coercer〉〉F ((votei1 ∧ n punishi) ∨ (
∨k

j=2 voteij ∧ punishi) ∨
(n givei ∧ punishi))

Further, we evaluate the ATL specification ϕ4 stating that the voters collectively have
a strategy to avoid being punished:

ϕ4 = 〈〈all voters〉〉G¬(
∨nv

i=1(n givei ∧ n punishi) ∨ (givei ∧ punishi))

Table 2 reports the verification results obtained by evaluating the Simple Voting Scenario
with different numbers of voters and waiting steps. Formula ϕ3 is evaluated as undefined
for bounds smaller than 9, corresponding to the fact that Coercer can no longer recall the
voting proof he received from the Voter. By increasing the bound on recall, the formula is
then evaluated to true. Formula ϕ4 is also evaluated to undefined for bounds smaller than
9, but then is evaluated to false when the bound is increased to 9 or above, corresponding
again to a situation where the Coercer has sufficient memory to recall the proof that has
been received earlier. As for the Shell Game, the performance of the model checker degrades
as we increase the bound on recall, hence the model size. The memory footprint of the tool
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increases at a slower rate compared with the increase in verification time, indicating an
efficient usage of BDD variables.

6. Conclusions

Model checking multi-agent systems against alternating-time temporal logic is known to
be undecidable under the assumptions of perfect recall and imperfect information. In this
paper we put forward a sound, albeit incomplete, verification procedure for perfect recall
based on a notion of bounded recall. To do so, we introduced bounded recall on interpreted
systems by providing both a two- and a three-valued semantics. By using the three-valued
semantics for bounded recall we were able to prove Lemma 4 on the preservation of defined
truth values from the bounded to the perfect recall case for all ATL∗ specifications. As
shown in Lemma 2, in the classic two-valued semantics, preservation holds only for the rather
restricted universal and existential fragments of ATL∗. These results lay the foundation for
the iterative procedure illustrated in Section 4, which can, in some cases, solve the model
checking problem under perfect recall by considering a bounded amount of memory for the
agents in the system. Since model checking perfect recall under incomplete information is
undecidable in general, the procedure discussed is necessarily incomplete. Yet, to the best
of our knowledge, this constitutes the first procedure available which can provide solutions
in cases of practical interest. We illustrated our method by extending MCMAS to support
bounded recall functionalities. The resulting tool, MCMASBR, which employs symbolic
structures to encode recall histories, was evaluated experimentally. The analysis showed
that, for some protocols of interest, recall bounds of approximately 20 steps, corresponding
to over 1085 possible histories can be practically checked. The time effort required for the
resulting checks appears to be exponential, in line with the EXPTIME bound provided at
theoretical level. Finally, with translation function Transl() in Section 3 we provided a
method to reduce three-valued model checking to the corresponding two-valued problem.
We believe that such a reduction is of independent interest and might find applications
beyond the scope of the present contribution.

In further work we would like to explore combinations of bounded recall with other
notions of interest in specifications for multi-agent systems, including Strategy Logic and
epistemic logic. In a further line we would like to explore the combination between recall
bounds and bounded resources.
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