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Abstract

The existence of an anomaly detection method that is optimal for all domains is a myth.
Thus, there exists a plethora of anomaly detection methods which increases every year for a
wide variety of domains. But a strength can also be a weakness; given this massive library
of methods, how can one select the best method for their application? Current literature is
focused on creating new anomaly detection methods or large frameworks for experimenting
with multiple methods at the same time. However, and especially as the literature contin-
ues to expand, an extensive evaluation of every anomaly detection method is simply not
feasible. To reduce this evaluation burden, we present guidelines to intelligently choose the
optimal anomaly detection methods based on the characteristics the time series displays
such as seasonality, trend, level change concept drift, and missing time steps. We provide
a comprehensive experimental validation and survey of twelve anomaly detection meth-
ods over different time series characteristics to form guidelines based on several metrics:
the AUC (Area Under the Curve), windowed F-score, and Numenta Anomaly Benchmark
(NAB) scoring model. Applying our methodologies can save time and effort by surfacing
the most promising anomaly detection methods instead of experimenting extensively with
a rapidly expanding library of anomaly detection methods, especially in an online setting.

1. Introduction

Time series are used in almost every field: intrusion and fraud detection, tracking key
performance indicators (KPIs), the stock market, and medical sensor technologies. One im-
portant use of time series is the detection of anomalies for ensuring undisrupted business,
efficient troubleshooting, or, in the case of medical sensor technologies, lower the mortal-
ity rate. However, time series anomaly detection is a notoriously difficult problem for a
multitude of reasons:

1. What is anomalous? An anomaly in a time series is a pattern that does not conform
to past patterns of behavior in the series. What is defined as anomalous may differ
based on application. The existence of a one-size-fits-all anomaly detection method
that is optimal for all domains is a myth (Laptev et al., 2015). In addition, inclusion of
contextual variables may change initial perceptions of what is anomalous. Suppose,
on average, the number of daily bike rentals is 100, and one day, it was 10. This
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initially may appear anomalous, but if this occurred on a cold, winter day, this is
actually not so surprising. In fact, it might appear more anomalous if there were 100
rentals instead. There are also different types of anomalies (e.g. point, contextual,
and collective anomalies (Banerjee et al., 2008), and some anomaly detection methods
are better than others at detecting certain types.

2. Online anomaly detection. Anomaly detection often must be done on real-world
streaming applications. Strictly speaking, an online anomaly detection method must
determine anomalies and update all relevant models before occurrence of the next time
step (Saurav et al., 2018). Depending on the needs of the user, it may be acceptable
to detect anomalies periodically. Regardless, efficient anomaly detection is vital which
presents a challenge.

3. Lack of labeled data. It is unrealistic to assume that anomaly detection systems will
have access to thousands of tagged datasets. In addition, given the online requirement
of many such systems, it can be easy to encounter anomalous (or not anomalous)
behavior that was not present in the training set.

4. Data imbalance. As an anomaly is a pattern that does not conform to past patterns
of behavior, non-anomalous data tends to occur in much larger quantities than anoma-
lous data. This can present a problem for a machine learning classifier approach to
anomaly detection as the classes are not represented equally. Thus, an accuracy mea-
sure might present excellent results, but the accuracy is only reflecting the unequal
class distribution in the data (the accuracy paradox ). For example, if there are 100
data points and only 2 anomalies, a classifier can deem every point as non-anomalous
and achieve 98% accuracy.

5. Minimize False Positives. It is important to detect anomalies as accurately and
efficiently as possible, but minimizing false positives is also of great necessity to avoid
alarm fatigue. Alarm fatigue can lead to a serious alert being overlooked and wasted
time in checking for problems when there are none.

6. What should I use? There is a massive wealth of anomaly detection methods to
choose from (Campos et al., 2016; Emmott et al., 2015; Wu, 2016; Cook et al., 2019;
Chandola et al., 2009a; Hodge & Austin, 2004).

Because of these difficulties inherent in time series anomaly detection, we believe there
is a strong need for a comprehensive experimental comparison which can:

1. Survey the landscape and demonstrate which anomaly detection methods are more
promising given different types of time series characteristics.

2. Highlight the differences between several scoring methodologies (windowed F-scoring,
Area Under the receiver operating characteristic Curve, and Numenta Anomaly Bench-
mark scoring)

3. Provide a foundation for time benchmarks essential in an online setting.

4. Reveal important omissions in the anomaly detection methods themselves.
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We present guidelines for automating the classification of univariate time series and
choice of anomaly detection method based on the characteristics the time series possesses.1

For example, if the time series in a user’s application exhibits concept drift and no seasonal-
ity, which anomaly detection method would perform best? We make these analysis by con-
ducting a thorough experimental comparison of a wide range of anomaly detection methods
and evaluate them using both windowed F-scores, AUC (Area Under the receiver operating
characteristic Curve), and NAB (Numenta Anomaly Benchmark)2 scores. Anomaly detec-
tion often must be done on real-world streaming applications. Thus, we include the time it
took to train the methods as well as detection. Finally, in experimentally testing anomaly
detection methods on a wide variety of datasets, we reveal areas where many of these meth-
ods are lacking but are not brought to light. For example, Twitter AnomalyDetection
VEC can only be used with seasonal datasets.

These are our main contributions:

• Either re-implemented or used existing libraries to test 12 different anomaly detection
methods3

• Test these methods on different time series characteristics (seasonality, trend, concept
drift, and missing time steps). For example, we could determine how well Facebook
Prophet performs on concept drift by observing its results on 10 time series datasets
all exhibiting concept drift.

• Created new benchmark datasets for anomaly detection.

• Compare and contrast multiple scoring methods: windowed F-scoring, AUC, and
Numenta Anomaly Benchmark scoring. As mentioned previously, accuracy, alone, is
a poor measure of an anomaly detection method’s performance.

• Provided analysis and guidelines based on these results. Applying these guidelines can
save time and effort by surfacing the most promising methods for anomaly detection
instead of experimenting extensively with a rapidly expanding library of anomaly
detection methods, especially in an online setting.

The rest of the paper is organized as follows. After a discussion of time series charac-
teristics and datasets, we proceed with a description of all anomaly detection methods we
experiment with, parameters used, and how we evaluate performance. After obtaining the
results, we derive several guidelines on method selection by time series characteristics and
outline areas for future work.

1. Similar analysis (Emmott et al., 2015) has been performed before to compute the influence of meta-data
on anomaly detection but for feature-vector-based datasets instead of time series.

2. See Appendix for a table of all acronyms and their definitions.
3. See https://github.com/dn3kmc/jair anomaly detection for all source code implementations, Jupyter

notebooks demonstrating how to determine characteristics, and datasets.
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(a) Seasonality. (b) Trend.
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Figure 1: a An example of a non-stationary time series exhibiting seasonality. b An
example of a non-stationary time series exhibiting a downward trend. c An example of
a non-stationary time series displaying level change concept drift around 2014-04-19 and
2014-04-23. Another concept drift occurs around 2014-04-13 shortly after an anomalous
spike. d An example of a time series with missing time steps. The time series is displayed
as a scatter plot to showcase the missing points, especially around time step 6500.

2. Preliminaries

We follow the same definition established by Wang et al. (2013) where a time series is
defined as a sequence of pairs

T = [(p1, t1)...(pn, tn)](t1 < t2 < ... < tn)

where each pi is a data point in a d-dimensional space and each ti represents the time stamp
at which the corresponding pi occurs. Given the challenges present in anomaly detection,
we aim to simplify the process in choosing the most promising anomaly detection methods
for a given univariate time series. In the following subsections, we will:

1. Discuss several characteristics that a time series can possess

2. Consider ways to automatically detect these characteristics

3. Provide example datasets for said characteristics

4. Review a variety of anomaly detection methods

2.1 Time Series Characteristics

We begin with a description of time series characteristics (see Figures 1a to 1d).

852



Twelve Time Series Anomaly Detection Algorithms

Stationarity A time series is stationary if the mean, variance, and autocorrelation struc-
ture are constant for all time t (Hyndman & Athanasopoulos, 2018). A white noise process
is stationary, for example. Most time series encountered in the real world are not station-
ary. Many anomaly detection methods require a time series to be made stationary first as
a preprocessing step.

Non-stationarity Non-stationary time series may exhibit seasonal behavior (see Fig-
ure 1a). For example, it is likely that there are more bike rentals in the summer and fewer
in the winter, and that this behavior repeats year after year. Other behaviors that may
be exhibited by non-stationary time series include trend (see Figure 1b) and concept drift
(see Figure 1c which shows an example of level change concept drift) where the definition
of normal behavior changes over time (Saurav et al., 2018). Initially, a concept drift may
trigger an anomaly, but an adaptive system should quickly determine that a new pattern
of behavior has occurred and is the new “normal”. Here we focus on level change concept
drift and leave other types of concept drift for future work.

Sampling Rate An online anomaly detection method requires that anomalies be deter-
mined and models be updated before occurrence of the next time step or some potentially
larger time frame as specified by the user. In cases where anomaly detection is done online,
the sampling rate can restrict the kinds of anomaly detection methods under consideration.

Missing Time Steps Missing time steps occur in time series often due to the inherent
nature of what is being measured. Suppose we create a time series of average load times
of a webpage over one minute windows. We cannot expect that pages are being loaded
every minute; this is dependent on how customers are using the webpage. Thus, some one
minute periods will not have a measurement. Missing time steps are a frequent occurrence
in real-world datasets (see Figure 1d). Missing time steps may make it difficult to apply
anomaly detection methods without some form of interpolation. However, other methods
can handle missing time steps innately.

In summary, the characteristics of time series we discuss are:

• Non-stationarity

– Seasonality (10)

– Level Change Concept Drift (10)

– Trend (10)

• Sampling Rate

• Missing Time Steps (10)

The number of datasets we analyze exhibiting seasonality, concept drift, trend, and
missing time steps are in parenthesis. We consider 5 minute, 30 minute, 1 hour, 1 day, and
1 month sampling rates.
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2.2 Detection of Time Series Characteristics

Although some of the characteristics discussed are easy to determine visually, it can be
more difficult to determine if a time series is stationary in an automated fashion. Naively,
one could partition the dataset and compare summary statistics of every partition. But
it is cumbersome to determine the location and sizes of these partitions; one partitioning
scheme can reveal differences while another may suggest constant mean and variance. We
make use of several statistical tests to detect time series characteristics.

2.2.1 Detecting Trend

We detect two types of trend: stochastic and deterministic trend. For stochastic trends,
the mean trend is stochastic. Stochastic trend is removed using differencing, where we
subtract the previous observation from the current observation. Because it is removed
via differencing, stochastic trend is sometimes called difference-stationary trend. For
deterministic trends, the mean trend is deterministic. Deterministic trends are removed
by detrending the time series, where you find some line that best fits the data and then
subtract it from the data. That is why they are sometimes called trend-stationary.

We use the formulation established by Barbosa (2011) to detect stochastic and deter-
ministic trend. Barbosa (2011) uses two statistical tests: the KPSS (Kwiatkowski-Phillips-
Schmidt-Shin) test and the PP (Phillips-Perron) test. The null hypothesis of the KPSS
test is that the time series is trend-stationary (deterministic trend exists) whereas the null
hypothesis of the PP test is that the time series is difference-stationary (stochastic trend
exists).

If the null hypothesis of the KPSS test is rejected but the null hypothesis for the PP
test is not rejected, the time series exhibits difference-stationarity. If the null hypothesis
of the KPSS test is not rejected but the null hypothesis for the PP test is rejected, there
is trend-stationartiy. For all other cases, the tests and/or time series is not informative
enough for discriminating behavior.

2.2.2 Detecting Seasonality

Although seasonality can sometimes be determined at a glance (see Figure 2a), other times
it is not so obvious (see Figure 2b). Thus, it is often necessary to analyze the ACF (Auto-
Correlation Function) plot which displays the correlation for time series observations with
its lags (observations from previous time steps). A time series that exhibits seasonality will
show a repetitive pattern in its autocorrelation plot like in Figure 3a. The x-axis shows
the lag value. The y-axis shows the Pearson correlation. This correlation coefficient is
between -1 and 1 and describes a negative or positive correlation, respectively. A value
of zero indicates no correlation. The dashed line4 represents the 95% confidence interval.
Values outside of this dashed line are very likely a correlation and not a statistical fluke.
For example, in Figure 3b, the time series does not contain seasonality.

4. Figures 2a and 2b are generated using Pandas, with the confidence interval represented as a blue cone.
Figures 3a and 3b are generated using stats in R, with the confidence interval represented as the dashed,
blue line. The reason for the difference in display of confidence intervals is that Pandas takes into
account the fact that time series values that are close in time would be more highly correlated than ones
that are more far apart.
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Time Series
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(a) On the left is a time series displaying seasonal behavior. The ACF of this
time series (on the right) also provides evidence of this behavior. However,
seasonality is obvious from visual inspection of the time series.
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(b) Compared to the time series in a, seasonality for this time series (left) is
not obvious at a glance. Instead, we must refer to the ACF (right) to reveal
this behavior.

Figure 2: a Time Series with obvious seasonality. b Time Series with seasonality deter-
mined by analysis of the ACF.
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(a) ACF with seasonality.

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(b) ACF without seasonality.

Figure 3: a The ACF of a non-stationary time series displaying daily seasonality. Similar
behavior occurs once every 24 time steps where each time step is 1 hour. b The ACF of a
stationary time series without seasonality which shows exponential decay.
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(a) Time Series with Seasonality
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Figure 4: a A time series with seasonality b The periodogram of the time series with a
massive spike in P at frequency 0.0025. Periodicity and frequency have an inverse relation-
ship, so the periodicity here is 365 (yearly seasonality).

Another common method is to find the maximum in the Fourier transform of the time
series (Oppenheim et al., 2001). Given a time series with n distinct values, we can represent
it as a sum of sine and cosine waves:

xt =
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)
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)
are parameters that can be estimated using Fast Fourier Transform.5

After β1 and β2 are estimated using FFT, a periodogram can be created where the x
axis is the frequency j/n and the y axis is P or the sum of the squared coefficients β1 and
β2 at the frequency j/n. The periodogram graphs a measure of the relative importance of
possible frequency values that might explain the oscillation pattern of the observed data.
A relatively large value of P at frequency j/n indicates relatively more importance for the
frequency j/n in explaining the oscillation in the observed series (see Figures 4a and 4b). We
make use of the findfrequency function in the R forecast library (Hyndman & Khandakar,
2008) which returns the period with the maximum spectral amplitude of the signal.

2.2.3 Detecting Level Change Concept Drift

Concept drifts can be difficult to detect especially if one does not know beforehand how
many exist. This number need not be known as established by Adams and MacKay (2007).
An implementation of this methodology is available (Kulick, 2016) using t-distributions for
every new concept, referred to as a run. The posterior probability (P (rt|x1:t)) of the current
run rt’s length at each time step (xi for i = 1...t) can be displayed, using a logarithmic color

5. Note that this equation is working under the assumption we have an even number of distinct values n
in the time series; there is a separate equation for the case where it is odd.
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Figure 5: Using the same time series in Figure 1c, this plot shows the posterior probability
of the run length at each time step using a logarithmic color scale (Kulick, 2016).

scale (see Figure 5). Although the number of concept drifts need not be known before-
hand, Adam’s method is memoryless; if a change point has occurred with high probability,
the previous distribution’s parameters are not used in determining the next distribution’s
parameters.

2.3 Example Datasets

For every characteristic in Section 2.1, we create a corpus of 10 datasets each containing
this characteristic (see Table 4). Some datasets come from the Numenta Anomaly Bench-
mark repository (Numenta, 2018b) which consists of 58 pre-annotated datasets across a
wide variety of domains and scripts for evaluating online anomaly detection algorithms.
No multivariate datasets are provided in Numenta’s repository. Meticulous annotation in-
structions for Numenta’s datasets are available (Numenta, 2017). The Numenta Anomaly
Benchmark repository also contains code for combining labels from multiple annotators to
obtain ground truth. For every such annotated dataset, there is a probationary period (first
15% of the dataset) where models are allowed to learn normal patterns of behavior. For
this reason, no anomalies are labeled in the probationary period. See Figures 6a, 6b, and 6c
which include vertical dividing lines to display the location of the probationary period. In
cases where we do not use Numenta datasets, we have computer science undergraduate
students from Eastern Washington University tag the datasets for anomalies following the
Numenta instructions. There are also several instances where we inject outliers (Liu et al.,
2017; Choudhary et al., 2018; Vallis et al., 2014).

We also determine the type of anomalies present in each dataset: point or collective.
A data point is considered a point anomaly if its value is far outside the entirety of the
data set. A subset of data points within a data set is considered a collective anomaly if
those values as a collection deviate significantly from the entire data set, but the values of
the individual data points are not themselves anomalous. The first point in the subset is
marked. Out of a total of 34 datasets, 28 contain anomalies that are point anomalies, and
24 contain collective anomalies. Some datasets exhibit both types of anomalies.

For datasets with missing time steps, we also consider another version of the dataset
with missing time steps filled using linear interpolation.
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We proceed with briefly describing the datasets making up our corpora. A summary of
all datasets in available in Table 1 where the Numenta column indicates whether or not the
dataset came from the Numenta repository, and P and C under the Outlier Type column
indicate point and collective, respectively.

2.3.1 ex-2 cpm results, ex-3 cpm results

ex-2 cpm results and ex-3 cpm results consist of an online advertisement’s cost per thousand
impressions (CPM). CPM is a marketing term referring to the cost (as charged by the
website publisher to the advertiser) of having 1000 customers view an advertisement. One
duplicate record was found on August 24, 2011 for ex-2 cpm results; we arbitrarily chose
one of the two values.

2.3.2 ex-2 cpc results, ex-3 cpc results

These datasets are similar to those in Section 2.3.1 except they track the CPC, or cost-per-
clicks (as charged by the website publisher to the advertiser), instead of the CPM.

2.3.3 Twitter FB, Twitter GOOG, Twitter AMZN

These Numenta datasets record the number of Twitter mentions of large publicly-traded
companies (Facebook, Google, and Amazon) every 5 mintes.

2.3.4 req count 8c0756

req count 8c0756 consists of request counts for Amazon Web Services’ Elastic Load Balancer
which distributes application traffic. There are approximately 2 weeks’ worth of data in 5
minute intervals, 8 missing time steps, and 2 annotated outliers.

2.3.5 grok asg anomaly

grok asg anomaly consists of auto scaling group Grok metrics over the course of approx-
imately half a month in 5 minute intervals. An auto scaling group is a similar collection
of Amazon Elastic Compute Cloud instances, and Grok is used to monitor patterns in
environments and identify unusual behaviors.

2.3.6 rds cpu util cc0c53, e47b3b

rds cpu util cc0c53 and rds cpu util e47b3b consist of CPU utilization metrics for Amazon
Web Services’ Relational Database Service (RDS) over the course of 2 weeks in 5 minute time
step intervals. cc0c53 has 1 missing time step. cc0c53 and e47b3b both have 2 annotated
anomalies,

2.3.7 amb temp sys fail

amb temp sys fail consists of hourly ambient temperatures in an office setting over the
course of approximately a year. There are 621 missing time steps and 2 anomalies out of
7267 total time steps.

858



Twelve Time Series Anomaly Detection Algorithms

2.3.8 art daily flat middle, art daily no jump

From Numenta (2018b), these are artificially-generated datasets with level change concept
drift and collective anomalies (Chandola et al., 2009a), groups of data instances that are
anomalous with respect to the entire dataset.

2.3.9 cpu util 5f5533, ac20cd

These time series track CPU usage data from a server in Amazon’s East Coast datacenter.
They end with complete system failures resulting from a documented failure of AWS API
servers.
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Figure 6: a The hourly counts of a specific intent being hit in conversations with an
Intelligent Virtual Assistant (IVA) for an airlines company. There are three annotated
outliers (red x’s). b Air temperature measurements in Bowling Green, Kentucky resampled
to 30 minute time steps. c Monthly totals in thousands of international airline passengers.

2.3.10 gift certificates

This dataset involves the hourly counts of a specific intent being hit in conversations with an
Intelligent Virtual Assistant (IVA) for an airlines company. An intent is the interpretation
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of the statement or question that allows one to formulate the best response (Dumoulin,
2014). Intents can be thought of as labels in a classification task. As an example, if a user
asks if he can bring his dog with him on a plane flight, the user intent would be “travel
policy with pets”. The dataset in question counts the number of times the intent “Gift
Certificates” was hit over the year of 2016. Anomalies were annotated using Numenta’s
instructions; there were 3 such anomalies. See Figure 6a.

2.3.11 FARM

This dataset consists of air temperature measurements in Bowling Green, Kentucky. The
dataset was collected in 5 minute time intervals over a 3 month period and was then re-
sampled into 30 minute time intervals grouping by the mean. 3 anomalies were annotated
(after resampling) using Numenta’s instructions. See Figure 6b.

Dataset TS Size Min Max Med Av An T Mi Nu Se Pe Tr TrT CD

Twitter FB f 15833 5m 0 1,258 14 18 2 p 0 Y T 17 T d F
req count 8c0756 f 4040 5m 1 656 48 62 2 pc 0 Y T 30 T d T
FARM f 4416 30m -2 30 15 15 3 pc 0 N T 50 U U F
cpu util ac20cd nf 4032 5m 2 100 35 41 1 pc 5 Y T 3 T s T
amb temp sys fail f 7888 1H 57 86 72 71 2 p 0 Y T 24 U U T
ibm-stock nf 1008 1D 306 599 461 463 1 c 452 N F 1 T s T
rds cpu util cc0c53 f 4033 5m 5 25 6 8 2 pc 0 Y F 1 U U T
ex-2 cpc results nf 1623 1H .03 .2 .1 .1 1 c 25 Y F 1 U U T
ex-2 cpm results nf 1623 1H 0 1 .3 .3 2 p 25 Y F 1 U U T
cpu util ac20cd f 4037 5m 2 100 35 41 1 pc 0 Y T 3 T s T
rds cpu util cc0c53 nf 4032 5m 5 25 6 8 2 pc 1 Y F 1 U U T
rds cpu util e47b3b f 4032 5m 13 76 17 19 2 pc 0 Y F 1 U U T
airline f 144 1MS 104 800 266 283 1 p 0 N T 12 T s T
art daily flatmiddle f 4032 5m -22 88 -18 19 1 c 0 Y T 14 T d F
artificial cd 3 f 1000 5m 1 50 25 25 4 pc 0 N T 2 U U T
grok asg anomaly f 4621 5m 0 46 33 28 3 pc 0 Y T 23 T s T
cpu util 5f5533 f 4032 5m 35 68 43 43 2 pc 0 Y T 3 U U T
ex-3 cpc results f 1647 1H .04 1 .1 0.1 3 p 0 Y F 1 U U T
ex-2 cpm results f 1648 1H 0 1 .3 0.3 2 p 0 Y F 1 U U T
ex-3 cpm results nf 1538 1H .3 6 .7 .8 1 p 109 Y F 1 U U F
artificial cd 1 f 800 5m 1. 20 10 10 3 pc 0 N T 12 U U T
ex-3 cpc results nf 1538 1H .04 1 .1 0.1 3 p 109 Y F 1 U U T
ex-3 cpm results f 1647 1H .3 6 .7 .8 1 p 0 Y F 1 U U F
artificial cd 3 nf 997 5m 1 50 25 25 4 pc 3 N T 2 U U T
artificial cd 2 f 1800 5m 1 60 11 15 8 pc 0 N T 8 U U T
req count 8c0756 nf 4032 5m 1 656 48 62 2 pc 8 Y T 30 T d T
gift certificates f 8784 1H 0 28 0 .9 3 pc 0 N T 24 U U T
Twitter AMZN f 15831 5m 0 1,673 50 53 4 pc 0 Y T 21 T d T
ex-2 cpc results f 1648 1H .03 .2 .1 .1 1 c 0 Y F 1 U U T
artificial cd 1 nf 796 5m 1 20 10 10 3 pc 4 N T 13 U U T
art daily nojump f 4032 5m 18 88 21 41 1 c 0 Y T 13 T d F
ibm-stock f 1460 1D 306 599 461 463 1 c 0 N F 1 T s T
amb temp sys fail nf 7267 1H 57 86 72 71 2 c 621 Y T 24 U U T
Twitter GOOG f 15842 5m 0 465 16 21 4 pc 0 Y T 11 T d F

Table 1: Summary of all datasets. TS is the number of time steps, Size is the time step
size, Min is the minimum, Max is the maximum, Med is the median, Av is the average,
An is the number of anomalies in the dataset, T (type) is whether or not the outliers
the dataset contains are point (p) and/or collective (c), and Mi (miss) is the number of
missing time steps in the dataset. For datasets that have missing time steps (nf for no
fill), we create another version of the dataset with time steps filled (f for filled) using linear
interpolation (e.g. ibm-stock f is ibm-stock nf with missing time steps filled). A dataset
will have a value of Y in the Nu column if it was collected from the Numenta repository.
Otherwise, it is N . Se, Tr, and CD indicate whether or not seasonality, trend, and concept
drift are present, respectively. Pe is the number of time steps in a period, and TrT (trend
type) indicates whether or not the kind of trend present is stochastic (s) or deterministic
(d). If U (Unknown), this means that the KPSS and PP test have not revealed any trend
information about the time series.
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2.3.12 ibm-stock

From Hyndman (2018a), ibm-stock contains the daily stock closing prices for IBM from
1962 to 1965. There is no weekend data, giving us approximately 450 missing data points.
There is 1 annotated anomaly.

2.3.13 airline

From Hyndman (2018a), airline contains the monthly totals in thousands of international
airline passengers from January 1949 to December 1960, and one outlier is artificially in-
jected (see Figure 6c).

2.3.14 artificial cd dataset 1,2,3

As we want 10 datasets for every characteristic, three concept drift datasets are also artifi-
cially generated (artificial cd dataset 1,2,3) using the random uniform function at varying
intervals6. Anomalies were chosen based on the starting location of the level change concept
drifts.

2.3.15 Summary of All Datasets

For time series displaying seasonality, trend, and/or concept drift, any missing time steps
are filled using linear interpolation. For the missing time step characteristic corpus, we
either choose datasets that already contain missing time steps or we randomly remove data
points from datasets with originally no missing points to generate the corpus. See Table 1
for a summary of all datasets.

2.4 Survey of Anomaly Detection Methods

We now proceed with a survey of all anomaly detection methods considered. We then
discuss the computational complexity of these methods and categorize them to determine
which methods are more promising given a characteristic.

2.4.1 Windowed Gaussian

Serving as a baseline, the Windowed Gaussian method is a sliding window anomaly detector
that determines anomaly scores of data points in the time series by computing their prob-
abilities from the Gaussian distribution over a window of previous data points (Numenta,
2018b). More specifically, the method uses the complement of the Q-function of the normal
distribution to obtain an anomaly score between zero and one. The Q-function Q(x) is
the probability that a normal random variable will obtain a value larger than x standard
deviations. To determine the Q-function, the mean and standard deviation are specified
from a sliding window of the time series. The size of this window is window size. This
window moves forward every step size many time steps. See Subsection 2.7 for information
on parameter selection.

6. See https://github.com/dn3kmc/jair anomaly detection for details.
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2.4.2 SARIMAX

ARMA models are tools for understanding and forecasting future values by regressing the
variable on its own past values (AutoRegressive) and modeling the error term as a linear
combination of current and past error terms (Moving Average). By differencing between
current and past values, the time series can hopefully be made stationary (Integrated).
If seasonality is incorporated, we have a SARIMA (Seasonal AutoRegressive Integrated
Moving Average) model. If we include eXogeneous variables, we have SARIMAX.

The predictors depend on the parameters (p, d, q)×(P,D,Q, s) of the SARIMAX model.
The number of AR terms are the lags (p). For example, if p is 5, the predictors for pt are
pt−1, pt−2,...pt−5. The number of MA terms are the lagged forecast errors (q). If q is 5, the
predictors for pt are et−1, et−2,...et−5 where every ei is the difference between the actual
value and the moving average at the ith step. d is the differencing parameter for removing
trend in a time series. If d = 1, we take the difference of every observation with that of a
direct, previous observation. P,D,Q are seasonal versions of the autoregressive component,
moving average component, and difference (p, d, q) given the length of the season s (number
of time steps in each season).

Much manual analysis can be necessary (see Box-Jenkins method (Hoff, 1983)) in choos-
ing the parameters for a SARIMAX model, but we cannot expect this of a non-expert user.
Thus, there are libraries that can automatically determine hyperparameters such as Pyra-
mid (Smith, 2018) in Python and auto.arima in R according to a given information criterion
such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC).
The stepwise algorithm (Hyndman, 2008) is significantly faster than a traditional grid search
and less likely to overfit. However, for long time series with seasonality, this can still be a
very slow and memory intensive process.

To apply the SARIMAX model for anomaly detection, we use the following procedure:

1. The length of the seasonal cycle is chosen according to the findfrequency function in
the R forecast library.

2. Pyramid is applied to the data to select the optimal model order.

3. A maximum likelihood fit is applied to obtain initial parameters.

4. The maximum likelihood parameters are used to initialize a Kalman Filter7, and its
residuals (Kalman Filter predictions) are fed to the Windowed Gaussian detector to
obtain normalized anomaly scores.

Exogeneous variables are also included. We encode seasonal variation due to hour-of-
day, day-of-week, day-of-month, and month-of-year using binary indicators. A subset of the
aforementioned regressors are selected as appropriate for the scale of the time series

2.4.3 Generalized Linear Model (GLiM)

As an alternative to the SARIMAX model, we consider an online structured time series
model encoding seasonal variation due to hour-of-day, day-of-week, day-of-month, and

7. Kalman filters (Kalman, 1960) produce estimates of unknown variables observed over time where these
estimates are weighted by uncertainties around each point.
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month-of-year using binary indicators. A subset of the aforementioned regressors are se-
lected as appropriate for the scale of the time series.

The model is made adaptive using the Recursive Least Squares (RLS) algorithm (Haykin,
2002), and we modify the algorithm to enable the use of a Poisson distribution for the
observations which may be more appropriate for some count-valued datasets that are not
well-approximated with a Gaussian. The choice of a Gaussian or Poisson output distribution
is determined for each dataset based on domain knowledge.

In the Gaussian case, this method differs from the SARIMAX model by the introduction
of a tunable exponential weighting factor, λ, that controls how rapidly the influence of
past observations decays. We further extend the RLS algorithm (Haykin, 2002) with an
additional step-size parameter η, which aids with stability on some datasets.

The residuals from the one-step-ahead prediction are fed to the windowed Gaussian
detector to obtain normalized anomaly scores.

2.4.4 Facebook Prophet

Facebook Prophet is an additive regression model that begins with a special time series
decomposition method involving a piecewise linear or logistic growth curve trend g(t), a
yearly seasonal component modeled using Fourier series or a weekly seasonal component
s(t), and a user provided list of holidays h(t) (Taylor & Letham, 2018):

y(t) = g(t) + s(t) + h(t) + εt

εt is the error term and is assumed to be normally distributed. A key difference between
what Prophet does compared to other techniques such as ARIMA is that it formulates this
problem as a curve-fitting exercise. The above specification is similar to generalized additive
modeling (Hastie & Tibshirani, 1987). Prophet uses Stan to determine parameters using
maximum a posteriori (MAP) optimization and is available in R and Python. Prophet
can automatically detect changes in trends by selecting change points between concept
drifts although a sensitivity parameter (prior scale) must be tuned. We use grid search to
determine multiple sensitivity parameters (such parameters exist also for seasonality and
trend). Prophet can also innately handle missing time steps.

2.4.5 Seasonal and Trend Decomposition Using LOESS (STL) Residual
Thresholding

Seasonal and trend decomposition using LOESS (STL) (Cleveland et al., 1990) is a very
commonly used preprocessing step in making a non-stationary time series stationary. This
methodology decomposes a time series into three components: seasonality, trend, and re-
mainder.

STL consists of an inner loop that determines these 3 components and an outer loop
that increases robustness against anomalies (Hochenbaum et al., 2017). Trend is determined
using a moving average filter. After removing trend from the data, the time series is
partitioned into cycle subseries. For example, if there is yearly seasonality and the time
series uses monthly time steps, there will be 12 cycle subseries where all January time
steps form a time series, all February time steps form another time series, etc. These cycle
subseries are then smoothed using LOESS (local regression), providing a smooth estimate
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of the time series for all time steps; this means that STL can innately deal with missing
time steps.

STL, like SARIMAX, is parameter-heavy, but the most important parameters are pe-
riodicity (n(p), which we determine using findfrequency) and the smoothing parameter for
the seasonal filter (n(s)). The cycle subseries becomes smoother the larger n(s) is. If the
seasonal pattern is constant over time, n(s) should be set to a larger value. If the seasonal
pattern, instead, changes quickly, n(s) should be reduced. We use grid search to determine
this parameter as well as smoothing parameters for trend, degrees, and the number of inner
and outer loops.

We follow the given anomaly detection methods in this section exactly; if STL is not
mentioned, we do not apply it on the entire time series as a preprocessing step. The result
of STL can be used for outlier detection; for example, the remainder component can be
thresholded to determine outliers (Laptev et al., 2015).

We use the stlplus package in R (Hafen, 2016).8 stlplus cannot be applied if the
periodicity is less than 4.

2.4.6 Twitter Anomaly Detection

Twitter released the open-source R package, AnomalyDetection (Twitter, 2015; Hochen-
baum et al., 2017) in 2015 that detects anomalies using modified versions of the extreme
studentized deviate test (ESD). The entire time series is first made stationary by applying
a modified STL decomposition where the median of the time series is used to represent
the trend component. The residuals are then fed to median-based versions of the extreme
studentized deviate test to detect anomalies. The traditional ESD test statistic is calculated
like so:

Ck =
maxk|xk − x̄|

s

where k is the upper bound on the number of anomalies, x̄ is the mean, s is the standard
deviation, and Ck is calculated for the k most extreme values in the dataset.

The mean and standard deviation are very sensitive to anomalous data and that the
median is statistically more robust (Hochenbaum et al., 2017). Thus, for the ESD test
statistic, instead of the mean, the authors use the median, and, instead of standard devia-
tion, the authors use MAD (median of the absolute deviations from the sample median) to
compute the test statistic.

There are two versions of Twitter AnomalyDetection: AnomalyDetection Vec
(AD VEC) and AnomalyDetection Ts (AD TS). AD TS makes assumptions on the time
step sizes, only allowing 1 minute, 1 hour, and 1 day time step sizes (Twitter, 2015). AD
VEC does not make such restrictive assumptions but requires a periodicity parameter be
given that is larger than 1, barring any non-seasonal dataset from being used. Although
STL is used initially as a preprocessing step, if there are missing time steps, the Twitter
AD library (Twitter, 2015) will error out and suggest using interpolation.9 Because of the
time step size restrictions, we use AD VEC.

8. stlplus allows for missing data as opposed to R’s stl and gives access to more parameters compared to
Python’s seasonal decompose function in StatsModels (Seabold & Perktold, 2010).

9. This is because Twitter AD uses R’s stl instead of stlplus.
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2.4.7 Half-Space Trees

Half-space trees (HS Trees) (Tan et al., 2011) are an online variant of isolation forests
which are based on the decision tree algorithm. Outliers are isolated by randomly selecting
a feature from the given set of features and then randomly selecting a split value between
the max and min values of that feature. This random partitioning of features will produce
shorter paths in trees for the anomalous data points; this distinguishes them from the rest
of the data. Thus, anomalies can be detected via smaller path lengths in the tree, where
path length is the number of edges traversed from the root node.

HS trees deal with streaming data by using two equally sized windows: the reference
(r) and latest (l) windows. These windows capture mass, the number of data items within
a subspace of the data stream. Data that falls in high mass subspaces are normal. Data
that falls in low mass subspaces are anomalous.

Every node of the HS tree contains the feature that was used for the split, the split
value, the mass profiles of the data stream in the reference and latest windows (r and l),
the depth of the current node (k), and its left and right children nodes.

HS Trees are created in the following manner:

1. Create the workspace

• For every dimension q, normalize its values between 0 and 1

• Randomly and uniformly select a real number sq between 0 and 1. Repetitively
selecting sq’s creates an ensemble of trees.

• Define q’s work range as (sq − 2 ∗max(sq, 1− sq), sq + 2 ∗max(sq, 1− sq))

2. Initialize the tree

• Randomly select a feature

• Select the mid point of that feature’s work range

• Split the data space to form two half spaces

• Initialize the mass of nodes to be 0 (for both r and l)

• Repeat the above steps until the desired max depth is reached

For every data value x in the reference window of the time series, x traverses the tree
based on the feature and split requirements of each node. For every node it visits, r increases
by 1. For every data value x in the latest window, x traverses the tree based on the feature
and split requirements of each node. For every node it visits, l increases by 1. The anomaly
score for x given a single tree is its r value in its terminal node. Its final anomaly score
is the sum of these scores obtained from each HS-Tree in the ensemble. A low r value is
anomalous. After anomaly scores are obtained, all mass l values are transfered to mass r
values, and all mass l values are set to 0.

2.4.8 Matrix Profile

The matrix profile (Yeh et al., 2018) of a time series can be used to identify discords,
subsequences of the time series with the maximum distance from its nearest neighbors, and
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has been reported to be very competitive anomaly detectors (Chandola et al., 2009b). A
huge strength of the matrix profile is that it requires just one parameter: the subsequence
length.

A subsequence of a time series is a contiguous subset of the time series, and an all-
subsequences set of length m for the time series is an ordered set of all possible subsequences
of the time series by sliding window of length m across the time series. The distance profile
is a vector of Euclidean distances between a given query and each subsequence in an all-
subsequences set. Mueen’s Algorithm for Similarity Search (MASS) is used to determine this
distance profile by exploiting overlap in distance calculations via convolution and provides
the worst case time complexity of O(N log N).

The profile index is a vector of indices where element i is the index of the minimum
distance in the distance profile of the subsequence starting at index i in the time series. The
matrix profile is a vector of Euclidean distances where element i is the minimum distance
in the distance profile of the subsequence starting at index i in the time series. Thus, the
largest values in the matrix profile gives discords as these subsequences are unlike other
subsequences in the time series.

There are several algorithms to compute the matrix profile such as STAMP (Scalable
Time series Anytime Matrix Profile) and STOMP (Scalable Time series Ordered search
Matrix Profile), and both utilize utilize MASS to obtain the distance profile. STOMP is
faster than STAMP but suffers if motifs are near the end of the time series and random
data is near the beginning (Yeh et al., 2018). We choose STAMP to determine the matrix
profile (Cancino & Benschoten, 2020) and feed it to the windowed Gaussian detector to
obtain normalized anomaly scores.

2.4.9 Variational Auto-Encoders (Donut)

Donut (Xu et al., 2018) is an unsupervised anomaly detection method based on variational
auto-encoders (VAE). VAE is a deep Bayesian neural network and consists of an encoder,
decoder, and a loss function. The encoder learns an efficient compression of the input data x
in a lower dimensional space z. The decoder takes this lower dimension representation z and
attempts to reconstruct the data. The loss function determines how much information is lost
through this process. As the goal is to infer good values for z given x, the posterior p(z|x)
must be calculated. Calculating the posterior is intractable; thus, variational inference is
used instead. p(z|x) is approximated by using another distribution q(z|x) which is tractable
and similar enough to p(z|x) where this similarity is determined via KL (Kullback-Leibler)
divergence:

min(KL(q(z|x)||p(z|x)))

The above is equivalent to maximizing the ELBO (Evidence Lower BOund) (Bishop,
2006):

Eq(z|x)log p(x|z)−KL(q(z|x)||p(z))

where the first term is the reconstruction likelihood and the second term guarantees simi-
larity between the two distributions. Typically, ELBO is optimized using SGVB (Stochastic
Gradient Variational Bayes).
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Donut is built for sequential data whereas VAE is not. Thus, the authors use a sliding
window where each window is an input vector for the VAE. The reconstruction probability
Eq(z|x)log p(x|z) is used for the anomaly score. The last point of every window is used
for sake of speed. If the reconstruction probability is high, the decoder has an easier time
reconstructing the original signal from the compressed signal, and chances of an anomaly
are low.

A point of interest is VAE’s ability to deal with missing time steps. Missing data is
initially filled as zeroes, and three techniques are used to impute the missing time steps:

1. A modified ELBO equation for training to allow Donut to corrrectly reconstruct the
normal points within the input

2. Missing Data Injection for training by randomly setting a ratio of normal points to
be 0 as if they were missing

3. MCMC (Markov Chain Monte Carlo) imputation for detection: Assuming input data
is x and the lower dimensional space is z, x is divided into observed and missing
parts (xo, xm) and a z sample is obtained from q(z|xo, xm). A reconstruction sample
(x′o, x

′
m) is obtained from p(xo, xm|z), and (xo, xm) is replaced by (xo, x

′
m). Thus, the

observed points are fixed and the missing points are replaced. (xo, x
′
m) is used to

determine the reconstruction probability.

This modification helps Donut reconstruct missing points using a MCMC-based (Markov
Chain Monte Carlo) missing data imputation technique where the missing values are treated
as unknown parameters in a Bayesian paradigm. The missing value parameters can be
sampled sequentially using MCMC simulation, and posterior distributions of the incomplete
data given the observed data can be obtained.

We use the implementation of Donut (Xu et al., 2018) available in Python (Xu, 2018).

2.4.10 Anomalous

We also considered the R library, Anomalous (Hyndman, 2018b; Hyndman et al., 2015)
which is a feature-based anomaly detection method. Anomalous determines anomalous
time series relative to other time series in some given collection by computing a vector of
features for every time series. The feature list is extensive and includes the mean, variance,
spectral entropy, lag correlation, strength of seasonality and trend, etc. Principle component
analysis is then performed to obtain the first two principal components. A two dimensional
density based outlier detection algorithm is then used to determine the top k many outliers.
Anomalous determines anomalous time series whereas we are looking for anomalies within
time series data. However, we adapt Anomalous by dividing the entire time series into
subseries and return the index of the first time step in an anomalous subseries.

2.4.11 Pattern-Based Anomaly Detection

Pattern-Based Anomaly Detection (PBAD) (Feremans et al., 2019) was designed with mixed
type time series in mind. Mixed type time series are time series consisting of continuous
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sensor values and discrete event logs. However, it can be used with univariate and mul-
tivariate time series without event logs. PBAD relies on mining itemsets and sequential
patterns.

An itemset is a pattern in the form of a set where no temporal order between items
is required. An itemset occurs in or is covered by a time series window if all items in the
itemset occur in that window in any order.

A sequential pattern is a pattern consisting of an ordered list of one or more items. A
sequential pattern occurs or is covered by the time series window if all items in the sequential
pattern occur in that window in the same order (gaps and repeats allowed).

A sequential pattern or itemset is frequent if its occurrence is higher than a user defined
threshold (called the minimal support)

PBAD computes anomaly scores for every time series window using the following pro-
cedure:

1. Preprocessing: Normalize time series between 0 and 1 and segment the time series
using fixed-size sliding windows of length l.

2. Mine frequent itemsets and sequential patterns: Data is discretized using binning.
Itemsets and sequential patterns are mined using existing libraries such as CHARM,
CHARM-MF1, CM-CLASP, and MAXSP. Pattern sets are filtered either on closed or
maximal patterns, and Jaccard similarity is used to remove itemsets and sequential
patterns that co-occur in a large percentage of windows.

3. Construct a pattern-based embedding of the time series: Compute a distance-weighted
similarity score between every time series window and every discovered pattern. Nor-
mal time series windows will be clustered together in the embedded space whereas the
less frequent anomalous windows will have lower similarity scores and will be more
scattered in the embedded space.

4. Construct an anomaly detection classifier to detect anomalous windows of the time
series. The authors use isolation forests.

2.4.12 Hierarchical Temporal Memory Networks

Hierarchical Temporal Memory Networks (HTMs) are memory-based systems that rely on
storing a large set of patterns and sequences (Hawkins et al., 2010). HTMs are heavily
influenced by the properties of the neocortex, the part of the brain involved with sensory
perception. They are similar to neural networks but store data in a more restrictive fashion;
memory is time-based and has a hierarchical structure.

Input data is semantically encoded into a sparse distributed representation (SDR) that
is very noise resistant. Like our brains, only a small number of neurons are active at a time
(sparse), and many different neurons need to be activated at the same time to represent
something (distributed). Similar inputs will have similar SDRs. Spatial pooling, a common
trick in computer vision, is then done on the SDR to create sparse output vectors of a
specified size and fixed sparsity. Spatial pooling retains context of the input data using an
algorithm called temporal memory. The connections between active columns in the spatially
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Figure 7: HTM Process (Hawkins et al., 2010).

pooled output array and active cells in the encoded sequence are strengthened whereas for
inactive cells, they are weakened.

HTMs operate in real-time but do not output anomaly scores. In Figure 7a, xt is the
input, and the HTM outputs two things: a(xt) and π(xt). In Figure 7b, which is a zoomed
in version of the first step in Figure 7a, the input xt is fed to the encoder to create the SDR,
and spatial pooling is done on it to create a(xt), the sparse encoding of xt. The sequence
memory component then models temporal patterns in a(xt) to create π(xt) which is the
prediction of the next step. Going back to Figure 7a, we create the prediction error, st. The
prediction error is not thresholded directly because doing so would introduce many false
positives. Instead, the authors model the prediction error as a rolling normal distribution,
and the anomaly likelihoods can be calculated for every time step (Ahmad et al., 2017).

We use HTM Studio (Numenta, 2018a) which aims to be user-friendly by setting
parameters automatically but requires datasets have a minimum of 400 time steps.

2.5 Computational Complexity

In describing the complexity of the algorithms evaluated, the following variables are con-
sidered:

N Length of time series
D Size of state and/or external regressors
K Maximum number of anomalies
W Window size

Anomalous computes a fixed set of features from each time series, which, in our appli-
cation, corresponds to a window of W time steps. Several of the features are based on the
spectrum or autocorrelation; thus, the factor O(W logW ). After computing the features,
the method applies PCA and constructs the α-hull from the largest two components which
can be done in O(N logN) time (Pateiro-Lopez, 2008).

Twitter’s AnomalyDetection incorporates the complexity of STL followed by the ap-
plication of the Hybrid-ESD test. Hybrid-ESD recomputes the median and median absolute
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deviation for up to the maximum of K anomalies. We report O(N×K) complexity for this,
assuming O(N) for finding the median and median absolute deviation. The complexities of
the methods that consume the entire time series at once are summarized below:

Prophet O(N ×W )10,11

STL Residual Threshold O(N ×W )12

Twitter AD O(N2 ×K)
Anomalous O(N logN) +O(W logW )
Matrix Profile (STAMP) O(N2 × log N)
PBAD O(|P | ∗ |S| ∗ o) where o = O(W ∗m)

The pattern based embedding for PBAD has time complexity O(|P | ∗ |S| ∗ o) where
o = O(W ∗m), |S| is the number of the windows, |P | is the number of frequent patterns,
and m is the length of the sequential pattern. As for the isolation forest step, it has low
linear complexity (Chandola et al., 2009a).

We also evaluated four online algorithms, where the criteria for being online are (1) the
entire time series does not need to be retained and (2) future values do not influence past
predictions.

Windowed Gaussian O(N ×W )
SARIMAX O(N ×D2) +O(N ×W )
Recursive GLiM O(N ×D2)
HS Tree O(t(h+W ))

Half-Space Trees have a worst time complexity of O(t(h+W )) where t is the ensemble
size of the trees and h is the max depth level.

The state in a SARIMAX model must be sufficiently big enough to store up to the
largest seasonal lag. This makes the quadratic term a significant constraint; hence, it
is recommended to instead use indicators or Fourier bases to account for very long term
seasonal variation.

We do not report complexity for Hierarchical Temporal Memory networks as we do not
have information on the exact implementation employed by HTM Studio.

We also do not report complexity for VAE. Asymptotic running time analysis is not
terribly useful for gradient descent for training machine learning models. In practical ma-
chine learning, gradient descent is run for some fixed number of epochs (e.g. for Donut,
the default choice is 250 epochs which takes time proportional to 250 times the size of the
training set multiplied to the time per evaluation of the neural network).

2.6 An Aside on Other Methods

Several methods were experimented with but ultimately not included in our final analysis.
We describe them here as well as the reasons for why they were not included.

9. Includes cost of Windowed Gaussian detector.
10. Does not include MAP estimation which depends on solver.
11. Includes cost of Windowed Gaussian detector.
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Recurrent Neural Networks We initially considered Recurrent Neural Networks (RNN),
as an advantage to multi-layered recurrent neural networks is that they can model complex
interactions across inputs without having to make them explicit in the model. However, as
our datasets are all univariate, a RNN is overkill for our purposes and very time-consuming
to train. For example, we experimented with multi-step prediction RNN (Saurav et al.,
2018) which can adapt to concept drifts after an initial period of training and does not
require non-anomalous training data. Training and inference time was even longer than
SARIMAX (see Figure 21 and more in the Appendix). Due to this inefficiency, we ulti-
mately did not investigate further.

If more complex applications were considered, there is a potential that the powerful
nonlinear model could show an advantage over some of the simpler baselines.

Frameworks Other anomaly detection “methods” were considered that were not listed
explicitly in this section because we do not wish to compare frameworks but anomaly detec-
tion methods themselves. For example, Yahoo’s EGADS (Laptev et al., 2015) is a framework
for anomaly detection. It includes 3 separate components: forecasting, detecting, and alert-
ing. The user could choose ARIMA for the forecasting component, the prediction error for
the detecting component, and k-sigma for the alerting component. Similarly, LinkedIn’s
Luminol is a Python library for analyzing time series that can detect anomalies using SAX,
absolute thresholding, etc. Many of these components are already discussed such as ARIMA
and STL. Our goal is to compare the methods and not frameworks. Other popular frame-
works include: Etsy’s Skyline (Etsy, 2015), Mentat Innovation’s datastream.io (Ltd., 2018),
Eleme’s banshee (Eleme, 2018), Opprentice (Liu et al., 2015), and Lytics Anomalyzer (Lyt-
ics, 2015).

2.7 Experiment Setup

For anomaly detection methods that involve some form of forecasting, we perform grid
search on the parameters to minimize the forecasting error. This includes methods such
as Facebook Prophet and Generalized Linear Models. However, some methods do not
perform such forecasting like Twitter AnomalyDetection and Anomalous. One might
intuitively think to split the time series into a training and testing set and obtain parameters
to minimize the number of erroneous detections and maximize the correct ones. However, as
anomalies are by definition rare, it can be difficult to obtain a train and test set containing
both anomalous and non-anomalous behavior. Looking back at Table 1, most datasets
have very few anomalies (at most 1-3). Thus, we perform grid search on the forecast
when possible instead of the actual detection. For anomaly detection methods that do
not rely on forecasting, our goal is to choose models and parameters as intelligently as
possible based on discovered time series characteristics. Once anomaly scores are obtained,
we then determine the best thresholds using ROCs and the Youden threshold Index (see
Subsections 3.4 and 3.3).

2.7.1 Windowed Gaussian

We mimic what was done in Numenta (2018b), using a sliding window with varying window
sizes directly on the time series values. Step size is half the window size. Grid search was
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Sampling Frequency Indicator Features

Sub-daily hour-of-day, day-of-week
Daily day-of-month
Monthly month-of-year

Table 2: Exogeneous Variables for SARIMAX.

performed on the parameters to minimize the mean squared differences between the time
series values and the mean of the window.

2.7.2 SARIMAX

We use Pyramid (Smith, 2018) to determine the best set of parameters (order) according
to a given information criterion (Akaike Information Criterion, or ‘AIC’) and the stepwise
algorithm (Hyndman, 2008) which is less likely to overfit compared to traditional grid search.
We maintain a cumulative/rolling estimate of the prediction error (Gaussian) distribution
and use the Q-function to obtain an anomaly score between 0 and 1 (see Subsection 3.2).
As for exogeneous variables (see Table 2), seasonal regressors are selected based on the
sampling frequency of each time series.

2.7.3 Facebook Prophet

We fill in the appropriate period parameter (s) as seasonality is a time series characteristic
determined beforehand using findfrequency. We use “linear” for the growth parameter as
setting it to “logistic” requires knowing a maximum and minimum value the data will
reach such as a max population size in an area. For the datasets we consider, a hard
maximum is typically unknown. For the remaining parameters (changepoint and seasonality
prior scales), we use grid search to minimize the mean squared error between the forecast
(predictions) and the actual time series values.

2.7.4 STL

We fill in the appropriate period parameter (n.p.) as seasonality is a time series character-
istic determined beforehand. The remaining parameters such as the number of outer and
inner loops, the window width (swindow), the degree of the locally-fitted polynomial in
seasonal extraction (sdegree), the span (in lags) of the LOESS window for trend extraction
(twindow), and the degree of locally-fitted polynomial in trend extraction (tdegree) are
determined by grid search, minimizing the sum of squares of the residuals.

2.7.5 Twitter AnomalyDetection

The direction of anomalies is set to ‘pos’, the confidence level α = .05, and the upper bound
percentage on the number of anomalies is set to .2% of the time series (Numenta, 2018b) as
in a streaming setting, it is impossible to know the number of anomalies beforehand. The
anomaly score is the label (0 or 1).
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2.7.6 Matrix Profile

The length of the subsequence is set to the periodicity if seasonality is present and periodicity
is greater than 5. Otherwise, it is set to 100.

2.7.7 VAE (Donut)

We generally use the same parameters as established by Xu et al. (2018). The number of
latent dimensions is K = 5, the MCMC iteration count is 10, 1024 is the sampling number
of Monte Carlo integration, 256 is the batch size, 250 epochs are used, and the optimizer is
Adams. As for the structure of the neural network, there are 2 ReLU layers with 100 units,
and .01 is the injection ratio. The learning rate is 10−3 and is discounted by .75 every 10
epochs. L2 regularization is used on the hidden layers with a coefficient of 10−3. As for the
window size, the authors use 120. However, if the window size is too small, patterns cannot
be captured, and if too large, there is overfitting. We instead use min(120, .25 ∗ N, gws)
where N is the length of the time series and gws is the gaussian window size used on the
reconstruction probabilities to generate normalized anomaly scores.

2.7.8 HS Tree

We use the same parameters as established by Tan et al. (2011). The max depth is set to
be 15, window size to 250, tree ensemble size to 25, and the size limit is 10% of the window
size.

2.7.9 PBAD

We use the same parameters as established by Feremans et al. (2019). A window size of 12,
a window increment of 6, an alphabet size of 100 ( Feremans et al. (2019) used 30 to 100),
a minimal support of .01, a Jaccard threshold of .9, and 500 isolation trees.

2.7.10 GLiM

The exponential forgetting factor, λ, and the step size parameter, η, are chosen via grid
search by minimizing the mean squared error between the forecast (predictions) and the
actual time series values. Additionally, the algorithm is modified to learn a Poisson output
distribution for count-valued datasets. Seasonal regressors are selected based on the sam-
pling frequency of each time series like with the exogeneous variables of SARIMAX. All
models include an intercept term.

2.7.11 Anomalous

The number of anomalies k was set to be .2 %× number of time steps (Numenta, 2018b) as
in a streaming setting, it is impossible to know the number of anomalies beforehand. The
anomaly score is the label (0 or 1). If the time series has length greater than 1000, it is
divided into multiple time series, each of length 100. Otherwise, it set to 25.
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2.7.12 HTM

HTM parameters are determined automatically for HTM Studio. We do not allow for time
step aggregation. As 400 time steps are needed for HTM Studio, international-airlines-
passengers could not be run through HTM Studio.

3. Comparison of Anomaly Detection Methods on Time Series with
Different Characteristics

We experiment with several different anomaly detection evaluation methods: AUC (Area
Under the receiver operating characteristic Curve), window-based F-scores, and Numenta
Anomaly Benchmark (NAB) scoring. We discuss how anomaly scores are obtained, how
thresholds are determined, define the evaluation methods, and provide results.

3.1 Anomaly Scores

Some anomaly detection methods return an anomaly score between 0 and 1 such as PBAD,
HS trees, and HTM. However, others do not. Thus, we make use of the Windowed Gaussian
as an output normalization technique. More specifically, the Windowed Gaussian is not just
an anomaly detection method but also a technique we use to convert the outputs of many
anomaly detectors to a score between 0 and 1. A sliding window computes the probabilities
from a Gaussian distribution with a mean and standard deviation determined from this
window. For SARIMAX, GLiM, and Prophet the prediction error is fed to the Windowed
Gaussian. For the matrix profile, its vector elements are fed to the Windowed Gaussian. For
STL, the residuals are used. For VAE, the reconstruction probability output from Donut
(which is not normalized) is fed to the Windowed Gaussian. Feeding these outputs to the
Windowed Gaussian creates an anomaly score between 0 and 1.

For Twitter and Anomalous which return 1 (if a point is an anomaly) or 0 (if not), we
treat the output as the anomaly score.

Every anomaly detection method is run 10 times. If the output of the method needs to
be converted between 0 and 1 (meaning we apply the Windowed Gaussian to the output),
we also rerun the method’s output on various Gaussian Window Sizes.

A threshold is set on this score to determine what is an anomaly. We use the Youden
Index (Fluss et al., 2005) (see Subsection 3.2) as determined by the ROCs with the maximal
AUCs for thresholding.

3.2 AUC and Thresholding

The ROC (receiver operating characteristic) curve is a plot of the false positive rate on the
x-axis and true positive rate on the y-axis at different classification thresholds (Fawcett,
2006). The diagonal (y = x) divides the ROC space where a random classifier would have
points close to the diagonal. Points above the diagonal represent good classification results.

The AUC is the area under the ROC curve and measures the entire two-dimensional
area underneath the entire ROC curve from (0, 0) to (1, 1). The AUC ranges in value from
0 to 1. A model whose predictions are 100% wrong has an AUC of 0 whereas a model
whose predictions are 100% correct has an AUC of 1.0. An uninformative classifier yields
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Dataset Anom Prop GLiM HS Tree HTM MP PBAD SARI STL Twitter VAE WG

ex-3 cpc results nf 1.0000 1.0000 0.9995 0.9999 0.0616 0.8121 N/A 1.0000 N/A N/A 0.9995 N/A
ex-3 cpm results nf 1.0000 1.0000 1.0000 1.0000 0.2207 0.9873 N/A 1.0000 N/A N/A 1.0000 N/A

FARM f 1.0000 0.8550 0.7949 0.9998 0.0183 0.9617 0.2960 0.7673 0.8876 1.0000 0.9727 0.9297
artificial cd 1 nf 1.0000 0.8980 0.9948 0.9997 0.0337 0.9147 N/A 0.9964 0.9950 N/A 0.9998 N/A

Twitter GOOG f 1.0000 0.8716 0.9961 0.9996 0.0183 1.0000 0.3727 0.9849 1.0000 1.0000 0.8683 0.9898
ex-2 cpc results nf 1.0000 0.9999 1.0000 0.9999 0.0301 0.9732 N/A 1.0000 N/A N/A 1.0000 N/A

grok asg anomaly f 1.0000 0.9993 0.9893 0.9996 0.0463 0.8718 0.2666 0.9744 0.9853 1.0000 0.7951 0.9997
cpu util 5f5533 f 1.0000 0.9876 0.9985 0.9998 0.6303 0.9830 0.4415 0.9454 N/A 1 1.0000 0.9990

req count 8c0756 f 1.0000 0.9258 0.9472 0.9999 0.1351 0.9808 0.2609 0.9715 0.9818 1.0000 0.9125 0.9802
cpu util ac20cd nf 1.0000 1.0000 1.0000 1.0000 0.3000 0.9772 N/A 1.0000 N/A N/A 1.0000 N/A

req count 8c0756 nf 1.0000 0.8888 0.9466 0.9999 0.0800 0.7526 N/A 0.9727 0.9819 N/A 0.8344 N/A
gift certificates f 1.0000 1.0000 0.8379 0.9996 0.1542 0.7106 0.0060 0.9267 0.9203 1.0000 1.0000 0.8450

Twitter FB f 1.0000 1.0000 1.0000 1.0000 0.4499 0.8725 0.2870 1.0000 1.0000 1.0000 1.0000 1.0000
art daily nojump f 1.0000 0.6246 1.0000 0.9980 0.0088 0.9775 0.8079 0.8368 0.5136 1 0.9573 0.7984

ex-2 cpc results f 1.0000 0.9998 1.0000 0.9999 0.0301 0.9828 0.0426 1.0000 N/A N/A 1.0000 0.9987
rds cpu util cc0c53 nf 1.0000 1.0000 1.0000 0.9999 0.1093 0.8095 N/A 1.0000 N/A N/A 1.0000 N/A

ibm-stock f 1.0000 0.9996 0.6517 0.9989 0.0088 0.9406 0.2031 0.9836 N/A N/A 0.8588 0.9140
amb temp sys fail f 1.0000 0.9999 1.0000 0.9998 0.3000 0.9704 1 0.9927 0.7459 1.0000 1.0000 1.0000

cpu util ac20cd f 1.0000 1.0000 1.0000 1.0000 0.3967 0.9810 0.0030 1.0000 N/A 1 1.0000 1.0000
amb temp sys fail nf 1.0000 0.9999 0.9998 0.9998 0.3000 1.0000 N/A 0.9974 0.7308 N/A 1.0000 N/A

ex-2 cpm results nf 1.0000 0.9828 0.9996 0.9999 0.0562 0.9697 N/A 0.6018 N/A N/A 1.0000 N/A
artificial cd 1 f 1.0000 0.8829 0.9948 0.9999 0.0418 0.9082 0.3748 0.8216 0.6162 1.0000 0.9946 0.9976

Twitter AMZN f 1.0000 1.0000 1.0000 0.9998 0.0053 0.8889 0.1711 0.9973 0.9999 1.0000 1.0000 1.0000
artificial cd 2 f 1.0000 0.8626 0.9802 0.9992 0.0268 0.7865 0.2011 0.8568 0.8933 1 0.9970 0.9978

ex-2 cpm results f 1.0000 0.9998 0.9996 0.9999 0.0463 0.9509 0.3426 0.9944 N/A N/A 1.0000 0.9902
artificial cd 3 nf 1.0000 0.9705 0.9889 0.9999 0.0237 0.9650 N/A 0.7523 N/A N/A 0.8856 N/A

ex-3 cpc results f 1.0000 0.9853 0.9875 0.9999 0.0674 0.7814 0.2402 0.9777 N/A N/A 0.8426 1.0000
airline f 1.0000 1.0000 1.0000 1.0000 N/A 0.9973 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

rds cpu util cc0c53 f 1.0000 1.0000 1.0000 1.0000 0.1261 0.9734 0.4431 1.0000 N/A N/A 1.0000 1.0000
ex-3 cpm results f 1.0000 1.0000 1.0000 1.0000 0.3000 0.9934 0.0978 1.0000 N/A N/A 1.0000 1.0000

art daily flatmiddle f 1.0000 0.9984 1.0000 1.0000 0.1857 1.0000 0.4749 0.5307 0.9997 1 1.0000 0.7347
artificial cd 3 f 1.0000 0.9597 0.9891 0.9999 0.0463 0.8217 0.2794 0.8925 N/A 1.0000 0.9283 0.9543

rds cpu util e47b3b f 1.0000 1.0000 1.0000 0.9999 0.2207 0.9683 0.6100 1.0000 N/A N/A 1.0000 1.0000
ibm-stock nf 1.0000 0.9822 0.5692 0.9993 0.0103 0.9699 N/A 0.9239 N/A N/A 0.8584 N/A

Table 3: Youden Index anomaly score thresholds for every dataset, method combination.
Anom is for Anomalous, Prop for Prophet, MP for Matrix Profile, SARI for SARIMAX,
and WG is for the Windowed Gaussian. (airline f, HTM) is a N/A because that dataset
does not have the 400 time step minimum required by HTM Studio. PBAD, Twitter and
the Windowed Gaussian cannot take datasets with missing time steps. Twitter also requires
seasonal time series. STL requires seasonal time series with periodicity at least four.

an AUC of 0.5. As the ROC is plotted at different classification thresholds, the AUC is
classification-threshold-invariant.

The precision-recall curve (PR Curve) is an alternative plot of the precision (y-axis) and
the recall (x-axis) for different thresholds. The PR curve tends to focus on the minority
class in imbalanced problems, whereas the ROC curve covers both classes. As false positives
often abound in anomaly detection algorithms, we display ROC curves in this paper and
the appendix. However, AUCs of the PR Curve are also available on https://github.com

/dn3kmc/jair anomaly detection.

We use the Youden Index (Fluss et al., 2005) to choose thresholds for anomaly scores
generated from every method, dataset combination. The Youden Index threshold maximizes
the difference between the true positive rate and false positive rate on the ROC line. The
Youden index threshold for every method, dataset combination is shown in Table 3.
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3.3 Window-Based F-Scores

To evaluate and compare the anomaly detection methods, in addition to the AUC, we use
the standard metrics of precision and recall to compute the F-score (harmonic mean of
the precision and recall, 2 × precision×recall

precision+recall ). An anomaly is considered to be the “True”
class. Accuracy, alone, is not a good measure due to class imbalance (very few anomalies
typically exist). We consider precision and recall on anomaly windows; points are too fine a
granularity. An anomaly window is defined over a continuous range of points and its length
can be user-specified. For the purposes of this paper, we use the same anomaly window
size as established by Numenta (2018b): 10% of the length of a time series divided by the
number of true anomalies.

3.4 NAB Scores

One might consider rewarding an anomaly detection method that detects outliers earlier
rather than latter in a window. In addition, users may want to emphasize true positives,
false positives, and false negatives differently. This gives rise to an application profile,
{AFN , ATP , AFP }, which are weights for false negatives, true positives, and false positives,
respectively. Numenta (2018b) creates a methodology to determine NAB anomaly scores
based on these application profiles. For every ground truth anomaly, an anomaly window
is created with the ground truth anomaly at the center of the window. The length of the
window can either be user-chosen or set as like in Subsection 3.3.

For every predicted anomaly, y, its score, σ(y), is determined by its position, pos(y),
relative to a window, w, that y is in or a window preceding y if y is not in any window.
More specifically, σ(y) is:

(ATP −AFP )(
1

1 + e5pos(y)
)− 1

if y is in an anomaly window. If y is not in any window but there is a preceding anomaly
window w, use the same equation as above, but determine the position of y using w. If
there is no preceding window, σ(y) is AFP .

The score of an anomaly detection method given a single time series is:

AFNfts +
∑
y∈Yts

σ(y)

where fts represents the number of ground truth anomaly windows that were not de-
tected (no predicted anomalies exist in the ground truth anomaly window), and Yts is the
set of detected anomalies.

The score is then normalized by considering the score of a perfect detector (outputs all
true positives and no false positives) and a null detector (outputs no anomaly detections).
It is important to note that the normalized score can be negative when the false positive
rate is high. A normalized score can also be larger than 100 if anomalies are detected very
early in the window.

If multiple predictions exist in a window, the earliest detection is kept, and the rest are
ignored. Multiple ground truth anomalies should not exist in a single window by virtue of
the detailed anomaly tagging instructions (Numenta, 2017).
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We use the code provided by Numenta (2018b) and the standard profile for NAB scoring,
meaning that false positives and false negatives are given equal weights.

3.5 Friedman Average Rank Test and Post-Hoc Nemenyi Tests

To detect statistically significant differences between anomaly detection methods on a char-
acteristic, we make use of the Friedman average rank test (Demšar, 2006), a non-parameteric
test similar to ANOVA. The null hypothesis is that all anomaly detection methods have
identical effects whereas the alternative is that there is a difference. A table is first created
where the rows are the datasets making up a characteristic corpus, and the columns are
the anomaly detection methods. The columns are ranked by the evaluation metric. As a
small example, given dataset x and three anomaly methods A,B,C, suppose B has the
highest NAB score13, C has the second highest, and A does the worst. The corresponding
row in the table would be 3, 1, 2 assuming the columns are ordered as A,B,C. This creates
a matrix where element rij is the rank of method j on dataset i.

Given N datasets and k anomaly detection methods, the test statistic is Q where

Q =
12N

k(k + 1)

k∑
j=1

(
r̄·j −

k + 1

2

)2

and

r̄·j =
1

N

N∑
i=1

rij

The null hypothesis is rejected if Q is larger than the Friedman critical value which
can be checked up in a Friedman’s ANOVA by Ranks Critical Value Table. If rejected,
we proceed with a Nemenyi post-hoc test: For every two anomaly detection methods, the

difference between their average ranks is ω, and if ω > qα ∗
√

k(k+1)
6N , then the performance

of the two algorithms is significantly different where qα is the studentized range statistic
divided by

√
2.

3.6 Corpora

To measure every anomaly detection method’s performance on different time series char-
acteristics, we create a corpus of 10 datasets for every characteristic (seasonality, trend,
concept drift, and missing time steps) using the time series in Table 1. See Table 4 for the
datasets comprising each corpus.

There are 34 time series in Table 1 but only 29 time series were used for characteristic
corpora as some datasets were used for multiple characteristic corpora. We still report the
ROCs and AUCs in the Appendix for the five that were not used in the corpora. Some
datasets with missing time steps were filled and used in other corpora but not the non-filled
(has missing time steps) version and vice-versa.

13. We repeat this test for windowed F-scores and AUCs.
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Seasonality Corpus Trend Corpus Concept Drift Corpus Missing Corpus

1. Twitter FB f

2. req count 8c0756 f

3. FARM f

4. amb temp sys fail f

5. airline f

6. cpu util 5f5533 f

7. artificial cd 1 f

8. artificial cd 2 f

9. gift certificates f

10. Twitter GOOG f

1. Twitter FB f

2. req count 8c0756 f

3. cpu util ac20cd f

4. airline f

5. art daily flatmiddle f

6. grok asg anomaly f

7. Twitter AMZN f

8. art daily nojump f

9. ibm-stock f

10. Twitter GOOG f

1. rds cpu util cc0c53 f

2. cpu util ac20cd f

3. rds cpu util e47b3b f

4. artificial cd 3 f

5. grok asg anomaly f

6. cpu util 5f5533 f

7. artificial cd 1 f

8. artificial cd 2 f

9. gift certificates f

10. ibm-stock f

1. cpu util ac20cd nf

2. ibm-stock nf

3. ex-2 cpc results nf

4. ex-2 cpm results nf

5. ex-3 cpm results nf

6. ex-3 cpc results nf

7. artificial cd 3 nf

8. req count 8c0756 nf

9. artificial cd 1 nf

10. amb temp sys fail nf

Table 4: Characteristic corpora.

Anomaly Detection Method Best AUC Mean AUC 95% CI

Anomalous 0.498760 0.498760 ±0.00000
Prophet 0.996031 0.989618 ±0.00195
GLiM 0.989581 0.952617 ±0.00761
Matrix Profile 0.914971 0.629826 ±0.05178
PBAD 0.621310 0.591987 ±0.01489
SARIMAX 0.995287 0.992806 ±0.00038
HS Tree 0.980278 0.979348 ±0.00026
VAE 0.990821 0.904128 ±0.02535
Windowed Gaussian 0.988837 0.948772 ±0.00859
HTM 0.987100 0.987100 ±0.02262

Table 5: AUC Table for rds cpu util cc0c53 f.

3.7 Results

We show results using ROC and AUC scores, windowed F-scores, and NAB scores. Plots of
all anomaly predictions for every data set, method combination are available on https://gi

thub.com/dn3kmc/jair anomaly detection/blob/master/jair work step four evaluat

ion/Plot%20Predictions.ipynb. A deeper discussion of these results follows in Section 4.

3.7.1 AUC Results

Figure 8 displays ROCs of every method from the best AUC out of the 10 runs for every
method + dataset combination. For example, the top right plot displays the best ROCs
for all twelve anomaly detection methods on the dataset FARM f. The ROC with the best
AUC (.94) is VAE (light blue line). ROC plots for remaining datasets are available in the
Appendix.
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Figure 8: ROCs of anomaly detection methods for four datasets.

We additionally show the 95% confidence intervals of all AUCs in Table 5 (where in this
case, the dataset is rds cpu util cc0c53 f). Best AUC is the same AUC displayed in the
legend of the ROC plots for that dataset. AUC tables for remaining datasets are available
in the Appendix.

We also analyze the AUCs of methods on time series with seasonality, trend, concept
drift, and missing time steps. For every method, we obtain its mean AUC from all the
datasets comprising a characteristic corpus. For example, to determine Anomalous’ abilities
on seasonality, we obtain Anomalous’ AUCs on every dataset in the seasonality corpus (see
Table 4) and determine the mean of those selected AUCs.

We then conduct the Friedman average rank test (see Section 3.5) on AUCs and reject
the null hypothesis at the 90% confidence level for all characteristics (seasonality, trend,
concept drift, and missing time steps). Rejecting the null hypothesis means that there is a
difference between the methods. If the null hypothesis is rejected we follow with the post-
hoc Nemenyi test. These AUC results for every anomaly detection method, characteristic
combination are shown in Figures 9a to 12b.

3.7.2 Windowed F-Score Results

We repeat the above AUC process but use mean Windowed F-score bar charts with 95%
confidence intervals for every characteristic corpus. We conduct the Friedman test on the
Windowed F-Scores and reject the null hypothesis (i.e. there is a difference) for three char-
acteristics: seasonality, trend, and concept drift. For these three characteristics we follow
with the post-hoc Nemenyi test. The Windowed F-score results are shown in Figures 13a
to 16.
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Seasonality AUCs

(a) Mean AUCs for seasonality (b) AUC Nemenyi results for seasonality

Figure 9: Mean AUCs and 95% confidence intervals of anomaly detection methods on the
seasonality corpus (a). Nemenyi results for AUCs where dark green is statistically significant
and light red is not significant (b).
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Concept Drift AUCs

(a) Mean AUCs for concept drift (b) AUC Nemenyi results for concept drift

Figure 10: Mean AUCs and 95% confidence intervals of anomaly detection methods on
the concept drift corpus (a). Nemenyi results for AUCs where dark green is statistically
significant and light red is not significant (b).
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(a) Mean AUCs for trend (b) AUC Nemenyi results for trend

Figure 11: Mean AUCs and 95% confidence intervals of anomaly detection methods on
the trend corpus (a). Nemenyi results for AUCs where dark green is statistically significant
and light red is not significant (b).
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(a) Mean AUCs for missing time steps (b) AUC Nemenyi results for missing time steps

Figure 12: Mean AUCs and 95% confidence intervals of anomaly detection methods on
the missing time steps corpus (PBAD, Twitter AD, and Windowed Gaussian cannot han-
dle missing time steps) (a). Nemenyi results for AUCs where dark green is statistically
significant and light red is not significant (b).
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Figure 13: Mean Windowed F-Scores and 95% confidence intervals of anomaly detection
methods on the seasonality corpus (a). Nemenyi results for Windowed F-Scores where dark
green is statistically significant and light red is not significant (b).
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(a) Mean Windowed F-Scores for concept drift (b) Windowed F-Score Nemenyi for concept drift

Figure 14: Mean Windowed F-Scores and 95% confidence intervals of anomaly detection
methods on the concept drift corpus (a). Nemenyi results for Windowed F-Scores where
dark green is statistically significant and light red is not significant (b).
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(a) Mean Windowed F-Scores for trend (b) Windowed F-Score Nemenyi for trend

Figure 15: Mean Windowed F-Scores and 95% confidence intervals of anomaly detection
methods on the trend corpus (a). Nemenyi results for Windowed F-Scores where dark green
is statistically significant and light red is not significant (b).
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Figure 16: Mean Windowed F-Scores and 95% confidence intervals of anomaly detection
methods on the missing time steps corpus.
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(a) Mean NAB scores for seasonality (b) NAB score Nemenyi results for seasonality

Figure 17: Mean NAB scores and 95% confidence intervals of anomaly detection methods
on the seasonality corpus (a). Nemenyi results for NAB where dark green is statistically
significant and light red is not significant (b).
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(a) Mean NAB scores for concept drift (b) NAB score Nemenyi results for concept drift

Figure 18: Mean NAB scores and 95% confidence intervals of anomaly detection methods
on the concept drift corpus (a). Nemenyi results for NAB where dark green is statistically
significant and light red is not significant (b).
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(a) Mean NAB scores for trend (b) NAB score Nemenyi results for trend

Figure 19: Mean NAB scores and 95% confidence intervals of anomaly detection methods
on the trend corpus (a). Nemenyi results for NAB where dark green is statistically significant
and light red is not significant (b).
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Figure 20: Mean NAB scores and 95% confidence intervals of anomaly detection meth-
ods on the missing time steps corpus (a). Nemenyi results for NAB where dark green is
statistically significant and light red is not significant (b).
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3.7.3 NAB Score Results

We repeat the above process but use mean NAB bar charts with 95% confidence intervals
for every characteristic corpus. We conduct the Friedman test on the NAB Scores and
reject the null hypothesis (i.e. there is a difference) for all characteristics. We follow with
the post-hoc Nemenyi tests. Results for the NAB scores are shown in Figures 17a to 20b.

3.7.4 Times

As our time series have differing lengths, we record times needed to run anomaly detection
methods on all datasets in characteristic corpora like in Figure 21. Time plots for all other
datasets are available in the Appendix. See Subsection 2.5 for run time complexities of the
methods discussed.

4. Discussion

Given these results, we proceed with answering the following questions:

1. How does the choice of window size affect the AUC, Windowed F-scores, and NAB
scores?

2. What are the differences between the AUC, Windowed F-scores, and NAB scores?
When should we use one over the other?

3. Given a time series characteristic, which anomaly detection methods are more promis-
ing?

4.1 How Do Gaussian Window Sizes Affect Scores?

This question is only applicable to anomaly detection methods that do not output an
anomaly score between 0 and 1. Because no such score is immediately output by these
methods, we use the Windowed Gaussian on the outputs of such methods to create a
normalized score. Thus, the Windowed Gaussian is not just an anomaly detection method
it is also a tool to create normalized anomaly scores between 0 and 1 for methods that do not
produce one. This window slides across certain values (e.g. prediction errors, unnormalized
anomaly scores, or the time series values themselves) and computes probabilities from a
Gaussian distribution with the mean and standard deviation determined from this window.
Our question in this subsection is whether or not the size of this window has a significant
effect on anomaly detection.

It is difficult to establish patterns such as “anomaly detection method x improves in
performance when the window size increases” as we have only looked at 5 window sizes:
128, 256, 512, 768, and 1024. However, what we can observe is that window size affects
Prophet’s outputs more than any other method.

Given an anomaly detection method and time series characteristic, we obtain 5 AUCs14

(one for each window size: 128, 256, 512, 768, and 1024). We consider every 2-combination
of these 5 AUCs and obtain the absolute difference of every combination. We then plot the
variance of these differences in Figure 22.

14. We use AUCs as they are classification threshold invariant.
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Figure 21: Times of anomaly detection methods for four datasets.
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Figure 22: Variance of AUC differences based on Gaussian window size for every anomaly
detection method on all datasets.

Note that we do not consider Anomalous, Twitter, PBAD, HS Trees, and HTM in this
Figure because these methods already return a normalized anomaly score between 0 and 1
and do not need to be modified in some way to produce one.

According to Figure 22, Prophet is the most affected by the Gaussian window size,
having the largest variance of AUC differences. We observe the ROCs of Prophet on multiple
datasets and notice that although most AUCs are similar regardless of Gaussian window
size (Figure 23a), in some cases the window size of 128 is too small for Prophet (Figure 23b).
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Figure 23: A small Gaussian window size (GWS) can affect Prophet’s AUC scores.

4.2 What Are the Differences Between the AUC, NAB Scores, and F-Scores?

Previous literature states that a direct comparison to NAB may be difficult due to several
irregularities (such as determining anomaly window sizes a priori and non-normalized scor-
ing due to no lower bound) (Tatbul et al., 2018). However, what we do know is that NAB
scores reward early detection of anomalies, and that this can have a significant impact on
how it behaves compared to other evaluation methods.
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For NAB scoring, a window is created for every ground truth anomaly centered on the
anomaly. Given a predicted anomaly, a position function determines the position of the
prediction relative to the ground truth anomaly in its window. If the prediction is within
the window but before the actual anomaly, the reward is even greater than having the
prediction on the exact same time step as the actual anomaly.
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(a) Using NAB score windows.
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(b) Using F-Score windows.

Figure 24: HTM anomaly predictions (red) vs ground truth anomalies (yellow) for the
time series cpu util ac20cd nf. In a), we use NAB score windows, where windows are created
around ground truth anomalies with the ground truth anomaly in the center of the window.
In b), we use F-score windows, where the entire time series is divided into windows. Black
vertical lines show these window divisions.

Windowed F-scores do not create windows around ground truth anomalies; the entire
time series is divided into windows starting from the beginning of the time series. It then
rewards a prediction anywhere in the same window as an actual anomaly. Thus, there is
the possibility that a predicted anomaly may be rewarded under NAB as it is positioned in
the same window as a ground truth anomaly but is punished under the windowed F-score
method as the predicted anomaly may be in an entirely different window from the ground
truth anomaly.

In Figure 24a, the ground truth anomaly is in the center of this Numenta window, and
two outliers predicted by the HTM (red) occur within the Numenta window. Only the first
detection point in the window matters; all others are ignored. The NAB score is 99.96
for the entire dataset. Similarly, in Figure 24b, where the entire time series is divided into
windows, the predicted anomaly occurs in its F-Score window. In both cases, the prediction
falls in the window; however, with NAB, the reward is even greater because the prediction
occurs before the ground truth anomaly. Regardless of where the prediction falls in the
window for the windowed F-score methodology, the reward is the same. The Windowed
F-score is .5 for the entire dataset.

The AUC is classification-threshold-invariant which makes it very different from the
NAB and Windowed F-score. The AUC provides an aggregate performance measure over
all classification thresholds whereas the NAB and Windowed F-scores are calculated for
the specified anomaly score threshold. The thresholds we use for NAB and the Windowed
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F-score are based off of the ROCs producing the best AUCs for every dataset, anomaly
detection method, and (if applicable) Gaussian Window size combination. We use the
Youden Index (Fluss et al., 2005) to choose thresholds which maximizes the difference
between the true positive rate and false positive rate on the ROC line.

An evaluation method that is classification-threshold-invariant is not always desirable.
Depending on the task (e.g. email spam detection), it may be more desirable to minimize
false positives at the cost of an increase in false negatives. The AUC is not a useful metric
for optimizations such as these.

In addition, for imbalanced data, the ROC is not highly sensitive to false positives. The
ROC curve maps the false positive rate on the x-axis where the false positive rate is the
number of false positives divided by the total number of real negatives. Anomalies are, by
definition, rare. Thus, the number of real negatives is typically very high, creating a very
large denominator. Compare to precision: tp

(tp+fp) where tp is the number of true positives,
and fp is the number of false positives. Precision is more sensitive to false positives. Thus,
the precision-recall curve (which is not as affected by data imbalance) is an alternative to
the AUC and ROC.

In summary, what evaluation metric to use is entirely based on the needs of the user’s
application. It is worth reading Tatbul et al. (2018) and Singh and Olinsky (2017) for
additional strengths and weaknesses of scoring methodologies. There is a definite need
for more evaluation metrics, and research is progressing in this field (Tatbul et al., 2018).
However, we found that the methods established by Tatbul et al. (2018) were not applicable
as ground truth anomalies are assumed to be in the form of ranges. This is problematic as
ground truths in anomaly datasets are typically given in the form of points.

4.3 Running Times

In addition to a discussion of anomaly detection method complexities in Subsection 2.5, we
provide running times of anomaly detection methods on every time series in the charac-
teristic corpora like in Figure 21 in the Appendix. Note that the time series are often of
different length (see Table 1 for the number of time steps).

For most of these time series, SARIMAX and Anomalous have the longest running
times, especially for longer time series. The running time for SARIMAX is heavily impacted
on the periodicity. For example, the FARM dataset has a periodicity of 50, and takes over
4000 seconds (> 1 hour) to run. Given that FARM has 30 minute time steps, only peri-
odic updates of parameters would be possible if SARIMAX was to be applied online. As
mentioned in Subsection 2.5, the quadratic complexity term for SARIMAX is a signifi-
cant constraint for large seasonal lags. Alternative methods should be considered such as
resampling the time series to reduce periodicity, Fourier bases, or even different anomaly de-
tection methods altogether. Anomalous also has longer running times. Eighteen features
are detected per subseries, and the index of the first time step in an anomalous subseries
is returned. If the subseries are long, there are fewer subseries to determine features from;
however, predictions may be far off from ground truth anomalies if ground truth anomalies
occur near the end of subseries.

A difficulty encountered was the lack of publicly available, annotated, real-world bench-
mark datasets with high sampling rates. The highest sampling rate we have investigated
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involves 5 minute time steps. However, many real-world applications involve even higher
sampling rates (e.g. hundreds of measurements per second). Thus, methods such as
Anomalous, Prophet, HS Tree, HTM, VAE, SARIMAX, and PBAD would either not
be an option or be limited to only periodic updates.

4.4 Which Anomaly Detection Method Should I Use When?

We now discuss the results of our experiments and provide recommendations on which
methods appear to perform better based on the characteristics of the time series to be ana-
lyzed. These recommendations can be used by practitioners to select the optimal anomaly
detection method for their own applications.

To answer this question, we consult Figures 9a through 20b. An anomaly detection
method X might perform better than Y according to some metric in the bar charts, but
we must also check if this difference is significant by using the Nemenyi result matrix. For
example, in the bar chart in Figure 9a, GLiM has a higher seasonality AUC than STL, but
in Figure 9b, the (GLiM, STL) element is light red, indicating that this difference is not
statistically significant. However, in Figure 9a, the method GLIM has a higher seasonality
AUC than Twitter, and in Figure 9b, the element (GLiM, Twitter) is dark green, meaning
that GLiM performs better than Twitter on seasonality, and this is a statistically significant
difference.

Note that if method X outperforms method Y with statistical significance, and Y out-
performs method Z with statistical significance, this does not guarantee that X outper-
forms method Z. In other words, the transitive property does not hold for Figures 9a
through 20b. This is because each corpus is made up of 10 datasets and the methods can
therefore outperform each other on different combinations of datasets. For example, X
outperforms Y on datasets {a, b, c} and Y outperforms Z on datasets {d, e, f} but X did
not outperform Z on datasets {d, e, f} with statistical significance, so it is not the case
that X > Y ∧ Y > Z =⇒ X > Z. A concrete example of this is in Figures 13a and 13b
where Windowed Gaussian significantly outperforms Anomalous, which in turn signifi-
cantly outperforms HS Tree, but Windowed Gaussian does not significantly outperform HS
Tree.

In addition, not every method can be applied to all datasets within a characteristic
corpora. For example, stlplus cannot be applied to time series with periodicity less than
4 and therefore STL performance is not always available for comparison.

4.4.1 Seasonality

The performance of the anomaly detection methods on the seasonality corpus as determined
by the AUC is shown in Figure 9a. The Friedman test conducted on the AUCs confirmed a
statistically significant difference between the methods on the seasonality corpus. A post-
hoc Nenenyi test is conducted in Figure 9b showing that Anomalous is outperformed by
the Windowed Gaussian, VAE, HS Tree, and GLiM. GLiM outperforms Twitter and PBAD.
HS Tree, Windowed Gaussian, and VAE all outperform PBAD. The Windowed Gaussian
and VAE outperform Twitter.

As for Windowed F-Scores on the seasonality corpus (see Figures 13a and 13b), there
is a statistically significant difference between the methods also. A post-hoc Nemenyi test
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shows that Anomalous is outperformed by the Windowed Guassian, HTM, and GLiM.
Anomalous, however, outperforms VAE and HS Tree. Windowed Gaussian, VAE, GLiM,
HS Tree, and HTM all outperform Twitter

As for NAB scores on the seasonality corpus (see Figures 17a and 17b), there is a
statistically significant difference between the methods as well. A post-hoc Nemenyi test
shows that Anomalous outperforms STL, SARIMAX, and PBAD. PBAD is outperformed
by VAE and Twitter.

As can be seen by these bar charts and Nemenyi tests, the performance of methods can
change drastically based on the evaluation method. For example, Anomalous is ranked in
11th place under the AUC but 1st place under NAB. With Anomalous, a subseries that
is considered anomalous will predict the first point in the subseries as anomalous. So the
anomaly typically occurs latter in the subseries. Thus, the prediction is made early, and
NAB rewards early detection of anomalies.

Considering the AUC and windowed F-score performance, a simple methodology such
as the Windowed Gaussian or GLiM can perform very well; they are both ranked in the
top three methods for the AUC and windowed F-score evaluation methods (Figures 9a
and 13a). Under the windowed F-score, both outperform VAE, but under the AUC, they
are outperformed by VAE. The VAE is a complex model with many parameters, but the
simple sliding Gaussian detector or generalized linear model can compete. This confirms
recent analysis (Makridakis et al., 2018) where it is shown that machine learning and deep
learning often struggle to outperform classical statistical time series forecasting approaches.

Of interest is which methods cannot handle non-seasonal time series or time series
with small periodicities. Twitter AD VEC cannot handle time series with periodicity = 1
whereas STL Residual Thresholding requires periodicity to be 4 or higher due to usage of
R stlplus.

4.4.2 Trend

For AUCs on the trend corpus (see Figures 11a and 11b), there is a statistically significant
difference between the methods. A post-hoc Nemenyi test shows that GLiM outperforms
Anomalous, Twitter, and PBAD.

As for Windowed F-Scores on the trend corpus (see Figures 15a and 15b), there is a
statistically significant difference between the methods. A post-hoc Nemenyi test shows
that Anomalous outperforms PBAD, HTM, HS Tree, and Prophet. Prophet and HTM
outperform Twitter. Twitter outperforms HS Tree and PBAD.

As for NAB scores on the trend corpus (see Figures 19a and 19b), there is a statis-
tically significant difference between the methods. A post-hoc Nemenyi test shows that
Anomalous outperforms STL, PBAD, and the HTM. GLiM and the Matrix Profile both
outperform PBAD.

Although the reader should verify with their own data, if AUC is the preferred evaluation
metric we recommend starting with GLiM and VAE when processing time series containing
trend. If using the evaluation metric of NAB scores or Windowed F-scores Anomalous is
a good starting point.

Based on Figures 11a, 15a, and 19a, trend and seasonality have similarities; for NAB,
the top three ranked methods are still Anomalous, Twitter, and VAE. For the AUCs,
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VAE and GLiM are still in the top three; however Prophet jumps in the top three for trend.
Prophet is a decomposition-based method with a component for trend which might explain
its performance on this characteristic. Anomalous also becomes a much more appealing
option as it is ranked not just first for NAB but also windowed F-scores. With NAB, it is
expected given Anomalous makes “early” predictions which NAB rewards. Anomalous
uses several trend or trend-like features (such as strength of trend, linearity, peaks, and
troughs) that might explain its performance on this characteristic (Hyndman et al., 2015).

4.4.3 Concept Drift

For AUCs on the concept drift corpus (see Figures 10a and 10b), there is a statistically sig-
nificant difference between the methods. A post-hoc Nemenyi test shows that Anomalous
is outperformed by the Windowed Gaussian, VAE, GLiM, and Prophet. Prophet outper-
forms Twitter and PBAD. GLiM outperforms Twitter, STL, and PBAD. VAE outperforms
PBAD. Both the Windowed Gaussian and VAE outperform Twitter.

As for Windowed F-Scores on the concept drift corpus (see Figures 14a and 14b), there
is also a statistically significant difference between the methods. A post-hoc Nemenyi test
shows that Anomalous outperforms PBAD but is outperformed by the Windowed Gaus-
sian, HTM, HS Tree, GLiM, and Prophet. Twitter outperforms PBAD but Prophet, GLiM,
HS Tree, Windowed Gaussian, and HTM all outperform Twitter. HTM also performs better
than STL and SARIMAX.

As for NAB scores on the concept drift corpus (see Figures 18a and 18b), there is a
statistically significant difference between the methods. A post-hoc Nemenyi test shows that
Anomalous outperforms STL, PBAD, matrix profile, and HS Tree. Prophet outperforms
STL, PBAD, and matrix profile. GLiM outperforms STL and PBAD. VAE outperforms
matrix profile, PBAD, and STL.

Promising initial methods for concept drift include Prophet, GLiM, and VAE. However,
this greatly depends on the evaluation metric used. With NAB scores, Anomalous is a
top choice outperforming STL, PBAD, matrix profile, and HS Tree. However, with AUCs,
Anomalous is outperformed by the Windowed Gaussian, VAE, GLiM, and Prophet.

Compared to all other characteristics, concept drift displayed the most statistically
significant pairing instances for post-hoc Nemenyi tests. We suspect that this is because
many anomaly detection methods we experimented with explicitly took seasonality and
trend into consideration (e.g. Prophet via a prior scale, Anomalous via the level shift
feature, GLiM via λ, etc.) but not necessarily level change concept drift.

4.4.4 Missing Time Steps

For AUCs on the missing time step corpus (see Figures 12a and 12b), there is a statistically
significant difference between the methods. A post-hoc Nemenyi test shows that Anoma-
lous is outperformed by VAE and GLiM, Prophet and GLiM outperform STL, and VAE
outperforms HTM and STL.

As for Windowed F-Scores on the missing time step corpus, there is no statistically
significant difference between the methods. Thus, no post-hoc Nemenyi test was conducted.

As for NAB scores on the missing time step corpus (see Figures 20a and 20b), there is
a statistically significant difference between the methods. A post-hoc Nemenyi test shows
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that Anomalous outperforms STL, matrix profile, and HTM. Prophet outperforms STL
and HTM. GLiM outperforms STL. VAE outperforms HTM and STL.

VAE Donut was specifically constructed with missing time steps in mind, and is a
promising initial choice for time series with this characteristic. However, the evaluation
metric still plays a role, with VAE performing well under AUC and NAB scores but no
statistically significant differences with Windowed F-Scores.

The missing time steps characteristic had the fewest statistically significant pairing
instances for post-hoc Nemenyi tests. No comparisons could be done against the Windowed
Gaussian, Twitter, and PBAD because these anomaly detection methods cannot be applied
to time series with missing time steps. In addition, although there are instances where time
series in the missing time step corpus have quite a number of missing time steps (e.g. ibm-
stock has 452, ex-3 cpm results has 109) most only have a few missing time steps (< 10).
To see a more profound difference may require further experimentation on more datasets
with significant irregular sampling.

5. Conclusions and Where Do We Go From Here?

We have analyzed the performance of 12 anomaly detection methods (the windowed Gaus-
sian, SARIMAX, Facebook Prophet, Anomalous, Generalized Linear Models, STL resid-
ual thresholding, Twitter AD , Matrix Profile, VAE Donut, HS Trees, PBAD,and HTM) on
several time series characteristics (seasonality, trend, level change concept drift, and missing
time steps). We create corpora of behaviors with 10 datasets for every time series character-
istic. We determine which methods tend to perform better or worse on these characteristics
by analyzing three evaluation metrics: AUC, windowed F-scores, and NAB.

We observe that:

1. There are statistically significant differences as determined by the Friedman average
rank test between anomaly detection methods for all characteristics under all scoring
methodologies (AUC, windowed F-scores, and NAB) with exception of the missing
time step characteristic with windowed F-scores. This may be due to fewer methods
that can be applied to time series with missing time steps and because of the lack of
benchmark datasets with a large variety of irregular sample sizes.

2. The differences between anomaly detection methods based on characteristics and scor-
ing methodologies are summarized in:

• Seasonality: Figures 9a, 9b, 13a, 13b, 17a, 17b

• Trend: Figures 11a, 11b, 15a, 15b, 19a, 19b

• Concept Drift: Figures 10a, 10b, 14a, 14b, 19a, 18b

• Missing Time Steps: Figures 12a, 12b, 20a, 20b

3. NAB’s reward for early detection may be so great that it overrides the presence of
many false positives and can make it difficult to compare different methods. For exam-
ple, with Anomalous, the predictions are made early, and NAB rewards early detec-
tion of anomalies. Anomalous often outperforms other anomaly detection methods
under the NAB evaluation method but not with AUC and the windowed F-score
method.
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4. The AUC is a classification-threshold-invariant evaluation method which is not always
desirable especially in applications that may want to minimize certain types of errors
like false positives. ROCs are also not highly sensitive to false positives due to the
large number of real negatives typically prevalent in anomaly detection tasks.

5. It is unfortuante that many benchmark datasets that are publicly available have few
anomalies and that the anomalies present tend to be “obvious” outliers such as point
outliers. We try to mitigate this by including different outliers such as collective
outliers. However, this is a problem universal to most benchmark datasets. Possible
future work that would improve research in the field would be the release of datasets
with a larger variety of anomalies that are more “difficult” to detect where the measure
of difficulty would have to be carefully defined.

6. There is a need for more anomaly detection methods for time series with missing
time steps, especially if the time series is irregularly sampled. Many methods either
completely ignore the missing time steps or simply replace them with 0s. Although
there is work being done on this (Li & Marlin, 2016; Anava et al., 2015), these methods
are not explicitly built for online anomaly detection. For future work, we plan on
investigating methods established by Kowalska and Peel (2012) where a combination
of extreme value theory and Gaussian Processes can be used to deal with irregularly
sampled time series.

7. The variance of AUC differences between different Gaussian window sizes is not large.
However, out of all methods, Prophet is the most affected by small Gaussian window
sizes.

8. There are anomaly detection method library idiosyncrasies. Although STL can in-
nately handle missing time steps, different implementations may or may not be able
to. For example, R’s stl cannot handle missing time steps but stlplus can. However,
stlplus requires periodicity to be at least 4. Twitter AD TS only allows for 1 minute,
1 hour, and 1 day time step sizes and will automatically determine a seasonality pa-
rameter versus AD VEC which does not have such time step size restrictions but the
user must input the periodicity.

There are many avenues for future work. In addition to considering more datasets for
each behavior, we could look at more behaviors themselves such as different types of concept
drift, irregular sampling, or multiple seasonalities. Unfortunately, many anomaly detection
methods can only take into account a single periodicity for input although time series can
display multiple. Inclusion of contextual variables may also change initial perceptions of
what is anomalous. There may be more innovative ways to generate anomaly scores given
these methods instead of using a sliding window and Q-functions.

Instead of performing an extensive literature review and trying every anomaly detection
method in a rapidly expanding library (Gupta et al., 2014; Wu, 2016), we observe char-
acteristics present in the data and narrow the choice down to a smaller class of promising
anomaly detection methods.

Time series are being created at an unprecedented scale (Keogh, 2006) and are used in
a wide variety of domains. This huge increase in available data makes it difficult to detect
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anomalies, especially as the number of anomaly detection methods increases every year.
In our view, although it is important to generate new anomaly detection methods, this is
daunting for those who want to choose from the assortment of existing methods, especially
as a one-size-fits-all method is a myth. It is our hope that this survey and experimental
comparison will serve those individuals.
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