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Abstract

We focus on the election manipulation problem through social influence, where a ma-
nipulator exploits a social network to make her most preferred candidate win an election.
Influence is due to information in favor of and/or against one or multiple candidates, sent
by seeds and spreading through the network according to the independent cascade model.
We provide a comprehensive theoretical study of the election control problem, investigating
two forms of manipulations: seeding to buy influencers given a social network and removing
or adding edges in the social network given the set of the seeds and the information sent.
In particular, we study a wide range of cases distinguishing in the number of candidates or
the kind of information spread over the network.

Our main result shows that the election manipulation problem is not affordable in
the worst-case, even when one accepts to get an approximation of the optimal margin of
victory, except for the case of seeding when the number of hard-to-manipulate voters is not
too large, and the number of uncertain voters is not too small, where we say that a voter
that does not vote for the manipulator’s candidate is hard-to-manipulate if there is no way
to make her vote for this candidate, and uncertain otherwise.

We also provide some results showing the hardness of the problems in special cases.
More precisely, in the case of seeding, we show that the manipulation is hard even if the
graph is a line and that a large class of algorithms, including most of the approaches
recently adopted for social-influence problems (e.g., greedy, degree centrality, PageRank,
VoteRank), fails to compute a bounded approximation even on elementary networks, such
as undirected graphs with every node having a degree at most two or directed trees. In the
case of edge removal or addition, our hardness results also apply to election manipulation
when the manipulator has an unlimited budget, being allowed to remove or add an arbitrary
number of edges, and to the basic case of social influence maximization/minimization in
the restricted case of finite budget.

Interestingly, our hardness results for seeding and edge removal/addition still hold
in a reoptimization variant, where the manipulator already knows an optimal solution
to the problem and computes a new solution once a local modification occurs, e.g., the
removal/addition of a single edge.

c©2021 AI Access Foundation. All rights reserved.
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1. Introduction

Nowadays, social network media are the most used, if not the unique, sources of information.
This indisputable fact turned out to influence most of our daily actions and have severe
effects on our countries’ political life. Indeed, in many of the recent political elections
worldwide, there has been evidence that false or incomplete news spread through these
media influenced the electoral outcome. For example, in the 2016 US presidential election,
several studies show that, on average, 92% of Americans remembered pro-Trump false
news, while 23% of them remembered the pro-Clinton fake news (Allcott & Gentzkow,
2017; Guess et al., 2018). As another example, automated accounts on Twitter spread a
considerable amount of political news to alter the 2017 French elections (Ferrara, 2017). It
also emerged that the fake news, spread over the major social media during the campaign
for the 2018 Italian political election, is linked with the content of populist parties that won
that election (Alaphilippe et al., 2018; Giglietto et al., 2018).

The increasing use of social networks to convey inaccurate and unverified information can
lead to severe and undesired consequences, such as widespread panic, libelous campaigns,
and conspiracies, representing a menace for democracy. In this scenario, some natural
questions are to understand to which extent the spread of (mis)information on social network
media may alter the result of a political election and how to mitigate or block it.1 The former
problem is known in the literature as election control through social influence, and it has
recently been the subject of interest of many works in the artificial intelligence community.
For instance, Sina et al. (2015) study a plurality voting scenario in which the voters can
vote iteratively and show how to modify the relationship among voters to make the desired
candidate win an election. Auletta et al. (2015, 2017a, 2017b) study a majority dynamics
scenario and show that, in the case of only two candidates, a manipulator controlling the
order in which information is disclosed to voters can lead the minority to become a majority.
Auletta et al. (2018) study a similar adversary, showing that such a manipulator can lead
a bare majority to consensus. These results do not extend to the case with more than two
candidates, as showed by Auletta et al. (2019b, 2020). Bredereck and Elkind (2017) study
a majority dynamics scenario, showing how selecting the seeds diffusing information to
manipulate a two-candidate election. Finally, we mention a few works providing techniques
to mitigate or block misinformation. For instance, Tsai et al. (2012) provide the seminal
work on the application of approaches from the field of security games to social networks,
and Auletta et al. (2020) study the problem of placing monitors to block malicious flaws in
networks.

1.1 Related Work

Recently, Wilder and Vorobeychik (2018) studied a seeding problem in which all the seeds
send the same information, either in favor of (positive) or against (negative) a single can-
didate, to make that candidate either win or lose, respectively, the election. In particular,
voters are not strategic, and ranks describe their preferences: given any pair of candidates
c, c′ such that c directly precedes c′ in the rank, positive information on c′ or negative infor-

1. We notice the election-manipulation problem is also studied under other perspectives, such as, e.g.,
Bayesian persuasion in offline (Castiglioni et al., 2020a; Castiglioni & Gatti, 2021) and online (Castiglioni
et al., 2020b, 2021) settings.
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Figure 1: Clique with five voters and five candidates.

mation on c make c and c′ switch. The diffusion of the information on the social network
is described by the independent cascade model (Kempe et al., 2015). The authors provide
approximation algorithms for plurality voting when the objective function is the maximiza-
tion of the margin of victory. These approximation results also hold when other voting rules
and/or other diffusion models are adopted, as showed by Corò et al. (2019b, 2019a). While
the works mentioned above assume that the manipulator has complete knowledge about
the problem, some recent work also deals with uncertainty on the network (Abouei Mehrizi
et al., 2020).

The works by Wilder and Vorobeychik (2018) and Corò et al. (2019b, 2019a) present
some limitations when dealing with elections with more than two candidates. A major
limitation is the assumption that all the seeds send the same information, and this informa-
tion is on a single candidate.2 Indeed, spreading simultaneously positive and/or negative
information on multiple candidates is usually seen in most elections involving more than
two candidates, in which manipulator not only send messages in favour of his/her candidate
(or against its adversary), but it tries to support third parties so that they can erode votes
from the main adversary. Not only, spreading information on multiple candidates can be, in
some settings, necessary to make the manipulator’s candidate win the election, as showed
in the following example.

Example 1. Consider the setting in Figure 1: there are five voters (corresponding to the
graph nodes) and five candidates c0, c1, . . . , c4, in which c0 is the manipulator’s candidate.

2. To the best of our knowledge, the spreading of multiple information with the independent cascade model
is only studied in scenarios different from election control, e.g., (Becker et al., 2019).
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Each voter receives the information spread by her neighbors with probability one. A can-
didate gains one position in the rank thanks to positive information on her and loses one
position due to negative information on her. The manipulator has a budget sufficient for
seeding two nodes, each sending information on a single candidate. When only information
on a single candidate is sent, then the desired candidate c0 cannot be made the winner of
the election (at most, the election ends with a tie with two votes taken both by c0 and by
either c1 or c2). Instead, injecting the network with positive information on c0 and negative
information on c2 results in c0 being the only node with two votes, and thus the winner.

Another major limitation is the assumption that seeding is the only action the manipula-
tor can take to manipulate the election. However, this is not the case when the manipulator
is (or collaborates with) the network media manager. In this case, the manipulator can also
alter the structure of the network. In particular, she may indefinitely conceal information
exchanged among two voters connected in the social network, or she may reveal information
spread by unknown sources (e.g., as sponsored content or through friend suggestions mech-
anisms). That is, such a manipulator can remove or add edges in the network to obstruct
or push the diffusion of information.3

1.2 Original Contributions

In this work, we focus on the election control problem, proposing a more general model than
those available in the literature and providing a comprehensive study of the complexity of
manipulating the election.

1.2.1 Model and Motivation

We extend the model provided by Wilder and Vorobeychik (2018), along with two different
directions. First, we address the problem that this model does not allow seeds to send
messages on multiple candidates, as described above (cf., Example 1). For this reason,
we assume that the seeds can send different information and that the information sent by
every single seed can be simultaneously positive and negative on multiple candidates. A
simple interpretation is that the seeds can share different news articles and that each news
article is related to a single candidate. We use the term message to refer to the collection
of information sent by every single seed. We extend the model introduced by Wilder and
Vorobeychik (2018), that, in its turn, is an extension of the independent cascade model, to
capture the simultaneous spread of multiple different messages.

The second direction along which our model differs from the previous one is that each
message may have a different “effect” on the opinions of different voters, and on the opinions
about different candidates by the same voter. That is, each voter keeps a ranking about
candidates, but, differently from the model of Wilder and Vorobeychik (2018), given two
candidates c, c′ where c directly precedes c′, a single news article in favor of c′ or against c
does not necessarily make them switch. On the other side, our model also allows a candidate

3. To the best of our knowledge, the removal or the addition of edges in the network have been studied as
forms of manipulations only for simpler diffusion models, e.g., with two candidates and simple information
diffusion dynamics (Bredereck & Elkind, 2017). They have been considered even when no information is
spread, but voters update their votes in an iterative voting process by effect of selfish voting (Sina et al.,
2015; Auletta et al., 2019).
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to gain (lose, respectively) more than one position in the rank of a voter due to a large
amount of received positive (negative, respectively) news articles about that candidate sent
by a single seed or by multiple seeds. To this aim, we use the technical machinery to assign,
for each voter, a value to each candidate. For each pair of candidates, the difference of their
values represents how many positive (respectively, negative) news articles about the lowest
(respectively, highest) ranked candidate are necessary to switch the relative order among
them. Thus, a voter that is uncertain on c0 can be modeled with the difference between
the value assigned to the most preferred candidate and the value of c0 being sufficiently
small so that the manipulator can change the voter’s preferences to make c0 be the most
preferred with few messages. Conversely, a voter that is certain to vote for c0 has a ranking
such that c0 is the most preferred candidate and values assigned to candidates such that
the manipulator cannot make c0 not be the most-preferred with few messages. Similarly, a
voter that is certain not to vote for c0 has a ranking such that c0 is not the most preferred
candidate and values such that the manipulator cannot make it be the most preferred. We
say that such a voter is hard-to-manipulate.

In the paper, we often refer to a special basic setting, to which we refer as single-news-
article messages, in which all the seeds send the same information, and this information is
only on a single candidate. We also use the term unitary value distances to refer to the
case in which the difference in the value of two candidates c, c′ where c directly precedes
c′ is exactly one. When our model is with single-news-article messages and unitary value
distances and the number of candidates is two, it is directly comparable to that studied by
Wilder and Vorobeychik (2018). Instead, with three or more candidates, the models are
not comparable, as, differently from our model, a candidate cannot increase/decrease more
than one position in the rank of a voter, even if the voter receives multiple positive/negative
messages sent by multiple seeds (Wilder & Vorobeychik, 2018).

1.2.2 Approximation Bounds and Inapproximability Results

We focus on the maximization of the increase in the margin of victory of the manipulator’s
candidate c0, as done by Wilder and Vorobeychik (2018). We provide a comprehensive
study of the election manipulation problem when two forms of manipulations are possible:
seeding to buy influencers given a social network and removing or adding edges in the
social network given the seeds and their messages. The manipulator is subject to budget
constraints, expressing the maximum number of news articles that can be spread over the
network by seeds or the maximum amount of edges she can remove or add to the network.
In Table 1, we summarize our main original results, providing a clear picture of the cases
in which manipulation is affordable—and therefore countermeasures should be studied—
and of the degree of inapproximability for all the other cases in which manipulation is not
affordable. The main message is that the election manipulation problem is not affordable
in the worst-case, even when one accepts to get an approximation of the optimal margin
of victory, except for the case of seeding when the number of hard-to-manipulate voters is
not too large with respect to the budget available to the manipulator, and the number of
uncertain voters is not too small. From a prescriptive point of view, our result provides the
manipulator with a lower bound on the budget to guarantee the election’s manipulability.
On the opposite side, it provides the central authority with a criterion to make the election

1053



Castiglioni, Ferraioli, Gatti, & Landriani

Seeding

budget single-news-article messages general setting

2 candidates 2 or more candidates 3 or more candidates

unitary value distances arbitrary value distances O(B) hard-to-manipulate voters, δ fixed ω(B) hard-to-manipulate voters or

Ω(1) fraction of voters is uncertain o(1) fraction of voters is uncertain

limited APX (Wilder & Vorobeychik, 2018) /∈ APX (Thm 3) APX (Cor 1) /∈ APX (Thm 1, Prop 1, Prop 2)

Edge Removal

budget single-news-article messages, unitary value distances arbitrary messages and unitary value distances

2 candidates 3 or more candidates 2 or more candidates

limited /∈ APX (Cor 3) /∈ Exp-APX (Thm 10) /∈ Exp-APX (Thm 11)

unlimited P (Obs 2) (†) /∈ Exp-APX (Thm 10) /∈ Exp-APX (Thm 11)

Edge Addition

budget single-news-article messages, unitary value distances arbitrary messages, unitary value distances

2 candidates 3 or more candidates 2 or more candidates

limited /∈ APX (Cor 2) /∈ APX (Thm 7) /∈ Exp-APX (Thm 8)

unlimited P (Obs 1) (†) /∈ APX (Thm 7) /∈ Exp-APX (Thm 8)

Table 1: Complexity results (previously known in the literature or originally provided in this
paper) on the election manipulation problem through social influence. The case of
seeding with unlimited budget is trivial, as discussed in the paper, and therefore
omitted. Results marked with (†) also hold with arbitrary value distances.

hard to manipulate. For instance, the central authority could pose an upper bound to the
electoral campaigns’ costs motivated by, e.g., fairness arguments.

In the case of seeding, the problem is trivial when the budget B available to the manipu-
lator is unlimited, as the manipulator can make all the nodes seeds spreading an arbitrarily
large number of news articles in favor of c0 and against all other candidates. When instead
the budget B is finite, our results depend on the scoring function of the voters and the
budget available to the manipulator. Initially, we observe that the setting with single-news-
article messages and two candidates becomes inapproximable within a constant factor as
soon as the value distances become strictly larger than one. In the general setting (i.e.,
when messages and value distances are arbitrary), the complexity depends on the number
of hard-to-manipulate voters, the number of uncertain voters, and on B. We prove that,
whenever the number of hard-to-manipulate voters is O(B) and there is at least a constant
fraction of voters that is uncertain, there is a greedy polynomial-time algorithm guarantee-
ing an approximation factor ρ depending on δ as Ω(1/δ), where δ is the cost needed to make
the most reluctant voter among those that are not hard-to-manipulate vote for c0. Observe
that, in real-world elections, it is reasonable that, if a voter would vote for c0 when receiving
an opportune set of news, then the cost δ does not depend on the size of the network and
is smaller than B.

A surprisingly sharp transition phase occurs, instead, when these conditions are not
satisfied. Indeed, we show that no polynomial-time approximation algorithm is possible,
unless P = NP, even when the approximation factor is a polynomial function of the size
of the problem. Even more importantly, we show that this hardness result does not hold
merely for worst-case (thus, potentially, knife-edge or rare) instances. Indeed, a large class of
algorithms (including most of the approaches recently adopted for social-influence problems,
e.g., greedy, degree centrality, PageRank, VoteRank) fail to compute an empirically bounded
approximation even on elementary networks, such as undirected graphs with every node
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having a degree at most two, or directed trees. Furthermore, the hardness holds even on
simple graphs, proving that maximizing the increase of margin of victory is NP-hard even
on graphs such as lines, and we discuss how our results extend to variants of our model.

In the case of edge removal/addition, the characterization is more intricate. We study
both the case with only two candidates and the one with multiple candidates. In the latter
case, we study both the subcase with single-news-article messages and the more realistic
subcase with arbitrary messages. In any of these cases, we show that deciding whether
there is a set of edges to remove/add in the network to make the desired candidate win
is hard, even when the value distances are unitary. Surprisingly, these results hold even if
the manipulator has an unlimited budget of edges to remove or add, except for the trivial
setting in which there are two candidates and messages are single-news-article. In this
latter case, the optimal solution when the budget is unlimited is to remove all edges if the
messages are against the desired candidate, or to add all possible edges, otherwise. For the
remaining cases, we formally prove that it is hard to find a set of edges to remove or add
that causes an increment in the margin of victory of the desired candidate that is a constant
(and, in some case, even exponential) approximation of the best possible increment that
can be achieved. Our results still hold with acyclic networks.

Incidentally, to establish these results, we also provide new results for the basic Influence
Optimization problem, which consists of maximizing or minimizing the number of nodes
that receive the information spread over the network.4 We prove that the minimization
(respectively, maximization) variant of the problem cannot be approximated within any
constant factor by removing (respectively, adding) a limited number of edges.5

The hardness results presented in this work are a starting point for shaping the land-
scape of manipulability of election through social networks. This task is fundamental to
understand when and how one must design interventions to reduce the severe effects of the
spread of misinformation. Although our results are positive, showing that manipulation is
not affordable in the worst case, we believe that the border of manipulability can be further
sharpened. Here, we present a seminal study in this direction, looking at manipulators that
face a reoptimization problem, see e.g., (Ausiello et al., 2012, Chap. 4) and (Celli, Marchesi,
& Gatti, 2017). We thus answer the question “is manipulation easier if a solution to the
problem for a given instance is already available, and a local modification occurs?”. Note
that this is very common in the real world, where the social relationships among voters
remain nearly stable between an election and the next one, or, in a single election, budget
B could be available incrementally, and the manipulator could spend it in online fashion,
thus reoptimizing every time that a new portion of the budget is available. Surprisingly,
we show that all our hardness results are robust to the knowledge of solutions in similar
settings since they still hold in this reoptimization setting.

4. Sheldon et al. (2010) studied the problem of adding edges to arbitrary nodes of the networks for max-
imizing the information diffusion, proving that this objective function is not submodular. Khalil et al.
(2014) investigated these two types of graph modifications with the goal of minimizing the information
diffusion. They show that this network structure modification problem has a supermodular objective.
Heuristics for the edge removal problem have been studied by Kimura et al. (2008) and by Kuhlman
et al. (2013). However, no hardness results are known.

5. For the sake of completeness, we mention that the Influence Optimization problem has been widely
investigated when the manipulator uses seeding (Kempe et al., 2015).
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1.3 Structure of the Paper

The paper is structured as follows. Section 2 formally introduces the model and the com-
putational problems we study. Section 3 provides our main results on the seeding problem.
Section 4 provides results on edge removal, while Section 5 provides results on edge addi-
tion. Section 6 discusses the robustness of our hardness results in the case of reoptimization.
Finally, Section 7 concludes the paper and describes future research directions.

2. Model and Problem Statement

We have a set of candidates C = {c0, c1, . . . , c`} and a network of voters, represented as a
weighted directed graph G = (V,E, p), where V is the set of voters, E is the set of directed
edges, and p : V × V → [0, 1] denotes the strength of the potential influence among voters.
In particular, for each edge (u, v), p(u, v) returns the strength of the influence of u on v.

Each voter v has a ranking rv : C → {1, . . . , |C|} that models the preferences of voter v
over the candidates. Thus, rv(i) > rv(j) models that voter v prefers ci to cj . We assume that
rv is injective, thus returning a different ranking for each candidate, formally, rv(i) 6= rv(j)
∀ci, cj ∈ C.

Each voter v has also an injective value function πv : C → R which assigns a value to
every candidate ci. We assume that πv(i) > πv(j) whenever rv(i) > rv(j). Due to this
property, we will often report only the value function of a voter, and not its ranking, since
the latter can be immediately computed from the former. Values specify how easy it is that
the voter changes her mind about the rank of voters. Specifically, for each pair of candidates
ci, cj such that rv(ci) > rv(cj), πv(ci)− πv(cj) is the cost necessary to convince v to prefer
cj to ci. Sometimes we will denote by 〈πv(0), . . . , πv(`)〉 the value vector of voter v. We will
say that the values have unitary value distances if πv(i) ∈ {0, . . . , ` − 1} for every voter v
and for every candidate ci.

The election is based on plurality voting, where every voter casts a single vote for a single
candidate, and the candidate that received the largest number of votes wins the election.
We assume voters to be myopic, casting a vote for the candidate with highest rank in their
preference ordering. For each candidate c ∈ C, we denote by Vc the set of voters that rank
c first, formally, Vc =

{
v ∈ V | c = argmaxci∈C rv(i)

}
.

Let S ⊆ V be a subset of voters called seeds. Every seed s can be selected to initiate
the diffusion of information about multiple candidates. We denote by ms = (q0, ..., q`) the
message of s ∈ S, where qi ∈ Z, with qi > 0 (qi < 0, respectively) representing that s
initiates the diffusion of qi positive (negative, respectively) news articles on ci, and qi = 0
representing that s does not send any information about ci. We use ms(i) ∈ Z to denote
information sent by s on candidate ci and M = ∪s∈S ms to denote the whole information
sent by seeds. We denote with |ms| =

∑
ci∈C |ms(i)| the number of news articles sent by s.

Similarly, |M | =
∑

s∈S |ms|. If ms = ms′ for every pair of seeds s, s′ ∈ S, and, for all the
candidates ci except cj , it holds ms(i) = 0, while for cj it holds ms(j) ∈ {+1,−1}, then we
say that we are in the setting with single-news-article messages.
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2.1 Diffusion Model

Given a pair of seeds/messages (S,M), messages are supposed to spread over the network
according to a multi-issue independent cascade (MI-IC) model. Roughly speaking, in this
model, each seed s propagates the message ms to her neighbors. Then, a voter v 6∈ S,
receiving a message from s, accepts the information of this message with probability p(s, v).
If voter v accepts the message, we say that v is activated by s. In her turn, each just
activated voter v sends the received messages to her neighbors u that can activate with
probability p(v, u) if not activated in the past and, then, voter v becomes inactive. The
process continues as long as there is some active voter, and it is repeated for every message
ms sent by one of the seeds.

Formally, given graph G = (V,E, p), we define a live-graph as H = (V,E′), where each
edge (u, v) ∈ E is included in H with probability p(u, v). Moreover, for every s ∈ S, we
introduce a set Atms

⊆ V composed of the active voters at time t due to message ms.
Every set Atms

is initialized with the seed sending the corresponding message for t = 0,
i.e., A0

ms
= {s}, and the empty set for t > 0. At every time t ≥ 1, set Atms

is defined as
follows: for every edge (u, v) ∈ E′, we consider the set M(u,v) ⊆ M of messages ms such
that u ∈ At−1

ms
—and thus u has just been activated by ms—and v /∈

⋃
i<tA

i
ms

—and thus v
has never been activated by ms; then for each (u, v) such thatM(u, v) is not empty, we add
v to Atms

for every ms ∈ M(u, v). The diffusion process of message ms terminates at time

Tms when A
Tms
ms = ∅. Finally, the cascade terminates when the diffusion of every message

ms terminates. A voter that activates at some t is said to be influenced. Note that, when
the messages are single-news-article, there are two candidates, and the value distances are
unitary, this process reduces to the well-known independent cascade model (Kempe et al.,
2015).

2.2 Preference Revision

When a voter v accepts a message received by a neighbor, her preferences can change. Let
us now denote with R ⊆ M a set of received messages. A ranking revision function φ
associates each pair (π,R) with a new ranking r′. The ranking revision function updates
first the values π′i such that each positive (negative) message ms on a candidate ci increases
(reduces) πi by ms(i). In principle, for each voter v and each candidate ci, we aim at
updating the value of each candidate as follows:

π′v(i)← πv(i) +
∑
ms∈R

ms(i),

and subsequently we set the new ranking r′v such that r′v(i) > r′v(j) only if π′v(i) > π′v(j).
However, such a procedure can return a non-strict ranking at the end of the diffusion
process in which multiple candidates have the same value of πv. In order to guarantee
that the ranking is strict, we break ties according to some rule and slightly tilt values so
that they satisfy the tie-breaking outcome. For the sake of simplicity, given two candidates
with the same π′v, we break ties in favor of the candidate ranked last before the diffusion
process, i.e., that with the smaller πv. A simple interpretation is that we assume that
voters will give more weight to “fresher” received news than to their belief, usually built
on “old” news. Such a tie-breaking rule can be obtained by slightly perturbing the initial
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mA = (0,1,0)

mB = (1,0,0)

mE = (1,0,0)C D

A

B

E

πA = ⟨0,2,1⟩

πB = ⟨2,0,1⟩

πC = ⟨1,0,5⟩ πD = ⟨0,1,2⟩ πE = ⟨2,0,1⟩
p = 1

p = 1 p = 1

p = 1
2

Figure 2: Example of an election with three candidates c0, c1, c2. Black nodes represent
seeds: node A sends a positive message on c1, while nodes B and E send a positive
message on c0. The tuples 〈πv(0), πv(1), πv(2)〉 above the nodes are the voters’
values for candidates, from which their ranking can be immediately computed.

value with a multiplicative factor (1 − ε), where ε is a sufficiently small positive constant,
e.g., ε = 1

1+maxv,i πv(i) , and then apply the update rule as

π′v(i)← (1− ε)πv(i) +
∑
ms∈R

ms(i).

Given a seed set S, a set M of messages, a set E of edges, and a live graph H,
r∗v(i, S,M,E,H) denotes the rank that voter v ∈ V assigns to candidate ci at the end
of the MI-IC diffusion (i.e., after the preference revision). Moreover, for each candidate
c ∈ C, we denote with V ∗c the set of voters for which c is ranked first after the preference
revision, i.e., V ∗c (S,M,E,H) =

{
v | argmaxci r

∗
v(i, S,M,E,H) = c

}
. Finally, we define the

margin of victory MoV of (S,M,E,H) as

MoV(S,M,E,H) =
∣∣∣V ∗c0(S,M,E,H)

∣∣∣− max
c 6=c0

∣∣∣V ∗c (S,M,E,H)
∣∣∣.

Given a live-graph H, MoV returns the number of votes that c0 needs to win the election,
if the first term is smaller than the second, and the advantage of c0 with respect to the
second-best ranked candidate, otherwise.

Next we provide an example of the concept defined above.

Example 2. Consider Figure 2, depicting the connections among five voters.
Two different live-graphs H1 and H2 are possible depending on whether or not B influ-

ences C. This happens with probability 1
2 .

In H1, B does not influence C and C receives only a positive news article on c1, thus
increasing the value of c1 by 1. However, C has a very high evaluation of candidate c2 and
keeps to prefer c2 over c0 and c1. Instead, D updates her value to 〈1, 2− ε, 2− 2ε〉 and votes
for c1. Thus, at election time, c0 has 2 votes (B and E), c1 has 2 votes (A and D) and c2 has
one votes (C), and therefore MoV(S,M,E,H1) = 2−max{2, 1} = 0.

In H2, B influences C and C receives a positive news article on c0 and a positive news
article on c1. However, C keeps to prefer c2 over c0 and c1. Voter D receives a positive news
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article on c1 and two positive news articles on c0, thus updating the values to 〈2, 2−ε, 2−2ε〉
and then voting for c0. Hence, MoV(S,M,E,H2) = 3−max{1, 1} = 2.

2.3 Election Control Problem

The election control problem involves a manipulator whose objective is to spend a budget
B to make c0 win the election. We consider two different manipulation strategies: seeding
and network modification by edge removal/addition. For the sake of simplicity, we assume
that the cost incurred by the manipulator for seeding is one for every single news article
sent by each seed and therefore the cumulative cost for seeding is |M |, while the cost for
network modification is equal to the number of removed/added edges. We study each form
of manipulation singularly. Nevertheless, it is easy to see that the results also extend to the
case with multiple simultaneous forms of manipulation.

We next formally state the problems we study in the paper.

Definition 1 (Election-Control-by-Seeding (ECS)). Given the election scenario
(C,G, {πv}) and budget B ∈ N, the goal is to find a set S of seeds and messages ms

for every s ∈ S, with |M | ≤ B, to maximize EH [∆S
MoV(S,M,H)], where ∆S

MoV(S,M,H) =
MoV(S,M,E,H)−MoV(∅, ∅, E,H) is the increase of MoV due to the messages send by the
seeds S.

Definition 2 (Election-Control-by-Edge-Removal (ECER)). Given the election
scenario (C,G, {πv}, S,M) and budget B ∈ N ∪ {∞}, the goal is to find E′ ⊆ E with
|E′| ≤ B to remove from graph G to maximize EH [∆−MoV(E′, H)], where ∆−MoV(E′, H) =
MoV(S,M,E \E′, H)−MoV(S,M,E,H) is the increase of MoV due to the removal of edges
E′.

Definition 3 (Election-Control-by-Edge-Addition (ECEA)). Given the election
scenario (C,G, {πv}, S,M) and budget B ∈ N ∪ {∞}, the goal is to find E′ with E′ ∩
E = ∅ and |E′| ≤ B to add to G to maximize EH [∆+

MoV(E′, H)], where ∆+
MoV(E′, H) =

MoV(S,M,E ∪ E′, H) − MoV(S,M,E,H) is the increase of MoV due to the addition of
edges E′.

An algorithm A is said to always return a ρ-approximation for an ECS problem with ρ ∈
[0, 1] potentially depending on the size of the problem, if, for each instance of the problem,
it returns a feasible pair (S,M) such that EH [∆MoV(S,M,H)] ≥ ρEH [∆MoV(S∗,M∗, H)],
where (S∗,M∗) is the optimal solution of the problem. A similar definition holds for all the
other optimization problems.6

6. Since our results are mainly hardness results, it is immediate to see that they extend to more complex
(but more realistic) settings: e.g., we can allow the same message to cause a different value increment
(decrement) to different voters, or if received by different neighbors, or if sent by different seeds. Also they
continue to hold if the diffusion probabilities depend on the content of the message (e.g., positive messages
about the less preferred candidate are transmitted with lower probability). Finally, as highlighted later
in the paper, our hardness results can be extended to hold even for additive approximation, and not only
for multiplicative approximation.
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2.4 Influence Optimization

Incidentally, our analysis of the ECER and ECEA problems allow us to provide results also
on the (more general) influence maximization/minimization problems when the manipulator
can either remove or add edges. To formally describe these problems, we need to define
function χ : S × E × H → R+ returning the number of influenced nodes with seeds S,
edges E and live graph H. When the set of edges E is fixed (e.g., in seeding), we will use
χ(S,H) = χ(S,E,H), removing the dependence from E. Finally, with abuse of notation,
we also define χ(S,E) = EH [χ(S,E,H)]. We have the following two problems.

Definition 4 (Influence-Minimization-by-Edge-Removal (IMER)). Given a set-
ting (G,S,M) and budget B ∈ N ∪ {∞}, the goal is to find a set E′ ⊆ E with |E′| ≤ B to
remove from graph G to maximize ∆I−(E′) = χ(S,E)− χ(S,E \ E′).7

Definition 5 (Influence-Maximization-by-Edge-Addition (IMEA)). Given a set-
ting (G,S,M) and budget B ∈ N ∪ {∞}, the goal is to find a set E′ with E′ ∩ E = ∅ and
|E′| ≤ B to add to graph G to maximize ∆I+(E′) = χ(S,E ∪ E′)− χ(S,E).

3. Seeding Complexity

We characterize the computational complexity of the ECS problem. Unless specified oth-
erwise, the results provided in this section refer to the general setting when both messages
and value distances are arbitrary. Before stating our characterization, we need to introduce
some parameters. First, for every v ∈ V \ Vc0 , we denote by δv the cost the manipulator
needs to spend to convince v to vote for c0 and we set δv = maxci 6=c0 {πv(i)− πv(0)}. Given
an ECS problem instance, a voter v ∈ V \ Vc0 is called hard to manipulate if B < δv, and
uncertain otherwise. Let V H and U be the set of voters that in the given ECS problem
instance are hard to manipulate and uncertain, respectively.

Our characterization is based on the parameter

δ = max
v∈V \V H

δv,

representing the cost the manipulator needs to spend to convince the most reluctant voter
that is not hard to manipulate to vote for c0.

3.1 Approximation Results

We next show a polynomial-time approximation algorithm for instances in which the number
of hard-to-manipulate voters is not too large with respect to the budget B, and the fraction
of uncertain voters is not too small.

The following lemma describes the algorithm and bounds its approximation on general
instances. We next show that this provides an Ω(1/δ) approximation whenever the number
of hard-to-manipulate voters is O(B) and there is at least a constant fraction of voters that
are uncertain.

7. It may appear strange that a problem of influence minimization has an objective function to be max-
imized. However, our definition is actually motivated by the choice of keeping the objective function
non-negative.
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Lemma 1. For every ε > 0, there is a greedy polynomial-time algorithm returning a solution
(Ŝ, M̂) with

EH [∆S
MoV(S∗,M∗, H)] ≤ 2

B

λ

(
1− 1

e
− ε
)−1

EH
[
∆S

MoV(Ŝ, M̂ ,H)
]

+ |V H|,

where (S∗,M∗) is the optimal solution to the ECS problem, and λ =
⌊
B
δ

⌋
.

Moreover, if 0 < |U | < λ, then (Ŝ, M̂) is a ρ-approximation of (S∗,M∗) for ρ =
|U |

2|U |+|V H| .

Proof. Let m̂ with |m̂| = δ be the message that causes each non-hard-to-manipulate voter
to vote for c0, whatever was the ranking before the reception of this message. E.g., this
message may have m̂(0) = δ and m̂(i) = 0 ∀ci 6= c0. Consider the function χ̄(S,H) returning
the number of influenced voters that are not hard to manipulate and do not prefer c0 before
the reception of the message. Suppose we are given a procedure A that, on input b, returns
in polynomial time a set Ŝ of b seeds such that EH [χ̄(Ŝ,H)] ≥ rmaxS EH [χ̄(Ŝ,H)], for
some r ≤ 1. Our algorithm then selects λ =

⌊
B
δ

⌋
seeds through procedure A, and let each

of these seeds send the message m̂.
In order to formally prove the approximation factor of this algorithm for the election

control problem, recall that Ŝ is the set of seeds returned by procedure A on input λ. More-
over, we denote with (S∗,M∗) the set of seeds and messages maximizing EH [∆MoV(S,M,H)]
i.e., the optimal solution of the manipulation problem. We also denote with S′ (S′′, respec-
tively) the set of seeds of size B (λ, respectively) that maximizes EH [χ̄(S,H)]. Note that,
by our definition of procedure A, we have that EH [χ̄(Ŝ,H)] ≥ rEH [χ̄(S′′, H)].

Specifically, there exists an implementation of procedure A such that r = 1 − 1
e − ε

for ε > 0. Indeed, it is known that the function EH [χ̄(S,H)] is monotone and submodu-
lar on S (Kempe et al., 2015), i.e., EH [χ̄(S,H)] ≤ EH [χ̄(T,H)] and EH [χ̄(S ∪ {x}, H)] −
EH [χ̄(S,H)] ≥ EH [χ̄(T ∪ {x}, H)]− EH [χ̄(T,H)] for every S ⊆ T and every x /∈ T . Conse-
quently, the greedy algorithm, that selects at each time the seed that increases the desired
quantity the most, is known to return, for every k, a set of k seeds whose influence is an(
1− 1

e

)
-approximation of the maximum expected influence achievable with k seeds (Kempe

et al., 2015). Unfortunately, such a näıve greedy algorithm does not work in polynomial
time, since the function EH [χ̄(S,H)] cannot be evaluated within this time limit. How-
ever, there is a fully polynomial approximation scheme returning a ε-approximation to
EH [χ̄(S,H)] for each ε > 0. Adopting this approximation in place of the real value of
EH [χ̄(S,H)] in the greedy algorithm may cause the approximation ratio increase by an
additive factor of ε, as showed by Kempe et al. (2015). Hence, we have that:

EH [χ̄(Ŝ,H)] ≥
(

1− 1

e
− ε
)
EH [χ̄(S′′, H)]. (1)

Note that |Vc| − EH [|V ∗c (S∗,M∗, H)|] ≤ EH [χ̄(S∗, H)] for every c 6= c0, since at most
one vote can be lost by c for every influenced node in graph H. Then we have that

max
c 6=c0
|Vc| − EH

[
max
c 6=c0
|V ∗c (S∗,M∗, H)|

]
≤ max

c 6=c0

{
|Vc| − EH [|V ∗c (S∗,M∗, H)|]

}
≤ EH [χ̄(S∗, H)] + |V H|.

(2)
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A similar argument proves that

EH
[∣∣V ∗c0(S∗,M∗, H)

∣∣]− |Vc0 | ≤ EH [χ̄(S∗, H)] . (3)

Moreover, by submodularity of χ̄, it holds that EH [χ̄(S′,H)]
|S′| ≤ EH [χ̄(S′′,H)]

|S′′| . Hence, since

|S′| = B and |S′′| = λ, we achieve that

EH
[
χ̄(S′, H)

]
≤ B

λ
EH
[
χ̄(S′′, H)

]
. (4)

Moreover, by the definition of ∆S
MoV (see Definition 1), we have that

EH [∆S
MoV(S∗,M∗, H)] =

EH
[∣∣V ∗c0(S∗,M∗, H)

∣∣]− EH
[
max
c6=c0
|V ∗c (S∗,M∗, H)|

]
−
(
|Vc0 | −max

c 6=c0
|Vc|
)
.

Hence, we directly achieve that

EH [∆S
MoV(S∗,M∗, H)] =(

EH
[∣∣V ∗c0(S∗,M∗, H)

∣∣]− |Vc0 |)+

(
max
c 6=c0
|Vc| − EH [max

c 6=c0
|V ∗c (S∗,M∗, H)|]

)
.

Then, have that

EH [∆S
MoV(S∗,M∗, H)] ≤ 2EH [χ̄(S∗, H)] + |V H| (by (2) and (3))

≤ 2EH
[
χ̄(S′, H)

]
+ |V H| (by definition of S′)

≤ 2
B

λ
EH
[
χ̄(S′′, H)

]
+ |V H| (by (4))

≤ 2
B

λ

(
1− 1

e
− ε
)−1

EH
[
χ̄(Ŝ,H)

]
+ |V H| (by (1))

≤ 2
B

λ

(
1− 1

e
− ε
)−1

EH
[
∆S

MoV(Ŝ, M̂ ,H)
]

+ |V H|,

where the last inequality follows from the fact that, by definition of m̂, all the influenced
nodes will vote for c0.

As for the case that 0 < |U | < λ, observe that the maximum number of voters
that may be influenced to vote for c0 is |U |, and these voters are all selected by the al-

gorithm above. Hence, EH
[
∆S

MoV(Ŝ, M̂ ,H)
]
≥ |U |, whereas it must be the case that

EH [∆S
MoV(S∗,M∗, H)] ≤ 2|U | + |V H|, from which the desired approximation ratio fol-

lows.

Hence, we have the following corollary.

Corollary 1. There is a greedy polynomial-time algorithm returning an Ω
(

1
δ

)
-approximation

to the ECS problem, whenever (i) the uncertain voters are at least a constant fraction of
the voters that do not vote for c0, i.e., |U | = Ω(|V \Vc0 |); (ii) the hard-to-manipulate voters
are not too many with respect to the budget B, i.e., |V H| = O(B).
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Proof. Consider first the case that |U | = |V \Vc0 |−|V H| < λ. Then, according to Lemma 1,
we have that there is a ρ-approximation greedy algorithm with

ρ =
|U |

2|U |+ |V H|
=

|U |
|U |+ |V \ Vc0 |

= Ω(1) = Ω

(
1

δ

)
,

where the last equality follows since δ ≥ 1.

Now we consider the case that |U | > λ. Observe that in this case EH
[
∆S

MoV(Ŝ, M̂ ,H)
]
≥

λ, since at least the selected seeds are influenced to vote for c0.
From Lemma 1, we have that a a greedy polynomial-time algorithm exists returning a

solution (Ŝ, M̂) to the ECS problem with

EH [∆S
MoV(S∗,M∗, H)] ≤ 2

B

λ

(
1− 1

e
− ε
)−1

EH
[
∆S

MoV(Ŝ, M̂ ,H)
]

+ |V H|,

where (S∗,M∗) is the optimal solution to the ECS problem, and λ =
⌊
B
δ

⌋
.

If |V H| = 0, then we achieve that the solution returned by the algorithm is a ρ-
approximation of the optimal solution for ρ = 1

2

(
1− 1

e − ε
)
λ
B = Θ

(
λ
B

)
. If, instead,

|V H| > 0, then we have that

EH [∆S
MoV(S∗,M∗, H)] ≤ |V H|

(
2

|V H|
B

λ

(
1− 1

e
− ε
)−1

EH
[
∆S

MoV(Ŝ, M̂ ,H)
]

+ 1

)
. (5)

Observe that
(
1− 1

e − ε
)−1 ≥ 1,

EH [∆S
MoV(Ŝ,M̂ ,H)]

λ ≥ 1, and there is a constant c such that
B
|V H| ≥

1
c . Then, the second term within parenthesis in Equation 5 is at most c

2 times larger

than the first term, and we then conclude that

EH [∆S
MoV(S∗,M∗, H)] ≤ (c+ 2)

B

λ

(
1− 1

e
− ε
)−1

EH
[
∆S

MoV(Ŝ, M̂ ,H)
]
.

Then the algorithm returns a solution that is a ρ-approximation of the optimal solution
for ρ = 1

c+2

(
1− 1

e − ε
)
λ
B = Θ

(
λ
B

)
.

To conclude the proof, we observe that λ
B > 1

2δ , giving in this way the desired approx-

imation. Indeed, if λ = 1, then δ > B
2 and thus λ

B = 1
B > 1

2δ ; otherwise λ ≥ B−δ+1
δ and

δ ≤ B
2 , from which, we have that λ

B ≥
B/2+1
B

1
δ >

1
2δ .

Corollary 1 essentially proves that in case the number of hard-to-manipulate voters is
not too large with respect to B and the fraction of uncertain voters is at least constant,
the problem of election manipulation essentially reduces to the problem of influence max-
imization. Hence, it should be expected that not only the theoretically results, but also
experimental results known for the latter, such as the good performance of different heuris-
tics, will extend to election control.

Our algorithm heavily depends on the possibility that the seeds can send messages with
information on multiple candidates. As we will see later in Section 3.2, Theorem 3 shows
that, without this possibility, it is unlikely that the ECS problem is approximable within a
constant factor even with two candidates.
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G2

G1

G3

n + g nodes with π = ⟨0,B, B + 1⟩

n + h + 1 nodes with π = ⟨0,B + 1,B⟩

n + g + 2 nodes with π = ⟨B, B − 1,B − 2⟩ and g − h + 1 nodes with π = ⟨0,B + 1,0⟩

Figure 3: Structure of the election control problem used in the proof of Theorem 1.

3.2 Inapproximability Results

We introduce the Set-Cover problem, that is well known to be NP-hard, to prove the
hardness of ECS.

Definition 6 (Set-Cover). Given a set N = {z1, . . . , zn} of n elements, a collection
X = {x1, . . . , xg} of sets with xi ⊂ N , and a positive integer h < g, the objective is to select
a collection X∗ ⊂ X, |X∗| ≤ h with ∪xi∈X∗ xi = N .

Theorem 1. For any ρ > 0 even depending on the size of the problem, there is no algorithm
that on input instances of the ECS problem with at least three candidates, always returns a
ρ-approximation, unless P = NP.

Proof. The proof uses a reduction from Set-Cover. Given an instance of Set-Cover, we
build an instance of the election control problem with 3 candidates as follows.8 The voters’
network G, showed in Figure 3, consists of three disconnected components, that we denote
as G1, G2, and G3. Note that all edges of G have p(u, v) = 1.

We set the budget B = h + 1. The component G1 has g + n nodes and it is used
to model the Set-Cover instance. Indeed, for each zi ∈ N , we have in G1 a node vzi ;
moreover, for each xi ∈ X, we have in G1 a node vxi with an edge toward vz for each z ∈ xi.
The preferences of all voters v corresponding to nodes in G1 are: πv(0) = 0, πv(1) = B,
πv(2) = B + 1.

The component G2 is a clique of n+ h+ 1 nodes with preferences: πv = 〈0, B + 1, B〉.
The component G3 is a clique of n + 2g − h + 3 nodes, such that n + g + 2 nodes have a

8. If |C| > 3, we can focus on instances in which all candidates except three of them are dummy. To this
aim, it is sufficient to set πv(i) = max{πv(0), πv(1), πv(2)} − B − 1,∀i ∈ {3, . . . , C − 1}, v ∈ V . Hence,
there is no way for a manipulator having budget B to increase the ranking of these candidates to the
first position. Hence they cannot influence the margin of victory of the manipulator’s candidate.
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preference ranking πv = 〈B,B − 1, B − 2〉 and g − h + 1 nodes have a preference ranking
πv = 〈0, B + 1, 0〉.

Note that |Vc0 | = g+n+2, |Vc1 | = g+n+2, and |Vc2 | = g+n. Hence, MoV(∅, ∅, E,H) = 0.
We next prove that this instance has a solution (S∗,M∗) with MoV(S∗,M∗, E,H) > 0

if and only if there is a solution of the Set-Cover instance of size at most h.
If. Let X∗ ⊆ X be the solution of Set-Cover of size h (i.e., |X∗| = h and ∪xi∈X∗ =

N).9 Then we set (S∗,M∗) as follows: for every xi ∈ X∗, we include vxi ∈ S∗ and we set
m∗vxi

such that q0 = 0, q1 = 1, and q2 = 0; moreover, we include in S∗ an arbitrary node
v ∈ G2 and we set m∗v such that q0 = 0, q1 = 0, and q2 = 1.

From the above arguments, it directly follows that (S∗,M∗) is feasible. We next show
that MoV(S∗,M∗, E,H) > 0. Indeed, the diffusion of messages leads each voter correspond-
ing to nodes in G2 to prefer c2 to c1. Moreover, the dynamics leads h + n voters in G1

(i.e., the seeds and the ones corresponding to elements zi ∈ N) to prefer c1 to c2. Hence,
|V ∗c1(S∗,M∗, H)| = |Vc1 | − |G2| + h + n = g + n + 2 − n − h − 1 + n + h = g + n + 1, and
|V ∗c2(S∗,M∗, H)| = |Vc2 | + |G3| − h − n = g + n + 1. Hence, MoV(S∗,M∗, E,H) = 1, as
desired.

Only if. Suppose that there exists a pair (S∗,M∗) such that MoV(S∗,M∗, E,H) > 0.
Note that, since δ > B, c0 cannot gain votes and |V ∗c0(S∗,M∗, H)| = |Vc0 |. Hence, in order
to have MoV(S∗,M∗, E,H) > 0, it must be the case that the number of voters whose most-
preferred candidate is c1 decreases by at least one unit and the number of voters whose
most-preferred candidate is c2 increases by at most one unit.

Since, c2 has to take at least one vote and she cannot take votes in G3, c2 must take
voters in G2. Since G2 is a clique, it must be that all votes of c1 are taken by candidate c2.

Thus, c1 loses all its voters in G2 in favor of c2. Note that a single message is sufficient (a
positive message for c2) to this aim. However, this implies that c2 must lose n+h voters in
G1, otherwise |V ∗c2(S∗,M∗, E,H)| > g+n+n+h+1−(n+h) and thus MoV(S∗,M∗, E,H) ≤
0, that contradicts our hypothesis. Observe that these votes must be necessarily lost in favor
of c1.

Hence, we are left with h available messages to make n+h voters change their vote from
c2 to c1. Observe that, in order to make a voter change, a single message is sufficient (i.e.,
a positive message for c1). However, if less than h seeds sending this message are located
among nodes vxi for xi ∈ X, then less than n+h voters will change their mind (since nodes
vxi for xi ∈ X have no incoming edges).

Finally, we must have that the h seeds in G1 are neighbors of every node vzi for zi ∈ N .
Hence, the set X∗ = {xi : vxi ∈ S∗} has size h and, by construction of G1,

⋃
x∈X∗ x = N ,

i.e., X∗ is a solution of Set-Cover of size at most h.
Hence, we can conclude that a solution (S∗,M∗) satisfying ∆MoV(S∗,M∗, H) > 0 exists

if and only if a solution for the Set-Cover instance exists. Note also that if a solution
with ∆MoV(S∗,M∗, H) > 0 exists, then ∆MoV(S,M,H) > 0 even for any ρ-approximate
solution (S,M), regardless of the value of ρ. Thus, if a polynomial-time ρ-approximation

9. If there is a solution of Set-Cover X∗ of size less than h, then we can achieve a solution of Set-Cover
of size exactly h, by padding X∗ with arbitrary elements in X \X∗.
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algorithm for election control problem exists, then the Set-Cover problem can also be
solved in polynomial time, implying that P = NP.10

Theorem 1 essentially states that there is no chance that a manipulator designs an
algorithm allowing her to maximize the increment in the margin of victory of the desired
candidate in the set of instances in which there are no uncertain voters. Moreover, it is not
hard to check that the argument of Theorem 1 can be used to prove that no approximation
algorithm is possible even if one requires that the algorithm runs only in fixed-parameter-
tractable time with respect to the budget, unless FPT = W [2].

The instance given in the proof of Theorem 1 is very extreme, since it does not present
any uncertain voter. We next show that, even by dropping this assumption, we still achieve
inapproximability results. Specifically, we show in Proposition 1 that no constant approxi-
mation is achievable in polynomial time even if the number of uncertain voters is non-zero,
but o(|V \ Vc0 |). Similarly, in Proposition 2, we show that no constant approximation
is achievable in polynomial time, even if the number of uncertain voters is Ω(|V \ Vc0 |),
whenever the number of hard-to-manipulate voters is ω(B). Hence, Proposition 1 and
Proposition 2 show that conditions of Corollary 1 are essentially tight.

Proposition 1. For any ρ > 0, there is no algorithm that, on input instances of the ECS
problem with at least three candidates and at most |U | = o(|V \Vc0 |) uncertain voters, always
returns a ρ-approximate solution, unless P = NP.

Proof. The reduction is similar to the one described in the proof of Theorem 1. Specifically,
let us consider the instance built therein, we modify this instance so that there are u
uncertain voters, with u that will turn out to be o(|V \ Vc0 |). Specifically, we apply the
following changes, with µ = ν = u:

• each node in G1, G2, and G3 is enlarged into a clique of size µρ′, where ρ′ > ρ;

• remove ν nodes from the µρ′(g−h+1) nodes with preference ranking π = 〈0, B+1, 0〉
in G3;

• add ν isolated nodes with preference ranking π = 〈B,B + 1, 0〉.

Hence, there are ν uncertain voters, and 2µρ′(n + g + 1) − ν = ω(u) hard-to-manipulate
voters.

Now, if a set cover of size at most h exists, then, by mimicking the arguments in the
proof of Theorem 1, we have that ∆MoV(S∗, I∗, H) ≥ u ρ′. Otherwise, there is no way
of incrementing ∆MoV by intervening on G1, G2, and G3, and hence the only nodes that
eventually change opinion are the u uncertain nodes. Thus, any ρ-approximation algorithm
must be able to distinguish between these two cases and thus solves the Set-Cover problem
in polynomial time.

10. This reduction can be used to provide additive hardness replacing each node with a large clique: larger
it is the value of the clique, larger it will be the gap among solutions corresponding to a yes and no
instances of Set-Cover, and this larger will be the approximation ratio. A similar trick will prove
hardness of additive approximation for each of the following reductions.
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Proposition 2. For any ρ > 0, there is no algorithm that on input instances of the ECS
problem with at least three candidates and at least |V H| = ω(B) hard-to-manipulate voters,
always returns a ρ-approximate solution, unless P = NP.

Proof. This reduction is exactly the same as the previous one, except that now we set
µ = h + 1 and ν = µρ′(g − h + 1), and we may add up to n + g uncertain isolated voters
for each remaining candidate ci, if any, with preference ranking π(0) = B, π(i) = B+ 1 and
π(j) = 0 for every remaining candidate. Hence, there are (h+ 1)ρ′(n+ g + h+ 1) = ω(B)
hard-to-manipulate voters.

As above, if a set cover of size at most h exists, then ∆MoV(S∗, I∗, H) ≥ (h + 1) ρ′.
Otherwise, there is no way of incrementing ∆MoV by intervening on G1, G2, and G3, and
hence it is only possible to change the opinion of those uncertain nodes that are selected
as seeds, that are at most h + 1. Thus any ρ-approximation algorithm must be able to
distinguish between these two cases and thus solves the Set-Cover problem in polynomial
time.

3.2.1 Further Hardness Results

Theorem 1 (and Propositions 1 and 2) does not rule out that the worst-case instances are
very rare and/or knife-edge. However, we show that simple algorithms will fail even on
very simple instances. Specifically, we show that if the manipulator greedily chooses the
messages to send, then her approach fails even for simple graphs, namely graphs with all
nodes having degree two or trees.

Specifically, given a set S of seeds and corresponding messages M , we denote as F(S,M)
the set of pairs (s,ms), with s /∈ S such that either

EH [MoV(S ∪ {s}, (M,ms), E,H)] > EH [MoV(S,M,E,H)]

or
EH
[
V ∗c0(S ∪ {s}, (M,ms), E,H)

]
> EH

[
V ∗c0(S,M,E,H)

]
.

That is, F(S,M) includes all the ways of augmenting a current solution so that either the
margin of victory of c0 or the number of her votes increases. Then, we say that an algorithm
for the election control problem uses the greedy approach, if it works as follows: it starts
with S = ∅ and M = ∅; until the set F(S,M) is not empty, choose one (s,ms) ∈ F(S,M),
set S = S ∪{s} and M = M ∪{ms}, and update F(S,M) accordingly. We show that every
algorithm following the greedy approach fails even for elementary networks.

Proposition 3. For any ρ > 0 even depending on the size of the problem, there is no ρ-
approximation algorithm following the greedy approach for the ECS problem, even in undi-
rected graphs in which each node has degree at most 2.

Proof. Consider the graph given in Figure 4: it is composed of three graphs G1, G2, G3,
and both G2 and G3 are composed of two subgraphs, respectively, G2,1, G2,2 and G3,1, G3,2.
Furthermore, the graph is undirected and each node has a degree of at most 2. The influence
probability associated with every edge is one. According to the preference ranks of the
nodes, candidate c2 collects 5 votes, while candidates c1 and c0 gather 7 votes each. Thus,
the actual margin of victory of c0 is equal to zero. Suppose B = 2.
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Figure 4: Example of a small undirected network in which the greedy algorithm performs
badly.

Since, for all nodes of G2 and G3, the value difference between c0 and the most-preferred
candidate is larger than the budget B and B = 2, it is clear that c0 cannot get any further
vote. Then, to increase the margin of victory of c0, it is necessary that c2 obtains some
of the c1’s votes. The optimal solution (S∗,M∗) is that, while c0 keeps 7 votes, c1 and
c2 collect 6 votes each, providing EH [MoV(S∗,M∗, E,H)] = 1. This can be obtained by
setting mv(2) = 1 for a single v ∈ G2,2 and mv(1) = 1 for a single v ∈ G3,2.

However, this solution cannot be found by any algorithm adopting the greedy approach
described above. Indeed, we next show that F(∅, ∅) is empty, and thus the algorithm never
adds any seed to S:

• clearly, F(∅, ∅) cannot contain any pair (s,ms) that increases the number of votes of
c0;

• moreover, by seeding a node in G1 the margin of victory clearly cannot increase (it
either remains unchanged, or it decreases if c0 ceases to be the best ranked candidate);

• similarly, by seeding a node in G2, either the margin of victory reduces (if c2 passes
c1) or remains unchanged;

• finally, by seeding one node in G3 either the margin of victory reduces (if c1 passes
c2) or remains unchanged.

Hence, the greedy solution results in a zero margin of victory, and thus it cannot be a
ρ-approximation.11

11. It is not hard to check that on this simple instance a failure in looking for the unique solution providing
positive increment of margin of victory occurs even if we use common centrality measures (that are often
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A similar result holds even by considering directed trees.

Proposition 4. For any ρ > 38
|V | , there is no ρ-approximation algorithm following the greedy

approach for the ECS problem, even in directed trees.

Proof. Consider the graph in Figure 5. It is composed of 5 subgraphs A1, A2, A3, A4, A5,
where A1 is a directed line of 7 r nodes, while A2, A3, A4, A5 are directed trees in which
there is a root and the remaining nodes are children of the root. The specific number of
nodes of every subgraph is reported in the figure. The influence probability associated with
every directed edge is one. Let r > 2

ρ . Observe that |V | = 19 r and therefore ρ > 38
|V | .

According to the preference ranks of the nodes, the candidate c2 collects 5 r votes, while
candidates c1 and c0 gather 7 r votes each. Then, the actual margin of victory c0 is equal
to zero. Suppose B = 2.

π = ⟨2,1,0⟩

π = ⟨0,B + 1,B⟩ π = ⟨0,B + 1,B⟩ π = ⟨0,B, B + 1⟩ π = ⟨0,B, B + 1⟩

Figure 5: Example of a tree in which the greedy algorithm performs badly.

Due to the budget constraint, c0 cannot get any further vote, and thus, to increase the
margin of victory of c0, c2 must get some of the c1’s votes. The optimal solution (S∗,M∗)
is then obtained by setting that S∗ = {x, y} (see in Figure 5 which nodes are labeled as
x and y) has mx with mx(2) = 1 and my with my(1) = 1, and the expected margin of

adopted as successful heuristics for the influence maximization problem). For instance, degree centrality
and many other measures based on it, such as voteRank, will never select a node from G3,2 as a seed,
regardless of the adopted tie-breaking rule; instead PageRank, and all path-based centrality measure will
select a seed within G1.

1069



Castiglioni, Ferraioli, Gatti, & Landriani

victory is r. However, this solution cannot be found by any algorithm adopting the greedy
approach. Indeed, we have that no pair (s,ms) can increase the number of votes of c0;
moreover, by seeding a node in A1 the margin of victory clearly cannot increase (it either
remains unchanged, or it decreases if c0 ceases to be the best ranked candidate); by seeding
a node in A4 or in A5, either the margin of victory decreases (if c2 passes c1) or remains
unchanged; finally, by seeding the root of A1 or the root of A2, either the margin of victory
decreases (if c2 passes c1) or remains unchanged. Hence, the only action that the greedy
algorithm can take would be to select as seed either a leaf of A1, or a leaf of A2 and letting
them change its vote from c1 to c2. By repeating the argument, we have that the two seeds
selected by a greedy algorithm must be two leaves from A1 ∪ A2. So, the expected margin
of victory is 2, and the approximation factor is 2

r < ρ.

Recall that the greedy algorithms are essentially the only known algorithms guaranteeing
bounded approximations for many problems related to the election control problem, such
as the well-known influence maximization problem (Kempe et al., 2015). Hence, even if an
algorithm exists enabling the manipulator to control the election in many instances, the
propositions above show that new approaches are necessary to design it.

Now, we provide further evidence of the hardness of the problem even in simple graphs,
by showing that maximizing the expected ∆S

MoV is NP-hard even on a line. Recall that,
while Influence Maximization by Seeding is NP-hard for arbitrary graphs, there exists a
polynomial-time algorithm when the graph is a line (Wang et al., 2016).

Theorem 2. The ECS problem with at least four candidates is NP-hard even on line graphs.

Proof. We reduce from Partition. This problem, given a set of positive integers A =
{a1, a2, ..., an}, asks if there is a subset K ⊂ A whose sum is equal to t, where t =

∑
a∈A a/2.

It easy to see that the NP-hardness of this problem holds even imposing that the cardinality
of S is k ≤ n/2.

Hence, given a set A of positive integers, a target t and a number k as the input
of Partition, we build a graph as in Figure 6. There are four candidates c0, c1, c2, c3

and budget B = k. Some voters are isolated nodes, while the others are arranged in
n independent lines.12 There are 5n isolated nodes with preference rank 〈0, B + 2, B +
1, B〉, 8n + 1 − 8 k isolated nodes with preference rank 〈0, B + 1, B + 2, B〉 and 3n nodes
with preference rank 〈4, 3, 2, 1〉. Each line is composed by 5 nodes. For each line i ∈
{1, 2, . . . , n}, the first three nodes have preference rank 〈0, B + 2, B + 1, 1〉, the last two
nodes have preference rank 〈0, B,B + 1, B + 2〉, the edges connecting va,i to vb,i and vd,i
to ve,i have probability 1, and the edges (vb,i, vc,i) and (vc,i, vd,i) are activated, respectively,
with probability 1− pi and wi, where:

pi =
ai
4t

, wi =
2−4pi

(1− pi) (2 ln 2)1/k
.

Note that, since ai < t,∀i ∈ {1, . . . , n}, then pi <
1
4 ,∀i. It is easy to see that, since

pi <
1
4 , it holds wi < 1, ∀i. c1 collects 8n votes, c2 collects 8n + 1 − 8 k votes, c3 collects

2n votes, and c0 collects 8n votes. Hence, MoV(∅, ∅, E,H) = 0.

12. The graph can be seen as a single line with zero probability links going from ve,j to va,j+1, for j =
1, 2, . . . , n− 1, and connecting the isolated nodes.

1070



Election Manipulation on Social Networks

1 w1

1

1

1

1

1

w2

wn

M nodes

(3n + 1 - 8k + M) nodes

(3n + M) nodesR

3n+1-8k nodes

5n nodes

8n nodes

vf,1 vf,2 vf,3

vf,3

vf,5n

vg,1 vg,2 vg,3 vg,3n+1−8k

vh,1 vh,2 vh,3 vh,8n

va,1

va,2

va,n

vb,1

vb,2

vb,n

vc,1

vc,2

vc,n

vd,1

vd,2

vd,n

ve,1

ve,2

ve,n

Figure 6: Structure of the election control problem used in the proof of Theorem 2.
Nodes {va,1, . . . , va,n}, {vb,1, . . . , vb,n}, {vc,1, . . . , vc,n} and {vf,1, . . . , vf,5n} rep-
resent voters with preference rank 〈0, B + 2, B + 1, 1〉, nodes {vd,1, . . . , vd,n}
and {ve,1, . . . , ve,n} represent voters with preference rank 〈0, B,B + 1, B + 2〉,
while nodes {vg,1, . . . , vg,3n+1−8k} and nodes {vh,1, . . . , vh,8n} have preference rank
〈0, B + 1, B + 2, B〉, and 〈4, 3, 2, 1〉, respectively.

Since c0 cannot gain votes, the only way to increase the margin of victory is making c1

loose some of her votes in favor of the other candidates. First, we prove that the optimal
solution is given by a set of k nodes va,i with messages ms(2) = 1 (or equivalently ms(1) =
−1). Consider any seed set S′ of k nodes va,i and let K ′ = {i : va,i ∈ S′}. Notice that c1

has more votes than c2 unless all the edges among vb,i, vc,1 and vd,i are active for all i ∈ K ′.
This happens with probability

∏
i∈K′(1 − pi)wi. In this case c1 has 8n − 3 k votes and c2

has 8n+ 1− 3 k votes. When at least an edge is not active, the margin of victory is given
by the number of nodes lost by c1. Hence, the expected margin of victory is

EH [∆S
MoV(S′,M,H)] = 2k +

∑
i∈K′

(1− pi)−
∏
i∈K′

(1− pi)wi

= 3k −
∑
i∈K′

pi −
∏
i∈K′

(1− pi)wi.
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Suppose the optimal solution S∗ takes some seeds S∗1 ⊆ S∗ not in the set {va,i}. Then, for
each seed s ∈ S∗1 , the expected number of votes of c1 decreases by at most 1+(1−pi) = 2−pi.
Define the set R(z) as the set of the z smallest pi. Consider the set R(k) and the set of
seeds S′′ = {va,i}i∈R(k). EH [∆MoV(S′′,M,H)] = 3k −

∑
i∈R(k) pi −

∏
i∈R(k)(1 − pi)wi >

3k−1−
∑

i∈R(k) pi, where the last inequality follows from
∏
i∈R(k)(1−pi)wi < 1. It follows

that EH [∆S
MoV(S∗,M,H)] ≤ |S∗1 |(2− pi) +

∑
i∈R(|S∗|−|S∗1 |)

(3− pi) < EH [∆S
MoV(S′′,M,H).

We proved that in the optimal solution S∗, all the seeds are placed at the beginning
of the line. Let K∗ = {i : va,i ∈ S∗} and let x =

∑
i∈K∗ pi. Then the derivative of

EH [∆S
MoV(S∗,M∗, H)] with respect to x is equal to −1+2−4x+1. This means that the value

of x that maximizes the margin of victory is 1
4 , which is equivalent to

∑
i∈K∗ ai = t. This

holds if and only if we reduce from a ”yes” instance of Partition. Hence a polynomial
time algorithm for the ECS problem, would allow us to solve Partition in polynomial
time, leading to a contradiction unless P = NP.

We conclude the section by proving that when we restrict to single-news-article messages
the ECS problem is hard even in the simple model in which there are two candidates and the
value distances are two. We reduce from Densest-k-Subgraph whose definition follows.

Definition 7 (Densest-k-Subgraph (DkS)). Given an undirected graph G = (X,N),
find the set X∗ of k vertices that maximizes d(X∗) = |E′|, where G(X∗) = (X∗, E′) is the
subgraph of G with vertices X∗.

Theorem 3. If there is a ρ > 0 approximation algorithm for the ECS problem with single-
news-article messages, two candidates, and arbitrary values, then there is a ρ-approximation
algorithm for DkS.

Proof. Given an instance (G, k) for DkS, with G being an undirected graph and k being an
integer, we build an instance I(G, k) for the ECS problem as follows. Given an undirected
graph G, we add a voter vx for each vertex of X with preference rank 〈1, 0〉. For each edge
n of N , we add a node vn with preference rank 〈0, 2〉. Finally, for each edge n = (x, x′), we
add an edge (with probability 1) from vx to vn and from vx′ to vn. The budget is B and it
is easy to see that, in the optimal solution, the manipulator sends only messages (1, 0) or
(0,−1).

First, we prove that for every solution S to the ECS problem, we can construct in
polynomial time a solution with at least the same ∆S

MoV and all the seeds in the set {vx}.
Let S be a solution to the ECS problem. Suppose S includes some nodes in vn, where
n = (x, x′). If both or neither of vx and vx′ are seeds, the seed in vn is useless and can be
removed. Otherwise, only vx (or only vx′) is a seed. In this case, we can replace the seed in
vn with a seed in vx′ (or vx) without decreasing ∆S

MoV.
It can be observed that the value of ∆S

MoV for a seed set S′ that includes only seeds vx
is equal to 2|d(X ′)|, where X ′ = {x ∈ X, vx ∈ S′} and d(X ′) is the set of edges connecting
nodes in X ′. In particular, the set of edges that change the vote in favor of c0 is the set of
nodes vn, where n = (x, x′) such that both vx and vx′ are seeds. This is exactly the number
of edges in the subgraph X ′. Since each new vote for c0 decreases by one the votes for c1,
it follows that ∆S

MoV(S′,M∗) = 2 d(X ′).
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Let A be a polynomial-time ρ-approximation algorithm for the ECS problem, and let
S′ be the solution returned by A on the instance I(G, k). Construct the solution S′′ that
includes only nodes in vx using the procedure described above. Let X ′ = {x ∈ X, vx ∈ S′′}
be the solution to DkS obtained from S′′. Thus, we have that:

d(X ′)

d(X∗)
=

∆S
MoV(S′′,M ′′)/2

∆S
MoV(S∗,M∗)/2

≥ ρ.

Therefore, from A, we can construct a polynomial-time ρ-approximation algorithm for DkS.

Manurangsi (2017) shows that there is no constant-factor polynomial time approxi-
mation algorithm for the DkS problem unless the Exponential Time Hypothesis is false.
Therefore, it is unlikely that the specific ECS problem considered above is approximable
within a constant factor. This is in stark contrast with the known constant approximation
algorithm existing in the setting when we further constrain value distances to be unitary
(Wilder & Vorobeychik, 2018).

3.3 Seeding Complexity in Variants of the Model

We describe some extensions and variants of our model and show how most of the results
presented in the previous section extend to these settings.

3.3.1 Bribed Seeds

In our model, seeds act as initiators of positive and/or negative messages about the can-
didates. However, apart from that, their behavior is exactly the same as any other node
in the network. In particular, the messages that they receive affect their preference ranks
and, consequently, their vote. We also study a variant, in which seeds are bribed (i.e., for
each seed, their preferred candidate is set by the manipulator, and it is independent from
her initial preference rank, and from the messages that she sends and receives).

While the reduction described in the proof of Theorem 1 does not work in this variant,
we next show that it can be adapted to prove that ECS problem is inapproximable even in
this setting.

Theorem 4. For any ρ > 0, there is no algorithm that, on input hard to manipulate
instances of the ECS problem with bribed seeds and at least three candidates, always returns
a ρ-approximate, unless P = NP.

Proof. Consider the reduction described in the proof of Theorem 1, except that now each
node is enlarged into a clique of size (h + 1) ρ′, where ρ′ > ρ. Hence, if a set cover of
size at most h exists, then, ∆MoV(S∗, I∗, H) ≥ (h + 1) ρ′. Otherwise the only nodes that
eventually change opinion are the seeds, that are at most h+1. Thus, any ρ-approximation
algorithm must be able to distinguish between these two cases and, therefore, it solves the
Set-Cover problem in polynomial time.

Instead, it is easy to check that Lemma 1 is unaffected by the fact that seeds are bribed,
and thus a constant approximation is still possible when the number of hard-to-manipulate
voters is O(B) and there is at least a constant fraction of nodes that is uncertain.
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3.3.2 Other Objective Functions

In addition to the maximization of the increase in the margin of victory, alternative objective
functions, previously studied by Wilder and Vorobeychik (2018), may be of interest.

For example, one may want to maximize the increase in the probability of victory. For
this objective function, it is not trivial to see that Theorem 1 still holds. However, notice
that this objective function makes the problem even harder than maximizing the increase
in the margin of victory. Indeed, for the latter objective, Lemma 1 implies that a constant
approximation can be computed in polynomial time when only two candidates are involved.
It is instead not hard to see that, to maximize the increase in the probability of victory with
only two candidates, it is sufficient that all selected seeds send the same message. Hence,
for two candidates, maximizing the increase in the probability of victory in our setting is
the same as doing it in the setting studied by Wilder and Vorobeychik (2018). Hence, the
problem cannot be approximated, within a factor ρ > 0, even for only two candidates,
unless P = NP.

An apparently weaker goal would be to compute the set of seeds and the corresponding
messages so that the probability of victory is merely above a given threshold (so the set of
feasible solutions would be larger compared to the setting described above). Unfortunately,
this objective function does not make the problem easier to solve. Indeed, not only Theo-
rem 1 holds in this setting regardless of the threshold, but one may show that, as for the
goal of maximizing the probability of victory, the inapproximability still holds when only
two candidates are available (Wilder & Vorobeychik, 2018).

3.3.3 Threshold Dynamics

The results provided in Section 3, that are based on a multi-issue independent cascade
model, can be extended to settings in which information diffuses according to the linear
threshold model (Kempe et al., 2015). This represents the most used diffusion model as
an alternative to the independent cascade. In the linear threshold model, for each node v
of the network, there is a threshold θv drawn randomly in [0, 1], and incoming edges (u, v)
have a weight wu,v such that

∑
(u,v)wu,v = 1. Then, a node v becomes active at time t only

if the sum of weights of edges coming from active nodes passes the threshold.
It is known that this diffusion model leads to different dynamics with respect to the

independent cascade model. Still, we show that our proofs can be adapted. In particular,
the results described in Theorem 1 and Corollary 1 still hold.

Theorem 5. Consider the variant of the ECS problem with at least three candidates in
which information diffuses according to the threshold dynamics, and suppose that edge
weights do not depend on the size of the graph. Then, for any ρ > 0, there is no algo-
rithm that, on input instances of the ECS problem with O(B) hard-to-manipulate voters,
always returns a ρ-approximate solution, unless P = NP.

Proof. We consider a reduction from Vertex-Cover, that is the problem of deciding
whether, given a graph Z of g nodes and an integer h, there is a subset S of at most h
nodes of Z such that every edge of Z has at least one endpoint in S. The reduction is
similar to the one described in Theorem 1. Namely, the component G1 consists of r copies
of the graph Z. By setting n = gr − h, we let components G2 and G3 have n + h + 1 and
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n + h + 3 nodes, respectively. In particular, the nodes in each component G2 and G3 are
arranged as directed rings (so that a message sent by a node in one component will activate
all nodes in that component regardless of their threshold). Finally, we use the same initial
ranks and same values as in the proof of Theorem 1 for nodes in G1 and G2. As for nodes
in G3, we have that n+h+ 2 of them prefer c0, and the remaining prefer c1. Hence, in this
configuration, c0 and c1 both take n+ g + 2 votes. Finally, we set B = rh+ 1.

If a vertex cover exists, then we seed the h vertices forming this vertex cover in each of
the r copies of Z with a positive message about c1 and a single node in G2 with a positive
message about c2. Hence, after the diffusion of messages, the number of voters of c1 for
gr + 1 = n + h + 1 (namely, all voters in G1 and one voter in G3), the number of voters
for c2 is n+ h+ 1 (namely, all voters in G2), and the number of voters for c0 is unchanged.
Hence, the expected margin of victory of c0 increases by 1.

Suppose, instead, that no vertex cover of size at most h exists. As observed in the proof
of Theorem 1, since we cannot increase the voters for c0, the only way to have that the
expected margin of victory of c0 is larger than 0 would be to decrease the expected number
of votes taken by c1. This can only be done by injecting a positive message for c2 (or,
equivalently, a negative for c1) in G2. However, this makes all voters in G2 vote for c2.
Hence, it follows that we need to use the remaining rh seeds in order to make all vertices
from G1 vote for c1.

For each assignment of rh seeds to nodes in G1, there must be at least r/(h+ 1) copies
of Z with at most h seeds: indeed, if there is a fraction x < 1/(h+ 1) of copies of Z with at
most h seeds, then the number of allocated seeds should be at least (1 − x)r(h + 1) > rh.
Since a vertex cover does not exist, there is a probability p > 0 that the nodes for which not
all edges are covered by seeds do not change their mind. Hence, there are in expectation at
least rp

h+1 nodes in G1 that keep voting for c1. Hence, the expected margin of victory of c0

is in this case (n+ h+ 2)−
(
n+ h+ 1 + rp

h+1

)
= 1− r(1−p)

h+1 . By taking r = (1−ε)(h+1)
1−p (that

is constant, according to our assumption on edge weights), we conclude that the margin of
victory in this case is at most ε. The theorem then follows.

For the case that the number of hard-to-manipulate voters is O(B) and there is at least
a constant fraction of voters that is uncertain, the greedy algorithm proposed in Lemma 1
works, with the same approximation factor, even with the linear threshold diffusion model.
Indeed, it is known that the influence maximization is a monotonic and submodular function
even with this dynamics (Kempe et al., 2015), and this is sufficient to make the proof of
Lemma 1 and Corollary 1 hold.

3.3.4 Seeds with Different Costs

In our model, we assume that each node can be selected as a seed at the same cost. This
can be highly unrealistic. Hence, an extension to our model would be to assume that each
node u has a different cost w(u) that should be paid for each message initiated by that
node.

Intuitively, this extension makes the election control problem harder. Hence, inapprox-
imability results clearly extend to this setting too. Actually, we can prove that the inap-
proximability holds even if we restrict to undirected graphs. We can do that by adapting,
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within the framework of the proof of Theorem 1, the reduction described by Khanna and
Lucier (2014) for proving hardness of the influence maximization problem, from Vertex-
Cover in cubic graphs, i.e., the problem of finding a vertex cover in a graph in which every
vertex has degree three.13

Surprisingly, however, we have that, whenever the number of hard to manipulate voters
is O(B) and there is at least a constant fraction of voters that is uncertain, a polynomial time
algorithm returning a constant approximation to the election control problem exists even
if the nodes have heterogeneous seeding costs. Indeed, this setting admits a polynomial-

time algorithm for influence maximization returning a
(

1− 1√
e
− ε
)

-approximation of the

optimal seed set (Nguyen & Zheng, 2013). Then, the arguments of the proof of Lemma 1 and
Corollary 1 immediately prove that this algorithm still provides an Ω(1/δ)-approximation
for the extension of the election control problem to voters with different costs.

4. Edge Removal Complexity

We now focus on the Election-Control-by-Edge-Removal (ECER) and Influence-
Minimization-by-Edge-Removal (IMER) problems. All the results provided in this
section hold even with unitary value distances. Initially, we focus on the IMER problem
when one can only remove edges, as its characterization is useful for the characterization
of the ECER problem with two candidates and limited budget. We show that the IMER
problem is hard. Our proof reduces from the Maximum-Subset-Intersection problem
that does not admit any constant-factor approximation polynomial-time algorithm unless
P = NP, as showed by Shieh et al. (2012).

Definition 8 (Maximum-Subset-Intersection (MSI)). Given a set N = {z1, . . . , zn}
of elements, a collection X = {x1, . . . , xg} of sets with xi ⊂ N , and a positive integer h,
the goal is to find exactly h subsets xj1 , . . . , xjh whose intersection size |xj1 ∩ . . . ∩ xjh | is
maximum.

Theorem 6. For any constant ρ > 0, there is no polynomial time algorithm returning a
ρ-approximation to IMER problem when the budget B is finite, unless P = NP.

Proof. We reduce from MSI, showing that a constant-factor approximation algorithm for
IMER implies that a constant-factor polynomial-time approximation for MSI exists, thus
having a contradiction unless P = NP. Given an instance (X,N) of MSI, we build an
instance of IMER as follows. For each element zi, we add n2 g2 nodes vzi,j with j ∈
{1, . . . , n2g2}. For each set xi ∈ X, we add two nodes vxi,1, vxi,2 and an edge from vxi,1 to
vxi,2. All vxi,1 are seeds, while each vxi,2 has an edge to each node vzi,j , zi ∈ N \ xi with
j ∈ {1, . . . , n2g2}, i.e., all the nodes of all the elements not in the set xi. Figure 7 depicts
an example of network built with the above mapping. The budget is set equal to g − h.

Notice that, in the optimal solution, only edges from nodes vxi,1 to vxi,2 are removed.
Thus, the problem reduces to choosing g − h sets xi ∈ X and removing the edges from
vxi,1 to vxi,2, such that as few nodes vzi,j as possible are influenced. The optimal value is

13. Note that, in that reduction, the authors assume that there is a set of non-allowed seeds, that can be
simulated in our setting by setting the initial preference rank for those nodes such that c0 is the best
ranked candidate and c2 the last ranked one.
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vx1,1

vx2,1

vx3,1

vx4,1

vx5,1

vx1,2

vx2,2

vx3,2

vx4,2

vx5,2

vz1,1

vz1,n2g2

vz2,n2g2

vz2,1

Figure 7: Structure of the election control problem used in the proof of Theorem 6.

obtained by choosing X∗ ⊂ X of cardinality h that is solution of MSI and then removing
the edges from vxi,1 to vxi,2 for all x ∈ X \X∗. Call this set of edges E∗. If we remove the
edges in E∗, all the nodes vzi,j , zi ∈ ∩xi∈X∗xi are not influenced, since there are no edges
from vxi,2, x ∈ X∗ to vzi,j , as they all exist in the complement of the bipartite graph.

The relationship between the IMER’s optimal solution and the one of MSI is ∆I−(E∗) =
g − h + OPT n2 g2, where OPT is the optimal solution to MSI. Assume for sake of con-
tradiction there exists an ρ-approximation algorithm A for IMER, where ρ ∈ (0, 1). This
implies that there exists an edge set E′ such that ∆I−(E′) = g − h + APX n2 g2, where
APX is an approximation of MSI. Since ∆I−(E′) ≥ ρ∆I−(E∗), then g−h+APX n2 g2 ≥
(g − h+OPT n2 g2)ρ, and

APX ≥ (g − h)(ρ− 1)

n2 g2
+ ρOPT.

Hence, there exists a ρ′ such that APX ≥ ρ′OPT and an algorithm A′ for MSI with a
ρ′-approximation factor.

We can state the following corollary, whose proof follows directly from the proof of the
above theorem.

Corollary 2. For any constant ρ > 0, there is no polynomial time algorithm returning a
ρ-approximation to the ECER problem when budget B is finite even when there are two
candidates and single-news-article-messages, unless P = NP.

Proof. We can build an instance of ECER with the same graph as in the proof of Theorem
6, two candidates, all nodes with values 〈1, 0〉 and seeds with messages (−1, 0). It is easy to
see that ∆MoV = 2∆I−. Since approximating ∆I− is hard, it follows that approximating
∆−MoV is hard too.
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Since with finite budget even the setting with single-news-article messages and two
candidates is hard, we focus on those problems in which the budget is unlimited (B =∞).
Notice that, while a finite budget corresponds to the case in which a manipulator pays a
platform, in the case in which the manipulator is the platform itself, the budget is actually
unlimited.

In networks with single-news-article-messages and only two candidates, the optimal
solution can be found easily. Intuitively, the problem becomes easy because we can easily
solve IMER. If we have unlimited budget, the optimal solution to IMER removes all the
edges. It is then easy to extend this solution to solve the ECEA when all the seeds send
the same message on the same single candidate and there are only two candidates: if the
message is negative for c0, e.g., q0 = −1 or q1 = 1, we remove all edges from the network,
clearly minimizing the negative effects of the diffusion of the message; if the message is
positive for c0, e.g., q0 = 1 or q1 = −1, since we cannot increase the diffusion by removing
edges, we do not modify the network. From the previous arguments, we can directly state
the following.

Observation 1. There exists a polynomial time algorithm for the ECER problem with
single-news-article messages, two candidates, and unlimited budget.

Now we show that extending the setting to three or more candidates elections or al-
lowing the diffusion of different messages makes the problem hard. We introduce the
Independent-Set problem, that is known to be inapproximable within any constant fac-
tor by Zuckerman (2007)14. We reduce from it to prove the hardness of the ECER when
there are three candidates and messages are single-news-article.

Definition 9 (Independent-Set). Given a graph G = (X,N), with |X| = g vertices and
|N | = n edges, find the largest set of vertices X∗ such that there is no edge connecting two
vertices in X∗.

Theorem 7. For any constant ρ > 0, there is no polynomial time algorithm returning a
ρ-approximation to the ECER with single-news-article messages even when there are three
candidates and the budget is unlimited, unless P = NP.

Proof. Given an instance of Independent-Set, we build an instance of election control as
follows. We add a line L1 of n g − g nodes with preference 〈2, 0, 1〉 and we seed the first
node of the line with a message with q0 = q1 = 0 and q2 = 1. We add a node vxi for each
node xi ∈ X with preferences 〈2, 0, 1〉 and an edge from the last element of the line L1 to
vxi . For each element zi ∈ N , we add a line Lzi of g nodes with preferences 〈0, 2, 1〉 and an
edge from each xj 3 zi to the first node of Lzi . Moreover, we add n2 g2 isolated nodes with
preferences 〈2, 1, 0〉 and n2 g2 isolated nodes with preferences 〈1, 2, 0〉. Figure 8 depicts an
example of network produced with the above mapping. Note that, if no edge is removed,
all non-isolated voters change their preferences and vote c2, implying MoV(S,M,E,H) = 0.
We prove that a constant-factor approximation for ECER would lead to a constant-factor
approximation for Independent-Set.

14. Actually, Independent-Set is much harder to approximate than this. However, constant factor inap-
proximability is sufficient for our results.

1078



Election Manipulation on Social Networks

π = ⟨2,0,1⟩ π = ⟨2,0,1⟩
ms = (0,0,1)

vxi

π = ⟨2,0,1⟩

π = ⟨0,2,1⟩ π = ⟨0,2,1⟩
g

g (n − 1)

Lzi

π = ⟨0,2,1⟩ π = ⟨0,2,1⟩
g

Figure 8: Structure of the election control problem used in the proof of Theorem 7.

Suppose that there exists a set of edges E′, such that ∆−MoV(E′) > 0. Then c1 looses
all her votes in non-isolated nodes, otherwise Vc0(S,M,E′, H)∗ ≤ n2 g2 − (n − 1)g and
V ∗c1 ≥ n2 g2 − (n − 1)g. This suggests that the optimal solution is given by the greatest
independent set X∗ ⊆ X. In particular, E∗ is given by all the edges from the last node
of L1 to all vxi with xi ∈ X∗. Notice that the set of active nodes vxi , xi ∈ X \ X∗ is the
complement of a maximum independent set and hence a minimum vertex cover. Thus,
removing all edges in E∗, we obtain ∆−MoV(E∗) = |X∗|.

Suppose there exists a ρ-approximation algorithmA for the ECER problem that removes
edges E′. This implies that ∆−MoV(E′) ≥ ρ∆−MoV(E∗), where E′ is the set of the edges
removed by algorithm A. Since ∆−MoV(E′) > 0, A removes only edges from L1 to vxi since,
if it removes edges between nodes in L1, we would have ∆−MoV(E′) ≤ 0. Moreover, all
lines Lzi must be active. Hence, the active vertices vxi are a vertex cover and the inactive
vertices in vxi are an independent set. We remark that the value of ∆−MoV(E′) is exactly
the number of inactive vertices, i.e., the vertices in the independent set. Thus, if there
exists a ρ-approximation algorithm for ECER, there exists a ρ-approximation algorithm for
Independent-Set, leading to a contradiction.

We now focus on instances in which messages can be arbitrary and with only two
candidates. We reduce from the Set-Cover problem to prove the hardness of the ECER
problem even in these settings.

Theorem 8. For any ρ > 0, there is no polynomial time algorithm returning a ρ-approxi-
mation to the ECER even with two candidates and unlimited budget, unless P = NP.

Proof. Consider an instance of Set-Cover. We suppose, w.l.o.g., n > g and build a graph
as follows. We add a node v1 with preferences 〈1, 0〉 and seeded with messages q0 = 1 and
q1 = −1, a node v2 with preferences 〈1, 0〉 and seeded with message q0 = −1, and an edge
between v1 and v2. We add a line L1 of n2 − h − 1 nodes with preferences 〈1, 0〉 and an
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edge of probability 1
2 from v1 to the first node of the line and an edge from v2 to the first

node of the line. Moreover we seed the first node of the line with message q1 = 1. We add
a node vxi for each set xi ∈ X with preferences 〈1, 0〉 and an edge from the last element of
the line L1 to vxi . For each element zi ∈ N , we add a line Lzi of n nodes with preference
〈0, 1〉 and an edge from each xj ∈ zi to the first node of Lzi . Moreover, we add g − h + 1
isolated nodes with preferences 〈0, 1〉. Figure 9 depicts an example of network produced
with the above mapping. Note that, if no edge is removed, all the voters do not change
their preferences and MoV = 0. We prove that ∆−MoV is larger than 0 if and only if there is
a set cover of size h.

π = ⟨1,0⟩

π = ⟨1,0⟩
ms = (1, − 1)

vxi

π = ⟨1,0⟩

π = ⟨0,1⟩

π = ⟨1,0⟩
n2 − h − 1

Lzi

nv1

ms = (−1,0)
v2

π = ⟨1,0⟩

p = 1
2

ms = (0,1) L1

π = ⟨0,1⟩

π = ⟨0,1⟩
n

π = ⟨0,1⟩

Figure 9: Structure of the election control problem used in the proof of Theorem 8.

If. Define the set of removed edges E∗ as composed by the edge between v2 and L1 and
the incoming edge of each vxi with xi ∈ X \ X∗, where X∗ is the optimal solution to the
instance of Set-Cover. We have two possible live graphs: H1 if the edge between v1 and
L1 is active, H2 otherwise. Thus, ∆−MoV(E∗, H1) = 2n2 and ∆−MoV(E∗, H2) = 2(−n2 + h +
1− h) = −2n2 + 2. Hence, ∆−MoV(E∗) = 1.

Only if. Suppose we remove neither the edge from v1 towards v2 nor the edge from v2

towards L1. In this case, no voter changes her vote from c1 to c0 since all the nodes that
vote for c1 receive messages q0 = 1, q0 = −1, q1 = 1, and q1 = −1. Thus, one of the two
aforementioned edges should be removed. It is easy to see that removing the edge from v2

to L1 is the best choice. Since c0 must take some of the votes of c1, the message in v1 must
reach at least some lines in Lz and no edges must be removed in L1. We have two possible
live graphs: H1 if the edge between v1 and L1 is active, H2 otherwise. Assume for sake of
contradiction that in H1 not all lines Lz vote for c0. This implies that

∆−MoV(E∗) ≤ 2(n(n− 1))− 2(n2 + h+ 1)

2
< 0,

where E∗ is the set of removed edges. Hence, in H1, all line Lz must be active and
∆−MoV(E∗, H1) = 2n2. In H2, ∆−MoV(E∗) must be larger than −2n2 + 1 and at most h
nodes vzi can be active. Thus, there exists a set cover of size h.
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5. Edge Addition Complexity

We study, in this section, the Election-Control-by-Edge-Addition (ECEA) and
Influence-Maximization-by-Edge-Addition (IMEA) problems. All the results pro-
vided in this section hold even with unitary value distances. Initially, we study the com-
plexity of IMEA problem with a finite budget. First, we notice that the APX-hardness of
the IMEA problem directly follows from the APX-hardness of the influence maximization
problem by seeding. In fact, the seeding problem with network G(V,E, p) and budget B
is equivalent to the edge-addition problem with the same graph, except for an additional
isolated node v1, that is the only seed, in which we can add at most B edges and the
probabilities p of the new (added) edges are all zero except for the edges connecting v1 to
the nodes of V , whose probabilities p are one. We improve this result, showing that the
IMEA problem is harder to approximate than influence maximization by seeding. Indeed,
IMEA cannot be approximated to any constant factor, unless P = NP, while influence max-
imization by seeding can be. In our proof, we reduce from the maximization version of
Set-Cover, called Max-Cover.

Definition 10 (Max-Cover). Given a finite set N = {z1, . . . , zn} of elements, a collection
X = {x1, . . . , xg} of sets with xi ⊂ N , and h ∈ N+, the objective is to select X∗ ⊂ X, with
|X∗| ≤ h, that maximizes |∪xi∈X∗ xi|.

Feige (1998) proves that, given an instance of Max-Cover, deciding whether all the
elements can be covered or at most a (1− 1

e + ε) fraction of them can be covered is NP-hard
for any ε > 0.

Theorem 9. For any constant ρ > 0, there is no polynomial time algorithm returning a
ρ-approximation to the IMEA problem when B is finite, unless P = NP.

Proof. Consider an instance of Max-Cover. We assume, w.l.o.g., g < n and we build
an instance of IMEA as follows: for each i in {1, . . . , n8}, we add a node vi, a node vi,xj
for each xj ∈ X and a node vi,zt for each zt ∈ N . Moreover, we add an edge from each
vi,xj to each vi,zt , zt ∈ xj with probability 1 and an edge from vi,zt to vi+1 with probability
1 − 1

n
8
n

. We add a node vn8+1 and an edge with probability 1 towards n10 further nodes.

Call the subgraph composed by these n10 nodes G′. The resulting graph is depicted in
Figure 10. The only seed is v1, and the only edges that can be added are the edges between
vi and vi,xj , xj ∈ X with probability one. The budget is hn8. Suppose Max-Cover is
satisfiable, i.e., there exists a set X∗ that covers all the elements. Consider the set of edges
E∗ including, for each i ∈ {1, . . . , n8}, the edges from vi to all vi,xj for all xi ∈ X∗. Adding
the edges in E∗, if vi is active then all vi,zt are active. In this case, ∆I+(E∗) is larger than
the expected influence on the subgraph G′, i.e.,

∆I+ >

[
1−

(
1

n
8
n

)n]n8

n10 ≥
[
1− 1

n8

]n8

n10 >

(
1

e
− ε
)
n10

for all ε > 0 and n large enough. Suppose each cover of size at most h covers at most 3
4

of the elements. It implies that at least n8

h+1 nodes vi have at most h outwards edges and
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thus they leave at least 1
4 vertices vi,zt without incoming edges. Thus the probability of

activating G′ is smaller than

[
1−

(
1

n
8
n

)n]hn8

h+1

[
1−

(
1

n
8
n

) 3n
4

] n8

h+1

≤ 1

e
h

h+1

1

e
n2

h+1

=
1

e
h+n2

h+1

≤ e−n.

and ∆I+(E′) ≤ n8(n + g + 1) + 1 + e−nn10. Clearly ∆I+(E′)
∆I+(E∗) < ρ, for each ρ > 0 and

n sufficiently large. Hence, a ρ-approximation algorithm for IMEA implies that we can
distinguish between satisfiable instances of Max-Cover and instances in which at most 3

4
of the elements are covered, leading to a contradiction.

v1,xi

v1

v1,zi

v2 vn 8

vn 8,xi

vn 8,zi

vn 8+1

n 10

1 − 1
n 8n

1 −
1

n
8 n

Figure 10: Structure of the election control problem used in the proof of Theorem 9.

Now we can state the following result, whose proof follows directly from the proof of the
above theorem.

Corollary 3. For any constant ρ > 0, there is no polynomial time algorithm returning a
ρ-approximation to the ECEA when B is finite even when there are two candidates and
single-news-article messages, unless P = NP.

Thus, we focus on the case with unlimited budget. Since the maximum influence is
reached when the network is fully connected, the optimal solution to IMEA with unlimited
budget adds all the non-existing edges to the network and thus can be computed in polyno-
mial time. An argument similar to the one used for edge removal shows that ECEA with
unlimited budget, two candidates, and single-news-article messages is easy. In particular,
if the message is positive for c0, i.e., q0 = 1 or q1 = −1, we aim at maximizing the diffusion
of the message and we add all the edges. If the message is negative for c0, i.e., q0 = −1
or q1 = 1, we aim at minimizing the diffusion and we do not remove any edge. From the
previous arguments, we can directly state the following.

Observation 2. There exists a polynomial time algorithm for the ECEA problem with
single-news-article messages, two candidates and unlimited budget.
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Next, we prove that increasing the number of candidates or allowing arbitrary messages
makes the problem hard.

Theorem 10. For any ρ > 0, there is no polynomial time algorithm returning a ρ-
approximation to the ECEA with single-news-article messages even when there are three
candidates and the budget is unlimited, unless P = NP.

Proof. Given an instance of Set-Cover, we build an instance of election control as follows.
We add a node v1 with preferences 〈0, 1, 2〉 and seed it with q2 = 1. We add a line L1 of
ng − h − 1 nodes with preferences 〈2, 0, 1〉. We add a node vxi for each set xi ∈ X with
preferences 〈2, 0, 1〉. For each element zi ∈ N , we add a line Lzi of g nodes with ranking
〈0, 2, 1〉 and an edge from each xj 3 zi to the first node of Lzi . Moreover, we add n2g2

isolated nodes with preferences 〈2, 1, 0〉 and n2g2 isolated nodes with preferences 〈1, 2, 0〉.
An example of the network produced with the above mapping is depicted in Figure 11.
The only edges that can be added are the edge from v1 to L1 and the edges from L1 to
each nodes vxi , i.e., these edges have probability 1 and all other non existing edges have
probability 0. Notice that if no edge is added, all nodes will not change their votes, implying
∆MoV(∅) = 0. We prove that there exists a set E∗ ⊆ E with ∆+

MoV(E∗) > 0 if and only if
Set-Cover is satisfiable.

π = ⟨0,1,2⟩ π = ⟨2,0,1⟩
ms = (0,0,1)

vxi

π = ⟨0,2,1⟩ π = ⟨0,2,1⟩
g

g n − h − 1

Lzi

g
π = ⟨0,2,1⟩ π = ⟨0,2,1⟩

π = ⟨2,0,1⟩

L1v1

π = ⟨2,0,1⟩

Figure 11: Structure of the election control problem used in the proof of Theorem 10.

If. Given a set cover X∗, define as E∗ the set of the edge from v1 to L1 and all the
edges from L1 to vxi , xi ∈ X∗. If we add edges E∗, c0 loses ng − h − 1 + h votes, while c1

loses n g votes, and thus ∆+
MoV(E∗) = 1.

Only if. The existence of a set E∗ with ∆+
MoV(E∗) > 0 implies that the edge from v1

to L1 is added and c0 looses at least n g − h− 1 votes. Thus, c1 must lose at least n g − h
votes, implying that she loses all the non-isolated nodes. Since ∆+

MoV(E∗) > 0, c0 can lose
at most h nodes vxi , i.e., there are at most h edges from L1 to vxi in E∗. Hence, there are
h nodes vxi that cover all the elements zi and Set-Cover is satisfiable.

Theorem 11. For any ρ > 0, there is no polynomial time algorithm returning a ρ-
approximation to the ECEA even with two candidates and unlimited budget, unless P = NP.
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Proof. Consider an instance of Set-Cover. We suppose, w.l.o.g., n > g and build a graph
as follow. We add a node v1 with preferences 〈1, 0〉 and seeded with messages q0 = 1 and
q1 = −1, and a node v2 with preferences 〈1, 0〉 and seeded with message q1 = 1. Moreover
we add an edge with probability 1

2 between v1 and v2. We add a line L1 of n2 − h − 1
nodes with preferences 〈1, 0〉. We add a node vxi for each set xi ∈ X with preferences 〈1, 0〉.
For each element zi ∈ N , we add a line Lzi of n nodes with preferences 〈0, 1〉 and an edge
from each xj 3 zi to the first node of Lzi . Moreover, we add g − h+ 1 isolated nodes with
preferences 〈0, 1〉. The edges that can be added are: the edge from v2 to the first node of
L1 with probability 1 and edges from the last node of L1 to all vxi with probability 1 (all
other non-existing edges have probability 0).

π = ⟨1,0⟩ π = ⟨1,0⟩

ms = (1, − 1)

vxi

π = ⟨1,0⟩

π = ⟨0,1⟩
π = ⟨1,0⟩

n2 − h − 1

Lzi

n

v1
L1

π = ⟨0,1⟩

π = ⟨0,1⟩
n

π = ⟨0,1⟩

v2
ms = (0,1)

π = ⟨1,0⟩p = 1
2

Figure 12: Structure of the election control problem used in the proof of Theorem 11.

Notice that, if no edges are added, no voter changes her votes and MoV(∅) is 0. We
prove that there exists a set E∗ ⊆ E with ∆+

MoV(E∗) > 0 if and only if Set-Cover is
satisfiable.

If. The set of added edges E∗ is composed by the edge between v2 and L1 and the
incoming edge of each vxi with xi ∈ X∗. We have two possible live graphs: H1 if the
edge between v1 and v2 is active, H2 otherwise. ∆+

MoV(E′, H1) = 2n2 and ∆+
MoV(E′, H2) =

2(−n2 + h+ 1− h) = −2n2 + 2. Thus, ∆+
MoV(E′) = 1.

Only if. Suppose we do not add the edge between v2 and L1. In this case, since the
only seeds are v1 and v2, MoV does not change and ∆+

MoV = 0. Thus, the edge between v2

and L1 must belong to the set of added edges E∗. We have two possible live graphs: H1

if the edge between v1 and v2 is active, H2 otherwise. Assume by contradiction that in H1

not all lines Lzi vote for c0. This implies that

∆+
MoV(E∗) ≤ 2[n(n− 1)]− 2[n2 + h+ 1]

2
< 0.

Hence, in H1, all line Lz must be active and ∆+
MoV(E∗, H1) = 2n2. In H2, ∆+

MoV(E∗)
must be larger than −2n2 + 1 and at most h nodes vzi can be active, i.e., at most h edges
from L1 to voters vxi can be added. Thus, there exists a set cover of size h, leading to a
contradiction.
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6. Reoptimization Complexity

In this section, we show a form of robustness of our hardness results. Specifically, we
consider a reoptimization setting, in which the manipulator already knows a solution to
the problem, and it is asked to compute a solution to a variant of this original problem.
In particular, the local modification that we consider in our work is a very weak one (thus
making our hardness results even more robust): we change the transmission probability of a
single edge. Note that this modification in the input is very common: it may arise because
previous probabilities were not precise, and more precise estimate are now available, or
because the relationship among voters is changed.

Formally, we first consider the following reoptimization problem.

Definition 11. An election control through social influence by seeding reoptimization prob-
lem SReOpt(I, S∗, e, o) is defined as follows.

• INPUT: (I, S∗, e, o), where I is an instance of election control, S∗ is an optimal
solution to I, e ∈ V × V is an edge and o ∈ [0, 1] is a probability.

• OUTPUT: the optimal solution to I1, where I1 is obtained changing the probability of
edge e to o in the instance I.

We prove that Theorem 1 can be extended to prove the hardness of reoptimization.

Theorem 12. For any ρ > 0 even depending on the size of the problem, there is no
polynomial time algorithm returning a ρ-approximation to the reoptimization problem for
ECS, unless P = NP.

Proof. Consider the reduction in Theorem 1. We build an instance I of ECS in which we
replace the Set-Cover instance in G1 with the following graph. For each zi ∈ Z, there is
a node vzi . For each xi ∈ X, we add two nodes vxi,1 and vxi,2 , and an edge from vxi,1 to
vxi,2 . Moreover, we add an edge from vxi,2 to all vz, z ∈ xi. Finally, we add a node v∗ with
an edge from v∗ to all nodes vz, z ∈ Z, and an edge from v∗ to vx1,2 (or any node xi,2).
We modify the graphs G2 and G3 in such a way that c1 needs the votes of 2h + n nodes
of G1. Let S∗ be the optimal solution of I that includes seeds vz, any h nodes vxi,1 and
a node in G2. Consider the problem SReOpt(I, S∗, (v∗, vx1), 0), its optimal solution is the
optimal solution of the optimization problem over I. If SReOpt(I, S∗, (v∗, vx1), 0) can be
approximated in polynomial time, then Set-Cover can be solved in polynomial time.

Similarly, we consider the reoptimization problems for edge removal or edge addition.

Definition 12. An election control through social influence by edge removal or addition
reoptimization problem EReOpt(I, E∗, e, o) is defined as follows.

• INPUT: (I, E∗, e, o), where I is an instance of election control, E∗ is an optimal
solution to I, e ∈ V × V is an edge and o ∈ [0, 1] is a probability.

• OUTPUT: the optimal solution to I1, where I1 is obtained changing the probability of
edge e to o in the instance I.
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The following theorem shows a general result, that extends the hardness of the opti-
mization problem to its reoptimization variant whenever a simple condition is satisfied.

Theorem 13. For the set of election control problems by edge removal or addition with
maxv{maxci πv(i)−minci πv(i)} = O(poly(size(I))), reoptimization is as hard as optimiza-
tion.

Proof. Consider an instance I of election control with G = (V,E, p). By assumption d =
maxv[maxci πv(i) − minci πv(i)] = O(poly(size(I))), i.e., d is polynomially upper bounded
in the instance size. We build a graph G1 with d + 1 nodes {vi}, i ∈ {0, . . . , d} with seeds
q0 = 1. We add a node v∗1 with an edge from each node in vi to v∗1. We add a node v∗2
with an edge from v∗1 to v∗2. Moreover, we add an edge from v∗2 to any node of G. In edge
addition instances, we set p = 0 for all (non-existing) edges among vi and G. Finally, we
set the preferences of v0 and vi s.t. they will vote for c0, i.e., π(0) > π(i) holds for every
ci 6= c0.

Notice that, since all nodes in G receive d+ 1 positive messages on c0 and c0 is loosing
by at most d in each preferences, all nodes will vote for c0. Thus the optimal solution
removes/adds no edges. Consider the problem EReOpt(I, ∅, (v∗1, v∗2), 0): its optimal solution
is the optimal solution of the optimization problem over I.

We remark that in the reductions used in the proofs of all the theorems provided in
the previous sections, maxv{maxci πv(i)−minci πv(i)} is constant. Hence, as a corollary of
Theorem 13, we have that all our hardness results on optimization problems extend to their
reoptimization variants.

7. Conclusions and Future Work

In this work, we study the problem of manipulating the outcome of an election (a.k.a.
election control through social influence) by some forms of manipulations. More precisely,
we investigate both the case in which the manipulator can use seeding and the case in
which the manipulator can alter the network by removing or adding edges. We prove a
tight characterization of the settings in which computing an approximation to the best
manipulation can be infeasible or feasible in polynomial time. Our main result shows
that the election manipulation problem is not affordable in the worst-case, even when one
accepts to get an approximation of the optimal margin of victory that is a polynomial
function in the size of the instance, except for the case of seeding when the number of hard-
to-manipulate voters is a sublinear function in the budget available to the manipulator. In
real-world elections, it is reasonable that some voters will never change opinion, e.g., the
supporters of the other candidates. Our result shows that if these voters are not too many
with respect to the budget available to the manipulator, then a constant approximation
of the margin of victory can be achieved. From a prescriptive point of view, our result
provides the manipulator with a lower bound on the budget to guarantee the election’s
manipulability. On the opposite side, to guarantee the non-manipulability of the election,
the central authority could use our result to pose an upper bound to the electoral campaigns’
costs motivated by, e.g., fairness arguments.

Furthermore, we show that the most known heuristic algorithms for social influence
maximization (e.g., greedy, degree centrality, PageRank, VoteRank) do not provide any
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approximation factor even with basic graphs. This result is crucial, remarking the need
for completely novel heuristics for the election manipulation problem. In the case of edge
removal or addition, we also show that, even when the manipulator has an unlimited bud-
get, the problem is hard. Interestingly, we derive a similar result also to influence maxi-
mization/minimization, as this problem was unexplored so far. Finally, we show that our
hardness results hold for a reoptimization variant.

While we provided a polynomial time constant-approximation algorithm in many set-
tings, we did not try to optimize the approximation ratio. Hence, it would be interesting
to design algorithms that can improve on ours. Furthermore, it would be interesting to an-
alyze other generalizations of our model, such as different models for information diffusion
and time-evolving networks — see, e.g., the work of Auletta et al. (2019a) and references
therein. Finally, theoretical and experimental analysis of the problems on realistic networks
would be of extreme interest.
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