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Abstract

Multi-label classification (MC) is a standard machine learning problem in which a
data point can be associated with a set of classes. A more challenging scenario is given
by hierarchical multi-label classification (HMC) problems, in which every prediction must
satisfy a given set of hard constraints expressing subclass relationships between classes. In
this article, we propose C-HMCNN(h), a novel approach for solving HMC problems, which,
given a network h for the underlying MC problem, exploits the hierarchy information in
order to produce predictions coherent with the constraints and to improve performance.
Furthermore, we extend the logic used to express HMC constraints in order to be able
to specify more complex relations among the classes and propose a new model CCN(h),
which extends C-HMCNN(h) and is again able to satisfy and exploit the constraints to
improve performance. We conduct an extensive experimental analysis showing the superior
performance of both C-HMCNN(h) and CCN(h) when compared to state-of-the-art models
in both the HMC and the general MC setting with hard logical constraints.

1. Introduction

Multi-label classification (MC) is a standard machine learning problem in which a data point
can be associated with a set of classes. A more challenging scenario is given by hierarchical
multi-label classification (HMC) problems, in which every prediction must satisfy a given
set of hard hierarchy constraints of the form

A1 → A, (1)

expressing that A1 is a subclass of A, that is, that if a data point is associated with the
class A1, then it is also associated with the class A. HMC problems naturally arise in
many domains, such as image classification (Deng et al., 2009; Dimitrovski et al., 2008,
2012), text categorization (Klimt & Yang, 2004; Lewis et al., 2004; Rousu et al., 2006),
and functional genomics (Barutcuoglu et al., 2006; Clare, 2003; Vens et al., 2008). They
are very challenging for two main reasons: (i) they are normally characterized by a great
class imbalance, because the number of data points per class is usually much smaller at
deeper levels of the hierarchy, and (ii) the predictions must be coherent with (i.e., satisfy)
the hierarchy constraints. Consider, for example, the task proposed by Dimitrovski et al.
(2008), where a radiological image has to be annotated with an IRMA code specifying,
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among others, the biological system examined. In this setting, we expect to have many
more abdomen images than stomach images, making the class stomach harder to predict.
Furthermore, the prediction {stomach} alone should not be possible given the constraint

stomach→ gastrointestinalSystem, (2)

stating that the stomach is part of the gastrointestinal system, that is, that whenever stom-
ach is predicted, also gastrointestinalSystem should be. Many models have been specifically
developed for HMC problems, and we can distinguish those that directly output predic-
tions that are coherent with the hierarchy constraints (see, e.g., Bi & Kwok, 2011; Masera
& Blanzieri, 2018) from those that allow incoherent predictions and, at inference time, re-
quire an additional post-processing step to ensure their satisfaction (see, e.g., Cerri et al.,
2014; Obozinski et al., 2008; Valentini, 2011). Most of the state-of-the-art HMC models
based on neural networks belong to the second category (see, e.g., Cerri et al., 2014, 2016;
Wehrmann et al., 2018), and different post-processing techniques can be applied in order
to guarantee the coherency of their outputs with the constraints (see, e.g., Obozinski et al.,
2008).

In this article, we first focus on HMC problems, and we propose a novel approach
for solving them, called coherent hierarchical multi-label classi�cation neural network (C-
HMCNN(h)), which, given a network h for the underlying MC problem, exploits the hierar-
chy information to produce predictions coherent with the hierarchy constraints and improve
performance. C-HMCNN(h) is based on two basic elements:

1. a constraint layer built on top of h, which extends to the upper classes the predictions
made by h on the lower classes in the hierarchy, in order to ensure that the final
outputs are coherent by construction with the hierarchy constraints, and

2. a loss function teaching C-HMCNN(h) when to exploit the hierarchy constraints, that
is, when the prediction on the lower classes in the hierarchy can be exploited to make
predictions also for the upper ones.

C-HMCNN(h) significantly differs from previous approaches for HMC problems based on
neural networks. Indeed, the constraint layer is not a simple post-processing meant to
guarantee the satisfaction of the hierarchy constraints, decoupled from the rest of the system.
In C-HMCNN(h), the constraint layer and the underlying neural network h are tightly
integrated, and it does not make sense to modify the constraint layer without modifying
the way in which h is trained.

Secondly, we extend the language used to express the hierarchy constraints (1) to allow
for the specification of more complex logical relations among classes. Indeed, the language
for expressing hierarchy constraints is very limited, and it is not expressive enough to model,
for example, the fact that if a medical image contains the abdomen but neither the middle
nor the upper abdomen, then it contains the lower abdomen. Thus, borrowing concepts
from the area of logic programming, we consider general constraints expressed as normal
rules (Lloyd, 1987), that is, expressions of the form:

A1, . . . , Ak,¬Ak+1, . . . ,¬An → A, (0 ≤ k ≤ n), (3)
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which imposes that whenever the classes A1, . . . , Ak are predicted, while Ak+1, . . . , An are
not, then also the class A should be predicted. Such constraints generalize hierarchy con-
straints (corresponding to the case n = k = 1) and naturally arise in many application
domains like healthcare. With such an extension, we can now write:

abdomen,¬middleAbdomen,¬upperAbdomen→ lowerAbdomen,

capturing the above informally stated constraint. We call MC problems with a set of con-
straints in such an extended syntax logically constrained multi-label classi�cation (LCMC)
problems. By restricting to constraints with stratified negation (Apt et al., 1988), given a
set H of initial predictions made by an underlying model h, we show how at inference time
it is possible to compute in linear time in the number of constraints the unique minimal set
of classes M that

1. extends H, that is, such that H ⊆M, and

2. is coherent with (satisfies) the constraints, that is, such that, given (3), A ∈ M
whenever {A1, . . . , Ak} ⊆ M and {Ak+1, . . . , An} ∩M = ∅.

Indeed, for a non-stratified set of constraints expressed as normal rules, there can be no
or more than one minimal set of classes having the above two properties, and determining
the non-existence or computing one of them can take exponential time. We thus propose a
novel model called coherent-by-construction network CCN(h), which is the first model able
to deal with MC problems with such expressive constraints on the classes. CCN(h) has the
same two basic ingredients of C-HMCNN(h):

1. a constraint layer built on top of h, which extends the predictions made by h in order
to ensure that the predictions are coherent by construction with the constraints, and

2. a loss function, teaching CCN(h) when to exploit the constraints, that is, in the
presence of (9), when to exploit the prediction on {A1, . . . , An} to make predictions
on A.

In CCN(h), like in C-HMCNN(h), the constraint layer and h are tightly integrated, and the
result is a system that significantly differs from what we consider the standard approach to
LCMC problems, consisting in applying the constraint layer as a simple post-processor to
a state-of-the-art MC system.

From a higher perspective, the core idea behind our approach is (i) to build models
based on neural networks in order to leverage their learning abilities, (ii) to incorporate
the constraints in the models themselves in order to guarantee their coherency with the
constraints by construction, and (iii) to exploit the background knowledge expressed by
the constraints by suitably modifying the loss function in order to improve performance.
As such, our approach represents a valid alternative to the currently deployed techniques
for certifying that a neural network model behaves correctly with respect to a given set of
requirements expressed as normal rules. Such certification process – see the survey by Huang
et al. (2020) – is mandatory especially in safety-critical applications, and is currently based
on (i) verification techniques (see, e.g., Pulina & Tacchella, 2010; Lomuscio & Maganti,
2017), which suffer from a scalability problem, or (ii) testing techniques (see, e.g., Pei et al.,
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2019; Ma et al., 2018), which cannot give any guarantee that the model does always satisfy
the constraints. Our approach, on the contrary, presents neither of the above limitations.

The main contributions of this article can thus be briefly summarized as follows:

• We propose a novel model for HMC problems, denoted C-HMCNN(h), and a novel
model for LCMC problems, denoted CCN(h), which we prove to be an extension of
C-HMCNN(h).

• We prove that CCN(h)’s predictions are guaranteed to be coherent with the con-
straints expressed as normal rules, and hence that C-HMCNN(h)’s predictions are
guaranteed to be coherent with the hierarchy constraints.

• We show that CCN(h) (and hence C-HMCNN(h)) can be implemented on GPUs using
standard libraries.

• We perform an extensive experimental analysis on 38 real-world datasets, showing that
CCN(h) outperforms the current state-of-the-art models on both HMC and LCMC
problems.

This article is a substantial extension of the work by Giunchiglia and Lukasiewicz (2020),
which deals only with hierarchy constraints and presents C-HMCNN(h).

The rest of this article is organized as follows. In Section 2, we first focus on HMC prob-
lems, and we propose our model C-HMCNN(h). In Section 3, we consider more expressive
constraints and present our model CCN(h), which extends C-HMCNN(h) to handle LCMC
problems. The implementation of both C-HMCNN(h) and CCN(h) on GPUs is presented
in Section 4. The experimental analysis, demonstrating the superiority of our approach, is
reported in Section 5. We end the article with the relevant related work in Section 6 and
the conclusion in Section 7.

2. Hierarchical Multi-Label Classification

In this section, we first introduce some basic definitions in hierarchical multi-label classifi-
cation (HMC). We then describe the main intuitions underlying our model C-HMCNN(h)
to solve HMC problems along a simple HMC problem with just two classes, and we finally
present our general approach to solve HMC problems.

2.1 Preliminaries

A multi-label classi�cation (MC) problem P is a pair (A,X ) where A is a finite set of
classes (also called class labels or simply labels), denoted by A,A1, A2, . . ., and X is a finite
set of pairs (x, y) where x ∈ RD(D ≥ 1) is a data point, and y ⊆ A is the ground truth
of x, that is, the set of classes associated with x. A model m for P is a function m( · , · )
mapping every class A and every data point x ∈ RD to [0, 1]. For every class A, the function
mA : RD → [0, 1] is defined by x 7→ m(A, x), for every data point x ∈ RD. A data point
x ∈ RD is predicted by m to belong to class A whenever mA(x) is greater than a user-defined
threshold θ ∈ [0, 1].
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A hierarchical multi-label classi�cation (HMC) problem (P,Π) consists of an MC prob-
lem P and a finite set Π of (hierarchy) constraints of the form

A1 → A, (4)

where A1 and A are classes, such that the graph associated to Π with an edge from A1 to A
for each such constraint in Π is acyclic. Informally, given an HMC problem (P,Π), a model
m for (P,Π) has to be coherent with the hierarchy constraints Π in P, that is, m has to
predict A whenever it predicts A1, for each constraint (4) in Π. This is formally defined as
follows.

Definition 2.1. Let (P,Π) be an HMC problem. Let m be a model for P. If for a data
point and for a constraint A1 → A in Π, m predicts A1 but not A, then m commits a logical
violation. If m commits no logical violations, then m is coherent with respect to Π.

Given the above, whenever a model m is not guaranteed to satisfy a constraint (4), m
is extended with a post-processing step to enforce mA(x) > θ whenever mA1(x) > θ (Cerri
et al., 2014; Obozinski et al., 2008; Valentini, 2011). However, it is often common practice
to require the stronger condition mA1(x) ≤ mA(x), and the falsification of this condition is
referred to as hierarchy violation (Vens et al., 2008; Wehrmann et al., 2018).

Definition 2.2. Let (P,Π) be an HMC problem. Let m be a model for P. If for a data
point x and a constraint A1 → A in Π, mA1(x) > mA(x), then m commits a hierarchy
violation.

If a model commits no hierarchy violations, then it also commits no logical violations
(and so is coherent relative to the constraints), while the converse does not necessarily hold.

For ease of presentation, we often omit the dependency from data points, and simply
write, for example, mA instead of mA(x).

2.2 Basic Case

Our goal is to leverage standard neural network approaches for MC problems and then
exploit the hierarchy constraints in order to produce coherent predictions and improve
performance. Given our goal, we first present two basic approaches, exemplifying their
respective strengths and weaknesses. These are useful to then introduce our solution, which
is shown to present their advantages without exhibiting their weaknesses. In this section,
we assume to have just two classes A1, A and the constraint (4).

In the first approach, we treat the problem as a standard multi-label classification prob-
lem and simply set up a neural network f with one output per class to be learned: to
ensure that no hierarchy violation happens, we need an additional post-processing step. In
this simple case, the post-processing could set the output for A1 to be min(fA1 , fA) or the
output for A to be max(fA, fA1). In this way, all predictions are always coherent with the
hierarchy constraint. A second approach is to build a network g with two outputs, one for
A1 and one for A \ A1. To meaningfully ensure that no hierarchy violation happens, we
need an additional post-processing step in which each prediction for the class A is given by
max(gAnA1

, gA1). Considering the two above approaches, depending on the specific distri-
bution of the data points, one solution may be significantly better than the other, and a
priori we may not know which one it is.
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