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Abstract

Multi-label classification (MC) is a standard machine learning problem in which a
data point can be associated with a set of classes. A more challenging scenario is given
by hierarchical multi-label classification (HMC) problems, in which every prediction must
satisfy a given set of hard constraints expressing subclass relationships between classes. In
this article, we propose C-HMCNN(h), a novel approach for solving HMC problems, which,
given a network h for the underlying MC problem, exploits the hierarchy information in
order to produce predictions coherent with the constraints and to improve performance.
Furthermore, we extend the logic used to express HMC constraints in order to be able
to specify more complex relations among the classes and propose a new model CCN(h),
which extends C-HMCNN(h) and is again able to satisfy and exploit the constraints to
improve performance. We conduct an extensive experimental analysis showing the superior
performance of both C-HMCNN(h) and CCN(h) when compared to state-of-the-art models
in both the HMC and the general MC setting with hard logical constraints.

1. Introduction

Multi-label classification (MC) is a standard machine learning problem in which a data point
can be associated with a set of classes. A more challenging scenario is given by hierarchical
multi-label classification (HMC) problems, in which every prediction must satisfy a given
set of hard hierarchy constraints of the form

A1 → A, (1)

expressing that A1 is a subclass of A, that is, that if a data point is associated with the
class A1, then it is also associated with the class A. HMC problems naturally arise in
many domains, such as image classification (Deng et al., 2009; Dimitrovski et al., 2008,
2012), text categorization (Klimt & Yang, 2004; Lewis et al., 2004; Rousu et al., 2006),
and functional genomics (Barutcuoglu et al., 2006; Clare, 2003; Vens et al., 2008). They
are very challenging for two main reasons: (i) they are normally characterized by a great
class imbalance, because the number of data points per class is usually much smaller at
deeper levels of the hierarchy, and (ii) the predictions must be coherent with (i.e., satisfy)
the hierarchy constraints. Consider, for example, the task proposed by Dimitrovski et al.
(2008), where a radiological image has to be annotated with an IRMA code specifying,
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among others, the biological system examined. In this setting, we expect to have many
more abdomen images than stomach images, making the class stomach harder to predict.
Furthermore, the prediction {stomach} alone should not be possible given the constraint

stomach→ gastrointestinalSystem, (2)

stating that the stomach is part of the gastrointestinal system, that is, that whenever stom-
ach is predicted, also gastrointestinalSystem should be. Many models have been specifically
developed for HMC problems, and we can distinguish those that directly output predic-
tions that are coherent with the hierarchy constraints (see, e.g., Bi & Kwok, 2011; Masera
& Blanzieri, 2018) from those that allow incoherent predictions and, at inference time, re-
quire an additional post-processing step to ensure their satisfaction (see, e.g., Cerri et al.,
2014; Obozinski et al., 2008; Valentini, 2011). Most of the state-of-the-art HMC models
based on neural networks belong to the second category (see, e.g., Cerri et al., 2014, 2016;
Wehrmann et al., 2018), and different post-processing techniques can be applied in order
to guarantee the coherency of their outputs with the constraints (see, e.g., Obozinski et al.,
2008).

In this article, we first focus on HMC problems, and we propose a novel approach
for solving them, called coherent hierarchical multi-label classification neural network (C-
HMCNN(h)), which, given a network h for the underlying MC problem, exploits the hierar-
chy information to produce predictions coherent with the hierarchy constraints and improve
performance. C-HMCNN(h) is based on two basic elements:

1. a constraint layer built on top of h, which extends to the upper classes the predictions
made by h on the lower classes in the hierarchy, in order to ensure that the final
outputs are coherent by construction with the hierarchy constraints, and

2. a loss function teaching C-HMCNN(h) when to exploit the hierarchy constraints, that
is, when the prediction on the lower classes in the hierarchy can be exploited to make
predictions also for the upper ones.

C-HMCNN(h) significantly differs from previous approaches for HMC problems based on
neural networks. Indeed, the constraint layer is not a simple post-processing meant to
guarantee the satisfaction of the hierarchy constraints, decoupled from the rest of the system.
In C-HMCNN(h), the constraint layer and the underlying neural network h are tightly
integrated, and it does not make sense to modify the constraint layer without modifying
the way in which h is trained.

Secondly, we extend the language used to express the hierarchy constraints (1) to allow
for the specification of more complex logical relations among classes. Indeed, the language
for expressing hierarchy constraints is very limited, and it is not expressive enough to model,
for example, the fact that if a medical image contains the abdomen but neither the middle
nor the upper abdomen, then it contains the lower abdomen. Thus, borrowing concepts
from the area of logic programming, we consider general constraints expressed as normal
rules (Lloyd, 1987), that is, expressions of the form:

A1, . . . , Ak,¬Ak+1, . . . ,¬An → A, (0 ≤ k ≤ n), (3)
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which imposes that whenever the classes A1, . . . , Ak are predicted, while Ak+1, . . . , An are
not, then also the class A should be predicted. Such constraints generalize hierarchy con-
straints (corresponding to the case n = k = 1) and naturally arise in many application
domains like healthcare. With such an extension, we can now write:

abdomen,¬middleAbdomen,¬upperAbdomen→ lowerAbdomen,

capturing the above informally stated constraint. We call MC problems with a set of con-
straints in such an extended syntax logically constrained multi-label classification (LCMC)
problems. By restricting to constraints with stratified negation (Apt et al., 1988), given a
set H of initial predictions made by an underlying model h, we show how at inference time
it is possible to compute in linear time in the number of constraints the unique minimal set
of classes M that

1. extends H, that is, such that H ⊆M, and

2. is coherent with (satisfies) the constraints, that is, such that, given (3), A ∈ M
whenever {A1, . . . , Ak} ⊆ M and {Ak+1, . . . , An} ∩M = ∅.

Indeed, for a non-stratified set of constraints expressed as normal rules, there can be no
or more than one minimal set of classes having the above two properties, and determining
the non-existence or computing one of them can take exponential time. We thus propose a
novel model called coherent-by-construction network CCN(h), which is the first model able
to deal with MC problems with such expressive constraints on the classes. CCN(h) has the
same two basic ingredients of C-HMCNN(h):

1. a constraint layer built on top of h, which extends the predictions made by h in order
to ensure that the predictions are coherent by construction with the constraints, and

2. a loss function, teaching CCN(h) when to exploit the constraints, that is, in the
presence of (9), when to exploit the prediction on {A1, . . . , An} to make predictions
on A.

In CCN(h), like in C-HMCNN(h), the constraint layer and h are tightly integrated, and the
result is a system that significantly differs from what we consider the standard approach to
LCMC problems, consisting in applying the constraint layer as a simple post-processor to
a state-of-the-art MC system.

From a higher perspective, the core idea behind our approach is (i) to build models
based on neural networks in order to leverage their learning abilities, (ii) to incorporate
the constraints in the models themselves in order to guarantee their coherency with the
constraints by construction, and (iii) to exploit the background knowledge expressed by
the constraints by suitably modifying the loss function in order to improve performance.
As such, our approach represents a valid alternative to the currently deployed techniques
for certifying that a neural network model behaves correctly with respect to a given set of
requirements expressed as normal rules. Such certification process – see the survey by Huang
et al. (2020) – is mandatory especially in safety-critical applications, and is currently based
on (i) verification techniques (see, e.g., Pulina & Tacchella, 2010; Lomuscio & Maganti,
2017), which suffer from a scalability problem, or (ii) testing techniques (see, e.g., Pei et al.,
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2019; Ma et al., 2018), which cannot give any guarantee that the model does always satisfy
the constraints. Our approach, on the contrary, presents neither of the above limitations.

The main contributions of this article can thus be briefly summarized as follows:

• We propose a novel model for HMC problems, denoted C-HMCNN(h), and a novel
model for LCMC problems, denoted CCN(h), which we prove to be an extension of
C-HMCNN(h).

• We prove that CCN(h)’s predictions are guaranteed to be coherent with the con-
straints expressed as normal rules, and hence that C-HMCNN(h)’s predictions are
guaranteed to be coherent with the hierarchy constraints.

• We show that CCN(h) (and hence C-HMCNN(h)) can be implemented on GPUs using
standard libraries.

• We perform an extensive experimental analysis on 38 real-world datasets, showing that
CCN(h) outperforms the current state-of-the-art models on both HMC and LCMC
problems.

This article is a substantial extension of the work by Giunchiglia and Lukasiewicz (2020),
which deals only with hierarchy constraints and presents C-HMCNN(h).

The rest of this article is organized as follows. In Section 2, we first focus on HMC prob-
lems, and we propose our model C-HMCNN(h). In Section 3, we consider more expressive
constraints and present our model CCN(h), which extends C-HMCNN(h) to handle LCMC
problems. The implementation of both C-HMCNN(h) and CCN(h) on GPUs is presented
in Section 4. The experimental analysis, demonstrating the superiority of our approach, is
reported in Section 5. We end the article with the relevant related work in Section 6 and
the conclusion in Section 7.

2. Hierarchical Multi-Label Classification

In this section, we first introduce some basic definitions in hierarchical multi-label classifi-
cation (HMC). We then describe the main intuitions underlying our model C-HMCNN(h)
to solve HMC problems along a simple HMC problem with just two classes, and we finally
present our general approach to solve HMC problems.

2.1 Preliminaries

A multi-label classification (MC) problem P is a pair (A,X ) where A is a finite set of
classes (also called class labels or simply labels), denoted by A,A1, A2, . . ., and X is a finite
set of pairs (x, y) where x ∈ RD(D ≥ 1) is a data point, and y ⊆ A is the ground truth
of x, that is, the set of classes associated with x. A model m for P is a function m( · , · )
mapping every class A and every data point x ∈ RD to [0, 1]. For every class A, the function
mA : RD → [0, 1] is defined by x 7→ m(A, x), for every data point x ∈ RD. A data point
x ∈ RD is predicted by m to belong to class A whenever mA(x) is greater than a user-defined
threshold θ ∈ [0, 1].
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A hierarchical multi-label classification (HMC) problem (P,Π) consists of an MC prob-
lem P and a finite set Π of (hierarchy) constraints of the form

A1 → A, (4)

where A1 and A are classes, such that the graph associated to Π with an edge from A1 to A
for each such constraint in Π is acyclic. Informally, given an HMC problem (P,Π), a model
m for (P,Π) has to be coherent with the hierarchy constraints Π in P, that is, m has to
predict A whenever it predicts A1, for each constraint (4) in Π. This is formally defined as
follows.

Definition 2.1. Let (P,Π) be an HMC problem. Let m be a model for P. If for a data
point and for a constraint A1 → A in Π, m predicts A1 but not A, then m commits a logical
violation. If m commits no logical violations, then m is coherent with respect to Π.

Given the above, whenever a model m is not guaranteed to satisfy a constraint (4), m
is extended with a post-processing step to enforce mA(x) > θ whenever mA1(x) > θ (Cerri
et al., 2014; Obozinski et al., 2008; Valentini, 2011). However, it is often common practice
to require the stronger condition mA1(x) ≤ mA(x), and the falsification of this condition is
referred to as hierarchy violation (Vens et al., 2008; Wehrmann et al., 2018).

Definition 2.2. Let (P,Π) be an HMC problem. Let m be a model for P. If for a data
point x and a constraint A1 → A in Π, mA1(x) > mA(x), then m commits a hierarchy
violation.

If a model commits no hierarchy violations, then it also commits no logical violations
(and so is coherent relative to the constraints), while the converse does not necessarily hold.

For ease of presentation, we often omit the dependency from data points, and simply
write, for example, mA instead of mA(x).

2.2 Basic Case

Our goal is to leverage standard neural network approaches for MC problems and then
exploit the hierarchy constraints in order to produce coherent predictions and improve
performance. Given our goal, we first present two basic approaches, exemplifying their
respective strengths and weaknesses. These are useful to then introduce our solution, which
is shown to present their advantages without exhibiting their weaknesses. In this section,
we assume to have just two classes A1, A and the constraint (4).

In the first approach, we treat the problem as a standard multi-label classification prob-
lem and simply set up a neural network f with one output per class to be learned: to
ensure that no hierarchy violation happens, we need an additional post-processing step. In
this simple case, the post-processing could set the output for A1 to be min(fA1 , fA) or the
output for A to be max(fA, fA1). In this way, all predictions are always coherent with the
hierarchy constraint. A second approach is to build a network g with two outputs, one for
A1 and one for A \ A1. To meaningfully ensure that no hierarchy violation happens, we
need an additional post-processing step in which each prediction for the class A is given by
max(gA\A1

, gA1). Considering the two above approaches, depending on the specific distri-
bution of the data points, one solution may be significantly better than the other, and a
priori we may not know which one it is.
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Neural Network f+ Neural Network g+ C-HMCNN(h)
Class A1 Class A Class A1 Class A Class A1 Class A
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Figure 1: In all figures, the smaller yellow rectangle corresponds to R1, while the bigger
yellow one corresponds to R2. The first row of figures corresponds to R1 ∩ R2 = R1, the
second corresponds to R1 ∩R2 = ∅, and the third corresponds to R1 ∩R2 6∈ {R1, ∅}. First
four columns: decision boundaries of f+ and g+ for the classes A1 and A. Last two columns:
decision boundaries of C-HMCNN(h) for the classes A1 and A. In each figure, the darker
the blue (resp., red), the more confident a model is that the data points in the region belong
(do not belong) to the class (see the scale at the end of each row).

Neural Network f Neural Network g Neural Network h
Class A1 Class A Class A1 Class A \A1 Class A1 Class A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: First four columns: decision boundaries of f (resp., g) for the classes A1 and A
(resp., A1 and A\A1). Last two columns: decision boundaries of h for the classes A1 and A.

To visualize the problem, assume that D= 2, and consider two rectangles R1 and R2

with R1 smaller than R2, like the two yellow rectangles in the subfigures of Figure 1.
Assume A1 =R1 and A = R1 ∪ R2. Let f+ be the model obtained by adding a post-
processing step to f setting f+

A1
= min(fA1 , fA) and f+

A = fA, as in the works of Cerri et al.

(2014, 2016) and Feng et al. (2018) (analogous considerations hold, if we set f+
A1

= fA1 and

f+
A = max(fA, fA1) instead). Intuitively, we expect f+ to perform well even with a very

limited number of neurons when R1 ∩ R2 =R1, as in the first row of Figure 1. However,
if R1 ∩ R2 = ∅, as in the second row of Figure 1, we expect f+ to need more neurons to
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obtain a similar performance. Consider the alternative network g, and let g+ be the system
obtained by setting g+

A1
= gA1 and g+

A = max(gA\A1
, gA1). Then, we expect g+ to perform

well when R1 ∩ R2 = ∅. However, if R1 ∩ R2 =R1, we expect g+ to need more neurons to
obtain a similar performance. (We do not consider the model with one output for A\A1 and
one for A, since it performs poorly in both cases.) To test our hypothesis, we implemented
f and g as feedforward neural networks with one hidden layer with four neurons and tanh
nonlinearity. We used the sigmoid non-linearity for the output layer (from here on, we
always assume that the last layer of each neural network presents sigmoid non-linearity). f
and g were trained with binary cross-entropy loss using Adam optimization (Kingma & Ba,
2015) for 20k epochs with learning rate 10−2 (β1 = 0.9, β2 = 0.999). The datasets consisted
of 5000 (50/50 train/test split) data points sampled from a uniform distribution over [0, 1]2.
The first four columns of Figure 1 show the decision boundaries of f+ and g+, while the
decision boundaries of f and g are reported in Figure 2. These figures highlight that f+

(resp., g+) approximates the two rectangles better than g+ (resp., f+) when R1 ∩R2 = R1

(resp., R1 ∩ R2 = ∅). In general, when R1 ∩ R2 6∈ {R1, ∅}, we expect that the behavior of
f+ and g+ depends on the relative position of R1 and R2.

Ideally, we would like to build a neural network that is able to have roughly the same
performance of f+ when R1 ∩ R2 = R1, of g+ when R1 ∩ R2 = ∅, and better than both in
any other case. We can achieve this behavior in two steps.

In the first step, we build a new neural network consisting of two modules: (i) a bottom
module h with two outputs in [0, 1] for A1 and A, and (ii) an upper module, called max
constraint module (CM), consisting of a single layer that takes as input the output of
the bottom module and imposes the hierarchy constraint. We call the obtained neural
network the coherent hierarchical multi-label classification neural network of h, denoted C-
HMCNN(h). Consider a data point x. Let hA1 and hA be the outputs of h for the classes
A1 and A, respectively, and let yA1 and yA be the ground truth for the classes A1 and A,
respectively. The outputs of CM (which are also the output of C-HMCNN(h)) are:

CMA1 = hA1 ,

CMA = max(hA, hA1).
(5)

Notice that the output of C-HMCNN(h) ensures that no hierarchy violation happens, that
is, that for any threshold, it cannot be the case that CM predicts that a data point belongs
to A1 but not to A.

In the second step, to exploit the hierarchy constraint during training, C-HMCNN(h) is
trained with a novel loss function, called max constraint loss (CLoss), defined as CLoss =
CLossA1 + CLossA, where:

CLossA1 = −yA1 ln(CMA1)− (1− yA1) ln(1− CMA1),

CLossA = −yA ln(max(hA, hA1yA1))− (1− yA) ln(1− CMA)).
(6)

CLoss differs from the standard binary cross-entropy loss L:

L = −yA1 ln (CMA1)− (1− yA1) ln (1− CMA1)− yA ln (CMA)− (1− yA) ln (1− CMA),

iff x 6∈ A1 (yA1 = 0), x ∈ A (yA = 1), and hA1 > hA.
The following example highlights the different behavior of CLoss compared to L.
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Example 2.3. Assume hA1 = 0.3, hA = 0.1, yA1 = 0, and yA = 1. Then,

CLoss = CLossA1 + CLossA = − ln(1− hA1)− ln(hA) ,

and the partial derivatives of CLoss with respect to hA1 and hA are

∂CLoss

∂hA1

= − 1

hA1 − 1
∼ 1.4 and

∂CLoss

∂hA
= − 1

hA
= −10 ,

and C-HMCNN(h) rightly learns that it needs to decrease hA1 and increase hA.
On the other hand, if we use the standard binary cross-entropy L after CM, we obtain:

L = − ln(1− CMA1)− ln(CMA) = − ln(1− hA1)− ln(hA1) ,

and then
∂L
∂hA1

= − 1

hA1 − 1
− 1

hA1

∼ −1.9 and
∂L
∂hA

= 0 .

Hence, if C-HMCNN(h) is trained with L, then it wrongly learns that it needs to increase hA1

and keep hA. C

Consider the example in Figure 1. To check that our model behaves as expected, we
implemented h as f , and trained C-HMCNN(h) with CLoss on the same datasets and in the
same way as f and g. The last two columns of Figure 1 show the decision boundaries of C-
HMCNN(h), while those of h can be seen in Figure 2. C-HMCNN(h)’s decision boundaries
mirror those of f+ (resp., g+) when R1 ∩ R2 = R1 (resp., R1 ∩ R2 = ∅). Intuitively, as
highlighted by Figure 2, C-HMCNN(h) is able to decide whether to learn A:

1. as a whole (top figure),

2. as the union of A \A1 and A1 (middle figure), and

3. as the union of a subset of A and a subset of A1 (bottom figure).

C-HMCNN(h) has thus learned when to exploit the prediction on the lower class A1 to
make predictions on the upper class A. In this case, this happens for

1. 0% of the points in A1 when R1 ∩R2 = R1 as in the top figure,

2. 100% of the points in A1 when R1 ∩R2 = ∅ as in the middle figure, and

3. 85% of the points in A1 when R1 and R2 are as in the bottom figure.

2.3 General Case

We now consider an arbitrary HMC problem (P,Π) with P = (A,X ).
Given a class A ∈ A, we denote by DA the set of subclasses of A as given by Π, that is,

the set of classes B such that there is a path of length ≥ 0 from B to A in the graph with
an edge from A1 to A for each constraint (4) in Π.

Consider a data point x ∈ RD and a model h for P.
The basic idea is to leverage the predictions on the lower classes to make predictions

on the upper classes in the hierarchy. Indeed, for a class A, it may be the case that there
exists one subclass A1 ∈ DA with hA1 > hA: in this case, we want to set hA = hA1 , that is,
we want C-HMCNN(h) to delegate the prediction on A to A1.
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Definition 2.4 (Delegate). Let (P,Π) be an HMC problem. Let h be a model for P. Let
A and A1 be two classes with A1 ∈ DA. C-HMCNN(h) delegates the prediction on A to A1

for a data point, if C-HMCNN(h)A = hA1 and hA1 > hA.

In the general case, we want C-HMCNN(h) to delegate the prediction on A to the
subclass A1 of A having maximum hA1 . This is obtained by defining the output CMA of
C-HMCNN(h) for a class A to be:

CMA = max
B∈DA

(hB). (7)

For each class A, the number of operations performed by CMA is independent from the depth
of the hierarchy, making C-HMCNN(h) a scalable model. Thanks to CM, C-HMCNN(h) is
guaranteed to always output predictions satisfying the hierarchy constraints, as stated by
the following theorem, which follows immediately from Eq. (7).

Theorem 2.5. Let (P,Π) be an HMC problem. For any model h for P, C-HMCNN(h)
does not commit any hierarchy violations.

As an immediate consequence, C-HMCNN(h) also does not commit any logical violations
and is coherent relative to the hierarchy constraints.

Corollary 2.6. Let (P,Π) be an HMC problem. For any model h for P, C-HMCNN(h)
does not commit any logical violations and is coherent with respect to Π.

The next step is to improve performance by modifying the loss function in order to
exploit the constraints. For each class A, CLossA is defined as:

CLossA = −yA ln( max
B∈DA

(yBhB))− (1− yA) ln(1− CMA) ,

where yA is the ground truth class for A. The final CLoss is then given by:

CLoss =
∑
A∈A

CLossA. (8)

CLoss has the fundamental property that the negative gradient descent algorithm behaves
as expected, that is, that for each class, it moves in the “right” direction as given by the
ground truth. This is formally expressed by the following theorem.

Theorem 2.7. Let (P,Π) be an HMC problem. For any model h for P and class A, let
∂CLoss
∂hA

be the partial derivative of CLoss with respect to hA. For each data point, if yA = 0,

then ∂CLoss
∂hA

≥ 0, and if yA = 1, then ∂CLoss
∂hA

≤ 0.

Proof. Proof in Appendix C.

Example 2.3 already pointed out that the standard loss function may not behave as
expected. This becomes even more apparent in the general case. Indeed, as highlighted
by the following example, the more superclasses a class has, the more likely it is that C-
HMCNN(h) trained with the standard binary cross-entropy loss L will not behave correctly.
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Example 2.8. Consider an HMC problem with n+ 1 classes A,A1, . . . , An. Assume

1. A ∈ ∩ni=1DAi ,

2. hA > max(hA1 , . . . , hAn), and

3. yA = 0 while yA1 = · · · = yAn = 1.

Then, for the standard binary cross-entropy loss L, we obtain:

L = LA +

n∑
i=1

LAi , L = − ln(1− hA)− n ln(hA),
∂L
∂hA

=
1

1− hA
− n

hA
.

Since yA = 0, we would like to get ∂LA
∂hA
≥ 0. However, this is possible only if hA ≥ n

n+1 : if
n = 1, then we need hA ≥ 0.5, while if n = 10, then we need hA ≥ 10/11 ∼ 0.91. On the
other hand, for CLoss, we obtain:

CLoss = CLossA +
n∑

i=1

CLossAi , CLoss = − ln(1− hA) +
n∑

i=1

CLossAi ,
∂CLoss

∂hA
=

1

1− hA
.

No matter the value of hA, we get ∂CLossA
∂hA

> 0. C

3. Multi-Label Classification with Hard Logical Constraints

In this section, we first introduce logically constrained multi-label classification (LCMC)
problems, and then (analogously to what we did in the HMC case) we present the intuitions
at the basis of our model CCN(h) through a simple LCMC problem. Thereafter, we finally
provide the general solution. We keep the same notation and terminology as introduced in
the HMC case.

3.1 Preliminaries

Borrowing notation and concepts from the area of logic programming, we consider logically
constrained multi-label classification (LCMC) problems, defined as MC problems with a
finite set Π of constraints or (normal) rules r having the form (9):

A1, . . . , Ak,¬Ak+1, . . . ,¬An → A, (0 ≤ k ≤ n), (9)

where A,A1, . . . , An are classes. We also assume, w.l.o.g., that Ai 6= Aj for 1 ≤ i < j ≤ k
and for k + 1 ≤ i < j ≤ n. We call head(r) =A the head of r, and body(r) = body+(r) ∪
body−(r) the body of r, where body+(r) = {A1, . . . , Ak} and body−(r) = {¬Ak+1, . . . ,¬An}.
We say that r is definite if n = k.

Constraint (9) imposes that for each data point x and model m, if m predicts the
classes A1, . . . , Ak and not Ak+1, . . . , An, then m must also predict A. Given this logical
interpretation, we can thus define the concepts of logical violation and coherency, which
generalize the corresponding definitions given for the hierarchical case.
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Definition 3.1. Let (P,Π) be an LCMC problem. Let m be a model for P. If for a data
point and a constraint r ∈ Π of the form (9), m predicts A1, . . . , Ak and not Ak+1, . . . , An, A,
then m commits a logical violation with respect to r. If m commits no logical violations,
then m is coherent with respect to Π.

The above definition allows us to determine whether any model m is coherent with
respect to the given constraints. However, we want to go beyond coherency and generalize
what we did in the HMC setting: whenever convenient, exploit the constraints to compute
a value for the classes in the head to ensure coherency and improve performance.

For ease of presentation, assume that we have a single constraint r of the form (9).

In the special case where r is definite (n = k), we can associate with the head A a value
that is at least the smallest value associated with the classes in the body, that is, we can
set

mA = min(mA1 , . . . ,mAk
).

In this case, the constraint r is always satisfied for any threshold θ. This corresponds
to interpreting (9) according to the Gödel t-norm TG (Metcalfe, 2005), which is the only
function T : [0, 1]2 → [0, 1] that, for every a, b, c ∈ [0, 1], satisfies the following properties
(common to all t-norms):

T (a, b) = T (b, a), T (a, 1) = a,

T (a, T (b, c)) = T (T (a, b), c), T (a, 0) = 0,

a ≤ b→ T (a, c) ≤ T (b, c),

and also the following (idempotency, characterizing TG):

T (a, a) = a.

If r is not definite (n > k), given mAk+1
, . . . ,mAn , we need to compute values mAk+1

, . . . ,
mAn such that, for each class Ai ∈ {Ak+1, . . . , An} and threshold θ,

1. mAi = 1 when mAi = 0, and mAi = 0 when mAi = 1,

2. mAi is strictly decreasing and continuous (small changes to the value of mAi should
correspond to small changes in the value of mAi), and

3. mAi = θ when mAi = θ.

The first two conditions say that the function v of v ∈ [0, 1] is a strict negation (Metcalfe,
2005),1 and, together with the third entail

1. if mAi > θ, then mAi < θ,

2. if mAi < θ, then mAi > θ.

1. A negation is non-strict if it is either non-strictly decreasing or non-continuous. An example of a non-
strict negation is the residual negation in the Gödel t-norm according to which we would have mA = 1
if mA = 0, and mA = 0, otherwise.
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For any threshold θ there are infinitely many functions v satisfying such requirements. A
simple solution is to require v to be piecewise linear with two segments joining when v =
v = θ, in which case,

1. v is a strong negation (Metcalfe, 2005), since v = v, and

2. if θ = 0.5, we obtain v = 1− v, that is the standard negation in fuzzy logics.

For simplicity, from here on, we assume to have the standard negation, that is, to fix the
threshold θ to 0.5 and v = 1−v, for each v ∈ [0, 1]. All the definitions and results generalize
to the case in which we have an arbitrary strict negation with θ = θ.

Given the above, we can now introduce the concept of constraint violation, generalizing
the corresponding definition of hierarchy violation.

Definition 3.2. Let (P,Π) be an LCMC problem. Let m be a model for P. If for a data
point and for a constraint (9) in Π, m does not satisfy

min(mA1 , . . . ,mAk
,mAk+1

, . . . ,mAn) ≤ mA, (10)

then m commits a constraint violation.

The following theorem easily follows from the previous two definitions.

Theorem 3.3. Let (P,Π) be an LCMC problem. Let m be a model for P. If m does not
commit constraint violations, then m is coherent with respect to Π.

3.2 Basic Case

We now present the main ideas behind our model CCN(h) through a simple LCMC problem.
Assume that we have an MC problem with three classes A, A1, and A2, and we know that
A1 and A2 are subsets of A, and that A2 includes the set of data points belonging to A and
not to A1. Then, A1 ∪A2 ⊆ A can be imposed with the constraints

A1 → A; A2 → A, (11)

having the form (4), while A \A1 ⊆ A2 can be expressed as

A,¬A1 → A2, (12)

which imposes, to any model m that, for each x ∈ RD, if m predicts A and not A1, then m
must also predict A2.

Our goal is to develop a method that is able to leverage standard neural network ap-
proaches for MC problems, while exploiting all the above constraints in order to produce
predictions that are guaranteed to satisfy the constraints while improving performance and
extending the method presented for HMC problems.

To understand how the three constraints can be exploited to improve performance,
assume that D= 2, and consider the yellow (R1) and green (R2) rectangles in Figure 3.
Assume that A = R1∪R2, A1 = R1, and A2 = R2 \R1. Let f be a neural network with one
output for each class to be learned. Intuitively, when R1 and R2 are as in the first row of
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Figure 3, we can expect to be more difficult for f to learn A than to learn A1 and A2. Hence,
we would like to exploit the information coming from (11) to learn A, given A1 and A2. On
the other hand, when the two rectangles are arranged as in the second row, we can expect
to be more difficult for f to learn A2 than A and A1. In this case, we would like to exploit
the information coming from (12) to learn A2, given A and A1. Finally, when R1 and R2

are arranged as in the third row of the figure, learning both A and A2 will be difficult, and
hence we would like to be able to exploit all the constraints in (11) and (12) to improve
performance.

As for C-HMCNN(h), we can achieve our goal in two steps. In the first step, we build
a new neural network consisting of two modules: (i) a bottom module h, which can be any
neural network with one output for A, A1, and A2, respectively, and (ii) an upper constraint
module (CM), that takes as input the output of the bottom module and imposes the con-
straints. We call the obtained neural network coherent-by-construction network (CCN(h)).

Consider a data point x. Let hA, hA1 , and hA2 be the outputs of h for the classes A,
A1, and A2 respectively. Let yA, yA1 , and yA2 be the ground truth for the classes A, A1,
and A2, respectively. Let CMA, CMA1 , and CMA2 be the outputs of CM (which are the
outputs of CCN(h)).

We want CCN(h) to extend the set of classes associated with x by the bottom module h,
exploiting, and thus satisfying, the constraints. This is obtained by defining CMA, CMA1 ,
and CMA2 to be the smallest values such that

CMA = max(hA,CMA1 ,CMA2),

CMA1 = hA1 ,

CMA2 = max(hA2 ,min(CMA,CMA1)).

(13)

Indeed, the first equation ensures that (i) x will be associated with the class A whenever
h already predicts it, and that (ii) CMA1 , CMA2 ≤ CMA; thus guaranteeing that (11) is
satisfied. The other equations have a similar reading. Depending on the values of hA, hA1 ,
and hA2 , (13) may admit more than one solution, but we will show (see Example 3.16 and
Theorem 3.17) that none of them has a value for CMA, CMA1 , and CMA2 smaller than that
defined by

CMA = max(hA, hA1 , hA2),

CMA1 = hA1 ,

CMA2 = max(hA2 ,min(hA, hA1),min(hA1 , hA1)),

which we define to be the outputs of CM.

In the second step, to effectively exploit the constraints during training, CCN(h) is
trained with a new loss function, called constraint loss (CLoss), which has two goals:

1. we want to give each class the correct supervision (e.g., if yA = 1, then we want to
teach h to increase hA and not to decrease it), and

2. given a constraint, we want to teach h to rely on the prediction for the classes in the
body to make prediction for the class in the head only when the body is satisfied (e.g.,
for (12), when yA = 1 and yA1 = 0).
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Neural Network f+ CCN(h)
Class A Class A1 Class A2 Class A Class A1 Class A2
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Figure 3: First three columns: decision boundaries of f for the classes A, A1, and A2. Last
three columns: decision boundaries of CCN(h) for the classes A, A1, and A2. In each figure,
the darker the blue (resp., red), the more confident a model is that the data points in the
region is associated (not associated) with the class (see the scale at the end of each row).

To achieve the above goals, CLoss is defined as CLoss = CLossA + CLossA1 + CLossA2 ,
where:

CLossA =− yA ln(max(hA, hA1yA1 , hA2yA2))− yA ln(CMA),

CLossA1=− yA1 ln(CMA1)− yA1
ln(CMA1),

CLossA2=− yA2 ln(max(hA2 ,min(hAyA, hA1yA1
),min(hA1yA1 , hA1yA1

)))

− yA2
ln(1−max(hA2 ,min(hAyA+yA, hA1yA1+yA1

),min(hA1yA1
+yA1 , hA1yA1+yA1

))).

CLoss differs from the standard binary cross entropy loss function L, as highlighted by
the following example.

Example 3.4. Assume that hA = 0.6, hA1 = 0.2, hA2 = 0.3, yA = yA1 = 1, and yA2 = 0.
Then,

CLoss = CLossA + CLossA1 + CLossA2 = − ln(hA)− ln(hA1)− ln(hA1),

and

∂CLoss

∂hA
=− 1

hA
∼−1.6,

∂CLoss

∂hA1

= − 2

hA1

= −10,
∂CLoss

∂hA2

= 0,

and CCN(h) rightly learns to increase both hA and hA1 .

On the other hand, using the standard binary cross-entropy loss L after CM, we obtain:

L = − ln(CMA)− ln(CMA1)− ln(CMA2) = − ln(hA)− ln(hA1)− ln(hA),
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Neural Network f Neural Network h
Class A Class A1 Class A2 Class A Class A1 Class A2
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Figure 4: First three columns: decision boundaries of f for the classes A, A1, and A2. Last
three columns: decision boundaries of CCN(h) for the classes A, A1, and A2.

and thus

∂L
∂hA

= − 1

hA
+

1

hA
∼ 0.8,

∂L
∂hA1

= − 1

hA1

= −5,
∂L
∂hA2

= 0 .

Hence, if trained with L, CCN(h) would learn to decrease hA while keeping hA2 despite the
fact that yA = 1. C

To test the effectiveness of our approach, we consider again the yellow (R1) and green
(R2) rectangles in Figure 3 with A = R1 ∪R2, A1 = R1, and A2 = R2 \R1. We implemen-
ted f and h as feedforward neural networks with one hidden layer with 4 neurons and
tanh nonlinearity. We trained f with binary cross-entropy loss, and CCN(h) using CLoss.
We trained both networks for 20k epochs using Adam optimization (Kingma & Ba, 2015),
with learning rate 10−2 (β1 = 0.9, β2 = 0.999). The datasets consisted of 5000 (50/50
train/test split) data points sampled from a uniform distribution over [0, 1]2. In order to
obtain predictions that are compliant with the constraints also for the neural network f ,
we apply an additional post-processing step at inference time, obtaining f+, whose outputs
are defined as follows:

f+
A = max(fA, fA1 , fA2),

f+
A1

= fA1 ,

f+
A2

= max(fA2 ,min(fA, fA1
),min(fA1 , fA1

)).

(14)

We plot the final decision boundaries of f+ (first three columns) and CCN(h) (last
three columns) for all classes in Figure 3, while the decision boundaries of f (first three
columns) and h (last three columns) are plotted in Figure 4. In these figures, we can see
that f struggles, as expected, in learning the decision boundaries for the classes A and A2,
and that the application of the constraints as a post-processing step, as it happens in f+,
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can lead to a decay in performance. On the contrary, we can see that CCN(h) is able to
easily learn the decision boundaries for all the classes through a smart exploitation of the
constraints. Indeed, as it can be seen in the last three columns of Figure 4, on the ground
of the positions of the rectangles R1 and R2, CCN(h) knows which constraints to exploit:

• if R1 and R2 are arranged as in the first row, then CCN(h) exploits the constraints
A1 → A and A2 → A. Thus, the bottom module h does not learn A, which is instead
computed from A1 and A2,

• if R1 and R2 are arranged as in the second row, then CCN(h) exploits the constraint
A,¬A1 → A2. Thus, the bottom module h does not learn A2, which is instead
computed from A1 and A2, and

• if R1 and R2 are arranged as in the third row, then CCN(h) exploits the constraints
A,¬A1 → A2 and A1 → A. Thus, the bottom module h does not learn A2, and learns
A only partially. Then, A2 is computed from A and A1, while A exploits A1 to make
predictions on the points belonging to R2.

3.3 General Case

We now present the general solution. We consider a general LCMC problem (P,Π) and a
model h for P. We first show how CCN(h) computes the set of classes associated to every
data point (Section 3.3.1), and why the definition of CM requires some care in order to
satisfy some desired properties, stated and motivated at the beginning of the same section.
We then present the loss function used to train CCN(h) (Section 3.3.2). We end stating
that CCN(h) is a generalization of C-HMCNN(h), that is, that C-HMCNN(h) and CCN(h)
have the same behavior when given an HMC problem (Section 3.3.3).

3.3.1 Constraint Module — CM

The basic idea of CCN(h) is to

1. have an initial set of classes decided by h, and

2. have all the other classes predicted also on the grounds of the constraints in Π.

In the example in the basic case, h decides {A1}: every data point will have or will not
have class A1 depending on the value of hA1 . The decision on the classes {A,A2} takes into
account not only hA, hA2 but also the constraints. In particular, CCN(h) may

1. predict A given the values of hA1 and hA2 , or

2. predict A2 given the values of hA and hA1 .

The final set of classes M predicted by CCN(h) will

1. extend the set of classes H predicted by h (i.e., H ⊆M) and be coherent with Π;

2. be such that any class in M\H is in the head of a constraint r in Π, with the chain
of rules used to satisfy body(r) grounded in H;
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3. include only those classes that are either in H or are forced to be in M through the
explicit use of chains of rules grounded in H;

4. be unique, that is, there will be no other set of classes M′ satisfying the above re-
quirements.

The first requirement is the obvious one: the constraints in Π must be satisfied, and CCN(h)
can only derive more classes in the head of the constraints. Whereas the second requirement
is formalized by the concept of supportedness as defined in the work by Apt et al. (1988).

Definition 3.5. Let (P,Π) be an LCMC problem. Let h be a model for P. Let H be
the set of classes predicted by h. A set of classes M is supported relative to H and Π,
if for any class A∈M, A∈H, or there exists a constraint r ∈ Π such that head(r) =A,
body+(r) ⊆M, and for each ¬B ∈ body−(r), we have B 6∈M.

The third requirement is a minimality condition.

Definition 3.6. Let (P,Π) be an LCMC problem. Let h be a model for P. Let H be the
set of classes predicted by h. M is minimal relative to H and Π, if there exists no set of
classes M′ with H ⊆M′ ⊂M that is coherent with Π.

The four requirements together ensure that the final predictions made by CCN(h) are
coherent with Π and that can be uniquely explained on the grounds of the initial predictions
made by h and the constraints in Π.

Intuitively, we could expect that all the above requirements are met if, for each class A,
we could define

mA = max(hA,m
r1
A , . . . ,m

rp
A ), (15)

where r1, . . . , rp are all the constraints in Π with head A and, for each such constraint ri of
the form (9),

mri
A = min(mA1 , . . . ,mAk

,mAk+1
, . . . ,mAn).

However, in general, the above equations may lead to not uniquely defined values and
not minimal predictions because of circular definitions.

Example 3.7. If Π is the set of constraints

A1 → A2; A2 → A1, (16)

then, by Equation (15), mA1 = max(hA1 ,mA2) and mA2 = max(hA2 ,mA1), and this allows
for infinitely many solutions, unless hA1 = 1 or hA2 = 1. Furthermore, any solution with
mA1 = mA2 > θ when hA1 < θ and hA2 < θ leads to a set of predictions that satisfies the
constraints but is not minimal. C

We will show that such problems, due to circularities involving only positive classes (as
the one in the example), can be solved if we consider the minimum of the set of tuples of
values satisfying the equations (15): in the case of Example 3.7, the minimum is mA1 =
mA2 = max(hA1 , hA2).2

More problems arise when we have circularities involving negated classes.

2. Given a set S of t-tuples of real numbers, s1, . . . , st ∈ S is the minimum of S if for every t1, . . . , tt ∈ S
and for every 1 ≤ i ≤ t, si ≤ ti. Such a minimum might not exist.
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Example 3.8. If Π is the set of constraints

¬A1 → A2; ¬A2 → A1, (17)

then, by Equation (15), mA1 = max(hA1 ,mA2) and mA2 = max(hA2 ,mA1), and, for exam-
ple, for hA1 =hA2 = 0, it exists no minimum pair of values satisfying the equations. Further,
if we set mA1 = max(hA1 , hA2) and mA2 = max(hA2 , hA1), then if for a data point x, we get
hA1 < θ and hA2 < θ, then mA1 > θ and mA2 > θ, that is, even if h predicts that x belongs
to neither A1 nor A2, m predicts that x belongs to both A1 and A2, and the set of classes
M = {A1, A2} is not supported relative to H = ∅ and the constraints in (17). C

To avoid the situation described in the above example, whenever we use the negation on
a class, we should refer to an already known value for the class itself. More specifically, first
some classes should be computed without the use of negation. Next, some new classes can
be computed possibly using the negation of the already computed classes, and this process
can be iterated. When this is possible, the set of constraints is stratified (Apt et al., 1988).

There are several equivalent definitions of stratifiedness. Here, we use the one from the
work of Apt et al. (1988).

Definition 3.9. A set of constraints Π is stratified if there is a partition Π1,Π2, . . . ,Πs of
Π, with Π1 possibly empty, such that, for every i ∈ {1, . . . , s},

1. for every class A ∈ ∪r∈Πibody
+(r), all the constraints with head A in Π belong to

∪ij=1Πj ;

2. for every ¬A ∈ ∪r∈Πibody
−(r), all the constraints with head A in Π belong to ∪i−1

j=1Πj .

Π1,Π2, . . . ,Πs is a stratification of Π, and each Πi is a stratum.

The check on whether Π is stratified and then the computation of a stratification can
be done on the dependency graph of Π (Apt et al., 1988).

Definition 3.10. Let (P,Π) be an LCMC problem. The dependency graph GΠ of Π is the
directed graph having the set of classes as nodes and with, for each constraint r ∈ Π,

1. a positive edge from each class in body+(r) to head(r),

2. a negative edge from each class A such that ¬A ∈ body−(r) to head(r).

The following theorem is from the work by Apt et al. (1988).

Theorem 3.11. Let (P,Π) be an LCMC problem. Π is stratified iff the dependency graph
GΠ of Π contains no cycles with a negative edge.

As an easy consequence of the above theorem, every set of constraints containing only
definite rules (as, e.g., in the HMC case) is stratified. An example with a stratified and
with a non-stratified set of constraints, both containing non definite rules, is the following.
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Example 3.12. If A = {A,A1, A2, A3, A4}, and Π is the set of constraints in (11), (12),
and A3 → A4, that is, Π = {A1 → A; A2 → A; A,¬A1 → A2; A3 → A4}, then Π is
stratified: for example, take Π1 = {A3 → A4}, and Π2 = Π \ Π1.3 Any set containing the
constraints in (17) is not stratified. C

For a stratified set of constraints, there can be many stratifications, as shown by the
following example.

Example 3.13 (Ex. 3.12, cont’d). Π′1 = {A3 → A4}, Π′2 = {A1 → A}, and Π′3 = {A2 → A;
A,¬A1 → A2} is another stratification of the set Π of constraints in Example 3.12. C

However, it is well known in the area of logic programming that all the stratifications
lead to the same result (Apt et al., 1988). Given this, comparing the two stratifications in
Examples 3.12 and 3.13, the latter has two drawbacks:

1. the class A is in the head of constraints belonging to different strata, and

2. it has one more stratum.

Indeed, for each stratum Πi, we want to compute a value for all the classes in the head of
the constraints in Πi as a single step on GPUs, and thus

1. we would like to have all the constraints with the same head A just in one stratum,
so that we can compute a value for A just once, and

2. we would like to have as few strata as possible, to minimize the number of steps.

Thus, assuming Π is stratified,

1. we compute the acyclic component graph (Cormen et al., 2009) of the dependency
graph GΠ of Π, that is, the DAG obtained by shrinking each strongly connected
component in GΠ into a single vertex (notice that since Π is stratified, negative edges
are not involved in any cycle in GΠ),

2. we assign to the classes in each node of the DAG the number 1 plus the maximum
number of negative edges connecting a root to the node, and

3. we define:

(a) Ai as the set of classes having the number i assigned at the previous step, and

(b) Πi as the set of constraints in Π whose head is in Ai.

We call the above procedure CompStrata(Π). Given a stratified set Π of constraints,
CompStrata(Π) computes a partition A1, . . . ,As of the set A of classes and also the corre-
sponding stratification Π1, . . . ,Πs of Π with the smallest possible number of strata.

3. This set Π of constraints is an example of a semi-positive set of rules (Apt et al., 1988). A set Π is
semi-positive if for every head A of a rule in Π, there is not a rule r ∈ Π with ¬A ∈ body(r). Every set
of definite rules is also semi-positive, and every semi-positve set of rules is stratified.
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Figure 5: Given Π as in Example 3.14, visual representation of (a) GΠ, (b) the acyclic com-
ponent graph of GΠ, (c) the number assigned to each class: 1 to A1, A3, A4, and 2 to A,A2.

Example 3.14 (Ex. 3.12 cont’d). If Π = {A1 → A; A2 → A; A,¬A1 → A2; A3 → A4},
then CompStrata(Π) computes A1 = {A1, A3, A4}, A2 = {A,A2}, Π1 = {A3 → A4}, and
Π2 = Π \Π1, as shown in Figure 5. C

We now prove that CompStrata(Π) indeed computes the stratification of Π having the
smallest number of strata.

Theorem 3.15. Let (P,Π) be an LCMC problem with stratified Π. Let Π1, . . . ,Πs be the
partition of Π computed by CompStrata(Π). Then,

1. Π1, . . . ,Πs is a stratification of Π, and

2. there exists no stratification of Π with a smaller number of strata.

Proof. Proof in Appendix D.

In the sequel, assume Π is stratified, and that A1,A2, . . . ,As and Π1,Π2, . . . ,Πs are the
partition of A and the stratification of Π computed by CompStrata(Π), respectively.

Consider the ith stratum (1 ≤ i ≤ s).
If there is more than one stratum (s > 1), then we iteratively compute the values for

the classes in Ai A1 ∪ . . . ∪ Ai−1. However, inside each single stratum (even the first one),
there can be a chain of rules affecting the values of the classes in the stratum. Consider,
for example, the set of constraints Π = {A1, A2 → A3;A3 → A}. In this case,

1. we do not want to first compute the final value for A3 as max(hA3 ,min(hA1 , hA2))
and then, in a second step, use it to compute the final value for A (which could be
problematic if we also have, e.g., A→ A3), instead

2. we want to directly compute the final value for A as max(hA, hA3 ,min(hA1 , hA2)) as
a single operation.

We therefore compute and then use the transitive closure of all the constraints in the same
stratum. The additional constraints in the closure are conceptually redundant, but they
allow for an improvement in performance, as in the work by Deng et al. (2014).

Define Π∗i to be the set of constraints

1. initially equal to Πi, and then
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2. obtained by recursively adding the constraints obtained from a constraint r already
in Π∗i by substituting a class A ∈ body+(r) ∩ Ai with body(r′) for any rule r′ with
head(r′) = A (hence, r′ ∈ Πi), and finally

3. eliminating the constraints r such that head(r) ∈ body+(r), or for which there exists
another constraint r′ ∈ Πi with head(r) = head(r′) and body(r′) ⊂ body(r).

Π∗i is guaranteed to be finite, since the set of classes A is finite, and we do not allow for
repetitions in the body of constraints. The constraints being eliminated in the third step
are redundant.

Then, for each class A ∈ Ai, we define the output CMA of the constraint module CM via

CMA = max(hA, h
r1
A , . . . , h

rp
A ), (18)

where

1. r1, . . . , rp are all the constraints in Π∗i with head A, and

2. assuming r ∈ Π∗i has the form (9),

hrA = min(vA1 , . . . , vAk
,CMAk+1

, . . . ,CMAn),

with vA1 = hA1 if A1 ∈ Ai, and vA1 = CMA1 if A1 ∈ ∪i−1
j=1Aj . Analogously for

vA2 , . . . , vAk
.

The above definition is well-founded:

1. Π∗1 does not contain negated classes, and thus the definition of CMA when A ∈ A1

relies only on the outputs of the bottom module h, and

2. the definition of CMA when A ∈ Ai (i > 1) uses only outputs of h or of already
defined outputs of CM.

Example 3.16 (Ex. 3.14, cont’d). Π1 = Π∗1 = {A3 → A4}, while Π∗2 = Π2∪{A1,¬A1 → A2}.
Thus,

CMA1 = hA1 , CMA3 = hA3 , CMA4 = max(hA3 , hA4),

CMA = max(hA,CMA1 , hA2), CMA2 = max(hA2 ,min(hA,CMA1),min(CMA1 ,CMA1)).

If hA1 = 0.2, hA2 = 0.3, hA = 0.6 (as in Example 3.4), then CMA1 = 0.2, CMA2 = 0.6,
CMA = 0.6.

The constraint A1,¬A1 → A2 ∈ Π∗2, which leads to the inclusion of min(CMA1 ,CMA1) =
min(hA1 , hA1) in the definition of CMA2 , is necessary in order to guarantee that CM never
violates (12), that is, that it always holds

min(CMA,CMA1) ≤ CMA2 . (19)

Indeed assume, hA =hA2 = 0.3, hA1 = 0.6. Then, CMA = CMA1 = 0.6, CMA2 = 0.4, and
(19) is satisfied. If we would have defined CMA2 = max(hA2 ,min(hA,CMA1)) (omitting
min(CMA1 ,CMA1)), then we would have obtained CMA2 = 0.3, and (19) would have been
no longer satisfied. C
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Given a stratified set Π of constraints, CCN(h) is guaranteed to always satisfy Π.

Theorem 3.17. Let (P,Π) be an LCMC problem. Assume Π is stratified. Let h be a model
for P. Then, CCN(h) satisfies Equation (15) and thus commits no constraint violations.

Proof. Proof in Appendix E.

Given the values for the classes in ∪i−1
j=1Aj , the values of CCN(h) for the classes in Ai

correspond to the minimum of the set of tuples satisfying (15).

Theorem 3.18. Let (P,Π) be an LCMC problem. Assume Π is stratified. Let h be a model
for P. Let A1, . . . ,As be the partition of A computed by CompStrata(Π). For 1 ≤ i ≤ s,
let m be a model for P satisfying Equation (15) and such that for every class B ∈ ∪i−1

j=1Aj,
mB = CCN(h)B. For every class A ∈ Ai, mA ≥ CCN(h)A.

Proof. Proof in Appendix F.

We can now state that CCN(h) has the desired properties mentioned at the beginning
of the section.

Theorem 3.19. Let (P,Π) be an LCMC problem. Assume Π is stratified. Let h be a model
for P. Let H be the set of classes predicted by h. Let M be the set of classes predicted by
CCN(h). Then, M

1. extends H and is coherent with Π,

2. is supported relative to H and Π,

3. is minimal relative to H and Π, and

4. is the unique set satisfying the previous properties.

Proof. Proof in Appendix G.

If we interpret the given set of constraints as a stratified normal logic program, we can
establish a relation with the canonical model semantics of stratified normal logic programs
(Apt et al., 1988), which coincides with the stable model semantics (Gelfond & Lifschitz,
1988).

Definition 3.20. Let Π be a finite set of normal rules. Let M be a set of classes. The
reduct of Π relative to M is the set ΠM of definite rules obtained by:

1. dropping the rules r in Π such that for a class A ∈M, ¬A ∈ body(r), and then

2. dropping body−(r) from the remaining rules r.

M is a stable model of Π iff M is the smallest set closed under ΠM.

Example 3.21. Let Π = {A1 → A; A2 → A; A,¬A1 → A2; A3 → A4}. Then,

1. the stable model of Π is the empty set,

2. the stable model of Π ∪ {→ A} is {A2, A}, and
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3. the stable model of Π ∪ {→ A;→ A4} is {A2, A4, A}. C

Theorem 3.22. Let (P,Π) be an LCMC problem with stratified Π. Let h be a model for P.
Let H be the set of classes predicted by h. Let M be the set of classes predicted by CCN(h).
Then, M is the stable model of the set of constraints Π ∪ {→ A : A ∈ H}.

Proof. Proof in Appendix H.

Finally, the definition of the output CMA of CCN(h) for class A ∈ Ai is based on the
computation of Π∗i , which, as we have seen in Example 3.16, may contain constraints with
logically contradictory bodies (i.e., with B and ¬B in the body, for some class B). Indeed,
if in the construction of Π∗i we would have not included such constraints with contradictory
bodies, the resulting system may exhibit

1. constraint violations (as seen in Example 3.16), but

2. still no logical violations, since the set of predicted classes does not change.

3.3.2 Constraint Loss — CLoss

In the general case, for every data point, the value of the loss function CLoss used to train
CCN(h) is defined as:

CLoss =
∑
A∈A

CLossA,

CLossA being the value of the loss for class A, defined as:

CLossA = −yA ln(CM+
A)− yA ln(CM

−
A),

where:

• yA is the ground truth for class A,

• CM+
A is the value to optimize when yA = 1, and

• CM−A is the value to optimize when yA = 0.

CM+
A and CM−A differ from the output value CMA of CCN(h) for class A, that is, from

CCN(h)A. Indeed, as it has been the case in the HMC setting and already discussed in the
basic case, for CM+

A and CM−A we have to take into account also the ground-truth.
Similarly to what has been done for computing CMA, for a stratified set of constraints,

the computation of CM+
A and CM−A will be done stratum after stratum, starting from the

first. We thus assume:

1. that Π is stratified,

2. thatA1,A2, . . . ,As and Π1,Π2, . . . ,Πs (s ≥ 1) are the partitions ofA and Π computed
by CompStrata(Π), and

3. that Π∗1,Π
∗
2, . . . ,Π

∗
s are the sets of constraints corresponding to Π1,Π2, . . . ,Πs and

defined as in the previous subsection.
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The values CM+
A and CM−A associated to a class A in the ith stratum will depend on

the set Π∗A of constraints with head A in Π∗i , and thus on:

1. the values computed by model h for A and for the classes in the ith stratum and in
the body of a constraint in Π∗A,

2. the values of the already computed loss for the classes in the lower strata and in the
body of a constraint in Π∗A,

3. the ground truth for the classes in the body of the constraints in Π∗A.

Consider a class A in the ith stratum (i.e., A ∈ Ai). To each constraint r with head A
in Π∗i we associate two values

1. h+,r
A to be used with yA = 1, and

2. h−,rA to be used with yA = 0.

Assume yA = 1. Consider a constraint r in Π∗i with head A of the form (9). Then, we
want to teach CCN(h) to possibly exploit the constraint r for predicting A if yA1 = . . . =
yAk

= 1 and yAk+1
= . . . = yAn = 0. We thus define,

h+,r
A = min(vA1yA1 , . . . , vAk

yAk
, vAk+1

yAk+1
, . . . , vAnyAn

),

where vAl
is

1. hAl
if Al ∈ Ai (and thus 1 ≤ l ≤ k),

2. CM+
Al

if Al ∈ ∪i−1
j=1Aj and 1 ≤ l ≤ k,

3. CM−Al
if Al ∈ ∪i−1

j=1Aj and k + 1 ≤ l ≤ n.

The value CM+
A associated to class A when yA = 1 is

CM+
A = max(hA, h

+,r1
A , . . . , h

+,rp
A ),

where r1, . . . , rp are all the constraints in Π∗i with head A.

Assume yA = 0. Consider a constraint r in Π∗i with head A of the form (9). Then, for
some class Al ∈ body+(r) yAl

= 0, or for some class Al ∈ body−(r) yAl
= 1, and we want to

teach CCN(h) to not fire the constraint r. We thus define

h−,rA = min(vA1yA1
+ yA1 , . . . , vAk

yAk
+ yAk

, vAk+1
yAk+1

+ yAk+1
, . . . , vAnyAn + yAn

),

where vAl
now is

1. hAl
if Al ∈ Ai (and thus 1 ≤ l ≤ k),

2. CM−Al
if Al ∈ ∪i−1

j=1Aj and 1 ≤ l ≤ k,

3. CM+
Al

if Al ∈ ∪i−1
j=1Aj and k + 1 ≤ l ≤ n.
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The value CM−A associated with the class A when yA = 0 is

CM−A = max(hA, h
−,r1
A , . . . , h

−,rp
A ),

where r1, . . . , rp are all the constraints in Π∗i with head A.

Example 3.23. Consider the simpler version of Example 3.16 with A = {A1, A2, A},
Π = {A1 → A;A2 → A;A,¬A1 → A2}, hA1 = 0.2, hA2 = 0.3, hA = 0.6, as in Example 3.4.
Then, A1 = {A1}, A2 = {A,A2}, Π∗1 = ∅, Π∗2 = Π ∪ {A1,¬A1 → A2} (see also Example
3.16). Assume yA1 = yA = 1 and yA2 = 0.

If r1, . . . , r4 are the constraints listed as above, then

1. h+,r1
A = hA1 = 0.2, h+,r2

A = 0,

2. CM+
A1

= hA1 = 0.2, CM+
A = hA = 0.6,

3. h−,r3A2
= 1− hA1 = 0.8, h−,r4A2

= 1− hA1 = 0.8, and

4. CM−A2
= 1− hA1 = 0.8.

Thus,

CLoss = − ln(hA1)− ln(1− (1− hA1))− ln(hA) = −2 ln(hA1)− ln(hA),

as already calculated in Example 3.4. C

As in the hierarchical case, CLoss has the fundamental property that the negative gra-
dient descent algorithm behaves as expected, that is, that for each class, it moves in the
“right” direction as given by the ground truth.

Theorem 3.24. Let (P,Π) be an LCMC problem. For any model h for P and class A, let
∂CLoss
∂hA

be the partial derivative of CLoss with respect to hA. For each data point, if yA = 0,

then ∂CLoss
∂hA

≥ 0, and if yA = 1, then ∂CLoss
∂hA

≤ 0.

Proof. Proof in Appendix I.

3.3.3 Relation Between C-HMCNN(h) and CCN(h)

From the definitions of CMA and CLossA, it is clear that they generalize the corresponding
definitions given in the hierarchical case. Thus, C-HMCNN(h) and CCN(h) have the same
behavior when considering HMC problems.

Theorem 3.25. Let (P,Π) be an HMC problem. Let h be a model for P. For any class A,
C-HMCNN(h)A = CCN(h)A.
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Figure 6: Visual representation of CCN(h) (left), and details of the operations associated
with each stratum (right).

4. GPU Implementation

In the previous section, both CMA and CLossA have been defined for a specific class A.
However, it is possible to compute both CMA and CLossA for all classes in the same stratum
in parallel, leveraging GPU architectures. In this section, we show how to compute the
values first of the constraint module and then of the loss function on a GPU. At the end,
we show how this computation can be simplified in the HMC case.

Consider an LCMC problem (P,Π) with stratified Π. We assume to have l classes (i.e.,
|A| = l), that Π1,Π2, . . . ,Πs is the stratification computed by CompStrata(Π), and that
Π∗1,Π

∗
2, . . . ,Π

∗
s are the corresponding sets as defined in the previous section.

4.1 Constraint Module

The basic idea, starting from the vector CM0 (which contains the l values resulting from
the bottom module h) is to iteratively compute the vector of values CMi corresponding
to the outputs of CM if given the set of constraints ∪ij=1Π∗j . The final output of CM will
correspond to CMs. Figure 6 shows a visual representation of the process and of CCN(h).

For each i ∈ {1, . . . , s}, pi is the number of constraints in Π∗i (pi = |Π∗i |), rij denotes the
jth constraint in Π∗i , and

• B+
i is the pi × l matrix whose j, k element is 1 if Ak ∈ body+(rij), and 0 otherwise;

• B−i is the pi × l matrix whose j, k element is 1 if ¬Ak ∈ body−(rij), and 0 otherwise;

• Ci−1 is the pi × l matrix obtained by stacking pi times CMi−1.

Stacking p times a vector v of size q returns the p × q matrix 1Tp × v whose j, k element
is v[k].

Then, the jth value vi[j] of the vector vi associated with the body of the constraint rij
is

v+
i = min(B+

i � Ci−1 + (Jpi,l −B
+
i ),dim = 1),

v−i = min(B−i � (Jpi,l − Ci−1) + (Jpi,l −B
−
i ),dim = 1),

vi[j] = min(v+
i [j], v−i [j]),

where

1. � represents the Hadamard product,

2. Jp,q is the p× q matrix of ones, and
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3. given an arbitrary p × q matrix Q, min(Q,dim = 1) (resp., max(Q, dim = 1)) re-
turns a vector of length p whose ith element is equal to min(Qi1, . . . , Qiq) (resp.,
max(Qi1, . . . , Qiq)).

Then, the output of the ith layer associated with the ith stratum is given by:

CMi = max(IHi � Vi, dim = 1),

where

• Hi is the l × pi matrix whose j, k element is 1 if Aj = head(rik), and 0 otherwise,

• IHi is the l × (l + pi) matrix obtained by stacking the l × l identity matrix and Hi,

• Vi is the l × (l + pi) matrix obtained by stacking l times the concatenation of CMi−1

and vi.

Example 4.1. Let A = {A1, A2, A}, Π = {A1 → A;A2 → A;A,¬A1 → A2}, hA1 = 0.2,
hA2 = 0.3, hA = 0.6, as in Example 3.16. Then, A1 = {A1}, A2 = {A,A2}, Π∗1 = ∅,
Π∗2 = Π ∪ {A1,¬A1 → A2}.

Then, CM0 =
[
0.2 0.3 0.6

]
, B+

1 , B−1 , C0, H1 are the empty matrices, IH1 is the 3× 3
identity matrix, while

B+
2 =


1 0 0
0 1 0
0 0 1
1 0 0

 B−2 =


0 0 0
0 0 0
1 0 0
1 0 0

 C1 = 1T4 ×
[
0.2 0.3 0.6

]
=


0.2 0.3 0.6
0.2 0.3 0.6
0.2 0.3 0.6
0.2 0.3 0.6



H2 =

0 0 0 0
0 0 1 1
1 1 0 0

 IH2 =

1 0 0 0 0 0 0
0 1 0 0 0 1 1
0 0 1 1 1 0 0


V1 = 1T3 ×

[
0.2 0.3 0.6

]
CM1 =

[
0.2 0.3 0.6

]
v+

2 =
[
0.2 0.3 0.6 0.2

]
v−2 =

[
1 1 0.8 0.8

]
v2 = v+

2

V2 = 1T3 ×
[
0.2 0.3 0.6 0.2 0.3 0.6 0.2

]
CM2 =

[
0.2 0.6 0.6

]
and thus CMA1 = hA1 = 0.2, CMA2 = hA = 0.6, and CMA = hA = 0.6, as expected (see
Example 3.16). C

4.2 Constraint Loss

We now show how to compute CLossA for all classes in parallel, leveraging GPU architec-
tures. Here, we define Yi the pi × l matrix obtained by stacking pi times the ground-truth
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vector y, and v+
i [j] to be the value associated with the body of the jth constraint rij ∈ Π∗i

when the ground-truth class yhead(rij) = 1:

v
+\+
i = min(B+

i � Ci−1 � Yi + (Jpi,l −B
+
i ), dim = 1),

v
+\−
i = min(B−i � (Jpi,l − Ci−1)� (Jpi,l − Yi) + (Jpi,l −B

−
i ), dim = 1),

v+
i [j] = min(v

+\+
i [j], v

+\−
i [j]).

Analogously, v−i [j] is the value associated with the body of the jth constraint rij ∈ Π∗i when
yhead(rij) = 0:

v
−\+
i = min(B+

i � Ci−1 � (Jpi,l − Yi) + (Jpi,l −B
+
i ) +B+

i � Yi, dim = 1),

v
−\−
i = min(B−i � (Jpi,l − Ci−1)� Yi + (Jpi,l −B

−
i ) +B−i � (Jpi,l − Yi),dim = 1),

v−i [j] = min(v
−\+
i [j], v

−\−
i [j]).

Then, the output of the ith layer associated with the ith stratum is given by:

CM
+\−
i = max

(
(IHi � V +

i )� IYi + (IHi � V −i )� (Jl,l+pi − IYi), dim = 1
)
,

where:

• CM
+\−
0 = CM0,

• IYi is the l × (l + pi) matrix obtained by stacking the l × l identity matrix and Y T
i ,

the transposed of Yi,

• V +
i is the l× (l+pi) matrix obtained by stacking l times the concatenation of CM

+\−
i−1

and v+
i , and

• V −i is the l× (l+pi) matrix obtained by stacking l times the concatenation of CM
+\−
i−1

and v−i .

Once we have computed CM
+\−
s , we can compute CLoss by using the standard binary

cross-entropy loss (BCELoss), as given in any standard library (e.g., PyTorch):

CLoss = BCELoss(y,CM+\−
s ).

Example 4.2 (Ex. 4.1, cont’d). Assume that yA = yA1 = 1, and yA2 = 0. Then, y =[
1 0 1

]
, Y1 is the empty matrix, V +

1 = V −1 = V1, IY1 is the identity matrix,

CM
+\−
1 =

[
0.2 0.3 0.6

]

B+
2 � C1 � Y2 + (J4,3 −B+

2 ) =


0.2 1 1
1 0 1
1 1 0.6

0.2 1 1
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B−2 � (J4,3 − C1)� (J4,3 − Y2) + (J4,3 −B−2 ) =


1 1 1
1 1 1
0 1 1
0 1 1


v+

2 =
[
0.2 0 0 0

]
The only value which is not 0 is the first one, corresponding to the first constraint, being
the only constraint whose body is satisfied by the ground truth.

B+
2 � C1 � (J4,3 − Y2) + (J4,3 −B+

2 ) +B+
2 � Y2 =


1 1 1
1 0.3 1
1 1 1
1 1 1



B−2 � (J4,3 − C1)� Y2 + (J4,3 −B−2 ) +B−2 � (J4,3 − Y2) =


1 1 1
1 1 1

0.8 1 1
0.8 1 1


v−2 =

[
1 0.3 0.8 0.8

]
The values which are not 1 correspond to the last four constraints, being the constraints
whose body is not satisfied by the ground truth.

Y2 = 1T4 ×
[
1 0 1

]
V +

2 = 1T3 ×
[
0.2 0.3 0.6 0.2 0 0 0

]
V −2 = 1T3 ×

[
0.2 0.3 0.6 1 0.3 0.8 0.8

]
(IH2 � V +

2 )� IY2

+
(IH2 � V −2 )� (J3,7 − IY2)

=

0.2 0 0 0 0 0 0
0 0.3 0 0 0 0.8 0.8
0 0 0.6 0.2 0 0 0


CM

+\−
2 =

[
0.2 0.8 0.6

]
The three values of CM

+\−
2 correspond to the expected values of CM+

A1
,CM−A2

,CM+
A as

computed in Example 3.23, and equal to hA1 , 1− hA1 , hA, respectively. C

4.3 Hierarchical Multi-Label Classification

When dealing with HMC problems, the above implementation can be simplified. Indeed,
in the hierarchical case, we have that all constraints have only one class in the body, all
constraints are definite and thus s = 1.

Let H be an l × l matrix obtained by stacking l times CM0. Let M be an l × l matrix
such that, for i, j ∈ {1, . . . , n}, Mij = 1 if Aj is a subclass of Ai, and Mij = 0, otherwise.
The constraint module can be simply computed as:

CMs = max(H �M,dim = 1) ,

For CLoss, we can use the same mask M to modify the standard BCELoss. In detail,
let y be the ground-truth vector, and H ′ be the l × l matrix obtained by stacking l times
the vector CMs � y. Then,

CLoss = BCELoss
(
((1− y)� CMs) + (y �max(M �H ′, dim = 1)), y

)
.
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Figure 7: Mean AU(PRC) with standard deviation of CCN(h), f+, and g+ for each step.

5. Experimental Analysis

In this section, we present the results of the experimental analysis. We first present our
results focusing on HMC problems, and then we present the results obtained in the more
general framework of LCMC problems. In the presentation, we always speak about CCN(h)
since, given Theorem 3.25, in the case of HMC problems there is no difference between
CCN(h) and C-HMCNN(h).

5.1 Hierarchical Multi-Label Classification

In this section, we present the experimental results of CCN(h), first considering two syn-
thetic experiments, and then on 20 real-world datasets for which we compare with current
state-of-the-art models for HMC problems. Finally, ablation studies highlight the positive
impact of both CM and CLoss on CCN(h)’s performance.4

For evaluating performance, we consider the area under the average precision and recall
curve AU(PRC),5 which is the most used metric in the HMC literature (Bi & Kwok, 2011;
Vens et al., 2008; Wehrmann et al., 2018).

5.1.1 Synthetic Experiment 1

Consider the generalization of the experiment in Section 2.2 in which we started with R1

outsideR2 (as in the second row of Figure 1), and then movedR1 towards the centre ofR2 (as
in the first row of Figure 1) in 9 uniform steps. The last row of Figure 1 corresponds to the
fifth step, that is, R1 was halfway. This experiment is meant to show how the performance
of CCN(h), f+, and g+ defined as in Section 2.2 vary depending on the relative positions
of R1 and R2. Here, f , g, and h were implemented and trained as in Section 2.2. For each
step, we run the experiment 10 times,6 and we plot the mean AU(PRC) together with the
standard deviation for CCN(h), f+, and g+ in Figure 7.

As expected, Figure 7 shows that f+ performed poorly in the first three steps when
R1 ∩ R2 = ∅, it then started to perform better at step 4 when R1 ∩ R2 6∈ {R1, ∅}, and
it performed well from step 6 when R1 overlaps significantly with R2 (at least 65% of its
area). Conversely, g+ performed well on the first five steps, and its performance started

4. Link: https://github.com/EGiunchiglia/C-HMCNN/

5. AU(PRC) is computed using the average precision method as implemented by Pedregosa et al. (2011).
6. All subfigures in Figure 1 correspond to the decision boundaries of f , g, and h in the first of the 10 runs.
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Figure 8: First column: rectangles disposition above and hierarchy representation below.
Second column: decision boundaries of CCN(h)+L for each class. Last column: decision
boundaries of CCN(h) for each class. In each figure showing decision boundaries, the darker
the blue (resp., red), the more confident a model is that the data points in the region belong
(resp., do not belong) to the class (see the scale at the end of each row).

decaying from step 6. CCN(h) performed well at all steps, as expected, showing robustness
with respect to the relative positions of R1 and R2. Further, CCN(h) exhibits much more
stable performances than f+ and g+ as highlighted by the visibly much smaller standard
deviations of CCN(h).

5.1.2 Synthetic Experiment 2

In order to prove the importance of using CLoss instead of the standard binary cross entropy
loss L, in this experiment, we compare two models: (i) our model CCN(h), and (ii) h+CM,
that is h with CM built on top and trained with L. Consider the nine rectangles arranged
as showed on the top left of Figure 8 named R1, . . . , R9. Assume that

1. we have classes A1 . . . A9,

2. a data point belongs to Ai if it belongs to the ith rectangle, and

3. A5 (resp., A3) is an ancestor (resp., descendant) of every class, as shown in the
hierarchy on the bottom left of Figure 8.

Thus, all points in R3 belong to all classes, and if a data point belongs to a rectangle, then
it also belongs to class A5. The datasets consisted of 5000 (50/50 train/test split) data
points sampled from a uniform distribution over [0, 1]2.

Let h be a feedforward neural network with a single hidden layer with 7 neurons. We
train both h+CM and CCN(h) for 20k epochs using Adam optimization with learning rate
10−2 (β1 = 0.9, β2 = 0.999). As expected, the average AU(PRC) (and standard deviation)
over 10 runs for h+ CM trained with L is 0.938 (0.038), while h+ CM trained with CLoss
(CCN(h)) is 0.974 (0.007). Notice that not only h + CM performs worse, but also, due
to the convergence to bad local optima, the standard deviation obtained with h + CM is
5 times higher than the one of CCN(h): the (min, median, max) AU(PRC) for h + CM
are (0.871, 0.945, 0.990), while for CCN(h) are (0.964, 0.975, 0.990). The difference between
CCN(h) and CCN(h)+L in performance is further highlighted in Figure 8, which shows
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Taxonomy Dataset D n Train Val Test

FunCat (FUN) Cellcycle 77 499 1625 848 1281
FunCat (FUN) Derisi 63 499 1605 842 1272
FunCat (FUN) Eisen 79 461 1055 529 835
FunCat (FUN) Expr 551 499 1636 849 1288
FunCat (FUN) Gasch1 173 499 1631 846 1281
FunCat (FUN) Gasch2 52 499 1636 849 1288
FunCat (FUN) Seq 478 499 1692 876 1332
FunCat(FUN) Spo 80 499 1597 837 1263

Gene Ontology (GO) Cellcycle 77 4122 1625 848 1281
Gene Ontology (GO) Derisi 63 4116 1605 842 1272
Gene Ontology (GO) Eisen 79 3570 1055 528 835
Gene Ontology (GO) Expr 551 4128 1636 849 1288
Gene Ontology (GO) Gasch1 173 4122 1631 846 1281
Gene Ontology (GO) Gasch2 52 4128 1636 849 1288
Gene Ontology (GO) Seq 478 4130 1692 876 1332
Gene Ontology (GO) Spo 80 4166 1597 837 1263

Tree Diatoms 371 398 1085 464 1054
Tree Enron 1000 56 692 296 660
Tree Imclef07a 80 96 7000 3000 1006
Tree Imclef07d 80 46 7000 3000 1006

Table 1: Summary of the 20 real-world datasets. Number of features (D), number of classes
(n), and number of data points for each dataset split.

the decision boundaries of the 6th best performing networks.7 The figure points out how
mistakes given by wrong supervisions in lower levels of the hierarchy (see decision boundaries
for A2, A6, and A8) might have dramatic consequences in upper levels of the hierarchy (see
decision boundaries for A5).

5.1.3 Comparison with the State-of-the-Art

We tested CCN(h) on 20 real-world datasets commonly used to compare HMC systems
(see, e.g., Bi & Kwok, 2011; Nakano et al., 2019; Vens et al., 2008; Wehrmann et al., 2018):
16 are functional genomics datasets (Clare, 2003), 2 contain medical images (Dimitrovski
et al., 2008), 1 contains images of microalgae (Dimitrovski et al., 2012), and 1 is a text
categorization dataset (Klimt & Yang, 2004).8 The characteristics of these datasets are
summarized in Table 1. These datasets are particularly challenging, because their number
of training samples is rather limited, and they have a large variation, both in the number of
features (from 52 to 1000) and in the number of classes (from 56 to 4130). We applied the
same preprocessing to all the datasets. All the categorical features were transformed using
one-hot encoding. The missing values were replaced by their mean in the case of numeric
features and by a vector of all zeros in the case of categorical ones. All the features were
standardized.

7. We picked the 6th best performing networks due to the high variance of the results CCN(h)+L.
8. Links: https://dtai.cs.kuleuven.be/clus/hmcdatasets and http://kt.ijs.si/DragiKocev/PhD/resources
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Dataset CCN(h) HMC-LMLP Clus-Ens Baseline HMCN-R HMCN-F

Cellcycle FUN 0.255 0.207 0.227 0.018 0.247 0.252
Derisi FUN 0.195 0.182 0.187 0.018 0.189 0.193
Eisen FUN 0.306 0.245 0.286 0.020 0.298 0.298
Expr FUN 0.302 0.242 0.271 0.018 0.300 0.301
Gasch1 FUN 0.286 0.235 0.267 0.018 0.283 0.284
Gasch2 FUN 0.258 0.211 0.231 0.018 0.249 0.254
Seq FUN 0.292 0.236 0.284 0.017 0.290 0.291
Spo FUN 0.215 0.186 0.211 0.018 0.210 0.211

Cellcycle GO 0.413 0.361 0.387 0.008 0.395 0.400
Derisi GO 0.370 0.343 0.361 0.008 0.368 0.369
Eisen GO 0.455 0.406 0.433 0.010 0.435 0.440
Expr GO 0.447 0.373 0.422 0.008 0.450 0.452
Gasch1 GO 0.436 0.380 0.415 0.008 0.416 0.428
Gasch2 GO 0.414 0.371 0.395 0.008 0.463 0.465
Seq GO 0.446 0.370 0.438 0.008 0.443 0.447
Spo GO 0.382 0.342 0.371 0.008 0.375 0.376

Diatoms 0.758 - 0.501 0.005 0.514 0.530
Enron 0.756 - 0.696 0.010 0.710 0.724
Imclef07a 0.956 - 0.803 0.031 0.904 0.950
Imclef07d 0.927 - 0.881 0.065 0.897 0.920

Avg Rank 1.25 5.00 3.93 6.00 2.93 1.90

Table 2: Comparison of CCN(h) with the other state-of-the-art models. The performance
of each system is measured as the AU(PRC) obtained on the test set. The best results are
in bold.

We built h as a feedforward neural network with two hidden layers and ReLU non-
linearity. To prove the robustness of CCN(h), we kept all the hyperparameters fixed ex-
cept the hidden dimension and the learning rate used for each dataset, which are given
in Appendix A and were optimized over the validation sets. In all experiments, the loss
was minimized using Adam optimizer with weight decay 10−5, and patience 20 (β1 = 0.9,
β2 = 0.999). The dropout rate was set to 70% and the batch size to 4. As in the work
by Wehrmann et al. (2018), we retrained CCN(h) on both training and validation data for
the same number of epochs, as the early stopping procedure determined was optimal in the
first pass.

For each dataset, we run CCN(h), Clus-Ens (Schietgat et al., 2010), and HMC-LMLP
(Cerri et al., 2016) 10 times, and the average AU(PRC) is reported in first three columns of
Table 2. For simplicity, we omit the standard deviations, which for CCN(h) are in the range
[0.5×10−3, 2.6×10−3], proving that it is a very stable model. As reported by Nakano et al.
(2019), Clus-Ens and HMC-LMLP are the current state-of-the-art models with publicly
available code. These models were run on CPU (as there is no GPU implementation publicly
available) with the suggested configuration settings on each dataset.9 In the fourth column,

9. We also ran the code by Masera and Blanzieri (2018). However, we obtained very different results from
the ones reported in the paper. Similar negative results are also reported by Nakano et al. (2019).
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CCN(h)
HMCN-F
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HMC-LMLP
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Figure 9: Critical diagram for the Nemenyi’s statistical test.

we report the performance of a random performance classifier. As described by Saito and
Rehmsmeier (2015), we computed the AU(PRC) of such a random baseline by dividing
the number of positive examples in the test set by the multiplication of the number of
datapoints in the test set and the number of classes. In the last two columns, we show
the results of HMCN-R and HMCN-F directly taken from (Wehrmann et al., 2018), since
the code is not publicly available. We report the results of both systems, because, while
HMCN-R has worse results than HMCN-F, the amount of parameters of the latter grows
with the number of hierarchical levels. As a consequence, HMCN-R is much lighter in
terms of total amount of parameters, and the authors advise that for very large hierarchies,
HMCN-R is probably a better choice than HMCN-F considering the trade-off performance
vs. computational cost (Wehrmann et al., 2018). Note that the number of parameters of
CCN(h) is independent from the number of hierarchical levels.

As reported in Table 2, CCN(h) has the greatest number of wins (it has the best perfor-
mance on all datasets but 3) and best average ranking (1.25). We also verified the statistical
significance of the results following the instructions given in the work by Demsar (2006).10

We first executed the Friedman test, obtaining p-value 4.26 × 10−15. We then performed
the post-hoc Nemenyi test, and the resulting critical diagram is shown in Figure 9, where
the group of methods that do not differ significantly (significance level 0.05) are connected
through a horizontal line. The Nemenyi test is powerful enough to conclude that there is
a statistical significant difference between the performance of CCN(h) and all the other
models but HMCN-F. Hence, as advised by Demsar (2006) and Benavoli et al. (2016),
we compared CCN(h) and HMCN-F using the Wilcoxon test. This test, contrarily to the
Friedman test and the Nemenyi test, takes into account not only the ranking, but also the
differences in performance of the two algorithms. The Wilcoxon test allows us to conclude
that there is a statistical significant difference between the performance of CCN(h) and
HMCN-F with p-value of 6.01× 10−3.

To better understand why CCN(h) is able to outperform the other models, Figure 10
shows the average AU(PRC) per hierarchy level achieved by CCN(h), Clus-HMC, and
HMC-LMLP in each of the Funcat datasets.11 The figure shows that CCN(h) is able to
get better results than Clus-HMC and HMC-LMLP at all levels of the hierarchy for all the
datasets (with the exception of levels 4 and 5 for the dataset Seq Fun, where Clus-HMC
manages to outperform CCN(h)). Interestingly, we get the biggest gaps in performance at
higher levels of the hierarchy. This is not surprising given that CLoss penalizes errors more

10. We exclude the baseline model, as its results significantly worse than all the others.
11. In Figure 10, the levels start at 1 because the root is not taken into account for evaluation. We could

not measure the performance of HMCN-R and HMCN-F as the code is not available.
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(a) Cellcycle FUN (b) Derisi FUN (c) Eisen FUN

(d) Expr FUN (e) Gasch1 FUN (f) Gasch2 FUN

(g) Seq FUN (h) Spo FUN

Figure 10: Average AU(PRC) per hierarchy level.

at the higher levels. As an example, if at training time CCN(h) delegates the prediction of
class A belonging to level 1 to class B belonging to level 6, then the error made by hB will
be counted 6 times in the loss, while the error made by hA will not be counted at all.

Furthermore, to study how the models perform once a threshold is fixed, we compared
CCN(h), Clus-HMC, and HMC-LMLP in terms of F1-score. For each model and dataset,
we picked the threshold that maximizes the F1-score. The results are reported in Table 3,
and show that CCN(h) is able to outperform HMC-LMLP and Clus-HMC on all datasets.
In order to test the statistical significance of the results, we performed the Wilcoxon test,
obtaining the p-value 3.1 × 10−5 when comparing CCN(h) and HMC-LMLP, and p-value
1.9× 10−6 when comparing CCN(h) and Clus-HMC.

5.1.4 Ablation Studies

To analyze the impact of both CM and CLoss, we compared the performance of CCN(h)
on the FunCat datasets against the performance of h+, that is h with CM applied as post-
processing at inference time and h+CM, that is h with CM built on top. Both these models
were trained using the standard binary cross-entropy loss. As it can be seen in Table 4,
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Dataset CCN(h) HMC-LMLP Clus-Ens

Cellcycle FUN 0.373 0.251 0.292
Derisi FUN 0.337 0.251 0.265
Eisen FUN 0.402 0.262 0.336
Expr FUN 0.401 0.249 0.278
Gasch1 FUN 0.392 0.253 0.278
Gasch2 FUN 0.377 0.250 0.293
Seq FUN 0.404 0.242 0.330
Spo FUN 0.346 0.248 0.276

Cellcycle GO 0.507 0.396 0.420
Derisi GO 0.481 0.391 0.405
Eisen GO 0.529 0.410 0.422
Expr GO 0.485 0.393 0.416
Gasch1 GO 0.523 0.396 0.418
Gasch2 GO 0.510 0.395 0.417
Seq GO 0.499 0.374 0.425
Spo GO 0.489 0.391 0.418

Diatoms 0.819 - 0.502
Enron 0.733 - 0.636
Imclef07a 0.924 - 0.727
Imclef07d 0.887 - 0.804

Average Ranking 1.0 3.0 2.0

Table 3: Comparison of CCN(h) with the other state-of-the-art models. The performance
of each system is measured as the F1-score obtained on the test set. The best results are
in bold.

CCN(h), by exploiting both CM and CLoss, always outperforms h+ and h+CM on all
datasets. In Table 4, we also report after how many epochs the algorithm stopped training
in average. As it can be seen, CCN(h), h+CM and h+ always require approximately the
same number of epochs.

5.2 Multi-Label Classification with Logical Hard Constraints

As for the hierarchical case, we first consider a generalization of the synthetic experiment
proposed in the basic case. Then we test CCN(h) on 16 real-world datasets with general
constraints, and finally we present the ablation studies.12

About the metrics, the analysis of 64 papers on MC problems conducted by Spolaôr
et al. (2013) and reported by Pereira et al. (2018), shows that already in 2013 as many
as 19 different metrics have been used to evaluate MC models, and still today different
papers use different subsets of such metrics. However, as suggested by Pereira et al. (2018),
not all subsets can be used, as the experimental results may appear to favor a specific
behavior depending on the subset of measures chosen, thus possibly leading to misleading
conclusions. To avoid such undesired results, the authors conducted a correlation analysis

12. Link: https://github.com/EGiunchiglia/CCN/
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h+ h+CM CCN(h)
Dataset AU(PRC) Epochs AU(PRC) Epochs AU(PRC) Epochs

Cellcycle 0.240 107 0.238 108 0.255 106
Derisi 0.190 64 0.188 66 0.195 67
Eisen 0.290 112 0.286 107 0.306 110
Expr 0.272 39 0.267 19 0.302 20
Gasch1 0.265 41 0.262 42 0.286 38
Gasch2 0.244 128 0.242 132 0.258 131
Seq 0.249 13 0.252 13 0.292 13
Spo 0.201 108 0.202 117 0.215 115

Average Ranking 2.94 2.06 1.00

Table 4: Impact of CM and CM+CLoss on the performance measured as AU(PRC) and
on the total number of epochs for the validation set of the Funcat datasets.

of the metrics that led to the individuation of clusters of correlated measures and thus to
the proposal of various subsets of metrics, chosen according to the following criteria:

1. first, Hamming loss is highly recommended for inclusion in each subset: it is not
correlated with others, and is the most used metric in the literature (55 papers out of
the 64 surveyed),

2. next it could be considered employing other measures not correlated with any others
like coverage error and ranking loss, and

3. finally, a suitable selection should include at least one metric from each cluster of
correlated measures. Among them, multi-label accuracy is a good choice because it
is among the ones with the highest correlations to other measures.

Other criteria they suggest and use for the selection of the proposed subsets are: popularity
in the literature, the choice to include or not AUC-based metrics, and the size of the resulting
set of metrics.

Following the above criteria, we used the following six metrics, each taking value in the
interval [0, 1] and each annotated with either ↑ or ↓ to mean that larger values for that
metric stand for better (resp. worse) performance:

1. average precision (↑),

2. coverage error (↓),

3. Hamming loss (↓),

4. multi-label accuracy (↑),

5. one-error (↓), and

6. ranking loss (↓).

The above six metrics are exactly those belonging to the first two subsets of metrics proposed
by Pereira et al. (2018).13 Notice that, the above list does not include AU(PRC): already

13. In particular, the first of the proposed subsets includes coverage error, Hamming loss, multi-label accuracy
and ranking loss, while the second includes average precision, coverage error, Hamming loss, one-error
and ranking loss; see (Pereira et al., 2018) for more details.
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Figure 11: Mean average precision, coverage error, hamming loss, multi-label accuracy,
one-error, and ranking loss with standard deviation of CCN(h) and f+ for each step.

in 2013 and still today, contrarily to the specialized HMC literature, it is generally not used
in the MC literature (Spolaôr et al., 2013; Pereira et al., 2018; Feng et al., 2019).

5.2.1 Synthetic Experiment

Consider the generalization of the experiment presented as basic case, in which we started
with R1 outside R2 (as in the first row of Fig. 3), and then moved R1 towards the centre of R2

(as in the second row of Fig. 3) in 9 uniform steps. As for HMC problems, this experiment
is meant to show how the performance of CCN(h) and f+ defined as in Section 3.2 vary
depending on the relative positions of R1 and R2. As expected, Figure 11 shows that
CCN(h) performs better or equally to f+ at all steps and for all metrics. In particular:

• CCN(h) performs consistently better than f+ at all steps in terms of average precision,
coverage error, Hamming loss, multi-label accuracy and ranking loss. Further, as in the
HMC case, CCN(h) exhibits much more stable performances than f+ as highlighted
by the visibly much smaller standard deviation bar of CCN(h).

• CCN(h) and f+ perform identically in terms of one-error. This is due to the fact that
one-error measures the fraction of instances whose most confident class is irrelevant,
since neither CCN(h) nor f+ ever make this mistake, they both have one-error equal
to zero at all steps.

5.3 Comparison with the State-of-the-Art

In order to prove the superiority of our model, we adopted the same methodology presented
in (Feng et al., 2019) and consider the three well-established MC models and the state-of-
the-art MC model tested in (Feng et al., 2019), which can be characterized by the order of
classes correlations they exploit. Thus, CCN(h) is compared with

1. BR (Boutell et al., 2004), a first order model which considers each class separately,
ignoring class correlations, and
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Dataset D L Train Val Test C H B B+ B− H/L

Arts 462 26 2975 525 1500 344 11 7.1 5.6 1.5 42.3%
Bibtex 1836 159 4148 732 2515 399 32 4.2 4.2 0.0 20.1%
Business 438 30 2975 525 1500 77 7 2.5 2.3 0.2 23.3%
Cal500 68 174 298 53 151 39 7 2.0 1.1 0.9 4.0%
Delicious 500 983 10982 1938 3185 104 61 1.0 1.0 0.0 6.1%
Emotions 72 6 332 59 202 1 1 5.0 0.0 5.0 16.7%
Enron 1001 53 954 169 579 7 5 1.0 1.0 0.0 9.4%
Genbase 1186 27 393 70 199 88 13 2.2 2.0 0.2 48.1%
Image 294 5 1190 210 600 1 1 4.0 0.0 4.0 20.0%
Medical 1449 45 283 50 645 17 9 1.2 1.2 0.0 20.0%
Rcv1subset1 944 101 3570 630 1800 247 16 3.7 2.9 0.8 15.8%
Rcv1subset2 944 101 3570 630 1800 81 15 2.4 1.7 0.7 14.9%
Rcv1subset3 944 101 3570 630 1800 72 16 2.3 1.7 0.6 15.8%
Rcv1subset4 944 101 3570 630 1800 63 14 2.1 1.7 0.4 13.9%
Rcv1subset5 944 101 3570 630 1800 73 11 2.5 2 0.5 10.9%
Science 743 40 2975 525 1500 37 11 2.1 1.7 0.4 27.5%
Scene 294 6 1029 182 1196 1 1 5.0 0.0 5.0 16.7%
Yeast 103 14 1275 225 917 34 11 2.3 1.9 0.4 78.6%

Table 5: Summary of the real-world MC datasets. For each dataset, we report from left
to right: (i) name, (ii) number of features (D), (iii) number of classes (L), (iv-vi) number
of data points for each split, (vii) number of constraints (C), (iix) number of different
classes that appear at least once as head of a constraint (H), (ix) average number of classes
appearing in the body (B), (x-xi) average number of classes appearing positively (resp.,
negatively) in the body (B+), (resp., (B−)), and (xii) percentage of classes appearing at
least once as head of a constraint.

2. ECC (Read et al., 2009), RAKEL (Tsoumakas et al., 2009) and CAMEL (Feng et al.,
2019), which exploit correlations among two or more classes.

BR, ECC, and RAKEL are the well-established MC models, and CAMEL is the current
state-of-the-art MC model (Feng et al., 2019). Since these models are not guaranteed to
output predictions that are coherent with the constraints, we applied CM as additional
post-processing steps.

Being the first paper on LCMC problems, we created 16 real-world LCMC datasets,
each obtained by enriching a popular and publicly available MC dataset with constraints
extracted using the apriori algorithm (Agrawal & Srikant, 1994). The apriori algorithm
is the standard algorithm used for association rules mining. We run it with the following
hyperparameters: (i) confidence (i.e., the ratio of datapoints for which the constraint holds
true) equal to 1, (ii) minimum support (i.e., the ratio of datapoints for which the body holds
true) equal to 0, and (iii) max itemset (i.e., the maximum number of elements allowed in
the body and in the head) equal to 5. We then pruned the set of returned constraints to
obtain a set of stratified normal rules. The list of the datasets together with a summary
of their characteristics is reported in Table 5. The various datasets come from different
application domains, in particular:
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Model Arts Bibtex Business Cal500 Delicious Emotions Enron Genbase Image

Average precision (↑)

CCN(h) 0.623 0.586 0.904 0.520 0.347 0.800 0.704 0.996 0.807
CAMEL 0.625 0.605 0.899 0.513 0.398 0.756 0.708 0.990 0.793
ECC 0.544 0.302 0.867 0.401 0.112 0.772 0.643 1.000 0.738
BR 0.546 0.308 0.863 0.441 0.140 0.793 0.643 1.000 0.726
RAKEL 0.530 0.317 0.856 0.433 0.140 0.798 0.636 1.000 0.721

Coverage error (↓)

CCN(h) 0.172 0.105 0.065 0.734 0.520 0.315 0.217 0.016 0.187
CAMEL 0.202 0.157 0.083 0.791 0.613 0.372 0.256 0.010 0.201
ECC 0.223 0.801 0.089 0.853 0.987 0.338 0.285 0.009 0.242
BR 0.217 0.802 0.086 0.789 0.989 0.324 0.288 0.009 0.245
RAKEL 0.221 0.796 0.085 0.791 0.988 0.317 0.294 0.009 0.250

Hamming loss (↓)

CCN(h) 0.054 0.013 0.023 0.136 0.018 0.197 0.046 0.001 0.172
CAMEL 0.055 0.013 0.023 0.138 0.018 0.265 0.047 0.003 0.174
ECC 0.081 0.013 0.031 0.172 0.019 0.245 0.055 0.001 0.218
BR 0.079 0.013 0.032 0.162 0.018 0.229 0.054 0.001 0.232
RAKEL 0.082 0.013 0.034 0.165 0.019 0.223 0.055 0.001 0.225

Multi-label accuracy (↑)

CCN(h) 0.238 0.272 0.601 0.203 0.905 0.534 0.395 0.986 0.488
CAMEL 0.218 0.193 0.609 0.210 0.147 0.354 0.381 0.943 0.456
ECC 0.217 0.250 0.548 0.220 0.114 0.446 0.361 0.992 0.387
BR 0.217 0.260 0.538 0.221 0.150 0.465 0.365 0.992 0.369
RAKEL 0.215 0.263 0.527 0.222 0.152 0.485 0.361 0.992 0.376

One-error (↓)

CCN(h) 0.475 0.376 0.093 0.113 0.357 0.273 0.235 0.000 0.296
CAMEL 0.460 0.349 0.090 0.133 0.315 0.381 0.223 0.020 0.310
ECC 0.568 0.535 0.137 0.378 0.692 0.332 0.309 0.000 0.392
BR 0.567 0.517 0.147 0.232 0.546 0.292 0.299 0.000 0.425
RAKEL 0.586 0.513 0.159 0.232 0.567 0.292 0.304 0.000 0.430

Ranking loss (↓)

CCN(h) 0.115 0.058 0.030 0.173 0.110 0.161 0.076 0.003 0.159
CAMEL 0.136 0.078 0.040 0.189 0.117 0.237 0.086 0.001 0.177
ECC 0.158 0.680 0.046 0.257 0.861 0.193 0.107 0.001 0.231
BR 0.155 0.670 0.045 0.218 0.820 0.177 0.108 0.001 0.234
RAKEL 0.159 0.659 0.044 0.220 0.815 0.169 0.112 0.001 0.242

Table 6: Comparison of CCN(h) with the other state-of-the-art models. The best results
are in bold.
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Model Medical Rcv1S1 Rcv1S2 Rcv1S3 Rcv1S4 Rcv1S5 Science Scene Yeast

Average precision (↑)

CCN(h) 0.866 0.642 0.666 0.647 0.675 0.560 0.603 0.868 0.768
CAMEL 0.807 0.622 0.647 0.636 0.654 0.564 0.614 0.824 0.766
ECC 0.823 0.549 0.575 0.585 0.609 0.529 0.502 0.794 0.724
BR 0.823 0.536 0.563 0.572 0.600 0.524 0.500 0.781 0.743
RAKEL 0.811 0.532 0.556 0.562 0.589 0.508 0.493 0.794 0.732

Coverage error (↓)

CCN(h) 0.035 0.092 0.089 0.103 0.080 0.107 0.131 0.077 0.452
CAMEL 0.036 0.131 0.115 0.123 0.103 0.130 0.162 0.106 0.457
ECC 0.045 0.185 0.166 0.167 0.169 0.196 0.225 0.127 0.495
BR 0.045 0.194 0.181 0.178 0.184 0.210 0.227 0.128 0.476
RAKEL 0.049 0.201 0.180 0.185 0.195 0.209 0.225 0.123 0.481

Hamming loss (↓)

CCN(h) 0.013 0.026 0.022 0.024 0.019 0.025 0.031 0.092 0.196
CAMEL 0.024 0.027 0.022 0.024 0.021 0.025 0.031 0.109 0.196
ECC 0.019 0.031 0.027 0.028 0.026 0.030 0.049 0.131 0.221
BR 0.019 0.032 0.028 0.029 0.027 0.031 0.051 0.151 0.214
RAKEL 0.019 0.033 0.029 0.030 0.027 0.031 0.051 0.130 0.225

Multi-label accuracy (↑)

CCN(h) 0.589 0.296 0.310 0.303 0.324 0.275 0.255 0.607 0.480
CAMEL 0.284 0.204 0.222 0.210 0.257 0.223 0.217 0.528 0.480
ECC 0.481 0.264 0.277 0.273 0.297 0.269 0.209 0.478 0.443
BR 0.477 0.263 0.279 0.275 0.289 0.263 0.200 0.438 0.456
RAKEL 0.481 0.263 0.272 0.268 0.290 0.258 0.201 0.481 0.445

One-error (↓)

CCN(h) 0.181 0.413 0.389 0.405 0.379 0.402 0.494 0.224 0.234
CAMEL 0.285 0.413 0.397 0.413 0.399 0.414 0.472 0.287 0.231
ECC 0.251 0.477 0.462 0.453 0.436 0.451 0.603 0.319 0.300
BR 0.251 0.492 0.474 0.466 0.435 0.466 0.605 0.358 0.259
RAKEL 0.266 0.488 0.481 0.471 0.439 0.474 0.606 0.329 0.270

Ranking loss (↓)

CCN(h) 0.024 0.036 0.035 0.046 0.035 0.046 0.094 0.073 0.172
CAMEL 0.026 0.051 0.048 0.050 0.046 0.054 0.117 0.101 0.173
ECC 0.033 0.086 0.078 0.078 0.086 0.093 0.176 0.103 0.208
BR 0.032 0.091 0.088 0.085 0.097 0.101 0.177 0.131 0.190
RAKEL 0.037 0.093 0.088 0.089 0.103 0.102 0.180 0.127 0.200

Table 7: Comparison of CCN(h) with the other state-of-the-art models. The best results
are in bold.
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Metric
Average ranking Friedman test Wilcoxon test

CCN(h) CAMEL ECC BR RAKEL p-value CCN(h) vs. CAMEL

Average precision 1.50 2.17 3.53 3.58 4.22 XX
Coverage Error 1.22 2.36 3.61 3.92 3.89 XX XX
Hamming loss 1.36 2.56 3.39 3.61 3.92 XX XX
Multi-label accuracy 1.69 3.58 3.19 3.27 3.25 XX XX
One-error 1.50 2.08 3.67 3.56 4.19 XX
Ranking loss 1.22 2.19 3.61 3.72 4.17 XX XX

Table 8: Average ranking for each metric and model, results of the Friedman and Wilcoxon
test (the latter deployed to compare the performance of CCN(h) and CAMEL). We use X
(resp., XX) to indicate that the test returned p-value < 0.05 (resp., < 0.01).

1. Cal500 and Emotions are 2 music classification datasets (Turnbull et al., 2008;
Tsoumakas et al., 2008),

2. Genbase and Yeast are 2 functional genomics datasets (Diplaris et al., 2005; Elisseeff
& Weston, 2001),

3. Image and Scene are 2 image classification datasets (Zhang & Zhou, 2007; Boutell
et al., 2004), and

4. the remaining 10 are text classification datasets (Pestian et al., 2007; Read et al.,
2008; Srivastava & Zane-Ulman, 2005; Tsoumakas & Vlahavas, 2007).14

Furthermore, as it can be seen from Table 5, they differ significantly both in the number of
data points/classes (columns D and L) and in the characteristics of the associated sets of
constraints. Indeed, we have datasets having just a few (one)/many constraints (column C),
involving a few/many classes in the head (column H/L) and in the body, either positively
or negatively (columns B, B+ and B−).

As in the HMC experiments, we applied the same preprocessing to all the datasets. All
the categorical features were transformed using one-hot encoding. The missing values were
replaced by their mean in the case of numeric features and by a vector of all zeros in the case
of categorical ones. All the features were standardized. As in the HMC experiments, we
built h as a feedforward neural network with two hidden layers and ReLU non-linearity. To
prove the robustness of CCN(h), we kept all the hyperparameters fixed except the hidden
dimension used for each dataset, which is given in Appendix B. Such hidden dimensions
were optimized over the validation sets. In all experiments, the loss was minimized using
Adam optimizer with batch size equal to 4, learning rate equal to 10−4, and patience 20
(β1 = 0.9, β2 = 0.999). Since some datasets have very few data points, we set the dropout
rate equal to 80% and the weight decay equal to 10−4. As for the HMC case, we retrained
CCN(h) on both training and validation data for the same number of epochs, as the early
stopping procedure determined was optimal in the first pass. For each dataset, we run the
models 10 times, and the average for each of the metrics is reported in Tables 6 and 7. For
ease of presentation, we omit the standard deviations, which for CCN(h) are in the range

14. Link to datasets with constraints: https://github.com/EGiunchiglia/CCN/tree/master/data/
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(a) Average precision (b) Coverage error

(c) Hamming loss (d) Multi-label accuracy

(e) One-error (f) Ranking loss

Figure 12: Critical diagram for each metric obtained with the post-hoc Nemenyi test.

[2.9 × 10−17, 8.0 × 10−3], proving that it is a very stable model. ECC, BR, and RAKEL
were implemented using scikit-multilearn (Szymanski & Kajdanowicz, 2017) by deploying
the logistic regression model as the base classifier. Regarding CAMEL, we used the publicly
available authors’ implementation,15 with the hyperparameters suggested by the authors.
For all the models, we got results comparable to the ones reported in the work by Feng
et al. (2019).

As it can be seen in Tables 6 and 7, CCN(h) has the highest number of wins in all
metrics. Indeed, as it can be seen in Table 8, CCN(h) has the best average ranking in all
metrics. We also verified the statistical significance of the results – as advised by Demsar
(2006) – by performing the Friedman test for each metric. As reported in Table 8, the
Friedman test returned p-value < 0.01 for each metric; we could thus proceed with the
post-hoc Nemenyi tests, and the resulting critical diagrams are reported in Figure 12. In
each diagram, the groups of methods that do not differ significantly (significance level
0.05) are connected through an horizontal line. According to the Nemenyi test, CCN(h)’s
performance differs significantly to the performance of all the other models but CAMEL in
terms of average precision, coverage error, Hamming loss, one-error and ranking loss, while
it differs significantly to all the models (including CAMEL) in terms of multi-label accuracy.
As in the HMC case, we then followed the guidelines given by Demsar (2006) and Benavoli
et al. (2016) and performed the Wilcoxon test to compare the difference between CAMEL
and CCN(h). As reported in the last column of Table 8, the performances of CCN(h)
and CAMEL differ significantly for all metrics but one-error, thus further confirming the
superiority of our model.

15. Link: https://github.com/hinanmu/CAMEL

801



Giunchiglia & Lukasiewicz

Model Arts Bibtex Business Cal500 Delicious Emotions Enron Genbase Image

Average precision (↑)

CCN(h) 0.623 0.586 0.904 0.520 0.347 0.800 0.704 0.996 0.807
h+ 0.623 0.585 0.903 0.519 0.347 0.796 0.704 0.996 0.800
h+CM 0.623 0.580 0.902 0.519 0.344 0.800 0.704 0.978 0.807

Coverage error (↓)

CCN(h) 0.172 0.105 0.065 0.734 0.520 0.315 0.217 0.016 0.187
h+ 0.172 0.106 0.073 0.734 0.520 0.319 0.217 0.017 0.194
h+CM 0.173 0.108 0.072 0.734 0.520 0.311 0.217 0.020 0.187

Hamming loss (↓)

CCN(h) 0.054 0.130 0.023 0.136 0.018 0.197 0.046 0.001 0.172
h+ 0.054 0.130 0.026 0.136 0.018 0.201 0.046 0.001 0.172
h+CM 0.054 0.130 0.026 0.136 0.018 0.198 0.046 0.003 0.169

Multi-label accuracy (↑)

CCN(h) 0.238 0.272 0.601 0.203 0.095 0.534 0.395 0.986 0.488
h+ 0.238 0.272 0.601 0.203 0.096 0.512 0.395 0.986 0.475
h+CM 0.237 0.270 0.599 0.203 0.096 0.519 0.395 0.935 0.487

One-error (↓)

CCN(h) 0.475 0.376 0.093 0.113 0.357 0.273 0.235 0.000 0.296
h+ 0.476 0.384 0.093 0.113 0.357 0.283 0.238 0.000 0.307
h+CM 0.475 0.385 0.093 0.113 0.362 0.276 0.237 0.004 0.297

Ranking loss (↓)

CCN(h) 0.115 0.058 0.030 0.173 0.110 0.161 0.076 0.003 0.159
h+ 0.116 0.059 0.034 0.173 0.110 0.167 0.076 0.003 0.169
h+CM 0.116 0.060 0.034 0.173 0.110 0.159 0.076 0.006 0.160

Table 9: Results of the ablations studies. The best results are in bold.

5.4 Ablation Studies

As in the HMC case, in order to analyze the impact of both CM and CLoss, we compared
the performance of CCN(h) against the performance of h+, that is, h with the enforcement
of the constraints done as a post-processing step, and h + CM, that is, h with CM built
on top. Both these models were trained using the standard binary cross-entropy loss. The
results of the ablation studies for each metric and each dataset are given in Tables 9 and 10,
while the average ranking for each metric can be found in Table 11. As it can be seen
in Table 11, CCN(h) has the highest average ranking for all metrics. Furthermore, we
check the statistical significance of our results through the Wilcoxon test, whose results
are reported in the last two columns of Table 11. As it can be seen, CCN(h) performs
significantly better than h+ for all metrics but multi-label accuracy. On the other hand,
CCN(h) performs significantly better than h+ CM for all metrics but one-error.
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Model Medical Rcv1S1 Rcv1S2 Rcv1S3 Rcv1S4 Rcv1S5 Science Scene Yeast

Average precision (↑)

CCN(h) 0.866 0.642 0.666 0.647 0.675 0.560 0.603 0.868 0.768
h+ 0.868 0.639 0.662 0.645 0.663 0.548 0.603 0.864 0.765
h+CM 0.864 0.630 0.663 0.640 0.682 0.560 0.602 0.867 0.767

Coverage error (↓)

CCN(h) 0.035 0.092 0.089 0.103 0.080 0.107 0.131 0.077 0.452
h+ 0.037 0.093 0.090 0.102 0.089 0.112 0.135 0.081 0.455
h+CM 0.037 0.092 0.090 0.103 0.089 0.115 0.135 0.078 0.453

Hamming loss (↓)

CCN(h) 0.013 0.026 0.022 0.024 0.019 0.025 0.031 0.092 0.196
h+ 0.015 0.027 0.023 0.025 0.022 0.027 0.032 0.092 0.196
h+CM 0.015 0.027 0.023 0.025 0.020 0.025 0.032 0.092 0.196

Multi-label accuracy (↑)

CCN(h) 0.589 0.296 0.310 0.303 0.324 0.275 0.255 0.607 0.480
h+ 0.591 0.296 0.309 0.305 0.323 0.277 0.257 0.603 0.487
h+CM 0.587 0.283 0.306 0.301 0.321 0.257 0.250 0.604 0.482

One-error (↓)

CCN(h) 0.181 0.413 0.389 0.405 0.379 0.402 0.494 0.224 0.234
h+ 0.181 0.413 0.396 0.405 0.394 0.420 0.494 0.227 0.234
h+CM 0.185 0.434 0.391 0.407 0.357 0.407 0.496 0.226 0.231

Ranking loss (↓)

CCN(h) 0.024 0.036 0.035 0.046 0.035 0.046 0.094 0.073 0.172
h+ 0.026 0.036 0.036 0.046 0.039 0.049 0.097 0.077 0.172
h+CM 0.025 0.037 0.037 0.047 0.039 0.049 0.096 0.074 0.174

Table 10: Results of the ablation studies. The best results are in bold.

6. Related Work

In this article, we introduced LCMC problems: MC problems in which every prediction
must satisfy a given set of hard constraints expressed as normal rules. HMC problems are
special cases of LCMC in which the body of each constraint is a single class and with the
additional restriction that the graph associated to the set of constraints is acyclic.

We divide this section on the related work into two parts: in the first part, we focus on
the literature in the HMC field, while in the second part, we present and discuss the previous
works that have already dealt with the problem of imposing more expressive constraints on
MC problems.

6.1 Hierarchical Multi-Label Classification

In the literature, HMC methods are traditionally divided into local and global approaches
(Silla & Freitas, 2011).
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Metric
Average ranking Wilcoxon test

CCN(h) h+ h+CM CCN(h) vs. h+ CCN(h) vs. h+CM

Average precision 1.39 2.28 2.33 XX X
Coverage error 1.39 2.36 2.25 XX X
Hamming loss 1.53 2.33 2.14 XX X
Multi-label accuracy 1.69 1.72 2.58 XX
One-error 1.44 2.31 2.25 XX X
Ranking loss 1.33 2.28 2.39 XX XX

Table 11: Average ranking for each metric and model, and results of the Wilcoxon test:
X (resp., XX) is used to indicate that the Wilcoxon test returned p-value < 0.05 (resp.,
< 0.01).

Local approaches decompose the problem into smaller classification ones, and then the
solutions are combined to solve the main task. Local approaches can be further divided
based on the strategy that they deploy to decompose the main task. If a method trains a
different classifier for each level of the hierarchy, then we have a local classifier per level, like
the models proposed by Cerri et al. (2011, 2014, 2016), Li et al. (2018) and Zou et al. (2019).
The works by Cerri et al. (2011, 2014, 2016) are extended by Wehrmann et al. (2018), who
present HMCN-R and HMCN-F. Since HMCN-R and HMCN-F are trained with both a
local loss and a global loss, they are considered hybrid local-global approaches. If a method
trains a classifier for each node of the hierarchy, then we have a local classifier per node.
Cesa-Bianchi et al. (2006) propose a linear classifier which is trained for each node with a loss
function that captures the hierarchy structure. On the other hand, Feng et al. (2018) deploy
one multi-layer perceptron for each node. A different approach is proposed in the work by
Bi and Kwok (2011), where kernel dependency estimation is employed to project each class
to a low-dimensional vector. To preserve the hierarchy structure, a generalized condensing
sort and select algorithm is developed, and each vector is then learned singularly using ridge
regression. Finally, if a method trains a different classifier per parent node in the hierarchy,
then we have a local classifier per parent node. For example, Kulmanov et al. (2018)
propose to train a model for each sub-ontology of the Gene Ontology, combining features
automatically learned from the sequences and features based on protein interactions. Xu
and Geng (2019), instead, try to solve the overfitting problem typical of local models by
representing the correlation among the classes by the class distribution, and then training
each local model to map data points to class distributions.

Global methods consist of single models able to map objects with their corresponding
classes in the hierarchy as a whole. A well-known global method is Clus-HMC (Vens et al.,
2008), consisting of a single predictive clustering tree for the entire hierarchy. This work is
extended by Schietgat et al. (2010), who propose Clus-Ens: an ensemble of Clus-HMC. In
Masera and Blanzieri (2018) propose a neural network incorporating the structure of the
hierarchy in its architecture. While this network makes predictions that are coherent with
the hierarchy, it also makes the assumption that each parent class is the union of the chil-
dren. Borges and Nievola (2012) propose competitive neural networks, whose architecture
replicates the hierarchy. The name of these networks comes from the fact that the neurons
in the output layer compete with each other to be activated.
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If we move the focus on how the satisfaction of the constraints is guaranteed, HMC
models can be divided in:

1. approaches that satisfy the constraints by construction, and

2. approaches that require a post-processing step to enforce the constraints.

In the first category, we can find methods such as Clus-HMC (Vens et al., 2008), which is
a decision tree and hence satisfies by construction each hierarchy constraint. Clus-Ens, the
ensemble of Clus-HMC, computes the average of all class vectors predicted by the trees in
the ensemble, and hence its predictions always satisfy the constraints. The model proposed
by Bi and Kwok (2011), in order to preserve the hierarchy structure, develops a generalized
condensing sort and select algorithm, while Cesa-Bianchi et al. (2006) evaluate the node
classifiers in a top-down fashion, thus not making a prediction at all for the descendants of
a node that has not been predicted.

Many of the neural-network-based models belong to the second category. A common
policy to enforce the satisfaction of A1 → A is to force the output for class A1 to be smaller
than or equal to the output for A (see, e.g., Cerri et al., 2011, 2014, 2016; Wehrmann et al.,
2018). However, other solutions are possible. For example, Borges and Nievola (2012)
associate to each data point an initial set of classes which is then extended to include all
their ancestors in the hierarchy, while Feng et al. (2018) apply a post processing method
based on Bayesian networks in order to guarantee that the results are coherent with the
hierarchy constraints. For a detailed overview on the many different policies that can be used
to impose the hierarchy constraints as a post-processing step, see the survey by Obozinski
et al. (2008).

6.2 More Expressive Constraints

When dealing with more expressive constraints, researchers have mostly focused on the
problem of exploiting them to improve their models and/or to deal with data scarcity,
curiously neglecting the problem of guaranteeing their satisfaction.

If we focus on constraints expressed as logic rules, then we can find works such as the
one by Hu et al. (2016a), in which the authors introduce an iterative method to embed
structured information expressed by first order logic (FOL) formulas into the weights of
different kinds of deep neural networks. At each step, they consider a teacher network
based on the set of FOL rules to train a student network to fit both supervisions and logic
rules. The work has been later extended to jointly learn the structure of the rules and their
weights (Hu et al., 2016b). A different approach is considered by Li and Srikumar (2019),
where a new framework is introduced to augment a neural network assigning semantics via
logical rules to its neurons. Indeed, some neurons are associated with logical predicates, and
then their activation is modified depending on the activation of the neurons corresponding
to predicates that co-occur in the same rules. Many works embed logical constraints into
penalty functions to formulate a learning problem (see e.g., Diligenti et al., 2017; Donadello
et al., 2017; Xu et al., 2018). These works generally consider a fuzzy relaxation of FOL
formulas to get a differentiable loss function that may be minimized by gradient descent.
However, as the loss function is minimized, there is no guarantee that the constraints are
fully satisfied.
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If we further broaden our view to more general constraints, that is, to any constraint
that enforces some correlation on the outputs of the model, then we can find a very wide
literature, in which many works have shown that exploiting the background knowledge ex-
pressed by the constraints can bring some benefits. For example, Stewart and Ermon (2017)
exploit the background knowledge coming from known laws of physics to train neural net-
works without any labeled example. Chen et al. (2015) combine Markov random fields
with deep neural networks to express some context correlation in an image segmentation
task. Similarly, Huang et al. (2015) consider conditional random fields on top of a bidirec-
tional LSTM (Hochreiter & Schmidhuber, 1997) to enforce some statistical co-occurrencies
(n-grams) among the network predictions, achieving state-of-the-art performance on POS
and chunking tasks. Some of these works have also tried to impose hard constraints on
learning algorithms, however, dealing effectively with hard constraints commonly requires
a specific optimization schema, for example by considering a sequence of problems where
the hard constraints are replaced by soft ones associated with larger and larger penalties,
(see Bertsekas, 2014; Fletcher, 2013 for a detailed dissertation on optimization methods),
and convergence is only guaranteed under suitable conditions; see the work by Luenberger
(1997). Gnecco et al. (2014) consider different learning problems where both soft and hard
constraints are taken into account at the same time. Soft constraints are added to the
penalty function, while the optimal solution (if it exists) is required to satisfy a system of
(in)equalities corresponding to the hard constraints. A newly devised approach to asymp-
totically satisfy hard constraints is considered by Farina et al. (2020), where the authors
use the distributed asynchronous method of multipliers to solve the optimization problem.
Another approach that can incorporate hard constraints are probabilistic sentential decision
diagrams (Kisa et al., 2014). This approach (later extended by Shen et al., 2016, 2018, 2019)
was designed to learn distributions over structured objects and to assign zero probability
to outputs inconsistent with the constraints. It belongs to the framework of probabilistic
circuits (Choi et al., 2020), whose models lend themselves to learning from a combination
of data and background knowledge expressed in different ways (see, e.g., Poon & Domingos,
2011; Rahman et al., 2014.)

7. Conclusion

In this article, we introduced and dealt with LCMC problems: MC problems with hard con-
straints expressed as normal logic rules. We first focused on the special case represented by
HMC problems, and proposed C-HMCNN(h), a novel model based on neural networks that
(i) is able to leverage the hierarchical information to learn when to delegate the prediction
on a superclass to one of its subclasses, (ii) produces predictions coherent by construc-
tion, and (iii) outperforms current state-of-the-art models on 20 commonly used real-world
HMC benchmarks, and (iv) it can be easily implemented on GPUs using standard libraries.
We then considered the general case and proposed CCN(h), which has four distinguishing
features: (i) its predictions are always coherent with the given constraints, (ii) it can be
implemented on GPUs using standard libraries, (iii) it extends C-HMCNN(h), and thus out-
performs the state-of-the-art HMC models on HMC problems, and (iv) it outperforms the
state-of-the-art MC models on 16 LCMC problems obtained adding automatically extracted
constraints to well-known MC problems.
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This work opens the path to many different lines of research. In general, the basic
idea behind this article is to (i) incorporate the constraints in neural networks models
guaranteeing their coherency, and (ii) exploit the constraints to improve performance. In
this article, we focussed on MC problems with hard logical constraints on the output, but
indeed the same idea can be applied also to other problems, and it could be interesting
to investigate (i) whether it is possible to impose even more expressive constraints (e.g.,
involving also the input), (ii) how to incorporate both soft and hard constraints, and (iii) how
to impose hard constraints on regression, binary classification, and multi-class classification
problems.
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Appendix A. HMC - Experimental Analysis Details

In this section, we provide more details about the conducted experimental analysis for
HMC problems. As stated in the article, across the different experiments, we kept all
hyperparameters fixed with the exception of the hidden dimension and the learning rate,
which are reported in the first two columns of Table 12. The other hyperparameters were
determined by searching the best hyperparameters configuration on the Funcat datasets; we
then took the configuration that led to the best results on the highest number of datasets.
The hyperparameter values taken in consideration were: (i) learning rate: [10−3, 10−4, 10−5],
(ii) batch size: [4, 64, 256], (iii) dropout: [0.6, 0.7], and (iv) weight decay: [10−3, 10−5].
Concerning the hidden dimension, we took into account all possible dimensions from 250 to
2000 with step equal to 250, and from 2000 to 10000 with step 1000. All experiments were
run on an Nvidia Titan Xp with 12 GB memory.

In the last two columns of Table 12, we compare CCN(h)’s average inference time per
batch in milliseconds when run on a CPU and on a GPU. The average is computed over 500
batches for each dataset. As it can be seen from the table, implementing CCN(h) on GPU
led to much smaller inference times, especially on the GO datasets. For this experiment,
we used an Nvidia Titan Xp with 12 GB memory as GPU and an Intel(R) Xeon(R) Gold
5218 CPU @ 2.30GHz as CPU. The hyperparameters of all neural networks were kept the
same as in the other experiments.

Appendix B. LCMC - Experimental Analysis Details

In this section, we provide more details about the conducted experimental analysis for
LCMC problems. As stated in the article, across the different experiments, we kept all
hyperparameters fixed with the exception of the hidden dimension, which are reported in
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Dataset
Hidden

Dimension
Learning

Rate
Time per

batch (GPU)
Time per

batch (CPU)

Cellcycle FUN 500 10−4 2.0 24.5
Derisi FUN 500 10−4 2.0 13.6
Eisen FUN 500 10−4 1.7 14.6
Expr FUN 1000 10−4 1.9 12.6
Gasch1 FUN 1000 10−4 2.0 8.5
Gasch2 FUN 500 10−4 2.8 8.7
Seq FUN 2000 10−4 2.0 16.5
Spo FUN 250 10−4 1.6 13.8

Cellcycle GO 1000 10−4 2.4 715.1
Derisi GO 500 10−4 2.5 668.8
Eisen GO 500 10−4 3.4 571.1
Expr GO 4000 10−5 3.9 751.6
Gasch1 GO 500 10−4 2.5 788.3
Gasch2 GO 500 10−4 2.8 752.2
Seq GO 9000 10−5 2.6 837.8
Spo GO 500 10−4 3.3 720.3

Diatoms 2000 10−5 2.0 71.3
Enron 1000 10−5 3.6 1.9
Imclef07a 1000 10−5 3.4 9.9
Imclef07d 1000 10−5 2.9 1.5

Table 12: Hidden dimension used for each dataset, learning rate used for each dataset, and
average inference time per batch in milliseconds (ms). Average computed over 500 batches
for each dataset.

Table 13. The other hyperparameters were determined by searching the best hyperparam-
eters configuration on the validation sets; we then took the configuration that led to the
best results on the highest number of datasets. The hyperparameter values taken in consid-
eration were: (i) learning rate: [10−3, 10−4, 10−5], (ii) batch size: [4, 64, 256], (iii) dropout:
[0.6, 0.7, 0.8], and (iv) weight decay: [10−3, 10−4, 10−5]. Concerning the hidden dimension,
we took into account all possible dimensions from 100 to 1000 with step equal to 100, and
from 1000 to 5000 with step 500. Again, all experiments were run on an Nvidia Titan Xp
with 12 GB memory.

Appendix C. Proof Theorem 2.7

Proof. Consider a data point and a class A.

∂CLoss

∂hA
=
∑
B∈A

∂CLossB
∂hA

.

Assume yA = 1. For each class B such that yB = 0:

CLossB = − ln (1− CMB),
∂CLossB
∂hA

=
1

1− CMB

∂CMB

∂hA
= 0,
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Dataset Hidden Dimension

Arts 4000
Business 4000
Cal500 100
Emotions 100
Enron 2500
Genbase 5000
Image 1000
Medical 800
Rcv1Subset1 600
Rcv1Subset2 1500
Rcv1Subset3 4000
Rcv1Subset4 1000
Rcv1Subset5 4000
Science 2000
Scene 1500
Yeast 4000

Table 13: Hidden dimension used for each dataset.

because CMB is not a function of hA (since yA = 1 and yB = 0, A 6∈ DB), and hence
∂CMB
∂hA

= 0. For each class B such that yB = 1,

CLossB = − ln( max
C∈DB

(yChC)),
∂CLossB
∂hA

= − 1

maxC∈DB
(yChC)

∂maxC∈DB
(yChC)

∂hA
≤ 0,

because if maxC∈DB
(yChC) = hA, then ∂CLossB

∂hA
= − 1

hA
≤ 0, otherwise ∂CLossB

∂hA
= 0. Since

∂CLoss
∂hA

is given by the sum of quantities that are smaller or equal zero, then ∂CLoss
∂hA

≤ 0.

Assume yA = 0. For each class B such that yB = 0:

CLossB = − ln (1− CMB),
∂CLossB
∂hA

=
1

1− CMB

∂CMB

∂hA
≥ 0,

because if CMB = hA, then ∂CMB
∂hA

= 1, otherwise ∂CMB
∂hA

= 0. For each class B such that
yB = 1:

CLossB = − ln( max
C∈DB

(yChC)),
∂CLossB
∂hA

= − 1

maxC∈DB
(yChC)

∂maxC∈DB
(yChC)

∂hA
= 0,

because maxC∈DB
(yChC) 6= hA, since yA = 0. Since ∂CLoss

∂hA
is given by the sum of quantities

that are greater than or equal to zero, then ∂CLoss
∂hA

≥ 0.

Appendix D. Proof Theorem 3.15

Proof. By induction on the number s of strata.
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Assume s = 1. Then, the constraints in Π are definite rules, Π1 = Π, and the statement
follows.

Assume s = n + 1 > 1, and let A1, . . . ,An+1 be the partition of the set A of classes
computed by CompStrata(Π). By the induction hypothesis, Π1, . . . ,Πn is a stratification of
∪ni=1Πi with the smallest number of strata. By construction, for each class A in An+1 the
path from a root to A in GΠ containing the maximum number of negative edges contains
n negative edges. Thus, for each class A ∈ An+1, there exists a constraint r ∈ Πn+1 such
that:

1. head(r) = A,

2. there exists a class B ∈ An such that ¬B ∈ body−(r).

Furthermore, Π = ∪n+1
i=1 Πi is stratified, since ∪ni=1Πi is stratified by the induction hypothesis

and, for every constraint r ∈ Πn+1,

1. each class in body+(r) belongs to ∪n+1
i=1 Ai, and

2. each class in body−(r) belongs to ∪ni=1Ai.

Since Π1, . . . ,Πn is a stratification of ∪ni=1Πi with the smallest number of strata, then
Π1, . . . ,Πn+1 is a stratification of Π with the smallest number of strata.

Appendix E. Proof Theorem 3.17

Proof. Let A1, . . . ,As be the partition of A computed by CompStrata(Π). We recall that,
for a class A, (15) is

mA = max(hA,m
r1
A , . . . ,m

rp
A ),

where r1, . . . , rp are all the constraints in Π with head A and, for each such constraint rj of
form (9),

m
rj
A = min(mA1 , . . . ,mAk

,mAk+1
, . . . ,mAn).

Consider a generic class A ∈ Ai. We show that the definition of CMA is equal to the
expression resulting from the substitution of each mAl

in m
rj
A (1 ≤ j ≤ p) with

1. CMAl
if Al∈∪i−1

j=1Aj ,

2. the right-hand side of Equation (18) if Al ∈ Ai.

Consider the result of such a substitution in m
rj
A . Applying the distributivity of the mini-

mum operation over the maximum operation, we get

m
rj
A = max

r∈Π∗
i (rj)

(min(vbody(r))),

where

1. Π∗i (rj) is the set of constraints initially equal to {rj} and then obtained by recursively
adding the constraints obtained from a constraint r ∈ Π∗i (rj) by substituting a class
B ∈ body+(r) ∩ Ai with body(r′) for any constraint r′ with head(r′) = B, and
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2. vbody(r) is the set

{CMB : B ∈ body+(r), B ∈ ∪i−1
j=1Aj}∪

{hB : B ∈ body+(r), B ∈ Ai}∪
{CMB : ¬B ∈ body−(r)}.

Since the set of constraints in Π∗i with head A is equal to ∪pj=1Π∗i (rj), the statement
follows.

Appendix F. Proof Theorem 3.18

Proof. We recall that, for each class A, CCN(h)A = CMA, and we use CMA, since shorter.
Consider the partition A1, . . . ,As of the set of classes A and the corresponding strat-

ification Π1, . . . ,Πs of Π. We prove that the outputs of CM for the classes in Ai are the
smallest values satisfying (15), given the values CMB for B ∈ ∪i−1

j=1Aj .
If a model satisfies (15), then it also satisfies the inequalities (10) associated with each

constraint (9) in Πi. Thus, we first prove that for any model m satisfying (10) for each
constraint (9) in Πi, given the values mB for B ∈ ∪i−1

j=1Aj , mA ≥ CMA. This allows us to
conclude that any model m satisfying (15) has values bigger than or equal to those of CM.

Let I(Πi) be the set of inequalities (10), one for each constraint of the form (9) in Πi

union, for each class A ∈ Ai,
hA ≤ mA. (20)

We represent I(Πi) as the set of pairs 〈S,mA〉, where S is the set {mA1 , . . . ,mAn} (resp.,
{hA}) in the case of (10) (resp., (20)).

Define I∗(Πi) to be the set of inequalities obtained from I(Πi) by recursively adding the
pairs 〈S ∪ S ′ \A,mB〉 such that 〈S,mA〉 ∈ I∗(Πi), 〈S ′,mB〉 ∈ I∗(Πi) and A ∈ S ′. I∗(Πi) is
finite, and each inequality in I∗(Πi) is entailed by the inequalities in I(Πi). Thus, I∗(Πi)
and I(Πi) have the same set of solutions. For each constraint r in Π∗i of the form (9) with
head A ∈ Ai, the inequality

〈{vA1 , . . . , vAk
,mAk+1

, . . . ,mAn}, A〉 (21)

belongs to I∗(Πi), where vA1 = hA1 if A1 ∈ Ai, and vA1 = mA1 if A1 ∈ ∪i−1
j=1Aj . Analogously

for vA2 , . . . , vAk
.

By definition, CMA is the smallest value satisfying the inequalities (21) in I∗(Πi). Thus,
for any model m satisfying I∗(Πi), mA ≥ CMA.

Appendix G. Proof Theorem 3.19

Proof. We prove each statement of the theorem separately. By hypothesis, H is the set of
classes A such that hA > θ. M is the set of classes A such that CMA > θ. A1, . . . ,As and
Π1, . . . ,Πs is the partition of A and Π computed by CompStrata(Π), respectively.

1. CCN(h) extends the set of classes associated with x by h. We have to prove that
H ⊆M. A ∈ H iff hA > θ. Since CMA ≥ hA, if A ∈ H, then A ∈M.

M is coherent with Π. We have to prove that for each constraint r of the form (9),
if min(CMA1 , . . . ,CMAk

, CMAk+1
, . . . ,CMAn) > θ, then CMA > θ, which is an easy

consequence of the fact that the outputs of CM satisfy (15) and thus also (10).
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2. M is supported relative to H and Π. Assume it is not. Then, consider a class
A ∈ M \ H such that for each constraint r ∈ Π of the form (9), there exists an
index j ∈ {1, . . . , n} such that

(a) both CMAj ≤ θ and j = 1, . . . , k, or

(b) both CMAj ≤ θ and j = k + 1, . . . , n.

By Theorem 3.17, CMA is the smallest value satisfying Equation (15) given the values
mB for B ∈ ∪i−1

j=1Aj . Thus, CMA > θ is not possible, and this contradicts A ∈M.

3. M is minimal relative to H and Π. Let M0 = H. Let Mi+1 be the closure of Mi

under Π∗i+1 (1 ≤ i < s). The statement is a consequence of the minimality of each
Mi+1 and the fact that M =Ms.

4. M is the unique set satisfying all the previous properties. As above, let M0 = H,
and let Mi+1 be the closure of Mi under Π∗i+1 (1 ≤ i < s). The statement is a
consequence of the uniqueness of each Mi+1 and the fact that M =Ms.

Appendix H. Proof Theorem 3.22

Proof. First, observe that if Π is stratified, then also Π ∪ {→ A : A ∈ H} is stratified. The
theorem is an easy consequence of the fact that in the case of a stratified set of constraints,
the stable and the canonical model semantics coincide (see, e.g., Gelfond & Lifschitz, 1988),
and the latter, for Π ∪ {→ A : A ∈ H}, is defined as follows.

Consider the partition A1, . . . ,As of the set of classes A and the corresponding stratifi-
cation Π1, . . . ,Πs resulting from CompStrata(Π). DefineM0 = H, and, for each 0 ≤ i < s,

Mi+1 = T (Mi,Π
Mi
i+1),

where T (Mi,Π
Mi
i+1) is the smallest superset of Mi closed under the reduct ΠMi

i+1 of Πi+1

relative to Mi. Mi+1 is unique.
Then, the canonical model M of Π ∪ {→ A : A ∈ H} is M =Ms.

Appendix I. Proof Theorem 3.24

Proof. Consider a data point and a class A.

∂CLoss

∂hA
=
∑
B∈A

∂CLossB
∂hA

.

We consider only the case yA = 1 (the case yA = 0 is analogous). Consider a class B.

1. If yB = 1,

CLossB = − ln(CM+
B),

∂CLossB
∂hA

= − 1

CM+
B

∂CM+
B

∂hA
≤ 0,

because:
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• either CM+
B = hA (which is possible only if A = B, or there exists a constraint

r with head B such that h+,r
B = hA) and then ∂CLossB

∂hA
= − 1

hA
≤ 0,

• or CM+
B is a value not dependent on hA and then ∂CLossB

∂hA
= 0 (since yA = 1,

it cannot be the case that there exists a constraint r with head B such that
h+,r
B = hA).

2. if yB = 0,

CLossB = − ln (CM
−
B),

∂CLossB
∂hA

=
1

CM
−
B

∂CM−B
∂hA

≤ 0,

because:

• either CM−B = hA (which is possible only if A = B or there exists a constraint r

with head B such that h−,rB = hA) and then ∂CLossB
∂hA

= − 1
hA
≤ 0,

• or CM−B is a value not dependent on hA and then ∂CLossB
∂hA

= 0 (since yA = 1,
it cannot be the case that there exists a constraint r with head B such that
h−,rB = hA).

Since ∂CLoss
∂hA

is the sum of quantities that are at most zero, then ∂CLoss
∂hA

≤ 0.
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medical images. In Proceedings of IS, pp. 174–181.

Dimitrovski, I., Kocev, D., Loskovska, S., & Dzeroski, S. (2012). Hierarchical classification of
diatom images using ensembles of predictive clustering trees. Ecological Informatics,
7 (1), 19–29.

Diplaris, S., Tsoumakas, G., Mitkas, P. A., & Vlahavas, I. (2005). Protein classification with
multiple algorithms. In Bozanis, P., & Houstis, E. N. (Eds.), Advances in Informatics.

Donadello, I., Serafini, L., & d’Avila Garcez, A. (2017). Logic tensor networks for semantic
image interpretation. In Proceedings of IJCAI, pp. 1596–1602.

Elisseeff, A., & Weston, J. (2001). A kernel method for multi-labelled classification. In
Proceedings of NeurIPS, p. 681–687.

Farina, F., Melacci, S., Garulli, A., & Giannitrapani, A. (2020). Asynchronous distributed
learning from constraints. IEEE Transactions on Neural Networks and Learning Sys-
tems, 31 (10), 4367–4373.

814



Multi-Label Classification Neural Networks with Hard Logical Constraints

Feng, L., An, B., & He, S. (2019). Collaboration based multi-label learning. In Proceedings
of AAAI, pp. 3550–3557.

Feng, S., Fu, P., & Zheng, W. (2018). A hierarchical multi-label classification method based
on neural networks for gene function prediction. Biotechnology and Biotechnological
Equipment, 32, 1613–1621.

Fletcher, R. (2013). Practical Methods of Optimization. John Wiley & Sons.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In
Proceedings of Logic Programming, pp. 1070–1080.

Giunchiglia, E., & Lukasiewicz, T. (2020). Coherent hierarchical multi-label classification
networks. In Proceedings of NeurIPS, pp. 9662–9673.

Gnecco, G., Gori, M., Melacci, S., & Sanguineti, M. (2014). Learning with mixed hard/soft
pointwise constraints. IEEE Transactions on Neural Networks and Learning Systems,
26 (9), 2019–2032.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9 (8), 1735–1780.

Hu, Z., Ma, X., Liu, Z., Hovy, E., & Xing, E. (2016a). Harnessing deep neural networks
with logic rules. In Proceedings of ACL, pp. 2410–2420.

Hu, Z., Yang, Z., Salakhutdinov, R., & Xing, E. (2016b). Deep neural networks with massive
learned knowledge. In Proceedings of EMNLP, pp. 1670–1679.

Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., & Yi, X. (2020).
A survey of safety and trustworthiness of deep neural networks: Verification, testing,
adversarial attack and defence, and interpretability. Computer Science Review, 37.

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging.
ArXiv, abs/1508.01991.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings
of ICLR.

Kisa, D., den Broeck, G. V., Choi, A., & Darwiche, A. (2014). Probabilistic sentential
decision diagrams. In Baral, C., Giacomo, G. D., & Eiter, T. (Eds.), Proceedings of
KR. AAAI Press.

Klimt, B., & Yang, Y. (2004). The Enron Corpus: A new dataset for email classification
research. In Proceedings of ECML, pp. 217–226.

Kulmanov, M., Khan, M. A., & Hoehndorf, R. (2018). DeepGO: Predicting protein functions
from sequence and interactions using a deep ontology-aware classifier. Bioinformatics,
34 (4), 660–668.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research, 5, 361–397.

Li, T., & Srikumar, V. (2019). Augmenting neural networks with first-order logic. In
Proceedings of ACL, pp. 292–302.

Li, Y., Wang, S., Umarov, R., Xie, B., Fan, M., Li, L., & Gao, X. (2018). DEEPre: Sequence-
based enzyme EC number prediction by deep learning. Bioinformatics, 34 (5).

815



Giunchiglia & Lukasiewicz

Lloyd, J. W. (1987). Foundations of Logic Programming, 2nd Edition. Springer.

Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward
relu neural networks. CoRR, abs/1706.07351.

Luenberger, D. G. (1997). Optimization by Vector Space Methods. John Wiley & Sons.

Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L., Liu, Y.,
Zhao, J., & Wang, Y. (2018). Deepgauge: multi-granularity testing criteria for deep
learning systems. In Proceedings of ACM/IEEE ASE, pp. 120–131. ACM.

Masera, L., & Blanzieri, E. (2018). AWX: An integrated approach to hierarchical-multilabel
classification. In Proceedings of ECML-PKDD, pp. 322–336.

Metcalfe, G. (2005). Fundamentals of fuzzy logics. https://www.logic.at/tbilisi05/Metcalfe-
notes.pdf.

Nakano, F. K., Lietaert, M., & Vens, C. (2019). Machine learning for discovering missing
or wrong protein function annotations — A comparison using updated benchmark
datasets. BMC Bioinformatics, 20 (1), 485:1–485:32.

Obozinski, G., Lanckriet, G. R. G., Grant, C. E., Jordan, M. I., & Noble, W. S. (2008).
Consistent probabilistic outputs for protein function prediction. Genome Biology, 9.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pei, K., Cao, Y., Yang, J., & Jana, S. (2019). Deepxplore: automated whitebox testing of
deep learning systems. Communications ACM, 62 (11), 137–145.

Pereira, R. B., Plastino, A., Zadrozny, B., & Merschmann, L. H. (2018). Correlation anal-
ysis of performance measures for multi-label classification. Information Processing &
Management, 54 (3), 359 – 369.

Pestian, J. P., Brew, C., Matykiewicz, P., Hovermale, D. J., Johnson, N., Cohen, K. B.,
& Duch, W. (2007). A shared task involving multi-label classification of clinical free
text. In Proceedings of Workshop on BioNLP.

Poon, H., & Domingos, P. (2011). Sum-product networks: A new deep architecture. In 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops),
pp. 689–690.

Pulina, L., & Tacchella, A. (2010). An abstraction-refinement approach to verification of
artificial neural networks. In Proceedings of CAV, pp. 243–257.

Rahman, T., Kothalkar, P., & Gogate, V. (2014). Cutset networks: A simple, tractable,
and scalable approach for improving the accuracy of chow-liu trees. In Calders, T.,
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