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Abstract

If an agent, or a coalition of agents, has a strategy, knows that she has a strategy, and
knows what the strategy is, then she has a know-how strategy. Several modal logics of
coalition power for know-how strategies have been studied before.

The contribution of the article is three-fold. First, it proposes a new class of know-how
strategies that depend on the intelligence information about the opponents’ actions. Sec-
ond, it shows that the coalition power modality for the proposed new class of strategies
cannot be expressed through the standard know-how modality. Third, it gives a sound and
complete logical system that describes the interplay between the coalition power modality
with intelligence and the distributed knowledge modality in games with imperfect informa-
tion.

1. Introduction

The Battle of the Atlantic was a classical example of the matching pennies game. British
(and American) admirals were choosing routes of the allied convoys and the Germans picked
routes of their U-boats. If their trajectories crossed, the Germans scored a win, if not the
allies did. Neither of the players appeared to have a strategy that would guarantee a victory.

The truth, however, was that during the most of the battle one of the sides had exactly
such a strategy. First, it was the British who broke German Enigma cipher in summer of
1941. Although the Germans did not know about the British success, they changed code-
book and added fourth wheel to Enigma in February 1942 thus preventing the British from
decoding German messages. The very next month, in March 1942, German navy cryptog-
raphy unit, B-Dienst, broke the allied code and got access to convoy route information.
The Germans lost their ability to read allied communication in December 1942 due to a
routine change in the allied codebook. The same month, the British were able to read
German communication as a result of capturing codebook from a U-boat in Mediterranean.
In March 1943, the Germans changed codebook again and, unknowingly, disabled British
ability to read German messages. Simultaneous, the Germans caught up and started to
decipher British transmissions again (Budiansky, 2002; Showell, 2003).

At almost any moment during these two years one of the sides was able to read the
communications of the other side. However, the two sides never have been able to read
each other’s messages at the same time to notice that the other side knows more than it
should have known. As a result, neither of them was able to figure out that their own code
is insecure. Finally, in May 1943, with the help of US Navy, the British cracked German
messages while the Germans still were reading British. It was the first time the allies
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understood that their code was insecure. A new convoy cipher was immediately introduced
and the Germans have never been able to break it again, while the allies continued reading
Enigma-encrypted transmissions till the end of the war (Budiansky, 2002).

In this article, we study coalition power in strategic games assuming that the coalition
has intelligence information about the moves of all or some of its opponents. Throughout
the article, we refer to the information about the future actions of the other agents simply
as “the intelligence”. We write [C]r if a coalition C' has a strategy to achieve an outcome
© in one step as long as the coalition has the intelligence about the move of each agent in
set I. For example,

[British|Germans(Convoy is saved).

As another example, consider the road situation depicted in Figure 1. Here, a busy three-
lane highway is merging into a two-lane one. Drivers of cars a and b need to coordinate in

Figure 1: A road situation.

order to avoid the collision. Each of them has two possible actions: to accelerate or to slow
down. If both drivers choose the same action, the cars will collide. If they choose different
actions, the accident will be avoided. First, suppose that each of the drivers is choosing an
action not knowing what the other driver will do. In this case, the drivers might get lucky
and avoid the collision, but neither of them has a strategy to avoid it:

—[a]g(Collision is avoided.) A —=[b]g(Collision is avoided.).

Suppose now that cars a and b are self-driving vehicles that can use, for example, radio
signals to warn other cars about their chosen course of actions. In this case, self-driving car
a has a strategy to unilaterally prevent collision as long as it knows the forthcoming action
of car b. The opposite, of course, is also true:

[a]y(Collision is avoided.) A [b],(Collision is avoided.).

An important class of strategic games with intelligence is Stackelberg security games.
These games have been used by the U.S. Transportation Security Administration, the U.S.
Federal Air Marshal Service, the U.S. Coast Guard, and others (Sinha, Fang, An, Kiek-
intveld, & Tambe, 2018). An example of a security game is captured in Table 1. Here, one
of the two agents, the attacker, is trying to inflict the greatest damage on a two-terminal
airport. The defender is trying to minimize the damage. The attacker has two strategies:
Attack Terminal 1 and Attack Terminal 2. The defender, constrained by the budget, has
only a single security officer who could be placed at either of the two terminals. It is usually
assumed in security games that the defender employs a mixed strategy by asking the agent
to randomly visit both terminals. The mixed strategy of the defender could be expressed as
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(100,0) (50,50) (0,100)

Attack Terminal 1 10 55 100
Attack Terminal 2 200 110 20

Table 1: Expected values of damage to the airport.

pair (w1, ws), where wy and wsy are percentages of time the security officer spends at the first
and the second terminals, respectively. For the sake of simplicity, we restrict the defender
to mixed strategies (100,0), (50,50), and (0,100). The expected value of the damage to
the airport under different action profiles is shown in Table 1. For example, if the defender
chooses mixed strategy (50,50) and the attacker targets the first terminal, then, of course,
there could be a smaller or a larger damage to the terminal depending on where the security
officer is at the moment of the attack. However, the expected value of this damage, per
Table 1, is 55 units. Note that in this setting the attacker has a strategy to guarantee that
the expected value of the damage is at least 20 units. The strategy consists in targeting the
second terminal and it does not depend on any intelligence:

[Attacker]z(Expected value of damages is at least 20 units).

At the same time, the attacker does not have a strategy to guarantee that the expected
value of the damage is at least 30 units:

—[Attacker]z(Expected value of damages is at least 30 units).

It is the standard assumption in security games that the attacker has the intelligence
about the mixed strategy used by the defender. In our example, it would be assumed that
the attacker visits the airport multiple number of times while preparing for the attack.
During these visits the attack observes the frequencies of the placement of the security
officer at the two terminals and learns the mixed strategy used by the defender. If the
attacker knows the mixed strategy of the defender, then the attacker has a strategy to force
a significantly larger expected value of the damages to the airport:

[Attacker] pefender (Expected value of damages is at least 100 units).

In general, security games can be viewed as two-player perfect-information strategic games
where one of the players, the attacker, has the intelligence about the other player, the
defender.

Modality [C]g¢ is the coalitional power modality proposed by Marc Pauly (Pauly, 2001,
2002). He gave a sound and complete axiomatization of this modality in the case of perfect
information strategic games. Variations of his logic has been studied before (Goranko,
2001; van der Hoek & Wooldridge, 2005; Sauro, Gerbrandy, van der Hoek, & Wooldridge,
2006; Borgo, 2007; Agotnes, van der Hoek, & Wooldridge, 2009; Agotnes, Balbiani, van
Ditmarsch, & Seban, 2010; Goranko, Jamroga, & Turrini, 2013; Belardinelli, 2014; Goranko
& Enqvist, 2018). Strategic power modality with intelligence [a1,...,an)i;, . i, can be
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expressed in Strategy Logic (Chatterjee, Henzinger, & Piterman, 2010; Mogavero, Murano,
Perelli, & Vardi, 2014) as

Yty ... Vtg3sy, ... 3sp(a1,81) ... (an, sp) (i1, t1) - . . (i, tr) X,

where (a, s) stands for “agent a uses strategy s” and X stands for “on the next step”.

The literature on the strategy logic covers model checking (Berthon, Maubert, Murano,
Rubin, & Vardi, 2017), synthesis (Cermdk, Lomuscio, & Murano, 2015), decidability (Mo-
gavero, Murano, Perelli, & Vardi, 2012, 2017), and bisimulation (Belardinelli, Dima, &
Murano, 2018). We are not aware of any completeness results for a strategy logic with
quantifiers over strategies.

At the same time, our approach is different from the one in Alternating-time Tempo-
ral Logic with Explicit Strategies (ATLES) (Walther, van der Hoek, & Wooldridge, 2007).
There, modality ((C)), denotes the existence of a strategy of coalition C for a fixed com-
mitment p of some of the other agents. Unlike ATLES, our modality [C]p denotes existence
of a strategy of a coalition C' for any commitment of coalition B, as long as it is known
to C. Goranko and Ju proposed several strategic power modalities that are similar to our
coalition power with intelligence modality, gave formal semantics of these modalities, and
discussed matching notions of bisimulation (Goranko & Ju, 2019). They did not introduce
any axioms for these modalities. We compare our work to their in Section 5.

Strategic games could be generalized to strategic games with imperfect information.
Unlike perfect information strategic games, the initial state in an imperfect information
game could be unknown to the players. For example, consider a hypothetical setting in
which a British convoy and a German U-boat have to choose between three routes from
point A to point B: route 1, route 2, and route 3, see Figure 2. Let us furthermore assume
that it is known to both sides that one of these routes is blocked by Russian naval mines.
Although the mines are located along route 1, neither the British nor the Germans know
this. If the British have an access to the intelligence about German U-boats, then, in theory,
they have a strategy to save the convoy. For example, if the Germans will use route 2, then
the British can use route 3. However, since the British do not know the location of the
Russian mines, even after they receive information about German plans, they still would
not know how to save the convoy.

Figure 2: Three routes from point A to point B.

Multiple aspects of games with imperfect information have been studied in the field of
artificial intelligence. Liu, Zheng, Li, Bian, Song developed a machine learning algorithm to
play real-time strategy games with imperfect information (2019). Sandholm designed an Al
agent outperforming professional poker players (2017). Another poker player was developed
by Tammelin, Burch, Johanson, and Bowling (2015). Jiang, Li, Du, Chen, and Fang used
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deep reinforcement learning to construct a human-expert level algorithm for Doudizhu, a
three-player imperfect information game (2019). Buro, Long, Furtak, and Sturtevant pre-
sented world’s first computer player for Skat, Germany’s national card game with imperfect
information (2009). Wisser developed a perfect information Monte Carlo sampling agent
for playing Schnapsen, a Central European card game with imperfect information (2015).
Parker, Nau, and Subrahmanian analysed algorithms for kriegspiel chess, an imperfect-
information variant of chess (2006). Belardinelli, Lomuscio, and Malvone developed perfect
information abstraction method for verifying strategic properties in multi-agent systems
with imperfect information (2019). Schmid, Moravcik, and Hladik studied the dependency
between the level of uncertainty in games with imperfect information and the minimum
support size of a Nash equilibrium (2014). Belle and Lakemeyer proposed to model imper-
fect information games in a multi-agent epistemic variant of the situation calculus (2010).
Burch, Johanson, and Bowling proposed a technique for decomposing imperfect informa-
tion games into subgames (2014). Sevenster studied the complexity of decision making
in the Battleships game (2004). Bard et al. explored various properties of the Hanabi
game (2020). Van Ditmarsch proposed an extension of the epistemic logic for reasoning
about game actions (2002). Van der Hoek and Wooldridge combined ATL with epistemic
modality to form Alternating-Time Temporal Epistemic Logic capable of reasoning about
games with imperfect information (2003).

It has been suggested in several recent works that, in the case of the games with imperfect
information, strategic power modality in Marc Pauly logic should be restricted to existence
of know-how' strategies (Agotnes & Alechina, 2019; Naumov & Tao, 2017a; Fervari, Herzig,
Li, & Wang, 2017; Naumov & Tao, 2018b, 2018c, 2018a; Cao & Naumov, 2020). That is,
modality [C]e should stand for “coalition C' has a strategy, it distributively knows that
it has a strategy, and it distributively knows what the strategy is”. In this article we
adopt this approach to strategic power with intelligence. For example, in the imperfect
information setting depicted in Figure 2, after receiving the intelligence report, the British
have a strategy, they know that they have a strategy, but they do not know what the
strategy is:

—[British)Germans(Convoy is saved).

At the same time, since the Russians presumably know the location of their mines,
[British, Russians|germans(Convoy is saved).

This article contains two main technical results. First, we show that know-how with
intelligence modality [C]r¢ cannot be defined through the standard know-how modality.
Second, we give a complete logical system that describes the interplay between the coali-
tion power with intelligence modality [C]; and the distributed knowledge modality K¢ in
the imperfect information setting. The most interesting axiom of our system is a general-
ized version of Marc Pauly’s (2001, 2002) Cooperation axiom that connects intelligence I

1. Know-how strategies were studied before under different names. While Jamroga and Agotnes talked
about “knowledge to identify and execute a strategy” (2007), Jamroga and van der Hoek discussed “dif-
ference between an agent knowing that he has a suitable strategy and knowing the strategy itself” (2004).
Van Benthem called such strategies “uniform” (2001). Wang gave a complete axiomatization of “knowing
how” as a binary modality (2015, 2018), but his logical system does not include the knowledge modality.
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and coalition C' parameters of the modality [C];. Our proof of the completeness is signif-
icantly different from the existing proofs of completeness for games with imperfect infor-
mation (Agotnes & Alechina, 2019; Naumov & Tao, 2017a, 2018b, 2018c, 2018a; Cao &
Naumov, 2020). We highlight these differences in the beginning of Section 9.

2. Outline

The rest of the article is organized as follows. In the next section, we give a formal def-
inition of games with imperfect information that serve as models for our logical system.
In Section 4, we describe the syntax and the formal semantics of our logical system. In
Section 5, we compare our approach to the one in (Goranko & Ju, 2019). In Section 6, we
show that modality [C]pe cannot be expressed through the original know-how modality.
Section 7 lists the axioms and the inference rules of the system. We discuss the axioms and
prove their soundness in Section 8. The proof of the completeness is given in Section 9,
respectively. Section 10 concludes.

3. Games with Imperfect Information

For any sets X and Y, by XY we mean the set of all functions from Y to X. Throughout
the article we assume a fixed (possibly infinite) set of agents A and a nonempty set of
propositional variables.

Definition 1 A game is a tuple (W, {~g}aca, A, M, ), where
1. W is a set of states,
2. ~q is an “indistinguishability” equivalence relation on set W for each agent a € A,
3. A is a nonempty set, called the “domain of actions”,
4. M CW x A2 x W is a relation called “aggregation mechanism”,
5

. m 1§ a function that maps propositional variables to subsets of W.

A function § from set A# is called a complete action profile.

Figure 3 depicts a diagram of the Battle of the Atlantic game with imperfect information
as described in the introduction. For the sake of simplicity, we treat the British, the
Germans, and the Russians as single agents, not groups of agents. The game has five
states: 1, 2, 3, s, and d. States 1, 2, and 3 are three “initial” states that correspond to
possible locations of Russian mines along route 1, route 2, or route 3. Neither the British
nor the Germans can distinguish these states, which is shown in the diagram by labels on
the dashed lines connecting these three states. The Russians know location of the mines,
and, thus, they can distinguish these states. The other two states are “final” states s and
d that describe if the convoy made it safe (s) or was destroyed (d) by either a U-boat
or a mine. The designation of some states as “initial” and others as “final” is specific to
the Battle of the Atlantic game. In general, our Definition 1 does not distinguish between
such states and we allow games to take multiple consecutive transitions from one state to
another.
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British, Germans

~

Figure 3: Battle of the Atlantic with imperfect information.

The domain of actions A in this game is {1,2,3}. For the British and the Germans
actions represent the choice of routes that they make for their convoys and U-boats re-
spectively. The Russians are passive players in this game. Their action does not affect
the outcome of the game. Technically, a complete action profile is a function ¢ from
set {British, Germans, Russians} into set {1,2,3}. Since, there are only three players in
the Battle of the Atlantic game, it is more convenient to represent function & by triple
bgr € {1,2,3}3, where b is the action of the British, g is the action of the Germans, and c
is the action of the Russians.

The mechanism M of the Battle of the Atlantic game is captured by the directed edges
in Figure 3 labeled by complete action profiles. Since value r in a profile bgr does not affect
the outcome, it is omitted on the diagram. For example, directed edge from state 1 to state
s is labeled with 23 and 32. This means that the mechanism M contains triples (1,231, s),
(1,232, s), (1,233, ), (1,321, s), (1,322, s), and (1,323, s).

The definition of a game that we use here is more general than the one used in the
original Marc Pauly’s semantics of the logic of coalition power. Namely, we assume that
the mechanism is a relation, not a function. On one hand, this allows us to talk about
nondeterministic games where for each initial state and each complete action profile there
might be more than one outcome. On the other hand, this also allows no outcome to exist
for some combinations of the initial states and the complete action profiles. If in a given
state under a given complete action profile there is no next state, then we interpret this as
termination of the game. This resembles a user choosing to quit a computer application:
once the quit button is pressed, the application terminates without reaching any new state.
If needed, games with termination can be excluded and an additional axiom —[C]zL be
added to the logical system. The proof of the completeness will remain mostly unchanged.

Definition 2 For any states w,w’ € W and any coalition C, let w ~c w' if w ~q w' for
each agent a € C.

In particular, w ~g w’ for any two states of the game.

Lemma 1 For any coalition C, relation ~¢ is an equivalence relation on set W. X
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4. Syntax and Semantics

In this section, we define the syntax and the semantics of our formal system. By a coalition
we mean any finite subset of the set of all agents .A. Finiteness of coalitions will be important
for the proof of the completeness.

Definition 3 Let ® be the minimal set of formulae such that
1. p € ® for each propositional variable p,
2. p > W, ~p €D forall p,v € P,
3. Koy € ® for each formula ¢ € ® and each coalition C C A,

4. [Clpp € ® for each formula ¢ € ® and all disjoint coalitions B, C.

In other words, the language of our logical system is defined by grammar:

p:=p|=p0le—=¢|Kep|[Clpy,

where coalitions C' and B are disjoint. Formula Ko stands for “coalition C' distributively
knows ¢” and formula [C]p¢ for “coalition C' distributively knows strategy to achieve ¢
as long as it gets the intelligence on actions of coalition B”. We assume that Boolean
constants T and L are defined through negation, implication, and a propositional variable
in the standard way.

By an action profile of a coalition C' we mean any function from set AC. For any two
functions f, g, we write f =x g if f(z) = g(z) for each z € X.

Next is the key definition of this article. Its part 5 gives the semantics of modality
[C]p. This part uses state w’ to capture the fact that the strategy succeeds in each state
indistinguishable by coalition C from the current state w. In other words, the coalition C'
knows that this strategy will succeed. Except for the addition of coalition B and its action
profile [, this is essentially the same definition as the one used in (Agotnes & Alechina,
2019; Naumov & Tao, 2017a; Fervari et al., 2017; Naumov & Tao, 2017b, 2018c, 2018b,
2018a).

Definition 4 For any game (W,{~g}aca, A, M,7), any state w € W, and any formula
p € ®, let satisfiability relation w I+ ¢ be defined as follows:

~

wlF p, if w € w(p), where p is a propositional variable,
w - =, if wlF @,
wlFp—=, if wh o orwlk,

wlF Koy, if w' - ¢ for each w' € W such that w ~¢ w',

S

w I [C)pe, if for any action profile B € AP of coalition B there is an action profile
v € AC of coalition C' such that for any complete action profile 6 € A4 and any states
wiueWif B=pd,v=cd, w~cw, and (w',0,u) € M, then ul- .

528



INTELLIGENCE IN STRATEGIC (GAMES

For example, for the game depicted in Figure 3,
1 I [British, Russians|germans(Convoy is saved).

Indeed, statement 1 ~pyjtish Russians w' is true only for one state w’ € W, namely state

1 itself. Then, for any action profile 5 € {1,2, 3}{Germans} of the single-member coalition
{Germans} we can define action profile v € {1, 2, 3}{British, Russians} aq o1 example,

3, if a = British and S(Germans) = 2,
v(a) = ¢ 2, if a = British and §(Germans) = 3,
L,

if @ = Russians.

In other words, if profile 5 assigns the Germans route 2, then profile y assigns the British
route 3 and vice versa. Assignment of an action to the Russians in not important. This
way, no matter what the Germans’ action is, the British convoy will avoid both the German
U-boat and the Russian mines in the game that starts from state w’ = 1. At the same time,

1 I =[British]germans (Convoy is saved).

because the British cannot distinguish states 1, 2, and 3 without the Russians. In other
words, 1 ~pgpitign W for any state w’ € {1,2,3}. Thus, for each action profile § €
{1,2,3}{Germans} we need to have a single action profile y € {1,2, 3}{British, Russians}
that would bring the convoy to state s from any of the states 1, 2, and 3. Such profile
~ does not exist because, even if the British know where the Germans U-boat will be,
there is no single strategy to choose path that would avoid Russian mines from all three
indistinguishable states 1, 2, and 3.

Note that item 4 of Definition 4 interprets the knowledge modality Ko as distributed
knowledge of coalition C. Similarly, the knowledge of “how”, implicitly referred to by
item 5 of the same definition through indistinguishability relation ~¢, is also distributed
knowledge of coalition C. Thus, even if a coalition knows how to achieve ¢, it is possible
that no single individual member of the coalition might know how to do this. In order for
the coalition to execute a strategy that it knows, its members might need to communicate
with each other to “assemble” the distributed knowledge. The mechanism and the result of
such a communication is not a trivial issue. For example, if a statement ¢ is distributively
known to a coalition, then ¢ might even be false after such a communication (Agotnes &
Wang, 2017). In this article, following the existing tradition in the logics of distributively
knowing strategy, we investigate the properties of distributed knowledge on an abstract
level, without considering the communication between the agents required to execute the
strategy. Of course, one can potentially consider the other forms of group knowledge such
as individual knowledge (each agent in the group knows) and common knowledge. However,
know-how strategies based on either of the last two forms of knowledge do not satisfy the
Cooperation axiom listed in Section 4. As a result, they are significantly less interesting
from the logical point of view.

Finally, observe that the formula Kgp means that statement ¢ is satisfied in all states
of the game. Modality Ky is sometimes referred to as universal modality.
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5. Conditional Strategic Modalities

In this section, we compare our know-how with the intelligence modality and the conditional
strategic modalities of Goranko and Ju (2019). Throughout this section, we consider only
games with perfect information. In other words, we assume that for each agent a € A,
equivalence relation ~, is the equality. We make this assumption because (Goranko & Ju,
2019), unlike us, only considers such a setting.

Before proceeding further, let us define Af to be the set of all action profiles of a
coalition B that guarantee outcome .

Definition 5 Ag is the set of all action profiles B € AP of coalition B such that for any
complete action profile § € A and any state w € W if f =p 6 and (w,5,u) € M, then
ul- .

It is easy to see that, in the perfect information setting, item 4 of Definition 4 could be
rephrased in the following equivalent form:

w I [C) By, if for each action profile B € AB of coalition B, there is an action
profile v € AY of coalition C such that fU~ € Afuc.

Modality [C]py includes ¢, the goal of coalition C' but this modality puts no constrain
on the goal (or the actions) of coalition B. Note that the strategic abilities of the coalition
C increase if coalition B commits to acting towards a certain goal . Goranko and Ju
proposed modalities [C]}&w@, [C]QB:WP’ and [C]3B:¢g0 that capture this observation in three
different ways.

Modality [C]}B:wgp states that coalition C' has a strategy to achieve ¢ as long as coalition
B is using a strategy to achieve ¢. It is assumed that coalition C' does not known ez ante
(before it acts) the specific strategy to be used by coalition B:

w - [C’]}B:wgo when there is an action profile v € A€ of coalition C' such that for
each action profile 5 € AB of coalition B, if § € Af, then BU~y € Aguc‘

Cc1 C2 Cc1 C2 C1 C2
bi w,¥ b p,¥ Y bi »,¥
by, W b ¥ w0 b ¥ W
by by Y by ¢

Figure 4: A strategic game with three initial states.

As an example, consider the two-player perfect-information deterministic game depicted
in Figure 4. Here, the first player has strategies: b1, bs, and b3 and the second player has
strategies c¢; and co. The game has three “initial” states, that we refer to as “left”, “middle”,
and “right” states. These initial states correspond to the three tables in Figure 4. The game
also has 18 “final” states corresponding to the cells of the tables. The tables shows which
of the statements ¢ and 1 are true in each final state. For example, if the game starts in
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left initial state (see left table), the first player uses action by, and the second player uses
action cj, then both formulae, ¢ and v, are satisfied in the outcome. We refer to the first
and the second player in this game as agent b and agent c, respectively. Note that in the
left state agent ¢ can force 1 to be true in the outcome by using action ¢;. This is true no
matter what action agent b decides to take. We can express this as

left - [clp T,

where the true constant T represents the trivial goal which is achieved by any action. At
the same time, in the left state, agent ¢ does not have a strategy to unilaterally achieve ¢:

left I [clpre.

However, if agent b has a goal of achieving 1, then she is guaranteed to use either action by
or action by, see Figure 4 (left). Knowledge of this gives agent ¢ a strategy (use action c;)
to achieve ¢ from the left state of the game:

leftIF [C]é:w(p.
Note that the same is not true in the middle state of the game
middle ¥ [C]i:wgo

because, see Figure 4 (middle), in the middle state, even if agent b is using only either action
b1 or action by agent ¢ does not have a strategy that is guaranteed to achieve . However,
agent ¢ does have such a strategy if she knows ez ante which of the two strategies (b; or ba)
agent b will use. In general,

w Ik [C}QB:wcp when for each action profile 5 € Ag of coalition B, there is an
action profile v € AC of coalition C' such that S U~ € AEUC.

In our case, if agent b uses action by, then agent ¢ can choose action c¢p; if agent b uses
action bo, then agent ¢ can choose action co. In either case, agent ¢ will force ¢. Thus,

middle I+ [c]3,, .
Note that the same is not true in the right state of the game:
right ¥ [C]gnpg)

because in the right state agent b might use action b; to achieve v, which would prevent
agent ¢ from achieving ¢, see Figure 4 (right). At the same time, in the right state agent b
can choose to achieve her goal ¥ in such a way that it would allow agent ¢ to achieve her
own goal of ¢. In general,

w - [C’]%:w@ when there is an action profile B € Ag of coalition B and an action
profile v € AY of coalition C such that fU~ € Afuc.
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In our example, because agent b can choose action b; to help ¢,
right I [c]p. .-

Our modality [C]p¢ could be expressed through [C]zB:wgp as [Clpp = [C14+¢. In the
forthcoming journal version of their work, Goranko and Ju propose axioms for modali-
ties [C’]}g:wgp, [C]zB:wo, and [0]33:1/1(10 in perfect information setting, but do not prove their
completeness (Goranko & Ju, 2021). One of the main contributions of the current arti-
cle is a complete axiomatization of the interplay between modality [C]pp and distributed
knowledge modality Ko in the imperfect information setting.

6. Undefinability through Know-How

If subscript B in the formula [C]py is the empty set, then the formula states that coalition
C knows a strategy to achieve ¢ that does not rely on information about actions of any
agents. We write this formula simply as [C]¢. Modality [Cle is “know how” modality that
has been studied before in different settings (Agotnes & Alechina, 2019; Naumov & Tao,
2017a; Fervari et al., 2017; Naumov & Tao, 2017b, 2018c, 2018b, 2018a; Cao & Naumov,
2020). In this section, we compare the expressive power of modalities [C]y and [C]gep.
In (Goranko & Ju, 2019), the authors prove, in particular, undefinability of the mention
in the previous section modality [C’]zB:wgo through coalition power modality [C]y in the
perfect information setting. Their proof of undefinability appears to significantly reply on
the parameter ¢. Thus, although our modality [C]gp could be defined as [C]%.+¢, their
proof of undefinability of [C]ZB:w(p through [Cle could not be easily adapted to our result
presented in this section.

Throughout this section, by ®~ we denote the language defined by the following gram-
mar:

p=p|-¢|e—¢|Kep|[Cle
The semantics of language @~ could be defined by replacing item 5 of Definition 4 with

5. w Ik [Clp if there is an action profile v € A of coalition C such that for any
complete action profile 6 € A and any states w',u € W if v =¢ 6, w ~¢ W', and
(w',6,u) € M, then ul- .

As mentioned above, modality [C]e could be expressed through modality [C]py as
[Clzp. In this section, we show that the opposite is not true. Namely, we prove that
modality [C]pp cannot be expressed in language ®~. To do this, we construct two games
that are indistinguishable in language ®~ but are distinguishable in language ®. These
two games are depicted in Figure 5. Both of these games have three states: a, wi, and wo.
Without loss of generality, in this section we assume that the set of agents A contains only
two agents: Alice and Bob and the set of propositional variables contains only variable p.
Both games are games with perfect information, so any of the two agents cannot distinguish
two states only if the states are equal. The set A contains two actions: 0 and 1. The
mechanism of both games in state « is a variation of the matching pennies game. In the left
game, if actions of Alice and Bob match, then game transitions from state « to state wi;
otherwise the game nondeterministically transitions to either state w; or wo. In the right
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Q o a e

00,11,01,10 01,10 00,11,01,10 11, 01,10

Figure 5: Two Games.

game, if Alice and Bob both choose action 0, then the game transitions from state « to state
w1; otherwise the game nondeterministically transitions to either state w; or wy. Thus, the
only difference between the mechanisms of these two games is the case when Alice and Bob
both choose action 1. In the left game this results in a deterministic transition to state
w1, in the right game the same complete action profile lead to a nondeterministic transition
to either state w; or state wy. We assume that in both games propositional variable p is
satisfied only in state w;. We refer to the satisfiability relation for the left game as Ik
and for the right game as IF,.. In Lemma 4, we show that the left and the right games
are indistinguishable in language ®~. In Lemma 5, we show that these two models are
distinguishable in language ®. This implies undefinability of modality [C]gp in language
®~, which is stated as Theorem 1 in the end of this section.

Towards the proof of Lemma 4, we introduce two auxiliary notions and two auxiliary
lemmas. First, for any coalition C' and any action profile v of this coalition in either of the
games depicted in Figure 5, we define the set of outcomes O(C,~) reachable under action
profile ~.

Definition 6 O(C,v) ={w | (o, 0,w) € M,y =¢ §}.

We use notation O;(C,~) and O,(C, ) to denote the set of outcomes under profile 7 in
the left and the right games respectively. For example,

O;({Alice, Bob},11) = {w1},
O,({Alice,Bob},11) = {wi,wa}

because if Alice and Bob both choose action 1, then in the left game the outcome is state

w1 and in the right game the outcome could be either state w; or state wo.

Next, we define a family of sets of outcomes O(C') that could be reached under at least
one action profile of a coalition C":

Definition 7 O(C) = {O(C,v) | v € AY}.
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We use notation Q;(C) and O, (C) to denote the families of sets of outcomes in the left and
the right games respectively. For example, O;({ Alice, Bob}) = {{w1}, {w1,w2}}, because

O;({Alice, Bob},00) = {w1},

O;({Alice, Bob},01) = {wi,wa},

O;({Alice, Bob},10) = {wi,wa},
( )

O;({Alice, Bob},11) = {wi}.

The following lemma rephrases the semantics of modality [C]¢ in terms of family O(C').
It follows from item 5 stated in the beginning of this section as well as Definition 6 and
Definition 7.

Lemma 2 For any formula ¢ € ®~, for any coalition C C {a,b}, for either of the two
games, a - [Cle if and only if there is a set Q € O(C) such that w Ik ¢ for each w € Q. K

The next lemma captures the fundamental reason for the left and the right games to be
indistinguishable in the language ®~. The particular choice of these two games has been
mostly guided by our desire to make this lemma true.

Lemma 3 O;(C) = 0,(C), for any coalition C C {a,b}.

Proof. Since the set of agents contains only Alice and Bob, there are only four possible
coalitions in either of the two games. We consider the corresponding cases separately:

Or({a,b}) = {{wr}, {wr, w2} = Or({a, b)),
Oi({a}) = {{wr, w2}} = Or({a}),

Or({b}) = {{w1, w2t} = Or({B}),
O1(2) = {{w1, w2t} = O (2).

X

We are now ready to show that the left and the right games are indistinguishable in
language ¢~

Lemma 4 w ;¢ iff w ik, ¢ for any state w € {a, w1, wa} and any formula ¢ € &~ .

Proof. We prove the statement of the lemma by structural induction on formula .

Suppose that formula ¢ is a propositional variable. By the definition of two games,
m(p) = {w1} = 7mr(p), where m; and 7, are valuation function of the left and the right
games respectively. Hence, w IF; p iff w Ik, p by item 1 of Definition 4.

The case when formula ¢ is either a negation or an implication follows from items 2 and
3 of Definition 4 and the induction hypothesis in the standard way.

Assume now that formula ¢ has the form Kot By item 4 of Definition 4 and because
the games are games with perfect information, statements w IF; Koy and w I+, Ko are
equivalent to w IF; ¢ and w Ik, 9 respectively. The last two statements are equivalent by
the induction hypothesis.

534



INTELLIGENCE IN STRATEGIC (GAMES

Finally, suppose that formula ¢ has the form [C]¢. We consider the following two cases
separately:
Case I: w # «. In this case w I [C]Y and w Ik, [C]¢ are both vacuously true by item 5
of Definition 4 because in either of the games, there are no states w’ and « and an action
profile § such that w ~ w' is true and (w’, §, u) belongs to the mechanism of the game.
Case II: w = . Suppose that w IF; [C]yp. Thus, by Lemma 2, there exists a set Q € O;(C)
such that w IF; ¢ for each w € €. Hence, by the induction hypothesis, w IF,. ¢ for each
w € Q. Note also that Q € O,(C) by Lemma 3 because Q € Q;(C). Therefore, w I, [C])
Lemma 2. The proof in the other direction is similar. X

Next, we show that the left and the right games are distinguishable in the original
language ®.

Lemma 5 «a Ik [Alice] gopp and o W, [Alice] gopp-

Proof. In state « of the left game, for any action 5 € {0,1} of agent Bob, agent Alice can
choose the same action 8 to guarantee outcome w;. Therefore, « IF; [Alice]gypp by item 5
of Definition 4 and because wi IF; p.

If in state a of the right game agent Bob chooses action 1, then there is no action
v € {0,1} that agent Alice could choose to prevent outcome wg. Therefore, a W, [Alice]gpp
by item 5 of Definition 4 and because wy ¥, p. X

Our main result of this section follows from Lemma 4 and Lemma 5:
Theorem 1 The modality [C]|pye is not definable in language O~ . X

In the rest of this article we give a sound and complete axiomatization of the logical
system containing modalities Ko and [C]p.

7. Axioms

In this section, we present our formal logical system, Know-How Logic with the Intelligence,
for reasoning about the interplay between distributed knowledge modality Ko and know-
how with intelligence modality [C]p.

Definition 8 In addition to the propositional tautologies in language ®, the axioms of the
Know-How Logic with the Intelligence are

1. Truth: Kop — @,

2. Distributivity: Ko(p — ) = (Ko — Kat)),

3. Negative Introspection: =Koy — Ko—Keop,

4. Epistemic Monotonicity: Kop — Kpyp, where C C D,

5. Strategic Introspection: [Clpe — Kc[Clpe,
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6. Empty Coalition: Kgp — [D]z,

7. Cooperation: [Clp(ep — ¢) — ([D]lp,cy — [C,D]py), where sets B,C, and D are
pairwise disjoint,

8. Intelligence Monotonicity: [Clpy — [C]|py, where B C B,
9. None to Analyze: [@]|pp — [D]ap.

Note that in the Cooperation axiom above and often throughout the rest of the article we
abbreviate B U C as B,C. However, we keep writing B U C' when notation B, C could be
confusing. We discuss the individual axioms in Section 8 before proving their soundness.

Next, we define two derivability relations. A unary relation F ¢ and a binary relation
X F ¢, where X C @ is a set of formulae and ¢ € ® is a formula.

Definition 9 + ¢ if there is a finite sequence of formulae that ends with ¢ such that each
formula in the sequence is either an axiom or could be obtained from the previous formu-
lae using the Modus Ponens, the Epistemic Necessitation, or the Strategic Necessitation
inference rules:

o, oY @ @

(0 ’ Key’ [Cly’

If - ¢, then we say that ¢ is a theorem of our logical system.

Definition 10 X F ¢ if there is a finite sequence of formulae that ends with ¢ such that
each formula in the sequence is either a theorem, or an element of X, or could be obtained
from the previous formulae using only the Modus Ponens inference rules.

Note that if set X is empty, then statement X + ¢ is equivalent to F . Thus, instead
of @ F ¢ we write - . We say that set X is consistent if X ¥ L.

The next lemma gives an example of a formal proof in our logical system. This lemma
is used later in the proof of the completeness.

Lemma 6 + [C|py — [C'|pp, where C C C'.

Proof. Formula ¢ — ((¢ = ¢) — ¢) is a tautology. Thus, by the Strategic Necessitation
inference rule, - [@]5(p — ((¢ = ©) = ©)). At the same time, the following formula is an
instance of the Cooperation axiom:

[@]a(e = ((p = @) = ¢) = ([Clze = [Cla((¢ = ) = ¢)).
Then, by the Modus Ponens inference rule,
F[ClBe = [ClB((p = ) = ¢). (1)

Note that formula ¢ — ¢ is also a tautology. Hence, by the Strategic Necessitation
inference rule, - [C" \ C]p,c(¢ — ¢). In addition, observe that the following formula is an
instance of the Cooperation axiom:

[Cla((¢ = @) = ¢) = ([C"\ Clec(p = @) = [C,C"\ Cly).
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Thus, by the laws of propositional reasoning,
F(ClB((0 = ¢) = ) = [C,C"\ Clpe.
Hence, by the laws of propositional reasoning using statement (1),
= [Clee = [C.C"\ Clpe.
Note that C U (C"\ C') = C’ by the assumption C' C C’. Therefore, - [Clpp — [C'|pp. K
The following two lemmas state well-known logical principles. For the benefit of the
reader, we reproduce their proofs in the appendix.

Lemma 7 + Koy — KeKep.
Lemma 8 (deduction) If X,p 4, then X F ¢ — 1.

Lemma 9 (Lindenbaum) Any consistent set of formulae can be extended to a mazimal
consistent set of formulae.

Proof. The standard proof of Lindenbaum’s lemma (Mendelson, 2009, Proposition 2.14)
applies here too. X

8. Axiom Discussion and Soundness

In this section, we discuss the axioms of our logical system and prove their soundness with
respect to the semantics given in Section 4.

Theorem 2 (soundness) For any state w € W of any game (W, {~}aca, A, M, ), any
set of formulae X C @, and any formula ¢ € ®, if w Ik x for each formula x € X and
X, then w - .

As usual, the soundness of the Truth, the Distributivity, the Negative Introspection, and
the Monotonicity axiom follows from the assumption that ~, is an equivalence relation (Fa-
gin, Halpern, Moses, & Vardi, 1995). Below we discuss each of the remaining axioms and
prove its soundness as a separate lemma.

The Strategic Introspection axiom states that if a coalition C has a “know-how” strategy,
then it knows that it has such a strategy. A version of this axiom without intelligence was
first introduced in (Agotnes & Alechina, 2019).

Lemma 10 If w - [Clpp, then w IF Ko[Clpe.

Proof. Consider any state w’ € W such that w ~¢ w’. By Definition 4, it suffices to show
that w’ IF [C]ge. Indeed, consider any action profile 3 € AP of coalition B. By the same
Definition 4, it suffices to show that there is an action profile v € A of coalition C' such
that for any complete action profile § € A4 and any states w”,u € W if 8 =5 8, v =¢ 6,
w ~cw”, and (w”,6,u) € M, then u I .
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Since w ~¢ w’, by Lemma 1, it suffices to show that there is an action profile v € A¢
of coalition C' such that for any complete action profile § € A* and any states w”,u € W
if B=pd,v=cd, w~cw” and (w”,0,u) € M, then u I p. The last statement is true by
Definition 4 and the assumption w IF [C]gep. X

The Empty Coalition axiom says that if statement ¢ is satisfied in each state of the
model, then the empty coalition has a strategy to achieve it. This axiom first appeared in
(Naumov & Tao, 2017b).

Lemma 11 If w - Kgp, then w Ik [@]zp.

Proof. Let 3 € A? be an action profile of the empty coalition. Such action profile is unique,
but this is not important for our proof. By Definition 4, it suffices to show that there is
an action profile v € A? of the empty coalition such that for any complete action profile
§ € A and all states w',u € W if f =5 6, ¥ =g 0, w ~g w', and (w',5,u) € M, then
u IF . Indeed, let v = . Thus, it suffices to prove that u IF ¢ for each state u € W. The
last statement follows from the assumption w IF Kgp by Definition 4. X

The Cooperation axiom for strategies without intelligence:

[Cl(p = ) = ([Dlp = [C, DY),

where sets C' and D are disjoint, was introduced in (Pauly, 2001, 2002). This is the signature
axiom that appears in all subsequent works on the logics of coalition power. The version of
this axiom with intelligence is one of the key contributions of the current article. Our version
states that if a coalition C' knows how to achieve ¢ — 1 assuming it has the intelligence
about the actions of a coalition B and a coalition D knows how to achieve ¢ assuming it
has the intelligence about actions of the coalitions B and C, then the coalitions C' and D
know how together they can achieve ¢ if they have the intelligence about the actions of the
coalition B.

Lemma 12 Ifw IF [C]g(¢ — v¥), wlF [D]p,.cy, and sets B, C, and D are pairwise disjoint,
then w IF [C, D]p.

Proof. Consider any action profile § € AP of coalition B. By Definition 4, it suffices to
show that there is an action profile v € ACYP of coalition C'U D such that for any complete
action profile § € A# and any states w',u € W if 8 =5 0, v =c.p 6, w ~cp w', and
(w',6,u) € M, then u I 1).

Assumption w I [C]g(¢ — ), by Definition 4, implies that there is an action profile
1 € AY of coalition C such that for any complete action profile § € A4 and any states
wiueWif =6, =cd,w~cw, and (w',d,u) € M, then ul- ¢ — 1.

Define action profile 81 € ABYC of coalition B U C' as follows:

) B(a), ifaeB,
brla) = {'yl(a), ifa e C.

Action profile 5y is well-defined because sets B and C' are disjoint.
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By Definition 4, the assumption w I [D]p c¢ implies that there is an action profile
v9 € AP of coalition D such that for any complete action profile § € A* and any states
wiueWif B =pcd,v2=pd, w~pw,and (v, d,u) € M, then u - .

Define action profile v € ACYP of coalition C' U D as follows:

gi! ((1), ifae Ov
(a) = .
v2(a), ifa € D.

Action profile v is well-defined because sets C' and D are disjoint.

Consider any complete action profile § € A4 and any states w’,u € W such that
B=pd,v=cup 9, w~cup w', and (w',d,u) € M. Recall from the first paragraph of this
proof that it suffices to show that u I ¢. Note that 8 =g 6, 1 =¢ v =¢ 0§, w ~¢c W',
and (w',d,u) € M. Thus, u IF ¢ — 1 by the choice of the action profile v;. Similarly,
f1=p B =pdand f1 =c 71 =c¢ v =c 0. Hence, 1 =puc d. Also, 2 =p v =p 0§, w ~c W',
and (w',d,u) € M. Thus, u Ik ¢ by the choice of the action profile v5. Therefore, u |- 1 by
Definition 4 because u I ¢ — 1 and wu I+ . X

The remaining two axioms are original to this article. The Intelligence Monotonicity
axiom states if a coalition C' has a strategy based on the intelligence about the actions of
a coalition B, then the coalition C' has such a strategy based on the intelligence about any
larger coalition. The other form of monotonicity for modality [C]p, monotonicity on the
coalition C' is also true. It is not listed among our axioms because it is provable in our
system, see Lemma 6.

Lemma 13 If w - [Clpp, B C B', and sets B and C are disjoint, then w |- [C]pgrp.

Proof. Consider any action profile 5’ € AB' of coalition B'. By Definition 4, it suffices to
show that there is an action profile v € A% of coalition C such that for any complete action
profile 6 € A and any states w',u € W if 8/ =p/ §, v =¢ 0, w ~¢ @', and (w',5,u) € M,
then u IF .

Define action profile 8 € AP of coalition B to be such that 3(a) = #'(a) for each agent
a € B. Action profile § is well-defined due to the assumption B C B’ of the lemma. By
Definition 4, the assumption w I [C]p¢ implies that there is an action profile v € A of
coalition C' such that for any complete action profile § € A* and any states w’,u € W if
B=pd,v=cd,w~cw,and (v, d§u) € M, then u I p. Note that 3 =p ' by the choice
of action profile 8. Thus, for any complete action profile § € A4 and any states w’, u € W if
B '=pd,v=cd, w~cw,and (w',0,u) € M, then u I- . Finally, observe that condition
B =p/ ¢ implies condition 8’ =g § by the assumption B C B’ of the lemma. Therefore, for
any complete action profile § € A4 and any states w’,u € W if f/ =g/ 6, v =¢ 6, w ~c W',
and (w',0,u) € M, then u I ¢. X

The None to Analyze axiom says that if there is no one to interpret the intelligence
information about coalition B, then this intelligence might as well not exist.

Lemma 14 If w - [&]|pp, then w Ik []ze.
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Proof. By Definition 4, the assumption w I+ [@]gp implies that for any action profile
B € AB of coalition B there is an action profile v € A? of the empty coalition such that for
any complete action profile § € A and any states w',u € W if B =5 6, v =5 0, w ~g W',
and (w',0,u) € M, then u I ¢.

Thus, for any action profile 3 € AP of coalition B, any complete action profile § € A4
and any states w’,u € W if 8 =p ¢ and (w',d,u) € M, then u |- . Hence, for any complete
action profile § € A4 and any states w’,u € W if (w',d,u) € M, then u I ¢.

Then, for any action profile 3 € A9 of the empty coalition there is an action profile
v € A? of the empty coalition such that for any complete action profile § € A4 and any
states w',u € W, if 8 =5 0, v =5 0, w ~z w', and (w',d,u) € M, then u I- . Therefore,
w I+ [@]zp by Definition 4. X

9. Completeness

In this section, we prove the completeness of our logical system. As usual, the completeness
theorem is using a canonical model. There are two major challenges that we need to
overcome while defining the canonical model. The first of them is a well-known complication
related to the presence of the distributed knowledge modality in our logical system. The
second is a unique challenge specific to strategies with intelligence. To understand the first
challenge, recall that, in the case of individual knowledge, states of a canonical model are
usually defined as maximal consistent sets of formulae. Two such sets are ~,-equivalent
if the sets contain the same K,-formulae. Unfortunately, this construction can not be
easily adapted to distributed knowledge because if two sets share K,- and Kj-formulae,
then they not necessarily share K, j-formulae. To overcome this challenge we use the “tree”
construction in which each state is a node of a labeled tree. Nodes of the tree are labeled
with maximal consistent sets and edges are labeled with coalitions. This construction has
been used in logics of distributed knowledge before (Naumov & Tao, 2017a, 2017b, 2018c,
2018b, 2018a; Wéng & Agotnes, 2020; Baltag & van Benthem, 2021).

To understand the second challenge, let us first recall the way the canonical game is
sometimes constructed for the logics of the coalition power. The often used construction
defines the domain of actions to be the set of all formulae (Goranko & van Drimmelen, 2006;
Naumov & Tao, 2017a; Goranko & Enqvist, 2018; Naumov & Tao, 2018b). Informally, it
means that each agent “votes” for a formula that the agent wants to be true in the next
state. Of course, not all requests of the agents are granted. The canonical game mechanism
specifies which requests are granted and which are ignored. There also are canonical game
constructions in which a voting ballot in addition to a formula must also contain some
additional information that acts as a “key” verifying that the voting agent has certain
information (Naumov & Tao, 2018c, 2018a). So, it is natural to assume that in case of
formula [C]p¢, coalition C' should vote for formula ¢ and provide the vote of coalition B
as a key. This approach, however, turns out to be problematic. Indeed, in order to satisfy
some other formula, say [B]p, the vote of coalition B would need to include the vote of
coalition D as a key. Thus, it appears, that the vote of C' would need to include the vote of
D as well. The situation is further complicated by a mutual recursion when one attempts
to satisfy formulae [C]pp and [B]cy simultaneously. The solution that we propose in this
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article avoids this recursion. It turns out that it is not necessary for the key to contain the
complete intelligence information. Namely, we assume that each agent votes for a formula
and signs her vote with an integer key. To satisfy formula [C]pp, the mechanism will
guarantee that if all members of coalition C vote for ¢ and sign with integer keys that are
larger than keys of all members in coalition B, then ¢ will be true in the next state. The
“larger key beats smaller key” idea is formalized later in Definition 14. This idea itself, the
notion of rank from the proof of Lemma 18, as well as the first six claims in the proof of
Lemma 18 are original contributions of this article that have no counterpart in any of the
existing works on the logics of know-how.

We now start the formal proof of the completeness by defining the canonical game
G(Xo) = (W, {~a}aca, A, M, ) for a fixed maximal consistent set of formulae Xp.

Definition 11 A finite sequence Xo,C1, X1,Co,...,Cy, X, is a state of the canonical game

if
1. n >0,
2. X1,..., X, are maximal consistent sets of formulae,
3. C1,...,Cy are coalitions of agents,

4. {p €@ | Koo € Xp_1} C Xy, for each integer k such that 1 < k <n.

We say that sequence w = Xg, C1, X1,...,Cph_1, X,,—1 and sequence u = Xy, Cq, X1, ...,
Ch, Xy, are adjacent. The adjacency relation defines an undirected labeled graph whose nodes
are elements of set W and whose edges are specified by the adjacency relation. We say that
the node u is labeled by set X, and that edge (w,u) is labeled by each agent in set C,,
see Figure 6. Note that this graph has no cycles. Thus, it is a tree. As usual, by a simple
path we mean any path without repeating vertices. We allow single-vertex simple paths
that connect a node to itself.

Figure 6: Fragment of the tree formed by the states.

Definition 12 For any agent a € A and any nodes v,v' € W, let v ~4 v’ if all edges along
the unique simple path connecting nodes v and v’ are labeled by agent a.

Lemma 15 Relation ~, is an equivalence relation for each agent a € A. X
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Recall from Definition 2, that we write v ~¢ v if v ~, v for each agent a € C.
Throughout the rest of the article, for any nonempty sequence w = z1,...,x,, by hd(w)
we denote the element x,, and by w :: y we denote sequence x1, ..., Ty, y.

The next lemma shows that the tree construction solves the challenge of the distributed
knowledge discussed in the preamble to this section.

Lemma 16 If w ~c w', then Koy € hd(w) iff Koy € hd(w’).

Proof. The assumption w ~¢ w’ implies that each edge along the unique simple path
between nodes w and w’ is labeled with all agents in coalition C. Thus, it suffices to show
that Koy € hd(w) iff Koy € hd(w') for any two adjacent nodes along this path. Indeed,
without loss of generality, let

w = Xo,Cl,Xl,...,Cn_l,Xn_l
U}/ = Xo,Cl,Xl,...,Cn_l,Xn_l,Cn,Xn.

The assumption that the edge between w and w’ is labeled with all agents in coalition C
implies that C' C C),. Next, we show that Koy € hd(w) iff Ko € hd(w').

(=) : Suppose that Koy € hd(w) = X,,—1. Thus, X,,_1 = KcKcp by Lemma 7. Hence,
Xn-1 F Kg, Keow by the Epistemic Monotonicity axiom and because C' C C,. Hence,
Ko, Koy € X,,—1 because set X,,_1 is maximal. Then, Koy € X,, = X (w’) by Definition 11.
(<) : Suppose that Kcp ¢ hd(w) = X,—1. Thus, “-Kgp € X,_1 because set X,_1
is maximal. Hence, X,,—1 = Kg—=Kgep by the Negative Introspection axiom. Hence,
Xn—1 F K¢, Key by the Epistemic Monotonicity axiom and because C C (). Hence,
Ke, Koy € X,,—1 because set X,,_; is maximal. Then, -Kcyp € X, by Definition 11.
Therefore, Koy ¢ X,, = hd(w') because set X, is consistent. X

This defines the states of the canonical game G(Xj) and the indistinguishability relations
{~a}aeca on these states. We now will define the domain of actions and the mechanism of
the canonical game.

Recall from the introduction to this section that each action (“vote”) of an agent has
two parts: the actual vote (a statement that the agent wants to achieve) and an integer
“key”. The domain of actions A consists of all such pairs:

Definition 13 A is a set of all pairs (p, z) such that ¢ € ® is a formula, and z € Z is an
integer number.

As with the most proofs of completeness, the key step in our proof is an “induction”
or a “truth” lemma. In our case, this is Lemma 19. In particular, this lemma states that
if [Clpy € hd(w), then w I- [C]pp. In other words, if [C]py € hd(w), then coalition C
must have a strategy to achieve ¢ that might rely on the intelligence about the actions of
coalition B. The definition of the canonical mechanism below provides coalition C' with
such a strategy. It guarantees that if (i) [C]gp € hd(w), (ii) all members of coalition C' vote
for ¢, and (iii) each member of the coalition C signs her vote with a key which is larger than
the key of each member of coalition B, then statement ¢ will be true after the transition.
If u is a pair (z,y), then by pri(u) and pra(u) we mean elements x and y respectively.
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Definition 14 Mechanism M is the set of all triples (w,d,u), where w and u are states
and 6 is a complete action profile, such that for any formula [Clpe € hd(w) if

1. pri(6(c)) = ¢, for each agent c € C,
2. pra(0(b)) < pra(d(c)) for each agent b € B and each agent c € C,

then ¢ € hd(u).

For example, suppose that [a]yp € hd(w) and [bl,—¢ € hd(w). The first of these
assumptions implies that agent a must have a strategy to achieve ¢ as long as she has the
intelligence about agent b action. Similarly, [b],—¢ € w means that agent b must have a
strategy to achieve —p as long as he has the intelligence about agent a action. If agent a
uses action (¢,3) and agent b uses action (—¢,2), then the mechanism guarantees that ¢
will be satisfied in the outcome because 2 < 3. However, if agent a uses action (¢, 3) while
agent b uses action (-, 4), then the mechanism guarantees that —¢ will be satisfied in the
outcome because 3 < 4. If agent a knows that the action of agent b will be (z,y), then
agent a can use action (p,y + 1) to guarantee that ¢ is satisfied. This is the strategy of
agent a that relies on the intelligence about the action of agent b.

Definition 15 7(p) ={w € W | p € hd(w)}.

This concludes the definition of the canonical game G(Xo) = (W, {~a}taca, A, M, 7).
The next important milestone in the proof of the completeness is the mentioned above
“truth” Lemma 19. Before that lemma, however, we state and prove two auxiliary state-
ments that are used in the induction step of the proof of Lemma 19. The first of these
lemmas will be used to show that if Koy ¢ hd(w), then w ¥ Koop.

Lemma 17 If Koy € hd(w), then there is a state uw € W such that w ~¢ u and —p €
hd(u).

Proof. Consider the set of formulae X = {—-¢} U{¢ | Kcyp € w}. First, we prove that set
X is consistent. Suppose the opposite. Thus, there are formulae Koy, ..., Ko, € hd(w)
such that

Ui, Un F .

Hence, by Lemma 8 applied n times,

Far— (g — o (P — @) ...

Then, by the Epistemic Necessitation inference rule,

FKo(r = (Y2 = ... (Y = @) ...)).

Thus, by the Distributivity axiom and the Modus Ponens inference rule,
Koy = Koo = . (P = 9)..)).
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Recall that Koty € hd(w) by the choice of formula Koty Hence, by the Modus Ponens
inference rule,

hd(w) F Ke (s — ... (Y — 9)...)).

By repeating the previous step n — 1 more times,
hd(w) F Keep.

Hence, =Koy ¢ hd(w) due to the consistency of the set hd(w). This contradicts the as-
sumption of the lemma. Therefore, set X is consistent. By Lemma 9, there is a maximal
consistent extension X of set X. Let u be the sequence w :: C' X. Note that u € W by
Definition 11 and the choices of the set X, the set X , and the sequence u. Furthermore,
w ~¢ u by the definition of the relation ~, on the set W. Finally, mp € X C X = hd(u)
again by the choices of the set X, the set X and the sequence u. X

The next lemma is used in Lemma 19 to show that if [C]pe ¢ hd(w), then w ¥ [C]pep.
In other words, in this proof we show that if [C]pe ¢ hd(w), then no matter what know-how
strategy with intelligence coalition C' decide to use, there is a situation when the strategy
fails.

The proof of the next lemma is the longest among all proofs in this article. To improve
the readability, we structured some parts of the proof as claims.

Lemma 18 If =[C]pp € hd(w), then there exists an action profile f € AP of coalition B
such that for each action profile v € AC of coalition C' there is a complete action profile
§ € A4 and states w',u € W such that § =g 6, v =¢ 6, w ~c W', (w',6,u) € M, and
—p € hd(u).

Proof. Let action profile 8 € AP of coalition B be such that 3(b) = (T,0) for each agent
b € B. Informally, the first component of each action is the formula for which the agent is
voting. By choosing the first component to be Boolean constant T, we minimize the number
of statements that we must satisfy in state u. The second component of the action is the
key with which the agent signs the vote. Since coalition C' has the access to the intelligence
about actions of coalition B, coalition C' will easily be able to pick keys larger than those
chosen by us for the members of coalition B. Thus, there is no point in choosing large keys.
We decided to default the key to 0, but any other value would do.

Consider any action profile v € A® of coalition C. Choose an integer zy such that for
each a € C

pra2(v(a)) < 2. (2)
Such zy exists because coalition C is a finite set of agents. Define complete action profile
§ € A4 as follows
B(a), ifa € B,
d(a) = < v(a), ifaeC, (3)
(T,20), otherwise.

Note that sets B and C' are disjoint by Definition 3 because =[C]g¢p is a formula. Hence,
complete action profile § is well-defined.
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To understand the intuition behind this choice of d, note that an important part of the
definition of the complete action profile § is choosing how agents outside of the coalition
C U B are voting. Just like in the case of action profile 5, we minimize the number of
statements that we must satisfy in state u by choosing the vote of each such agent to be
Boolean constant T. We signed the votes of all agents outside of the coalition C'U B with
key zg, which is larger than any of the keys used by the members of coalition C' to “contain”
the power of the coalition C to achieve its goal. Indeed, if set hd(w’) contains a formula of
the form [D]g1, where D C C' and E C A\ (C'UB), then, coalition C' can try to force 1) by
asking all agents in set D to vote for v. By Definition 14, this tactic will succeed as long
as keys of agents in coalition D are higher than keys of agents in coalition E. To prevent
this tactic of coalition C from being successful, we set the keys of all agents outside of the
coalition C'U B to be higher than the keys of the agents in coalition C.

State w’ will be later defined to be state w. We are now starting to construct state u,
which will be later defined in such a way that hd(w’) is a maximal consistent extension of
the set X:

X = {~ptu{o|[g]go € hd(w)}U (4)
{¢ | [Ploy € hd(w), P # @,Yp € P(pr1(6(p)) = 1),
Vg € QVp € P(pra2(d(q)) < pr2(d(p)))}-

Informally, the set X contains formula —¢ and all other formulae that must belong to set
hd(u) according to Definition 14. We separated the formulae for the case of P = & into a
separate set because these formulae are treated differently later in the proof.

Next we show that set X is consistent. Suppose the opposite. Hence,

OlyeeesOmy Y1, V2,3, ..., @ (5)
for some formulae
[@lgo1, ..., [D]leom € hd(w) (6)
and some formulae
[Pilg¥1, -5 [Pal@utn € hd(w) (7)
such that
pr2(6(q)) <pra2(d(p)), Vi<n,Vq€Q;Vp € P (8)
P, # 2, Vi<n (9)
and
pr1(d(p)) = Vi <n,Vpe P, (10)

Note that, if present, repeated assumptions and assumption T can be omitted from state-
ment (5). Thus, we can assume that formulae 1, 12,3, ..., 1, are distinct and none of
them is equal to T:

Vi # ¥j, (11)
Vi # T (12)

for each ¢ < n and each j # 1.
Next, we state and prove basic properties of the sets of agents P; and Q);.
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@ pr2(6(F3))

Figure 7: Sets Py, P>, P, ... and their ranks.

Claim 1 Sets Py, ..., P, are pairwise disjoint.

Proof. Consider any agent a € P; N Pj. Then, ¢; = pr1(§(a)) = ¢; by equation (10), which
contradicts assumption (11). X

Claim 2 P; C C for each i < n.

Proof. Consider any agent a € P;. Suppose that a ¢ C. Then, pri(d(a)) = T by equa-
tion (3). At the same time, pri(d(a)) = 1; by equality (10) because a € P;. Hence, ¢; = T,
which contradicts assumption (12). X

Claim 3 ; C BUC.

Proof. Consider any agent ¢ € @);. Statement (9) implies that there is at least one agent
p € P;. Then, p € C by Claim 2. Thus, pra(d(p)) = pra(v(p)) < zo due to equality (3)
and inequality (2). Hence, pra(d(q)) < zo by inequality (8). Therefore, ¢ € B U C due to
equality (3). X

For any nonempty finite set of agents P C A, let

rank(P) = min pra(d(p)). (13)
pEP
Informally, rank(P) is the minimal “key” used by an agent from set P; to sign her “vote”
under action profile §.
Sets Pi,..., P, are nonempty by statement (9). Thus, rank(P;) is defined for each
1 < n. Without loss of generality, we can assume that, see Figure 7,

rank(P;) < rank(Py) < --- < rank(P,). (14)

To understand the intuition behind this step, recall that in order for a coalition P to use a
strategy with the intelligence whose existence is expressed by formula [P]g, all agents in
set P must sign with keys higher than those used by the agents in set ). Thus, informally,
the higher rank of a coalition is, the more “powerful” its vote is. Ordering (14) sorts
coalitions Py, ..., P, by the power of the keys they used under action profile 6.

We now show more advanced properties of coalitions P; and ; that are true because
of assumption (14).
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Claim 4 Sets Q; and P; are disjoint for 1 <i < j.

Proof. For any ¢ € Q; and any p € P;, by inequality (8) and definition (13); assumption (14);
and again definition (13),
pr2(6(q)) < min pra(3(p) = rank(F;) < rank(F;)
PEP:

[3

= min pr2(8(p')) < pra(6(p)).

p’EPj
Therefore, sets (); and P; are disjoint. X
Let
R=C\(PLU---UP,). (15)
Claim 5 Sets B, R, P, ..., P, are pairwise disjoint.

Proof. Sets B and C are disjoint by Definition 3 because =[C]py is a formula. Hence,
complete action profile § is well-defined. Hence, sets B and R are disjoint because of equa-
tion (15) and set B is disjoint with each of sets P, ..., P, by Claim 2 and because sets B
and C are disjoint. Also, set R is disjoint with each of sets P,..., P, by equation (15).
Finally, sets Pi,..., P, are pairwise disjoint by Claim 1. X

Claim 6 Q;, CBURUP,U---UP_1 for1 <i<n.

Proof. Consider any agent ¢ € @; such that ¢ ¢ B U R. It suffices to show that ¢ €
Py U---UP;_;. Indeed, assumptions ¢ € @; and ¢ ¢ B imply that ¢ € C by Claim 3.
Thus, ¢ € Py U---U P, by the assumption ¢ ¢ R and the definition of set R. Therefore,
g€ PrU---UP;_1 by Claim 4 because g € @Q);. X

Let us now return to the proof of the lemma. Statement (5), by the Lemma 8 applied
m + n times, implies that

For—=(..(om— W1 —...(¥n—¢)...))...).

Hence, by the Strategic Necessitation inference rule,

F2ls(01 = (o (Om — (1 — o (= ). )) ).

Thus, by the Cooperation axiom (where B = C = D = &) and the Modus Ponens inference
rule,
F[@lgo1r = [@)a(oe = (. (om = (Y1 — .. (Y — @) ...)) . .0).

Then, by the Modus Ponens inference rule and assumption (6),

hd(w) b [@lg(oa = (... (om = (1 = .. (U = @) .0))0)).
By repeating the previous step m — 1 times,

hd(w) = [@]g (b1 — (Y2 = (Y3 = .. (Y = @) ...)))-

547



PAVEL NAUMOV AND YUAN YUAN

Hence, by the Intelligence Monotonicity axiom and the Modus Ponens inference rule,

hd(w) - [Q]B(wl — (¢2 — (7,/}3 — ... (wn — (p) .. )))

Thus, by Lemma 6, Claim 5, and the Modus Ponens inference rule,

hd(w) & [R]p(¥1 = (Y2 = (Y3 = ... (Yn = 9)...)))-

Then, by the Cooperation axiom, Claim 5, and the Modus Ponens inference rule,

hd(w) [ [Pl]B,RT/Jl — [R, Pl]B('l)ZJQ — (’QZJ3 — ... (Q,Z)n — QD) . ))

At the same time, recall that [P]g, 11 € hd(w) by assumption (7). Thus, hd(w) - [P1]B,r¢1
by the Intelligence Monotonicity axiom and because @1 € B U R due to Claim 6. Hence,
by the Modus Ponens inference rule,

hd(w) F [R, P|p(te — (Y3 — ... (Y — ) ...)).

Then, by the Cooperation axiom, Claim 5, and the Modus Ponens inference rule,

hd(w) = [P] B r,p Y2 — [R, P1, P2]p(3 — ... (Yn = @) ...)).

Also, recall that [P2]g,v2 € hd(w) by assumption (7). Thus, hd(w) - [P»]B r,p, %2 by the
Intelligence Monotonicity axiom and because Q2 C B, R, P; due to Claim 6. Hence, by the
Modus Ponens inference rule,

hd(w) F [R, Pl, PQ]B(¢3 — ... (I/Jn — QO) e ))
By repeating the previous step n — 2 more times,
hd(w) I_ [R7 P17P27 s JPN]BSO

Equation (15) implies that R C C. Thus, R, P, Ps,...,P, C C by Claim 2. Then,
hd(w) t [C]pp by Lemma 6, which contradicts the assumption —[C]pp € hd(w) and the
consistency of the set hd(w). Therefore, set X, as defined by equation (4), is consistent.
By Lemma 9, there exists a maximal consistent extension X of the set X.

Let w’ be state w and u to be the sequence w :: @ :: X.

Claim 7 v e W.
Proof. By Definition 11, it suffices to prove that
{p € @ | Koy € hd(w)} C hd(u).

Indeed, let Kgp € hd(w). Thus, hd(w) F [&]zp by the Empty Coalition axiom. Hence,
D]z € hd(w) due to the maximality of the set hd(w). Then, ¢ € X by equation (4).

Thus, ¢ € X by the choice of set X. Therefore, ¢ € hd(u) by the choice of sequence u. X
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Note that 3 =p § because of equation (3) and the assumption € AP of the lemma.
Similarly, v =¢ §. Also, w ~¢ w’ by Definition 12 and the choice of w’ = w. Additionally,
—p € hd(u) because, due to equation (4), we have ~¢p € X C X = hd(u).

Since w = w’, to finish the proof of the lemma, we need to show that (w,d,u) € M.
Consider any formula [P]gy € hd(w) such that pri(d(p)) = ¢ for each agent p € P and
pra(6(q)) < pra(d(p)) for each agent ¢ € @ and each agent p € P. By Definition 14, it
suffices to prove that ¢ € hd(u). We consider the following two cases separately.

Case I: P # @. Thus, ¢ € X by equation (4). Therefore, ¢ € X C X = hd(u).

Case II: P = @. Then, the assumption [P]gt € hd(w) can be rewritten as [@]gy € hd(w).
Thus, hd(w) F [@]z1 by the None to Analyze axiom. Hence, [@]z1 € hd(w) because of the
maximality of the set hd(w). Thus, ¢ € X by equation (4). Therefore, 1) € X C X = hd(u).

This concludes the proof of Lemma 18. X

We are now ready to state and to prove the truth lemma. This lemma is the key step
in most proofs of completeness.

Lemma 19 w Ik ¢ iff ¢ € hd(w) for each formula ¢ € ®.

Proof. We prove the lemma by induction on the structural complexity of formula . The
base case follows from Definition 4 and Definition 15. The case when formula ¢ is a negation
or an implication follows from Definition 4 and the assumption that set hd(w) is a maximal
consistent set of formulae in the standard way.

Suppose that formula ¢ has the form K.
(=): Assume that Koy ¢ hd(w). Thus, =K¢ € hd(w) due to the maximality of the set
hd(u). Hence, by Lemma 17, there is a state uw € W such that w ~¢ w and = € hd(u).
Then, ¢ ¢ hd(u) due to the consistency of the set hd(u). Thus, u ¥ 1 by the induction
hypothesis. Therefore, w ¥ Kg by Definition 4.
(«<): Assume that Koy € hd(w). Consider any state u € W such that w ~¢c u. By
Definition 4, it suffices to show that u I- ¢. Indeed, by Lemma 16, assumptions Koy €
hd(w) and w ~¢ u imply that Koy € hd(u). Hence, hd(u) = 1 by the Truth axiom and
the Modus Ponens inference rule. Thus, ¢ € hd(u) due to the maximality of the set hd(u).
Therefore, u I 1 by the induction hypothesis.

Suppose that formula ¢ has the form [C]g1).
(=): Assume that [C]py ¢ hd(w). Hence, =[C]py € hd(w) due to the maximality of the
set hd(w). Thus, by Lemma 18, there exists an action profile 8 € AP of coalition B such
that for each action profile v € A of coalition C' there is a complete action profile § € A#
and states w’,u € W such that 8 =5 0, v =¢ 0, w ~c W', (W', 0,u) € M, and —¢) € hd(u).
Note that =1 € hd(u) implies ¢ ¢ hd(u) due to the consistency of the set hd(u), which, in
term implies u ¥ 1 by the induction hypothesis.

Thus, for each action profile v € A® of coalition C' there is a complete action profile
§ € A and states w’,u € W such that 8 =g 6, v =¢ 6, w ~c W', (w',8,u) € M, and
u W 1. Therefore, w ¥ [C]py by Definition 4.
(«=): Assume that [C]py € hd(w). Consider any action profile 3 € AP of coalition B. Set
B is finite because it is a coalition. Let zy be any integer number such that pra(8(b)) < zo
for each agent b € B. Define action profile v € A as y(c) = (p, 29) for each ¢ € C.
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Consider any complete action profile § € A4, any state w’ € W, and any state v € W such
that 8 =p 0, v =¢ 0, w ~¢c w', and (v, d,u) € M. By Definition 4, it suffices to show that
ulF 9.

The assumption [C]py € hd(w) implies that hd(w) F Ko[C]py by the Strategic In-
trospection axiom and the Modus Ponens inference rule. Thus, Ko [C]py € hd(w) by the
maximality of the set hd(w). Hence, Ko[C|py € hd(w’) by the assumption w ~¢ w’ and
Lemma 16. Then, hd(w’) b [C]pty by the Truth axiom and the Modus Ponens inference
rule. Hence, [C]pt € hd(w’) due to the maximality of the set hd(w').

By the choice of action profile v and the assumption v =¢ §, for each agent ¢ € C, we
have pri(d(c)) = pri(y(c)) = p. At the same time, by the assumption § =p §, the choice
of integer 2, the choice of action profile 7, and the assumption v =¢ 6,

pra(0(b)) = pra(B(b)) < 20 = pra(v(c)) = pra(6(c))

for each agent b € B and each agent c € C.
Thus, ¢ € hd(u) by Definition 14 and the assumption (w’,d,u) € M. Therefore, u It 1)
by the induction hypothesis. X

Now we are ready to state and to prove the strong completeness of our logical system.

Theorem 3 If Y ¥ o, then there is a state w of a game such that w I+ x for each x € Y
and w W .

Proof. Suppose that Y ¥ ¢. By Lemma 9, there exists a maximal consistent set of formulae
Xy such that Y U {=¢} C Xy. Let w be the single-element sequence X. By Definition 11,
sequence w is a state of the canonical game G(Xy). Note that x € Xo = hd(w) for each
formula y € Y and —¢ € Xy = hd(w) by the choice of set Xy and the choice of sequence
w. Thus, w IF x for each x € Y and w I- =¢ by Lemma 19. Therefore, w ¥ ¢ by Defini-
tion 4. X

10. Conclusion

In this article, we proposed the notion of a strategy with intelligence, proved that corre-
sponding know-how modality is not definable through the standard know-how modality, and
gave a sound and complete axiomatization of a bimodal logic that describes the interplay
between the strategic power with intelligence and the distributed knowledge modalities in
the setting of strategic games with imperfect information.

A natural question is decidability of the proposed logical system. Unfortunately, the
standard filtration technique (Gabbay, 1972) can not be easily applied here to produce a
finite model. Indeed, it is crucial for the proof of the completeness, see Definition 14, that
for each action there is another action with a higher value of the “key” component. Thus,
for the proposed construction to work, the domain of choices must be infinite. One perhaps
might be able to overcome this by changing the second component of the action from an
infinite linear ordered set to a finite circularly “ordered” set as in rock-paper-scissors game,
but we have not been able to prove this.
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In this article, we refer to the additional information about actions of coalition B in
modality [C]py as “the intelligence”, to emphasize that C' knows ez ante (before actions
are taken) a strategy that depends on (future) intelligence about the actions of coalition
B. Alternatively, one can consider a situation when coalition C' knows the strategy interim
(after coalition B commits to specific actions). For example, the Germans might have a
technical capability to attack a British convoy along route 1, but not along route 2. In
such a situation, they do not know ez ante a strategy to attack convoy even if they know
ex ante that they will be given the intelligence about the convoy itinerary. However, the
Germans will have interim knowledge of such a strategy if British decide to use route 1.
We refer to such interim knowledge of the strategy as a knowledge of a conditional strategy
because it could be viewed as ex ante knowledge of a strategy that only works when a
certain condition on the actions of coalition B is satisfied. A logical system for reasoning
about such conditional strategies will require a new language in which such conditions on
actions of a coalition B could be expressed. An example of such an approach is mentioned
earlier Alternating-time Temporal Logic with Explicit Strategies (Walther et al., 2007).

Another type of conditional strategies are those where the condition is not on the actions
of other coalitions, but on the current state. We denote corresponding modality by [C],9
and read it as “coalition C' knows a strategy that achieves v as along as condition ¢ is
satisfied (which might be unknown to C) in the current state”. This modality can be
defined in the setting of Definition 4 as follows:

w I+ [C],v if there is an action profile v € AC of coalition C' such that for any complete
action profile § € A4 and any states w',u € W if v =¢ 0, w ~c w', W' |+ ¢, and
(w',6,u) € M, then ul- 1.
An interesting property of conditional strategies expressible through the last modality
is
[Clet = ([D]-o¢ — [C, DIY),

where coalitions C' and D are disjoint. Or, more generally,

[Cloy 1 = ([D]pyth2 = [C, D]pyve, (Y1 V 1h2)).

The complete axiomatization of the properties of this modality remains an open question.

Appendix A. Auxiliary Lemmas

Lemma 7 F Koy — KoKeoop.

Proof. Formula Kc—Kgyp — =Koy is an instance of the Truth axiom. Thus, - Kgp —
—Ke—Key by contraposition. Hence, taking into account the following instance of the
Negative Introspection axiom: “Kg—Kgogp — Ko—Ko—=Kep, we have

F Koy = Ke=Ke—=Kep. (16)

At the same time, “-Kgop — Ko—=Kep is an instance of the Negative Introspection axiom.
Thus, F =“Keg—=Kecp — Ko by the law of contrapositive in the propositional logic. Hence,
by the Necessitation inference rule, - Ko (=Ko—=Keoyp — Kop). Thus, by the Distributiv-
ity axiom and the Modus Ponens inference rule, - Kc—Kc—Kop — KoKegw. Therefore,

551



PAVEL NAUMOV AND YUAN YUAN

F Kep — KeKey by propositional reasoning using statement (16). X

Lemma 8 If X, p 4, then X ¢ — 1. Proof. Suppose that a sequence 1,...,1, is a

proof from set X U{p} and the theorems of our logical system that uses the Modus Ponens
inference rule only. In other words, for each k < n, either

1. kg, or

2. Y€ X, or

3. Yy is equal to ¢, or

4. there are 7, j < k such that formula 1); is equal to 1; — .

It suffices to show that X F ¢ — ¢ for each & < n. We prove this by induction on k
through considering the four cases above separately.

Case I: - 9. Note that ¥ — (¢ — 1) is a propositional tautology, and thus, is an axiom
of our logical system. Hence, - ¢ — 1 by the Modus Ponens inference rule. Therefore,
X+ © — Y.

Case II: 9, € X. Then, similar to the previous case, X - ¢ — 9.

Case III: formula vy, is equal to ¢. Thus, ¢ — ¥} is a propositional tautology. Hence,
F ¢ — . Therefore, X F ¢ — .

Case IV: formula 9; is equal to 1; — 13, for some %,j < k. Thus, by the induction hy-
pothesis, X - ¢ — 9; and X F ¢ — (¢ — ). Note that formula (¢ — ;) — ((¢ —
(i = ) — (¢ — 1)) is a propositional tautology. Therefore, X F ¢ — 9% by applying
the Modus Ponens inference rule twice. X
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