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Abstract

This paper presents a new insight into improving the performance of Stochastic Neigh-
bour Embedding (t-SNE) by using Isolation kernel instead of Gaussian kernel. Isolation
kernel outperforms Gaussian kernel in two aspects. First, the use of Isolation kernel in
t-SNE overcomes the drawback of misrepresenting some structures in the data, which often
occurs when Gaussian kernel is applied in t-SNE. This is because Gaussian kernel deter-
mines each local bandwidth based on one local point only, while Isolation kernel is derived
directly from the data based on space partitioning. Second, the use of Isolation kernel yields
a more efficient similarity computation because data-dependent Isolation kernel has only
one parameter that needs to be tuned. In contrast, the use of data-independent Gaussian
kernel increases the computational cost by determining n bandwidths for a dataset of n
points. As the root cause of these deficiencies in t-SNE is Gaussian kernel, we show that
simply replacing Gaussian kernel with Isolation kernel in t-SNE significantly improves the
quality of the final visualisation output (without creating misrepresented structures) and
removes one key obstacle that prevents t-SNE from processing large datasets. Moreover,
Isolation kernel enables t-SNE to deal with large-scale datasets in less runtime without
trading off accuracy, unlike existing methods in speeding up t-SNE.

1. Introduction and Motivation

t-SNE (Maaten & Hinton, 2008) has been a successful and popular dimensionality reduc-
tion method for visualisation. It aims to project high-dimensional datasets into lower-
dimensional spaces while preserving the similarities between data points, as measured by
the KL divergence. The original SNE (Hinton & Roweis, 2003) employs a Gaussian ker-
nel to measure similarity in both high and low-dimensional spaces. t-SNE replaces the
Gaussian kernel with the distance-based similarity (1 + dij)

2 (where dij is the distance be-
tween instances i and j) in low-dimensional space, while retaining the Gaussian kernel for
high-dimensional space.

When using the Gaussian kernel, t-SNE has to fine-tune a bandwidth of the Gaussian
kernel centred at each point in the given dataset because Gaussian kernel is independent of
data distribution. In other words, t-SNE must determine n bandwidths for a dataset of n
points.
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If we look into the bandwidth determination process, it is accompanied by using a
heuristic search with a single global parameter called perplexity such that the Shannon
entropy is fixed for all probability distributions at all points in adapting each bandwidth
to the local density of the dataset. As the perplexity can be interpreted as a smooth
measure of the effective number of neighbours (Maaten & Hinton, 2008), the method can
be interpreted as using a user-specified number of nearest neighbours (aka kNN) in order
to determine the n bandwidths (more on this point in the discussion section.) Whilst there
is a single external parameter perplexity, a bandwidth setting must be optimised for each
data point internally.

This becomes the first obstacle in dealing with large datasets due to massive computa-
tional cost of the bandwidth search process. In addition, the point-based bandwidth is also
the cause of misrepresentation in high-dimensional space under some conditions.

To date, the common practice is still using Gaussian kernel in t-SNE on high-dimensional
datasets. However, sound and workable solutions to its drawbacks mentioned above have
not been brought up yet. The contributions of this paper are:

(1) Uncovering two deficiencies due to the use of the Gaussian kernel. First, the point-
based-bandwidth Gaussian kernel often creates misrepresented structure(s) which do
not exist in high-dimensional space under some conditions. Second, the use of the data-
independent kernel requires t-SNE to determine n bandwidths for a dataset of n points,
despite the fact that a user needs to set one parameter only. This becomes one key
obstacle in dealing with large datasets.

(2) Revealing the advantages of using a partition-based data-dependent kernel in t-SNE.
First, this kernel represents the true structure(s) in the high-dimensional space under
the same condition mentioned above. Second, the data-dependent similarity is set with
a single parameter only; this allows it to be computed more efficiently. This enables t-
SNE to deal with large-scale datasets without trading off accuracy with faster runtime,
without resorting to approximation methods.

(3) Proposing an improvement to t-SNE by simply replacing the data-independent kernel
with a data-dependent kernel, leaving the rest of the procedure unchanged.

(4) Verifying the effectiveness and efficiency of the data-dependent kernel in t-SNE.

The adopted data-dependent kernel is Isolation kernel (Ting, Zhu, & Zhou, 2018; Qin,
Ting, Zhu, & Lee, 2019) and the experiment result shows that using Isolation kernel will
improve the performance of t-SNE and solve the issues brought by Gaussian kernel in t-SNE.

The rest of the paper is organised as follows. The current t-SNE and related work are
described in Section 2. The deficiencies of using Gaussian kernel is presented in Section 3. In
Section 4, we characterise the selected Isolation kernel and Section 5 presents the empirical
evaluation of using Isolation kernel in t-SNE. Discussion and conclusions are given in the
last two sections.

2. Background

In this section, we will describe the basics of t-SNE and related work.
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2.1 Basics of t-SNE

Given a dataset D = {x1, . . . , xn} in Rd, t-SNE aims to map D ∈ Rd to D′ ∈ Rd′ where
d′ � d such that the similarities between points are preserved as much as possible from the
high-dimensional space to the low-dimensional space. As t-SNE is meant for a visualisation
tool, d′ = 2 usually.

The similarity between a pair of points xi, xj (resp. x′i x
′
j) in a high (resp. low)-

dimensional space is measured by a probability pij (resp. p′ij) that point xi picks xj as its
neighbour. The probability distributions are computed based on distance measures between
the points in the respective space. The aim of this family of projection methods is to project
the points from x to x′ in such a way that the probability distributions between pij and p′ij
are as similar as possible.

The similarity between xi and xj is measured using a Gaussian kernel as follows:

K(xi, xj) = exp(
− ‖ xi − xj ‖2

2σ2
i

) (1)

t-SNE computes the conditional probability pj|i that xi would pick xj as its neighbour
as follows:

pj|i =
K(xi, xj)∑
k 6=iK(xi, xk)

(2)

The probability pij , a symmetric version of pj|i, is computed as:

pij =
pj|i + pi|j

2n
(3)

t-SNE performs a binary search for the best value of σi such that the perplexity of
the conditional distribution equals a fixed perplexity specified by the user. Therefore, the
bandwidth is adapted to the density of the data, i.e., small (large) values of σi are used in
dense (sparse) regions. The perplexity is defined as:

Perp(Pi) = 2H(Pi) (4)

where Pi represents the conditional probability distribution over all other data points given
data point xi and H(Pi) is the Shannon entropy:

H(Pi) = −
∑
j

pj|i log2 pj|i (5)

The perplexity is a smooth measure of the effective number of neighbours, similar to the
number of nearest neighbours k used in kNN methods (Hinton & Roweis, 2003). Thus, σi is
adapted to the density of the data, i.e., it becomes small for dense data since the k-nearest
neighbourhood is small and vice versa. In addition, Maaten and Hinton (2008) point out
that there is a monotonically increasing relationship between perplexity and the bandwidth
σi.

The similarity between x′i and x′j in the low-dimensional space is measured as:

s(x′i, x
′
k) = (1+ ‖ x′i − x′j ‖2)−1
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and the corresponding probability is defined as:

p′ij =
s(x′i, x

′
j)∑

k 6=` s(x
′
`, x
′
k)

The distance-based similarity s is used because it has heavy-tailed distribution, i.e., it
approaches an inverse square law for large pairwise distances. This means that the far
apart mapped points have p′ij which are almost invariant to changes in the scale of the
low-dimensional space (Maaten & Hinton, 2008).

Note that the probability distributions are defined in such a way that pii = 0 and p′ii = 0,
i.e. a node does not pick itself as a neighbour.

The location of each point x′ ∈ D′ is determined by minimising a cost function based
on the (non-symmetric) Kullback-Leibler divergence of the joint probability distribution P ′

in the low-dimensional space from the joint distribution P in the high-dimensional space:

KL(P ‖ P ′) =
∑
i 6=j

pij log
pij
p′ij

The use of the Gaussian kernel K sharpens the cost function in retaining the local struc-
ture of the data when mapping from the high-dimensional space to the low-dimensional
space. The main computational step in applying t-SNE is to determine the value of band-
width σ for each data point.

The procedure of t-SNE is provided in Algorithm 1. Note that m = n for small datasets.
For large datasets, m� n; and this is to be discussed in Section 5.4.

Algorithm 1 t-SNE(D,Perp,m)

Require: D - Dataset {x1, . . . , xn}; Perp - Perplexity
1: Determine σi for every xi ∈ D based on Perp
2: Compute matrix [pij ]m×m according to Equations 2 & 3
3: Compute low-dimensional D′ and p′ij which minimise the KL divergence
4: Output low-dimensional data representation D′ = {x′1, . . . , x′m}

2.2 Related Work

t-SNE (Maaten & Hinton, 2008) and its variations have been widely applied in dimension-
ality reduction and visualisation. In addition to t-SNE (Maaten & Hinton), which is one
of the commonly used visualisation methods, many other variations have been proposed to
improve SNE in different aspects.

There are improvements based on some revised Gaussian kernel functions in order to
get better similarity measurements. Cook, Sutskever, Mnih, and Hinton (2007) propose a
symmetrised SNE; Yang, King, Xu, and Oja (2009) enable t-SNE to accommodate various
heavy-tailed embedding similarity functions; and Van Der Maaten and Weinberger (2012)
propose an algorithm based on similarity triplets of the form “A is more similar to B than
to C” so that it can model the local structure of the data more effectively.

Based on the concept of information retrieval, NeRV (Venna, Peltonen, Nybo, Aidos,
& Kaski, 2010) uses a cost function to find a trade-off between precision and recall of
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“making true similarities visible and avoiding false similarities”, when projecting data into
2-dimensional space for visualising similarity relationships. Unlike SNE which relies on a
single Kullback-Leibler divergence, NeRV uses a weighted mixture of two dual Kullback-
Leibler divergences in neighbourhood retrieval. Furthermore, JSE (Lee, Renard, Bernard,
Dupont, & Verleysen, 2013) enables t-SNE to use a different mixture of Kullback-Leibler
divergences, a kind of generalised Jensen-Shannon divergence, to improve the embedding
result.

To reduce the runtime of t-SNE, Van Der Maaten (2014) explores tree-based index-
ing schemes and uses the Barnes-Hut approximation to reduce the time complexity to
O(nlog(n)), where n is the data size. This gives a trade-off between speed and map-
ping quality. To further reduce the time complexity to O(n), Linderman, Rachh, Hoskins,
Steinerberger, and Kluger (2019) utilise a fast Fourier transform to dramatically reduce the
time of computing the gradient during each iteration. The method uses vantage-point trees
and approximates nearest neighbours in dissimilarity calculation with rigorous bounds on
the approximation error.

Some works focus on analysing the heuristics methods for solving non-convex optimi-
sation problems for the embedding (Linderman & Steinerberger, 2017; Shaham & Steiner-
berger, 2017). Recently, Arora, Hu, and Kothari (2018) theoretically analyse this opti-
misation and provide a framework to make clusterable data visually identifiable in the
2-dimensional embedding space. These works focus on changing the optimisation problem
and are not related to similarity measurements.

So far, however, none of these studies has investigated the suitability of Gaussian kernel
in t-SNE. The following two sections will uncover the issues of using Gaussian kernel in
t-SNE and propose to replace it with Isoaltion kernel.

3. Deficiencies of Gaussian Kernel when used in t-SNE

Here we list two identified deficiencies of Gaussian kernel that cause poor visualisation
outputs and high computational cost in t-SNE.

3.1 The First Deficiency

Gaussian kernel determines each local bandwidth based on one local point only. It often
creates misrepresented structure(s) which do not exist in high-dimensional space under some
conditions.

3.1.1 Point-based bandwidth: the cause of misrepresentation in
high-dimensional space

As bandwidth σi of the Gaussian kernel is fixed for each point xi, we identify the following
observation:

Observation 1 Gaussian kernel with point-based bandwidth can misrepresent the structure
of a data distribution, having points significantly denser than the majority of the points in
a sample generated from the distribution.
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Intuitively, as each point-based bandwidth represents one local density only, the Gaus-
sian kernel can misrepresent the relationship between multiple clusters in the joint distribu-
tion of the overlap region. We provide two example cases in which misrepresentation occurs,
i.e., there are multiple subspace clusters; each is a Gaussian distribution of the same mean
with: (i) different variances; and (ii) the same variance.

Let X1 and X2 be two subspace regions in a high-dimensional space, and points in the two
clusters are generated from the Gaussian distributions N [0, v1] and N [0, v2], respectively;
and the distributions only overlap at the origin O.

In case (i) where variance v1 � v2. Let point xk1 ∈ X1 be the point closest to O
in the dense cluster, and point xk2 ∈ X2 be the point closest to O in the sparse cluster.
Then, K(O, xk1) � K(O, xk2) because ‖ O − xk1 ‖�‖ O − xk2 ‖ and K(O, ·) is inversely
proportional to distance.

In case (ii) where v1 = v2, using an appropriate setting in the current t-SNE procedure,
each point x in either X1 or X2 would have learned approximately the same bandwidth σ,
except the originO becauseO has at least double the density than any point in either cluster.
As a result, ∀xi, xj ∈ X1 (or ∀xi, xj ∈ X2) and ‖ O− xi ‖=‖ xj − xi ‖, K(O, xi)� K(xj , xi)
because σO � σj . This means that the origin is very dissimilar to any points in either
cluster.

Simulations of the two cases are given below:

(i) Five subspace clusters having different variances in a 50-dimensional space (see the
simulation details in the footnote1.)

Using Gaussian kernel, SNE creates a misrepresentation of the structure in the high-
dimensional space. The simulation result is shown in the first row in Table 1: t-SNE is
unable to identify the joint component of the three clusters in different subspaces which
share the same mean at the origin only in the high-dimensional space but nowhere
else. Notice that the mapped origin point is misrepresented to be associated with one
cluster only; and it is totally disassociated with the other two clusters.

In contrast, the same t-SNE algorithm employing the Isolation kernel (Ting et al.,
2018; Qin et al., 2019), instead of a Gaussian kernel, produces the mapping which
truly represents the structure in the high-dimensional space: the three clusters are
well separated and yet they share some common points, indicated by the mapped
origin point as shown in the second row in Table 1.

(ii) Two subspace clusters in a 200-dimensional dataset with two subspace clusters having
the same Gaussian distribution N [0, 1] but in different subspaces2.

1. The synthetic 50-dimensional dataset contains 5 subspace clusters. Each cluster has 250 points, sampled
from a 10-dimensional Gaussian distribution with the other 40 irrelevant attributes having zero values;
but these 4 × 10 attributes are relevant to the other four Gaussian distributions. In other words, no
clusters share a single relevant attribute. In addition, all clusters have significantly different variances
(the variance of the 5th cluster is 625 times larger than that of the 1st cluster). The first three clusters
share the same mean; but the last two have different means. The five clusters have distributions: N [0, 1],
N [0, 16], N [0, 81], N [400, 256] and N [500, 625] in each dimension.

2. Each cluster has 500 points, sampled from a 100-dimensional Gaussian distribution N [0, 1] with the other
100 irrelevant attributes having zero values; and no clusters share a single relevant attribute.
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Table 1: Visualisation results of the t-SNE using Gaussian kernel and Isolation kernel
on a 50-dimensional dataset with 5 subspace clusters, each in a different 10-dimensional
subspace. The black cross indicates the mapped point of the origin in the high-dimensional
space shared by three clusters in different subspaces. Note that in (c), all points of the red
cluster (cluster 1) are concentrated and they overlap with the mapped origin. perplexity
and ψ are the key parameters for Gaussian kernel and Isolation kernel, respectively.
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(d) ψ = 50 (e) ψ = 250 (f) ψ = 500

Table 2: Visualisation results of t-SNE with Gaussian kernel and Isolation kernel on a 200-
dimensional dataset with two equal density subspace clusters. Note that in (c), the origin
is far away from both clusters, although there is a clear gap between the two clusters. The
green box in (c) presents a zoom-in view of the two clusters.
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(d) ψ = 50 (e) ψ = 210 (f) ψ = 300
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Table 2 shows the simulation results. When Gaussian kernel is used, the t-SNE with
a small perplexity produces small bandwidth for every point—leading to each point
has almost the same low similarity with every other point in the dataset, as shown
in Figure (a) in Table 2. Note that the two clusters could not be distinguished in
the visualization if the colors, indicating the ground truth labels, are not used in the
plot. Yet, the t-SNE with a large perplexity produces large bandwidths for all points,
except the origin which has a significantly smaller bandwidth—note that the origin
(denoted as ×) and the rest of the points are at the opposite corners in Figure (c)
in Table 2. This is because the origin, being the only overlap point between the two
clusters, has a significantly higher density than all other points. As both clusters have
the same variance, all their points have low density (relative to the origin) are ‘learned’
to have approximately the same bandwidth—which is significantly larger than that
of the origin. As a result, the origin is very dissimilar to all other points; though all
the other points are correctly clustered into two separate groups. Figure (b) shows
the movement of the origin using a perplexity between those used in Figure (a) &
Figure (c), i.e., the origin moves from in-between the two clusters in (a) to the edge
of a cluster in (b); before moving to a location far away from both clusters in (c).

In contrast, when the Isolation kernel is used, the origin is always positioned in-between
the two clusters, independent of the ψ parameter setting.

Note the above-mentioned deficiency is not restricted to subspace clusters without shared
attributes. An example using subspace clusters with shared attributes can be found in
Appendix A.

3.1.2 No need for point-based bandwidth in Isolation kernel

The space partitioning mechanism of the Isolation kernel (Ting et al., 2018; Qin et al., 2019)
determines the size of the partitions in the local region: it produces large partitions in the
sparse region and small partitions in the dense region (see Section 4.2 for more details.) As
it is partition-based, points in the local neighbourhood are most likely to be in the same
partition. As such, points in the intersection of clusters (in different subspaces as shown in
Table 1) are almost always captured by the same partition of Isolation kernel.

An example distribution of similarities based on the dataset shown in Table 1 is given
in Figure 1. Let xk1 be the origin O’s closest point in the dense cluster (i.e., cluster 1);
and xk2 be O’s closest point in a sparse cluster (cluster 2 or 3). Figure 1b shows that
Kψ(O, xk1) ≈ Kψ(O, xk2) when the Isolation kernel is used. When the Gaussian kernel is
used, K(O, xk1)� K(O, xk2), as shown in Figure 1a.

This explains why the points in the intersection are better mapped in the low-dimensional
space by using the Isolation kernel than using the Gaussian kernel.

In other words, the Isolation kernel ensures that the local structure is truly reflected
in the similarities among local points in the high-dimensional space, unlike the misrepre-
sentation exhibited in Table 1 and Table 2 when the Gaussian kernel is used. As a result,
t-SNE using the Isolation kernel produces the improved visualisation quality which has no
misrepresentations.
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(a) Gaussian kernel with perplexity = 250 (b) Isolation kernel with ψ = 250

Figure 1: Isolation kernel versus Gaussian kernel: Distributions of similarities of points wrt
the origin for three clusters of N [0, 1], N [0, 16] and N [0, 81] in different subspaces shown
in Table 1, where each is a 10-dimensional cluster (See the details in Footnote 1.) The
similarities are computed in the 50-dimensional space. The left-most point in each cluster
is the point closest to the origin O having the highest similarity: xk1 is the red left-most
point; xk2 is the yellow (or green) left-most point.

3.2 The Second Deficiency

The use of the data-independent kernel requires t-SNE to determine n bandwidths for a
dataset of n points. This becomes one key obstacle in dealing with large datasets.

3.2.1 Low computational efficiency problem with Gaussian kernel

The use of a Gaussian kernel necessitates the search for a local bandwidth for each local
point. t-SNE utilises a binary search for the value of σi that makes the entropy of the distri-
bution over neighbours equal to logK, where K is the effective number of local neighbours
or “perplexity” (Maaten & Hinton, 2008). This search is the key component that deter-
mines the success or failure of t-SNE. A gradient descent search has been used successfully
to perform the search for n parameters for small datasets (Maaten & Hinton, 2008). This
formulation has two key limitations for large datasets. First, the need for n-parameters
search poses a real limitation in terms of finding appropriate settings for a large number
of parameters. Second, it cannot deal with large datasets because its low computational
efficiency, i.e., the time complexity is O(n2).

3.2.2 High computational efficiency with Isolation Kernel

The computational complexities of the Guassian kernel and Isolation kernel (Ting et al.,
2018; Qin et al., 2019) used in t-SNE are shown in Table 3.3 Although the parameter ψ of
Isolation kernel corresponds to the bandwidth parameter of the Gaussian kernel, the Isola-
tion kernel needs no optimisation to determine n bandwidths locally. This is because the
partitioning mechanism used by the Isolation kernel produces small partitions in dense re-
gions and large partitions in sparse regions; and the sizes of the partitions are monotonically

3. Isolation kernel is derived from t Voronoi diagrams and each Voronoi diagram has ψ cells. Note that
each Voronoi diagram does not need to be generated explicitly. This is because the cell into which a
point falls can be determined by simply finding its nearest neighbor from the ψ points. This costs O(tψ).
Therefore, the time complexity of calculating pairwise similarity for m points cost O(tψm2).
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Table 3: Time complexities of t-SNE in steps (1) kernel building, (2) computing the sim-
ilarity, and (3) mapping from high to low dimensions. r is the number of iterations used
for bandwidth search for the Gaussian kernel; and s is the number of iterations in t-SNE
mapping. m(≤ n) is the subsample size used for the mapping. For small datasets: m = n.

Gaussian kernel Isolation kernel

Step 1: Kernel building O(rn2) O(tψ)
Step 2: Matrix calculation O(m2) O(tψm2)

Step 3: t-SNE Mapping O(sm2)

decreasing with respect to ψ. As the local adaptation has already been done during the
process of deriving the kernel, no further adaptation is required after the kernel is derived.

Though the Isolation kernel derivation from data takes constant O(tψ) time, it is signif-
icantly less than the optimisation required to determine n bandwidths which takes O(n2)
time in Gaussian kernel. For a large dataset, when using Gaussian kernel, it is infeasible
to estimate a large number of bandwidths with an appropriate degree of accuracy, and its
computational cost is prohibitively high. In contrast, the consequence of using Isolation
kernel is that the runtime of step 1 in the t-SNE algorithm is significantly reduced. Thus,
the Isolation kernel enables t-SNE to deal with large datasets. More experimental details
are provided in Sections 5.4 and 6.3.

4. The Proposed Solution: Using the Isolation Kernel in t-SNE

Since t-SNE needs a data-dependent kernel, we propose to use a recent data-dependent
kernel called Isolation kernel (Ting et al., 2018; Qin et al., 2019) to replace the data-
independent Gaussian kernel in t-SNE.

The Isolation kernel is a perfect match for the task because a data-dependent kernel,
by definition, adapts to local distribution without any additional optimisation. The kernel
replacement is conducted in the component in the high-dimensional space only, leaving the
other components of the t-SNE procedure unchanged.

Sections 4.1 and 4.2 are literature reviews of Isolation Kernel (Ting et al., 2018) and a
known fact (Qin et al., 2019). Sections 4.3, 4.4 and 4.5 are our original contributions to
Isolation kernel and t-SNE in this paper.

4.1 Isolation Kernel

The key idea of Isolation kernel is that using a space partitioning strategy to split the data
space into different cells, e.g., we uniformly sample ψ points from the given dataset and
generate ψ Voronoi cells, then the similarity between any two points is how likely the two
points can be split into the same cell.

The details of Isolation kernel (Ting et al., 2018; Qin et al., 2019) are provided below.

Let D = {x1, . . . , xn}, xi ∈ Rd be a dataset sampled from an unknown probability den-
sity function xi ∼ F . Moreover, let Hψ(D) denote the set of all partitionings H admissible
for the given dataset D, where each H covers the entire space of Rd; and each of the ψ iso-
lating partitions θ[z] ∈ H isolates one data point z from the rest of the points in a random
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subset D ⊂ D, and |D| = ψ. In our implementation, H is a Voronoi diagram generated
from D.

Definition 1 For any two points x, y ∈ Rd, the Isolation kernel of x and y wrt D is defined
to be the expectation taken over the probability distribution on all partitionings H ∈ Hψ(D)
that both x and y fall into the same isolating partition θ[z] ∈ H, z ∈ D:

Kψ(x, y|D) = EHψ(D)[1(x, y ∈ θ[z] | θ[z] ∈ H)] (6)

where 1(·) is an indicator function.

In practice, the Isolation kernel Kψ is constructed using a finite number of partitionings
Hi, i = 1, . . . , t, where each Hi is created using Di ⊂ D:

Kψ(x, y|D) =
1

t

t∑
i=1

1(x, y ∈ θ | θ ∈ Hi)

=
1

t

t∑
i=1

∑
θ∈Hi

1(x ∈ θ)1(y ∈ θ) (7)

where θ is a shorthand for θ[z]; and t can usually be set to a default value. ψ is the sharpness
parameter and the only parameter of the Isolation kernel. The larger ψ is, the sharper the
kernel distribution is. This corresponds to σ in the Gaussian kernel, i.e., the smaller σ is,
the narrower the kernel distribution is. Note that t is the number of partitionings and t can
be fixed to a large value to ensure the stability of the estimation.

As Equation (7) is quadratic, Kψ is a valid kernel. For brevity, Kψ(x, y) is used to
denote Kψ(x, y|D) hereafter.

4.2 How Isolation Kernel Differs from Gaussian Kernel

The key difference is that the Isolation kernel adapts to local density distribution, but the
Gaussian kernel is independent of the data distribution.

In addition, the technical differences can be observed in two aspects. First, the Isolation
kernel has no closed-form expression. Second, it is derived directly from a dataset, without
explicit learning or optimisation. Its adaptation to local density is a direct outcome of its
isolation mechanism used to partition space, i.e., the mechanism produces large partitions
in sparse regions and small partitions in dense regions (Ting et al., 2018; Qin et al., 2019).
A natural isolation mechanism that has this characteristic is a Voronoi diagram. Given a
sample of the underlining distribution, each Voronoi cell isolates a point from the rest of
the points in the sample; and the cells are small in the dense region and large in the sparse
region. Note that the Voronoi diagram is obtained very efficiently, i.e., given a sample,
nothing else needs to be done in the training stage because boundaries in the Voronoi
diagram can be obtained at the testing stage as the equal distance between the two nearest
points in the given sample.

Figure 2 shows two examples of partitioning H using the nearest neighbour or a Voronoi
diagram on the same dataset with two different subsample sizes ψ. These examples show
that there are more (small) cells in the dense region than (large) cells in the sparse region
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(a) ψ = 16 (b) ψ = 64

Figure 2: Two examples of partitioning H using the nearest neighbour (a Voronoi diagram)
on a dataset having two regions of uniform densities, where the left half has a lower density
than the right half.

for each ψ; and the sizes of the cells are usually decreasing with respect to ψ. Two points
located in the same cell get the similarity score of 1 in a partitioning. The final Isolation
kernel similarity between two points is the probability of both points falling into the same
cell over a finite number of partitionings, as shown in Equation 7. Examples of kernel
distribution due to different ψ values are shown in Appendix B, so as the implementation
details.

4.3 The Isolation Kernel Makes Full Use of the Distributional Information in
Small Samples

The Isolation kernel only requires small samples (ψ) for the space partitioning without a
computationally expensive process.

A small sample of a dataset contains data distributional information which is sufficient
to build a data-dependent kernel. The Isolation kernel extracts this information in the form
of a Voronoi diagram, which depicts the relative densities between regions.

In contrast, using a data-independent measure such as the Gaussian kernel, the distri-
butional information in a dataset is ignored and each point in the input space is treated as
an independent point. In order to get the distributional information in the form of variable
bandwidths that are adaptive to the local distribution, a separate optimisation process is
required, as conducted in step 1 of the t-SNE algorithm.

It is important to note that when they could not handle a large dataset, most methods
may use small samples as a mitigation approach, and this inevitably trades off runtime with
accuracy. But it is not the case for the Isolation kernel where small samples are the key in
achieving high accuracy; and samples larger than the optimal ψ will degrade the accuracy
of Isolation kernel. See further discussion on this issue in Section 6.

In other words, by using the Gaussian kernel, t-SNE must employ a computationally
expensive approach to get the distributional information in a dataset. It does not exploit the
same information which is freely available in small samples of the dataset. The Isolation
kernel is a direct approach that makes full use of the distributional information freely
available in small samples of a dataset.
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4.4 The Isolation Kernel is Well-defined

The Isolation kernel has the following well-defined data-dependent characteristic: two
points in a sparse region are more similar than two points of equal inter-point
distance in a dense region (Ting et al., 2018).

Using a specific implementation of Isolation kernel (see Appendix B), (Qin et al., 2019)
have provided the following Lemma (see its proof in their paper):

Lemma 1 (Qin et al., 2019) ∀xi, xj ∈ XS (sparse region) and ∀xk, x` ∈ XT (dense region)
such that ∀y∈XS,z∈XT

ρ(y) < ρ(z), the nearest neighbour-induced Isolation kernel Kψ has the
characteristic that for ‖ xi − xj ‖ = ‖ xk − x` ‖ implies

Kψ(xi, xj) > Kψ(xk, x`) (8)

where ‖ x− y ‖ is the distance between x and y; and ρ(x) denotes the density at point x.

Let pb|a be the probability that xa would pick xb as its neighbour.
We provide two corollaries from Lemma 1 as follows.

Corollary 1 xi is more likely to pick xj as a neighbour than xk is to pick x` as a neighbour,
i.e., pj|i > p`|k for ∀a,b pb|a ∝ Kψ(xa, xb).

This is because xk in the dense region is more likely to pick a point closer than x` as
its neighbour, in comparison with xi picking xj as a neighbour in the sparse region, given
that ‖ xi − xj ‖ = ‖ xk − x` ‖.

Corollary 2 ∀a,b pb|a ∝ 1
ρ̄(XA) , where xa, xb ∈ XA is a region in X ; and ρ̄ is an average

density of a region.

Using a data-dependent kernel with a well-defined characteristic as specified in Lemma 1,
we can establish that the probability that xa would pick xb, pb|a, is inversely proportional
to the density of the local region.

This becomes the basis in setting a reference probability in the high-dimensional space.
It is interesting to note that the adaptation of Gaussian kernel by optimising n band-

widths attempts to achieve a similar outcome, as stipulated in Corollaries 1 and 2. Yet, it is
unclear that a similar data-dependent characteristic, as stated in Lemma 1, can be formally
stated for the adaptive Gaussian kernel. This is because the similarity cannot be computed
for all x ∈ Rd (except those in the given dataset.)

4.5 t-SNE with the Isolation Kernel

We propose to replace K with Kψ in defining pj|i in Equation (2), i.e.,

pj|i =
Kψ(xi, xj)∑
k 6=iKψ(xi, xk)

. (9)

The rest of the procedure of t-SNE remains unchanged.
The procedure of t-SNE with the Isolation kernel is provided in Algorithm 2.
Note that the only difference between the two algorithms is step 1; and Eq 9 (instead

of Eq 2) in step 2.
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Algorithm 2 t-SNE(D,ψ,m) which employs the Isolation kernel

Require: D - Dataset {x1, . . . , xn}; ψ - sharpness parameter of the Isolation kernel
1: Build a space partitioning model using t sets of ψ data points for the Isolation kernel
Kψ

2: Compute matrix [pij ]m×m according to Equations 3 & 9
3: Compute low-dimensional D′ and p′ij which minimise the KL divergence
4: Output low-dimensional data representation D′ = {x′1, . . . , x′m}

5. Empirical Evaluation

This section presents the three evaluation methods we adopt, evaluation results, runtime
comparison and a scalability test.

5.1 Evaluation Measures

We used a qualitative assessment R(k) to evaluate the preservation of k-ary neighbourhoods
(Lee & Verleysen, 2009; Lee et al., 2013; Lee, Peluffo-Ordóñez, & Verleysen, 2015), defined
as follows:

R(k) =
(n− 1)Q(k)− k

n− 1− k
(10)

where Q(k) =
∑n

i=1
1
nk |kNN(xi) ∩ kNN(x′i)|

and kNN(x) is the set of k nearest neighbours of x; and x′ is the corresponding low-
dimensional (LD) point of the high-dimensional (HD) point x.

R(k) measures the k-ary neighbourhood agreement between the HD and corresponding
LD spaces. R(k) ∈ [0, 1]; and the higher the score is, the better the neighbourhoods
preserved in the LD space. In our experiments, we recorded the assessment with k ∈
{0.01n, 0.03n, ..., 0.99n} and produced the curve, i.e., k vs R(k).

To aggregate the performance over the different k-ary neighbourhoods, we calculate the
area under the R(k) curve in the log plot (Lee et al., 2013) as:

AUCRNX =

∑
k R(k)/k∑
k 1/k

(11)

AUCRNX assesses the average quality weighted by k, i.e., errors in large neighbourhoods
with large k contribute less than that with small k to the average quality.

In addition, the purpose of many methods of dimensionality reduction is to identify HD
clusters in the LD space such as in a 2-dimensional scatter plot. Since all the datasets we
used for evaluation have ground truth (labels), we can use measures for clustering validation
to evaluate whether all clusters can be correctly identified after they are projected into the
LD space. Here we select two popular indices of cluster validation, i.e., Davies-Bouldin (DB)
index (Davies & Bouldin, 1979) and Calinski-Harabasz (CH) index (Caliński & Harabasz,
1974). Their details are given as follows.

Let x be an instance in a cluster Ci which has ni instances with the centre as ci. The
Davies-Bouldin (DB) index can be obtained as
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Table 4: Parameters and their search ranges for each kernel function.

Parameters with search range

Gaussian kernel perplexity ∈ {1, 5, ..., 97, 0.01n, 0.05n, ..., 0.97n}; tolerance = 0.00005
Isolation kernel ψ ∈ {1, 5, ..., 97, 0.01n, 0.05n, ..., 0.97n}; t = 200

DB =
1

NC

∑
i

maxj,j 6=i{[
1

ni

∑
x∈Ci

||x− ci||2 +
1

nj

∑
x∈Cj

||x− cj ||2]/||ci − cj ||2} (12)

where NC is the number of clusters in the dataset.
Calinski-Harabasz (CH) index is calculated as

CH =

∑
i ni||ci − c||2/(NC − 1)∑

i

∑
x∈Ci ||x− ci||2/(n−NC)

(13)

where c is the centre of the dataset.
Both measures take the similarity of points within a cluster and the similarity between

clusters into consideration, but in different ways. These measures assign the best score to
the algorithm that produces clusters with low intra-cluster distances and high inter-cluster
distances. Note that the higher the CH score, the better the cluster distribution; while the
lower the DB score is, the better the cluster distribution is.

All algorithms used in the following experiments were implemented in Matlab 2019b
and were run on a machine with 14 cores (Intel Xeon E5-2690 v4 @ 2.59 GHz) and 256GB
memory.4 All datasets were normalised using the min-max normalisation to yield each at-
tribute to be in [0,1] before the experiments began. We also use the min-max normalisation
on the t-SNE results before calculating DB and CH scores.

5.2 Evaluation Results

This section presents the result of utility evaluation of isolation kernel and Gaussian kernel
in t-SNE using 21 real-world datasets5 with different data sizes and dimensions. We re-
port the best performance of each algorithm with a systematic parameter search with the
range shown in Table 4.6 Note that there is only one manual parameter ψ to control the
partitioning mechanism, and the other parameter t can be fixed to a default number.

Table 5 shows the results of the two kernels used in t-SNE. The Isolation kernel performs
better on 18 out of 21 datasets in terms of AUCRNX , which means that the Isolation
kernel enables t-SNE to preserve the local neighbourhoods much better than the Gaussian

4. The Matlab code of t-SNE and the Isolation kernel are from https://lvdmaaten.github.io/tsne and
https://github.com/cswords/anne-dbscan-demo, respectively. A demonstration of using t-SNE with
Isolation kernel can be obtained from https://github.com/zhuye88/IKt-sne.

5. COIL20, HumanActivity and Isolet are from (Li, Cheng, Wang, Morstatter, Robert, Tang, & Liu, 2016);
News20 and Rcv1 are from (Chang & Lin, 2011); and all other real-world datasets are from UCI Machine
Learning Repository (Dua & Graff, 2017).

6. The search range used for t-SNE is significantly larger than that suggested in the t-SNE paper “the
performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5 and
50” (Maaten & Hinton, 2008).
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Table 5: Evaluation results on real-world datasets. For each dataset, the best performer,
GK (Gaussian kernel) or IK (Isolation kernel) w.r.t. each evaluation measure is boldfaced.
Note that the higher the AUCRNX and CH scores indicate the better a cluster distribution;
while a lower DB score indicates a better cluster distribution.

Dataset #Points #Attr

Evaluation measure
AUCRNX DB CH
GK IK GK IK GK IK

Wine 178 13 0.65 0.67 0.52 0.43 625 853
Dermatology 358 34 0.68 0.684 0.47 0.38 3679 8171
ForestType 523 27 0.70 0.71 0.91 0.87 467 620
WDBC 569 30 0.65 0.67 0.68 0.58 876 1167
ILPD 579 9 0.68 0.69 3.92 3.71 24 28
Control 600 60 0.69 0.70 0.67 0.64 4011 6816
Pima 768 8 0.70 0.72 2.97 2.87 67 76
Parkinson 1040 26 0.70 0.74 6.69 6.35 20 22
Biodeg 1055 41 0.74 0.77 2.04 1.69 154 183
Mice 1080 83 0.79 0.82 0.32 0.15 8326 50067
Messidor 1151 19 0.71 0.74 6.36 6.02 26 28
Hill 1212 100 0.69 0.73 16.71 15.10 4 4.5
COIL20 1440 1024 0.75 0.79 3.10 2.67 2352 3730
HumanActivity 1492 561 0.78 0.79 2.68 2.29 1225 1728
Isolet 1560 617 0.80 0.81 1.83 1.41 1746 2812
Segment 2310 19 0.68 0.72 1.30 1.51 7363 8337
Spam 4601 57 0.67 0.70 1.36 1.33 1832 1874
News20 9998 1355191 0.27 0.25 1.57 1.92 2732 2320
MNIST 10000 784 0.66 0.64 1.13 0.93 6452 8024
Rcv1 10121 47236 0.68 0.66 2.50 1.43 2421 4221
Pendig 10992 16 0.69 0.693 1.14 1.10 6944 6777

Average 0.68 0.70 2.80 2.54 2445 5136

kernel. With regard to the cluster quality, the Isolation kernel performs better than the
Gaussian kernel on 18 out of 21 datasets in terms of both DB and CH. Notice that when
the Gaussian kernel is better, the performance gaps are usually small in any of the three
measures. Overall, the Isolation kernel is better than the Gaussian kernel on 16 out of 21
datasets in all three measures. The reverse is true on one dataset only, i.e., News20. The
visualization result on New20binary indicates there are significant overlaps between the two
clusters in this dataset. This is reflected in the AUCRNX results which are significantly less
than a random assignment (AUCRNX = 0.5). The visualization result of News20 is shown
in Appendix C.

On the COIL20 dataset, we have identified a structural misrepresentation issue with the
Gaussian kernel, similar to the one shown in Table 2. Table 6 shows the five clusters where
the Gaussian kernel has misrepresented structures in the high-dimensional space. The
3-dimensional results denote that the Isolation kernel depicts a more nuanced structural
relationship between the five clusters; whereas the Gaussian kernel depicts that they are
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Table 6: (a) and (c) show the t-SNE visualisation results on COIL20 in a two-dimensional
space. (b) and (d) show the five clusters and a reference point (indicated as × with the
class label “R”) on t-SNE visualisation results in a three-dimensional space.

disparate five clusters, shown in the second column in Table 6. Also, note that a reference
point × is close to all five clusters when the Isolation kernel is used, but it is far from many
clusters when a Gaussian kernel is used.

5.3 Runtime Comparison

Generally, both Gaussian Kernal and Isolation Kerner have quadratic time and space com-
plexities. However, the Gaussian kernel in the original t-SNE needs a large number of
iterations to search for the optimal local bandwidth for each point. as a result, the Gaus-
sian kernel takes a much longer time in step 1 of the algorithm than the Isolation kernel.

Figure 3 presents the two runtime comparisons of t-SNE with the two kernels on a
synthetic dataset. Figure 3(a) shows that the Gaussian kernel is much slower than the
Isolation kernel in similarity calculations. This is mainly due to the search required to
tune the n bandwidths in step 1 of the algorithm. It is interesting to note that though
both similarities have n2 time complexity, the constant is significantly lower in the Isolation
kernel: if the data size is increased 10 times from 10,000 to 100,000, the Gaussian kernel
increases its runtime 685 times; whereas the Isolation kernel increases 91 times only. As a
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(a) Runtime for Steps 1 & 2 (m = n)
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Figure 3: CPU runtime comparison of Gaussian kernel and Isolation kernel used in t-SNE
on a 2-dimensional synthetic dataset.

result, with a dataset of 100,000 data points, the Isolation kernel7 is two orders of magnitude
faster than the Gaussian kernel (887 seconds versus 72,196 seconds).

Figure 3(b) shows the runtime of the mapping process in step 3 of Algorithms 1 and 2
which is the same for both algorithms. It is not surprising that their runtime are about the
same in this step, regardless of the kernel employed.

Table 7 compared the CPU runtime of Gaussian kernel and Isolation kernel used in
t-SNE on four real-world datasets. The t-SNE with the Isolation kernel is up to one order
of magnitude faster than the t-SNE with Gaussian kernel in the first two steps.

Table 7: CPU runtime (seconds) of t-SNE on four real-world datasets.

Gaussian kernel Isolation kernel
Steps 1 & 2 Step 3 Steps 1 & 2 Step 3

WDBC 0.5 4.8 0.1 4.6
Mice 1.0 12.3 0.2 11.9
Spam 20.1 203.8 2.3 202.1
Pendig 35.8 1146.6 12.2 1147.4

5.4 Scalability Testing

Here we show that the Isolation kernel enables t-SNE to deal with large datasets because
step 1 takes constant time (once the parameters are fixed), rather than n2 when a Gaussian
kernel is used.

This allows t-SNE to deal with a dataset with millions of data points in step 1, while
using a subsample in steps 2 & 3 to visualise the dataset in a low-dimensional space.

To demonstrate this ability, we use the MNIST8M dataset (Loosli, Canu, & Bottou,
2007) with 8.1 million points in step 1; and then use either the MNIST dataset or a sub-
sample of 10,000 data points from MNIST8M in steps 2 & 3 of t-SNE. The results of t-SNE

7. In addition, the Isolation kernel is amenable to GPU acceleration (Qin et al., 2019). Our experiment
shows that the runtime of Isolation kernel can be sped up by two orders of magnitude with a GPU
machine, e.g., from 54 CPU seconds to 0.24 GPU seconds for a dataset of 25,000 data points.
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MNIST in all steps MNIST8M (step 1) MNIST8M(step 1)
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Table 8: t-SNE visualisation results on the MNIST and MNIST8M datasets.

with the Isolation kernel are shown in the last two columns in Table 8. The results show
that IK can get good CH scores with small ψ values. It took 334s (ψ = 2048) in steps 1 and
2, and 972s in step 3. Note that t-SNE with Gaussian kernel cannot be directly applied on
this massive dataset in the same manner because it would take too long to complete step
1, as shown in Figure 3(a).

The use of a subsample in steps 2 and 3 was previously suggested by (Maaten & Hinton,
2008). However, the suggestion was to replace the Gaussian kernel with a graph similarity
that employs a random walk method. This graph similarity approach has the same limita-
tion as the Gaussian kernel because of its high time complexity. It requires a neighbourhood
graph to be generated before a random walk kernel (or any graph kernel) can be used to
measure similarities. While many graph kernels (see e.g., (Kriege, Johansson, & Morris,
2020)) may be applied here, the key obstacle is the generation of the neighbourhood graph
which has at least O(n2) time complexity.

In summary, employing Isolation kernel is the only method that takes constant time
in step 1. Meanwhile, subsampling in step 2 and 3 enables t-SNE to process large-scale
datasets without compromising the reference probability that needs to be established in
step 1.

6. Discussion

In this section, we will discuss other benefits of using Isolation kernel in t-SNE and its
variants.
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6.1 The Proposed Method can Benefit Existing Variants of t-SNE

The common feature of existing variants of t-SNE is that they all use the Gaussian kernel.8

The proposed idea can be applied to variants of stochastic neighbour embedding, e.g., NeRV
(Venna et al., 2010) and JSE (Lee et al., 2013), since they employ the same algorithm
procedure as t-SNE. The only difference is the use of variants of cost function, i.e., type 1
or type 2 mixture of KL divergences.

In addition, Isolation kernel can be used in existing methods which aims to speed up
t-SNE in step 3 of the algorithm. This is discussed in Section 6.3.

6.2 Isolation Kernel Performs Optimally with Small Samples

The finding—small samples (as the ψ value) have better visualisation results than large
samples—was formally analysed in the context of nearest neighbour anomaly detection
(Ting, Washio, Wells, & Aryal, 2017). The work is motivated by the previous finding that
small samples can produce better detection accuracy for some anomaly detectors than large
samples (e.g., (Liu, Ting, & Zhou, 2008; Sugiyama & Borgwardt, 2013).) The theoretical
analysis based on computational geometry reveals that the geometry of data distribution
has a direct impact on the sample size setting which is essential to produce an optimal
nearest neighbour anomaly detector (Ting et al., 2017). In a simple geometry such as a
Gaussian distribution, a sample size of one data point (at the mean of Gaussian distribution)
yields the optimal nearest neighbour anomaly detector; and a sample of more data points
will produce a worse performing detector. In a more complex geometry of data distribution
(e.g., a mixture of multiple Gaussian distributions), while the optimal sample size is more
than one data point, a sample size over the optimal one also produces a worse performing
detector. See (Ting et al., 2017) for details.

The above result can explain the effect of small samples in Isolation kernel described
in Section 4.3: the optimal sample size is the representative sample for the underlying
geometry of data distribution, allowing the Isolation kernel to model relative similarities
between different regions most effectively.

In summary, most methods use small samples as a compromising approach when failing
to handle large datasets. It comes at the cost of low accuracy and longer runtime. However,
algorithms employing Isolation kernel can process large datasets without trading off accu-
racy and efficiency due to the resultant sample. While ψ of the Isolation kernel serves the
primary purpose of a kernel parameter like the bandwidth parameter of Gaussian kernel,
the resultant sample size enables algorithms that employ the Isolation kernel to deal with
large datasets without compromising the accuracy of the task.

6.3 Methods to Speed Up t-SNE

Scalability is an open issue for applying unsupervised distance metric learning approaches
on large datasets (Wang & Sun, 2015). As mentioned before, currently, there are two ways
to speed up t-SNE: subsampling (which is a mitigation approach discussed in Section 4.3),
and another is via some approximation to reduce runtime in step 3.

8. There are other data-dependent kernels that can be used in t-SNE, see Appendix D for details.
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The two approximation methods mentioned in the literature review are (i) the Barnes-
Hut algorithm in conjunction with the dual-tree algorithm (Van Der Maaten, 2014), and (ii)
interpolating onto an equispaced grid in order to use the fast Fourier transform to perform
the convolution required in step 3 of the t-SNE algorithm (Linderman et al., 2019). However,
these approximation methods sacrifice accuracy for efficiency. For example, opt-SNE (Belk-
ina, Ciccolella, Anno, Halpert, Spidlen, & Snyder-Cappione, 2019) utilises Kullback-Leibler
divergence evaluation to automatically identify the tailored parameters in the optimisa-
tion procedure of t-SNE, in order to reduce the iteration time and improve the embedding
quality. Nevertheless, all of these methods are still based on Gaussian kernel. Therefore,
they still have the same deficiency of misrepresented structures as the original t-SNE, as
discussed in Section 3.1.1. Appendix E and Appendix F show examples of these outcomes
of FIt-SNE (Linderman et al., 2019) and opt-SNE (Belkina et al., 2019), respectively.

In a nutshell, the proposed method of using Isolation kernel in t-SNE offers (i) the
only way to establish the reference probability in step 1 using a large dataset (without
parallelisation); and (ii) a way to speed up t-SNE, which is an alternative to existing
speedup methods. The use of a subsample, as a mitigation approach, in step 1 compromises
the accuracy of reference probability. The use of an approximation method in step 3 reduces
the quality of the dimensionality reduction. These existing methods in speeding up t-SNE
still employ Gaussian kernel; and thus they fail to address the two deficiencies we have
identified.

7. Conclusions

This paper identifies two deficiencies in t-SNE due to the use of Gaussian kernel. First,
the point-based-bandwidth Gaussian kernel often creates misrepresented structure(s) which
do not exist in the given dataset under some conditions. Second, the data-independent
Gaussian kernel largely increases the computation load resulted from the need in determin-
ing n bandwidths for a dataset of n points and thus unable to deal with large datasets.
Though some methods have been suggested to trade off accuracy for faster running speed,
the underlying issue due to the use of Gaussian kernel remains unresolved.

Since the root cause of these deficiencies is the use of a data-independent kernel, we
propose to simply replace Gaussian kernel with a data-dependent kernel called Isolation
kernel.

We show that the use of Isolation kernel in t-SNE overcomes the drawback of misrep-
resenting some structures in the data, which often occurs when Gaussian kernel is applied
in t-SNE. Also, the use of Isolation kernel yields a more efficient similarity computation
because data-dependent Isolation kernel has only one parameter that needs to be tuned.
Unlike the existing methods in speeding up t-SNE, this efficient feature of Isolation kernel
enables t-SNE to deal with large-scale datasets without trading off accuracy.

Appendix A. Visualisation Results of t-SNE on Subspace Clusters
Having Some Shared Attributes

Here we use a dataset with three subspace clusters where all clusters share two same at-
tributes only. The three clusters have the same Gaussian distribution N [0, 1]. Cluster 1 has
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500 points with relevant attributes from #1 to #51 dimensions; cluster 2 has 500 points
with relevant attributes from #50 to #100 dimensions; and cluster 3 has 20 points with
relevant attributes from #50 to #51 dimensions. All irrelevant attributes of each cluster
having zero values. Because most attributes of cluster 3 are zero, the overall distance be-
tween cluster 3 and cluster 1 or cluster 2 is much smaller than the distance between cluster
1 and cluster 2.

Table 9 shows the visualisation results of t-SNE with Gaussian kernel and Isolation
kernel on the above-mentioned 100-dimensional dataset. It can be seen from the table that
the Isolation kernel with small ψ values presents the cluster structure correctly, i.e., the
third cluster is in the centre and close to clusters 1 and 2.

In contrast, t-SNE with Gaussian kernel using perplexity = 50 shows a small gap
between clusters 1 and 2; the separation between cluster 3 and clusters 1 & 2 are not
clear. If increasing perplexity to 250, three points that are close to the origin from cluster
3 (including the origin) become far away from clusters 1 and 2. This is because they got
much smaller bandwidths than all other points due to the high density around the origin.
As a result, they are very dissimilar to most other points.

Table 9: Visualisation results of t-SNE with Gaussian kernel and Isolation kernel on a 100-
dimensional dataset with three subspace clusters. Note that in (c), three points (including
the origin) from cluster 3 are far away from clusters 1 and 2, as indicated with the red
arrows.

G
au

ss
ia

n
k
er

n
el

(a) perplexity = 2 (b) perplexity = 50 (c) perplexity = 250

Is
ol

at
io

n
k
er

n
el

(d) ψ = 2 (e) ψ = 20 (f) ψ = 250

Appendix B. The Nearest Neighbour Implementation of the Isolation
Kernel

We use an existing nearest neighbour method to implement the Isolation kernel (Qin et al.,
2019). It produces each partitioning H (a Voronoi diagram) which consists of ψ isolating
partitions θ, given a subsample D of ψ ≥ 2 points. Each isolating partition or Voronoi cell
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θ ∈ H isolates one data point from the rest of the points in the subsample. The point which
determines a cell is called the cell centre. The Voronoi cell centred at z ∈ D is given as:

θ[z] = {x ∈ Rd | z = argmin
z∈D

`p(x− z)}.

where `p(x, y) is a distance function and we use p = 2 as Euclidean distance in this paper.

Uniform density distribution Parkinson dataset

ψ
=

16
ψ

=
64

ψ
=

12
8

Table 10: Contours of the Isolation kernel with reference to point (0.5, 0.5) on 2-dimensional
datasets for three different values of ψ. Parkinson dataset uses 12th vs 21st attributes.

Table 10 compares the contours of the Isolation kernel on two different data distributions
with different ψ values. It shows that the Isolation kernel is adaptive to the local density.
Under uniform data distribution, the Isolation kernel’s contour is symmetric with respect
to the reference point at (0.5, 0.5). However, on the Parkinson dataset, the contour shows
that, for points having equal inter-point distance from the reference point x at (0.5, 0.5),
points in the spare region are more similar to x than points in the dense region to x. In
addition, the larger the ψ, the sharper the kernel distribution of the Isolation kernel, as
shown in Table 10. This is because a larger ψ produces more partitions (or Voronoi cells)
of smaller sizes. This means that two points are less likely to fall into the same cell unless
they are very close.

While this implementation of the Isolation kernel produces its contour similar to that of
an exponential kernel k(x, y) = exp(−‖x−y‖

2σ2 ) under uniform density distribution, different
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implementations have different contours. For example, using axis-parallel partitionings to
implement the Isolation kernel produces a contour (with the diamond shape) which is more

akin to that of Laplacian kernel k(x, y) = exp(−‖x−y‖σ ) under uniform density distribution
(Ting et al., 2018). Of course, both the exponential and Laplacian kernels, like Gaussian
kernel, are data-independent.

Appendix C. t-SNE Visualisation on News20

We compare the visualisation results of News20 with different parameter settings in Table
11. It is interesting to note that t-SNE using the Isolation Kernel having a small ψ produces
better visualisation results having more separable clusters than those using Gaussian kernel
with high perplexity, although the IK got slightly lower evaluation measure values (compare
Figures (c) and (d) in each of Tables 11.) However, the two clusters are significantly
overlapped in most cases.

Table 11: Visualisation result of t-SNE on News20. t-SNE produced the best DB scores
when using Gaussian Kernel with perplexity = 3700 and Isolation Kernel with ψ = 85.
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(d) ψ = 85 (e) ψ = 128 (f) ψ = 3000

We suspect that the overlapping issue is caused by the sparsity. To verify it, we use
the same data distribution from Table 1 and increase the dimensionality of the 5 subspace
clusters. The results in Table 4 show that t-SNE with both kernel measures got lower
AUCRNX scores when increasing the cluster dimensionality, i.e,. clusters are becoming
more sparse in higher dimensional space.

Appendix D. Other Data-dependent Kernels

Recall that the first step of t-SNE may be interpreted as using kNN to determine the n
bandwidths of Gaussian kernel. There are existing kNN-based data-dependent kernels that
adapt to local density, i.e.,
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Figure 4: AUCRNX of Gaussian Kernel and Isolation Kernel on 5 subspace clusters with
different dimensionality. The parameters for each algorithm are turned according to Table 4.

i) kNN kernel (Marin, Tang, Ayed, & Boykov, 2018).

The kNN kernel is a binary function defined as:

KkNN (x, y) = 1(y ∈ kNN(x)) (14)

where kNN(x) is the set of k nearest neighbours of x.

ii) Adaptive Gaussian kernel (Zelnik-Manor & Perona, 2005).

The distance of k-th NN has been used to set the bandwidth of Gaussian kernel to
make it adaptive to local density. This was proposed in spectral clustering as an
adaptive means to adjust the similarity to perform dimensionality reduction before
clustering.

Adaptive Gaussian kernel is defined as:

KAG(x, y) = exp
−||x− y||2

σxσy
(15)

where σx is the distance between x and x’s k-th nearest neighbour.

However, replacing the Gaussian kernel in t-SNE with either of these kernels produces
poor outcomes. For example, on the Segment and Spam datasets, the adaptive Gaussian
kernel produced AUCRNX scores of 0.35 and 0.22, respectively; and the kNN kernel yielded
AUCRNX scores of 0.38 and 0.28, respectively. They are significantly poorer than those
produced using the Gaussian kernel or Isolation kernel shown in Table 5. We postulate
that this is because a global k is unable to make these kernels sufficiently adaptive to local
distribution.

It is interesting to note that the current method used to get a data-dependent kernel
is to begin with a data-independent kernel such as Gaussian kernel. And then find ways
to make the Gaussian kernel data-dependent. This is an indirect approach. The Isolation
kernel is a direct approach in getting a data-dependent kernel, derived directly from a given
dataset, without an intermediary of a data-independent kernel.
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Appendix E. Visualisation Results of Fast Interpolation-based t-SNE

FIt-SNE (Linderman et al., 2019) addresses the runtime issue in step 3 of the t-SNE algo-
rithm only.

Figure 5 demonstrates the visualisation results of FIt-SNE (Linderman et al., 2019) on
two datasets. It is clear that FIt-SNE has the same deficiency of misrepresented structures
as in t-SNE, due to the use of Gaussian kernel, as discussed in Section 3.1.1.

(a) 5 subspace clusters connected at one point (b) COIL20

Figure 5: Visualisation of FIt-SNE on two datasets.

(a) MNIST in all steps, CH=5926

(b) MNIST8M (step 1) & MNIST (steps 2,
3), CH=3529

(c) MNIST8M(step 1) & 10,000 (steps 2,
3), CH=2973

Figure 6: FIt-SNE visualisation results with the Gaussian kernel on the MNIST and
MNIST8M datasets.

692



Improving SNE with Isolation Kernel

Figure 6 shows the FIt-SNE results on the MNIST and MNIST8M datasets.9 FIt-SNE’s
results are worse than those of t-SNE based on either GK or IK in terms of the CH scores
on both the MNIST and MNIST8M datasets; so as the visualisation outcomes. Note that
without the colours to differentiate between classes, most of the classes shown in Figure 6
cannot be identified as separate classes in the FIt-SNE results produced from the MNIST8M
dataset.

FIt-SNE ran faster than t-SNE because of approximation using grid; and it is imple-
mented with C++ with multi-threading. The price it paid to be more efficient using the
approximation is worse visualisation outcomes.

Note that on the MNIST8M dataset, we could only use 2 million data points in FIt-
SNE because of its high memory usage. In contrast, with the Isolation kernel, we could
run t-SNE (in MatLab without multithreading) on the same machine using the entire 8.1
million data points of MNIST8M (shown in Table 8.)

Appendix F. Visualisation Results of opt-SNE

opt-SNE (Belkina et al., 2019) is an enhanced version of t-SNE that aims to improve the
local structure resolution and produce a reliable embedding of a dataset. However, since
opt-SNE still uses Gaussian kernel, it has the same deficiency of misrepresented structures
as the original t-SNE.

Figure 6 shows the visualisation results on three datasets using opt-SNE 10. As expected,
opt-SNE produced similar results as t-SNE, having misrepresented structures in Figures 7a
and 7b. On MNIST, opt-SNE got a slightly worse result than t-SNE (CH=6129 versus
CH=6452) because it split the green clusters into two parts, as shown in Figure 7c.
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