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Abstract

Partially observable Markov decision processes (POMDPs) are models for sequential decision-
making under uncertainty and incomplete information. Machine learning methods typically train
recurrent neural networks (RNN) as effective representations of POMDP policies that can effi-
ciently process sequential data. However, it is hard to verify whether the POMDP driven by such
RNN-based policies satisfies safety constraints, for instance, given by temporal logic specifica-
tions. We propose a novel method that combines techniques from machine learning with the field
of formal methods: training an RNN-based policy and then automatically extracting a so-called
finite-state controller (FSC) from the RNN. Such FSCs offer a convenient way to verify temporal
logic constraints. Implemented on a POMDP, they induce a Markov chain, and probabilistic verifi-
cation methods can efficiently check whether this induced Markov chain satisfies a temporal logic
specification. Using such methods, if the Markov chain does not satisfy the specification, a by-
product of verification is diagnostic information about the states in the POMDP that are critical for
the specification. The method exploits this diagnostic information to either adjust the complexity of
the extracted FSC or improve the policy by performing focused retraining of the RNN. The method
synthesizes policies that satisfy temporal logic specifications for POMDPs with up to millions of
states, which are three orders of magnitude larger than comparable approaches.

1. Introduction

Partially observable Markov decision processes (POMDPs) are models for sequential decision-
making under uncertainty and incomplete information. They model many applications, including
control (Bai et al., 2015), planning (Kaelbling et al., 1998), scheduling (Norman et al., 2017) and
reinforcement learning (Jaakkola et al., 1995).

Due to their ability to process sequential data efficiently, recurrent neural networks (RNNs)
offer an effective policy representation for POMDPs. RNNs use internal memory states, such as
those in long short-term memory (LSTM) architectures (Hochreiter & Schmidhuber, 1997), to infer
temporal behavior from sequences of data (Pascanu et al., 2014). Reinforcement learning research
has shown that RNNs used in environments modeled by POMDPs perform well as black-box func-
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tions for either state or value estimators (Wierstra et al., 2007; Bakker, 2001) or as control policies
(Hausknecht & Stone, 2015; Heess, Wayne, et al., 2015).

In POMDPs that model agents in safety-critical environments, policies that are guaranteed to
prevent unsafe behavior are necessary. The agent’s behavior may then have to obey more com-
plicated specifications than maximizing an expected reward, such as reachability, liveness or, more
generally, specifications expressed in temporal logic, e. g. linear temporal logic (Pnueli, 1977). Such
specifications indeed describe tasks that cannot be expressed using the traditional reward shaping
techniques employed in machine learning (Littman et al., 2017; Hadfield-Menell et al., 2017).

Verifying whether an agent following an RNN-based policy in a POMDP satisfies temporal
logic specifications is, in general, hard. RNNs are complex structures that capture non-linear input-
output relations (Mulder et al., 2015). To formally analyze how RNNs interpret sequences of data,
one must fix a defined sequence length for analysis and perform an unrolling procedure (Sherstinsky,
2020), which converts the RNN to a feedforward neural network with the same number of layers
as that defined length (Goodfellow et al., 2016). Checking whether the agent’s behavior satisfies
the specification for the set of all possible sequences of data with a given length in the POMDP
is intractable (Meuleau et al., 1999). Existing works on verifying policies encoded as feedforward
neural networks employ satisfiability-modulo-theories (Q. Wang et al., 2018) or mixed-integer lin-
ear programs (Akintunde et al., 2019). However, such methods not only scale exponentially in the
number of nodes in the neural network but also rely on rectified linear units, which do not allow for
internal memory states such as LSTM.

We combine the effectiveness of RNN-based representations from machine learning with the
provable guarantees that are at the heart of formal verification. The latter can efficiently ver-
ify whether an agent following a given policy, typically in the form of a finite-state controller
(FSC) (Poupart & Boutilier, 2003; Junges et al., 2018), adheres to a temporal logic specifica-
tion (Baier & Katoen, 2008). However, despite advances in optimization-based approaches (Meuleau
et al., 1999; Sharan & Burdick, 2014; Junges et al., 2018), the problem of directly computing such
an FSC is EXPTIME-complete (Chatterjee et al., 2015). Such a problem requires—in general—
memory of exponential size in the number of POMDP states (Baier et al., 2012). Machine learning,
on the other hand, provides an efficient approach, in the form of training RNN-based policy repre-
sentations from sequences of data, to find candidate policies that might ensure an agent in a POMDP
satisfies a temporal logic specification (Heess, Hunt, et al., 2015).

There remains a central gap: How to close the loop between training an RNN-based policy and
efficiently verifying for a candidate policy? Our method closes this gap by tightly integrating formal
verification and machine learning towards three key steps: (1) extracting an FSC from an RNN-
based policy, (2) verifying this candidate FSC for the POMDP against a temporal logic specification,
and (3) if needed, either refining the FSC or generating more training data for the RNN, see Figure 1.

To extract an FSC, we employ a technique called quantized bottleneck insertion (Koul et al.,
2019). An autoencoder (Goodfellow et al., 2016) discretizes the activation function that is associated
with the recurrent hidden node of the RNN. Basically, this discretization facilitates a mapping of the
continuous memory structure in the RNN to a pre-defined number of memory nodes and transitions
of an FSC. Implementing an FSC in a POMDP results in a so-called induced Markov chain. For this
Markov chain, a model significantly less complex than the original POMDP, verification methods
certify against temporal logic specifications scaling up to billions of states (Baier & Katoen, 2008).
Tool support is available via probabilistic model checkers such as PRISM (Kwiatkowska et al.,
2011) or Storm (Dehnert et al., 2017).
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Figure 1: High-level iterative policy improvement process.

Recall that the RNN-based policy, and consequently the extracted FSC, is just a candidate pol-
icy and may not ensure satisfaction of the specification. If the specification does not hold for the
induced Markov chain, the proposed method iteratively improves the extracted policy, as outlined
in Figure 1. A by-product of verification is diagnostic information about the states in the POMDP
that are critical for the specification in the form of so-called counterexamples (Wimmer et al., 2014;
Jansen et al., 2014). The method analyzes whether the FSC can be improved, i.e. by either training
a better RNN-based policy or by extracting a better FSC. This analysis relies on examining whether
the decisions made in the resulting counterexamples are considered arbitrary by measuring the en-
tropy (Cover & Thomas, 2012) of the action mapping for the FSC. That is, if the entropy is high
across these decisions, the method deems the action mapping of the FSC at those decision-points as
arbitrary. Therefore, the RNN-based policy needs to reduce the uncertainty in the action mapping at
these critical states by training on more sequences of data. If the entropy is low, then increasing the
number of memory nodes in the FSC may help it to approximate the decisions of the RNN-based
policy more precisely (Koul et al., 2019).

We demonstrate how different approaches to generating sequences of training data for the RNN-
based policy impact both the computation time and the probability that the agent satisfies the spec-
ification. The proposed method generates sequences of data by assuming full observability and
following the policy that maximizes the probability of satisfying the specification in the underly-
ing Markov decision process to create sequences of observation-action pairs (Cassandra, 1998).
We compare this approach with one that performs a similar technique but on a task-aware product
POMDP, a larger model created by transforming the specification into an automaton and composing
it with the POMDP (Bouton et al., 2020).

We also show the existence of a trade-off between the number of memory nodes in an extracted
FSC and the probability that the agent following this FSC satisfies the specification. In particular, we
empirically demonstrate how increasing the number of memory nodes increases the probability that
the induced Markov chain satisfies the temporal logic specification at the cost of longer verification
times. However, for each FSC, there is a point of diminishing returns after which increasing the
number of memory nodes only marginally increases this probability.

The proposed method computes RNN-based policies and then subsequently extracts candidate
policies in the form of an FSC that satisfies temporal logic specifications on a set of POMDP bench-
marks with up to millions of states, which is three orders of magnitude larger than comparable
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approaches. In particular, we benchmark the method against two well-known POMDP solvers from
the formal methods (Norman et al., 2017) and planning (Walraven & Spaan, 2017) communities.
Computing policies that satisfy temporal logic specifications is undecidable for POMDPs (Madani
et al., 1999). Therefore, the proposed method is not complete, i.e. it is not guaranteed to find an
FSC that ensures an agent in a POMDP satisfies temporal logic specifications. On the other hand, it
is sound, as in each iteration verification yields provable guarantees on the induced behavior.

Building on preliminary results in Carr et al. (2019, 2020), the current paper makes the following
contributions. First, it presents an iterative method that employs state-of-the art tools from machine
learning and formal verification to find policies that ensure that an agent in a POMDP satisfies
any given linear temporal logic specification. Second, it introduces a novel method that uses a
task-aware product model to generate sequences of data for training RNN-based policies. The
FSCs, extracted from these RNN-based policies by the iterative method using this product model,
have higher probabilities of satisfying the specification than those that are computed using just the
POMDP. Finally, it demonstrates empirically that the proposed method can trade policy complexity
with increasing the probability of satisfying the specification by restricting the number of memory
nodes in the extracted FSC. This complexity trade-off has implications both when attempting to
control the available memory for computation and the amount of time spent performing verification.

Structure of the paper: The rest of the paper is structured as follows. After formal foundations
on POMDPs in Section 3, Section 4 describes the synthesis procedure. In Section 4.1, we detail
the sampling procedure to obtain the RNN training data. We demonstrate the applicability of the
proposed approach using a selection of temporal logic examples as well as comparing to well-known
benchmarks (Smith & Simmons, 2004) in Section 5.

2. Related Work

RNNs pose suitable policy representations for deep reinforcement learning problems that need to
account for sequences of data. For instance, Wierstra et al. (2007) integrate policy gradient methods
with RNN-based policies to perform reinforcement learning on POMDPs, which combines REIN-
FORCE (Williams, 1992) with an LSTM architecture (Hochreiter & Schmidhuber, 1997). Recent
progress in deep learning has enabled neural networks to compute policies for very large and com-
plex POMDPs (Heess, Wayne, et al., 2015). For example, neural network-based Q-learning algo-
rithms play video games straight from video frames, under partial observability (Mnih et al., 2015).
Instead of using recurrent architectures, they solve the memory problem by replaying a series of
frames at every step. This work was extended to RNNs by adding an LSTM cell to enhance the
algorithm’s capacity to incorporate memory-based decision making (Hausknecht & Stone, 2015).

To analyze neural networks, there are two lines of related research. The first one concerns the
formal verification of neural network-based control policies. Two prominent approaches for the
class of feed-forward deep neural networks rely on encoding neural networks as SMT problems
through adversarial examples (Huang et al., 2017) or ReLUs architectures (Katz et al., 2017; Amir
et al., 2021). Akintunde et al. (2019) directly verify RNNs constructed with rectified linear unit ac-
tivation functions using satisfiability-modulo-theories or mixed-integer linear programs. However,
these solver-based methods are known to have scalability issues for larger neural networks. The
proposed method, in contrast, restricts the neural network to a specific POMDP model to achieve a
tractable setting. Khmelnitsky et al. (2020) use active automata learning to create a surrogate finite
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automaton, whose properties are efficiently verifiable. However, unlike the proposed method, these
works do not verify the behavior induced on POMDPs.

The second direction relevant to verifiable properties of RNNs concerns the extraction of FSCs
from neural networks (Zeng et al., 1993; Weiss et al., 2018; Michalenko et al., 2019). Another
approach takes a (different) perspective in employing RNNs towards regular property model check-
ing (Ghosh & Neider, 2020; Khmelnitsky et al., 2020). All of these approaches do not integrate the
extracted FSCs with verification to provide formal guarantees for the agent’s behavior in a POMDP.
Recent work in the field of graph neural networks gives designers flexibility to incorporate problem
specific structure into the network architecture (Wu et al., 2021). However, efficiently verifying the
behavior induced by such networks is both problem and architecture specific.

Research in the fields of planning and formal methods focus on the synthesis of FSCs for
POMDPs without neural networks. Yet, the underlying problem is EXPTIME-complete (Chatterjee
et al., 2015) and intractable for even small instances (Meuleau et al., 1999). Optimization-based ap-
proaches use branch-and-bound (Meuleau et al., 1999) or segmentation into reachable sets (Sharan
& Burdick, 2014) to limit the searchable space. Junges et al. (2018) construct an FSC using pa-
rameter synthesis for Markov chains, which is known to be ETR-complete (Junges, Katoen, et al.,
2021), whereas NP ⊆ ETR ⊆ PSPACE. Carr et al. (2018) render common POMDP scenarios as
arcade games to capture human preferences that are formally cast into FSCs and subsequently veri-
fied. Ahmadi et al. (2020) use control barrier functions to compute safe reachable sets in the belief
space of POMDPs. Extensions to epistemic or uncertain POMDPs compute FSCs using convex
optimization (Cubuktepe et al., 2021; Suilen et al., 2020).

Chatterjee, Chmelik, and Davies (2016) use a SAT-based approach to compute FSCs for quali-
tative properties, extended towards the safe exploration of POMDPs by Junges, Jansen, and Seshia
(2021). Y. Wang et al. (2018) both constrain the searchable space and bound the horizon for use
in an incremental SMT solver. In the planning community, there are many solvers that attempt
to compute the policy that maximizes an expected reward without temporal logic specifications
(Walraven & Spaan, 2017; Kurniawati et al., 2008; Spaan & Vlassis, 2005). Most of these solvers
rely on point-based value iteration with different heuristics on how to segment the searchable space
and tend to have limitations associated with model complexity (Zhang et al., 2014). Recent work
has expanded these point-based methods to task-aware models, such as those with temporal logic
specifications (Bouton et al., 2020). POMCP uses Monte-Carlo tree search to find high performing
policies in very large POMDP environments (Silver & Veness, 2010).

3. Preliminaries

A probability distribution over a set X is a function µ : X → [0, 1] ⊆ R with
∑

x∈X µ(x) =
µ(X) = 1. The set of all distributions on X is given by Distr(X), and the support of a distribution
µ is supp(µ) = {x ∈ X |µ(x) > 0}. The entropy (Cover & Thomas, 2012) of a distribution µ is
defined asH(µ) := −

∑
x∈X µ(x) log|X| µ(x).

3.1 Partially Observable Markov Decision Processes

A Markov decision process (MDP) M is a tuple M = (S,A, T ) with a finite (or countably infinite)
set S of states, a finite setA of actions, and a transition probability function T : S×A→ Distr(S).
We call a pair (s, a) ∈ S ×A of states and actions a transition. The reward function for transitions
is given by r : S ×A→ R.
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A finite path e = s0
a0−→ s1

a1−→ · · · sn of an MDP M is a sequence of states and actions;
last(e) = sn is the last state of e. The set of all finite paths is PathsMfin .

Definition 1 (POMDP). A POMDP is a tuple M = (M,Z,O), with M the underlying MDP of
M, Z a finite set of observations, and O : S → Z the observation function.

For brevity in our presentation, we use so-called deterministic observations functions which may be
derived from the more standard stochastic observation functions O : S → Distr(Z) via a (polyno-
mial) reduction (Chatterjee, Chmelı́k, et al., 2016). In our experiments we use stochastic functions.

For POMDPs, observation-action sequences are based on a finite path e ∈ PathsMfin of the
underlying MDP M and have the form: eo = O(e) = O(s0)

a0−→ O(s1)
a1−→ · · ·O(sn). The set of

all finite observation-action sequences for a POMDPM is ObsSeqMfin .
While the agent acts within the environment, it encounters certain observations, according to

which it can infer the probability of the system being in a certain state. Technically, this belief b is
a distribution b ∈ Distr(S), such that b(s) describes the probability to be in state s ∈ S.

Definition 2 (POMDP Policy). A policy π : PathsMfin → Distr(A) maps a finite path e to a dis-
tribution over actions. A policy is observation-based, if for each two paths e, e′ it holds that
O(e) = O(e′) ⇒ π(e) = π(e′). A policy is memoryless, if for each e, e′ it holds that last(e) =
last(e′)⇒ π(e) = π(e′). A policy is deterministic (or pure), if for each e, π(e) is a Dirac distribu-
tion, i.e., if | supp(π(e))| = 1. ΠMz is the set of all observation-based policies forM.

A policy resolves the nondeterministic choices in a POMDP, potentially based on the history
of previous observations, by assigning distributions over actions. In particular, a policy π applied
to a POMDPM (randomly) generates observation-action sequences that we will use as data later
on. Technically, such sequences are derived from the induced discrete-time Markov chain (DTMC)
Mπ, which does not contain any nondeterminism or partial observability.

Note that our definition restricts POMDP policies to finite memory. We represent such finite-
memory policies as finite-state controllers (FSCs).

Definition 3 (FSC). A k-FSC for a POMDPM = (M,Z,O) is a tuple A = (N,nI , α, δ) where
N is a finite set of k memory nodes, nI ∈ N is the initial memory node, α is the action-mapping
α : N × Z → Distr(A) and δ is the memory update δ : N × Z ×A→ Distr(N).

An FSC has the POMDP’s observations Z as input and the actions A as output. Upon an ob-
servation, depending on the current memory node the FSC is in, the action-mapping α returns a
distribution over A followed by a (probabilistic) change of memory nodes according to δ. Note
that depending on the application, the memory update may also be deterministic, that is of the form
δ : N × Z ×A→ N .

FSCs are typical finite-state machines with inputs and outputs. In particular, FSCs are an exten-
sion of so-called Moore machines, where the action-mapping is deterministic, that is, α : N ×Z →
A, and the memory update δ : N × Z → Distr(N) does not depend on the choice of action.

3.2 Specifications

Undiscounted expected reward properties ϕ = E∼λ(♦ ap) require that the expected accumulated
cost until reaching a state satisfying ap respects λ ∈ R≥0. As a more general notion to reason about
safety, we consider linear temporal logic (LTL) properties (Pnueli, 1977).
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Definition 4 (LTL Properties). For a set of atomic propositions AP , which are either satisfied or
violated by a state, and ap ∈ AP , the set of all LTL formulas is defined by the following grammar:

Ψ ::= ap | (Ψ ∧Ψ) | ¬Ψ | © Ψ | �Ψ | (ΨUΨ) .

Intuitively, arbitrarily complex LTL formulas may be generated by this grammar as it allows to
(recursively) replace Ψ by atomic propositions or (nested) formulas that may use all necessary unary
or binary operators. In particular, a path e satisfies the proposition a if its first state does; (ψ1 ∧ ψ2)
is satisfied, if e satisfies both ψ1 and ψ2; ¬ψ is true on e if ψ is not satisfied. The formula ©ψ
holds on e if the subpath starting at the second state of e satisfies ψ; e satisfies �ψ if all suffixes
of e satisfy ψ. Finally, e satisfies (ψ1 Uψ2) if there is a suffix of e that satisfies ψ2 and all longer
suffixes satisfy ψ1. ♦ψ abbreviates (trueUψ). To add such semantics to (PO)MDP states, one can
use a labeling function L : S → 2AP to add sets of atomic propositions (labels) to the states. A path
e ∈ PathsMfin of an MDP then generates a so-called trace of atomic propositions. For more details,
we refer to literature from the formal methods community such as that by Baier and Katoen (2008)
and Clarke et al. (2018).

We form LTL specifications for POMDPs by requiring that the probability of satisfying an LTL-
property respects a given bound, denoted ϕ = P∼λ(ψ) for ∼ ∈ {<,≤,≥, >} and λ ∈ [0, 1]. For
instance, if we want to constrain the probability to reach a critical state s, labelled L(s) = {crit},
to be at most 10%, we write ϕ = P≤0.1(♦ crit). In particular, the aim is to synthesize a policy that
verifiably satisfies the specification ϕ.

Verification of LTL properties. We first introduce the notion of deterministic Rabin automata.

Definition 5 (DRA). A deterministic Rabin automaton (DRA) is a tuple R = (Q,AP,∆, q0, F )
withQ the set of states, AP the set of atomic propositions, ∆: Q×2AP → Q the transition function,
q0 the initial state, and F the acceptance condition: F = (L1,K1), . . . , (Lk,Kk) where Li and Ki

are sets of states for all 1 ≤ i ≤ k with k ∈ N.

Intuitively, a Rabin automaton accepts an (infinite) sequence of states, if there is a pair (Li,Ki) such
that (some) states from Li are visited infinitely often, whileKi is at some point not visited anymore.
An LTL formula ϕ can be transformed into a DRA Rϕ, which yields the means to automatically
decide (via the automaton) if a sequence of atomic propositions fromAP satisfies ϕ. The number of
states in this automaton is doubly exponential in the size ofAP . However, efficient implementations
and heuristics effectively reduce the number of states (Kretı́nský et al., 2018).

To verify LTL properties for POMDPs, we compute the productM×Rϕ of a POMDPM and a
DRARϕ. The details of this construction are beyond the scope of this paper and we refer to Bouton
et al. (2020). Essentially, this product yields a larger POMDP in which one computes the probability
to reach so-called maximal end components. The probability of reaching these components can be
related to the probability of satisfying LTL specifications for the original POMDP.

Finally, we state the following relation. A specification ϕ is satisfied for POMDPM and π if
and only if it is satisfied in the induced DTMC Mπ (Mπ |= ϕ). Intuitively, if a candidate FSC
is available, we are able to use efficient verification tools and algorithms for DTMCs to verify the
correctness of the specification.
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4. Method

We first state the formal problem that we address in this paper.

Formal problem statement. For a POMDP M and a specification ϕ, where either ϕ =
P∼λ(ψ) with ψ an LTL specification, or ϕ = E∼λ(♦ a), the problem is to determine a (finite-
memory) policy π ∈ ΠMz such thatMπ |= ϕ.

If such a policy does not exist, the problem is infeasible. Note that, in general, this problem is
undecidable and each method is necessarily incomplete.

Outline. Recall Figure 1 that outlines our overall approach. We train and maintain an RNN
that serves as efficient representation of a POMDP policy. As safety-critical scenarios necessi-
tate a sound notion of correctness, we evaluate such an RNN-based policy using formal verification
against LTL specifications, see Section 3.2. We provide the means to use the verification result to
effectively re-train the RNN in case the specification does not hold. There are four main building
blocks towards that approach, and we structure this section accordingly: (1) Training the RNN (Sec-
tion 4.1), (2) extracting FSCs as tractable representation of the RNN-based policy (Section 4.2), (3)
evaluating the policy (Section 4.3), and (4) improving the policy (Section 4.4).

We start with a simple 5-state reachability example to highlight the utility of FSCs as finite-
memory POMDP policies.

s0
1/3

s1
1/3

s2
1/3

s4

s3

up

down
down

up

up

down
a

a

(a) 5-State POMDP

(0, blue)

up

down

p

1− p

(b) 1-FSC

(0, blue) (1, blue)

up

down

1

1

(c) 2-FSC

Figure 2: (a) POMDP for Example 1 with three observations {blue, s3, s4} with (b) 1-FSC and (c) 2-FSC.
Both FSCs are defined for observing “blue” and subsequent action choices that may result in a change of
memory node for the 2-FSC.

Example 1. Consider the POMDP in Figure 2. The POMDP has three observations (blue, s3 and
s4), where observation blue is received upon visiting s0, s1, and s2. That is, the agent is unable to
distinguish between these states. The specification is ϕ = Pr≥0.9(♦ s3), so the agent reaches state
s3 with at least probability 0.9. We define the following 1-FSC A1 with one memory node 0:

α(0, blue) =

{
up with probability p,

down with probability 1− p,
δ(0, z, a) = 0 ∀z ∈ Z, a ∈ A.

A 2-FSC with two memory nodes (0 and 1), see Figure 2c, allows for greater expressivity, i.e. the
policy can base its decision on larger observation sequences.
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With this memory structure, we can create an FSC A2 that ensures the satisfaction of ϕ:

α(0, blue) =

{
up with probability 1,

down with probability 0,

α(1, blue) =

{
up with probability 0,

down with probability 1,

δ(0, blue, up) = 1,

δ(1, blue, down) = 0.

D = {eo|eo ∈ ObsSeqM
π

fin }

applying π to
POMDP M

training π̂
using D

Value Iteration

Policy π

training
data D

RNN-based
policy π̂

POMDP M
with underlying

MDP M ,
spec. ϕ

|D|=100

Figure 3: Process for generating 100 sequences of data and training an RNN-based policy.

4.1 Training an RNN-Based Policy

Figure 3 gives the high-level process for training policies from observation sequences. We first
define recurrent neural networks (RNNs) as efficient representation of POMDP policies.

Definition 6 (RNN-based policy). An RNN-based policy for a POMDP is a function π̂ : ObsSeqMfin →
Distr(A). The RNN, which receives sequential input in the form of (finite) observation-action se-
quences from ObsSeqMfin , the output is a distribution over actions. To be more precise, we identify
the main components of such a network. An RNN-based policy π̂ is sufficiently described by a
hidden-state update function δ̂ : R× Z ×A→ R and an action-mapping πh : R→ Distr(A).

Consider the following observation-action sequence:

O(e) = O(s0)
a0−→ O(s1)

a1−→ · · ·O(si) (1)

The RNN-based policy receives an observation-action sequence and returns a distribution over
the action choices. Throughout the execution of the sequence, the RNN holds a continuous hidden
state h ∈ R, typically described as an internal memory state, which captures previous information.
On each transition, this hidden state is updated to include the information of the current state and
the last action taken under the hidden-state update function δ̂. From the prior observation sequence
in (1), the corresponding hidden state sequence would be defined as:

δ̂(e) = h0
a0, O(s1)−−−−−−→ h1

a1, O(s2)−−−−−−→ · · ·hi
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z RNN σ

a1

a2

a3

Input
Recurrent

Layer
Softmax

Layer

(a) RNN-based Policy π̂.

RNN h

σ̂

σ̂

σ̂
ĥ

Encoder Decoder

(b) RNN block and associated QBN of Bh = 3 with quantized
activation σ̂ : R→ {−1, 0, 1}.

Figure 4: RNN-based policy structure (a) without and (b) with a QBN.

Additionally, the output of the RNN-based policy is expressed by the action-distribution function
πh, which maps the value of hidden state to an action mapping πh. At an internal memory state hi,
we have δ̂(hi, O(si), ai) = hi+1 and πh(hi+1) = µ(A) for state si on path e.

RNN-based policy architecture. We construct an RNN-based policy using a three-layer network,
shown in Figure 4a. We use an LSTM architecture (Hochreiter & Schmidhuber, 1997) for the
recurrent layer δ̂ and then a softmax layer for the output action mapping πh (see Definition 6). Both
input and output sets were processed using One-hot encoding (Goodfellow et al., 2016). To fit the
RNN model to the sequences of training data, we use the Adam optimizer (Kingma & Ba, 2015)
with a categorical cross-entropy error function (Goodfellow et al., 2016).

RNN-based policies learning temporal logic specifications from sequential data. The hid-
den state update δ̂ of an RNN-based policy allows it to make inferences about the sequences
of data it processes. In a POMDP, this sequential data takes the form of observation sequences
eo ∈ ObsSeqMfin . For specifications that concern reachability or expected reward measures, see Sec-
tion 3.2, the internal memory will indirectly learn to infer the belief by processing the observation
sequences (Wierstra et al., 2007; Hausknecht & Stone, 2015). In problems with more complex
specifications than simple reachability and maximizing an expected reward, the internal memory
will also learn how observation sequences map to correct decisions with respect to the specification.

Example 2. Consider an LTL specification such as ϕ = � (♦A∧(A→ ♦B)), whereA andB are
labels for two distinct states. This specification requires the agent to always eventually travel to the
state labeled A and then to the state labeled B. Now consider an agent, currently at the state that is
labeledA, following the policy π and generating observation sequences eo on a POMDPM. These
observation-action sequences eo will eventually reach the state labeled B. The RNN-based policy
can indirectly learn from these sequences of data, inferring that after reaching the state labeled A
the agent should attempt to reach the state labeled B eventually. In this case, the LSTM tracks,
using internal memory, which label may have been visited recently.

Consider now a POMDP M and a DRA Rϕ = (Q,AP,∆, q0, F ) generated from the LTL
formula ϕ. We compute the product POMDPM×Rϕ. The state space of this product POMDP
is S × Q, thus each state consists of a POMDP state from S and a Rabin automaton state from
Q. By extension, the sequences of training data e′o ∈ ObsSeq

M×Rϕ
fin in form of observation-action
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sequences, as explained above, carries the information from the POMDP states and the LTL speci-
fication. Thus the hidden state update δ̂ indirectly tracks both the agent’s belief on the state as well
as its status with respect to the specification. Encoding this information into the continuous hidden
state hi ∈ R. An RNN-based policy makes no distinction between these two uses of memory: it
merely processes and implements actions based on the observation-action sequence eo and the hid-
den state hi. One consequence of this memory coalescence is the additional difficulty ascertaining
the best approach for how to improve the policy, full details outlined in Section 4.4.

4.1.1 GENERATING TRAINING DATA

In the field of POMDP reinforcement learning, there are many techniques for generating sequences
of data for training the RNN-based policy. Some examples include: Monte Carlo tree search in
the form of POMCP (Silver & Veness, 2010), tree-structured finite history Q-learning (Hernandez-
Gardiol & Mahadevan, 2000) and policy gradient frameworks (Wierstra et al., 2007).

QMDP. In this work, we need to generate sequences of data D = {e0o, · · · , emo } for training
an RNN-based policy π̂ that represents a good initial candidate policy. We use a heuristic search
approach based on the underlying MDPM known as QMDP (Cassandra, 1998). QMDP temporarily
ignores the observation function and assumes full observability to find Q-values QMDP (s, a) for
the state-action decisions in the underlying MDP, which can be computed efficiently for millions of
states using value iteration (Puterman, 1994). QMDP approximates the Q-value for action a in the
POMDP by Qa(b) =

∑
s∈S b(s)QMDP (s, a), which relies on the belief distribution b ∈ Distr(S).

The agent can track the belief distribution b as it executes a policy, inferring the probability of the
system being in a certain state from the observation-action sequence eo ∈ ObsSeqMfin .

The advantage to QMDP initialization is that it only requires one to calculate and query the
underlying Q-values QMDP (s, a). It efficiently approximates a value function for any belief distri-
bution b ∈ Distr(s) regardless of whether that belief is discrete or continuous.

We chose such an approach for its simplicity (Shani et al., 2013); finding quality approaches to
discretizing the belief distribution and performing tree search is an active field in planning but often
is intractable (Chatterjee et al., 2015). Additionally, we did not want to compare and contrast many
different POMDP reinforcement learning techniques training RNN candidate policies, which we
view as outside the scope of this work. However, such a choice is not without drawbacks. QMDP
is necessarily suboptimal because it ignores partial observability and the curse of history (Smith &
Simmons, 2004). Rather QMDP serves the method’s need for a good initial guess. In Section 5, we
demonstrate the downside to this trade-off in the RockSample problem (Smith & Simmons, 2004).

Implementation. In practice, we first compute a policy π ∈ ΠM of the underlying MDP M that
satisfies ϕ using the STORM probabilistic model checker (Dehnert et al., 2017). Then we sample
an initial state uniformly over the initial belief support s0 ∈ supp(b) and generate finite observation
paths eo, thereby creating multiple trajectory trees (Kearns et al., 1999). When generating sequences
of data, selecting one of the trees and following it to a leaf, which forms either at a pre-defined
maximum sequence length or a deadlock, gives a finite path e ∈ PathsMfin . From this path e, we
generate one possible observation-action sequence eo ∈ ObsSeqMfin .

Example 1 (cont.). Consider the POMDP in Figure 2, a sample set of sequences of data would
be: D = {e0o = (blue, up, blue, down, s3), e1o = (blue, down, s3), e2o = (blue, up, s3)}. An
RNN policy π trained on these sequences would yield a policy for observation-action sequence
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eo,0 = (blue) as π(eo,0) = {0.67 : up, 0.33 : down}, which has a categorical cross-entropy loss
of approximately 0.585. Similarly, the same RNN policy for a longer observation-action sequence
such as eo,1 = (blue, up, blue) yields a policy π(eo,1) = {1.0 : down}, for a cross-entropy loss of 0.

Implementation: generating training data with the product POMDP. Recalling that the RNN-
based policy learns two elements from the observation sequences: the belief state and the correct
decision according the specification at that belief state. One can disentangle these two elements
by incorporating the product model M×Rϕ, see Section 3 and Bouton et al. (2020) for details.
Instead of processing observation sequences eo generated by following policy π on the underlying
MDP M , we generate new observation sequences e′o ∈ ObsSeq

M×Rϕ
fin by following the policy π′

that maximizes the probability of reaching the maximal-end components in the underlying product
MDP M ×Rϕ. This segmentation makes explicit that the RNN-based policy need only process the
observation sequences to infer the belief b ∈ Distr(S ×Q). In Sections 4.3 and 5.3, we will detail
benefits of such a distinction when evaluating the policies and then identifying the critical states
from which we generate new sequences of data.

Sampling large environments. In POMDPs M with a large state spaces (|S| > 106), synthe-
sizing the underlying MDP policy π ∈ ΠM increases the initial computation overhead. In such
cases, we generate the observation sequences using a smaller but similar environment that shares
the observation Z and action A spaces withM. For example, consider a gridworld scenario with a
moving obstacle that has the same underlying probabilistic movement for different problem sizes;
such a framework can provide a similar dataset regardless of the size of the grid.

4.2 Policy Extraction

In this section and Figure 5, we describe how we adapt the method called quantized bottleneck
insertion (Koul et al., 2019) to extract an FSC from a given RNN-based policy. Let us first explain
the relationship between the main components of an RNN-based policy π̂ (Definition 6) and an
FSC A (Definition 3). In particular, the hidden-state update function δ̂ takes as input a real-valued
hidden state of the policy network, while the FSC’s memory update function δ takes a memory node
from the finite set N . Figure 4a describes a simplified architecture for the former since its recurrent
component acts as the hidden-state update function δ̂. The key for linking the two is therefore
a mechanism that encodes the continuous hidden state h into a set N of discrete memory nodes.
We outline such a mechanism in the sequel and in Figure 4b, which shows the modified activation
function (formed using an encoder and a decoder).

FSC extraction on π̂
with Bh memory

RNN-based
policy π̂

Memory
nodes Bh

FSC Aπ̂

Figure 5: Process for extracting an FSC from an RNN-based policy.

RNN-based policy modification. We leverage an autoencoder (Goodfellow et al., 2016) in the
form of a quantized bottleneck network (QBN) (Koul et al., 2019). This QBN, consisting of an
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encoder and a decoder, is inserted into the RNN-based policy directly before the softmax layer, see
Figure 4b. In the encoder, the continuous hidden state value h ∈ R is mapped to an intermediate
real-valued vector RBh of pre-allocated size Bh. The decoder then maps this intermediate vector
into a discrete vector space defined by {−1, 0, 1}Bh . This process, illustrated in Figure 4b, pro-
vides a mapping of the continuous hidden state h into 3Bh possible discrete values. We denote the
discrete state for h by ĥ and the set of all such discrete states by Ĥ . Note, that |Ĥ| ≤ 3Bh since
not all values of the hidden state may be reached in an observation sequence. Koul et al. (2019)
use another QBN for a continuous observation space, however, in this work the method computes
policies for POMDPs that have observation functions O, which map to a finite set of observations
Z and therefore we can neglect the additional autoencoder.

FSC construction. After the QBN insertion we simulate a series of executions, querying the mod-
ified RNN for action choices on the POMDP. We form a dataset of consecutive pairs (ĥt, ĥt+1) of
discrete hidden states, the action at and the observation zt+1 that led to the transition {ĥt, at, zt+1, ĥt+1}
at each time t during the execution of the RNN-based policy. The number of accessed memory nodes
N ⊆ Ĥ corresponds to the number of different discrete states ĥ ∈ Ĥ in this dataset. The deter-
ministic memory update rule δ(nt, at, zt+1) = nt+1 is obtained by constructing a N × (|Z| × |A|)
transaction table, for a detailed description see (Koul et al., 2019). We can additionally construct
the action mapping α : N × Z → Distr(A) with α(nt, zt) = µ ∈ Distr(A) by querying the
softmax-output layer (see Figure 4a) for each memory node and observation. Note that it is possible
to build a stochastic memory update rule δ by taking the distribution from sampling for each tran-
sition multiple times. Such an approach would account for possible degeneracies, where the same
hidden state, action and observation may map to different nodes. One can replicate such behavior
by adding additional memory nodes, whose values are sufficiently close together. We show empiri-
cally in Section 5 that there exist diminishing returns on additional memory and consequently using
a stochastic memory rule would not justify the sampling cost required to generate the distributions.

4.3 Policy Evaluation

We assume that for POMDPM = (M,Z,O) and specification ϕ, we have an extracted FSC Aπ̂ ∈
ΠMz as in Definition 3. We use the policy Aπ̂ to obtain the induced DTMCMAπ̂ . For this DTMC,
formal verification through model checking checks whetherMAπ̂ |= ϕ and thereby provides hard
guarantees about the quality of the extracted FSC Aπ̂ regarding ϕ. In particular, (probabilistic)
model checking provides the probability (or the expected reward) to satisfy a specification for all
states s ∈ S via solving linear equation systems (Baier & Katoen, 2008). Note this policy is only a
prediction extracted from the RNN-based and therefore the guarantees do not directly carry over to
the RNN-based policy.

Example 1 (cont.). Consider the case in the 1-FSC A1 (Figure 2b) where p = 1, the probability of
reaching the state s3 in the induced DTMC is Pr(♦ s3) = 1

3 . Clearly, the behavior induced by this
1-FSC violates the specification and we obtain two counterexamples of critical memory-state pairs
for this policy Aπ̂ : (0, s0) and (0, s1).

If the specification does not hold, the policy may require refinement. As discussed before, on the
one hand we can increase the number of memory nodes Bh to extract a new FSC. At each iteration
of the loop in Figure 6, we modify the QBN for the new, increased, level of discretization and obtain
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a new FSC Aπ̂ using the process outlined in Section 4.2. On the other hand, we may decide via a
formal entropy check whether new data need to be generated to actually improve the policy.

FSC extraction MAπ̂ |= ϕ?

implement and verify

π̂

FSC Aπ̂ yes

Bh < Bh?

memory below
prescribed max.?

no

no

Policy improvement

Bh = Bh+1

increase precision

yes
Bh

Figure 6: Process for FSC memory refinement.

Product model. Consider the FSC extracted A′π̂ from the RNN-based policy trained on observa-
tion sequences e′o drawn from the product modelM×Rϕ. We can use this FSC to obtain the induced
DTMC (M×Rϕ)A

′
π̂ . In this instance, verification checks whether (M×Rϕ)A

′
π̂ |= E≥λ[♦Reach],

which gives the same guarantees as the policy evaluation described above. For the complete defini-
tion of ♦Reach see Bouton et al. (2020). Model checking provides the probability of reaching the
maximal end components for all states (s, q) ∈ S ×Q in the product modelM×Rϕ.

4.4 Policy Improvement

Our goal is to determine whether an RNN-based policy requires more training data D or not. Exist-
ing approaches in supervised learning methods leverage benchmark comparisons between a train-
test set using a loss function (Baum & Wilczek, 1987). Loss visualization, proposed by Goodfellow
and Vinyals (2015), provides a set of analytical tools to show model convergence. However, such
approaches aim at continuous functions instead of the discrete representations as in the FSC. More
importantly, we leverage the information gained from a model-based approach.

Counterexamples. We first determine a set of states that are critical for satisfaction of the specifi-
cation under the current policy. Consider a sequence of memory nodes and observations (n0, z0)

a0−→
· · · at−1−−−→ (nt, zt) from the POMDPM under the FSC Aπ̂. For each of these sequences, we collect
the states s ∈ S underlying the observations, e.g., O(s) = zi for 0 ≤ i ≤ t. As we know the proba-
bility or expected reward for these states to satisfy the specification from previous model checking,
we can now directly assess their criticality regarding the specification. We collect all pairs of mem-
ory nodes and states from N × S that contain critical states and build the set CritMAπ̂ ⊆ N × S that
serves us as a counterexample. These pairs carry the joint information of critical states and memory
nodes from the policy applied to the DTMCMAπ̂ .

Counterexamples with the product model. The set of counterexamples CritMAπ̂ ⊆ N × S are
taken from pairs of memory nodes and states N × S. The product POMDPM×Rϕ ofM and the
DRA for the LTL specification ϕ has the state space S ×Q. Thus, there is an additional dimension
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Q in the form of the DRA states. The counterexamples drawn from this product model form the set
Crit

M×Rϕ
Aπ̂′

⊆ N×S×Q. As a consequence, this set of counterexamples CritM×RϕAπ̂′
contains more

detail in the diagnostic information than the set CritMAπ̂ derived fromM since it encodes which state
q ∈ Q in the DRARϕ may lead to a violation of the specification ϕ.

Entropy measure. The average entropy across the distributions over actions at the choices in-
duced by the counterexample set CritMAπ̂ is our measure of choice to determine the level of training
for the RNN-based policy. Specifically, for each pair (n, s) ∈ CritMAπ̂ , we collect the distribution
µ ∈ Distr(A) over actions that Aπ̂ returns for the observation O(s) when it is in memory node n.
Then, we define the evaluation function H using the entropyH(µ) of the distribution µ:

H : CritMAπ̂ → [0, 1] with H(n, s) = H(µ)

For high values of H , the distribution is uniform across all actions and the associated RNN-
based policy is likely extrapolating from unseen inputs.

We observe that when there are fewer samples and higher memory nodes, the extracted FSC
tends to perform arbitrarily, see Section 5.3 and Figure 13 for a detailed empirical analysis. We lift
the function H to the full set CritMAπ̂ :

H(CritMAπ̂) =
1

|CritMAπ̂ |
∑

(n,s)∈CritMAπ̂

H(n, s) (2)

We compare the average entropy over all decision-points of the counterexample against a con-
stant threshold η ∈ [0, 1], that is, ifH(CritMAπ̂) > η, we will provide more training data. Vice versa,
if H(CritMAπ̂) ≤ η, we increase the upper bound on the number of memory nodes in the FSC, see
Figure 6 for the process for increasing precision.

Example 1 (cont.). Under the working example, the policy A1 was the 1-FSC with p = 1 (Fig-
ure 2b), which produces two counterexample memory and state pairs: CritMA1

= {(0, s0), (0, s1)}.
The procedure would then examine the policy’s average entropy at these critical components (n, s) ∈
CritMA1

, which in this trivial example is given byH(CritMA1
) = −p log2(p)−(1−p) log2(1−p) = 0

from (2). The average entropy is below a prescribed threshold, η = 0.5, and thus we increase the
number of memory nodes, which results in the satisfying FSC A2 in Figure 2c.

Generating new sequences of training data from counterexamples. There are several methods
to collect data for training the policy network. In this work, we generate new training sequences for
the existing policy network by using the QMDP approach outlined in Section 4.1.1 and Figure 7.
The key idea is to modify the policy π ∈ ΠM for the underlying MDP that generates the observation
sequences e∗o ∈ ObsSeqMfin . We redistribute the probabilities of action choices such that the policy

favors non-critical states that are not within CritMAπ̂ or CritM×RϕAπ̂′
. This “local” redistribution of

probabilities does not solve the overall problem but is likely to generate better training data. We
realize this idea using the following linear program:

max
π(z)(a),a∈A

min
s∈S

ps (3)

subject to

∀s ∈ O−1(z). ps =
∑
a∈A

π(z)(a) ·
∑
s′∈S

T (s, a, s′) · p∗(s′)
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FSC extraction MAπ̂ |= ϕ?

implement and verify

Bh

FSC Aπ̂ yes

linear
program (Eq 3)

no
CritMAπ̂

generate
and retrain

Policy π

RNN-based
Policy π̂

Figure 7: Process for retraining using data from counterexamples.

Basically, we modify the sampling policy π to maximize over the minimal possible worst case
probability for critical states, using the original probability p∗. By gathering more sequences of data
from these critical decision-points, we locally improve the quality of the policies at those locations
and gradually introduce observation-dependencies, see Section 5.3.

From the resulting improved policy π, we generate a new set of observation-action sequences
e∗o ∈ ObsSeqMfin , favoring sequences that contain critical states. Recall in Section 4.1.1 that the
sequences of data eo ∈ ObsSeqMfin with initial state s0 drawn from the initial belief support s0 ∈
supp(b). In contrast, when generating sequences of data using the counterexamples, we draw from
the critical set of state-memory node pairs (n0, s0) ∈ CritMAπ̂ for the initial state s0. In addition, we
use the improved sampling policy π, to generate a new set of paths e∗ ∈ PathsMfin . We then convert
these paths e∗ into observation sequences e∗o ∈ ObsSeqMfin and retrain the RNN-based policy π̂ on
the new sequences of data.

While this method of sequence generation forms the basis of the proposed supervised learning
scheme, it is adaptable to deep reinforcement learning approaches. In particular, one may adapt
such a procedure by uniformly sampling from the set of critical states and using them to initialize
a given episode in the reinforcement learning procedure. By sampling in this manner, the learned
policy will have more data on critical states than a policy learned using just the distribution over the
initial states.

Generating new sequences of data from product model counterexamples. In the improvement
method outlined above, sequences of data are generated starting at the critical state-memory node
pairs (n, s). In contrast, the sequences of data using the product model are generated by initializing
using the states s0 and q0 from (n, s0, q0) ∈ Crit

M×Rϕ
Aπ̂′

. Using these starting points along with

the improved policy π′ ∈ ΠM×Rϕ , the method generates sequences of data e′o ∈ ObsSeq
M×Rϕ
fin .

These sequences of data have the LTL specification encoded and as a result the RNN-based policies
trained on them have higher probabilities of satisfying the specification, as shown in Section 5.4.

4.5 The Overall Procedure

Figure 8 shows the overall flow of the proposed method. We start with a POMDPM, a specification
ϕ, an initial RNN-based policy π̂, a constant η for the entropy-based decision on retraining, and an
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FSC extraction on π̂
with Bh memory

implement Aπ̂ on M MAπ̂ |= ϕ?

verification

extract
counterexamples

H(CritMAπ̂) <=

η? and Bh < Bh?
entropy
check

Bh = Bh + 1

memory refinement

max
a∈A, s∈CritMAπ̂

min ps

redistribute sampling
action probabilities

eo from
ObsSeqM

π

fin

generate sequences
of data

training π̂
using D

4
Aπ̂ MAπ̂

no

CritMAπ̂

yes

yes

nopolicy π for
underlying MDP M

D

π̂

Bh

M (POMDP) ϕ (Specification)
π̂ (Initial RNN-

based policy)
η (Constant) Bh (FSC

memory bound)

Figure 8: Summary flowchart of the RNN-based refinement loop.

upper bound Bh on the maximum number of memory nodes for the FSC. At each instance, we
extract an FSC Aπ̂ and implement it on the POMDP modelM. Verification tools check whether
or not the induced behavior of the resulting model satisfies the specification ϕ. In the case of
the latter, we iteratively improve the policy (the FSC) either by adding additional FSC memory
states or generating additional sequences of data. Since the underlying problem is undecidable, the
procedure is naturally not complete. It is, however, sound as verification yields provable guarantees
on the induced behavior. We enforce termination in the experiments by assigning an upper limit on
number of times we generate sequences of data.

5. Experimental Results

We evaluate the RNN-based synthesis on benchmark examples that are subject to either LTL spec-
ifications or expected reward specifications. For the former, we compare to the tool PRISM-
POMDP (Norman et al., 2017), and for the latter to PRISM-POMDP and the point-based solver
SolvePOMDP (Walraven & Spaan, 2017). We selected these two solvers from different research
communities (formal methods and planning respectively) because they provide the possibility for a
straightforward adaption to our benchmark setting. In particular, the tools support undiscounted re-
ward and have a simple and similar input interface. Extended comparisons with Monte-Carlo-based
methods, such as POMCP (Silver & Veness, 2010) or reinforcement learning approaches, such as
DRQN (Hausknecht & Stone, 2015), are interesting but beyond the scope of this paper.

For a fair comparison, instead of terminating the synthesis procedure once the policy satisfies
the specification, we always iterate 10 times, where one iteration encompasses the (re-)training of
the RNN-based policy using counterexamples, the FSC extraction, the evaluations, and the policy
improvement as detailed in Section 4. For instance, for a specification ϕ = P≥λ(ψ), we leave the λ
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open and seek to compute Pmax(ψ), that is, we compute the minimal probability of satisfying ψ to
obtain a policy that satisfies ϕ. We cannot guarantee to reach that optimum, but we rather improve
as far as possible within the predefined 10 iterations. The notions are similar for the expected reward
measures E≥λ and Emax. We will now describe our experimental setup and present detailed results.

5.1 Implementation and Benchmark Set

We created the following Python toolchain to realize the full RNN-based procedure, combining the
state-of-the-art tools from deep learning with those from formal verification. First, we use the deep
learning library Keras (Ketkar, 2017) to train the RNN-based policy from sequences of data. To
evaluate policies, we employ the probabilistic model checkers PRISM (Norman et al., 2017) and
STORM (Dehnert et al., 2017) for LTL and undiscounted expected reward respectively. We evalu-
ated on a 2.3 GHz machine with a 12 GB memory limit and a specified maximum computation time
of 105 seconds. In Tables 3 and 4, TO/MO denote violations of the time/memory limit, respectively
and Res. refers to the output value of the induced DTMC.

Temporal logic examples. We examined three problem settings involving motion planning with
LTL specifications. For each of the settings, we use a square gridworld of length c with 4 action
choices (cardinal directions of movement). The motivation for gridworld examples is that they
provide a minimal safety check: a policy that fails to behave safely in such simple environments is
also unlikely to behave safely in real-world (Leike et al., 2017). Inside this environment there are a
set of static (x̂) and moving (x̃) obstacles as well as possible target cells G1 and G2, see Figure 9.
The agent has a limited visibility region, indicated by the green area, and can infer its state from
observations and knowledge of the environment. We define observations as Boolean functions that
take as input the positions of the agent and moving obstacles. Intuitively, the functions describe the
8 possible relative positions of the obstacles with respect to the agent inside its viewing range.

G1

G2 x̂

x̂
x̃

Figure 9: Gridworld environment for LTL examples.

1. Navigation with moving obstacles – an agent and a single stochastically moving obstacle.
The agent task is to maximize the probability to navigate to a goal state A while not colliding
with obstacles (both static and moving): ϕ1 = Pmax (¬X U G1) with x = x̂ ∪ x̃,

2. Delivery without obstacles – an agent and static objects (landmarks). The task is to deliver
an object from G1 to G2 in as few steps as possible: ϕ2 = Emax(♦(G1 ∧ ♦G2)).

3. Slippery delivery with static obstacles – an agent where the probability of moving per-
pendicular to the desired direction is 0.1 in each orientation. The task is to maximize the
probability to go back and forth from locations G1 and G2 without colliding with the static
obstacles x̂: ϕ3 = Pmax (�♦G1 ∧�♦G2 ∧ ¬♦X), with x = x̂.
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Problem |S| |A| |Z|

Navigation (c) c4 4 256
Delivery (c) c2 4 256
Slippery (c) c2 4 256
Maze(c) 3c+ 8 4 7
Grid(c) c2 4 2
RockSample[4, 4] 257 9 2
RockSample[5, 5] 801 10 2
RockSample[7, 8] 12545 13 2

Table 1: Benchmark metrics (LTL examples in gray) .

Expected value benchmarks. For comparison to existing benchmarks, we extend two examples
– Maze(c) and Grid(c) – from PRISM-POMDP for an arbitrary-sized structure. These problems
are quite different to the LTL examples, in particular the significantly smaller observation spaces,
see Table 1 for details on model sizes. Additionally, we compare against the parametric benchmark
RockSample[c,m]:

1. Maze(c) with c + 2 rows. The agent can only detect its neighboring walls and attempts to
reach a goal state G in as few steps as possible, see Figure 10a for Maze(1). Extra rows add
uncertainty over the agent’s position in the corridors, see the blue observations in Figure 10a.

2. Grid(c), a square grid with length c where the agent attempts to reach a goal state G at the top
right of the square. The agent is placed in the grid according to a uniform distribution of the
states and can only observe its exact location when it reaches the goal state.

3. RockSample[c,m], a scalable example that models a Mars rover science exploration exper-
iment. The agent attempts to maximize the expected reward based on drilling m rocks in a
square grid with length c. Each rock has a binary feature RockTypei = {Good,Bad} that
indicates whether the rock admits a positive reward. The agent may take an action Checki
that gives a noisy observation about the status of this binary feature. For further details on the
action set, the observation and reward functions see (Smith & Simmons, 2004).

G

s0 s1 s2 s3 s4

s5 s6 s7

s8 s9 s10

(a) Maze(1)

n0

up

down

right

left
0.95

0.05

n1

0.98

0.02

0.51

0.49

(b) FSC Aπ at n0

n1

up

down right

left

n0

0.02

0.98

(c) FSC Aπ at n1

Figure 10: Maze(1) example with corresponding FSC Aγ . The agent’s initial state sI ∈ S\{s9} is allocated
over a uniform distribution and each color represents a different observation. The FSC Aγ has two memory
nodes (n0 and n1), we prune action mappings and memory updates with low probabilities from 10b and 10c.
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Component Time (s) %

Total 311.65 100
Training/Retraining RNN 205.77 66.0
Extracting/Implementing FSC 80.21 25.7
Verification of DTMC 2.23 0.7
Counterexamples/entropy
check

7.05 2.2

(a) Execution time by component - Navigation (5)

Grid-
size

No. of samples
(Approx.)

Cross-entropy
accuracy

4 1500 0.844
5 4500 0.894
10 105 0.852
20∗ 106 0.895
30∗ 106 0.896

(b) Training metrics for RNN policy

Table 2: Metrics of interest for the Navigation(c) benchmarks. (a) contains the process execution time for
each element in Figure 8 when computing a policy for Navigation(5). (b) gives the size of the initial training
data and categorical cross-entropy accuracy for training the RNN-based policy trained on this data.

5.2 Training RNNs

Initial policy. In Table 2, we include the size of the training data set used to generate the initial
policy, described in 4.1. Additionally, we show how well this initial RNN-based policy matches the
data it is trained on using the categorical cross-entropy accuracy. The size of the initial training data
set generally scales with the number of states, however, for environments larger than 104 states we
utilize the samples from smaller environments to train policies for significantly larger state spaces.
The predictive accuracy of the RNN-based policy’s decisions to those found in the training data is
fairly consistent across all problem sizes and does not decrease even when the sequences of training
data are generated using similar but smaller environments than the actual POMDP.

Execution breakdown. In Table 2a, we enumerate the proposed method’s execution times for the
example in Navigation(5), see Figure 8 for the location of each row in the process. As the model
size increases in the examples, the proportion of the execution time spent extracting/implementing
the FSC and verifying the DTMC increases significantly. The primary cause of the timeouts that
occur in Navigation(40) are due to the significantly longer implementation time required to create
and then verify the induced DTMC when the number of states |S| > 106.

5.3 Policy Improvement

More memory nodes – higher performance. In Figure 11, we show that increasing the num-
ber of memory nodes in the FSC produces higher performing policies, both in the form of higher
probabilities of satisfying the specification and higher undiscounted expected rewards. In the case
of RockSample[7, 8] the 1-FSC performs particularly poorly as the agent needs memory to keep
track of whether an observed rock is worth drilling. Therefore, the highest performing 1-FSC for
RockSample[7, 8] involves the agent drilling nothing and driving to the exit area to obtain the re-
ward R = 10. Another noticeable characteristic is that for each FSC in Figure 11, there is a point
of diminishing returns where the additional memory does not produce higher quality policies. In
most cases, this point falls between 6 and 8 memory nodes. As a consequence for the set of bench-
marks, unless otherwise specified, we set the upper bound for the number of memory nodes at
Bh = 8. However, if one was to perform task and model analysis prior to synthesis, they could
lower this bound and thus reduce the synthesis time. For instance, while the observation functions

838



VERIFIABLE RNN-BASED POLICIES FOR POMDPS

0 2 4 6 8

0.8

0.9

1

Maximum memory nodes (Bh)

P
r(
¬X

U
G

1
)

Navigation(4)
Navigation(5)

Navigation(20)

(a) LTL examples

0 2 4 6 8 10
10

15

20

25

30

Maximum memory nodes (Bh)

|E
M
|

Grid(10)
RockSample[7, 8]

(b) Expected reward examples

Figure 11: Performance of FSCs as the number of memory nodes increases. Each point represents the
best performing policy over 10 iterations of the lower loop in Figure 8. Each FSC begins to experience
diminishing returns at values of Bh = 6 and higher. In (b) the policy attempts to maximize the expected
reward in Grid(10) and RockSample[7, 8]. Note: Grid(10) admits negative rewards for each agent move and
consequently policies with additional memory nodes accumulate fewer negative rewards.

of Navigation(4), Navigation(5) and Navigation(20) are the same, the smaller area in the former
produces a model with a smaller observation set. Consequently, the performance plateau occurs
much earlier, around Bh = 2, in Navigation(4) than in the larger models.

Counterexample data – trains better policies. Figure 12 compares the number of critical states
in a set of counterexamples in relation to the probability of satisfying an LTL specification in each
iteration of re-training for the proposed method. In particular, we depict the size of the set of
critical states CritMAγ̂ ⊂ S regarding the specification ϕ. Note that even if the probability to satisfy
the LTL specification is nearly one (for the initial set of states in the POMDP), there may still be
critical intermediate states. Likewise in Figure 12c, even if the expected reward for the initial set
of states is near the maximum value, there may still be intermediate states that are deemed critical
as they fall below an expected reward threshold. In Figure 12 as the satisfaction probability and the
expected reward increases, the number of the critical states identified by the verification decreases.
In particular, the retraining of the RNN-based policy on the sequences of data generated using the
local improvement step (Eq. 3, Section 4.4) is effective in improving the policy with each iteration.
As outlined earlier, for the experiments we upper bounded the number of calls for training from
additional sequences of data at 10 iterations. As Figure 12 shows, the policy generally would not
significantly improve beyond 8 iterations. Similarly to the case with the memory bound, one may
be able to account for task and model features to select lower values of the data sampling bound.
In the case of Figures 12a and 12b, the lack of a moving obstacle greatly reduces the size of the
observation set and thus the policy needs less sequences of data to converge.
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Figure 12: Progression of the number of critical states and the probability of satisfying an LTL specification
(a,b) or maximizing an expected reward (c) as a result of retraining on new sequences of data generated using
the local improvement steps.

Counterexample data – less arbitrary decisions. In Figure 13, we ignore the decision at the
entropy check, fix the memory precision and iteratively add more sequences of data generated using
the counterexamples. Each point in Figure 13 in represents one instance of verification in the loop in
Figure 8. As the RNN-based policy iteratively trains on additional sequences of data, the subsequent
extracted policy makes less arbitrary decisions, shown in Figure 13 by the decrease in entropy of
the FSC as the RNN-based policy is trained on larger sets of training sequences.

More memory nodes – less arbitrary decisions. In Figure 13, we also compare how the number
of memory nodes in the extracted FSC correlate to the entropy of the decisions at critical states.
When trained on a large set of sequences of training data, the FSCs with a higher number of memory
nodes have a lower entropy than those without. This behavior is likely due the fact that extracted
FSC with more memory nodes can better approximate the RNN-based policy, which itself is making
less arbitrary decisions due to the larger training set. Meanwhile, when the extracted FSCs are
approximating RNN-based policies trained on smaller sets of training sequences, they generally
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Figure 13: Entropy of the extracted FSCs from an RNN as it is trained with more samples. Each point
represents an extracted FSC, for color sequence we fix the discretization and add more samples guided by the
counterexamples. A sample threshold of µ = 0.5 is also indicated by the dashed line.
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PRISM-POMDP Handcrafted
FSC

Automated
Extraction

Automated Extraction
with LTL Automaton

Problem States Type, ϕ Res. Time (s) Res. Time (s) Res. Time (s) Res. Time (s)

Navigation (3) 333 PMmax, ϕ1 0.84 73.88 0.74 14.16 0.80 123.14 0.80 100.20
Navigation (4) 1088 PMmax, ϕ1 0.93† 1034.64 0.82 22.67 0.92 160.32 0.91 177.91
Navigation (4) [2-FSC] 13373 PMmax, ϕ1 – – 0.92 47.26 – – – –
Navigation (4) [8-FSC] 53477 PMmax, ϕ1 – – 0.92 85.26 – – – –
Navigation (5) 2725 PMmax, ϕ1 MO MO 0.91 34.91 0.95 311.65 0.95 451.22
Navigation (5) [2-FSC] 33357 PMmax, ϕ1 – – 0.92 159.61 – – – –
Navigation (5) [8-FSC] 133413 PMmax, ϕ1 – – 0.92 253.11 – – – –
Navigation (10) 49060 PMmax, ϕ1 MO MO 0.79 822.87 0.85 2561.02 0.85 3210.19
Navigation (10) [2-FSC] 475053 PMmax, ϕ1 – – 0.83 1185.41 – – – –
Navigation (10) [8-FSC] 1900197 PMmax, ϕ1 – – 0.83 1488.77 – – – –
Navigation (20) 798040 PMmax, ϕ1 MO MO 0.96 4712.25* 0.98* 8173.03* 0.98 10574.33
Navigation (30) 4045840 PMmax, ϕ1 MO MO 0.95 25191.05* 0.97* 61350.34* TO TO
Navigation (40) – PMmax, ϕ1 MO MO TO TO TO TO TO TO
Delivery (4) 80 EMmax, ϕ2 -6.0 28.53 -6.02 35.35 -6.04 94.32 -6.01 120.12
Delivery (5) 125 EMmax, ϕ2 -8.0 102.41 -8.11 78.32 -8.13 150.44 -8.04 180.31
Delivery (10) 500 EMmax, ϕ2 MO MO -18.13 120.34 -18.13 347.98 -18.10 400.14
Slippery (4) 460 PMmax, ϕ3 0.90 5.10 0.78 67.51 0.80 180.15 0.85 200.67
Slippery (5) 730 PMmax, ϕ3 0.93 83.24 0.89 84.32 0.89 212.79 0.91 355.00
Slippery (10) 2980 PMmax, ϕ3 MO MO 0.98 119.14 0.98 280.55 0.98 651.47
Slippery (20) 11980 PMmax, ϕ3 MO MO 0.99 1580.42 0.99 2384.56 0.99 3312.45

Table 3: Computing policies for examples with LTL specifications.

make arbitrary decisions (see top left of Figure 13a). In these cases, the FSC with more memory
nodes tend to make more arbitrary decisions than those with less, which is likely a function of an
under-defined hidden state update δ̂ in the RNN-based policy.

5.4 Comparisons

In Tables 3 and 4, we compare the state-of-the-art POMDP solvers to three different approaches to
training and extracting policies, which are Handcrafted FSC, Automated Extraction and Automated
Extraction with LTL Automaton. The handcrafted FSC describes an approach where the memory
updates of the FSC are handcrafted with some intuition about the environment (Carr et al., 2019).
The other two both use the automated method of extraction detailed in Section 4.2, one generating
sequences of data and verifying against the POMDPM. The other generates sequences of data and
performs verification on the larger product modelM×Rϕ.

Tool comparison – LTL examples. Summarized, the method scales to significantly larger do-
mains than PRISM-POMDP with competitive computation times. Naturally the policies produced
by the procedure will not have higher maximum probabilities (or lower minimum expected cost)
than those generated by the PRISM-POMDP tool. As mentioned before, there is an inherent level
of randomness in extracting a policy. While we always take the first shot result for our experiments,
the quality of policies may be improved by sampling several FSC extractions of the RNN-based
policy. In the larger environments, Navigation(20) and upwards*, we employ the data generation
technique outlined at the end of Section 4.1.1 on a similar environmentMs with grid-size c = 10.

*Sequences of data generated using similar but smaller environment.
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PRISM-POMDP pomdpSolve Handcrafted FSC Automated Extraction
Problem Type Res Time (s) Res Time (s) States Res Time (s) States Res Time (s)

Maze (1) EMmax -4.30 0.09 -4.30 0.30 68 -4.31 31.70 68 -4.33 80.31
Maze (2) EMmax -5.23 2.176 -5.23 0.67 83 -5.31 46.65 74 -5.34 114.23
Maze (5) EMmax -13.00† 4110.50 -12.04 132.12 128 -14.40 68.09 92 -13.29 160.12
Maze (10) EMmax MO MO MO MO 203 -100.21 158.33 190 -23.02 210.01
Grid (3) EMmax -2.88 2.332 -2.88 0.07 165 -2.90 38.94 186 -2.90 87.31
Grid (4) EMmax -4.13 1032.53 -4.13 0.77 381 -4.32 79.99 672 -4.20 124.31
Grid (5) EMmax MO MO -5.42 1.94 727 -6.62 91.42 1350 -5.91 250.14
Grid (10) EMmax MO MO MO MO 5457 -13.63 268.40 5500 -12.92 1031.21
Grid (25) EMmax MO MO MO MO 90000 -531.05 622.31 62100 -35.32 6514.30

RockSample[4, 4] EMmax N/A N/A 18.04 0.43 2432 17.71 35.35 2427 16.11 113.61
RockSample[5, 5] EMmax N/A N/A 19.23 621.28 8320 18.40 43.74 8400 15.00 250.50
RockSample[7, 8] EMmax N/A N/A 21.46† 20458.41 166656 20.32 860.53 152430 19.53 2146.49

Table 4: Comparison for maximing an expected reward for a set of POMDP benchmarks.

Since it is observation-dependent, this policyAγ̂ scales to the larger POMDPM even when trained
on observation sequences eo ∈ ObsSeqMs

fin generated on a smaller state space Ss.

Tool comparison – POMDP benchmarks. The method compares favorably with PRISM-POMDP
and pomdpSolve for Maze(c) and Grid(c) (full set of results in Table 4†). However, the proposed
method performs poorly in comparison to pomdpSolve for the RockSample problems. In RockSam-
ple, an observation is received after taking an action to Checki a particular rock. Since QMDP
approach to sampling assumes that the problem will eventually be fully observable (Cassandra,
1998), this action never appears when generating sequences of data using the method in Section 4.1.
To achieve the results in Table 4, we applied, a far from optimal, method that forces the agent to
periodically explore by checking the closest rock with a certain probability. Note, that the primary
aim of this work is to provide provable guarantees on RNN-based policies in POMDPs with respect
to LTL specifications rather than finding the optimal method of computing RNN-based policies that
maximize an expected reward using reinforcement learning.

Handcrafted comparison. In Table 3, the proposed automated method scales to significantly
larger examples than both state-of-the-art POMDP solvers which compute near-optimal policies.
While the handcrafted approach scales equally well, the automated extraction method produces
higher-quality policies - within 2% of the optimum. In Table 4, we observe similar improvement
via the automated extraction method. Note that an optimal policy for Maze(1) can be expressed
using 2 memory states. The FSC structure employed by the handcrafted method uses this structure
and consequently, for the small Maze environments, the handcrafted method produces FSCs that
have higher expected rewards than the equivalent automatically extracted one. Yet, with larger
environments the fixed memory structure in the Handcrafted approach produces poor policies as
additional memory nodes are beneficial to account for the past behavior, see Section 5.3.

Product model comparison. In Navigation(c), there is an indistinguishable difference between
the automated extraction with and without the product model. Noting that DRAs Rϕ for specifica-
tions involving only a single until (e. g. ϕ = ¬X UG1) or eventually (e. g. ϕ = ♦G1) do not have
any effect as these specifications are already a direct reachability problem (Bouton et al., 2020).

†Output was a bound; we give the worst-case value from bound.
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However, using the product models for Delivery(c)M×Rϕ2 and Slippery(c)M×Rϕ3 produces
extracted policies that have higher probabilities of satisfying the specifications, especially in the
smaller environments. As discussed in Section 4.4, this improvement is a function of the higher
quality counterexamples, which describe both the states in the POMDP s ∈ S and in the automaton
q ∈ Q where that lead to the conditions where specification does not hold. However, this increase
in probability comes at a cost of an approximately 150% increase in computation time. In the case
of the larger environments such as Delivery(10) and Slippery(20), using the product model only
provides limited improvement. In the case of the former, the increased state space likely leads to
a relatively sparse observation space, which limits the impact when learning the belief using the
product model. In the latter, the policy was already performing near the maximal possible value of
probability 1 and so additional improvement would be difficult to measure.

5.5 Precision-Performance Trade-Off

As discussed in Section 5.3, increasing the number of memory states in the FSC produces policies
with higher probabilities of satisfying the specification and greater expected rewards. Table 3, we
include the sizes of the FSCs for the handcrafted procedure to demonstrate the trade-off between
computational tractability and expressivity: a larger FSC means that the policy can store more
information, which may lead to better decisions. However, larger FSCs require more computational
effort and may require more sequences of data for training the RNN-based policy. Figure 10 shows
the automatically extracted FSC for the Maze(1) environment. Note that a 2-FSC can represent
the optimal Maze(1) policy. The FSC shown in Figures 10b and 10c is very close to this optimal
policy. The stochastic action choices at (n0, blue) and at (n1, yellow) create the suboptimality in
this example with the optimal policy taking the respective up and right actions at these points.

6. Conclusion

In this paper we presented a comprehensive and concerted method to train, verify, and improve
policies based on recurrent neural networks in a model-based setting with POMDPs. The key result
is that we are able to use formal verification to provide correctness guarantees and yet exploit the
efficiency of recurrent neural networks as black-box policy representations. Our results show the
effectiveness and efficiency of each part of the process and even demonstrate a clear competitiveness
to state-of-the-art POMDP solvers. In the future, we will expand the proposed approach to exploit
state-of-the-art approaches to deep reinforcement learning on POMDPs. In doing so, we require
fewer sequences of data to train the RNN-based policies and subsequently reduce the time required
synthesize policies that ensure that the agent satisfies the temporal logic specification.
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Kretı́nský, J., Meggendorfer, T., Sickert, S., & Ziegler, C. (2018). Rabinizer 4: From LTL to your

favourite deterministic automaton. In Computer Aided Verification (CAV) (Vol. 10981, pp.
567–577). Springer.

Kurniawati, H., Hsu, D., & Lee, W. S. (2008). SARSOP: Efficient point-based pomdp planning by
approximating optimally reachable belief spaces. In Robotics: Science and Systems (RSS).
MIT Press.

Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: Verification of probabilistic real-
time systems. In Computer Aided Verification (CAV) (Vol. 6806, pp. 585–591). Springer.

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt, T., Lefrancq, A., . . . Legg, S. (2017). AI
safety gridworlds. CoRR, abs/1711.09883.

Littman, M. L., Topcu, U., Fu, J., Isbell, C., Wen, M., & MacGlashan, J. (2017). Environment-
independent task specifications via GLTL. CoRR, abs/1704.04341.

Madani, O., Hanks, S., & Condon, A. (1999). On the undecidability of probabilistic planning and
infinite-horizon partially observable Markov decision problems. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI) (pp. 541–548). AAAI Press.

Meuleau, N., Kim, K., Kaelbling, L. P., & Cassandra, A. (1999). Solving pomdps by searching
the space of finite policies. In Conference on Uncertainty in Artificial Intelligence (UAI) (pp.
417–426). Morgan Kaufmann.

Michalenko, J. J., Shah, A., Verma, A., Baraniuk, R. G., Chaudhuri, S., & Patel, A. B. (2019).
CoRR, abs/1902.10297.

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540), 529.

Mulder, W. D., Bethard, S., & Moens, M. (2015). A survey on the application of recurrent neural
networks to statistical language modeling. Computer Speech & Language, 30(1), 61–98.

Norman, G., Parker, D., & Zou, X. (2017). Verification and control of partially observable proba-
bilistic systems. Real-Time Systems, 53(3), 354-402.

Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2014). How to construct deep recurrent neural
networks. In International Conference on Learning Representations (ICLR).

Pnueli, A. (1977). The temporal logic of programs. In Annual Symposium on Foundations of
Computer Science (FOCS) (pp. 46–57). IEEE Computer Society.

846



VERIFIABLE RNN-BASED POLICIES FOR POMDPS

Poupart, P., & Boutilier, C. (2003). Bounded finite state controllers. In Advances in Neural Infor-
mation Processing Systems (NIPS) (pp. 823–830). MIT Press.

Puterman, M. L. (1994). Markov decision processes. John Wiley and Sons.
Shani, G., Pineau, J., & Kaplow, R. (2013). A survey of point-based pomdp solvers. Autonomous

Agents and Multi-Agent Systems, 27(1), 1–51.
Sharan, R., & Burdick, J. (2014). Finite state control of pomdps with ltl specifications. In American

Control Conference (ACC) (pp. 501–508). IEEE.
Sherstinsky, A. (2020). Fundamentals of recurrent neural network (rnn) and long short-term mem-

ory (lstm) network. Physica D: Nonlinear Phenomena, 404, 132306.
Silver, D., & Veness, J. (2010). Monte-carlo planning in large pomdps. In Advances in Neural

Information Processing Systems (NIPS) (pp. 2164–2172). MIT Press.
Smith, T., & Simmons, R. (2004). Heuristic search value iteration for pomdps. In Conference on

Uncertainty in Artificial Intelligence (UAI) (pp. 520–527). AUAI Press.
Spaan, M. T. J., & Vlassis, N. (2005). Perseus: Randomized point-based value iteration for pomdps.

Journal of Artificial Intelligence Research (JAIR), 24, 195–220.
Suilen, M., Jansen, N., Cubuktepe, M., & Topcu, U. (2020). Robust policy synthesis for uncertain

pomdps via convex optimization. In International Joint Conference on Artificial Intelligence
(IJCAI) (pp. 4113–4120). ijcai.org.

Walraven, E., & Spaan, M. (2017). Accelerated vector pruning for optimal pomdp solvers. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (pp. 3672–3678). AAAI
Press.

Wang, Q., Zhang, K., Liu, X., & Giles, C. L. (2018). Verification of recurrent neural networks
through rule extraction. CoRR, abs/1811.06029.

Wang, Y., Chaudhuri, S., & Kavraki, L. E. (2018). Bounded policy synthesis for pomdps with safe-
reachability objectives. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) (pp. 238–246). ACM.

Weiss, G., Goldberg, Y., & Yahav, E. (2018). Extracting automata from recurrent neural net-
works using queries and counterexamples. In International Conference on Machine Learning
(ICML) (Vol. 80, pp. 5244–5253). PMLR.

Wierstra, D., Förster, A., Peters, J., & Schmidhuber, J. (2007). Solving deep memory pomdps
with recurrent policy gradients. In International Conference on Artificial Neural Networks
(ICANN) (pp. 697–706). Springer.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8, 229–256.
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