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Abstract

We consider the problem of black-box multi-objective optimization (MOO) using expen-
sive function evaluations (also referred to as experiments), where the goal is to approximate
the true Pareto set of solutions by minimizing the total resource cost of experiments. For
example, in hardware design optimization, we need to find the designs that trade-off per-
formance, energy, and area overhead using expensive computational simulations. The key
challenge is to select the sequence of experiments to uncover high-quality solutions using
minimal resources. In this paper, we propose a general framework for solving MOQO prob-
lems based on the principle of output space entropy (OSE) search: select the experiment
that maximizes the information gained per unit resource cost about the true Pareto front.
We appropriately instantiate the principle of OSE search to derive efficient algorithms for
the following four MOO problem settings: 1) The most basic single-fidelity setting, where
experiments are expensive and accurate; 2) Handling black-boz constraints which cannot
be evaluated without performing experiments; 3) The discrete multi-fidelity setting, where
experiments can vary in the amount of resources consumed and their evaluation accuracy;
and 4) The continuous-fidelity setting, where continuous function approximations result in
a huge space of experiments. Experiments on diverse synthetic and real-world benchmarks
show that our OSE search based algorithms improve over state-of-the-art methods in terms
of both computational-efficiency and accuracy of MOO solutions.

1. Introduction

Many engineering and scientific applications involve making design choices to optimize
multiple objectives. Some examples include tuning the knobs of a compiler to optimize per-
formance and efficiency of a set of software programs; designing new materials to optimize
strength, elasticity, and durability; and designing hardware to optimize performance, power,
and area. There are a few common challenges in solving these kind of multi-objective opti-
mization (MOO) problems: 1) The objective functions are unknown and we need to perform
expensive experiments to evaluate each candidate design choice, where expense is measured
in terms of the consumed resources (physical or computational). For example, performing
computational simulations and physical lab experiments for hardware optimization and ma-
terial design applications respectively. 2) The objectives are conflicting in nature and all of
them cannot be optimized simultaneously. Therefore, we need to find the Pareto optimal
set of solutions. A solution is called Pareto optimal if it cannot be improved in any of
the objectives without compromising some other objective. 3) The solutions may need to
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satisfy black-box constraints, which cannot be evaluated without performing experiments.
For example, in aviation power system design applications, we need to find the designs that
trade-off total energy and mass while satisfying specific thresholds for motor temperature
and voltage of cells. 4) We have the ability to perform multi-fidelity experiments (discrete
or continuous) to evaluate objective functions via cheaper approximations, which vary in
the amount of resources consumed and their accuracy. For example, in hardware design op-
timization, we can use multi-fidelity simulators for design evaluations. We want to leverage
this additional freedom to reduce the overall cost for optimization. Real-world MOO prob-
lems come with two or more of the above challenges and the overall goal is to approximate
the optimal Pareto set while minimizing the total resource cost of conducted experiments.

Bayesian Optimization (BO) (Shahriari, Swersky, Wang, Adams, & De Freitas, 2016)
is an effective framework to solve black-box optimization problems with expensive func-
tion evaluations. The key idea behind BO is to build a cheap surrogate statistical model,
e.g., Gaussian Process (Williams & Rasmussen, 2006), using the real experimental data,;
and employ it to intelligently select the sequence of experiments or function evaluations
using an acquisition function, e.g., expected improvement (EI) and upper-confidence bound
(UCB). There is a large body of literature on single-objective BO algorithms (Shahriari
et al., 2016) and their applications including hyper-parameter tuning of machine learning
methods (Snoek, Larochelle, & Adams, 2012; Kotthoff, Thornton, Hoos, Hutter, & Leyton-
Brown, 2017). However, there is relatively less work on the more challenging problem
of BO for multiple objective functions (first and second challenges) (Hernandez-Lobato,
Hernandez-Lobato, Shah, & Adams, 2016), very limited work on the constrained multi-
objective optimization problem (third challenge), and no prior work on multi-objective op-
timization in the multi-fidelity setting (fourth challenge). To the best of our knowledge, this
is the first work on discrete and continuous-fidelity settings for multi-objective BO within
the ML literature as discussed in the related work section.

Prior work on multi-objective BO is lacking in the following ways. Many algorithms
reduce the problem to single-objective optimization by designing appropriate acquisition
functions, e.g., expected improvement in Pareto hypervolume (Knowles, 2006; Emmerich &
Klinkenberg, 2008). This can potentially lead to aggressive exploitation behavior. Addition-
ally, algorithms to optimize Pareto Hypervolume (PHV) based acquisition functions scale
poorly as the number of objectives and the dimensionality of input space grows. There are
also methods that rely on input space entropy based acquisition function (Herndndez-Lobato
et al., 2016) to select the candidate inputs for evaluation. However, it is computationally
expensive to approximate and optimize this acquisition function.

In this paper, we study a general framework for solving a large-class of black-box MOO
problems based on the principle of output space entropy (OSE) search (Wang & Jegelka,
2017; Hoffman & Ghahramani, 2015). Our work is inspired by the prior success of the OSE
principle for solving single-objective BO problems and is an extension of Wang and Jegelka
(2017) to several multi-objective optimization settings. The key idea is to select the input
and fidelity vector (if applicable) that maximizes the information gain per unit resource
cost about the optimal Pareto front in each iteration. Output space entropy search has
many advantages over algorithms based on input space entropy search (Belakaria, Deshwal,
& Doppa, 2019): a) it allows much tighter approximation; b) it is cheaper to compute; and
¢) it naturally lends itself to robust optimization with respect to the number of samples
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used for acquisition function computation. We appropriately instantiate the OSE principle
to derive efficient algorithms for solving four qualitatively different MOO problems: the
most basic single-fidelity setting (Belakaria et al., 2019), MOO with black-box constraints,
discrete multi-fidelity setting (Belakaria, Deshwal, & Doppa, 2020a), and continuous-fidelity
setting. Comprehensive experiments on diverse synthetic and real-world benchmarks show
that our OSE search based algorithms are computationally-efficient and perform better than
the state-of-the-art algorithms.

Contributions. The main contribution of this paper is the development and evaluation
of multi-objective BO algorithms based on the principle of output space entropy search for
four different MOO problem settings. Specific contributions include the following:

e Development of an approach referred to as MESMO to solve the most basic MOO
problem in the single-fidelity setting, where experiments are expensive and accurate
(Belakaria et al., 2019).

e Development of an approach referred to as MESMOC to handle MOO problems with
black-box constraints, which cannot be evaluated without performing experiments.

e Development of an approach referred to as MF-OSEMO to solve MOO problems in the
discrete multi-fidelity setting, where experiments can vary in the amount of resources
consumed and their evaluation accuracy (Belakaria et al., 2020a).

e Development of an approach referred to as iMOCA to solve MOO problems in the
continuous-fidelity setting, where continuous function approximations result in a huge
space of experiments with varying cost. We provide two qualitatively different approx-
imations for iMOCA.

e Experimental evaluation on diverse synthetic and real-world benchmark problems to
demonstrate the effectiveness of the proposed algorithms over existing MOO algo-
rithms and a naive continuous-fidelity baseline.

e Open-source code for all methods: MESMO!, MESMOC?, MF-OSEMO?, and iMOCA*

2. Background and Problem Setup

In this section, we first provide an overview of the generic Bayesian optimization framework.
Next, we formally define the different MOO problem settings considered in this work.

2.1 Bayesian Optimization Framework

Bayesian Optimization (BO) is a very efficient framework to solve global optimization prob-
lems using black-boz evaluations of expensive objective functions. Let X C R? be an input
space. In the single-objective BO formulation, we are given an unknown real-valued objec-
tive function f : X — R, which can evaluate each input x € X to produce an evaluation y
= f(x). Each evaluation f(x) is expensive in terms of the consumed resources. The main

. github.com/belakaria/MESMO

. github.com/belakaria/ MESMOC

. github.com/belakaria/MF-OSEMO
. github.com/belakaria/iMOCA
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Figure 1: Overview of the Bayesian optimization process for two objective functions (k=2).

goal is to find an input x* € X that approximately optimizes f by performing a limited
number of function evaluations. BO algorithms learn a cheap surrogate model from training
data obtained from past function evaluations. They intelligently select the next input for
evaluation by trading-off exploration and exploitation to quickly direct the search towards
optimal inputs. The three key elements of BO framework are:

1) Statistical Model of the true function f(z). Gaussian Process (GP) (Williams
& Rasmussen, 2006) is the most commonly used model. A GP over a space X is a random
process from X to R. It is characterized by a mean function y : X — R and a covariance
or kernel function x : X x X — R. If a function f is sampled from GP(u, k), then f(x) is
distributed normally NV (u(z), k(x,x)) for a set of inputs from z € X.

2) Acquisition Function («) to score the utility of evaluating a candidate input
x € X based on the statistical model. Some popular acquisition functions in the single-
objective literature include expected improvement (EI), upper confidence bound (UCB),
predictive entropy search (PES) (Hernandez-Lobato, Hoffman, & Ghahramani, 2014), and
max-value entropy search (MES) (Wang & Jegelka, 2017).

3) Optimization Procedure to select the best scoring candidate input according
to a depending on statistical model. DIRECT (Jones, Perttunen, & Stuckman, 1993) is a
very popular approach for acquisition function optimization.

2.2 Multi-Objective Optimization Problem Setting Overview

Multi-objective optimization (MOO) problems can be formalized in terms of the following
key elements: number of objectives, necessity to satisfy black-box constraints, and avail-
ability of cheaper approximations or fidelities (discrete/continuous) for function evaluations.
Below we provide a brief overview of the four different MOO problem settings that are ad-
dressed in this paper noting that a more detailed problem setup is specified under each
technical section.

670



OUTPUT SPACE ENTROPY SEARCH FRAMEWORK FOR MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

‘ Notation ‘ Definition
x,y,f,m bold notation represents vectors

X input vector of d dimensions
[n] set of first n natural numbers {1,2,--- ,n}

fi, fa, 0 true objective functions

C,Cq,---,Cp, Constraints functions
fi function sampled from the highest fidelity of the jth Gaussian process model
X Input space
I Information gain
y* true pareto front of the objective functions [f1, f2, -+ , fKk]
Vi Pareto front of the sampled functions [f1, f2, -, fK]

Table 1: Table describing the general mathematical notations.

Basic Multi-objective Optimization Problem. The goal is to maximize real-valued
objective functions fi(x), fo(x),- -, fx(x), with K > 2, over continuous space X C R
Each evaluation (also called an experiment) of an input x € X produces a vector of objective
values y = (y1,¥2, - ,yx) where y; = fi(z) for alli € {1,2,--- | K}.

MOO Problem with Constraints. This is a generalization of the basic MOO problem,
where we need to satisfy some black-box constraints. Our goal is to maximize real-valued
objective functions fi(x), fa(x),- -, fr(x), with K > 2, while satisfying L black-box con-
straints of the form Cj(z) > 0,Cy(z) > 0,---,Cp(z) > 0 over continuous space X C R,
Each evaluation of an input x € X produces a vector of objective values and constraint
values y = (Yr, Ypos s YfgsYer = ** Yo ) Where yp = fj(z) for all j € {1,2,---, K} and
Ye, = Ci(z) for all i € {1,2,--- | L}.

MOO Problem with Discrete Multi-fidelity Experiments. This is a general version
of the MOO problem, where we have access to M; fidelities for each function f; that vary
in the amount of resources consumed and the accuracy of evaluation. The evaluation of an
input x € X with fidelity vector m = [my, ma,- -+, mg] produces an evaluation vector of K

values denoted by y™ = [ygml), - ,yg(nK)], where yj(»mj) = f;mj)(a:) forallj € {1,2,--- ,K}.
MOO Problem with Continuous-fidelity Experiments. In this general version of
the multi-fidelity setting, we have access to g¢;(x,z;) where g; is an alternative function
through which we can evaluate cheaper approximations of f; by varying the fidelity variable
z; € Z (continuous function approximations). The evaluation of an input x € X with
fidelity vector z = [21, 22, - , zK] produces an evaluation vector of K values denoted by

Yy = [y17y27'” 7yK]) where Yi = gi(xvzi) for all ¢ S {1)27‘ o 7K}

3. Related Work

In this section, we discuss prior work from the BO literature that is related to the four
MOO problem settings considered in this paper.

Single-fidelity Multi-Objective Optimization. There is a family of model based multi-
objective BO algorithms that reduce the problem to single-objective optimization. The
ParEGO method (Knowles, 2006) employs random scalarization for this purpose: scalar
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weights of K objective functions are sampled from a uniform distribution to construct a
single-objective function and expected improvement is employed as the acquisition function
to select the next input for evaluation. ParEGO is simple and fast, but more advanced
approaches often outperform it. Many methods optimize the Pareto hypervolume (PHV)
metric (Emmerich & Klinkenberg, 2008) that captures the quality of a candidate Pareto
set. This is done by extending the standard acquisition functions to PHV objective, e.g.,
expected improvement in PHV (EHI) (Emmerich & Klinkenberg, 2008) and probability of
improvement in PHV (SUR) (Picheny, 2015). Unfortunately, algorithms to optimize PHV
based acquisition functions scale very poorly and are not feasible for more than two objec-
tives. SMSego is a relatively faster method (Ponweiser, Wagner, Biermann, & Vincze, 2008).
To improve scalability, the gain in hypervolume is computed over a limited set of points:
SMSego finds those set of points by optimizing the posterior means of the GPs. A common
drawback of this family of algorithms is that reduction to single-objective optimization can
potentially lead to more exploitation behavior resulting in sub-optimal solutions.

PAL (Zuluaga, Sergent, Krause, & Piischel, 2013), PESMO (Herndndez-Lobato et al.,
2016), and the concurrent works USeMO (Belakaria, Deshwal, Jayakodi, & Doppa, 2020b)
and MESMO (Belakaria et al., 2019) are principled algorithms based on information theory.
PAL tries to classify the input points based on the learned models into three categories:
Pareto optimal, non-Pareto optimal, and uncertain. In each iteration, it selects the can-
didate input for evaluation towards the goal of minimizing the size of uncertain set. PAL
provides theoretical guarantees, but it is only applicable for input space X with finite set of
discrete points. USeMO is a general framework that iteratively generates a cheap Pareto
front using the surrogate models and then selects the input with highest uncertainty for
evaluation. PESMO (Hernandez-Lobato et al., 2016) relies on input space entropy based
acquisition function and iteratively selects the input that maximizes the information gained
about the optimal Pareto set X*. Unfortunately, optimizing this acquisition function poses
significant challenges: a) it requires a series of approximations, which can be potentially
sub-optimal; b) the optimization, even after approximations, is expensive; and c¢) the per-
formance is strongly dependent on the number of Monte-Carlo samples. In comparison, our
proposed output space entropy based acquisition function partially overcomes the above
challenges, and allows efficient and robust optimization with respect to the number of sam-
ples used for acquisition function computation. More specifically, the time complexities of
acquisition function computation in PESMO and MESMO ignoring the time to solve the
cheap MO problem that is common for both algorithms are O(SKm?) and O(SK) respec-
tively, where S is the number of Monte-Carlo samples, K is the number of objectives, and
m is the size of the sample Pareto set in PESMO. In fact, PESMO formulation relies on an
expensive and high-dimensional (I - d dimensions) distribution over the input space, where
[ is size of the optimal Pareto set A* while MESMO relies on a computationally cheap and
low-dimensional distribution over the output space (I - K dimensions, which is considerably
less than [-d as K < d in practice). Additionally, Belakaria et al. (2019) demonstrated that
MESMO is very robust and performs very well even with one sample.

Constrained Multi-Objective Optimization. There exists very limited prior work to

address constrained MO problems (Garrido-Merchan & Hernéndez-Lobato, 2019; Feliot,
Bect, & Vazquez, 2017). PESMOC (Garrido-Merchdn & Hernandez-Lobato, 2019) is the
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current state-of-the-art method for this problem setting. PESMOC extends the information-
theoretic approach PESMO that relies on the principle of input space entropy search to the
constrained setting. As a consequence, it inherits the drawbacks of PESMO. Our proposed
MESMOC algorithm based on OSE search is intended to improve over PESMOC. MES-
MOC+ (Fernandez-Sanchez, Garrido-Merchén, & Hernédndez-Lobato, 2020) is a concurrent
work that also employs the principle of output space entropy search to solve constrained
multi-objective optimization problems. However, this paper uses a completely different
approximation of the information gain leading to a different expression of the acquisition
function. This method employs a series of complex mathematical approximations based on
Assumed Density Filtering (ADF). Our proposed MESMOC algorithm uses the truncated
Gaussian distribution approximation that results in a closed-form expression, fast, and
easy to implement acquisition function. Additionally, the ADF based method (Ferndndez-
Sanchez et al., 2020) considers blackbox constraints only in the acquisition function defini-
tion while MESMOC addresses the constraints both in the acquisition function expression
and in the acquisition function optimization to ensure the selection of valid inputs.

Multi-fidelity Single-Objective Optimization. Acquisition functions (AFs) for single-
fidelity and single-objective BO are extensively studied (Shahriari et al., 2016). AFs can
be broadly classified into two categories. First, myopic AFs rely on improving a “local”
measure of utility (e.g., expected improvement). Second, non-myopic AFs measure the
“global” utility of evaluating a candidate input for solving the black-box optimization prob-
lem (e.g., predictive entropy search). Canonical examples of myopic acquisition function
include expected improvement (EI) and upper-confidence bound (UCB). EI was extended to
multi-fidelity setting (Huang, Allen, Notz, & Miller, 2006; Picheny, Ginsbourger, & et al.,
2013a; Lam, Allaire, & et al, 2015). The popular GP-UCB method (Srinivas, Krause,
Kakade, & Seeger, 2009) was also extended to multi-fidelity setting with discrete fideli-
ties (Kandasamy, Dasarathy, Oliva, & et al, 2016) and continuous fidelities (Kandasamy,
Dasarathy, Schneider, & Poczos, 2017). Entropy based methods fall under the category of
non-myopic AFs. Some examples include entropy search (ES) (Hennig & Schuler, 2012)
and predictive entropy search (PES) (Hernandez-Lobato et al., 2014). Their multi-fidelity
extensions include MT-ES (Swersky, Snoek, & Adams, 2013; Klein, Falkner, Bartels, Hen-
nig, & Hutter, 2017) and MF-PES (Zhang, Hoang, & et al, 2017; McLeod, Osborne, &
Roberts, 2017). Unfortunately, they inherit the computational difficulties of the original ES
and PES. Max-value entropy search (MES) (Wang & Jegelka, 2017) and output space pre-
dictive entropy search (Hoffman & Ghahramani, 2015) are recent approaches that rely on
the principle of output space entropy (OSE) search. Prior work (Wang & Jegelka, 2017) has
shown advantages of OSE search in terms of compute-time, robustness, and accuracy over
input space entropy search methods. Recent work (Song, Chen, & Yue, 2019) proposed a
general approach based on mutual information. Takeno, Fukuoka, Tsukada, Koyama, Shiga,
Takeuchi, and Karasuyama (2019) extended MES to multi-fidelity setting and showed its
effectiveness over MF-PES. MUMBO (Moss, Leslie, & Rayson, 2020) extended MES to the
continuous-fidelity and multi-task setting.

Multi-fidelity Multi-Objective Optimization. Prior work outside ML literature has
considered domain-specific methods that employ single-fidelity multi-objective approaches
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in the context of multi-fidelity setting by using the lower fidelities only as an initialization
(Kontogiannis, Demange, Kipouros, & et al., 2018; Ariyarit & et al., 2017). Specifically,
Ariyarit and et al. (2017) employs the single-fidelity algorithm based on expected hypervol-
ume improvement acquisition function and Kontogiannis et al. (2018) employs an algorithm
that is very similar to SMSego. Also, both these methods model all fidelities with the same
GP and assume that higher fidelity evaluation is a sum of lower-fidelity evaluation and off-
set error. These are strong assumptions and may not hold in general multi-fidelity settings
including the problems from our experimental evaluation. Our proposed MF-OSEMO (Be-
lakaria et al., 2020a) and iMOCA algorithms (generalized versions of MESMO (Belakaria
et al., 2019) solve MOO problem in discrete and continuous-fidelity settings respectively
using the principle of output space entropy search and leverage some technical ideas from
the prior work on single-objective optimization. We are not aware of any prior work on
generic discrete/continuous-fidelity algorithms for MOO problems in the BO literature.

4. MESMO Algorithm for the Basic MOO Problem

In this section, we address the most basic MOO problem in the single-fidelity setting,
where the goal is to optimize multiple black-box objective functions. To solve this prob-
lem, we propose an algorithm referred to as Maz-value Entropy Search for Multi-objective
Optimization (MESMO). In what follows, we first describe the problem setup and surro-
gate models. Next, we mathematically describe the output space entropy based acquisition
function and provide an algorithmic approach to efficiently compute it.

Problem Setup (Basic Multi-Objective Optimization Problem). The goal is to
maximize real-valued objective functions fi(x), fo(x),-- -, fx(x), with K > 2, over contin-
uous space X C R¢. Each evaluation (also called an experiment) of an input x € X produces
a vector of objective values y = (y1,92, -+ ,yx) where y; = fi(z) for all i € {1,2,--- , K}.
We say that an point x Pareto-dominates another point x’ if f;(x) > f;(x) Vi and there
exists some j € {1,2,---, K} such that fj(x) > f;(x’). The optimal solution of MOO
problem is a set of points X* C X such that no point x’ € X\ X* Pareto-dominates a point
x € X*. The solution set A* is called the optimal Pareto set and the corresponding set
of function values V* is called the optimal Pareto front. The goal of multi-objective BO is
to approximate X'* while minimizing the number of expensive function evaluations. In the
application of hardware design optimization, x € X is a candidate hardware design; evalu-
ation of of design x to get output objectives such as power, performance, and area involve
performing computationally-expensive simulation to mimic the real hardware; and our goal
is to find the optimal Pareto set of hardware designs to trade-off power, performance, and
area. Table 1 contains all the mathematical notations used in this section.

Surrogate Models. Gaussian processes (GPs) are shown to be effective surrogate models
in prior work on single and multi-objective BO (Hernéndez-Lobato et al., 2014; Wang,
Zhou, & Jegelka, 2016; Wang & Jegelka, 2017; Srinivas et al., 2009; Herndndez-Lobato
et al., 2016). Similar to prior work (Herndndez-Lobato et al., 2016), we model the objective

functions fi, fo, -, fx using K independent GP models GP1,GPs,--- ,GPx with zero
mean and i.i.d. observation noise. Let D = {(xi,yi)}f;} be the training data from past
t—1 function evaluations, where x; € X is an input and y; = {y}, 4, -,y } is the output
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vector resulting from evaluating functions f1, fo, -, fx at x;. We learn surrogate models
GP1,GP2, -+ ,GPk from D.

4.1 MESMO Algorithm

Output Space Entropy Based Acquisition Function. Input space entropy based
methods like PESMO (Herndndez-Lobato et al., 2016) selects the next candidate input
x; (for ease of notation, we drop the subscript in below discussion) by maximizing the
information gain about the optimal Pareto set X*. The acquisition function based on input
space entropy is given as follows:

a(x) =I({x,y},&" | D) (4.1)
= H(X" | D) - E,[H(X" | DU{x,y})] (4.2)
=H(y | D,x) —Ex-[H(y | D,x, X")]

Information gain is defined as the expected reduction in entropy H(.)® of the posterior
distribution P(X* | D) over the optimal Pareto set X'* as given in equations (4.2) and (4.3)
(resulting from symmetric property of information gain). This mathematical formulation
relies on an expensive and high-dimensional (I-d dimensions) distribution P(X* | D), where
[ is size of the optimal Pareto set X*. Furthermore, optimizing the second term in r.h.s
poses significant challenges: a) it requires a series of approximations (Herndndez-Lobato
et al., 2016) which can be potentially sub-optimal; and b) the optimization, even after
approximations, is expensive ¢) the performance is strongly dependent on the number of
Monte-Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition
function, we take an alternative route and propose to maximize the information gain about
the optimal Pareto front )*. This is equivalent to expected reduction in entropy over
the Pareto front V*, which relies on a computationally cheap and low-dimensional (I - K
dimensions, which is considerably less than [-d as K’ < d in practice) distribution P(Y* | D).
Our acquisition function that maximizes the information gain between the next candidate
input for evaluation x and Pareto front }* is given as:

a(x) = I({x,y},Y* | D) (4.4)
=HO" | D) -E,/[H(" | DU{x,y})] (4.5)
= H(y | D,x) = Ey-[H(y | D,x,Y")] (4.6)

The first term in the r.h.s of equation (4.6) (entropy of a factorizable K-dimensional
Gaussian distribution P(y | D, x)) can be computed in closed form as shown below:

K
K(1+In(2m
H(y | D.x) = TEEED) S0 ) (4.7
j=1
where o2(x) is the predictive variance of i** GP at input x. The second term in the r.h.s of

equation (4.6) is an expectation over the Pareto front Y*. We can approximately compute

5. The conditioning on D and x in H(y | D, x) is on fixed values and not random variables
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this term via Monte-Carlo sampling as shown below:

S
By [H(y | D, V")) = 5 S IH(y | D,x, 7)) (49)
s=1

where S is the number of samples and ) denote a sample Pareto front. The main advan-
tages of our acquisition function are: computational efficiency and robustness to the number
of samples. Our experiments demonstrate these advantages over input space entropy based
acquisition function.

There are two key algorithmic steps to compute equation (4.8). We want to know: 1)
how to compute Pareto front samples Vi?; and 2) and how to compute the entropy with
respect to a given Pareto front sample V7 We provide solutions for these two questions.

1) Computing Pareto Front Samples via Cheap Multi-Objective optimiza-
tion. To compute a Pareto front sample YV, we first sample functions from the posterior
GP models via random Fourier features (Herndndez-Lobato et al., 2014; Rahimi & Recht,
2008) and then solve a cheap multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work (Hernéndez-Lobato
et al., 2014, 2016; Wang & Jegelka, 2017), we employ random Fourier features based sam-
pling procedure. We approximate each GP prior as f = #(x)T0, where  ~ N(0,I). The
key idea behind random Fourier features is to construct each function sample f (x) as a
finitely parametrized approximation: ¢(x)7#, where 6 is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations:
0D ~ N(A71®Ty, o02A~1), where A = ®T® + 02T and &7 = [p(x1), -, d(x¢-1)]-

Cheap MO solver. We sample f; from GP model GP; for each of the K functions
as described above. A cheap multi-objective optimization problem over the K sampled
functions fi, fa,- -, f is solved to compute sample Pareto front Yi. This cheap multi-
objective optimization also allows us to capture the interactions between different objectives.
We employ the popular NSGA-II algorithm (Deb, Pratap, Agarwal, Meyarivan, & Fast,
2002a) to solve the MO problem with cheap objective functions noting that any other
algorithm can be used to similar effect.

2) Entropy Computation with a Sample Pareto Front. Let V¥ = {v!,.-- v/}
be the sample Pareto front, where [ is the size of the Pareto front and each v = {vi, cee v}(}
is a K-vector evaluated at the K sampled functions. The following inequality holds for each
component y; of the K-vector y = {y1,--- ,yx} in the entropy term H(y | D,x,Vr):

ngy;‘s Vied{l,---,K} (4.9)

where y; = max{fujl», x vé} The inequality essentially says that the j* component of y
(i.e., y;) is upper-bounded by a value obtained by taking the maximum of 4t components
of all [ K-vectors in the Pareto front YI. This inequality can be proven by a contradiction
argument. Suppose there exists some component y; of y such that y; > y;g. However, by
definition, y is a non-dominated point because no point dominates it in the jth dimension.
This results in y € Y, which is a contradiction. Therefore, our hypothesis that y; > y7 is
incorrect and inequality (4.9) holds.

By combining the inequality (4.9) and the fact that each function is modeled as a GP,
we can approximate each component y; as a truncated Gaussian distribution since the
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distribution of y; needs to satisfy y; < y7 . Furthermore, a common property of entropy
measure allows us to decompose the entropy of a set of independent variables into a sum
over entropies of individual variables (Cover & Thomas, 2012):

K
H(y | D.x.Y)) =) H(ylD.xyj) (4.10)
j=1
The r.h.s is a summation over entropies of K variables {y1,--- ,yx}. The probability

distribution of each variable y; is a truncated Gaussian with upper bound Yj, (Michalowicz,
Nichols, & Bucholtz, 2013). The differential entropy for each y; is given as:

() )+ (5 ) - ZHOIIE00)

H(y; | D,x,Y5) ~ :
(yg | 7X7ys) 2 2(1)(’}%()())

] (4.11)

equation (4.10) and equation (4.11) give the followong expression of H(y | D,x, V).

K . .
(1 +In(27)) : 75 ()73 (%))
H(y [ D,x,V5) = ) |5 +In(0j(x)) + I ®(}(x)) - ————-=| (4.12)
2| 20 (x)
where fyg(a:) = yjs(;iéz)(x), and ¢ and ® are the p.d.f and c.d.f of a standard normal

distribution respectively. By combining equations (4.7) and (4.12) with equation (4.6), we
get the final form of our acquisition function as shown below:

A complete description of the MESMO algorithm is given in Algorithm 1. The blue colored
steps correspond to computation of our output space entropy based acquisition function.

A(®)p(+(x))
O (1 (x))

— In®(»] (X))] (4.13)

5. MESMOC Algorithm for MOO Problem with Constraints

In this section, we address the MOO problem with constraints, where the goal is to optimize
multiple real-valued objective functions while satisfying several black-box constraints over
continuous space. To solve this problem, we propose an algorithm referred to as Maz-value
Entropy Search for Multi-objective Optimization with Constraints (MESMOC). In what
follows, we explain the technical details and acquisition function derivation.

Problem Setup (MOO Problem with Constraints). This is a generalization of the
basic MOO problem, where we need to satisfy some black-box constraints. Our goal is
to maximize real-valued objective functions fi(x), fa(x), -+, fx(x), with K > 2, while
satisfying L black-box constraints of the form Ci(z) > 0,Cs(z) > 0,---,Cr(z) > 0 over
continuous space X C R?. Each evaluation of an input x € ¥ produces a vector of objective
values and constraint values y = (yr,,¥Uf,, "+ »UfxsYer = Yer) Where yp = fj(x) for all
je{1,2,--- K} and y.,, = Ci(z) for all i € {1,2,---,L}.We say that a valid input x
(satisfies all constraints) Pareto-dominates another input x’ if f;(x) > f;(x’) V5 and there
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Algorithm 1 MESMO Algorithm
Input: input space X; K blackbox objective functions fi(x), fo(x),- -, fx(x); and maxi-
mum no. of iterations Tp,qz

1: Initialize Gaussian process models GP1,- - ,GPk by evaluating at Ny initial points
2: for each iteration ¢t = Ny + 1 to Tje: do
3:  Select x; <— argmazxex ot(x), where ay(.) is computed as:

for each sample s € 1, -+ ,S:
Sample f; ~GP;, Vje{l,--- K} _ N
V¥ < Pareto front of cheap multi-objective optimization over (f1,--- , fx)

Compute a4(.) based on the S samples of V7 as given in equation (4.13)
Evaluate x¢: y; « (fi(x¢), -+, fr(x¢))
Aggregate data: D < DU {(x¢,y¢)}
10:  Update models GP1,GPs, -+ ,GPk
11: t+t+1
12: end for
13: return Pareto front of fi(x), fa(z), -, fx(z) based on D

exists some j € {1,2,---, K} such that fj(x) > f;j(x’). The goal of multi-objective BO
with constraints is to approximate the Pareto set over valid inputs A* while minimizing the
number of expensive function evaluations. For example, in electric aviation power system
design applications, we need to find the designs that trade-off total energy and the mass
while satisfying specific thresholds for motor temperature and voltage of cells. Table 1
contains all the mathematical notations used in this section.

Surrogate Models. Similar to section 4, we model the objective functions and black-box
constraints by independent GP models GP¢ ,GPy,, -+ ,GPs, and GP¢,,GPcy, - ,GP
with zero mean and i.i.d. observation noise. Let D = {(x;,y;)}\_] be the training data from
past t—1 function evaluations, where x; € X is an input and y; = {yj}l, ‘e ,yjcK, yfn, e yéL}
is the output vector resulting from evaluating the objective functions and constraints at x;.
We learn surrogate models from D.

5.1 MESMOC Algorithm

Output Space Entropy Based Acquisition Function. To overcome the challenges of
computing input space entropy based acquisition function, MESMO (Belakaria et al., 2019)
proposed to maximize the information gain about the optimal Pareto front. However,
MESMO did not address the challenge of constrained Pareto front. We propose an exten-
sion of MESMO’s acquisition function to maximize the information gain between the next
candidate input for evaluation x and constrained Pareto front )* given as:

a(x) :I({X7y}7y* ’ D) :H(y ‘ D,X) —Ey*[H(y ’ D,X,y*)] (51)

In this case, the output vector y is K + L dimensional: y = (yf,,Yfor > YfssYer = Yer)
where yr, = fj(x) for all j € {1,2,---,K} and y., = Cy(z) for all i € {1,2,---,L}.
Consequently, the first term in the r.h.s of equation (5.1), entropy of a factorizable (K + L)-
dimensional Gaussian distribution P(y | D,x, can be computed in closed form as shown
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Figure 2: Overview of the MESMO algorithm for two objective functions (K=2). We build
statistical models GP1, GP, for the two objective functions fi(z) and fa(x) re-
spectively. First, we sample functions from the statistical models. We compute
sample pareto fronts by solving a cheap MO problem over the sampled functions.
Second, we select the best candidate input x; that maximizes the information
gain. Finally, we evaluate the functions for x; to get (y1,y2) and update the
statistical models using the new training example.

below:

L

K
(K + C)(12+ ln(QW)) + Z ln(O'fj (X)) + Z ln(GCi (X))
= i=1

H(y | D,x) = (5.2)

where a]%j (x) and o2 (x) are the predictive variances of j function and " constraint GPs
respectively at input x.

The Lh.s of equation (5.1) can be decomposed in a similar way to equation (4.8). There
are two key algorithmic steps to compute this part of the equation: 1) The first is how to
compute Pareto front samples V*?7; and 2) The second is how to compute the entropy with
respect to a given Pareto front sample V;? We provide solutions for these two questions
below.
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1) Computing Pareto Front Samples via Cheap Multi-Objective Opti-
mization. To compute a Pareto front sample V¥, we first sample functions and constraints
from the posterior GP models via random Fourier features (Hernandez-Lobato et al., 2014;
Rahimi & Recht, 2008) and then solve a cheap constrained multi-objective optimization
over the K sampled functions and L sampled constraints.

Cheap MO solver. We sample f; from GP model GPy, for each of the K func-

tions and C; from GP model GPe, for each of the L constraints. A cheap constrained
multi-objective optimization problern over the K sampled functions fl, fg, -+, fr and the
L sampled constraints Cy,Cy, - ,Cy, is solved to compute the sample Pareto front V.
We employ the popular constrained NSGA-II algorithm (Deb et al., 2002a; Deb, Pratap,
Agarwal, & Meyarivan, 2002b) to solve the constrained MO problem with cheap sampled
objective functions and constrained.

2) Entropy Computation with a Sample Pareto Front. Let V¥ = {v!,.-- v}
be the sample Pareto front, where [ is the size of the Pareto front and each v* is a
(K + L)- vector evaluated at the K sampled functions and L sampled constraints v' =
{vfl, e va, EAPEE CL} The following inequality holds for each component y; of the
(K + L)-vector y = {y»** »YfxsYers - Yer } in the entropy term H(y | D,x, V?):

ngmax{vjl,‘--vé} vje{fla"'7fKaclv'”7cL} (53)

The inequality essentially says that the j* component of y (i.e., y;) is upper-bounded
by a value obtained by taking the maximum of j** components of all I (K + L)-vectors
in the Pareto front YI. This inequality had been proven by a contradiction for MESMO
(Belakaria et al., 2019) for j € {f1, -+, fK}. We assume the same for j € {¢1, -+ ,cp}.

By combining the inequality (5.3) and the fact that each function is modeled as an inde-
pendent GP, we can approximate each component y; as a truncated Gaussian distribution

l

since the distribution of yj needs to satisfy y; < max{v1 e l} Let y&* = max{v,,,---v. }

and y)’" = = max{v} £ -t 5 }. Furthermore, a common property of entropy measure allows
us to decompose the entropy of a set of independent variables into a sum over entropies of
individual variables (Cover & Thomas, 2012):

K C
H(y | D,x,Y}) =Y Hy,|D.x,y7") + > H(ye,|D.x,y5) (5.4)
j=1 i=1
The r.h.s is a summation over entropies of (K + L)-variables y = {yf,, -, Ytx:Yer> Yoy }-

The differential entropy for each y; is the entropy of a truncated Gaussian distribution
(Michalowicz et al., 2013) and given by the following equations:

+In(oy,(x)) + (77 (x))

Hyy |D,x,yl") ~
. 2 20(+v7" (x))

(1 + In(2)) ey 20 )S0E (x ))] 55)

(1+ In(27))
2

HO D %) = | FIn(oa () + @ () - ZEIEEEI) (s
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Consequently we have:

K fi J
1y 1D,%0) = 3 [P 45y (00) 4 (e () - 2200008 (X”]
2 20+ (x)
“ [(1+1n(2 ¢ ci
3 [ o, 00) + g ) - ERReE ]
=1 s
cix £
where ~Si(z) = %027‘&)(), 'ysfj( ) = %Wiﬁ(ﬁ)fg()’ ¢ and ® are the p.d.f and c.d.f of a

standard normal distribution respectively. By combining equations (5.2) and (5.7) with
equation (5.1), we get the final form of our acquisition function as shown below:

K

o LS (S 0 ) SALCILIGHICY) NI
=SS et MO Z S

A complete description of the MESMOC algorithm is given in Algorithm 2.

Algorithm 2 MESMOC Algorithm
Input: input space X; K blackbox functions fi(z), fao(z), -, fx(x); L blackbox constraints
Ci(z),Ca(x),- - ,Cr(x); and maximum no. of iterations Tz

1: Initialize Gaussian process models GPy, ,GPy,, -+ ,GPs. and GP.,,GP,, - ,GP., by

evaluating at Ny initial points
2: for each iteration t = Ny + 1 to T}, do
3:  Select xy < argmazxex ay(X)
s.t (Mcl > Oa' “t oy Hey, > 0)

4:  oy(.) is computed as:
5: for each sample s € 1,---,8S:
6: Sample fj ~GPy, Vje{l,--- K}
7: Sample C; ~ GP.,, Vi€ {l,--- L}
8: // Solve cheap MOO over (fl, -, fx) constrained by (Cy,---,Cr)
9: Vs« argmargex(fi,-, fx)
s.t (Cl ZO,-" ,CL 20)
10: Compute a4(.) based on the S samples of V7 as given in equation (5.8)

11:  Evaluate x¢; yt <= (fi(xe), -, fx(xt), C1(xt), - -+, CL(%t))

12:  Aggregate data: D <+ DU {(x¢,y:)}

13:  Update models GPy,,GPy,, - ,GPy, and GP. ,GPcy, -+ ,GP.,
14: t—t+1

15: end for

16: return Pareto front of fi(x), fa(z), -, fx(z) based on D
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6. MF-OSEMO Algorithm for Discrete Multi-Fidelity M OO Problem

In this section, we address the multi-fidelity version of MOQO problem, where we have
access to multiple fidelities for each function that vary in the amount of resources consumed
and the accuracy of evaluation. To solve this problem, we propose an algorithm referred
to as Multi-Fidelity Output Space Entropy Search for Multi-objective Optimization (MF-
OSEMO). We first describe the complete details related to the multi-fidelity MOO problem.
Subsequently, we explain our proposed MF-OSEMO algorithm with two mathematically
different approximations of the output space entropy based acquisition function.

Problem Setup (Discrete Multi-Fidelity MOO Problem). This is a general version
of the MOO problem, where we have access to M; fidelities for each function f; that vary
in the amount of resources consumed and the accuracy of evaluation. The evaluation of an
input x € X with fidelity vector m = [my, ma,- -+ ,mg] produces an evaluation vector of K

values denoted by y™ = [ygml), e ,y%nK)], where yj(.mj) = f](mj)(ac) forallj € {1,2,---,K}.

Let )\g-mj ) be the cost of evaluating " function f; at m; € [M;] fidelity, where m;=M,;
corresponds to the highest fidelity for f;. Our goal is to approximate the optimal Pareto
set X" over the highest fidelities functions while minimizing the overall cost of function
evaluations (experiments). For example, in power system design optimization, we need to
find designs that trade-off cost, size, efficiency, and thermal tolerance using multi-fidelity
simulators for design evaluations. Table 2 contains all the mathematical notations used in
this section (MF-OSEMO).

Cost of Function Evaluations. The total normalized evaluation cost is

Am) = ZJKZ 1 ()\gmj) /AgMj)>. We normalize the total cost since the cost units can be

different for different objectives (e.g. cost unit for f; is computation time while cost unit
for fo could be memory space size). If the cost is known, it can be directly injected in the
latter expression. However, in some real world settings, the cost of a function evaluation
can be only known after the function evaluation. For example, in hyper-parameter tuning
of a neural network, the cost of the experiment is defined by the training and inference time.
However, we cannot know the exact needed time until after the experiment is finalised. In
this case, the cost can be modeled by an independent Gaussian process. The predictive
mean can be used during the optimization. Our goal is to approximate X'* by minimizing
the overall cost of function evaluations.

Multi-Fidelity Gaussian Process Model. Let D = {(x;, ygm))}';;% be the training data

from past t—1 function evaluations, where x; € X is an input and ygm) = [y%ml), S ,y%nK )]
is the output vector resulting from evaluating functions fl(ml), fg(mQ)7 cee I((m’“) at x;. Gaus-

sian processes (GPs) are known to be effective surrogate models in prior work on single and
multi-objective BO (Srinivas et al., 2009; Hernandez-Lobato et al., 2016). We learn K sur-
rogate models GP1,GPa, - ,GPk from D, where each GP; corresponds to the jth function
fj- In our setting, each function has multiple fidelities. So one ideal property desired for the
surrogate model of a single function is to take into account all the fidelities in a single model.
Multi-fidelity GPs (MF-GP) are capable of modeling functions with multiple fidelities in a
single model. Hence, each of our surrogate model GP; is a multi-fidelity GP.
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‘ Notation ‘ Definition
fl(ml), féml)7 e I((mK) functions the m; fidelity of the true objective functions
f jm]) function sampled from jth Gaussian process model at m; th fidelity
My, My, -+, Mg no. of fidelities for each function
m = [my, My, ,m K| fidelity vector where each fidelity m; € [M;]
y;’ jth function f; evaluated at m;th fidelity where m; € [Mj]]
y™ output vector equivalent to [y%ml), e ,y};nK)]
/\;mj ) cost of evaluating jth function f; at m;th fidelity
. _ K (my) /4 (M)
A(m) total normalized cost A\(™) = ijl ()\j ’ /)\j ! )
y* true pareto front of the objective functions [f1, f2, -, fx| (the highest fidelities )
Vi Pareto front of the sampled highest fidelities [f1, fa2,- - , fK]

Table 2: Table describing additional mathematical notations used in this section (MF-
OSEMO).

Specifically, we use the MF-GP model as proposed in Kennedy and O’Hagan (2000),
Takeno et al. (2019). We describe the complete details of the MF-GP model below for
the sake of completeness. One key thing to note about MF-GP model is that the kernel
function (k((x3,m;), (x3,m;))) is dependent on both the input and the fidelity. For a given
input x, the MF-GP model returns a vector (one for each fidelity) of predictive mean, a
vector of predictive variance, and a matrix of predictive covariance. The MF-GP model
has two advantages. The first is that all fidelities are integrated into one single GP. The
second is that difference among fidelities are adaptively estimated without any additional
feature representation for fidelities. It should be noted that we employ an independent
multi-fidelity GP for each function.

We describe full details of a MF-GP model for one objective function f; (without loss of
generality) below:

Let yj(.l)(x), .. ,yj(-Mj )(x) represent the values obtained by evaluating the function f; at
its 1st, 2nd, ..., M;th fidelity respectively. In a MF-GP model, each fidelity is represented
by a Gaussian process and the observation is modeled as

W) = [ ) e en (0,02 ).

Let fj(l) ~ GP(0,k1(x,x")) be a Gaussian process for the Ist fidelity i.e. m; = 1, where

k1 : RYx R4 — R is a suitable kernel. The output for successively fidelities m; =2,..., M,
is recursively defined as

1) = 1770 + £ (), (6.1)
(mj—l)

where, f; ~ GP(0, ke(x,x)) with ke : R x R? — R. It is assumed that f](emj_l) is
conditionally independent from all fidelities lower than m;. As a result, the kernel for a
pair of points evaluated at the same fidelity becomes:

ko, (%,%) = k1(x, %) 4+ (mj — 1)k(x,%') (6.2)
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and as a result, the output for m;th fidelity is also modeled as a Gaussian process:
f](mj) ~ GP(Oa km]‘ (X7 X,))'

The kernel function for a pair of inputs evaluated at different fidelities m; and m; 18:

B(x,my), (s m) = cov (f}””)(x), f}m”<x’>) — o, (3, )

where m; < m’; and cov represents covariance. Using a kernel matrix K € R™ ™ in

J
which the p, ¢ element is defined by k((x,m?), (x’,m?)), all fidelities f;l), ey f;Mj) can be
integrated into one common Gaussian process by which predictive mean and variance are
obtained as

p")() = K+ oI (6:3)
U2<mj>(x) = k((x,m]'), (vaj)) - kT(Lm])( )TK +o n01se lkglmj)(x)’ (64)
where k(mj)(x) = (k((x,mj), (x1,m5,)), ..., k((x,m;), (Xmmjn)))T and
Y = (y, (myy ) (x1), . (mJ")(xn)) We also define 02( )(x) as the predictive covariance
between (x,m;) an ( m);), i.e., covariance for identical x at different fidelities:
025 (50) = I, my), (s ) = K0 TK + 02 IR (). (65)

6.1 MF-OSEMO Algorithm with Two Approximations

We describe our proposed acquisition function for the multi-fidelity MOO problem setting.
We leverage the information-theoretic principle of output space information gain to develop
an efficient and robust acquisition function. This method is applicable for the general case,
where at each iteration, the objective functions can be evaluated at different fidelities.

The key idea behind the proposed acquisition function is to find the pair {x,m} that
maximizes the information gain about the Pareto front of the highest fidelities (de-
noted by Y*) per unit cost, where {x, m} represents a candidate input x evaluated at a
vector of fidelities m = [my,mo, -+ ,mg]. This idea can be expressed mathematically as
given below:

a(x,m) = I({x,y™},y* | D)/ (6.6)

where A(™) is the total normalized cost of evaluating the objective functions at m and D
is the data collected so far. Figure 3 provides an overview of the MF-OSEMO algorithm.
The information gain in equation (6.6) is defined as the expected reduction in entropy H (.)
of the posterior distribution P(Y* | D) as a result of evaluating x at fidelity vector m:

I({x,y™},¥* | D) = H(Y* | D) = Eye [H(Y" | DU {x,y"™})] (6.7)
= H(y™ | D,x) = Ey:[H(y™ | D,x,}")] (6.8)
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Figure 3: Overview of the MF-OSEMO algorithm for two objective functions (K=2). We
build multi-fidelity statistical models MFGP,, MFGPs for the two objective
functions fi(x) and fa(z) with M; and M fildelities respectively. First, we
sample highest fidelity functions from the statistical models. We compute sample
pareto fronts by solving a cheap MO problem over the sampled functions. Second,
we select the best candidate input z; and fidelity vector m; = (mj,mgy) that
maximizes the information gain per unit cost . Finally, we evaluate the functions
for x4 at fidelities m; to get (y£m1)7 y£m2)) and update the statistical models using
the new training example.

equation (6.8) follows from equation (6.7) as a result of the symmetric property of infor-
mation gain. The first term in the r.h.s of equation (6.8) is the entropy of a factorizable
K-dimensional Gaussian distribution P(y™) | D, x)) which can be computed in closed form
as shown below:

K
=1

where O'J(-mj ) (x) is the predictive variance of j** surrogate model GP; at input x and fidelity

mj. The second term in the r.h.s of equation (6.8) is an expectation over the Pareto front
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of the highest fidelities J*. We can approximately compute this term via Monte-Carlo
sampling as shown below:

S
1
By [H(y®™ | D%, Y)) = < 3_[H(y™ | D, V) (6.10)
s=1

where S is the number of samples and ); denote a sample Pareto front obtained over
the highest fidelity functions sample from K surrogate models. The main advantages of
our acquisition function are: cost efficiency, computational-efficiency, and robustness to the
number of samples. Our experiments demonstrate these advantages over state-of-the-art
single fidelity AFs for multi-objective optimization.

There are two key algorithmic steps to compute equation (6.10). The first is computing
Pareto front samples );; and the second is computing the entropy with respect to a given
Pareto front sample VI. We provide solutions for these two steps below.

1) Computing Pareto Front Samples via Cheap Multi-Objective optimiza-
tion. To compute a Pareto front sample V;, we first sample highest fidelity functions from
the posterior MF-GP models via random Fourier features (Herndndez-Lobato et al., 2014;
Rahimi & Recht, 2008) and then solve a cheap multi-objective optimization over the K
sampled high fidelity functions. It is important to note that we are sampling only the
highest fidelity function from each MF-GP surrogate model.

Sampling functions from the posterior of MF-GP model. Similar to prior work
(Herndndez-Lobato et al., 2014, 2016; Wang & Jegelka, 2017), we employ random Fourier
features based sampling procedure. We approximate each GP prior of the highest fidelity
as fM) = ¢(x)T0, where § ~ N(0,I). The key idea behind random Fourier features
is to construct each function sample fO) (x) as a finitely parametrized approximation:
qﬁ(x)Tﬁ, where 6 is sampled from its corresponding posterior distribution conditioned on
the data D obtained from past function evaluations: §|D ~ N(A~1®Ty  c2A~1), where
A =3T® + 0% and & = [p(x1), -+, d(xt-1)].

Cheap MO solver. We sample fi(Mi) from each surrogate model MF — GP; as de-
scribed above. A cheap multi-objective optimization problem over the K sampled functions
fl(Ml), f2(M2), . }((MK ) is solved to compute the sample Pareto front Y*. This cheap multi-
objective optimization also allows us to capture the interactions between different objectives.
We employ the popular NSGA-IT algorithm (Deb et al., 2002a) to solve the MO problem
with cheap objective functions noting that any other algorithm can be used.

2) Entropy Computation with a Sample Pareto Front. Let Y = {v!,--- v/}
be the sample Pareto front, where [ is the size of the Pareto front and each v = {vi,--- | v}
is a K-vector evaluated at the K sampled high fidelity functions. The following inequality

holds for each component yﬁmj ) of the K-vector y™ = {yiml)a e ,yﬁ’("k)} in the entropy
term H(y™ | D,x, V¥):
where yjs = max{vjl-, e vé} The inequality essentially says that the j** component of y™

(i.e., y}nj ) is upper-bounded by a value obtained by taking the maximum of j** components
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of all [ vectors {v!,---,v!} in the Pareto front Y. The proof of 6.11 can be divided into
two cases:
Case I. If y; is evaluated at its highest fidelity (i.e m; = Mj), inequality (6.11) can be

proven by a contradiction argument. Suppose there exists some component yj(-Mj ) of y M)

such that yj(Mj ) > y;,. However, by definition, y™) is a non-dominated point because no

point dominates it in the jth dimension. This results in y®™) e V¥ which is a contradiction.
Therefore, our hypothesis that y](-Mj N y;, is incorrect and inequality (6.11) holds.

Case II. If y; is evaluated at one of its lower fidelities (i.e, m; # M), the proof
follows from the assumption that the value of lower fidelity of a objective is usually smaller
than the corresponding higher fidelity, i.e., y](-mj ) < ij') < y;,. This is especially true
for most real-world experiments. For example, in optimizing a neural network’s accuracy
with respect to its hyperparameters, a commonly employed fidelity is the number of data
samples used for training. It is reasonable to believe that the accuracy is always higher
for the higher fidelity (more data samples to train on) when compared to a lower fidelity
(less data samples). By combining the inequality (6.11) and the fact that each function
is modeled as an independent MF-GP, a common property of entropy measure allows us
to decompose the entropy of a set of independent variables into a sum over entropies of

individual variables (Cover & Thomas, 2012):

K

H(y™ | D,x,¥5) =3 H@\"™|D,x,y3) (6.12)
j=1

The computation of equation (6.12) requires the computation of the entropy of p(yj(.mj ) |D, x, y}‘s).
This is a conditional distribution that depends on the value of m; and can be expressed as

H (y](-mj )\D, X, yj(.mj ) <y;j,). This entropy is dealt with in two cases.
First, for mj = Mj, the density function of this probability is approximated by trun-
cated Gaussian distribution and its entropy can be expressed as (Michalowicz et al., 2013):

: . 1+ In(2 . :
A",y < ) T 1600 ) 4 @ (o) )
M; M;
2 )s(0n" ()
h (6.13)
20(ys 7' (x))
M * (.Mj)(x)
where fyg J)(x) — W/J%)(), and ¢ and @ are the p.d.f and c.d.f of a standard normal
O'j X

distribution respectively.
Second, for m; # Mj, the density function of p(yj(-mj ) |D, x, y;‘-s) can be computed using

two different approximations as described below.

Approximation 1 (MF-OSEMO-TG): As a consequence of Case II, which states that

y](-mj ) < y;, also holds for all lower fidelities, the entropy of p(yj(.mj )]D,x,yjs) can also be
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approximated by the entropy of a truncated Gaussian distribution and expressed as follow:

m; m; 1+1n(2

< yf) =+ (o] () + I @ (1™ ()

J

1" (%) (14" (x))
23(11™ (x))

(6.14)

(mj)
i - ujj()

7 (x)

where 7™ (x) =

Approximation 2 (MF-OSEMO-NI): Although equation (6.14) is sufficient for com-
puting the entropy for m; # Mj, it can be improved by conditioning on a tighter inequality
yj(-Mj ) < y;, as compared to the general one, i.e., y](-mj ) < y;,. As we show below, this im-
provement comes at the expense of not obtaining a final closed-form expression, but it can
be efficiently computed via numerical integration. We apply the derivation of the entropy
based on numerical integration for single-objective problem, proposed in (Takeno et al.,
2019), for the multi-objective setting.

Now, for calculating H (y (mj)\D b yj(mj) <yj,) by replacing p( |D X y(m’) < yj,) with

( |D X, Y, M;) <y;.) and using Bayes’ theorem, we have:
(M) (m;)
m; iy oo e <y ™ DXy, D, x)
Py D%,y <y ) = = J) o (6.15)
p(yj < ij|D,x)

Both the densities, p( (M) <y |D,x) and p(y](-mj ), D, x) can be obtained from the predic-

tive distribution of MF GP model and is given as follows:

(my)

Py, D.x) = W (6.16)
o, J

(™ <y 1D,x) = 2 (x)) (6.17)

(mj)  (my)
" " (x)

where 7](-mj )(x) = -4 . Since MF-GP represents all fidelities as one unified Gaus-

((J)(

sian process, the joint marginal distribution p(y; 7/, jmj )|D,x) can be immediately ob-

tained from the posterior distribution of the corresponding model GP; as given below:

(m
.

i)
J
i

x)

M. .
Py 1y %, D) ~ N (p5(x), () (6.18)
Uz(ijj) (mj) _ m; " g(ijj) 2
where p(x) = - (x)(y,] £ 0 and s3(x) = O'Z-(MJ)(X) - u As a result,
J 5(mj) J J 5(mj)
o3 (x) o5 (%)
p(y]( i) < yj ]y] ,D,x) is expressed as the cumulative distribution of the Gaussian in
(6.18):
M, Yy, — (%)
Py <y ly ™, Dox) = o(FE— ) (6.19)

s;(x)
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Algorithm 3 MF-OSEMO Algorithm
Input: input space X; K blackbox objective functions where each function f; has multiple fidelities M;

(0G0, M0 ), A2 ()} )5 and total budget Arorar

1: Initialize multi-fidelity Gaussian process models GP1,--- ,GPk by evaluating at initial points D
2: While \; < M\jota; do

3 for each sample s € 1,--- | S:

4 Sample highest- ﬁdehty funct1ons f<M RN GpP;, Vie{l,--- K}

5: Vi «+ Pareto front of cheap multi-objective optimization over (fl(Ml), e ,fﬁ(Mm)

6:  Find the next point to evaluate: select (X¢, m¢) < argmaxxecx,m ox(x, m,Y")

7 Update the total cost consumed: A; < Ay + A(™¢)

8:  Aggregate data: D+ DU {(x¢,y:")}

9:  Update models GP1,- - ,GPg

10 t<+t+1

11: end while

12: return Pareto front and Pareto set of fi(x),---, fx(x) based on D

13: Procedure o (x, m,)5)

14: // Computes information gain (I) about the posterior of true Pareto front (J*) per unit cost as a result
of evaluating x

15: // 1= Hy - Ha; where H; = Entropy of y™) conditioned on D and x

// and H, = Expected entropy of y™ conditioned on D, x and (@%)
16: Set Hi = H(y™ | D,x) = K(1+ In(21))/2 + X%  In(0{""(x)) (entropy of K-factorizable Gaussian)
17: To compute H2 ~ 3 Lys Z m])|D X,y;,), initialize Hy = 0

18: for each sample Y do
19: forjel---K do

20: Set y;, = maximum of jth component of all vectors in Y
21: If mj = M; //if evaluating jth function at highest fidelity
22: Hy += H(yj(.]VIj)|D,x (M) < yj,) (entropy of truncated Gaussian p(y; (M J)|D X, (M ) <yi))
23: If my #M; //if evaluatmg jth function at lower fidelity
24: // two approximations are provided
25: If approximation = TG
26: Hy += H( J>|D X y(m’> < y;,) (entropy of truncated Gaussian
(m
p(ys™|D, x, y, ’)<yjs))
27: If approximation = NI
28: Hy += H(y, (m J)|D, ,y](M 7 < yj,) (entropy computed via numerical integration)
29: end for
30: end for

31: Divide by number of samples: Hy = H2/S
32: return (H; — Hy)/A(™

By substituting (6.16), (6.17), and 6.19 into (6.15) we get:

m; M ; %
0" 1D o™ < y5) = = [ 0™ g™ )ay ™) (6.20)
(my) y =i (), (35" ()62 (%))
With ¥(y; ") = &( T (; )— e . Since this integral is over one-dimension

j
variable yj(.mj ), numerical integration can result in a tight approximation.
A complete description of the MF-OSEMO algorithm is given in Algorithm 3. The blue

colored steps correspond to computation of our acquisition function via sampling.
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7. iMOCA Algorithm for Continuous-Fidelity MOO Problem

In this section, we address the continuous-fidelity MOO problem, we have access to al-
ternative functions through which we can evaluate cheaper approximations of objective
functions by varying a continuous fidelity variable. To solve this problem, we propose
an algorithm referred to as information- Theoretic Multi- Objective Bayesian Optimization
with Continuous Approzimations (iIMOCA). We first describe the complete details related
to the continuous-fidelity MOO problem. Subsequently, we explain our proposed iMOCA
algorithm with two mathematically different approximations of the output space entropy
based acquisition function.

Problem Setup (Continuous-Fidelity MOO Problem). The continuous-fidelity MOO
problem is the general version of the discrete multi-fidelity setting where we have access
to gi(x,z;) where g; is an alternative function through which we can evaluate cheaper
approximations of f; by varying the fidelity variable z; € Z (continuous function approx-
imations). Without loss of generality, let Z=[0,1] be the fidelity space. Fidelities for
each function f; vary in the amount of resources consumed and the accuracy of eval-
uation, where z;=0 and z;=1 refer to the lowest and highest fidelity respectively. At
the highest fidelity =7, gi(x,2}) = fi(x). The evaluation of an input x € X with fi-
delity vector z = [z1, 292, -, 2K] produces an evaluation vector of K values denoted by
y = [y1,92, - ,yk], where y; = gi(x, %) for all i € {1,2,--- | K}. Let C;(x,z;) be the
cost of evaluating g;(x, z;). Our goal is to approximate the optimal Pareto set X* over the
highest fidelities functions while minimizing the overall cost of function evaluations (exper-
iments). For example, in rocket launching research, we need to find designs that trade-off
return-time and angular distance using continuous-fidelity simulators (e.g., varying toler-
ance parameter to trade-off simulation time and accuracy) for design evaluations. Table 3
contains all the mathematical notations used in this section (iIMOCA).

Cost of Function Evaluations. The total normalized cost of function evaluation is
C(x,z) = Zfil (Ci(x,2)/Ci(x,2])). We normalize the cost of each function by the cost of
its highest fidelity because the cost units of different objectives can be different. If the cost
is known, it can be directly injected in the latter expression. However, in some real-world
settings, the cost of a function evaluation can be only known after the function evaluation.
In this case, the cost can be modeled by an independent Gaussian process. The predictive
mean can be used during the optimization. The final goal is to recover X'* while minimizing
the total cost of function evaluations.

Continuous-Fidelity GPs as Surrogate Models. Let D = {(x;,y;,2;)}\_] be the
training data from past ¢-1 function evaluations, where x; € X is an input and y; =
[y1,Y2, - ,yK] is the output vector resulting from evaluating functions g1, g2, - ,gx for
x; at fidelities z1, 29, - - , zKx respectively. We learn from D, K surrogate statistical models
GP1,--- ,GPk, where each model GP; corresponds to the jth function g;. Continuous
fidelity GPs (CF-GPs) are capable of modeling functions with continuous fidelities within
a single model. Hence, we employ CF-GPs to build surrogate statistical models for each
function. Specifically, we use the CF-GP model proposed in (Kandasamy et al., 2017).
W.l.o.g, we assume that our functions g; are defined over the spaces X = [0, 1]9 and Z =
[0,1]. Let g; ~ GP;(0,k;) such that y; = g;(2;,%x) + €, where ¢ ~ N(0,7?) and & :
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(Z x X)? — R is the prior covariance matrix defined on the product of input and fidelity
spaces.

rj([z5 %], 25, X) = mja (%, %) - 12 (25, 7))

where kjx, kjz are radial kernels over X' and Z spaces respectively. Z controls the smooth-
ness of g; over the fidelity space to be able to share information across different fidelities.
A key advantage of this model is that it integrates all fidelities into one single GP for infor-
mation sharing. We denote the posterior mean and standard deviation of g; conditioned on
D by pg, (%, z;) and 0, (x, 2;). We denote the posterior mean and standard deviation of the
highest fidelity functions f;(x) = g;(x,2]) by uy,(z) = pg;(x,25) and oy, (x) = 0g,(x, 2})
respectively. We define 03_7 fj(:c) as the predictive co-variance between a lower fidelity z;

and the highest fidelity 2} at the same x.

‘ Notation Definition
91,92, L 9K General objective functions with low and high fidelities
J; Function sampled from the jth Gaussian process model at fidelity z;
21,29, 5 ZK The fidelity variables for each function
z Fidelities vector
z¥ = [2],25, -, 2] Fidelities vector with all fidelities at their highest value
Yj jth function g; evaluated at fidelity z;
y = [y, 92, , K] Output vector resulting from evaluating g1, g2, -+ , 9K
for x; at fidelities 21, 22, - - - , 2K respectively
f=1[f1,fo, , fK] Output vector resulting from evaluating functions fi, fo, -, fx
or equivalently g1, g2, -+ , gk for x; at fidelities 27,23, -- , 2} respectively
C;(x, zj) Cost of evaluating jth function g; at fidelity z;
C(x,2z) Total normalized cost C(x,2z) = Zfil (Ci(x, 2)/Ci(x, )
Z Fidelity space
Zt(j ) Reduced fidelity space for function g; at iteration ¢
Z, Reduced fidelity space
£ Information gap
t(j ) Exploration/exploitation parameter for function g; at iteration ¢

Table 3: Mathematical notations and their associated definition used in this section

(iMOCA)

7.1 iMOCA Algorithm with Two Approximations

We first describe the key idea behind our proposed iMOCA algorithm including the main
challenges. Next, we present our algorithmic solution to address those challenges.

Key Idea of iMOCA: The acquisition function behind iMOCA employs principle of
output space entropy search to select the sequence of input and fidelity-vector (one for
each objective) pairs. iIMOCA is applicable for solving MO problems in both continuous
and discrete fidelity settings. The key idea is to find the pair {x;,z;} that mazimizes the
information gain I per unit cost about the Pareto front of the highest fidelities (denoted by
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V*), where {x;,z;} represents a candidate input x; evaluated at a vector of fidelities z; =
[21, 29, , zK]| at iteration t. Importantly, IMOCA performs joint search over input space
X and reduced fidelity space Z,. over fidelity vectors for this selection.

(Xta Zt) < arg Mmarxcx zcz, Oét(X, Z) ) where Oét(X, Z) = I({X’ Y, Z}a y*|D)/C(X7 Z) (71)

In the following sections, we describe the details and steps of our proposed algorithm
iMOCA. We start by explaining the bottlenecks of continuous fidelity optimization due
to the infinite size of the fidelity space followed by describing a principled approach to
reduce the fidelity space. Subsequently, we present the computational steps of our pro-
posed acquisition function: Information gain per unit cost for each candidate input and
fidelity-vector pair.

7.1.1 APPROACH TO REDUCE FIDELITY SEARCH SPACE

In this work, we focus primarily on MO problems with continuous fidelity space. The
continuity of this space results in infinite number of fidelity choices. Thus, selecting an
informative and meaningful fidelity becomes a major bottleneck. Therefore, we reduce
the search space over fidelity-vector variables in a principled manner guided by the learned
statistical models (Kandasamy et al., 2017). Our fidelity space reduction method is inspired
from BOCA for single-objective optimization (Kandasamy et al., 2017). We apply the
method in BOCA to each of the objective functions to be optimized in MO setting.

A favourable setting for continuous-fidelity methods would be for the lower fidelities
g; to be informative about the highest fidelity f;. Let h; be the bandwith parameter of
the fidelity kernel x;z and let £ : Z — [0,1] be a measure of the gap in information

about g;(.,2;) when queried at z; # z} with {(z;) ~ Iz }; 1 for the squared exponential

kernels (Kandasamy et al., 2017). A larger h; will result in g; being smoother across Z.
Consequently, lower fidelities will be more informative about f; and the information gap
&(z;) will be smaller.

To determine an informative fidelity for each function in iteration ¢, we reduce the space

Z and select z; from the subset Zt(j ) defined as follows:

29(x) = {{z € 222}, 06, (%, 2) > 7(%),6(z) > BV el U {2} (7.2)

where v(2;) = () (a2} T
tively. Without loss of generality, we assume that p; = 1. ﬁt(] ) = V0.5d - log (2t + 1) is
the exploration/exploitation parameter (Kandasamy et al., 2017). where, [ is the effective
L, diameter of X and is computed by scaling each dimension by the inverse of the band-
width of the SE kernel for that dimension. We denote by Z, = {Zt(]),j € {1...K}}, the
reduced fidelity space for all K functions.

We filter out the fidelities for each objective function at BO iteration ¢ using the above-
mentioned two conditions. We provide intuitive explanation of these conditions below.
The first condition oy, (x,z;) > v(2;): A reasonable multi-fidelity strategy would query
the cheaper fidelities in the beginning to learn about the function g; by consuming the least
possible cost budget and later query from higher fidelities in order to gain more accurate

)9 and ¢ = with p;, d the dimensions of Z and & respec-
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information. Since the final goal is to optimize f;, the algorithm should also query from the
highest-fidelity. However, the algorithm might never query from higher fidelities due to their
high cost. This condition will make sure that lower fidelities are likely to be queried, but
not excessively and the algorithm will move toward querying higher fidelities as iterations
progress. Since 7y(z;) is monotonically increasing in Cj, this condition can be easily satisfied
by cheap fidelities. However, if a fidelity is very far from z7, then the information gap
will increase and hence, uninformative fidelities would be discarded. Therefore, v(z;) will
guarantee achieving a good trade-off between resource cost and information.

The second condition &(z;) > ,Bt(])HfHOO: We recall that if the first subset of Zt(]) is
empty, the algorithm will automatically evaluate the highest-fidelity z7. However, if it is
not empty, and since the fidelity space is continuous (infinite number of choices for z;), the
algorithm might query fidelities that are very close to z; and would cost nearly the same
as z; without being as informative as z7. The goal of this condition is to prevent such
situations by excluding fidelities in the small neighborhood of z; and querying z7 instead.

Since ng ) increases with ¢ and € is increasing as we move away from z7, this neighborhood
is shrinking and the algorithm will eventually query z7.

7.1.2 NAIVE-CFMO: A SIMPLE CONTINUOUS-FIDELITY MO BASELINE

In this section, we first describe a simple baseline approach referred to as Naive-CFMO
to solve continuous-fidelity MO problems by combining the above-mentioned fidelity space
reduction approach with existing multi-objective BO methods. Next, we explain the key
drawbacks of Naive-CFMO and how our proposed iMOCA algorithm overcomes them.

A straightforward way to construct a continuous-fidelity MO method is to perform a
two step selection process similar to the continuous-fidelity single-objective BO algorithm
proposed in (Kandasamy et al., 2017):

Step 1) Select the input x that maximizes the acquisition function at the highest
fidelity. This can be done using any existing multi-objective BO algorithm.

Step 2) Evaluate x at the cheapest valid fidelity for each function in the reduced
fidelity space Zt(J )(X) computed using the reduction approach mentioned in the previous
section. Since we are studying information gain based methods in this work, we instantiate
Naive-CFMO using the state-of-the-art information-theoretic MESMO algorithm (Belakaria
et al., 2019) for Step 1. Algorithm 5 shows the complete pseudo-code of Naive-CFMO.

Drawbacks of Naive-CFMO: Unfortunately, Naive-CFMO has two major drawbacks.

e The acquisition function solely relies on the highest-fidelity f;. Therefore, it does
not capture and leverage the statistical relation between different fidelities and full-
information provided by the global function g;.

e Generally, there is a dependency between the fidelity space and the input space
in continuous-fidelity problems. Therefore, selecting an input that maximizes the
highest-fidelity and then evaluating it at a different fidelity can result in a mismatch
in the evaluation process leading to poor performance and slower convergence.

iMOCA vs. Naive-CFMO: Our proposed iMOCA algorithm overcomes the drawbacks
of Naive-CFMO as follows.
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e iIMOCA’s acquisition function maximizes the information gain per unit cost across all
fidelities by capturing the relation between fidelities and the impact of resource cost
on information gain.

e iMOCA performs joint search over input and fidelity space to select the input variable
x € X and fidelity variables z € Z,. while maximizing the proposed acquisition func-

tion. Indeed, our experimental results demonstrate the advantages of iMOCA over
Naive-CFMO.

7.1.3 INFORMATION-THEORETIC CONTINUOUS-FIDELITY ACQUISITION FUNCTION

In this section, we explain the technical details of the acquisition function behind iMOCA.
We propose two approximations for the computation of information gain per unit cost.

The information gain in equation (7.1) is defined as the expected reduction in entropy
H(.) of the posterior distribution P(Y*|D) due to evaluating x at fidelity vector z. Based
on the symmetric property of information gain, the latter can be rewritten as follows:

I({x,y,2},V"|D) = H(y|D,x,2) — Ey-[H(y|D,%,2,V")] (7.3)

In equation (7.3), the first term is the entropy of a K-dimensional Gaussian distribution
that can be computed in closed form as follows:

H(y|D,x,z) Zln me 04,(X, 2j)) (7.4)

In equation (7.3), the second term is an expectation over the Pareto front of the highest
fidelities Y*. This term can be approximated using Monte-Carlo sampling:

Ey*[ (Y‘D X, z, y y|D,X,Z,y:)] (75)

IIMm

where S is the number of samples and V¥ denote a sample Pareto front obtained over the
highest fidelity functions sampled from K surrogate models. To compute equation (7.5),
we provide algorithmic solutions to construct Pareto front samples V! and to compute the
entropy with respect to a given Pareto front sample V.

1) Computing Pareto Front Samples: We first sample highest fidelity functions

fl, cee fK from the posterior CF-GP models via random Fourier features (Herndndez-
Lobato et al., 2014; Rahimi & Recht, 2008). This is done similar to prior work (Herndndez-
Lobato et al., 2016; Wang & Jegelka, 2017). We solve a cheap MO optimization problem
over the K sampled functions fl, N using the popular NSGA-IT algorithm (Deb et al.,
2002a) to compute the sample Pareto front V.

2) Entropy Computation for a Given Pareto Front Sample: Let V! = {v!,--. v}
be the sample Pareto front, where [ is the size of the Pareto front and each v = {vli, cee v}(}
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is a K-vector evaluated at the K sampled highest-fidelity functions. The following inequality
holds for each component y; of y = (y1,--- ,yx) in the entropy term H(y|D, x,z, Y;):

where fg — max{vjl-, e vé} Essentially, this inequality says that the j** component of y
(i.e., y;) is upper-bounded by a value, which is the maximum of 4" components of all
vectors {v!,---  v!} in the Pareto front Y?. Inequality (7.6) holds by the same proof of
(6.11). For the ease of notation, we drop the dependency on x and z. We use f; to denote
fi(@) = gj(z,2]), the evaluation of the highest fidelity at x and y; to denote g;(x,z;) the
evaluation of g; at a lower fidelity z; # 5.

By combining the inequality (7.6) and the fact that each function is modeled as an
independent CF-GP, a common property of entropy measure allows us to decompose the
entropy of a set of independent variables into a sum over entropies of individual variables
(Cover & Thomas, 2012):

K

H(Y|D7Xazay:):ZH(yﬂD?XaZjvfg*) (77)

=1

The computation of (7.7) requires the computation of the entropy of p(y;|D,x, zj,fg*).
This is a conditional distribution that depends on the value of z; and can be expressed as
H(y;|D, %, z,y; < fg *). This entropy can be computed using two different approximations
as described below.

Truncated Gaussian Approximation (iMOCA-T): As a consequence of (7.6),
which states that y; < f2* also holds for all fidelities, the entropy of p(y;|D, %, 2, 1 ) can
also be approximated by the entropy of a truncated Gaussian distribution and expressed as
follows:

) (95) (95) J* _
H(y;|D,x,z,y; < fI*) ~In(v2me 04.) +1In <I>(7§gj)) _ s ) where vggj) = fo Z b
J (95) Tg:
2(1)(’)/5 ) 9j
(7.8)

From equations (7.5), (7.4), and (7.8), we get the final expression of iMOCA-T as shown
below:

gj) (g])
VP ) In(®(7%)) (7.9)

K S
) =g eSS [

j=1s=1 )

Extended-skew Gaussian Approximation (iMOCA-E): Although equation (7.9)
is sufficient for computing the entropy, this entropy can be mathematically interpreted and
computed with a different approximation. The condition y; < fg *, is originally expressed
as fj < fg *. Substituting this condition with it’s original equivalent, the entropy becomes
H(y;|D,x,z;, fj < fg*) Since y; is an evaluation of the function g; while f; is an evaluation
of the function f;, we observe that y;|f; < fg * can be approximated by an extended-skew

695



BELAKARIA, DESHWAL, & DoPPA

Gaussian (ESG) distribution (Moss et al., 2020; Azzalini, 1985). It has been shown that
the differential entropy of an ESG does not have a closed form expression (Arellano-Valle,
CONTRERAS-REYES, & Genton, 2013). Therefore, we derive a simplified expression
where most of the terms are analytical by manipulating the components of the entropy. We
apply the derivation of the entropy based on ESG formulation, proposed by Moss et al.
(2020), to the multi-objective setting.

In order to simplify the calculation H (y;|D,x, z;, f; < 1! "), let us define the normalized
P fy < fIY. Ty ds distributed as an ESG with p.d.f whose

97 S
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lation between y; and f; as 7 = Ugg]iaf’ The entropy can be computed using the following
0F

expression. Due to lack of space, we only provide the final expression. Complete derivation
for equations (7.10) and (7.11) are provided in Appendix A.

L (AT

H(yj|DaX7 z]af] < fg*) = ln( V'2me Ugj) + ln(é(’y“gf]))) -7 2(1)( (f]))
Vs

(f5) _

i)

(7.10)

From equations (7.5), (7.4) and (7.10), the final expression of iMOCA-E can be expressed
as follow:

V1—72
(7.11)

K S
(%2, V) o —= D Y |7 Toa By MO F B,

(f5) _ U
1n<<1><%>>”

The expression given by equation (7.11) is mostly analytical except for the last term. We

perform numerical integration via Simpson’s rule using e g F [o(T fj*) as the integral
limits. Since this integral is over one-dimension variable, numerical integration can result
in a tight approximation with low computational cost. Complete pseudo-code of iMOCA is
shown in Algorithm 4.

Generality of the Two Approximations: We observe that for any fixed value of
x, when we choose the highest-fidelity for each function z=z*, a) For iMOCA-T, we will
have g; = f;; and b) For iMOCA-E, we will have 7 = 1. Consequently, both equation (7.9)
and equation (7.11) will degenerate to the acquisition function of MESMO optimizing only
highest-fidelity functions given in equation (4.13) in section 4.

The main advantages of our proposed acquisition function are: cost-efficiency, computational-
efficiency, and robustness to the number of Monte-Carlo samples. Indeed, our experiments
demonstrate these advantages over state-of-the-art single-fidelity MO algorithms.
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Algorithm 4 iMOCA Algorithm Algorithm 5 Naive-CFMO Algorithm

Input: input space X'; K blackbox functions f; and Input: input space X; K blackbox functions f; and
their continuous approximations g;; total budget Cio1q;  their continuous approximations g;; total budget Ciotqr

1: Initialize continuous fidelity ~Gaussian process 1: Initialize continuous fidelity Gaussian process

GP1, -+ ,GPk by initial points D GP1,--- ,GPxk by evaluating at initial points D
2: While C; < Cyp1q; do 2: While C; < Ciotq; do
3:  for each sample s € 1,--, S: B 3: for each sample s € 1,---,S:
4: Sample highest-fidelity functions f; ~ GP;(., z;) 4: Sample highest-fidelity functions fj ~ GP;(., z]*)
5 Y3 « Solve cheap MOO over (f1,---, fK) 5 V* « Solve cheap MOO over (fi1,--- , fx)
6 Find the query based on Y* = {¥¥,s € {1...5}} 6: Find the query based on Y* = {¥*,s € {1...5}}:
7 // Choose one of the two approximations 7: /] Use eq (4.13) for oy (MESMO)
8 If approx = T // Use eq (7.9) for ar (IMOCA-T)  8: select x; < argmazxex at(x,V*)
9: select (x¢,2¢) < argmazrxex zez, t(x,z,Y*) 9: for j€1l---K do
10:  If approx = E // Use eq (7.11) for oy (iMOCA-E) 10: select z; < argmin o .. Ci(ze, 25)
11 select (x¢,2¢) < argmazxecx zez, ot(x,2,Y*) 2 €27 (xe)U{z]}
:  Fidelity vector z; < [21...2K]
12:  Update the total cost: Ci < Ct + C(xt,2¢t) 12:  Update the total cost: Ct < Ct + C(xt,zt)
13:  Aggregate data: D <+ DU {(x¢,y¢,2¢)} 13: Aggregate data: D <~ DU {(xt,yt,2t)}
14:  Update models GP1,--- ,GPk 14: Update models GP1,--- ,GPk
15: t«+t+1 15: t«+t+1
16: end while 16: end while
17: return Pareto front and Pareto set of black-box func- 17: return Pareto front and Pareto set of black-box func-
tions f1(x), - » [ () tions f1(e),- - » fxc()

8. Experiments and Results

In this section, we first describe the experimental evaluation of MESMO (single-fidelity al-
gorithm), MF-OSEMO (discrete multi-fidelity algorithm) and iMOCA (continuous-fidelity
algorithm) on synthetic and real-world engineering problems. Subsequently, we present ex-
perimental results of MESMOC (constrained MO algorithm) on two real-world engineering
problems, namely, electrified aviation power system design and analog circuit design.

8.1 Experimental Evaluation of iMOCA, MF-OSEMO, and MESMO

We mainly present the results for IMOCA with MESMO and MF-OSEMO as baselines for
the following reasons: First, iMOCA is the generalisation of both MESMO and MF-OSEMO
to the most general setting (continuous-fidelity); and second, the performance, robustness,
and effectiveness of MESMO and MF-OSEMO have been shown in (Belakaria et al., 2019)
and (Belakaria et al., 2020a) respectively.

Experimental Setup. In our experiments, we employed CF-GP models as described
in section 7 with squared exponential kernels. We initialize the surrogate models of all
functions with the same number of points selected randomly from both lower and higher
fidelities. We compare iMOCA with several baselines: six state-of-the-art single-fidelity
MO algorithms (ParEGO, SMSego, EHI, SUR, PESMO, and MESMO) and one naive
continuous-fidelity baseline that we proposed in Section 7.1.2. We employ the code for
ParEGO, PESMO, SMSego, EHI, and SUR from the BO library Spearmint®. The code
for all four of our algorithms are available in public Github repositories. We provide more
details about the algorithms parameters, libraries, and computational resources in the Ap-

6. github.com/HIPS/Spearmint/tree/PESM
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pendix B.2. For experiments in discrete fidelity setting, the number of fidelities is very
limited. Thus, the fidelity space reduction method deem meaningless in this case. There-
fore, we employ iMOCA without fidelity space reduction for those scenarios. Additionally,
we compare to the state-of-the-art discrete fidelity method MF-OSEMO. MF-OSEMO has
two variants: MF-OSEMO-TG and MF-OSEMO-NI. Since MF-OSEMO-TG has the same
formulation as iIMOCA-T and provide similar results, we compare only to MF-OSEMO-NI.

8.1.1 SYNTHETIC BENCHMARKS

We evaluate our most general algorithm iMOCA and baselines on four different synthetic
benchmarks. We construct two problems using a combination of benchmark functions
for continuous-fidelity and single-objective optimization (Surjanovic & Bingham, 2020):
Branin, Currin (with K=2, d=2) and Ackley, Rosen, Sphere (with K=3, d=5). To show
the effectiveness of iIMOCA on settings with discrete fidelities, we employ two of the known
general MO benchmarks: QV (with K=2, d=8) and DTLZ1 (with K=6, d=5) (Habib,
Singh, & et al., 2019; Shu, Jiang, Zhou, Shao, Hu, & Meng, 2018). We provide their
complete details in Appendix B.1. The titles of plots in Fig. 4, Fig. 8, and Fig. 5 denote
the corresponding experiments.

8.1.2 REAL-WORLD ENGINEERING DESIGN OPTIMIZATION PROBLEMS

We evaluate iMOCA and baselines on four real-world design optimization problems from
diverse engineering domains. We provide the details of these problems below.

1) Analog Circuit Design Optimization. Design of a voltage regulator via Cadence
circuit simulator that imitate the real hardware (Belakaria, Zhou, Deshwal, Doppa, Pande,
& Heo, 2020d; Hong & et al, 2019). The simulation time can be adjusted to vary the
simulation from fast and inaccurate to long and accurate. Each candidate circuit design is
defined by 33 input variables (d=33). We optimize nine objectives: efficiency, four output
voltages, and four output ripples. This problem has a continuous-fidelity space with cost
varying from 10 mins to 120 mins.

2) Panel Structure Design for Large Vessels. The deck structure in large vessels
commonly require the design of panels resisting uni-axial compression in the direction of
the stiffeners (Zhu, Wang, & Collette, 2014). We consider optimizing the trade-off between
two objective functions: weight and strength of the panel. These functions depend on six
input variables (d=6): one of them is the number of stiffeners used and five others relating
to the plate thickness and stiffener dimensions. This problem has a discrete fidelity setting:
two fidelities with computational costs 1 min and 21 mins respectively.

3) Rocket Launching Simulation. Rocket launching studies (Hasbun, 2012) require
several long and computationally-expensive simulations to reach an optimal design. In
this problem, we have three input variables (d = 3): mass of fuel, launch height, and
launch angle. The three objective functions are return time, angular distance, and difference
between the launch angle and the radius at the point of launch. The simulator has a
parameter that can be adjusted to perform continuous fidelity simulations. We employ the
parameter range to vary the cost from 0.05 to 30 mins.
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4) Network-On-Chip Design. Communication infrastructure is critical for efficient data
movement in hardware chips (Joardar et al., 2018; Deshwal et al., 2019; Choi et al., 2018;
Das et al., 2017) and they are designed using cycle-accurate simulators. We consider a
dataset of 1024 configurations of a network-on-chip with ten input variables (d=10) (Che,
Boyer, Meng, Tarjan, Sheaffer, Lee, & et al., 2009). We optimize two objectives: latency and
energy. This problem has two discrete fidelities with costs 3 mins and 45 mins respectively.

8.1.3 RESULTS AND DISCUSSION

We compare iMOCA with both approximations (iMOCA-T and iMOCA-E) to all baselines.
We employ two known metrics for evaluating the quality of a given Pareto front: Pareto
hypervolume (PHV ) metric and Ry indicator. PHV (Zitzler, 1999) is defined as the vol-
ume between a reference point and the given Pareto front; and R (Picheny, Wagner, &
Ginsbourger, 2013b) is a distance-based metric defined as the average distance between two
Pareto-fronts. We report both the difference in the hyper-volume, and the average distance
between an optimal Pareto front (F*) and the best recovered Pareto front estimated by
optimizing the posterior mean of the models at the highest fidelities (Hernandez-Lobato
et al., 2016). The mean and variance of PHV and Ry metrics across 10 different runs are
reported as a function of the total cost.

Fig. 4 shows the PHV results of all the baselines and iMOCA for synthetic and real-
world experiments (Fig. 5 shows the corresponding Ry results). We observe that iMOCA
consistently outperforms all baselines. Both iMOCA-T and iMOCA-E have lower converge
cost. Additionally, iMOCA-E shows a better convergence rate than iMOCA-T. This re-
sult can be explained by its tighter approximation. Nevertheless, iIMOCA-T displays very
close or sometimes better results than iMOCA-E. This demonstrates that even with loose
approximation, using the iMOCA-T approximation can provide consistently competitive
results using less computation time. For experiments with the discrete fidelity setting,
iMOCA most of the times outperformed MF-OSEMO or produced very close results. It is
important to note that MF-OSEMO is an algorithm designed specifically for the discrete-
fidelity setting. Therefore, the competitive performance of iIMOCA shows its effectiveness
and generalisability.

Figure 8 in appendix B.3 shows the results of evaluating iMOCA and PESMO with
varying number of Monte-Carlo samples S € {1,10,100}. For ease of comparison and
readability, we present these results in two different figures side by side. We observe that
the convergence rate of PESMO is dramatically affected by the number of MC samples S.
However, iIMOCA-T and iMOCA-E maintain a better performance consistently even with a
single sample. These results strongly demonstrate that our method iMOCA is much more
robust to the number of Monte-Carlo samples.

Cost Reduction Factor. We also provide the cost reduction factor for experiments with
continuous fidelities, which is the percentage of gain in the convergence cost when compared
to the best performing baseline (the earliest cost for which any of the single-fidelity baselines
converge). Although this metric gives advantage to baselines, the results in Table 4 show a
consistently high gain ranging from 52.1% to 85%.
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Table 4: Best convergence cost from all baselines Cg, Worst convergence cost for iMOCA
C, and cost reduction factor G.

Name BC ARS  Circuit Rocket

Cp 200 300 115000 9500

C 30 100 55000 2000
85% 66.6% 52.1%  78.9%

8.2 Experimental Evaluation of MESMOC

Experimental Setup: In this section, we compare MESMOC with PESMOC (Garrido-
Merchédn & Hernandez-Lobato, 2019), the state-of-the-art BO algorithm for solving con-
strained MO problems and MESMOC+ (Fernandez-Sanchez et al., 2020), the concurrent
approach which also relies on the same principle of output space entropy search. Due to
lack of BO approaches for constrained MO setting, we also compare to known genetic al-
gorithms: NSGA-IT (Deb et al., 2002a) and MOEAD (Zhang & Li, 2007). However, they
require large number of function evaluations to converge which is not practical for the op-
timization of expensive functions. We employ a GP based statistical model with squared
exponential (SE) kernel in all our experiments. The hyper-parameters are estimated after
every five function evaluations (iterations). We initialize the GP models for all functions by
sampling the initial points at random. We employ the code for PESMOC and MESMOC+
from the BO library Spearmint”. We employ NSGA-II and MOEAD from the Platypus
library®. Our code for MESMOC is available at the following Github repository 9. We
provide additional details about the algorithms parameters, libraries, and computational
resources in the Appendix B.2.

8.2.1 REAL-WORLD ENGINEERING DESIGN PROBLEMS

Below we provide the details of the two real-world problems and associated optimization
task that are employed for our experimental evaluation.

1) Electrified Aviation Power System Design. We consider optimizing the design of
electrified aviation power system of unmanned aerial vehicle (UAV) via a time-based static
simulation. The UAV system architecture consists of a central Li-ion battery pack, hex-
bridge DC-AC inverters, PMSM motors, and necessary wiring (Belakaria, Jackson, Cao,
Doppa, & Lu, 2020c). Each candidate input consists of a set of 5 (d=5) variable design
parameters such as the battery pack configuration (battery cells in series, battery cells in
parallel) and motor size (number of motors, motor stator winding length, motor stator
winding turns). We minimize two objective functions: mass and total energy. This problem

7. github.com/EduardoGarrido90/Spearmint
8. platypus.readthedocs.io/en/latest/getting-started. html#installing-platypus
9. github.com/belakaria/ MESMOC
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has 5 black-box constraints:

Cp : Maximum final depth of discharge < 75%
C4 : Minimum cell voltage > 3V

C5 : Maximum motor temperature < 125°C’
C5 : Maximum inverter temperature < 120°C’

(5 : Maximum modulation index < 1.3

2) Analog Circuit Optimization Domain. We consider optimizing the design of a multi-
output switched-capacitor voltage regulator via Cadence circuit simulator that imitates the
real hardware (Belakaria et al., 2020d). This circuit relies on a dynamic frequency switching
clock. Each candidate circuit design is defined by 33 input variables (d=33). The first 24
variables are the width, length, and unit of the eight capacitors of the circuit W, L;, M; Vi €
1---8. The remaining input variables are four output voltage references V.., Vi € 1---4 and
four resistances R; Vi € 1---4 and a switching frequency f. We optimize nine objectives:
maximize efficiency Eff, maximize four output voltages V,, ---V,,, and minimize four
output ripples OR; --- ORy4. Our problem has a total of nine constraints. Since some of
the constraints have upper bounds and lower bounds, they are defined in the problem by
15 different constraints:

8

Co : Cprotar ~ 20nF with Cpiorar = » _(1.955WiL; + 0.54(W; + L)) M;
i=1

01 to 04:‘/;)2. Zvrefi Vel---4

Cs5toCs : ORp <OR; <OR,p Vi €1---4

Co: Eff <100%

where O Ry, and OR,,;, are the predefined lower-bound and upper-bound of OR; respectively.
Cpiotar 18 the total capacitance of the circuit.

8.2.2 RESULTS AND DISCUSSION

We evaluate the performance of our algorithm and the baselines using the Pareto hyper-
volume (PHV) metric. PHV is a commonly employed metric to measure the quality of
a given Pareto front (Zitzler, 1999). Figure 6 shows that MESMOC outperforms existing
baselines. It recovers a better Pareto front with a significant gain in the number of function
evaluations. Both of these experiments are motivated by real-wold engineering applications
where further analysis of the designs in the Pareto front is crucial.

Electrified Aviation Power System Design. In this setting, the input space is discrete
with 250,000 combinations of design parameters. Out of the entire design space, only 9% of
design combinations passed all the constraints and only five points are in the optimal Pareto
front. From a domain expert perspective, satisfying all the constraints is critical. Hence,
the results reported for the hypervolume include only points that satisfy all the constraints.
Despite the hardness of the problem, 90% (180 out of 200 inputs) of the designs selected
by MESMOC satisfy all the constraints while for MESMOC+, PESMOC, MOEAD, and

703



BELAKARIA, DESHWAL, & DoPPA

NSGA-II, this was 49% (98 out of 200), 1.5% (3 out of 200 inputs), 9.5% (19 out of 200
inputs), and 7.5% (15 out of 200 inputs) respectively. MESMOC was not able to recover all
the five points from the optimal Pareto front. However, it was able to closely approximate
the optimal Pareto front and recover better designs than the baselines.

Analog Circuit Design Optimization. In this setting, the input space is continuous,
consequently there is an infinite number of candidate designs. From a domain expert per-
spective, satisfying all the constraints is not critical and is impossible to achieve. The main
goal is to satisfy most of the constraints (and getting close to satisfying the threshold for
violated constraints) while reaching the best possible objective values. Therefore, the re-
sults reported for the hypervolume include all the evaluated points. In this experiment, the
efficiency of circuit is the most important objective function. The table in Figure 2 shows
the optimized circuit parameters from different algorithms.

1y le2s Analog circuit design 5 e UAV
5 ; ;
—— MOEAD —— MOEAD
2 10 —— NSGAI 84 —— NSGAI
g —— PESMOC £ —— PESMOC
2 MESMOC+ .5 ; MESMOC+
- =
a 25 —— MESMOC A —— MESMOC
o v o |
E E
=20 ER H —\__1
a . 21
= 13 £
= jasi 1+——~._ [ N (N S
0 T
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0 3 % T 00 LS 10 175 200 0 23 % w0 15 15 75 2w
Iterations (t) Iterations (t)

Figure 6: Results of different constrained multi-objective algorithms including MESMOC.
The PHV metric is shown as a function of the number function evaluations.

SPECS NSGA-II PESMOC MESMOC

Vyer1(V) 0.6 0.5 0.52 0.53 0.63 0.52
Vyer2(V) 0.55 0.62 0.55 0.61 0.51 0.53
Vyers(V) 1.06 1.06 1.07 1.12 1.05 1.13
Vyera(V) 1.07 1.09 1.09 1.06 1.05 1.06

V,1(mV) 699.6 713.1 677.10 760.60 678.40 551.62
Voo (mV) 700.4 712.2 690.70 725.70 520.61 632.80

V,5 (V) 1.10 1.06 1.08 1.15 1.12 1.16
Voa (V) 1.09 1.09 1.08 0.99 1.14 1.08
Eff (%) 73.26 71.85 76.20 74.82 88.81 88.53

Figure 7: Comparison table of optimized circuit parameters obtained from different algo-
rithms (designs are selected from the Pareto set prioritized by efficiency)
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All algorithms can generate design parameters for the circuit that meets the voltage
reference requirements. The optimized circuit using MESMOC can achieve the highest
conversion efficiency of 88.81% (12.61% improvement when compared with PESMOC with
fixed frequency optimization and 17.86% improvement when compared with NSGA-II) with
similar output ripples. The circuit with optimized parameters can generate the target
output voltages within the range of 0.52V to 0.76V (1/3x ratio) and 0.99V to 1.17V (2/3x
ratio) under the loads varying from 14 Ohms to 1697 Ohms.

9. Summary and Future Work

We introduced a novel and general framework for solving multi-objective (MO) Bayesian
optimization problems based on the principle of output space entropy (OSE) search. The
key idea is to select the sequence of experiments that maximize the information gained per
unit cost about the optimal Pareto front. We instantiated this principle appropriately to
solve a variety of MO problems from the most basic setting and its constrained version to
the multi-fidelity and continuous-fidelity settings. Our comprehensive experimental results
on both synthetic and real-world benchmarks showed that all our OSE based algorithms
yield consistently better results than state-of-the-art methods, and are more efficient and
robust than methods based on input space entropy search.

Future work includes extending this framework to handle high-dimensional BO problems
(Oh, Gavves, & Welling, 2018) and combinatorial spaces, e.g., sets, sequences, and graphs
(Doppa, 2021; Deshwal, Belakaria, Doppa, & Fern, 2020; Oh, Tomczak, Gavves, & Welling,
2019; Deshwal, Belakaria, & Doppa, 2021b, 2021a); and investigating important scientific
applications including biological sequence design (Yang, Wu, & Arnold, 2019) and molecule
design (Deshwal, Simon, & Doppa, 2021).
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Appendix A. Full Derivation of iMOCA’s Acquisition Function

Our goal is to derive a full approximation for iMOCA algorithm. In this appendix, we
provide the technical details of the extended-skew Gaussian approximation (iMOCA-E) for
the computation of the information gain per unit cost.

The information gain in equation (7.1) is defined as the expected reduction in entropy
H(.) of the posterior distribution P(Y*|D) due to evaluating x at fidelity vector z. Based
on the symmetric property of information gain, we can rewrite it as shown below:

I({x,y,2},YV*|D) = H(y|D,x,2) — Ey-[H(y|D, x,2,)")] (A1)
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In equation (A.1), the first term is the entropy of a K-dimensional Gaussian distribution
that can be computed in closed form as follows:

H(y|D,x,z) Zln me 04,(X, 2j)) (A.2)

The second term of equation (A.1l) is an expectation over the Pareto front of the highest
fidelities Y*. This term can be approximated using Monte-Carlo sampling:

S
* 1 *
Ey-[H(y|D,x,2, V") ~ < 3 _[H(y|D,x,2,Y])] (A.3)
s=1
In the main paper, we showed that :

By combining the inequality (A.4) and the fact that each function is modeled as an indepen-
dent CF-GP, a common property of entropy measure allows us to decompose the entropy
of a set of independent variables into a sum over entropies of individual variables (Cover &
Thomas, 2012):

K
H(Y|D’Xazyy:):ZH(yﬂD’Xijvfg*) (A.5)
j=1
In what follows, we provide details of IMOCA-E approximation to compute H (y;|D, x, z;, J )

The condition y; < fﬁ , is originally expressed as f; < fs . Substituting this condi-
tion with it’s original equivalent, the entropy becomes H(y;|D,x, zj, fj < fg*) Since y; is
an evaluation of the function g; and f; is an evaluation of the function f;, we make the
observation that y;|f; < f2* can be approximated by an extended-skew Gaussian (ESG)
distribution (Azzalini, 1985). It had been shown that the differential entropy of an ESG
does not have a closed-form expression (Arellano-Valle et al., 2013). Therefore, we de-
rive a simplified expression where most of the terms are analytical by manipulating the
components of the entropy as shown below. .

In order to simplify the calculation H(y;|D,x,z;, f; < fi"), we start by deriving an
expression for its probability distribution. Based on the definition of the conditional distri-
bution of a bi-variate normal, f;|y; is normally distributed with mean jz, + Z—:T(yj — Ig;)

2

g . .
and variance 2 (1 — 7)2, where 7 = 9577 i3 the predictive correlation between y; and f;.
i Tg;0f; J J
We can now write the cumulative distribution function for y;|f; < f{* as shown below:

o 5 —p -fﬁf(fﬁu )
j fUOOQS(QUZLg])q)( \?Q(Qf 2 i )de
% Py§u7f§fs* 7 ¢ AT
Ply; <ulfy < firy= PW=wli s f) J

PUf; < 17) o (50)
9; O'fj
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Let us define the normalized variable I' jx s r e M| fi < fj* After differentiating

with respect to u, we can express the probabihty dens1ty function for I’ i

o(w) " —ru
e(7)y VI

which is the density of an ESG with mean and variance defined as follows:

P(u) =

)

(f5) (f5) (f5)
AL e = Té(%(f-)) 0T 4o =1 a (b(%(f-)) [ 0+ d)(%(f-))] (4.6)
° (vs77) ° P(vs77) P(vs™7)
Therefore, we can express the entropy of the ESG as shown below:

We also derive a more simplified expression of the iMOCA-E acquisition function based on
ESG. For a fixed sample fi/*, H(T fj*) can be decomposed as follows:

) 7(fj) —u
N — _ PNy s
H(L ge) = Eunr ;. | = n(o(w)) +In(@(7:77)) — In(®( Vg ) (A.8)
We expand the first term as shown below:
1 1
EUNng* [—In(p(u))] = 5111(277) + §E“Nrf£* [uQ] (A.9)
From the mean and variance of I i+ in equation (A.6), we get:
(fi\~(f5)
1 21 = 2 4 C—1_ 20(1s™ )ys A10
ng* [ ] :u’I‘fg* O—ng* T q)(rygf])) ( )
We note that the final entropy can be computed using the following expression.
H(yj| D, %, zj,y; < fI*) = H(T 3-) + In(oy,) (A.11)
By combining equations (A.8) and (A.11), we get:
' , (i) (F5)
(1D, 2, f; < 1) = In(v2re 0,,) + In(@(3{)) — 722080
20 (7ys7)
(f3)
vs —Tu
—Ey~r .. |In(®(— A.12

From equations (A.3), (A.2), and (A.12), the final expression of iMOCA-E can be ex-
pressed as follows:

K S f]) (f] (f5)

~ 275 (v (£5) Vs TU

(X z, y —= X Z S ]Zl ;T (f] ) ln<q)(’ys )) + Euwpfg* [hl(@( m ))]

Since the differential entropy of an ESG cannot be computed analytically, we perform nu-
merical integration via Simpson’s rule using ,LLng.* Fy O'ng.* as the integral limits. In

practice, we set v to 5. Since this integral is over one-dimension variable, numerical inte-
gration can result in a tight approximation with small amount of computation.
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Appendix B. Additional Experiments and Results
B.1 Description of Synthetic Benchmarks

In what follows, we provide complete details of the synthetic benchmarks employed in
this paper. Since our algorithm is designed for maximization settings, we provide the
benchmarks in their maximization form.

1) BRANIN, CURRIN EXPERIMENT

In this experiment, we construct a multi-objective problem using a combination of existing
single-objective optimization benchmarks (Kandasamy et al., 2017). It has two functions
with two dimensions (K=2 and d=2).

Branin Function: We use the following function where C(z) = 0.05 + 25°

g(x,2) = — (a(fcg — b(z):c% +c(2)r — 7“)2 +s(1 —t(2))cos(x1) + 5)

where a = 1, b(z) = 5.1/(47%) — 0.01(1 — 2), ¢(2) = 5/7 — 0.1(1 — 2), r = 6, s = 10 and
t(z) =1/(8m) 4+ 0.05(1 — 2).
Currin Exponential Function: We use C(z) = 0.1 + 22

—1 230023 + 190022 + 2092 60
g(x,z):— 1—01(1—2)exp J— 'Ilj -'E12+ xr1 + ‘
22 100x3 4 50027 + 4x1 + 20

2) ACKLEY, ROSEN, SPHERE EXPERIMENT

In this experiment, we construct a multi-objective problem using a combination of existing

single-objective optimization benchmarks (Wu & Frazier, 2018). It has three functions with

five dimensions (K=3 and d=5). For all functions, we employed C(z) = 0.05 + 25
Ackley Function

g(x,z) =— | —20exp |—0.2 +e+4+20 )| —0.01(1—2)

d
1 1
2 :
p E x; | —exp [d E cos(2mx;)

=1

Rosenbrock Function:

g(x,2) = — [100 (i1 — 22+ 0.01(1 — 2))” + (1 — :ci)ﬂ

i=1

Sphere Function:

d
g(x,2) = — Zx? —0.01(1 — 2)
i=1

3) DTLZ1 EXPERIMENT

In this experiment, we solve a problem from the general multi-objective optimization
benchmarks (Habib et al., 2019). We have six functions with five dimensions (K'=6 and
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d=5) with a discrete fidelity setting. Each function has three fidelities in which z takes
three values from {0.2,0.6,1} with z*=1. The cost of evaluating each fidelity function is
C(2)={0.01,0.1,1}

9i(x%,2) = fi(x) —e(x, 2)

fi(x) = —=(1+7)0. 5H 1T

(x) —(1+7)0.5(1 — 26— ]+1)H1 1% with j=2...5

fo(x) = (1+T)O 5(1 —x1)

= 100[d + X%, ((#; — 0.5)%) — cos(10m(z; — 0.5))]

e(x, z) = 25:1 a(z)cos(10ma(z)x; + 0.5ma(z) + m) with a(z) =1— =z

4) QV EXPERIMENT

In this experiment, we solve a problem from the general multi-objective optimization bench-
marks (Shu et al., 2018). We have two functions with eight dimensions (K=2 and d=8)
with a discrete fidelity setting.

Function 1 has only one fidelity which is the highest fidelity

d 1
(5 (af — 20ma; + 10))3
=1

&\'—‘

Function 2 has two fidelities with cost {0.1,1} respectively and the following expres-
sions:
1
High fidelity: fo(x, High) = —(3 3% ((z; — 1.5)? — 20m(x; — 1.5) + 10))7
Low fidelity: fo(x, Low) = —(3 (XL, (afil(z; — 1.5)% — 207 (z; — 1.5) + 10))7
with «=[0.9,1.1,0.9,1.1,0.9,1.1,0.9, 1.1

B.2 Additional Information About Experimental Setup
Experimental Setup For Our Proposed Algorithms:

e The hyper-parameters are estimated after every five function evaluations (BO iter-
ations) for MESMO and MESMOC. For iMOCA and MF-OSEMO, the number of
evaluations would be higher due to the low cost of lower fidelities. Therefore, the
hyper-parameters are estimated every twenty iterations.

e During the computation of Pareto front samples, we solve a cheap MO optimization
problem over sampled functions using NSGA-II. We use Platypus'? library for the im-
plementation. For NSGA-II, the most important parameter is the number of function
calls. We experimented with several values. We noticed that increasing this number
does not result in any performance improvement for our algorithms. Therefore, we
fixed it to 1500 for all our experiments.

Parameters Used for NSAG-II and MOEAD as Constrained Baselines:

10. platypus.readthedocs.io/en/latest/getting-started.html#installing-platypus
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e Since we allow only 200 evaluations for MESMOC and PESMOC, we also set the
number of functions evaluations for NSGA-IT and MOEAD to 200. We leave any
other parameter to the default value provided by the Platypus library.

Computational Resources
e We performed all experiments on a machine with the following configuration: Intel

i7-7700K CPU @ 4.20GHz with 8 cores and 32 GB memory.

B.3 Additional Results

Branin,Currin Branin,Currin
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Figure 8: Results of synthetic benchmarks showing the effect of varying the number of
Monte-Carlo samples for IMOCA, MESMO, and PESMO. The hypervolume dif-
ference is shown against the total resource cost of function evaluations.
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