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Abstract
This survey provides an overview of the evolution of visually grounded models of spoken
language over the last 20 years. Such models are inspired by the observation that when
children pick up a language, they rely on a wide range of indirect and noisy clues, crucially
including signals from the visual modality co-occurring with spoken utterances. Several fields
have made important contributions to this approach to modeling or mimicking the process of
learning language: Machine Learning, Natural Language and Speech Processing, Computer
Vision and Cognitive Science. The current paper brings together these contributions in order
to provide a useful introduction and overview for practitioners in all these areas. We discuss
the central research questions addressed, the timeline of developments, and the datasets
which enabled much of this work. We then summarize the main modeling architectures and
offer an exhaustive overview of the evaluation metrics and analysis techniques.

1. Introduction

The endeavor of developing systems for modeling or simulating the human language faculty has
long been pursued by several disjoint research communities. The speech community focuses
largely on the task of transcribing speech signals into written text, or extracting specific pieces
of information from spoken utterances. The field of Natural Language Processing (NLP)
studies a range of problems involved in understanding and producing language, but almost
exclusively in its written form. Computer vision researchers focus on vision and language
tasks such as automated captioning and visual question-answering. Meanwhile, cognitive
scientists interested in language develop models of language acquisition and processing within
the broader purview of understanding the cognitive makeup of our species rather than with
a view to practical applications.

The aim of the current survey is to review a family of approaches to the computational
study of language which largely transcend these disciplinary divisions: more specifically, our
focus is on visually grounded models of spoken language. Such models are inspired by the
observation that when children pick up a language, they rely on a wide range of indirect
and noisy clues, including information from perceptual modalities co-occurring with spoken
utterances, most crucially the visual modality.

Other sources of information such as phoneme and word co-occurrence statistics, speaker
intentions as inferred from gaze and gestures or active learning are undoubtably important
for children too, and some have been modeled computationally. In the interest of tractability
this survey zooms in on grounding spoken language in the visual modality.
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Many relevant studies have appeared during the last two decades, and especially in the
last five years, and as can be expected for a research problem cross-cutting disciplinary
boundaries, are spread over publication venues focusing on Cognitive Science, Speech, Machine
Learning and NLP: here we bring them together in a single place in order to provide a useful
introduction and overview for practitioners in all these areas.

Most recent dcomputational approaches to modeling spoken language have relied on
artificial neural networks also know as deep learning. A central concern regarding these
approaches has been understanding the nature and localization of representations which
they learn and we therefore also discuss in some detail the different analytical techniques
proposed for this purpose, as well as the main findings resulting from their application.

1.1 What This Survey Is and Is Not About

In this survey we will focus on models of spoken language which are visually grounded,
that is models which process the audio signal represented via low-level features such as the
waveform, spectrogram or mel-frequency cepstral coefficients (MFCC). Models which process
written text are outside the scope of our interest here, whereas those that rely on phonemic
transcriptions will only be discussed briefly as part of the background.

By visual grounding what is meant here are visual representations of scenes associated
with spoken utterances, for example images that the utterances describe, or videos the
utterances occur in.1 There is a parallel strand of research on exploiting visual information
depicting the speaker and especially their lips in addition to the audio channel for automatic
speech recognition (ASR): this endeavor is outside the scope of this survey.

1.2 Central Questions

As mentioned above, visually grounded models of spoken language have been of interest
to several disciplines and as such the questions these lines of research have been interested
in answering have also been quite diverse. From the point of view of cognitive science
the main concern is whether these models can help us understand the constraints and the
mechanisms in play for human children when they learn to understand language: do they
develop representations of phonemes? How do they segment speech signal into word- or
morpheme-like segments? How do they match word forms with visual concepts and how are
these visual concepts formed themselves?

From the perspective of engineering-focused fields (ML, Speech and NLP) the questions
have often centered more on technical aspects such as: what datasets are necessary to learn
to match spoken utterances to images? To what extent can this be done in an end-to-end
fashion? How can performance be improved via engineering the neural architecture, learning
objectives or other aspects of training? In addition, the use of large and opaque neural
architectures has prompted researchers in these fields to ask questions such as: what kind of
information is encoded in neural models, and how accessible it is in different components?
What are effective techniques for analyzing and interpreting these representations, and
according to which metrics can they be evaluated? Is there is a correspondence between
learned representations and the core constructs hypothesized within phonology, lexicon,

1. Most of work to date has focused on static images; the few studies involving video are discussed in
section 6.
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syntax and semantics? In the rest of the paper we will explore answers to all these questions
and some more.

1.3 Two Waves

The work on visually grounded models of spoken language naturally divides into two temporal
clusters, or waves: (i) the period starting in 1999 with Deb Roy’s PhD dissertation (Roy,
1999) and lasting until around 2005, and after a ten year break, (ii) the second wave starting
with the creation of the Flickr Audio Caption Corpus in 2015 (Harwath & Glass, 2015)
and continuing until now. The current survey is organized around this two-wave form. We
will start by reviewing some early efforts in section 2. We will then discuss the importance
of datasets in driving new developments in section 3, and follow these developments in
sections 5 and 6, and the variations in the set-up of the task and applications in section 7.
Finally we will survey approaches to evaluation of the systems and the analysis of learned
representations in section 8.

2. Early Efforts

Interest in computationally modeling the acquisition of spoken language via grounding in
the visual modality goes back to the final years of the twentieth century. In this section we
provide an overview of these early efforts.

2.1 CELL

Perhaps the first serious computational implementation of learning spoken language via
visual grounding was described by Roy (1999), and further developed in Roy and Pentland
(2002) as the CELL (Cross-channel Early Lexical Learning) model. The model originated in
Roy (1999), and there were a number of subsequent versions and tweaks of CELL (e.g., Roy,
2003; Mukherjee & Roy, 2003; Roy & Mukherjee, 2005, ); here we discuss the canonical 2002
version.

The goal of the model was to perform three tasks: (i) segment speech at word boundaries,
(ii) form visual categories, and (iii) associate words with these categories. The model partially
relies on data to learn these tasks: the data consists of speech recordings elicited from
participants while playing with pre-verbal infants using 42 objects from seven classes (balls,
toy dogs, shoes, keys, toy horses, toy cars, toy trucks). These spoken utterances were paired
with different views of the objects used at the time of each utterance. The amount of spoken
language is described as approximately 1,300 utterances of around 5 words, for each of 6
participants. Around 8% of words in the data were visually groundable.

The model includes a hard-coded visual system which extracts object representations
for camera images: these representations are shape histograms designed to be invariant to
position, scale and in-plane rotation. Object color, size or texture are not captured. The
representations of spoken utterances consists of arrays of phoneme probabilities extracted by
a Recurrent Neural Network (RNN) model pre-trained on the TIMIT dataset of phonetically
transcribed speech (Garofolo, Lamel, Fisher, Fiscus, & Pallett, 1993).

The core part of the architecture is data-driven and consists of two components. The
short-term memory store buffers recent utterance-image pairs; then utterances are segmented
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into subsequences (i.e. word hypotheses) at phoneme boundaries located by the application
of the Viterbi algorithm to phoneme probabilities given by the RNN, and subject to the
constraint that a subsequence should contain at least one vowel. Word hypotheses that occur
more than once within the buffer in a similar visual context are paired with co-occurring shape
representations and sent over to the long-term memory store. This second component applies
a filter to hypothesized associations, keeping the ones which recur reliably (as measured by
mutual information) and discarding the rest. The performance of the model is quantified with
respect to segmentation accuracy (do segment boundaries correspond to word boundaries),
word discovery (is the segment a single English word?) and semantic accuracy (is the word
matched with the correct shape?) and compared to the baseline with a similar architecture,
but which ignores the visual modality: on all measures CELL consistently outperforms the
baseline by a substantial margin.2

The experiments with the CELL architecture demonstrated that learning word meanings
visually grounded spoken utterances was feasible. As could be expected given the technology
of the day, the approach did have several important limitations: most importantly, the
experiments used small-scale data (the final lexicon evaluated included less than 20 learned
form-meaning mappings) and the data for the visual modality was rather artificial. Regarding
modeling, the audio features were extracted using an external pre-trained model.3

2.2 The Role of Embodied Intention

One important source of information used by children when acquiring language are the
speaker’s gaze and pointing gestures. Yu, Ballard, and Aslin (2005) (originally presented
in Yu & Ballard, 2004) examine the role of these clues in a computational framework
roughly similar to CELL. The most important difference concerns the data collection process.
Participants were instructed to narrate a picture book, in English, as if speaking to a child.
In addition to the spoken utterances and their visual context, the authors also collected data
from sensors tracking the speakers’ eye gaze, as well as head and hand position. Overall 660
utterances were collected; average utterance size was 6 words; around 15% of the words in
the data were object names.

The computational model features a hard-wired component which uses the head position
and gaze information to infer which part of the image the speaker is attending to. The visual
perception component extracts image features (representing color, shape, and texture) and
clusters images into object representations. Spoken utterances are converted into sequences
of phonemes using an RNN model pre-trained on TIMIT. Phonetically similar subsequences
of phonemes are then extracted and word-like units hypothesized based on co-occurrence
with attended-to objects. Finally, the lexicon pairing word forms with object representations
is formed by applying an alignment algorithm based on IBM model 1 (Brown, Della Pietra,

2. According to Roy and Pentland (2002), semantic accuracy can be measured for the baseline because the
visual prototype was carried through from input to output and “this model assumes that when a speech
segment is selected as a prototype for a lexical candidate, the best choice of its meaning is whatever
context co-occurred with the speech prototype.”

3. Additionally, the visual features are extracted by a hard-wired component, but this is a reasonable setup
at least in the context of modeling human language acquisition: the human visual system is largely
functional by the time children start learning language in earnest.
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Della Pietra, & Mercer, 1993) to the sets of objects and sequences of words which co-occur
temporally.

The performance of the system was evaluated according to four metrics: semantic
accuracy (measuring the quality of clustering of image features into semantic groups)4,
speech segmentation accuracy (measuring whether segment boundaries correspond to word
boundaries), word-meaning association precision (the proportion of successfully segmented
words that are correctly associated with meanings) and lexical spotting recall (the proportion
of word-meaning pairs found). The full model is compared to a baseline which ignores
gaze and head position information: the model outperforms the baseline on the speech
segmentation and especially on word-meaning association precision, demonstrating the
usefulness of inferring speaker attention for word learning.

Most of the limitations of the CELL model also apply to Yu et al. (2005): the data
is small-scale and the speech features are extracted by a pre-trained model. The main
innovation of the model is the use of attention cues: the way these cues are recorded and
used by the model is not meant to match the way human learners would be able to access
and use them: rather the authors claim their experiments as an existence proof that this
information can be usefully exploited at all.

2.3 The Rise of Deep Learning

After these initial efforts demonstrated the feasibility of learning spoken language via visual
grounding, there has been a lull in research activity into this topic for around ten years. One
important reason for this may have been the relatively high barrier to entry: the existing
datasets were small and private, and collecting new datasets required expertise as well as
substantial time and financial investment. Similarly, the modeling architectures relied on a lot
of custom hand-coded modules. These factors began to change with the growing popularity
of neural models after 2014: dataset collection and sharing were crucial for the success of
these approaches, and the building blocks became standardized and available as part of
easy-to-use open-source toolkits. In the following section we will see the effects of these
developments on the research into visually grounded models of spoken language.

3. Datasets

One area on the intersection of NLP and Computer Vision which gained popularity in the
second decade of the 21st century was image captioning, i.e. the task of describing the content
of photographic images in a short written text, most commonly a single sentence (Bernardi,
Cakici, Elliott, Erdem, Erdem, Ikizler-Cinbis, Keller, Muscat, & Plank, 2016). The emergence
of this task led to the creation of a number of datasets designed as training data for it. The
two datasets most relevant to the current survey were Flickr8K (Rashtchian, Young, Hodosh,
& Hockenmaier, 2010) and COCO (also known as MS COCO or Microsoft COCO) (Lin,
Maire, Belongie, Hays, Perona, Ramanan, Dollár, & Zitnick, 2014). Both of these datasets
consisted of photographs depicting everyday objects and situations, collected from online
photo sharing services, with accompanying textual descriptions written by crowd workers; in
each case a photo featured five independent brief descriptions. These datasets served as a

4. Note that this is a different notion of semantic accuracy than that used to evaluate CELL.
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Dataset Lang. Images Captions Speakers Duration Speech type

Flickr Audio Captions en 8000 40000 183 46 Read aloud
Synthetically Spoken COCO en 123287 616767 1 601 Synthetic
Synthetically Spoken STAIR ja 123287 616767 1 793 Synthetic
Speech COCO en 123287 616767 8 601 Synthetic
Places Audio Captions (English) en 400000 400000 2683 936 Spontaneous
Places Audio Captions (Hindi) hi 100000 100000 139 316 Spontaneous
SpokenCOCO en 123287 605000 2352 742 Read aloud

Table 2: Overview of spoken image caption datasets.

source of inspiration as well as a source of data to enable the creation of analogous datasets
for spoken language.

3.1 Spoken Image Captions

This section provides an overview of the spoken datasets derived from image captioning
datasets. For a summary, see Table 2.

3.1.1 Flickr Audio Captions Corpus

The Flickr Audio Captions Corpus (Harwath & Glass, 2015) is based directly on Flickr8K:
it consists of the same images, while the written captions were read aloud and recorded
by crowd workers (who were not shown the images). The recordings were quality-filtered
by running an ASR system on them and matching the output against the original written
captions and discarding the audio if more than 40% of the words could not be recognized. The
moderate size of this corpus (approx. 46 hours of speech) and the availability of ground-truth
written captions has made it a popular testbed for algorithmic developments and analyses of
visually grounded models of spoken language.

3.1.2 Corpora Derived From COCO

The original COCO dataset is the source of four different spoken caption corpora. Three
of these feature synthetically generated captions, and the third one consists of read-aloud
captions.

Synthetically Spoken COCO The first of these datasets, Synthetically Spoken COCO
(Chrupała, Gelderloos, & Alishahi, 2017b, 2017a) was created by passing all the written
captions of COCO through the Google Text-to-Speech web API.5 The main limitation of
this data is that it uses a single voice, and lacks tempo variation, disfluencies and noise.

Synthetically Spoken STAIR This dataset (Havard, Chevrot, & Besacier, 2018, 2019a)
is constructed using the same methodology as Synthetically Spoken COCO but is based on
the Japanese-language version of COCO, named STAIR (Yoshikawa, Shigeto, & Takeuchi,

5. Via https://github.com/pndurette/gTTS.
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2017). Note that the written Japanese captions in STAIR are created independently by
Japanese speakers and not translated from English. The spoken captions are synthesized,
and exhibit the same limitations as the English synthetically spoken captions.

SPEECH-COCO This COCO-based corpus, SPEECH-COCO (Havard & Besacier, 2017;
Havard, Besacier, & Rosec, 2017) addresses some of these limitations. It uses Voxygen’s
text-to-speech system6 to synthesize the speech for the COCO written captions, using eight
different English voices (half British, half American, half male, half female). The tempo was
manipulated: 1

3 of the captions are 10% slower than the original pace, 1
3 are 10% faster; to

30% of the captions various disfluencies (um, uh, er) were added.

These synthetic speech datasets have seen limited adoption but have been initially useful
for experiments with large-scale, clean-speech data, and have enabled analyses which require
synthesizing stimuli (see Section 8).

SpokenCOCO The final COCO-based dataset (Hsu, Harwath, Song, & Glass, 2020)
consists of almost all the COCO captions read aloud by 2,353 Amazon Mechanical Turk
crowd workers. To date, it has only been used in a system to synthesize spoken captions
conditioned on images (Hsu et al., 2020).

3.1.3 Places-Based Corpora

Another set of datasets is based on the images from the MIT Places 205 database (Zhou,
Lapedriza, Xiao, Torralba, & Oliva, 2014) which contains 2,448,873 images from 205 scene
categories such as indoor (bedroom, bar, shoe shop), nature (fishpond, rainforest, watering
hole), or urban (street, tower, soccer field). There are two corpora based on this data: one
English and one Hindi. The English-language dataset (Harwath, Torralba, & Glass, 2016)
consists of 400,000 utterances spoken by 2,683 American English speakers. Captions on
average contain 19.3 words and have an average duration of 9.5 seconds The Hindi-language
dataset (Harwath, Chuang, & Glass, 2018) consists of 100,000 utterances spoken by 139 Hindi
speakers. Captions contain an average of 20.4 words and have an average duration of 11.4
seconds.

In both cases the captions are spontaneously spoken descriptions of images from Places 205:
workers are simply shown an image and asked to describe the salient objects in several
sentences. Unlike for the Flickr8K and COCO datasets, there is only a single caption per
image. For 85,480 of the images there is a caption in both English and Hindi.

These are the only major datasets which feature spontaneous rather than read-aloud
speech. This increases their ecological validity for the purposes of modeling language
acquisition. The flip side is that many types of analyses become challenging due to the lack
of ground-truth transcriptions.

One point to keep in mind regarding the English Places dataset is that results on it have
been reported while it was still under development, making direct comparisons among papers
evaluating on this dataset difficult.

6. See https://www.voxygen.fr.
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3.2 Video Datasets

As discussed in Section 6, a recent development has been the collection and use of datasets
containing video clips which contain spoken descriptions or narratives related to the activity
depicted in the video. We briefly overview the main video-based dataset below.

YouCook2 This datasets consists of approximately 2,000 cooking videos sourced from
YouTube (Zhou, Xu, & Corso, 2018).

YouTube-8M This is a large scale video dataset consisting of 6.1 million YouTube videos
belonging to over 3,800 categories, including instructional videos (Abu-El-Haija, Kothari,
Lee, Natsev, Toderici, Varadarajan, & Vijayanarasimhan, 2016).

Howto100m The dataset consists of 136 million video clips sourced from 1.22 million
narrated instructional web videos (Miech, Zhukov, Alayrac, Tapaswi, Laptev, & Sivic, 2019).

Spoken Moments in Time This dataset contains over 500,000 different three-second
videos depicting a broad range of different events, together with oral descriptions (Monfort,
Jin, Liu, Harwath, Feris, Glass, & Oliva, 2021).

4. Start of the Second Wave

The datasets described above eventually enabled experimentation with the first large-scale
neural models. In their pioneering work, Synnaeve, Versteegh, and Dupoux (2014) experiment
with a neural architecture trained on a dataset assembled by merging the Pascal1K dataset
(Rashtchian et al., 2010) which contains one thousand images with five written captions
each, together with the LUCID speech corpus (Baker & Hazan, 2010). Speech segments
corresponding to words are matched to image fragments (based on written captions). Speech
features consist of flattened Mel filterbank coefficients; image features are extracted using
a pre-trained Regional Convolution Neural Network (RCNN) (Girshick, Donahue, Darrell,
& Malik, 2014). The model consists of a speech branch and an image branch, both of
which are mutlilayer perceptrons (MLPs) with ReLU activations. Matched and mismatched
image-word pairs are encoded into vectors by these branches: the network is trained via
the cosine-squared-cosine loss function which ensures that matching pairs are similar while
mismatching pairs are orthogonal in the vector space:

`coscos2 =

{
1
2(1− cos(I, S)) if matched
cos2(I, S) if not matched

(1)

where I and S are the vectors corresponding to the image fragment and spoken word,
respectively, and cos(·, ·) is the cosine similarity function. The model is evaluated on
retrieving words (types or tokens) given an image and vice versa, and compared to a random
baseline, which it consistently outperforms. This work is the first of the second wave, but
quite preliminary in its use of a small and artificially assembled dataset.
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4.1 Embedding Alignment Model

Independently7, Harwath and Glass (2015) introduced the Flickr Audio Captions dataset
and reported on experiments with a model to learn multimodal embeddings of this data
using a somewhat similar neural architecture. The images were processed using an RCNN
pre-trained in a supervised fashion on ImageNet, extracting 4096-dimensional feature vectors
for each of 19 regions in an image, plus one for the whole image. The spoken utterances are
preprocessed by segmenting the audio at word boundaries via force-alignment to ground-
truth transcriptions. The spectrograms corresponding to words were then passed through a
supervised CNN model pre-trained on the Wall Street Journal SI-284 split (Paul & Baker,
1992) and using the 1024-dimensional activation vectors from the final fully connected layer
as audio features.

The core of the architecture is the embedding alignment model, based on Karpathy, Joulin,
and Fei-Fei (2014), whose job it is to embed the features extracted from audio segments and
region images into a common representation space. The visual features are projected to this
space via an affine transform, while the audio features are projected via an affine transform
followed by a ReLU. The objective function used to train these transforms is the triplet-like
loss from Karpathy and Fei-Fei (2015): a version of this loss is used in most subsequent work
on visually grounded models of spoken language. Its general form is defined as:

` =
∑
ui

[∑
u′

max(0, Su′i − Sui + α) +
∑
i′

max(0, Sui′ − Sui + α)

]
(2)

where α is a margin, Sui is a similarity score between a matching caption-image pair, and Su′i

and Sui′ denote similarity scores between mismatched pairs, i.e. negative examples (typically
sampled from the current batch). In Harwath and Glass (2015) the margin is set to α = 1
and the caption-image similarity is measured by:

Sui =
∑

t∈regions(i)

max
i∈words(u)

(0, eTi et), (3)

where eTi et stands for the inner product between the embedding of word i and the embedding
of region t. In order to evaluate the architecture, Harwath and Glass (2015) adopt the
approach from work on written captions and rank images with respect to a caption (or
captions with respect to an image) and report recall@10, i.e. the proportion of true matches
that are found in the top ten items in the ranking. See Section 8.1 for details of the evaluation
metrics and for an overview of the results on the different datasets.

4.2 Predicting Image Features from Phoneme Strings

Gelderloos and Chrupała (2016) experimented with COCO images and written captions
converted into sequences of phonemes:8 as such their work is not strictly speaking about
modeling spoken language in its audio modality9; it is, however, worth mentioning here

7. The work of Harwath and Glass (2015) seems to be independent, as Synnaeve et al. (2014) is not cited.
8. See Section 8.2.1 for a brief discussion of phonemes and phonemic transcription.
9. Note that while a few other works mentioned here resort to transcribing spoken utterances using a

pre-trained ASR model, Gelderloos and Chrupała (2016) do not work with the speech signal at all but
rather convert the textual captions to canonical phonemic transcriptions directly.
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because it introduces many of the approaches to analysis of learned representations which
became a major preoccupation in later work with visually grounded models of spoken
language.

The phonetic transcriptions are automatically generated from textual captions using the
grapheme-to-phoneme mode of eSpeak10; spaces are removed to simulate connected speech.
The visual part of the architecture consists of a convolutional neural network (Simonyan &
Zisserman, 2015) pre-trained on the ImageNet database (Deng, Dong, Socher, Li, Li, & Fei-
Fei, 2009): visual features for an image are obtained by extracting the activations of the final
fully-connected layer in this network. The phonetic input was processed via a stack of three
Gated Recurrent Unit (GRU) layers (Chung, Gulcehre, Cho, & Bengio, 2014) (with residual
connections between layers). The activation vector of the top layer at the last timestep
is then mapped to match the image feature vector and learning proceeds by minimizing
the mean squared error (MSE) of the predicted image vector. The focus of this work is on
understanding how the network learns to construct a series of internal representations which
enable it to map sequences of phonemes to visual features: it shows that lower layers in
the recurrent stack encode comparatively more information related to form, whereas higher
layers encode meaning more strongly. This conclusion is reached based on analyses such as
predicting word boundaries from recurrent layer activations (which was easiest for layer 1) as
well as correlating word similarities obtained from the network activations to phoneme-string
edit distances (the relation is strongest for layer 1) and to human similarity judgments (the
correlation is highest for layer 3). These analyses pre-figured those used in recent work on
analyzing neural models of (spoken) language: see also Section 8.2.

5. Encoder Architectures

The basic template of models of visually grounded spoken language consists of a pre-trained
image classification network used to extract image features, together with an encoder for
the audio signal, trained end-to-end, combined with the module which matches these two
modalities such as the embedding alignment model described in Section 4. Most of the
architectural variability has been on the side of the audio encoder. Figure 1 shows the most
prominent software implementations of these architectures, with a link to the repository and
a brief comment on the main features.

5.1 Convolutional Audio Encoders

Many works have followed Harwath et al. (2016) in using a convolutional architecture with
a spectrogram as input to encode the audio signal (e.g., Harwath & Glass, 2017; Harwath,
Recasens, Surís, Chuang, Torralba, & Glass, 2018; Harwath et al., 2018; Boggust, Audhkhasi,
Joshi, Harwath, Thomas, Feris, Gutfreund, Zhang, Torralba, Picheny, et al., 2019, ). This
approach treats the input as a two-dimensional grayscale image, and adapts convolutional
architectures from computer vision to the work with spectrograms: the encoder consists of
a number of two-dimensional convolutional layers interspersed with maxpooling layers. In
order to capture the fact that the vertical dimension in a spectrogram which corresponds
to frequency should not be translation invariant, the height of the first convolutional layer

10. Available at http://espeak.sourceforge.net
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Layer Channels Width Height Stride Activation

1 Convolution 128 1 40 1 ReLU
2 Convolution 256 11 1 1 ReLU
3 Maxpool 3 1 2
4 Convolution 512 17 1 1 ReLU
5 Maxpool 3 1 2
6 Convolution 512 17 1 1 ReLU
7 Maxpool 3 1 2
8 Convolution 1024 17 1 1 ReLU
9 Meanpool ∞ 1 1
10 L2 norm

Table 3: The architecture of the convolutional speech encoder in Harwath and Glass (2017).

spans the entire height of the spectrogram (40 pixels, each pixel corresponding to one of 40
bandpass filters), thus collapsing the frequency dimension such that subsequent layers are
convolutional only over the time dimension. The final maxpooling operation spans the entire
duration of the utterance and aggregates it into a single vector, which is then L2-normalized.
In practice, the spectrogram is also truncated or padded such that all utterances are of the
same size, corresponding to 10s or 20s. As an example, Table 3 shows the full specification
of the audio encoder as described in Harwath and Glass (2017).

Residual Network Another technique borrowed from computer vision is the use of
residual blocks which belong to the same general family of convolutional layers but with
some important innovations, especially the introduction of residual connections. Such a
ResNet encoder is described in Hsu, Harwath, and Glass (2019) with the make-up of the
residual blocks borrowed from He, Zhang, Ren, and Sun (2016), and further adapted to
induce discrete units via vector quantization in Harwath, Hsu, and Glass (2020).

5.2 Recurrent Audio Encoders

The main alternative to a convolutional speech encoder has been to use some kind of a
recurrent architecture applied to the input converted to Mel-Frequency Cepstral Coefficient
(MFCC) representation (with delta and double-delta features, which capture the first and
second derivative of the converted signal). Chrupała et al. (2017a) introduce an encoder
which consists of a convolutional layer followed by a stack of recurrent highway network
(RHN) layers (Zilly, Srivastava, Koutnık, & Schmidhuber, 2017), followed by an attention-like
pooling operator.11 The initial convolutional layer used here is a one-dimensional convolution
along the time dimension, with a stride > 1 resulting in a temporal subsampling of the signal.
The pooling operator in this family of architectures is a weighted sum over the full extent of

11. RHNs are a type of recurrent network which feature multiple so-called micro-steps between actual
times-steps of the input. Subsequent work (e.g., Chrupała, 2019; Merkx, Frank, & Ernestus, 2019, ) has
tended to replace RHNs with simpler layers such as (bidirectional) GRUs which have widely available
optimized low-level CUDA support, making them much more efficient.
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Layer Parameters

1 1D Convolution Channels=64, Kernel=6, Stride=2
2 Bidirectional GRU Hidden=2× 1024, Layers=4
3 Attention pooling Hidden=128, Vectorial

Table 4: The architecture of the recurrent speech encoder in Chrupała et al. (2020).

the time dimension, where the weights are learned (also called self-attention). The original
recurrent encoder of Chrupała et al. (2017a) features scalar weights computed by applying
a Multi-Layer Perceptron to the activations of the topmost recurrent layer, resulting in a
single weight per timestep. More recent work (e.g., Merkx et al., 2019; Chrupała, Higy, &
Alishahi, 2020, ) has used vectorial weights, resulting in a single weight per time-step per
dimension, defined as:

Attn(h) =
∑
t

αt � ht (4)

with the weight vectors computed via:

αt = softmaxt (MLP(ht)) (5)

As an example, Table 4 shows the full specification of the recurrent encoder as described in
Chrupała et al. (2020).

5.3 Temporal and Spatial Localization

All the architectures described in Sections 5.1 and 5.2 rely on encoding both the utterance
and the image into a single vector, thus aggregating over the time and space dimensions and
making the models incapable of associating regions of the images to spans of the audio signal.
This limitation is addressed in Harwath et al. (2018) by discarding the final pooling and fully
connected layers of the visual encoder. The feature maps in the final convolutional layer of
the resulting network can be directly related to the input image. Similarly, the audio encoder
is modified such that it does no subsampling or pooling over the whole extent of the caption,
and thus keeps temporal localization. The relations between regions in the image feature
maps and the frames of the audio feature map are encoded in the so-called matchmap which
is a three-dimensional tensor storing affinities between each point in the two-dimensional
visual feature map and each frame in the one dimensional feature map of the audio signal.
The values in this matchmap are then aggregated into an overall image-utterance similarity
score needed by the objective in Equation (2), via a scoring function. The one which tends
to perform best is named MISA (for maximum over image, sum over audio) and it matches
each frame in the audio feature map to the best image patch, and then averages over the
whole utterance:

MISA(M) = mean
t

(
max
r,c

Mr,c,t

)
, (6)

where M is the matchmap, Nt is the number of audio frames, and r, c range over the spatial
coordinates of the visual feature map.
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DAVEnet
Harwath et al. (2018)
https://github.com/dharwath/DAVEnet-pytorch
Audio is converted to a spectrogram and processed via a CNN.

ResDAVEnet-VQ
Harwath et al. (2020)
https://github.com/wnhsu/ResDAVEnet-VQ
Audio is converted to a spectrogram and processed via a ResNet, with vector-
quantization layers inducing discrete representations.

Platalea
Chrupała et al. (2020)
https://github.com/spokenlanguage/platalea
Audio is converted to MFCC features and processed via a stack of bidirectional GRUs,
followed by attention pooling.

Speech2image
Merkx et al. (2019)
https://github.com/DannyMerkx/speech2image
Audio is converted to MFCC as well as a number of other audio feature types and
processed via a stack of bidirectional GRUs, followed by attention pooling.

Figure 1: Overview of implementations of models of visually grounded spoken language
learning.

5.4 End-to-End Visual Encoder

Unlike most previous and subsequent work, Harwath et al. (2018) experiment not only with
a pre-trained visual encoder, but also evaluate the performance of one trained from scratch
only on the images in the Places dataset. As expected due to limited training data, the
performance in this condition is substantially lower (see Tables 6 and 7), but the experiment
shows that it is feasible to train a visually grounded model of spoken language entirely
end-to-end.

6. Grounding in Video

The majority of extant work on visual grounding of spoken language has used static images,
due both to the wider availability of curated captioned image datasets, as well as the
inherent complexity of modeling two weakly synchronized modalities in the temporal domain.
However, for humans visual perception is inherently extended in time, and visual grounding
of language based on still images is arguably suboptimal also from an engineering point of
view. Many aspects of language are related to processes or actions evolving over time rather
than static states and may be more naturally grounded in video. This intuition has led to
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increasing interest in collecting video datasets coupled with spoken narratives and extending
the modeling approaches to the video modality. This fast-developing area will likely see
important advances in the immediate future: we thus do not attempt a detailed, definitive
account of current modeling efforts here, but rather choose to provide a concise high-level
overview.

6.1 Single Video Frames

Boggust et al. (2019) tackle this challenge by focusing on the constrained domain of instruc-
tional cooking videos and explore the various degrees of supervision applied to sampling
audio-visual fragments. The architecture itself does not attempt to model the temporal
nature of video and simply applies DAVENet to stills extracted from the video stream
together with samples of audio. Even with no supervision (i.e. uniform sampling of still-audio
pairs) the model does learn some cross-modal correlations. The loose synchrony between the
two modalities, such that objects may be mentioned in the audio at a different point in time
than they occur in the video, remains the main challenge for this approach.

6.2 Video Encoder

Rouditchenko, Boggust, Harwath, Chen, Joshi, Thomas, Audhkhasi, Kuehne, Panda, Feris,
Kingsbury, Picheny, Torralba, and Glass (2021) present an architecture (AVLNet) which
does model the time dimension in the video stream: the network consists of an audio encoder
(ResNet-based), a video encoder which combines 3D and 2D modeling (also ResNet-based),
as well as an optional text encoder. This architecture is trained with a contrastive loss on
randomly sampled audio-video fragments from the Howto100m dataset (Miech et al., 2019)
consisting of 136 million video clips sourced from 1.22 million narrated instructional web
videos. The model is evaluated on the video clip and language retrieval tasks on smaller video
datasets annotated with clip boundaries and text summaries, and is shown to outperform
previously proposed models of Arandjelovic and Zisserman (2018) and Boggust et al. (2019).
The model also transfers to the image-audio retrieval setting. Qualitative analysis suggests
that the model aligns semantically related audio and visual features to particular dimensions
of the embedding space.

6.3 Beyond Instructional Videos

The instructional videos used in the above-mentioned works are very specific and limited
in the type of visual scenes and language they contain. These limitations are lessened in
the Spoken Moments in Time dataset which contain over 500,000 different three-second
videos depicting a broad range of different events, together with oral descriptions (Monfort
et al., 2021). The authors show that a model trained on this dataset does indeed generalize
better than those trained on other video-caption data, due to its large coverage, diversity
and scale. To enable this cross-dataset comparison, an architecture containing a pre-trained
ASR module was used, but in addition a model directly aligning spoken captions with video
was likewise shown to be effective.

686



Visually Grounded Models of Spoken Language

7. Variants and Applications

The basic architectures described above have given rise to many variations tackling different
additional aspects of visual grounding of spoken language. These include application to
keyword spotting and speech-based retrieval, multilingual models, the use of auxiliary
supervision, fine-grained localization and language unit discovery.

7.1 Keyword Spotting

One line of work, inititated by Kamper, Settle, Shakhnarovich, and Livescu (2017), uses
the visual modality as a bridge to learn keyword spotting from untranscribed but visually
grounded speech. The architecture consists of a (convolutional) audio encoder which is trained
via the cross entropy loss to mimic the output of the softmax over labels of a pretrained
image classification model, for the image paired with the spoken utterance. This enables the
model, after training, to map spoken utterances to a bag-of-words representations, where the
words are the labels used by the image classification system. This model can then act as a
keyword-based retrieval method, where the goal is to find all the utterances in a candidate
pool containing the keywords in a given query. The authors show that the mistakes made
by this system are often based on meaning and not the sound of the words, for example
mixing up the keywords boys and children. This makes the method effective as a semantic
keyword spotter. This work has led to a number of follow-ups and extensions (e.g., Kamper
& Roth, 2018; Kamper, Anastassiou, & Livescu, 2019; Kamper, Shakhnarovich, & Livescu,
2019; Olaleye, van Niekerk, & Kamper, 2020, ).

7.2 Multilinguality

The large majority of work on visually grounded models of spoken language have focused
on a single language, and specifically on English. The most salient exception is Harwath
et al. (2018) who collect Hindi spoken captions for a subset of the Places images, and use
this data and explore a multilingual architecture based on Harwath and Glass (2017), which
projects images, English speech and Hindi speech into a joint semantic space via three
separate encoders. They experiment with loss functions which combine ranking objectives in
various configurations: for example rank English captions against an image, rank English
captions against a Hindi caption, rank Hindi captions against an image, etc. They find that
a multilingual model trained on both languages outperforms monolingual models, and also
show the feasibility of semantic cross-lingual speech-to-speech retrieval using a multilingual
model.

Havard et al. (2019a) create a dataset of synthetic Japanese captions, and show that
visually grounded models of spoken language based on the recurrent encoder architecture and
trained on English and Japanese captions learn to focus the self-attention weights on nouns
more than to any other category of word. Additionally, the Japanese model also focuses on
particles such as ga which indicate grammatical function, mimicking Japanese toddlers in
this regard.

Ohishi, Kimura, Kawanishi, Kashino, Harwath, and Glass (2020b) collect a Japanese
version of the Places audio captions in order to explore tri-lingual models and further Ohishi,
Kimura, Kawanishi, Kashino, Harwath, and Glass (2020a) propose pair-expansion techniques
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for settings when captions are not aligned across languages. This dataset is not currently
publicly available but the authors plan to release it in future.12

Kamper and Roth (2018) use the visual modality as a pivot to enable a cross-lingual
task. In their case it is cross-lingual keyword-spotting: given a text keyword in one language,
the task is to retrieve spoken utterances containing that keyword in another language. They
adapt the approach of Kamper et al. (2017) to the setting of retrieving English spoken
utterances using German text keywords.

7.3 Auxiliary Textual Supervision

Several works have proposed including additional supervision signal into the basic visually-
grounded speech scenario using textual data in some form. This idea departs somewhat from
the premise of most other work discussed so far in that it relies on textual supervision to
some extent. In some settings however, the availability of moderate amounts of text is a
reasonable assumption. Chrupała (2019) demonstrates the use of speech transcriptions in a
multi-task setup as a way of injecting an inductive bias to nudge the model towards learning
more symbol-like representations. Pasad, Shi, Kamper, and Livescu (2019) use a very similar
approach while specifically focusing on low-resource settings and testing the effect of varying
the amount of textual supervision. Higy, Elliott, and Chrupała (2020) investigate two forms
of textual supervision in low-resource settings: transcriptions, and text translations. They
also compare the multi-task learning approaches to simple pipeline architectures where text
transcriptions are used to train an ASR module, and find that in most cases the pipeline
is hard to improve on. Ilharco, Zhang, and Baldridge (2019) exploit textual supervision in
a more indirect manner, via a text-to-speech (TTS) system trained on transcribed speech.
The use it to automatically generate large amounts of synthetic training material for a
visually grounded speech model: they obtain substantial performance improvements using
this approach.

7.4 Fine-Grained Spatial Localization

Pont-Tuset, Uijlings, Changpinyo, Soricut, and Ferrari (2020) ask annotators to orally
describe an image while hovering their mouse over a relevant region of the image. This
results in each audio segment being explicitly grounded in a specific portion of the image.
The resulting dataset, Localized Narratives, consists of 849,000 images sourced from COCO,
Flickr30k, and ADE20K (Zhou, Zhao, Puig, Xiao, Fidler, Barriuso, & Torralba, 2019) and
Open Images (Kuznetsova, Rom, Alldrin, Uijlings, Krasin, Pont-Tuset, Kamali, Popov,
Malloci, Kolesnikov, et al., 2020). Pont-Tuset et al. (2020) demonstrate the utility of this
information for controlled image captioning in the written modality. However, it is clear
that such alignments between audio and image regions would also be useful as an auxiliary
supervision signal for visually grounded models of spoken language, as well as for analysis
and evaluation of these architectures. A related dataset, with a similar potential, is Room-
across-Room which has spoken navigation instructions that are temporally aligned with the
guide’s 3D camera pose (Ku, Anderson, Patel, Ie, & Baldridge, 2020).

12. David Harwath, personal communication.
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7.5 Unit Discovery

An emerging trend in neural architectures, especially as applied to the speech signal, is the
use of mechanisms to enable them to induce discrete, symbol-like internal representations,
motivated by concepts such as phonemes and morphemes. Recent editions of the ZeroSpeech
challenge (Dunbar, Algayres, Karadayi, Bernard, Benjumea, Cao, Miskic, Dugrain, Ondel,
Black, et al., 2019) on unit discovery have featured many such approaches. In the visually-
grounded setting, (Harwath et al., 2020) adopt the vector-quantization (VQ) approach
proposed by van den Oord, Vinyals, and Kavukcuoglu (2017), inserting VQ layers at various
points in the speech encoder. They analyze the nature of the learned discrete units. They
see evidence that units at lower levels correspond roughly to phonemes while those at higher
levels are more word-like. Higy, Gelderloos, Alishahi, and Chrupała (2021) carry out detailed
analyses of a visually grounded model with VQ similar to (Harwath et al., 2020) as well as a
self-supervised speech-only model of van Niekerk, Nortje, and Kamper (2020), testing the
effect of codebooks size (i.e. the number of discrete units), as measured via several metrics.
They show that the different evaluation metrics can give inconsistent results, and that while
in general VQ-based discrete representations do correlate with units posited in linguistics,
this correlation is moderate in strength at best.

7.6 Speech-Based Image Retrieval

Retrieval of images based on spoken captions often features as one of the motivations
for visually grounded models of spoken language; image and/or caption retrieval has also
served as the basis of the intrinsic evaluation metrics for these models (see Section 8.1). In
contrast, Sanabria, Waters, and Baldridge (2021) focus on speech-based image retrieval as
the application of interest and carry out an extensive study of how this task is affected by
encoder architectures and training and pre-training methodology. Their best configuration
outperforms an ASR-based pipeline approach in cases when speech is spontaneous, accented,
or otherwise challenging.

Peng and Harwath (2021) also focus on speech-based retrieval and propose an architecture
which combines two modality-specific encoders for speech and images with dual-modality
featuring cross-modality attention.13 The single-modality encoders enable fast retrieval of
matching candidates, as the encoding of each input can be computed independently and
cached. The dual-modality encoder with cross attention needs to be applied to each pair of
inputs and is thus slow, but more accurate: it is thus applied to a small set of candidates
retrieved via the single-modality encoders, resulting in an overall fast and accurate retrieval.
The system is evaluated on multiple image caption datasets (Flickr Audio Captions, Places
and SpokenCOCO); the representations learned are benchmarked against datasets provided
by the 2021 Zero-Resource Speech Challenge, Visually Grounded Track (Alishahi, Chrupała,
Cristia, Dupoux, Higy, Lavechin, Räsänen, & Yu, 2021).

13. Transformer is a type of network which relies on several layers of multiple self-attention heads to encode
input efficiently; this component was first introduced for NLP tasks (Vaswani, Shazeer, Parmar, Uszkoreit,
Jones, Gomez, Kaiser, & Polosukhin, 2017) and has since been applied to many other domains: Peng and
Harwath (2021) is the first work to adopt it for modeling visual grounding of speech.
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7.7 Image Generation

Wang, Tian, Zhu, and Scharenborg (2021) investigate the learning of fine-grained visual
distinctions from two datasets: one of bird specimens Wah, Branson, Welinder, Perona,
and Belongie (2011) and one of flowers Nilsback and Zisserman (2008). In both cases
spoken captions are generated using a TTS system. Fine-grained visual representations are
evaluated cross-modal retrieval as well as speech-to-image generation, implemented using an
architecture based on Zhang, Xu, Li, Zhang, Wang, Huang, and Metaxas (2018).

7.8 Unwritten Languages

One practical motivation for developing visually grounded models of spoken language has been
to enable speech-based applications for language without a widely-used standardized writing
system. For such language the use of standard ASR and Text-to-Speech (TTS) approaches is
difficult due to lack of transcribed speech. Scharenborg, Besacier, Black, Hasegawa-Johnson,
Metze, Neubig, Stüker, Godard, Müller, Ondel, Palaskar, Arthur, Ciannella, Du, Larsen,
Merkx, Riad, Wang, and Dupoux (2020) focus on this setting and describe systems to carry
out translation of speech, speech-to-image retrieval, and image-to-speech generation. The
first system is trained on data from a true unwritten language (Mboshi), while the latter
two rely on visual grounding via the Flickr Audio Caption dataset, used to simulate the
unwritten language scenario.

8. Evaluation Metrics and Analysis Techniques

This section focuses on evaluation and analysis techniques for the second-wave systems. The
evaluation of early models has some parallels, but the metrics are often very model-specific
and are thus discussed in Section 2.

The most widely used approach to measure the performance of visually grounded models
of spoken language has been to use a set of metrics closely related to these model’s objective
function, i.e. the triplet loss from Equation (2), but more clearly interpretable. We will refer
to this set of metrics as intrinsic.

In addition, many works have proposed a variety of ways to analyze and evaluate the
spoken utterance embeddings extrinsically, with reference to some external gold standard
representations of phonological form, the lexicon or semantics. We will refer to these types
of evaluations as extrinsic.

8.1 Intrinsic Evaluation

The main metrics to evaluate intrinsic performance are based on setting up a retrieval task
on the development and/or test set image-caption pairs. The learned embeddings are used
to rank images with respect to a given caption, or rank captions with respect to a given
image, and we measure the quality of the ranking by checking whether the true matches are
top-ranked. For clarity, in the following we will refer to retrieving images associated with a
give caption; the metrics work analogously for retrieving captions for an image.

Specifically, recall@N refers to looking at the top N images in the ranking, and calculating
the proportion of the truly matching images captured within this set, averaged over the
captions. Median rank refers to the position in the ranking of the truly matching image,
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System Recall@1 Recall@5 Recall@10 Median rank

Harwath and Glass (2015) - - 0.179 -
Chrupała et al. (2017a) 0.055 0.163 0.253 48
Merkx et al. (2019) 0.084 0.257 0.376 21
Scholten et al. (2021) 0.107 0.292 0.402 18

Table 5: Overview of image retrieval performance on Flick Audio Captions test data.

System Recall@1 Recall@5 Recall@10

Harwath et al. (2016) 0.148 0.403 0.548
Harwath and Glass (2017) 0.161 0.404 0.564
Harwath et al. (2018) MISA 0.200 0.469 0.604
Harwath et al. (2018) MISA end-to-end 0.079 0.225 0.314
Khorrami and Räsänen (2021) CNN1 - - 0.522

Table 6: Overview of caption retrieval performance on Places test data, with models trained
on full Places training data. First four rows as reported in Harwath et al. (2018).

taking the median of this number over the captions. A true match is determined by whether
the caption and image are associated in the dataset: it should be noted that using this
definition of true match will tend to underestimate the performance of the embeddings, as it
is possible and not uncommon for multiple other images in the data to also be semantically
closely associated with the given caption, even though they are not paired in the dataset.
This can arise because there may be multiple images depicting quite similar situations.

According to these metrics, there has been substantial progress on the two most widely
used datasets, Flickr Audio Captions and Places. Table 5 shows the results for image retrieval
on Flickr as reported in a number of works since 2015 (caption retrieval numbers are not
available for most of these systems). Tables 6 and 7 show the results for both caption and
image retrieval on Places: note that here most of the numbers come from the experiments
reimplemented on the complete data as reported by Harwath et al. (2018), as the numbers
reported in previous papers used different subset and/or split of the dataset.

8.2 Extrinsic Evaluation

Neural network architectures such as those adopted for the recent work on visually grounded
models of spoken language use many levels of hidden distributed representations. This often
presents an obstacle when we want to understand what the models have learned and to
control some aspect of their behavior. The solution has been to devise techniques for probing
these representations and analyzing their relation to established units and representations
from linguistics.
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System Recall@1 Recall@5 Recall@10

Harwath et al. (2016) 0.121 0.335 0.463
Harwath and Glass (2017) 0.130 0.378 0.542
Harwath et al. (2018) MISA 0.127 0.375 0.528
Harwath et al. (2018) MISA end-to-end 0.057 0.191 0.291
Khorrami and Räsänen (2021) CNN1 - - 0.525

Table 7: Overview of image retrieval performance on Places test data, with models trained
on full Places training data. First four rows as reported in Harwath et al. (2018).

Spelling A young woman riding a horse holding a flag.
IPA əˈjʌŋˈwʊmənˈɹaɪdɪŋəˈhoɹsˈholdɪŋəˈflæɡ

Table 8: Phonological form (US-English) in the International Phonetic Alphabet for an
example utterance. The symbol " indicates that the following syllable is stressed.

8.2.1 Phonological Form

For the purpose of linguistic analysis the form of spoken utterances is often abstracted into a
sequence of basic units known as phonemes. Phonemes are the smallest sound units specific
to a language such that exchanging one phoneme for another can alter the meaning of the
utterance, as in the following pair of English words: pad-pat. Table 8 shows an example
utterance rendered in standard English spelling and a sequence of phonemic symbols.

Phonological form abstracts away much of the information present in the concrete
waveform of an utterance, including speaker identity and demographic attributes, tone of voice
including emotion, tempo, or environmental noise. We would expect that a visually grounded
model trained on spoken image captions would also learn to abstract away these aspects
of the audio signal, given that representing them is not useful to score well on the model’s
objective function. Additionally, if linguistic theory is correct in positing that utterances
are built up from phonemes, we may wonder whether models are able to discover this fact.
For these reasons several works have proposed ways of testing the learned representations
of visually grounded models of spoken language against ground-truth phonological forms;
similar analyses have also been carried out for automatic speech recognition (ASR) models
(Belinkov & Glass, 2017; Krug, Knaebel, & Stober, 2018; Belinkov, Ali, & Glass, 2019).

Analyzing and evaluating neural representations is a rapidly changing field and as such
there are a variety of methodological proposals and results and there is no consensus so far
on what the best practice should be. Below we outline the most prominent methods which
have been applied to evaluating phonological forms in visually grounded models of spoken
language. Note that most of these methods are quite generic and can be applied to units or
representations other than phonological form, but here we focus on their use to probe for
phonological information.
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Phoneme boundary detection Harwath and Glass (2019) extract activations of the
conv2 layer of the model of Harwath et al. (2018), correlate peaks in activation (after applying
L2-norm across channels) with ground-truth phoneme boundaries in TIMIT, and find that the
resulting phone boundary detection accuracy compares favorably with existing unsupervised
methods. This suggests that utterances are implicitly segmented into phonemes within this
architecture. These findings were partially corroborated by Khorrami and Räsänen (2021),
with the proviso of rather lower scores and the fact that implicit phoneme segmentation is
also present to a large extent in activations from untrained models, and thus is not fully due
to learning, but simply to network dynamics.

Diagnostic classifier (DC) A common approach is to train a separate diagnostic model
(or probe) which takes the representation learned by the target visually grounded model
as input features and ground-truth phoneme labels as labels. This model’s accuracy on
held-out data can be seen as a measure of the strength of encoding of phonology in the
target representations. Alishahi, Barking, and Chrupała (2017) apply this idea to the model
of Chrupała et al. (2017a) trained on the Synthetically Spoken COCO dataset. Overall,
they find that phoneme representations are most salient in lower layers of the architecture,
although they do persist even in the top layers. Chrupała et al. (2020) recommend to compare
the accuracy of the diagnostic classifier on the target model to the accuracy on the untrained
version of the target model: it is often the case that even the representations extracted from
an untrained, randomly initialized model contain enough information to enable the diagnostic
classifier to perform substantially above the majority baseline.

ABX The ABX discriminability metric was introduced by Schatz (2016) and used by
Alishahi et al. (2017) to evaluate phoneme representations in the model of Chrupała et al.
(2017a). It is based on triples of stimuli (A,B,X) where A and X belong to the same
category and B and X belong to different categories. The ABX error is a function of d(A,X)
and d(B,X) where d(·, ·) is a distance metric for the representation being evaluated:

abx(A,B,X) =


1 if d(A,X) > d(B,X)
1
2 if d(A,X) = d(B,X)

0 otherwise
(7)

In the case of phoneme discrimination, the categories are determined by ground-truth
phoneme information: consider the case where A = tu, B = du and X = ti. The task is
to determine whether ti should be grouped with target tu or with du. The correct answer
is tu since it only differs from ti by one phoneme and they form a minimal pair, while ti
and du are not a minimal pair. Note that the target and distractor are typically matched
on some attribute, in this case the context vowel. When applied to representations such
as sequences of activation vectors, matching between stimuli is determined by computing
pairwise distances. This can be done by first mean- or max-pooling the activations, and
then calculating the cosine (or other) distance between the resulting vectors, or by directly
computing the distance between two sequences of vectors using the dynamic time warping
(DTW) algorithm. One feature of the ABX metric is that it is based on a set of tightly
controlled stimuli. Alishahi et al. (2017) used synthetic audio; in other work such stimuli
have been extracted from utterances using aligned phonemic transcriptions (Dunbar et al.,
2019; Higy et al., 2021).

693



Chrupała

RSA Representational Similarity Analysis (RSA) originates in neuroscience (Kriegeskorte,
Mur, & Bandettini, 2008) where similarities or distances between pairs of stimuli are computed
in two representation spaces: in our case these would be the activation space and the space of
phonological forms. The correlation between these pairwise distance measurements shows the
degree of alignment of these two spaces. Like ABX, this approach requires a distance metric
for pairs of stimuli within each representation space: for the space of neural representations
this distance can be computed as described above for the ABX metric; for the space of
phonological forms a natural choice is (normalized) edit distance between pairs of phoneme
sequences. Higy et al. (2021) discuss the relation of ABX to the RSA, which can be seen as
more general but less controlled distance-based method of evaluating representations against
each other.

Representation scope Chrupała et al. (2020) point out that DC is usually applied at
the local scope, i.e. to classify a single activation vector (corresponding to a single or a few
frames of the audio), while the typical usage of RSA involves either pooling over the whole
utterance, or using a distance metric which takes whole utterances into account such as
DTW. They accordingly design a set of experiments which disentangle scope (local vs global)
from the particular metric (DC vs RSA). They find out that in some scenarios the presence
of pooling may alter the conclusions: for example for activations emerging in a visually
grounded model of speech, a DC applied to local activations behaves differently from one
applied to globally pooled activations.

Phoneme encoding Overall the application of the above metrics has led to the conclusion
that phonological forms can, to a substantial degree, be decoded from or correlated with the
activation patterns in visually grounded models of spoken language. There has been less
consistency regarding which layers encode phonology best, and to which extent activations
from untrained models also contain this information. Figure 2, reproduced from Chrupała
et al. (2020), summarizes the findings applied to a GRU-based architecture trained on the
Flickr Audio Captions dataset. This figure shows the scores of the DC and RSA metrics
applied to local (per-frame) activation patters as well as activations pooled over the whole
utterance via mean pooling or an attention-based pooling mechanism. The scores are shown
for activations extracted from both trained and untrained versions of the target model. The
most striking pattern to note here is that for local activations DC can extract phoneme
information with high accuracy even from activations from an untrained model, but this is
not the case for the pooled activations.

8.3 Lexicon

An important concept from linguistics is that of the lexicon, which can be defined as a
mapping relating phonological forms with their meanings. The lexicon is posited to store
those associations between forms and meanings which are non-compositional, i.e. such that
the meaning cannot be straightforwardly predicted from the form. The content of the
lexicon thus consists mostly of small, basic units such as morphemes and words. Given
the lexicon and a set of rules of composition, the meanings of larger items such as phrases
or sentences can be (largely) computed from the meanings of the constituent words. We
may thus hypothesize that a model trained on the task of associating the acoustic signal
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Figure 2: Results of the DC and RSA metrics applied to a visually grounded model of spoken
language trained on Flickr Audio Captions. The score is relative error reduction DC
and Pearson’s r for RSA. Random refers to activations from a randomly initialized
but untrained target model. Figure adapted from Chrupała et al. (2020).

of utterances with correlated visual features should learn a lexicon-like mapping between
word-like segments in the audio modality, with feature bundles in the visual modality.

Word presence Chrupała et al. (2017a) probe for the encoding of lexicon in a rather
simplistic fashion: they test whether the presence of individual words can be recovered from
the utterance representations, without considering associations with meanings. Their probe
is a Multi-Layer Perceptron classifier applied to the concatenation of the pooled activation
vectors for a layer and a representation of the target word. For both synthetic and human
speech they saw accuracies substantially above chance, with the strongest encoding in the
middle recurrent layers.

Word activation Havard, Chevrot, and Besacier (2019b) do not consider lexical mappings
either, but focus on implicit segmentation and word activation, applying the so-called gating
paradigm (i.e. progressive truncation of stimuli) borrowed from psycholinguistics to probe
these phenomena in an architecture based on Chrupała et al. (2017a) as adapted in Havard
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Figure 3: Central image crops from several image clusters, along with the label of their most
associated acoustic pattern cluster. Adapted from Harwath and Glass (2017).

et al. (2019a), trained on synthetic speech. They find that the initial segment of a word
(e.g. /dZ9/ for giraffe) activates the corresponding visual concept, where concept activation
is determined by image ranking performance on such truncated audio inputs. Scholten et al.
(2021) confirm these findings using a model based on Merkx et al. (2019), trained on natural
speech from Flickr Audio Captions.

Word-object associations Harwath and Glass (2017) take a different approach: they
start with the basic architecture of Harwath et al. (2016) and complement it with a dedicated
lexicon extraction component. It works by extracting candidate audio segments as well as
candidate image regions, applying pruning to avoid too much overlap between candidates.
Then the network (which is trained on the Places dataset in the regular fashion) computes
pairwise similarities between each audio candidate and each visual candidate in the embedding
space. The final step is to applyK-means clustering to each modality separately, and compute
an audio-visual affinity between each pair of clusters by summing over the candidate pairwise
similarities for items in the pair of clusters. As such, this approach is somewhat reminiscent
of association mining techniques used in Roy and Pentland (2002) and Yu et al. (2005).
The resulting lexicon is evaluated in terms of cluster purity metrics as well as qualitatively.
Figure 3 shows examples of lexical mappings obtained. As discussed in Section 5.3, Harwath
et al. (2018) introduces an architecture which directly captures the associations between
audio segments and image regions, via the matchmap. The matchmaps for a collection of
caption-image pairs can then be clustered resulting in a audiovisual lexicon. Specifically, Birch
clustering (Zhang, Ramakrishnan, & Livny, 1996) combined with agglomerative clustering
results in a set of 135 lexical items associating words with objects: this was done with an
end-to-end version of the model, showing that a pre-trained image encoder does not play a
role in the discovery of this lexicon.
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8.4 Semantics

Compared to phonology and lexicon, there has been somewhat less work on extrinsic
evaluation of utterance embeddings from visually grounded models of spoken language.
On the one hand this is due to the fact that intrinsic metrics capture at least the visual,
task-specific aspects of semantics already. On the other hand it may be due to the relative
paucity of ground-truth annotations of meaning compared to the easy availability of phonemic
transcriptions and dictionaries.

Correlation with human judgments Chrupała et al. (2017a) adapt the paradigm of
correlating pairwise sentence similarities in the embedding space with sentence similarities
as elicited from human judges: this is essentially the same method as RSA discussed
in Section 8.2.1, applied to semantics. They use an existing dataset of human sentence
similarity judgments, SICK (Marelli, Menini, Baroni, Bentivogli, Bernardi, & Zamparelli,
2014), synthesize spoken versions of the stimuli, and apply the test to a model trained on
Synthetically Spoken COCO. They find a substantial correlation for the top layers of this
model, much above that for mean-pooled MFCC vectors, but also much lower than for the
corresponding models trained on written captions.

Evaluation based on Word2Vec An alternative approach which is easier to apply to
human speech was proposed by Khorrami and Räsänen (2021) and involves using automati-
cally computed pairwise sentence similarities derived from a text-based model as the proxy
for human similarity judgments of semantic relatedness. The automatic semantic relatedness
score (SRS) is based on word-word similarity scores as given by Word2Vec (Mikolov, Chen,
Corrado, & Dean, 2013) embedding vectors and defined as follows:

SRS (r, c) = mean
i

(
max

j
Sw2v(ri, cj)

)
(8)

where r (reference) and c (candidate) are captions in their written form (excluding function
words) and Sw2v denotes the Word2Vec similarity score: thus for each word of the utterence
r we select the score of the most similar word of utterance c and average over these scores.
The evaluation consists in computing the SRS scores between captions corresponding to
five closest, five furthest and five random candidate audio embeddings for each reference
utterance from the test set. Their results suggest that visually grounded models of spoken
language learn substantial amounts of the type of distributional semantics that Word2Vec
captures: Figure 4 shows the score distributions for the Places dataset.

Encoding of semantics Currently our understanding of how and to what extent semantics
is captured by embeddings from visually grounded models of spoken languages is still limited.
It does seem that substantial semantic information is captured, but it is not clear how task
specific it is, and how much of it is due to network dynamics as opposed to learning.

9. Conclusion

We have surveyed the developments in approaches to modeling visual grounding for spoken
language since early 2000s. We have seen that the first wave of interest in this problem
came mostly from the field of cognitive science and used small-scale datasets and modular
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Figure 4: Semantic relatedness scores (SRS) for speech-to-speech retrieval for the CNN1
model of Khorrami and Räsänen (2021). Scores are computed between query
utterances and the five nearest, the five most distant, and five random captions
collected for all test utterances. Figure adapted from Khorrami and Räsänen
(2021).

architectures to come up with proof-of-concept systems and answer questions mainly centered
on understanding language learning in human children. This phase was followed by a second
wave of interest largely driven by the collection of larger-scale datasets, and the application of
increasingly end-to-end neural architectures, with less human-centered and more AI centered
research questions in mind. Nevertheless, interest in understanding the relation between
representations learned by visually grounded neural models of spoken language and the
central concepts from linguistics has persisted and has led to many studies focused largely
on analytical techniques and insights to be gained from their application. Table 9 lists the
principal works on visually grounded modeling of spoken language mentioned in this survey,
together with a summary of the data and modeling approaches proposed, used or analyzed
in each paper.

9.1 Summary of Main Findings

The field of visually grounded modeling of spoken language is undergoing rapid developments
so it would be premature to draw definitive conclusions about the optimal way of approaching
this family of problems at this point. However, some preliminary observations are possible.
Neural architectures have been dominant during the second wave, both in application-oriented
and cognitively motivated work. It is safe to assume that they will continue to play a role
for some time yet. Regarding some specifics: the visual encoders are almost invariably
pre-trained in a supervised fashion – it is currently unclear how easy it will be to overcome
this limitation. With regards to the audio encoding architectures, there is currently no clear
winner: convolutional, recurrent and most recently transformer-based approaches have all
been applied successfully.

One interesting pattern has been a substantial degree of convergence and interaction
between application-oriented and cognitively motivated models: both tend to use similar
architectures, training data, and both also often carry out in-depth quantitative and qualita-
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Publication Grounding Lang. Datasets Architecture

Roy and Pentland (2002) Images en - CELL
Yu et al. (2005) Images en - IBM1, EM
Synnaeve et al. (2014) Images en Pascal1K, LUCID RCNN, MLP
Harwath and Glass (2015) Images en Flickr RCNN, CNN
Harwath et al. (2016) Images en Places VGG, CNN
Chrupała et al. (2017a) Images en Flickr,

Synth. COCO
VGG, RHN

Alishahi et al. (2017) Images en Synth. COCO VGG, RHN
Harwath and Glass (2017) Images en Places VGG, CNN
Kamper et al. (2017) Images en Flickr VGG, CNN,

keyword spotting
Harwath et al. (2018) Images en Places VGG, CNN,

matchmap
Harwath et al. (2018) Images en, hi Places VGG, CNN
Boggust et al. (2019) Video en YouCook2,

YouTube-8M
VGG, CNN

Merkx et al. (2019) Images en Flickr VGG, GRU
Havard et al. (2019a) Images en, ja Synth. COCO,

Synth. STAIR
VGG, GRU

Chrupała et al. (2020) Images en Flickr VGG, GRU,
Transformer

Harwath et al. (2020) Images en Places ResNet, VQ

Rouditchenko et al. (2021) Video en Howto100m ResNet
Scholten et al. (2021) Images en Flickr ResNet, GRU
Ohishi et al. (2020b) Images en, hi, ja Places, Jap. Places VGG, CNN
Khorrami and Räsänen (2021) Images en Speech-COCO,

Places
VGG, CNN, GRU

Higy et al. (2021) Images en Flickr ResNet, GRU, VQ
Sanabria et al. (2021) Images en Flickr, Places,

Loc. Narratives
EfficientNet,
ResNet50

Monfort et al. (2021) Video en Spoken Moments ResNet, TSM
Peng and Harwath (2021) Video en Flickr, Places,

SpokenCOCO
CNN, Transformer,
cross-modal att.

Table 9: Main publications on visually-grounded modeling of spoken language. The column
Datasets contains the abbreviated names of public datasets used; the column Ar-
chitecture contains keywords summarizing the main components of the modeling
approach.

tive analyses of learning patterns and learned representations. Overall we consider this a
positive trend but future work may need to address domain-specific issues and limitations in
a more focused manner.
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9.2 Challenges for the Future

While much progress has been made on developing visually grounded neural models of spoken
language and understanding their behavior, major challenges remain. The specifics of these
problems and their relative importance of obviously depend on the overall goal we have in
mind when developing a model, but the issues listed below are likely relevant at least to some
extent for both the cognitively motivated research and for engineering practical applications.

Generalization Current approaches to evaluation focus on retrieval tasks closely related
to the objective functions used to train the models, and on evaluation data from the same
distribution as the training data. The danger with optimizing evaluation scores in this way
is that the research community overfits to these specifics. The scores may keep going up, but
that does not mean that our models generalize beyond these tasks and especially beyond
captioning datasets. Development of more robust approaches to evaluation is an urgent task.

Ecological validity From the point of view of applying these systems to mimic human
language acquisition, one issue is the lack of ecological validity of current datasets. The
language of captioning datasets is clearly quite specialized, used a small vocabulary, a
restricted range of syntactic structures, and focuses on particular types of meanings. Images
and their captions are guaranteed to be quite closely related, which is unlike the much less
reliable visual grounding available to babies and children. Likewise, in a natural setting,
there are pervasive confounds between semantics and non-semantic features of the audio:
most obviously the voice and the image of the person speaking tend to occur together;
less obviously particular people tend to speak about particular objects or situations. Such
confounds are largely avoided in image captioning dataset by design, as speakers are assigned
to images randomly.

If we want a more realistic picture of the capabilities of our models we need to train them
on data which more closely resembles naturally co-occurring language and visual information.
Also from an application point of view, it would be preferable if systems could learn from
naturally ocurring data instead of relying on datasets which are expensive to create and only
available in a few major languages.

One step in this direction is the use of videos rather than captioned static images, but
current video datasets such as Howto100m are still very specific and restricted in their
domain. Ideally, we would want to work with data which reflect children’s exposure to
grounded spoken language in the real world, via audio and video recordings (e.g., Clerkin,
Hart, Rehg, Yu, & Smith, 2017, ). Currently, the main obstacles to the use of such datasets
is their small size and lack of public availability due to privacy regulations.

Grounded and non-grounded language Current approaches have focused almost ex-
clusively on the purely visually grounded scenarios. However, both humans and text-based
language models typically acquire as much or more of their knowledge of language with-
out grounding, purely from language-internal co-occurrence statistics, via some kind of
self-supervision. We foresee that combining supervision from the visual modality with self-
supervision will become an important development for the field in the near future. More
speculatively, other supervision signals, especially interaction and grounding in dialog, would
also be interesting avenues to explore.
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