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Abstract

Most existing works in Probabilistic Simple Temporal Networks (PSTNs) base their
frameworks on well-defined, parametric probability distributions. Under the operational
contexts of both strong and dynamic control, this paper addresses robustness measure
of PSTNs, i.e. the execution success probability, where the probability distributions of
the contingent durations are ordinary, not necessarily parametric, nor symmetric (e.g.
histograms, PERT), as long as these can be discretized. In practice, one would obtain
ordinary distributions by considering empirical observations (compiled as histograms), or
even hand-drawn by field experts. In this new realm of PSTNs, we study and formally
define concepts such as degree of weak/strong/dynamic controllability, robustness under
a predefined dispatching protocol, and introduce the concept of PSTN expected execution
utility. We also discuss the limitation of existing controllability levels, and propose new
levels within dynamic controllability, to better characterize dynamic controllable PSTNs
based on based practical complexity considerations. We propose a novel fixed-parameter
pseudo-polynomial time computation method to obtain both the success probability and
expected utility measures. We apply our computation method to various PSTN datasets,
including realistic planetary exploration scenarios in the context of the Mars 2020 rover.
Moreover, we propose additional original applications of the method.

1. Introduction

Temporal networks formalize the arrangement and inter-dependencies of tasks, or activities,
that compose an operational plan. In a simple temporal network (STN), activities are
modeled as a finite set of time events, such as start and end times. In practice, some
activity durations, considered as contingent, remain unknown beforehand and are revealed
during execution (decided by nature). When some stochastic knowledge on the uncertain
durations exists, one can model it as (estimated) probability distributions, leading to the
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Figure 1: A simplified hypothetical sol on Mars for two planetary rovers, encoded as a
PSTN. Bold: controllable. Dashed: contingent.

extending concept of probabilistic STN, or PSTN. Solving a PSTN then amounts at finding
an assignment of time values to events, such that assigned values together with observed
ones fulfil all the constraints between events (e.g., end of task A must happen between 10
and 20 minutes before the beginning of B). Whenever such assignment exists, a network is
said to be controllable. When the operational assumptions enable it, the assignment may be
dynamically constructed, the time values being assigned as durations are observed. Yet, even
under dynamic decision, due to unfortunate durations, a network may reveal as violating
some of the temporal constraints during execution. When there is uncertainty with respect
to temporal constraint violation, it is critical to evaluate how likely a PSTN will lead to
a successful execution to help mitigate unsafe operations. This evaluation is called the
Degree of Dynamic Controllability (DDC) (Akmal, Ammons, Li, & Jr, 2019). The DDC
should not be confused with the robustness, which characterizes the likelihood of success
of a PSTN under a specific reoptimization scheme, also known as dispatching protocol, or
execution strategy. The DDC then represents robustness under a perfect (i.e. optimal,
in the multistage stochastic sense) online reoptimization scheme. Whereas computing the
exact DDC is intractable in practice (NP-hard), it may still be possible to provide some
guarantees, in terms of (lower) bounds or approximations.

The current literature proposes DDC computation methods for PSTNs that involve uni-
modal distributions only (e.g. uniform or normal). In realistic cases however, this might be
an unrealistic assumption/approximation, especially for activities which duration distribu-
tions are asymmetric by nature (e.g. vehicle driving operations). In certain domains (e.g.
Mars rover operations), deciding for a particular parametric distribution could be problem-
atic. In that context, exploiting the raw observations directly, namely the histograms, could
avoid making wrong assumptions. Existing DDC computation methods are not applicable
in these non-symmetric, non-parametric distributions, except for Monte Carlo simulation,
which admits ordinary distributions at the price of coming without any guarantee.

Contributions.

In this study, we proposed the first efficient DDC computation method capable of dealing
with PSTNs with any possible ordinary probability distributions. Our method computes an
exact lower bound on the DDC of a PSTN, hence being the first to provide a guarantee
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to never overestimate this probability of success, by considering the robustness under a
specific dispatching protocol – a dynamic decision scheme simpler than performing perfect
reoptimization, a concept we formally define. Furthermore, it enables to compute a lower
bound on each task’s own success probability within that network, which can be mapped
to activity temporal brittleness (Vaquero, Chien, Agrawal, Chi, & Huntsberger, 2019) and
consequently supports operators or users to identify activities that highly impact the success
probability of other activities, and the robustness of the entire network. Remark however
that, whereas the majority of PSTN work considers continuous probability distributions, our
method requires these to be discretized, or their cumulative distribution functions (CDFs)
to be evaluated at discrete values.

Our robustness computation assumes that no activity may be interrupted. However, in
certain applications, the activities can be interrupted before completion following predefined
cutoff times, without entailing the entire network (nor the subsequent activities) execution
failure. In such a context, some activity may be more expensive to interrupt than others. By
further assigning a utility value to each activity (the higher the utility, the more expensive),
we introduce the concept of expected utility of a PSTN, which measure how likely important
activities are to be eventually interrupted (i.e. reaching their cutoff times). If all activities
has unit utility, then the expected utility is simply the expected number of uninterrupted
tasks by the end of the online network execution. Herein, the expected utility of a network
is a complementary metric to its DDC and robustness. We show how this expectation can
also be computed using our method.

We extend the concepts of DDC and DSC (degree of strong controllability) to PSTNs,
and introduce the first formal definitions of both, in the case of discrete time horizon.
We also introduce and define the degree of weak controllability (DWC) measure. Finally,
from these definitions we deduce remarkable fundamental inequalities. We also propose
new theoretical tools, namely dynamic controllability sub-levels, for better characterizing
dynamic controllable PSTNs. Finally, we provide a unified view of the research landscape
on DDC and DSC measurement in probabilistic simple temporal networks.

The results obtained on a benchmark from the current state-of-the-art literature val-
idate the soundness of our method, on both parametric and ordinary distributions. As
part of the method validation in PSTNs with parametric distributions, we compare our ap-
proach against state-of-the-art DDC approximation methods which aim at getting as close
as possible to the true DDC of a PSTN, at the risk of over-estimating it. The lower bounds
obtained from our method tend to be higher than the approximations computed by the
state-of-the-art methods, thus being closer to the true DDC value, with the guarantee of
not exceeding it. In those cases, the state-of-the-art methods are therefore too conservative.
Whereas in the cases where our computed value is below the state-of-the-art approximation,
the existing methods may be overestimating the DDC.

We apply our method to the real case study of the Mars 2020 rover’s task networks,
where activities duration are described as ordinary distributions inferred from historical
observations gathered during previous Mars rover operations. In this application, we discuss
the use of limited historical observations (in the form of sparse histograms) against the use
of estimated parametric distributions to represent uncertainty on the activity durations.
Moreover, we propose a new method for identifying structural bottlenecks in the temporal
brittleness analysis of Mars 2020 rover’s task networks.
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Figure 2: Simple temporal networks variants with respect to uncertainty.

This study extends Saint-Guillain, Stegun Vaquero, Agrawal, and Chien’s (2020) confer-
ence paper as follows: i) we provide a thorough description of the theoretical contribution
on the DDC lower bound computation; ii) we generalize our theory to propose a unified
view not only on STNU/PSTN dynamic controllability, but also strong and weak controlla-
bility, and prove various relations and bounds between these; iii) we expand the theoretical
contributions to include new dynamic controllability sub-levels; iv) we introduce new theory
to compute the expected utility of a PSTN; and v) expand the experimental validations
and applications accordingly.

2. Temporal Networks, Policies and Dispatching Protocols

This section describes the simple temporal network (STN) formalism.

2.1 STN

Simple Temporal Network is a popular formalism for temporal constraint reasoning (Dechter,
Meiri, & Pearl, 1991), framed as a constraint satisfaction problem over time point variables:
a STN is a tuple 〈T,C〉, where T is a set of time points (ti ∈ T ⊆ IR) and C is a set of
constraints c(ti, tj) that encode bounds on the differences between pairs of time points:
lij ≤ (tj − ti) ≤ uij , i.e. (tj − ti) ∈ [lij , uij ]. A solution is called a schedule, a specific
assignment to all ti ∈ T . A schedule is consistent if it satisfies all the constraints of the
network. A STN is consistent if it admits a consistent schedule. In practice, a time point
in a STN often stands for either the start or the end of a particular activity. Considering
the end point tj of some activity, constraint c(ti, tj) then represents the valid bounds for
the activity duration defined by time points (ti, tj), whereas tj − ti gives the duration set
up by a specific schedule. Alternatively, when tj stands for an activity start point, c(ti, tj)
constrains how long the activity beginning can be delayed from previous (usually end of
activity) time point ti, and tj − ti gives its actual value.

Definition 1 (STN schedule). In the STN context, a schedule x1, . . . , xn is an assignment
(mapping) T → IRn of all time points ti ∈ T of the network.

2.2 Probabilistic STN

Most realistic operational contexts account for temporal uncertainty. PSTN is a natu-
ral extension of STN in which probability density functions are associated to temporal
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constraints, such as activity durations (Tsamardinos, 2002; Fang, Yu, & Williams, 2014;
Brooks, Reed, Gruver, & Jr, 2015; Santana, Vaquero, Toledo, Wang, Fang, & Williams,
2016). The PSTN formalism partitions both sets T and C as T = TE ∪ TC , where exe-
cutable time points TE are determined by the agent, and contingent time points TC are
assigned by nature. The constraints set is C = CR ∪CC where: requirement edges, CR, are
controlled by the agent; and contingent edges, CC , are determined by nature, each element
being described by a probability distribution (tj − ti) = Xi,j . A schedule assigns values
to executable time points only. The duration (tj − ti) associated to any contingent time
point tj remains unknown prior to execution. Whereas PSTN assume a stochastic knowl-
edge on each contingent activity duration, the case where one has no information at all on
the unpredictable durations is called a STN with Uncertainty: STNU (Vidal & Ghallab,
1996). Provided only lower and upper bounds on a contingent duration (tj − ti), a common
usage is to consider it uniform: Xij ∼ U(lij , uij). Despite their initial definition, the term
STNU evolved to also include the subset of PSTNs that involve uniform distributions only,
although technically speaking STNU is not a particular case of PSTN in general. This is
illustrated in Fig. 2.

Definition 2 (PSTN schedule). In the PSTN context, a schedule x1, . . . , xn is an assign-
ment (mapping) TE → IRn of all executable time points ti ∈ TE ⊆ T of the network.

Illustrative example: rover operations. An hypothetical example of Mars rovers op-
erations, represented as a PSTN, is depicted in the Fig. 1. It shows a modified version
of that provided by Santana et al. (2016), with sol duties for two Mars planetary rovers.
Each rover has three activities in sequence: drive towards a science site, experiment, and
relay results to an orbiter. A special time point t0 = 0 represents the beginning of the op-
erations. Time events are linked by temporal constraints, either controllable or contingent.
Note that unrestricted time windows [0,∞[ are usually not shown in the figures. In our
example, the rovers work independently during their driving and science activities. They
do not coordinate until the communication time window, which strictly happens between
time 600 to 700. Communication tasks cannot overlap, and Rover1 is chosen to relay first.
However, the duration of the driving and experimental activities are highly uncertain. In
practice, distributions can be estimated from historical observations. Even an inaccurate
stochastic knowledge, such as obtained accurate observations, leads to valuable results in
practice (as illustrated by Saint-Guillain (2019) for Mars-inspired operations). In Fig. 1,
distribution X1,2 describes the stochastic duration of driving activity (t1, t2), encoded in the
PSTN as a contingent constraint c(t1, t2) ∈ CC , t2 ∈ TC , whereas t12 has a deterministic
deadline represented by time window [0, 700].

PDTNs versus PSTNs. Temporal networks constitute expressive tools for modelling
operational plans, from human operated projects to planetary rover operations. Yet, a
PSTN aims at formally stating only one of the many possible structural configurations of
the network. In the PSTN of Fig. 1 for example, Rover1 was chosen first to relay. However,
another solution would have been to relay data from Rover2 first, hence leading to a slightly
different PSTN. A realistic Mars rover sol type may involve around 40 activities per rover
(Chi, Agrawal, Chien, Fosse, & Guduri, 2019), which in many cases allow different ordering
the activities. In this context, one may come up with as many different PSTNs as there are
possible orderings of the tasks assigned to each rover, or alternatively use the Probabilistic
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Disjunctive Temporal Network (PDTN) formalism to consider explicit representation of
choices or alternatives. PDTNs extend the formalism of PSTN by enabling, with the use
of disjunctive temporal constraints, the encoding of exponentially many interpretations,
in the form of PSTNs, within one single PDTN. A disjunctive temporal version of our
rover example may then be obtained by removing constraint between t6 and t11 and adding
the disjunctive constraint: ”either t11 happens after t6, or t5 happens after t12”. The
resulting PDTN encodes our two possible PSTNs at once. The PDTN formalism is a very
powerful modeling tool, even more expressive than combinatorial problems such as job-shop
scheduling, as it enables to express contexts which cannot be described otherwise, such as
stating ”if C has not already been completed at the time A is started, then the starting of A
must happen after the completion of B”. A recent study of PDTNs in the context dynamic
control can be found in Cimatti, Micheli, and Roveri (2016). In this work, however, we
focus on PSTN only, leaving robustness analysis for PDTN for future work.

Relation to Job-Shop Scheduling. We already remarked that PDTNs generalize job-
shop scheduling problems (JSP). Just as a PDTN encodes a set of (exponentially many)
PSTNs, a solution to a (probabilistic) JSP can be encoded as a PSTN. A solution to
a JSP, and more specifically a JSP with probabilistic durations (Beck & Wilson, 2007),
usually consists in an assignment and ordering of the tasks only, that is, without necessarily
assigning start time values to the tasks. In fact, in such context each task is assumed to
start as soon as possible, which exactly corresponds to the NextFirst dispatching protocol on
which we focus in this paper. In other words, formulated as a PSTN, our method computes
the probability of success of any solution to a probabilistic JSP.

2.3 Policies and Dispatching Protocols

Operational contexts such as space missions usually pose computational and power limita-
tions on recomputing a schedule in the middle of the operations (Chi et al., 2019). Yet,
the use of a static schedule is often either impossible in practice, or comes with a signif-
icant waste in terms of operational yield and time. Such approach is currently operating
Curiosity rover, with static schedules that overestimate processing times by 30% in average
(Gaines et al., 2016b) to account to execution uncertainty. Let ΩN be the set of all possible
realizations of the random contingent edges’ duration in a PSTN N . A trivial approach to
avoid both static scheduling and online reoptimization is to precompute particular schedules
for each possible situation that may arise, leading to a policy :

Definition 3 (Policy). A policy for a PSTN N is a mapping ΩN → IRn that associates a
schedule to each scenario from ΩN .

Naturally, the size of ΩN is usually problematic. Instead, Perseverance (M2020) rover
is equipped with a non-backtracking onboard scheduler, designed to take online decisions
based on current observations (Agrawal et al., 2019; Chi et al., 2018; Rabideau & Benowitz,
2017). Due to computational limitations, such online decisions must remain very light, thus
following a predefined strategy : a dispatching protocol (DP). In particular, a DP usually
aims at avoiding costly online reoptimizations. We derive the concept of DP from that of
recourse strategy in stochastic programming (Birge & Louveaux, 2011).
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Definition 4 (Dispatching protocol). Let N t be the PSTN resulting from the execution
of the network N up to current time t (with N0 = N), thus including fixed values for the
subset of already executed time points. Let T tE ⊆ TE the remaining executable time points. A
dispatching protocol (DP) returns a valid assignment of a subset ΓtE ⊆ T tE of the remaining
n = |T tE | executable time points, consistent w.r.t. previous observations and decisions:

DP(N t) : ΓtE → IRm,m ≤ n

Note the fundamental difference between a dispatching protocol, and its particular case,
a policy. When ΓtE = T tE , i.e. when the DP always assigns values for all remaining
executable time points, then it is (a compact representation of) a policy. Otherwise, the
DP postpones part of the future decisions to be made, and we have ΓtE ⊂ T tE . In that case,
the underlying decision algorithm may be described as greedy.

We distinguish three families of DP’s, depending on the complexity of DP(·). First,
the case where DP(·) is constant time directly corresponds to a static/strong schedule
s = x1, . . . , xn. Second, the case of non-polynomial time functions generally stands for an
online reoptimization process, aimed at solving the inherent multistage stochastic program.
In that case, there is no predefined strategy, a new scheduling problem is solved at each
time step, regardless the computational expense, with usually ΓtE = T tE .

Finally, the case of a (non-constant) polynomial-time DP(·) allows agents to dynami-
cally adapt the schedule, while being computationally limited. For example, Rabideau and
Benowitz (Rabideau & Benowitz, 2017) describe an average O(n2) quadratic DP(·) protocol
to be computed by the onboard scheduler in the Mars Perseverance rover, in order to adapt
decisions online (i.e. ΓtE = T tE) based on observations and pre-optimized parameters (Chi
et al., 2019). Brooks et al. (Brooks et al., 2015) consider a linear time protocol to make
partial decisions (ΓtE ⊂ T tE), called NextFirst protocol, which we describe in Sec. 3.4.

3. Controllability, Robustness and Utility

Ideally, a perfect assignment of all time points in TE would work for any situation imposed
by nature. In practice that is very restrictive, if not impossible, especially in highly uncertain
environments. In fact, if the PSTN of Fig. 1 involves some probability distribution with
unbounded tail, then such perfect schedule does not exist. Instead, we refer to a dispatching
protocol which maps observations to decisions during execution, hence deciding the schedule
online. Under uncertain activity durations, such a greedy dynamic approach would raise
the following questions: How likely is the execution of a PSTN to succeed? What is the
probability that our rovers get their relay activities (≥20 long for Rover1, ≥30 long for
Rover2 ) during the communication window? What should we expect with respect to critical
and non-critical activities being interrupted during execution?

3.1 Controllability Levels

The traditional concept of consistency from STN is not directly applicable to PSTNs or
STNUs due to the unpredictable assignment of contingent time points and edges. A PSTN
relies instead on checking controllability, which verifies whether an agent can generate consis-
tent schedules to any situation that may arise in the external world. Controllability theory
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is usually applied to STNUs, but can also be applied to more general PSTNs (distributions
being not restricted to uniform ones), at specific different levels.

In this section, we introduce formal definitions for various fundamental concepts of
PSTNs, and deduce new theoretical results from it. ΦP(N, ξ) returns 1 if following protocol
P ∈ DP (N) in situation ξ leads to a successful execution, zero otherwise. In particular,
Φs(N, ξ) indicates whether the static schedule s = x1, . . . , xn is consistent in scenario ξ.

Strong Controllability. An PSTN is said to be strongly controllable (SC) (Vidal &
Ghallab, 1996) iff there exists at least one strong schedule (a.k.a. static schedule), i.e. a
“universal” schedule that fits any situation, guaranteed to satisfy all temporal constraints
regardless of the nature’s assignments:

N is SC ⇔ ∃s ∈ IRn : ∀ξ ∈ ΩN , Φs(N, ξ) = 1

That is motivated by cases where agents have to compute a schedule offline before making
any observations, with no opportunity to adapt online. Nevertheless, in practice a valid
static schedule is rarely available in dynamic and unpredictable environments.

Dynamic Controllability. A more practical level would be dynamically controllable
(DC) (Morris, Muscettola, & Vidal, 2001; Morris & Muscettola, 2005; Morris, 2014), in
which we check whether there exists a dispatching protocol such that, at any time during
execution, the partial sequence executed so far extends to a consistent schedule, whatever
durations remain to be observed:

N is DC ⇔ ∃P ∈ DP (N) : ∀ξ ∈ ΩN , ΦP(N, ξ) = 1

It requires the agent to be able to determine, in a dynamic fashion, a valid assignment
of all remaining executable time points, based on observed past contingent ones, without
violating any future temporal constraints. Remark that having the right protocol P for
N = N0 is sufficient, as it trivially implies the existence of the protocol for N1, . . . , Nh.

Weak Controllability. Finally, weak controllability stands for a somehow less practical
property. A PSTN is said to be weakly controllable (WC) iff for each possible situation,
there exists a valid specific schedule.

N is WC ⇔ ∀ξ ∈ ΩN , ∃s ∈ IRn : Φs(N, ξ) = 1

Here, each such situation is thus considered to be perfectly known in advance, whereas DC
accounts for the fact that information is actually revealed in a dynamic fashion. From a
stochastic programming point of view, the WC formulation then amounts at solving the
DC stochastic multistage problem while relaxing the underlying inherent nonanticipativity
constraints (Shapiro, Dentcheva, & Ruszczyński, 2014), that is, while losing the consistency
between online decisions and the moment each piece of information is revealed. This will
be further analyzed in the following section. Finally, remark the resemblance between the
definitions of SC and WC. From the ordering of the logical quantifiers, we directly find that
SC implies WC.
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3.2 Robustness and Degrees of Controllability

As pointed out in Sec. 2, in practice highly uncertain environment often makes temporal
network uncontrollable. When a PSTN cannot be proven dynamic (resp. strong) control-
lable, then we might most probably be interested in determining the degree of dynamic (resp.
strong) controllability which aims at measuring how far the network actually is from being
so. Whereas controllability checking has been proven polynomial in many cases (Bhargava
& Williams, 2019), evaluating the degree of controllability of uncontrollable networks is
still an open problem. In Akmal et al. (2019), the degree of dynamic controllability (DDC)
as well as the degree of strong controllability (DSC) of a STNU are introduced. When
considering uniform distributions only, the DDC (resp. DSC) is defined as the proportion
of contingent edges realizations in which the temporal network remains dynamically (resp.
strongly) controllable.

Note that there is a possible confusion (the error was made in Saint-Guillain et al. (2020),
and probably others) between the terms DDC and robustness. The robustness, introduced
by Brooks et al. (2015), represents the success probability under a predefined (usually
suboptimal) dispatching protocol. In other words, the DDC is one particular robustness
measure on a PSTN N , corresponding to the particular dispatching protocol that performs
optimally under uncertainty for N . These concepts, which are at the core of the current
paper, are defined hereafter.

In this section, we propose to extend the concepts of DDC and DSC to PSTNs, and
introduce the first formal definitions of it, in the case of discrete time horizon. We also
introduce the degree of weak controllability (DWC) measure. Finally, from these definitions
we deduce remarkable fundamental inequalities.

Assumptions and notations. From now on, we assume a discrete time horizon t =
1, . . . , h. Depending on the modeling choices, the decisions to be taken by the online sched-
uler will be either represented as (i) a vector x1, . . . , xn of IRn, hence a schedule, or (ii)
more generally as a vector x = x1, . . . , xh of IRh, in which it represents the decisions taken
at each and every time unit of the horizon, from which the schedule can be trivially deduced.
Henceforth, the indicator function Φx(N, ξ) is assumed to return 1 iff the schedule deduced
from x is consistent in scenario ξ. Similarly, a timewise representation of the uncertainty
will sometime be adopted, with a set of possible scenarios Ωh instead of ΩN . A realisation
of Ωh is then a sequence ξ = ξ1, . . . , ξh of outcomes. When necessary, we designate by ξt..t

′

the sequence of outcomes of scenario ξ from time t to time t′, and to decisions xt, . . . , xt
′

as
xt..t

′
. Operator Eξt [ · ] designates the expectation over random variable ξt, conditionally

to history ξ1..t−1.

3.2.1 Robustness

The so-called robustness (Brooks et al., 2015) measures the success probability of a network
N under a specific dynamic dispatching protocol P. In order to stress the dependence with
a given dispatching protocol, and therefore avoid the confusion with the DDC metric, to
“robustness” we sometimes prefer the term “DP-robustness”, rP(N) for short:

rP(N) =
∑
ξ∈ΩN

P{ξ} ΦP(N, ξ) (1)
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Given a fixed scenario ξ, a PSTN reduces to a regular STN as the contingent edges get
assigned fixed durations, and ΦP(N, ξ), the execution of protocol P on scenario ξ, can be
checked (i.e. “simulated”) in linear time. Nonetheless, the computation of (1) remains
intractable in practice, as the size of ΩN grows exponentially with the number of contingent
edges. This motivates all kinds of sampling based methods, such as Monte Carlo, which
therefore restricts the summation in (1) to a limited subset of ΩN .

Degree of Strong Controllability. We saw that using static schedule, thus in the
context of strong control, amounts at exploiting a very simple (and strict) constant time
dispatching protocol. Determining the DSC is then equivalent to the problem of finding a
static schedule maximizing its DP-robustness:

DSC(N) = max
s

rs(N) = max
s

∑
ξ∈ΩN

P{ξ} Φs(N, ξ) (2)

where rs(N) designates the success probability of a static schedule s = x1..h
i , s ∈ IRn. We

directly see that the maximization in (2) in fact computes the DSC, since it gives the success
probability of the best possible static schedule, in other terms “how far is the network from
being SC”.

Degree of Dynamic Controllability. A remarkable particular case of DP-robustness is
that of the DDC. The DDC refers to the robustness under perfect reoptimization, that is,
using an optimal dispatching protocol, able to always determine the best possible decisions
based on past outcomes and remaining uncertainty. It corresponds to the true probability of
succeeding, assuming unlimited computational power and time. In this case, such optimal
decision system must necessarily solve the following multistage stochastic program (3)

DDC(N) = Eξ1
[

max
x1

Eξ2
[

max
x2

Eξ3
[
. . .max

xh−1
Eξh
[

max
xh

Φx1..h(N, ξ)
]
. . .
]]]

(3)

According to previous decisions x1..t−1, history ξ1..t−1 and current outcome ξt, a decision
at stage t is computed in order to maximize the probability that the partial schedule x1..t

extends to a consistent full schedule. At time t = 0 for example (before the beginning of
the operations), the DDC is then the expectation, over all the possible outcomes for ξ1 at
first time unit t = 1, of the expected value of the best possible response to the outcome.

The nested expectations in (3) form a tree structure, well known as the scenario tree, as
illustrated in Fig. 3 (top). Each path of the tree constitutes a possible scenario realization,
a sequence ξ = ξ1..h. To each node is associated a decision variable xt, representing the
optimal decisions at time t depending on the current history, and maximizing the expected
value Eξt+1 [maxxt+1 . . .] of the subsequent optimal decisions at time t+1, and so on until time
h is reached. Whereas checking dynamic controllability has been proven polynomial (Morris
& Muscettola, 2005; Nilsson, Kvarnström, & Doherty, 2014), the scenario tree illustrated
in Fig. 3 (top) clearly suggests NP-hardness for determining the DDC of a network.

As for the DSC, up to now the only available definition of DDC for PSTNs is the non
formal one “how far is the network from being DC”. Recall that being DC means “there
exists an execution strategy such that, at any time during execution, the partial sequence
executed so far extends to a consistent schedule”. The DDC is then the robustness of the
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Figure 3: Top: Tree structure of the problem. For simplicity, the random variable has
only two possible outcomes (denoted a and b) at each period, leading to 2h−1 leaf
nodes, and as many scenarios. Implicit nonanticipativity constraints: decisions x4

a

and x4
b must necessarily share the same previous decisions x1

a, . . . , x
3
b . Bottom:

Tree structure of the problem under a scenario-wise formulation (4). Explicit
nonanticipativity constraints (5) link scenarios to each others, forcing nodes that
correspond to the same node in (top) to share the same decisions.

protocol being the best at ending up with a consistent schedule when it is in fact possible.
If we consider the recursion in (3) from the innermost maximization term, we see that the
last decision xh finds a consistent schedule, if it exists, based on scenario ξ = ξ1..h. The
decision at time h− 1 is is necessarily the one that maximizes the probability that, after ξh

realizes, maxxh extends to a consistent schedule. In turn, xh−2 is computed in light of the
current state and remaining uncertainty ξh−1 and ξh, and so on back to initial decision x1.
The multistage formulation (3) is therefore a valid definition for the DDC.

Note that the order of the expectation and maximization operators in (3), namely
Eξ1 ,maxx1 ,Eξ2 , . . ., may seem a bit odd to the reader used to multistage stochastic pro-
grams. In fact, this particular order comes from the assumption that we always observe
the current (i.e. at time t) random outcome ξt before making decision xt. For example, at
time t = 0 (before the beginning of the operations), the DDC is then the expectation, over
all the possible outcomes at first time unit t = 1, of the expected value of the best possible
response. This implies that we do not consider offline decisions. At time t however, decision
xt is made in order to maximize its (expected) value Eξt+1 [. . .]. The online decision at time
t is then defined by x = argmaxtEξt+1 [. . .]. This modeling choice is necessary to define the
DDC as a property of the network, instead of a property of an offline decision (which, on
the contrary, is by definition the case of the DSC).
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Solving problem (3) is impossible in practice, as it requires solving the maximization
problem at each of the exponentially many nodes of the scenario tree. This immediately
suggests two possible approximation schemes, either (a) limiting the branching factor by
sampling a restricted number of children generated from a node, and (b) simplify the decision
choice at each node, for instance, by choosing randomly. Both (a) and (b) are compatible,
and with a few additional techniques (such as back propagation) one would end up with a
Monte Carlo Tree Search (MCTS) algorithm. In the case of the DDC, such approach has the
advantage of performing its simulations without being restricted by a specific dispatching
protocol. In other words, approximating the expected value of each decision node would
directly approximates the behavior of an optimal online scheduler, contrary to classical
sampling based approaches which approximate a particular (limited) dispatching protocol.

Contrary to (3), the definition of the the robustness in (1) is a “scenario-wise” formu-
lation, which decomposes the problem in amongst the set Ωh of scenarios, as depicted in
Fig. 3 (bottom). A formulation much closer to (1) can be obtained by reformulating the
multistage stochastic program (3) as its two-stage equivalent program (Shapiro et al., 2009):

DDC(N) =
∑
ξi∈Ωh

P{ξ} max
x1i , ..., x

h
i

Φx1i , ..., x
h
i (N, ξi) (4)

s.t. ∀t′ : 1..h : ξ1..t′
i = ξ1..t′

j ⇒ x1..t′
i = x1..t′

j (5)

where xti is the decision associated to node ξti of the scenario decomposition depicted in Fig.
3 (bottom). The maximization in (4) returns 1 if a consistent schedule exists for a scenario
ξi, zero otherwise. Constraints (5) express the nonanticipativity property, by stating that
if two sequences of outcomes ξ1..t′

i and ξ1..t′
j , namely two prefixes of scenario, are identical

(i.e. ξi and ξj belong to the same branch up to time t′ in the scenario tree, top of Fig.
3), then the associated decisions must also be identical. In other words, a decision can
only be taken in light of past realizations, not future ones! The only available information
about the future are the probability distributions of remaining random variables, not their
realizations. Note that in formulation (3), the nested shape of the expectations implicitly
enforces these nonanticipativity constraints, which naturally prevents the scheduler from
time travel to modify past decisions.

From a modeling point of view, this scenario-wise formulation clearly define the DDC as
not only a property of the network, but more specifically of the uncertainty on that network,
whereas the dispatching decisions are only consequences of particular realizations.

Degree of Weak Controllability. By relaxing the nonanticipativity constraints, that
is by considering the summation (4) without (5), we obtain the total mass of scenarios for
which knowing the future leads to a successful execution. Following the definition of WC
in Sec. 3.5, the degree of weak controllability (DWC) can therefore be formulated as:

DWC(N) =
∑
ξi∈Ωh

P{ξ} max
s

Φs(N, ξi) (6)

where s = x1
i , . . . , x

h
i , which is literally the probability mass of all the favorable scenarios

in the definition of WC. Since the maximization in (6) returns 1 iff N is consistent in
scenario ξi, the DWC is the probability that N reveals to be consistent afterwards, i.e. the
probability of succeeding the execution when the scenario can be fully predicted in advance.
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3.2.2 Basic Inequalities

Given a dispatching protocol P, and because an optimal scheduler is by definition at least
as likely to succeed than an arbitrary P, the robustness under dispatching protocol P
necessarily constitutes a lower bound on the true DDC of a network. In particular and
from the definition of DSC in (2), for any static schedule s we have rs(N) ≤ DSC(N).
Since strong controllability implies dynamic controllability, and because (6) is a relaxation
of (4)-(5), putting everything together gives the two relations:

∀P : rP(N) ≤ DDC(N) ≤ DWC(N) (7)

∀s ⊆ IRn : rs(N) ≤ DSC(N) ≤ DDC(N) ≤ DWC(N) (8)

The left side of the relation (7) constitutes the theoretical basis for one of the main con-
tribution of this paper, which is the computation of a lower bound on the DDC by using
a specific protocol P. The remaining relations deduced in this section, including (7) and
(8) which clearly suggest a method for bounding the DDC from above, using the DWC, are
only of theoretical interest for now and left for further investigation.

3.2.3 The Cost of Uncertainty

In the stochastic programming literature, part of these relations are well known to carry an
important meaning. In particular, DWC(N) − DDC(N) is known as the expected value of
perfect information (EVPI), which represents the expected gain of being able to predict the
future, the oracle’s price. In Birge and Louveaux (2011), the authors describe the EVPI
as “the maximum amount a decision maker would be ready to pay in return for complete
information about the future”.

Now suppose that instead of trying to solve the PSTN in light of all its uncertainty,
we only consider the particular scenario ξ in which all the contingent durations realize to
their the expected (mean) values. We thus end up with in a deterministic STN, for which
computing a consistent schedule s(ξ), if it exists, is not hard. The expected result of using
s(ξ) in a stochastic context is then

EEV(N) =
∑
ξ∈ΩN

P{ξ} Φs(ξ)(N, ξ) , (9)

with s(ξ) = max
s

{
Φs(N, ξ)

}
(10)

Another interesting measure is DDC(N)−EEV(N), known as the value of the stochastic so-
lution (VSS), which literally indicates the expected gain of taking uncertainty into account,
instead of simply assume average durations. Eventually, the most trivial and probably im-
portant result from stochastic programming, which justifies the domain itself, is that both
the EVPI and the VSS are always non-negative. This leads to a third bounding inequality
in addition to (7) and (8):

EEV(N) ≤ DDC(N) ≤ DWC(N) (11)

The EEV therefore appears as another potentially interesting method for computing a lower
bound on the DDC. On this paper however, we focus on the more promising approach of
computing a lower bound from relation (7), and leave the EEV for further investigation.
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3.3 DP-Utility

In the previous sections, we discussed the probability of succeeding in executing all the
activities of a network. Depending on the context, one may also be interested in the
expected number of activities that can be successfully achieved until one failure occurs.
Similarly, whenever each task is assigned an utility or weight, one might be interested in
the expected amount of utility to be reached by the end of the execution, or until a time
constraint gets violated and prevents the execution of subsequent tasks. Whereas the DP-
robustness of a network gives the probability of executing it successfully through the end,
the expected utility further describes how far this execution is likely to be conducted.

We hence propose another relevant indicator: the DP-utility of a PSTN N under a
predefined dispatching protocol P. Suppose UP(N, ξ) is the resulting total utility achieved
by protocol P in scenario ξ. The expected total utility of the network under P is therefore:

µP(N) =
∑
ξ∈ΩN

P{ξ} UP(N, ξ) (12)

We directly see the similarity with the definition of rP(N) in (1). Additional utility measures
such as the utility of the best static schedule (DSC utility variant), utility under perfect
reoptimization (DDC variant), or even when provided an oracle that sees the future (DWC
variant) can be obtained by simply replacing deterministic function ΦP(N, ξ) in (2), (3)
and (6) by the deterministic utility function UP(N, ξ).

Interruptible tasks and cutoff times. A classical assumption in the literature, which
we made until here, is that failing at executing an activity automatically implies the failure
of the entire network. However, in some contexts this assumption may not be appropri-
ate. In fact, some activities may be considered as less critical, meaning that failing these
activities does not interrupt the execution of the temporal network. Such activities could
be interrupted, without preventing from executing subsequent activities, that is, without
necessarily resulting in a global execution failure. In our rover application example, this
could be true for any experimental activity, which are somehow isolated. Nonetheless, fail-
ing (interrupting) an activity may however turn impossible to carry out a related subset
of remaining ones (e.g. an experiment composed of several tasks). In our example of Fig.
1, interrupting a driving activity would necessarily compromise the associated experiment,
although it does not prevent from further relaying. On the other hand, in this example the
relaying activities are critical, and should not be considered as interruptible. Note that a
network composed only of interruptible activities would always be of robustness 1.

The fact that a task can be interrupted in case of a too long execution time implies
the existence of a predefined cutoff time, which we assume to be u0j , the upper bound of
the time window of any time event tj . Hence, the value assigned to any time event tj will
always be of at most u0j + 1, meaning that whatever happens, the execution of the network
continues. Naturally, tj can only be considered as successfully executed if assigned a value
≤ u0j (and all other time constraints are fulfilled).

Limitations of the proposed computation method. Since t0 = 0, cutoff defined
relatively to t0 actually is a deterministic absolute value (e.g. in Fig1, putting a cutoff at
600 time units for the t10 Rover 2 experiment time event). Another type of cutoff, which
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could be named relative cutoff, would reference to a maximum duration with respect to
another time event (e.g. in Fig1, stating that t10 cannot last more than 100 time units
from t9). Although being a desirable operational property, unfortunately relative cufoff
times are not supported by the computation method we describe in Section 5; only absolute
cutoff times are supported. Furthermore, in the context where a task is interrupted due to
reaching its cutoff time, the question of subsequent task prerequisites arises. For instance, if
Rover1::drive is interrupted and deemed failed, then Rover1::expe would not start execution,
although Rover1::relay is not impacted. In this work, we assume that a task interruption
due to cutoff time bound is not considered execution failure, i.e. subsequent tasks can still
be executed. Cases where interruption are deemed execution failure are left for future work.

Controllability levels for interruptible tasks. It is important to note that the con-
cept of interruptible tasks relies on alternative operational assumptions, thus applying on
different operational contexts, in which the classical definitions of strong/dynamic/weak
controllability are not valid. Alternative or extended definitions of these controllability
levels to accommodate interruptible tasks are left for future work.

3.4 NextFirst Dispatching Protocol

The NextFirst protocol (Brooks et al., 2015), also known as DC-dispatch (Morris et al.,
2001) or early execution (Lund, Dietrich, Chow, & Boerkoel, 2017), dynamically assigns a
value to and dispatch each time point (i.e. executes the PSTN) in O(n) linear time, by
starting activities as soon as possible. Following the definitions of Sec. 2.3, we then have
ΓtE ⊂ T tE in general, as at a current time t we are only interested in assigning a value to the
very next executable time point(s), regardless subsequent ones (if any).

Let tj be a controllable time point in a PSTN, and Ij = {(0, j), . . . , (i, j)} the set of
incoming edges in tj . We assume tj to be a controllable time point and Ij to contain
controllable edges only, which one can easily enforce as shown in Fig. 4(c). Therefore, tj is
assigned a time value as soon as all the preconditions are validated, that is, all the t0, . . . , ti
time points are known, leading to the very simple online decision rule:

tj = max(t0+l0j , . . . , ti+lij). (13)

In the case tj > min(t0+u0j , . . . , ti+uij), the dynamic execution is interrupted and con-
sidered as failed. Naturally, NextFirst protocol has linear complexity O(n). Back to our
PSTN example in Fig. 1, the value of t11 is then dynamically set to max(t10, t6 + 5) as
soon as tasks Rover2:expe and Rover1:relay are completed. Execution fails if t11 exceeds
t6 + 10. Eventually, we hope for t12 ≤ 700.

The remaining of this paper heavily relies on the NextFirst dispatching protocol, for
which the simplified operational assumptions allow an efficient computation of the DP-
robustness as well as the DP-utility of a PSTN.

Suboptimality of NextFirst. The simplicity of NextFirst provides interesting compu-
tational properties, but comes at the expense of being suboptimal. Indeed, “if we finish
cooking too early, the dinner will be cold” (Nilsson et al., 2014). As observed in Eq. (3), a
more clever dispatching protocol assigns a time value based not only on past time events,
but also in light of remaining the remaining uncertainty. Fig. 4(a) shows a basic PSTN
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for which operating t1 as soon as possible, following (13), leads to a failure whereas post-
poning the execution of t1 gives a valid schedule. In fact, in addition to be dynamically
controllable, the STN at hand is also strongly controllable. Dispatching strategies such as
DREA (Lund et al., 2017) or derivatives like DREAM (Abrahams, Chu, Diehl, Knittel,
Lin, Lloyd, Boerkoel Jr, & Jeremy, 2019) are capable of reaching a 100% success rate for
this PSTN, but are considerably more complex, and do not give much insight into PSTN
dynamic controllability. These strategies rely on creating fully decoupled “guides” over
strongly controllable versions of the provided PSTN.

3.5 Complexity Levels of Dynamic Controllability

In many operational contexts, under computationally limited settings (e.g. Mars Persever-
ance rover), a DP-robustness measure based on an appropriate suboptimal protocol may be
more adequate than the DDC, as the latter relies on optimal online re-scheduling, which is
intractable in practice. In other words, a PSTN which is theoretically DC may not be DC
in practice. When activities are not interruptible, dynamic controllability is usually seen as
an interesting, positive property for a PSTN. It means that no matter the uncertainty, it
is always possible to succeed in executing the network, in theory, by adapting the decisions
in a dynamic fashion. In practice however, it may be that the online decision system (i.e.
dispatching protocol) involved requires tremendous computational resources, and therefore
potentially significant (or even irrelevant) runtime. A more interesting property for a PSTN
would then be to prove the network as being DC under some limited online computational
resources. The current PSTN formalism lacks a theoretical tool that allows to characterize
dynamically controllable (P)STNs, according to the tractability of the decision algorithm
that actually enables DC.

The STN depicted in Fig. 4(a) is dynamic (and strongly) controllable, whereas it has
the noticeable property of not being controllable by NextFirst. Fig. 4(b) depicts a non
strongly controllable PSTN which is, unlike (a), dynamic controllable under NextFirst.
Now, think of a PSTN that would be composed of both (a) and (b), for example by simply
linking t2 of (a) to t0 of (b) with a [0,∞[ constraint. The resulting PSTN would still
be dynamic controllable, although too complex for NextFirst. We thus see that different
decision complexity levels may be identified within a dynamically controllable PSTN. We

Figure 4: (a) Example of NextFirst suboptimality on a strongly/dynamically controllable
network (U is for uniform). (b) Example of a network dynamically controllable
under NextFirst, but not strongly controllable.
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propose two additional, complementary intermediate levels of dynamic controllability for
PSTNs:

Definition 5 (linear dynamic controllability). A PSTN is said to be linearly dynamic
controllable (linear DC) if a dispatching protocol of linear worst case time complexity suffices
at reaching dynamic control.

Definition 6 (polynomial dynamic controllability). A PSTN is said to be polynomialy
dynamic controllable (polynomial DC) if a dispatching protocol of polynomial worst case
time complexity suffices at reaching dynamic control.

Definition 7 (hard dynamic controllability). A PSTN is said to be hardly dynamic con-
trollable (hard DC) if there exists a dispatching protocol that reaches dynamic control on
that network, but no polynomial-time algorithm that computes it.

Strong controllability is a particular case of linear DC. Any strong controllable PSTN
by definition enables dynamic control through a O(1) dispatching protocol. We may say it
is constant time DC. Both (P)STNs of Fig. 4(a) and (b) are linear DC, even though (a)
is not controllable by using NextFirst. Also, any PSTN having a DP-robustness of 1 under
NextFirst is therefore further qualified as linear DC. On the contrary, in general a NextFirst
DP-robustness lower than 1 does not necessarily imply hard DC, as a different dispatching
protocol may still be able to achieve DC, such as PSTN (a) of Fig. 4. By combining PSTNs
(a) and (b) of Fig. 4, we obtain a PSTN that is DC, although not by using NextFirst and,
unlike (a) alone, not strongly controllable. On the other hand, a hardly DC network means
that only a perfect (NP-hard) reoptimization approach may guarantee to succeed under
dynamic control in any possible situation. In practice however, perfect reoptimization is
usually not an option.

Historically, Tsamardinos, Muscettola, and Morris (1998) first studied the concept of
dispatchability in the context of deterministic STNs, when all activity durations are known in
advance and one is still seeking for some execution flexibility, by determining the schedule
dynamically according to current execution conditions. They recognize the limitation of
online computing, and therefore the necessity for fast efficient decision steps. They define
a family of STN dispatching protocols, called a “Dispatching Execution Controller“, which
has the particularity of being computationally bounded to linear time complexity. In their
framework, a STN is qualified as dispatchable if it is always correctly executed by such
dispatcher. In other words, the concept of dispatchability defined for STNs is a particular
case of linear DC: any dispatchable STN is linear DC, although composed of no contingent
edges. In fact, they proved that any STN can be transformed, in polynomial time, into a
dispatchable STN by the addition of a reasonable amount of time constraints.

In Sec. 5, we show how to compute the DP-robustness under the linear time dispatching
protocol NextFirst, thereby also allowing to prove linear DC when the computed value is
one. Similar proofs of linear (or even polynomial) DC may also be obtained by considering
alternative dispatching protocols. However, such arguments are specific to a dispatching
protocol, and are not sufficient to prove hard DC on a PSTN. Deciding the hardiness of a
dynamically controllable network is therefore an open question, left for future investigation.
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4. Landscape of DDC/DSC and Utility Measures

Table 1 summarizes contributions on computing (or approximating) the DSC or DDC of a
network, in the case of classical PSTNs. We do not cover PSTN extensions such as PSTNs
with choices (Conrad, Shah, & Williams, 2009), conditional PSTNs (Combi, Posenato, Vi-
ganò, & Zavatteri, 2019), PSTNs with resource usage (Kumar, Wang, Kumar, Rogers, &
Knoblock, 2018). Recent studies, such as that of Cui and Haslum (2019), has focused on
controllability checking and computing dynamic decisions (or reliable policies) for dynami-
cally controllable PSTNs, whereas we focus on the DSC or DDC of uncontrollable PSTNs.

Classical assumptions on PSTN random variables. The inherent complexity of
dealing with interconnected random variables requires, when not relying on sampling based
methods (such as Monte Carlo), to impose strong assumptions to the nature of the system
at hand. Existing work either assume or are focused on parametric probability distributions,
such as uniform or normal, in order to describe the uncertainty on the PSTN contingent
edges. In fact, we provide the first method able to deal with ordinary distributions, by
relying on closed form equations, that is, no simulations nor approximations. Moreover, all
existing works (including the present work) assume independence between realizations of
the contingent constraint random variables, except for Fang et al. (2014), which however
did not consider the DSC/DDC estimation problem, and for simulation based approaches
which, however, come with no guarantees. Furthermore, most of the methods overestimate
the DDC by naively considering each contingent edge separately, hence failing at capturing
how delays propagate through the structure of the network. On the contrary, in this paper
we present a computational method that literally follows the propagation of the uncertainty
within this structure, which ensures, if not the exact DDC computation (under specific
operational assumptions — i.e. NextFirst), to never overestimate.

Degree of strong controllability. The contributions in this front are summarized in
the top portion of Table 1. Most of the existing approaches aim at either solving, or ap-
proximating, problem (2), that is, the problem of finding a static schedule maximizing its
DP-robustness. Santana et al. (2016) proposed a pseudo-polynomial time algorithm to com-
pute strong policies to PSTNs which are normally not strongly controllable, by squeezing
the probability distribution bounds. In addition to providing a schedule, they compute an
upper bound on the risk involved at squeezing these distributions. Yet, their computational
framework allows to consider any kind of probability density function (uniform, Gaussian,
etc.) to describe the contingent durations, as long as it is unimodal and monotonic on both
sides of the mode. In other words, in Santana et al. (2016) a strong schedule is computed
as soon as the probability bounds get squeezed enough to enable strong controllability. The
reported risk, namely an upper bound on the probability of that schedule to fail in practice,
that is subject to the real probability bounds, relates to the degree of strong controllabil-
ity later introduced by Akmal et al. (2019), for STNUs only. Wang and Williams (2015)
proposed a (non-polynomial) method for determining optimal static schedule minimizing
the risk. Thanks to the independence assumption, the schedule’s DP-robustness is exactly
computable.
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Comp. value Prob. distribution

Degree of Strong Controllability Exact LB Approx. ∼U ∼N All Cont.

(Akmal et al., 2019) X X X X
(Santana et al., 2016) X X X X
(Cui et al., 2015) X X X
(Tsamardinos, 2002) X X X X
(Wang & Williams, 2015) X X X X X X X
Our proposal X X X X X

Degree of Dynamic Controllability Exact LB Approx. ∼U ∼N All Cont.

Monte Carlo X X X X X
(Akmal et al., 2019) X X X
(Cui et al., 2015) X X X
(Vaquero et al., 2019) X X X X
(Cesta, Oddi, & Smith, 1998) X X
(Wilson et al., 2014) X X
(Lund et al., 2017; Abrahams et al., 2019) X X X X X X
(Saint-Guillain, 2019) X X X X
Our proposal X X X X X

Table 1: DSC (top) and DDC (bottom) measurement methods. The key properties we con-
sider are 1) Quality of the computed value: exact DSC/DDC value, lower bound,
approximation, and 2) Properties of the supported probability distributions: Uni-
form (∼U), Normal (∼N), ordinary distribution (All), and whether distributions
can be continuous (Cont.).

The computational framework proposed in this paper may be used to compute the DP-
robustness of any static schedule, without making any assumption on the shape of the
probability distributions, as long as these can be considered independent and discrete.

Degree of dynamic controllability. In the context of dynamic controllability, Akmal
et al. (2019) propose an approximation technique, based on a linear programming formu-
lation of the STNU (i.e. assuming uniform distributions), achieving good accuracy rate.
In Brooks et al. (2015), a Monte-Carlo sampling approach approximates robustness under
NextFirst protocol (and therefore approximates the DDC). Other approximated robust-
ness metrics have been considered: Cesta et al. (1998) and Wilson et al. (2014) see the
DDC of a network as a potential of solution flexibility (i.e. aggregate time slack). They
coarsely approximate how easily a schedule can be adapted during operations. A quite sim-
ilar approach has been proposed by Tsamardinos (2002), by reasoning on the probability
distributions describing the gaps between the time constraint bounds. Huang, Lloyd, Omar,
and Boerkoel (2018) introduce additional flexibility measures, based on a representation of
the STN (i.e. no contingent edge) as a polyhedron. All of these approaches suffer from the
fact that they do not directly deal with uncertainty in durations.

Cui et al. (2015) define the robustness of STNUs (i.e. under non-probabilistic uncer-
tainty) as the maximum variations that all the contingent durations may face while still

1109



Saint-Guillain, Vaquero, Chien, Agrawal & Abrahams

having strong/dynamic control. Based on the same idea, Vaquero et al. (2019) defines the
notion of activity temporal brittleness, by analysing how much duration deviation (based
on a distribution) each activity, taken separately, can absorb before the network becomes
dynamically uncontrollable. The method proposed by Saint-Guillain (2019) attempts at
computing an exact lower bound on the DDC, while handling ordinary distributions. Yet,
it applies to particular PSTNs only, leading to an approximation in the general case. In
Lund et al. (2017) and Abrahams et al. (2019), one of the two proposed methods (called
SREA) leverages the concept of strong controllability in order to infer a lower bound on
the DDC. In fact, SREA attempts to find a lower bound on the DP-robustness for its given
dispatch strategy, which appends to be NextFirst. The computed lower bound however de-
creases exponentially with the number of contingent edges, which makes it less informative
in practical applications, as it rapidly becomes too small compared to the true DDC. More
specifically, they compute a global, minimal acceptable risk level α, which is the allowable
amount of probability mass to be sacrificed for all contingent edges, further leading to the
lower bound (1−α)|CC |. This is rather a side theoretical contribution of their method, which
is of more general purpose, and these bounds were actually not experimentally computed.

In this paper, we show how the DP-robustness of a network can be computed exactly,
thanks to operational assumptions simplifying the dynamic decisions, which provides an
exact lower bound on the DDC.

Utility under strong and dynamic control. Up to our knowledge, there is currently no
study related to PSTN expected utility measures, in particular when activities can in fact be
safely interrupted. Interruption here should not be confused with that of conditional PSTNs,
in which parts of the network could be disabled depending on realizations of conditional
constraints, despite in this case, the expected utility measure would make sense as well.
In this paper, we show how to compute an exact lower bound on the expected utility of a
PSTN, when all the activities are interruptible, subject to predefined cutoff times.

5. Exact Computation of DP-Robustness and DP-Utility

We now explain how the exact NextFirst DP-robustness (i.e. the expected probability of
dynamic control success of an ordinary-distributed PSTN network when using NextFirst
protocol) can be actually computed in fixed-parameter pseudo-polynomial time.

It is important to remark that, from now on, we make the assumption that our PSTN
is composed of either uninterruptible tasks only, or interruptible tasks only. In fact, the
probabilistic equations described below would not be valid anymore for a PSTN containing
both interruptible and uninterruptible activities.

Assumptions and network preprocessing. We assume discretized time horizon and
probability distributions. In practice however, continuous distributions may be used in
input as long as their CDFs can be evaluated at discrete values. The horizon is noted
H = 1..h. We also assume independence between the activity duration (i.e. contingent
constraints TC) probabilities. Let then pdij = P(tj − ti = d) be the probability that the
uncertain activity duration, represented by contingent edge (i, j), is of d ∈ H time units.
The dynamic execution follows the NextFirst dispatching protocol. To each time point
ti ∈ T is always associated a constraint [l0i, u0i], defining the valid time window w.r.t. t0.
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Figure 5: A network can be transformed in order to avoid synchronization points involving
contingent incoming edge(s), which works as follows. For each synchronization
point, every incoming contingent edge (with probability distribution Xc,j) is re-
placed by a sequence: contingent edge (same random variable), new (contingent)
time point, controllable edge [0,∞[. Replacements are shown in red. The figure
is volontarily cut off to show that tj may have arbitrary outgoing edges.

If no such constraint is specified, we assume [0, h]. We call tleaf ∈ TC the final time event
(e.g. t12 in Fig. 1). In case of multiple final events, we add a final synchronization point,
that links these with [0,∞[ edges. We call synchronization point, any time point having at
least two incoming edges in addition to that from t0.

Finally, following Fig. 5 we transform the network to avoid contingent synchronization
points, that is, synchronization points for which some of the incoming edges are contingent.
The resulting network is equivalent under NextFirst assumptions, in the sense that given a
particular scenario, the time value assignments are equivalent. In particular, the robustness
under NextFirst remains unchanged. We prove that the replacement of a single particular
contingent incoming edge keeps the time values assignments unchanged. Let the edge be
(c, j). Under a scenario ξ, we denote dξ the realization of random variable Xc,j , and following
(13) then either (a) tj = tc + dξ, or (b) tj > tc + dξ. In case of (b), the duration (c, j)
in ξ is such that tj ’s dispatching is waiting for another, contingent or controllable, time
constraint. Consequently, replacing (c, j) as described in Fig. 5 cannot modify the time
value of tj in ξ, which remains consistent w.r.t. both tec’s value (tc + dξ) and the new [0,∞[
edge. Note that in this case, we cannot specify [0, 0] instead [0,∞[, due to the multiple
contingent edges arriving at the tj . In case (a), then in the transformed PSTN we have
tj = tec = tc + dξ because of NextFirst, since by hypothesis tc + dξ realized as the maximum
of tj ’s incoming edges. Since the transformation of one unique contingent edge keeps the
network equivalent (under NextFirst), problematic contingent edges can be transformed in
turn until we obtain a PSTN without any contingent synchronization point.

Note that in general, it is also always possible to combine chains of uncontrollable
events into a single uncontrollable events with a convolution. Similarly, one can always
introduce more controllable events on any requirement triangle in a PSTN. It may be worth
mentioning that this preprocessing step doesn’t restrict the solution space in any way, and
solutions to the processed form will lead to an equivalent solution in the original.

Walk-through example. This section will be supported by the simple PSTN case de-
picted in Fig. 6. For simplicity we will limit its application to the DP-robustness com-
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Figure 6: Walk-through PSTN example and its network preprocessing step. Events tu and
ts are both called synchronization points, as they both have at least two incoming
controllable edges in addition to that from t0 (not shown for tu).

putation in the uninterruptible case. We have two synchronization points, tu and ts. The
operational horizon is imposed to [0, 20]. There is an unique contingent duration from t2 to
tu, uniformly distributed from 1 to 10 time units. We see that the main challenge here is
imposed by the [0, 2] time constraint from t2 to ts, and it is easy to see that the robustness
of the network should be of 20%, has the execution would fail if the contingent duration
realizes to a value higher than 2 time units. The network preprocessing step is also showed
in Fig. 6, by adding the intermediate event t′u, which prevents tu from being a contingent
synchronization point.

5.1 DP-Robustness

We now describe how to compute the DP-robustness rnf(N) of a network N , using closed-
form expressions instead of (1), when using NextFirst protocol.

Once the network preprocessing step done, only the controllable time points are sus-
ceptible to cause execution failure. We are thus interested in the probability that every
controllable time point gets assigned a time unit within its boundaries:

rnf(N) = P
{ ∧
tj∈Tc

max(t0+l0j , . . . , ti+lij) ≤ tj ≤ min(t0+u0j , . . . , ti+uij)
}

= P
{ ∧
tj∈Tc

tj ≤ min(t0+u0j , . . . , ti+uij)
}

(14)

= P
{
tleaf ≤ min(t0+u0j , . . . , ti+uij)

}
=
∑
t∈H

Pleaf(t) (15)

A little abuse of notations: probability P{α = >} for a logical formula α to be true is denoted
P{α}. Since NextFirst execution interrupts as soon as something goes wrong, the network’s
success probability is equivalent to that of tleaf: (14) reduces to (15), where Pj(t) is the
random function that returns the unconditional probability that tj ∈ TC gets dynamically
assigned time unit t, when following NextFirst protocol decision rule dispatching everything
as soon as possible (13). Pj(t) is recursively computed from tj to t0. This computation
will be described in a moment. Note that, in general, the probability under NextFirst of
assigning a valid time value to a time event tj with time window [l0j , u0j ] is:

P{tj succeeds} =
∑

l0j≤t≤u0j

Pj(t). (16)
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Considering our walk-through example, since t2 starts at time 0 under NextFirst, we have

rnf(N) = P
{
tu ≤ t1 + 5 ∧ ts ≤ t2 + 2

}
= P

{
ts ≤ t2 + 2

}
=
∑
t∈H

Ps(t)

where ts is in fact our leaf time event. We will see soon that Ps(t) equals zero for t = 0 and
t > 2, so that we are left with rnf(a′) = Ps(1) + Ps(2).

5.2 DP-Utility

An alternative but equivalent definition of µP(N) in (12) can be devised by decomposing
the computation over the time events. Let wj ≥ 0 be the utility value assigned to time
event tj ∈ T , and Aj random variable taking value 1 if te get successfully assigned a time
value by protocol P, zero otherwise. Then,

µP(N) = E
[
UP(N)

]
= E

[ ∑
tj∈T

wjAj

]
=

∑
tj∈T

wj P{tj succeeds} (17)

where, because
∑

tj∈T wjAj is linear, the expectation can be safely decomposed regardless

the dependencies between the Aj ’s. Following (16), the DP-utility µP(N) of N under
NextFirst is then simply:

µnf(N) =
∑
tj∈T

wj P{tj succeeds} =
∑
tj∈T

wj
∑

l0j≤t≤u0j

Pj(t). (18)

5.3 Time Event Probabilities

This section describes the computation of Pj(t). We necessarily have Pt0(0) = 1 and
Pt0(t) = 0 for t > 0. For any time point tj , other than initial t0, let

fj(t) ≡ P
{
t = max

i:1..n
(ti+li) ∧ t ≤ min

i:1..n
(ti+ui)

}
(19)

be the probability that tj may be assigned value t, when not considering its lower bounding
constraint l0j , if any. Time bounds [lij , uij ], i : 0..n are noted [li, ui] for short. NextFirst
protocol tells us t must be equal to max(t1+l1, . . . , tn+ln), except if t comes too late, as
suggested by the second condition of (19). Then, now considering constraints l0 = l0j :

Pj(t) =


∑l0
t′=0 fj(t

′) if t = l0

fj(t) if l0 < t ≤ u0, t ≥ 0

1− Fj(u0) if t = u0 + 1 and is interruptible

0 otherwise.

(20)

where Fj(t) is the CDF of tj : Fj(t) =
∑

t′:1..t Pj(t
′). The summation in the first case

accounts for the situations in which (a) ti+lij < l0j or (b) ti+lij = l0j . In (a), the system
must wait until l0j before executing tj . The second case (b) accounts for situations in which
the system can simply proceed without waiting. Finally, the third case only applies if tj
is interruptible (as well as all the other time events). The upper bound u0j of the event’s
deterministic time window then acts as a cutoff, which ensures that the execution continues
even in case of an interruption. It ensures to always assign a value to tj , namely u0j + 1
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in case the dispatching protocol fails at assigning a valid value. Yet, this requires every
event to be defined a consistent cutoff with respect to that of its predecessors, i.e., if ti is
an ancestor of tj , then u0i + lij ≤ u0j . The computation of fj(t) depends on the type of
time point tj it belongs to: either transition or synchronization point.

Transition point. The time point has at most one incoming edge (i, j), either contingent
or controllable, in addition to the incoming controllable edge (0, j). This is true for all time
points in Fig. 1 excepted t0 and t11. Under NextFirst, where for any controllable event,
pdij = 1 if d = lij , 0 otherwise:

fj(t) =
∑

0≤d≤t

pdij · Pi(t− d) if l0j − uij ≤ t ≤ u0j , 0 otherwise, (21)

where we see that if fj(t) could take positive values for t < l0j , we must take upper bound
time difference constraint uij in to account. In fact, in case the system gets ready for
dispatching tj at a time t < l0j , meaning it must wait from t to l0j to do so, it however
cannot wait for more than uij time units. Back to our walk-through example, the transition
points are t1, t2 and t′u:

P1(0) = f1(0)1, P2(0) = f2(0) = 1, Pu′(1) = fu′(1) = 0.1 · P2(1− 1), Pu′(2) = 0.1 · P2(2− 2)

all other t values resulting in a zero probability.

Synchronization point. A tj having two or more controllable incoming edges, not count-
ing that from t0 (e.g. t11 in Fig. 1) is called a synchronization point. From a probability
point of view:

fj(t) = P
{∧
i:1..n

ti+li ≤ t ≤ ti+ui︸ ︷︷ ︸
α

∧¬
( ∧
i:1..n

ti+li < t
)

︸ ︷︷ ︸
β

}
(22)

= P
{∧
i:1..n

ti+li ≤ t ≤ ti+ui)
}

+ P
{
¬
( ∧
i:1..n

ti+li < t
)}

− P
{∧
i:1..n

ti+li ≤ t ≤ ti+ui ∨ ¬
( ∧
i:1..n

ti+li < t
)}

(23)

using the relation P{α∧β} = P{α}+P{β}−P{α∨β}. Here α and β together refer directly
to the conjunction in (19). The t ≤ ti + ui terms ensure the second condition in (19),
whereas the ti + li ≤ t terms alone only impose t ≥ maxi:1..n(ti + li). The β part is there to
strengthen to t = maxi:1..n(ti + li), as t must be equal to at least one of the ti + li’s.

Let us assume that all ti’s involved in the synchronization are mutually independent ,
not to be confounded with that assumed on the contingent constraints TC . We later discuss
how to deal with dependency. In such case, the P{α} and P{β} terms of (23) become
straightforward to compute:

P{α} = P
{∧
i:1..n

t−ui ≤ ti ≤ t−li
}

=
∏
i:1..n

Fi(t−li)−Fi(t−ui−1) (24)

P{β} = 1− P
{∧
i:1..n

ti < t−li
}

= 1−
∏
i:1..n

Fi(t−li−1) (25)
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The synchronization points in our walk-through example of Fig. 6 are tu and ts:

P{αu} =
(
F1(t)− F1(t− 6)

)
·
(
Fu′(t)− Fu′(t− 1)

)
P{βu} = 1− F1(t− 1) · Fu′(t− 1)

P{αs} = Fu(t)− Fu(t−∞) ·
(
F2(t)− F2(t− 3)

)
P{βs} = 1− Fu(t− 1) · F2(t− 1)

P{αs} = Fu(t) ·
(
F2(t)− F2(t− 3)

)
If there is no upper bound constraint ui (i.e., ui =∞, i : 1..n), then P{α∨β} = 1. Otherwise,
we have P{α ∨ β} =

P
{∧
i:1..n

ti+li ≤ t ≤ ti+ui ∨ ¬
( ∧
i:1..n

ti+li < t
)}

= 1− P
{( ∨
i:1..n

ti > t−li ∨ ti < t−ui
)
∧
∧
i:1..n

ti < t−li
}

= 1− P
{∨
i:1..n

(
ti < t−ui ∧

∧
i:1..n

ti < t−li
)}

Removing redundant conjunctions due to t−ui ≤ t−li leads to the noticeable square shaped
clauses:

1−P
{

(t1 < t−u1 ∧ t2 < t−l2 ∧ . . . ∧ tn < t−ln )

∨ ( t1 < t−l1 ∧ t2 < t−u2 ∧ . . . ∧ tn < t−ln )

. . .

∨ ( t1 < t−l1 ∧ t2 < t−l2 ∧ . . . ∧ tn < t−un)
}

(26)

Let Ai be the random event in which the conjunction at line i of (26) is true. The intersection
of any two or more Ai’s leads a conjunction of same size n. For example, P

{
A1 ∩A2

}
=

P
{

(t1 < t−u1 ∧ t2 < t−l2 ∧ . . . ∧ tn < t−ln )

∧ ( t1 < t−l1 ∧ t2 < t−u2 ∧ . . . ∧ tn < t−ln )
}

= P
{

( t1 < t−u1 ∧ t2 < t−u2 ∧ . . . ∧ tn < t−ln )
}
.

Similarly, A1 ∩ A2 ∩ Ai also leads to a A-shaped conjunction of exactly n inequalities, and
so on. Since the ti random variables are assumed mutually independent, the probability of
an event AI⊆{1..n} =

⋂
i∈I Ai is simply the product of all the probabilities of its terms. For

example, for AI = A1 ∩A2:

P{A1 ∩A2} = F1(t−u1−1) · F2(t−u2−1) · . . . · Fn(t−ln−1).

Using the inclusion-exclusion principle, we finally rewrite:

P{α ∨ β} = 1− P
{ ⋃
i:1..n

Ai

}
= 1−

∑
k:1..n

(
(−1)k−1

∑
I⊆{1..n}
|I|=k

P
{⋂
i∈I

Ai

})
. (27)
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Following our walk-through example,

P{αu ∨ βu} = 1−
(
P
{
A1

}
+ P

{
Au′
}
− P

{
A1 ∩Au′

})
= 1−

(
F1(t− 6) · Fu′(t− 1) + F1(t− 1) · Fu′(t− 1)− F1(t− 6) · Fu′(t− 1)

)
P{αs ∨ βs} = 1−

(
P
{
A1

}
+ P

{
Au′
}
− P

{
A1 ∩Au′

})
= 1−

(
Fu(t−∞) · F2(t− 1) + Fu(t− 1) · F2(t− 3)− Fu(t−∞) · F2(t− 3)

)
= 1− Fu(t− 1) · F2(t− 3)

Since we assumed ti variables to be mutually independent (not to be confounded with the
assumed independence between contingent constraints TC), then P

{⋂
i∈I Ai

}
is computable

as a product of Fi(·)’s. However, what if (a subset of) the ti’s are not independent?

Proposition. Random variables t1, . . . , tn are dependent if they share at least one common
unpredictable ancestor. A time point is a predictable ancestor of ti iff its value is deter-
ministic, and can be reached from ti by reversing edges.

Proof: Independence hypothesis between contingent constraints implies ti’s to be mutually
independent if they share no common ancestor. Now suppose: a) All common ancestors are
predictable. An equivalent network is obtained by removing those and adding a constraint
[l0j ,∞[ to all remaining events, where l0j is the predicted value of the closest ancestor. b)
At least one common ancestor ta is not predictable. Knowing ti’s value limits the possible
realizations for ta, which in turn influences any ti′ having ta as ancestor.

Corollary. In the case some contingent constraints have bounded probability distribution,
b) does not hold in general. Yet, we can still infer that if they do not share any common
unpredictable ancestor, the events are consequently mutually independent. This is the case
for t6 and t10 in Fig. 1. Suppose one adds a constraint from t3 to t9, then a dependency
appears between t6 and t10.

Imposing independence. Whenever a subset of the ti’s are potentially dependent, we impose
“local independence” on them, by fixing the time value of their closest common ancestor
ta, using the law of total probability:

fj(t) =
∑
t′∈H

fj(t | ta = t′) · Pa(t′). (28)

In fact, {ta = 0, ta = 1, . . . , ta = h} is a partition of ΩN . Probability fj(t | ta = t′) is
computed after reprocessing part of the network, up to tj , with ta fixed to value t′. That
part corresponds to all the uncommon ancestors, that is, every time point being an ancestor
of at least one, but all, of the ti’s.

In our walk-through example from Fig. 6, the synchronization points tu and ts are
different cases. Since events t1 and tu′ share no common unpredictable ancestor, these can
be considered as mutually independent, and we can compute the probabilities of tu without
imposing local independence:

fu(t) = P{αu}+ P{βu} − P{αu ∨ βu}
=
(
F1(t)− F1(t− 6)

)
·
(
Fu′(t)− Fu′(t− 1)

)
+ 1− F1(t− 1) · Fu′(t− 1)

− 1 +
(
F1(t− 6) · Fu′(t− 1) + F1(t− 1) · Fu′(t− 1)− F1(t− 6) · Fu′(t− 1)

)
In the case of ts however, we see that t2 and tu appear as dependent. Their closest common
ancestor is simply in fact t2. Fortunately for both the author and the reader, t2 is predictable
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Figure 7: Modified NextFirst-equivalent walk-through PSTN example.

as its only possible value is 0. Although counter-intuitive (how could tu be independent of
its ancestor ts?), the independence easily appears if we acknowledge that, under NextFirst,
an equivalent PSTN can be obtained by removing the [0, 2] constraint from t2 to ts, and
strengthening to [0, 2] that from t0 to ts, as shown in Fig. 7. Consequently, ts becomes a
transition point, where by following Eq. (21):

Ps(t) = fs(t) = Pu(t) if t ≤ 2, 0 otherwise.

Back to (16), the robustness of the PSTN under NextFirst is therefore:

rnf(N) = Ps(0) + Ps(1) + Ps(2) = fs(0) + fs(1) + fs(2) = Pu(0) + Pu(1) + Pu(2)

= fu(0) + fu(1) + fu(2)

= F1(0) ·
(
Fu′(0)− Fu′(−1)

)
+ 1− F1(−1) · Fu′(−1)− 1 + F1(−1) · Fu′(−1)

+ F1(1) ·
(
Fu′(1)− Fu′(0)

)
+ 1− F1(0) · Fu′(0)− 1 + F1(0) · Fu′(0)

+ F1(2) ·
(
Fu′(2)− Fu′(1)

)
+ 1− F1(1) · Fu′(1)− 1 + F1(1) · Fu′(1)

= 1 · (0− 0) + 1− 0 · 0− 1 + 0 · 0
+ 1 · (.1− 0) + 1− 1 · 0− 1 + 1 · 0
+ 1 · (.2− .1) + 1− 1 · .1− 1 + 1 · .1

= .2

as F1(−5) = F1(−4) = 0, F1(0) = F1(1) = F1(2) = 1, Fu′(0) = 0, Fu′(1) = .1, Fu′(2) = .2.
Remark that even without turning ts into a transition point, following the law of total
probability in (28) still results in a 0.2 probability of success:

fs(t) = Ps(0) + Ps(1) + Ps(2) = fs(0 | t2 = 0) · P2(0) + fs(1 | t2 = 0) · P2(0) + fs(2 | t2 = 0) · P2(0)

= Fu(0) ·
(
F2(0)− F2(−3)

)
+ 1− Fu(−1) · F2(−1)− 1 + Fu(−1) · F2(−3)

+ Fu(1) ·
(
F2(1)− F2(−2)

)
+ 1− Fu(0) · F2(0)− 1 + Fu(0) · F2(−2)

+ Fu(2) ·
(
F2(2)− F2(−1)

)
+ 1− Fu(1) · F2(1)− 1 + Fu(1) · F2(−1)

= 0 ·
(
1− 0

)
+ 1− 0 · 0− 1 + 0 · 0

+ .1 ·
(
1− 0

)
+ 1− 0 · 1− 1 + 0 · 0

+ .2 ·
(
1− 0

)
+ 1− .1 · 1− 1 + .1 · 0

= .2

since Fu(t) = 0 if t < 1, Fu(1) = .1, Fu(2) = .2, as we already computed fu(0) = 0,
fu(1) = .1 and fu(2) = .1. Finally, note that our calculations would have been even further
simplified by noticing in Fig 7 that, t1 being as predictable as t2, event tu could have been
considered as a transition point as well.
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Computational complexity. At synchronization time points, the complexity of com-
puting (27), given t, depends on the maximum number L ≥ 1 of incoming edges, from
unpredictable events, at a synchronization point tj . In fact, predictable events act exactly
as the initial time event t0, such as t2 in Fig. 7, defining a deterministic time window for
tj . For example, t1 and t2 being predictable in our walk-through PSTN, we have L = 1,
and L = 2 for our example of Fig. 1. At synchronization points, assuming the CDFs F (·)
are incrementally maintained, (27) requires O(L2L) operations, to be repeated at most h
times through (28). Following (20), fj(t) probabilities must be computed for each time
unit t, and for each of the m = |T | time events of the PSTN. Putting pieces together, the
overall worst-case complexity of computing either rnf or µnf is bounded by O(mh2L2L). It
is equivalent to filling a matrix of size m × h, each cell (j, t) being the probability Pj(t)
that event tj gets assigned value t. If j is a transition point, then Pj(t) requires at most h
operations, based on the (i, 1), . . . , (i, h) cells of previous time point i, as described in (21).
Otherwise, Pj(t) hence requires the O(hL2L) operations from (27) and (28). In brief: in
case L = 1, overall complexity is O(mh). Otherwise, we have O(mh2L2L) in general.

DP-robustness of static schedules as lower bound on the DSC. The proposed
method, designed for DP-robustness, can be directly generalized to the computation of
DP-robustness rs(N) for any particular static schedule s. Following relation 8, it hence
provides an exact lower bound on the network’s DSC. Let s : t0 = 0, t1 = t1, . . . , tn = tn
a predefined static assignment for all the controllable time points of a temporal network.
It is easy to see that the NextFirst dynamic protocol can be rendered static by simply
imposing a time window [ti, ti] on each controllable ti. However, the problem of finding a
good quality static schedule, leading to a high lower bound, is out of the scope of this paper.

Open source library. An open source C++ implementation of our method is available
online, with usage guides and examples: https://bitbucket.org/mstguillain/dprobustness.

6. Experimental Validation and Applications

This section is an experimental validation, confronting the predicted values computed by
the proposed computation method to averages measured on simulations (Sec. 6.1). Since
a lower bound is actually only useful when it is reasonably close to the targeted value (i.e.
the DDC), we hence compare the lower bound provided by NextFirst dispatching protocol
with state-of-the-art approximations from the recent literature (Sec. 6.2).

Figure 8: Examples of randomly generated ordinary distributions.
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min max mean geo |rnf-MC| |µnf-MC| ∆max r ∆max µ

M = 102 0.0003 0.011 0.0023 0.0017 0.027 0.026 0.11 0.13
M = 103 0.002 0.09 0.021 0.015 0.0085 0.0087 0.032 0.035
M = 104 0.03 0.87 0.20 0.14 0.0025 0.0025 0.009 0.009
M = 105 0.29 9.02 1.81 1.31 0.0009 0.0009 0.004 0.004

rnf D=2 0.0002 3.95 0.34 0.09 n.a. n.a. n.a. n.a.
rnf D=3 0.0002 52.9 3.85 0.18 n.a. n.a. n.a. n.a.

M = 102 0.0003 0.02 0.004 0.003 0.016 0.017 0.105 0.105
M = 103 0.002 0.21 0.044 0.027 0.0058 0.0061 0.034 0.049
M = 104 0.03 2.29 0.41 0.26 0.0017 0.0019 0.0144 0.0144
M = 105 0.25 23.75 3.84 2.35 0.0006 0.0006 0.0041 0.0041

M = 102 0.0005 0.03 0.006 0.004 n.a. 0.018 n.a. 0.11
M = 103 0.004 0.29 0.06 0.03 n.a. 0.0067 n.a. 0.041
M = 104 0.04 3.01 0.51 0.33 n.a. 0.0021 n.a. 0.009
M = 105 0.34 30.9 4.98 3.17 n.a. 0.0007 n.a. 0.004

Table 2: Comparison with Monte Carlo simulation: run time and prediction deviations.
Top: non-interruptible tasks, uniform distributions. Middle: non-interruptible
tasks, ordinary distributions. Bottom: interruptible tasks, ordinary distributions.

We validate our approach on the same dataset as Akmal et al. (2019),1 involving
452 dynamically controllable and 110 uncontrollable instances, with uniform contingent
durations. Durations are continuous, whereas our method requires a discretized horizon
H = 1..h, so we must round each time constraint [l, u] in a pessimistic way: dle, buc in the
controllable case, dle, due for contingent edges. For better accuracy, we include the first
D decimals of time bounds l, u at rounding. More decimals leads to better accuracy, but
increases the computation times as each decimal multiplies h by 10.

6.1 Computational Method

We first consider the case when no task is interruptible. For each of the 110 uncontrol-
lable PSTNs, we compare both the rnf and µnf computed values with Monte Carlo (MC)
simulations, which simply record the average success rate, and average achieved utility, of
NextFirst protocol on M randomly sampled scenarios. Table 2 (top) gives an overview of
the computation times (min, max, mean, geometric mean) as well as the average differ-
ence |rnf −MC| and |µnf − MC|, and maximal difference ∆max between predictions and
simulations:

We now replace the initial uniform distributions involved in the dataset by ordinary
ones, randomly generated within the initial bounds. Examples are provided in Fig. 8.
Table 2 (middle) shows the average results obtained. The computational times using our

1. These datasets are modified versions of ROVERS (for DC networks) and CAR-SHARING (for non-DC
ones) datasets (Santana et al., 2016), downloaded from https://github.com/HEATlab/Prob-in-Ctrl
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computational method remain unchanged, whereas we notice an increased computation
time for MC, due to more expensive sampling operations on non-parametric distributions.

Interruptible tasks. The latter experiment (i.e. using the ordinary distributions) is
reiterated where we assume all tasks as being interruptible, this time by assessing the
computed expected utility values only, as the robustness is now of 1 by definition. The
results are listed in Table 2 (bottom).

Experiments thus validate our equations, but also point potential limitations of our
framework, in terms of computational time. When rounding time values to D=3 decimals,
the resulting horizon is of h= 49300 time units in average. For some instances, rounding
to 4 decimals results in unreasonable computation times (and memory usage). Note that
the maximum number L of unpredictable events at a synchronization point, which critically
impacts the computational complexity (in fact, it is the parameter of our fixed-parameter
pseudo-polynomial time algorithm), never exceeds 2 in all the 110 uncontrollable networks,
with 29 times events in average.

6.2 NextFirst Dispatching Protocol

We now compare our results, in terms of robustness values (DDC lower bounds), with the
values computed by the two different state-of-the-art DDC approximation methods (referred
to as AkmalA and AkmalB in what follows) proposed by Akmal et al. (2019), on their own
benchmarks. Naturally, just like Akmal et al. and for the remaining of this section, we
assume that no task is interruptible. The time horizon has been rounded to D=3 decimals.
We also computed the lower bounds obtained on the same PSTN instances by the SREA
method (Lund et al., 2017), the only other lower bound computation method we found in
the literature.

Set of uncontrollable PSTNs. We first address the benchmarks of 110 uncontrollable
instances. In Table 3, each line gives the number of instances for which the DDC measure,
as computed using either one of the four methods, is of at least the probability p. Compared
to AkmalA and AkmalB methods, the average difference AkmalA−rnf and AkmalB−rnf are
of respectively −0.011 and −0.029, that is a percent of success probability gain compared
to AkmalA and about 3% compared to AkmalB . Recall that unlike rnf, the DDC values
obtained by AkmalA and AkmalB are approximations only. In other words, the computed
bounds are as close to the true DDC than state-of-the-art approximations are, whereas
unlike these approximations, rnf is guaranteed to not overestimate the DDC. Considering
the last column, which shows that 5 networks obtain a DDC of 1.0, it is thus important
to distinguish between the conclusions of b and rnf: contrary to method b which gives an
indication that these 5 networks are likely to be DC, in the case of rnf we then have valid
proof of dynamic controllability. Finally, we observe that the lower bounds obtained with
SREA method are significantly (around 60% in average) under those obtained by rnf, with
an average SREA−rnf difference of −0.595. This is not surprising, since SREA is designed to
compute a lower bound not only on the DDC, but also on the robustness under NextFirst
whereas our method computes the exact robustness for NextFirst. SREA attempts to
capture probability mass from all contingent edges simultaneously, which severely weakens
its ability to compute a tighter robustness bound (and thus its DDC lower bound).
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p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AkmalA 110 97 92 86 80 73 67 61 49 32 0
AkmalB 110 98 91 85 79 70 64 56 45 29 5

SREA 110 14 10 8 8 3 3 1 1 0 0
rnf 110 99 94 89 82 76 68 59 48 32 5

Table 3: Comparison of the values computed by our method, and by state-of-the-art meth-
ods. For each line, the column indicates the proportion of PSTNs for which the
corresponding a, b or rnf method computed a robustness of at least 0.1, 0.2, etc.

Set of controllable PSTNs. When tested on the 452 dynamically controllable instances,
NextFirst obtains 1.0 robustness on all of them. It means that. all these dynamically
controllable instances are in fact linear DC, as defined in Sec. 3.5. They should clearly not
be considered as ”hardly controllable”, since solved by such a simple dispatching protocol
as NextFirst. Interestingly, the controllable set appears to be more challenging at a first
glance than the uncontrollable set, as our L parameter here usually varies from 8 to 11, with
104 events in average. Despite this, even for these instances our algorithm always runs in
less than a minute for each, on a macOS, Intel Core i7 2.3GHz, 16GB 3733MHz. Contrary
to our method, SREA was unable to prove DC on any of these PSTNs.

Remarks. Our results show that despite its simplicity, NextFirst dispatching protocol
is relevant, as it achieves noticeably good success rates. Compared with a state-of-the-art
methods, the DP-robustness of NextFirst provides a pertinent, tight lower bound, on the
true DDC of a PSTN. On the considered benchmarks, the obtained lower bounds reveal to
fall closer to the DDC than state-of-the-art approximations are, even though the later are
not guaranteed to not overestimate. Our method also significantly outperforms the only
other method known for its ability to compute proven lower bound on the DDC. Finally, the
experiments show that in practice, the NextFirst DP-robustness (and therefore our method)
is also able to prove dynamic controllability in many cases, at least in all the DC networks
considered in the later benchmark.

7. Applications: Mars 2020 Rover

Mars 2020 rover (also known as M2020 or Perseverance) is scheduled to land on Mars on
February 2021 at the Jezero Crater. The rover aims to seek signs of ancient life and collect
samples of rock for possible return to Earth.

Operating M2020 rover will involved frequent development of plans, in the form of task
networks (including a set of science, engineering and communication activities), to be ex-
ecuted and elaborated onboard during a sol (i.e. a martian day). Such plan development
process requires careful consideration of safety, resource and temporal constraints due to
the uncertainty of the environment (Vaquero et al., 2019). In the latter, the traditional
approach used in planetary rover missions is to add significant temporal margin for execu-
tion robustness; however, this can hamper rover efficiency (Gaines et al., 2016a). Ideally we
would use task networks that not only are consistent and maximize the vehicle’s productiv-
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Task # Act |T |, |TE |, |TC | h. |C|, |CR|, |CC | sync L
Network µ, max
TN 0 32 67, 34, 33 92630 69, 36, 33 1.03, 10 2
TN 1 40 81, 41, 40 92630 90, 50, 40 1.11, 11 2
TN 2 28 57, 29, 28 92630 60, 32, 28 1.06, 12 2
TN 3 18 37, 19, 18 92630 39, 21, 18 1.06, 9 2
TN 4 42 85, 43, 42 92630 93, 51, 42 1.09, 10 2

Table 4: Studied M2020 sol types task networks with metrics of their the corresponding
PSTNs: number of activities (# Act), time events (total, executable and contin-
gent), time horizon size h, constraints, average (µ) and max. number of incoming
edges at sync. point, and max. number L of unpredictable events at a sync point.

ity, but that are also robust to unexpected events and delays. The problem of evaluating
robustness is therefore critical to handle temporal unpredictability.

In this section, we present two robustness analysis use cases in the context of M2020
rover, both based on our computational method.

7.1 M2020 Task Networks: Selected Sol Types and Scenarios

In the context of M2020 operations, a PSTN represents a task network, and is constructed
based on a sol type and a corresponding stochastic knowledge, estimated here using data
from previous Martian rover missions, specifically from Mars Science Laboratory (MSL)
mission with Curiosity rover.

Sol types. Sol types represents the current best available data on expected M2020 rover
operations during a sol (Jet Propulsion Laboratory, 2018). Each sol type represents the
structure of a PSTNs: the time events and constraints. Five M2020 sol types, and thus
PSTNs (or task networks) once added the activity duration probabilities, have been se-
lected as candidates for our two robustness analysis. These networks are representative of
what is currently being investigated and applied to develop an onboard scheduler for the
M2020 rover (Chi et al., 2018; Agrawal et al., 2019). They generally contain between 20
and 50 activities, such as driving, conducting remote science, and taking images. In this
study, all the activities have been assigned unary utility weight. Table 4 shows some of
the main properties of each task network used in this work, including the number of activ-
ities, time events and constraints, as well as the size of the time horizon and metrics about
synchronization points. Fig. 9 depicts a graphical representation of the structure of some
of these networks, where each node stands for an activity. Blue activities are labelled as
science tasks (e.g. SuperCam and MastCam imaging and scans), green ones are related to
communication, and red ones stand for engineering tasks (e.g. rover drives).

Using MSL data. Since the M2020 rover is not yet in operations, accurate models of
activity duration variance are not yet available. For the purpose of this study and to illus-
trate the benefits of the techniques, we use data and observations from previous Mars rover
missions, specifically from Mars science Laboratory (MSL) rovers. Herein we use data from
MSL operations covered across three case studies performed at JPL (Gaines et al., 2016a),
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Figure 9: Sol types’ activity dependencies. A circle is an activity, hiding a couple of start-
ing/ending time events and a contingent constraint (the activity’s duration). An
arrow a → b represents a requirement constraint from either the start (dashed)
or the end (bold) of activity a, to the start of b. Event t0 is not shown, but is
present and connected to each time even: every activity in the TNs has a finite
time window.
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representing a total of 65 sols, namely 65 observed scenarios for each network. We grouped
the MSL rover activities into a few categories (e.g. engineering, science, comms) and study
the activity duration variations during execution. We use this variations to inference the
uncertainty on the M2020 rover activity durations and thus to obtain the PSTN’s stochastic
knowledge for this work. The problem of obtaining the each PSTN’s stochastic knowledge,
its probability distributions, is the subject of our first M2020 robustness analysis.

7.2 Task Network Robustness Analysis - Comparing Probability Distributions

The MSL data generated in Gaines et al. (2016a) has provided activity duration observa-
tions for a limited number of sols. Ideally, one would have a vast number of observations, but
that is not the case here. The issue of only having a few observations, or even no observation
at all, is also quite common in other application domains, such as human scheduling. In
this application, we propose a preliminary analysis for determining the best representation
of the available stochastic knowledge, in terms of probability distributions.

Consider an example activity, taken from a Mars 2020 task networks, for which we have
65 observations of its duration (one occurrence per sol). Namely, this activity has already
been repeated 65 times, within conditions very similar to that of Mars 2020. Based on these
observations, many different probability distributions may be obtained, as depicted in Figure
10. While a histogram obviously represents an ordinary distribution, parametric distribution
such as PERT (orange in Fig. 10) or normal (green) can be obtained by computing the
the histogram statistics: minimum, maximum and mode for PERT, mean and standard
deviation for normal. In addition to PERT and normal parametric distributions, another
widely used distribution for PSTNs is of course the uniform distribution. Note that the
mode, and therefore the associated PERT distribution particularly, varies depending on
how coarse grained discretization is applied to the histogram.

The question is then the following. Provided a limited number of observations, how
to choose the best possible representation of our stochastic knowledge in order to best
predict the robustness or utility of a given PSTN? Which discretization? Which probability
distribution? Depending on the number of observations, we empirically compare different
distributions, based on the accuracy of the computed robustness and utility predictions.

Average results, obtained by considering the five different Mars 2020 PSTNs, are de-
picted in Fig. 11, assuming either uninterruptible tasks (top) and interruptible ones (bot-
tom). The last 35 out of the 65 observed scenarios are kept for validation. That is, we
assume that only (some of) the first 30 scenarios to be available for predicting our odds at
succeeding (top of Fig. 11), or predicting the average utility (bottom), in the five PSTNs.
Depending on the amount of observations (5, 10, 20, 30) considered, we report the accuracy
of the predicted values w.r.t. to the averages as measured on the last 35 observed scenarios.

We first observe a somewhat very counter-intuitive result: the prediction accuracy de-
creases as the number of observations (from 5 to 30) increases. One would instead expect
predictions based on more observations to be more accurate. This is certainly true in the
long term. In our case study however, the accuracy can only be evaluated in the very short
term, based on the last 35 observations (our validation set). This significantly limits the
strength of the correlation between the observations and the validation set. From a sta-
tistical point of view, it makes the predictions more sensitive to overfitting, especially in
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Figure 10: Ordinary (blue) and parametric (green: normal, orange: PERT) distributions
obtained from empirical observations. The columns correspond to the amount of
observations: 65, 30, 5. The first row shows raw distributions of data points. On
subsequent rows, different distributions are obtained depending on how coarse
grained discretization is applied, rounding to 1, 5, 20, 50, 100 time units.

the case of Uniform distributions. Uniform may give too much (equiprobable) importance
to anything in between the two min/max observed values, whereas Normal distributions,
for instance, are much less sensitive to outliers, hence providing a better protection against
overfitting. We also remark that the results obtained on the robustness and the average
utility are very similar. As observed in our next application in Sec. 7.3, in the case of the
considered task networks, the average utility directly depends on the success probability of
a couple of activities only. All time events being equally assigned a utility weight of 1, the
predicted utility of a network containing 80 time events is always of at least 78.

Avoid Uniform distributions. At least for the considered PSTNs and our limited set of
observations, both Normal and ordinary distributions tend to be a more adequate represen-
tation of our stochastic knowledge in general. Quite naturally, using Uniform distributions
appears less interesting as the number of observations increases. Using PERT distributions
seems to be less interesting than Normal or ordinary ones. Our analysis hence suggests to
use either directly ordinary ones based on raw observations or Normal distributions when
based on more than ten observed scenarios. Under that amount, Uniform distributions
may be considered. Although ordinary distributions tend to behave slightly better than
Normal ones, the difference is clearly not significant at the moment, and would require
experimenting on given a higher number of observations. Our current results suffer from
the lack of additional observations (especially our validation set which only composed of 35
scenarios). Nonetheless in practice, important decisions are to be taken when no more (or
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Figure 11: NextFirst robustness (top row) and utility (bottom row) prediction accuracy:
from 0% (resp. 95%) to 100%, compared to the average success (resp. utility)
rate measured on the remaining 35 observed sol scenarios. Rows correspond to
the amount of observations: 5, 10, 20, 30. Columns correspond to how coarse
grained discretization is applied, rounding to 1, 5, 10, 20, 50, 100 time units.

even less) knowledge is available; in that case, our recommendation is therefore to avoid
Uniform distributions.

7.3 Task Network Structural Analysis

Our computational method allows to compute an exact lower bound on the probability
of success of each time event of a PSTN, under dynamic control, following eq. (16). We
exploit that ability and propose a generic structural brittleness analysis method (inspired
by the analysis in Vaquero et al., (2019)) which computes the impact, on each and every
time events of the network, and on the network itself, of increasing (or decreasing) the
uncertainty of an activity a by α%.

As a proof-of-concept, let us analyse a typical M2020 rover sol type represented as a
PSTN of 18 contingent activities (36 time events). For the sake of simplicity, we use Normal
distributions for our task networks. Increasing (or decreasing) an activity’s uncertainty then
simply amounts at modifying its standard deviation by α%.

Table 5 shows how the network gets structurally affected by α = +50%. Cell at row i,
column j, gives a amount of probability loss of activity j success when i’s uncertainty is
increased by 50%. Empty rows and column are not displayed. The second line of the table
gives the initial success probability (%) of each activity; last columns rnf and µnf stand for
the entire network’s DP-robustness (%) and expected utility. In fact, the resulting matrix
appears quite sparse, meaning that most activities (1-2, 5-11, 15-17) have no impact at all
on the robustness of the network. Some activities (3, 4, 13, 14, 18) impact only their own
robustness, although some are really unstable: 4 has only 51% success probability, but does
not affect the remaining activities. Finally, activity 12 (a long duration drive) here should
be considered as structurally critical, as it impacts others (13, 14); it also has the biggest
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3 4 ... 12 13 14 ... 18 rnf µnf

95.4 51.0 ... 90.5 90.5 90.4 ... 100 43.7 17.2
3 -8.5 -3.9 -0.08
4 -0.2 -0.2 -0.0
... ...
12 -9.6 -9.6 -9.6 -4.7 -0.29
13 -0.0 -0.0 -0.0
14 -0.3 -0.1 -0.0
... ...
18 -0.0 -0.0 -0.0

3 4 ... 12 13 14 ... 18 µnf

95.4 50.7 ... 90.5 100 98.4 ... 100 17.3
3 -8.5 -0.08
4 -0.2 -0.0
... ...
12 -9.6 -1.4 -0.11
13 -0.0 -0.0
14 -1.2 -0.01
... ...
18 -0.0 -0.0

Table 5: Structural brittleness analysis of M2020 task network TN 3. Top: non-
interruptible tasks. Bottom: interruptible tasks

overall impact on the network: -4.7% robustness, and -0.29 expected utility. This activity
has a tight execution time window, which in fact, makes it brittle. This is the same kind
of hardly constrained activities observed by Vaquero et al. (2019), however, now we can
also explain how it propagates to other activities, and even map these conclusions with the
correspond TN 3 graph of Fig. 9.

Bottom of Table 5 shows results when all tasks are interruptible. The failure of activity
12 does not systematically entails the failure of subsequent activities anymore. In this
context, 13 does not suffer anymore from an increase in the uncertainty of 12. Activity 14
remains impacted by the uncertainty of 12, but not to the same degree (-1.4% instead of
-9.6%). By being the only activity impacting the probability of success of at least one other
activity, 12 is still considered here as the only structurally critical activity of the network.

Finally, Fig. 12 gives an overview on the structural dependency of another M2020
task network, composed of 40 activities. The analysis is now performed while considering
α = −10%, that is, for each task the impact of a 10% diminution in its uncertainty. We
notice the most critical activities as being 16, 22, 35, 38. Activities 16 and 22 are remote
sensing activities (SuperCam). 35 and 38 are NavCam imaging activities. Unlike 12, they
enjoy large time window and and thus are likely to succeed (e.g. 22’s uncertainty does not
even impact its own success probability); however, they have a critical impact on many
activities later on, even when activities are considered as interruptible (bottom of Fig.
12). These are typically the kind of activities that would not be spotted by previous
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Figure 12: Structural dependency matrix of a M2020 task network of typical size: 40 ac-
tivities. Up: no task interruptible. Down: all tasks interruptible. Empty rows
are not shown. The darker the color of a cell, the bigger the impact.
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brittleness analysis, unlike 5, 6 and 21, for instance. Another observation is that there
are actually a very few number of brittle activities in our task networks, and that each
propagate to subsequent in a very limited scale, especially in the case of interruptible tasks.
The same conclusion also appears in all our task networks, such as TN 3 in Table 5. This
could explains the obvious relationship between robustness and average utility in the results
depicted in Fig. 11.

8. Conclusions and Research Avenues

In Saint-Guillain et al. (2020), we introduced an exact approach to robustness computation
in the context of dynamic control of uncontrollable probabilistic temporal networks, under
discrete time assumption. By relying on simplified operational assumptions, the computed
robustness constitutes an exact lower bound on the degree of dynamic controllability under
perfect dynamic assignment (DDC). Our method positions as an exact alternative to Monte
Carlo simulations, by also allowing to compute the success probability of each activity of the
network separately, leading to new potential applications and analysis frameworks, such as
the proposed PSTN structural brittleness analysis. An open source C++ implementation
of our method is available online, with usage guides, examples, as well as the benchmarks
used in Section 6: https://bitbucket.org/mstguillain/dprobustness.

This paper brings significant additions to the theoretical contributions of Saint-Guillain
et al.’s (2020) conference paper. We extend the concepts of DDC and DSC to PSTNs,
introduce the degree of weak controllability (DWC) measure, and deduce remarkable funda-
mental inequalities from a mathematical analysis based on the proposed formal definitions.
The aforementioned computation method is also extended in two ways. First, whereas the
former paper only considered situations in which failing at executing one activity of the
temporal network entails a global execution failure, in this paper we show how to deal with
the opposite assumption, which is that activities may be interrupted by the use of a cut-
off time, hence preventing from failing the entire execution. In such operational context,
the robustness measure makes no sense anymore. We hence also extend our computation
method to compute the so-called expected global utility of the network. All the experiments
and application of our former study have been extended with results on expected network
utility, and an additional application case is further described and applied to Mars 2020
rover task networks. In particular, preliminary results on a limited amount of observations
discourage the use of Uniform probability distributions to describe activity durations in
M2020 PSTNs.

We believe the developed method has great potential to be infused in Mars 2020 oper-
ations and rovers to come, as well as many other domains in operations research. In what
follow we discuss some of these domains.

8.1 Other Potential Application Domains

When considering ordinary distributions, it could contribute at providing new, original tools
for solving various challenging real life problems. In the following applications, both PSTN
and NextFirst seem particularly well suited.
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Figure 13: The vehicle first travels to Patient 1 (P1) location with a stochastic travel dura-
tion. The patient show-up time is also stochastic, and may be late. P1 is then
picked up (P1′) as soon as the vehicle arrives and the patient shows up. Then P2
is picked up (P2′). Now P2 is dropped to her appointment (D2), in time, which
finishes at a time D2′ . Meanwhile, P1 is also dropped to her appointment. After
dealing with other patients (e.g. P3), P1 is picked up (P1′′) at most 20 minutes
after the end of her appointment. P2 (P2′′) is then picked up before dropping
P1 (D1′′) at home, fulfilling a maximum ride time constraint, and so it is for P2.

On-demand public transportation. Consider the problem of transporting patients
from their home to medical appointments (Paquay, Crama, & Pironet, 2020). The so-called
dial-a-ride problem (DARP) admits a significant part of temporal uncertainty: patient
delays, traffic jams, appointment durations. Each request consists in picking up a patient
from home and dropping it at an appointment, and return it to home. Because the limited
number of vehicles, the requests are typically mixed. The problem consists in scheduling
the pickup and deliveries so that the probability of meeting all the constraints is maximized.
In such context, only sampling approaches have been proposed in order to approximate the
probability of success of a schedule. The PSTN formalism is particularly well suited for
describing such a schedule, as illustrated in Fig. 13. Not only the PSTN formalism applies
to such operational context, but also the method we propose efficiently computes the exact
success probability of a given schedule.

Operations management in hospitals. Consider the problem of managing the use of
operating rooms in a hospital. Whereas a number of non-urgent surgeries are known in
advance, additional emergencies requiring an immediate surgery arise daily in a dynamic
fashion. There is uncertainty associated with a surgery duration. Provided a limited num-
ber of rooms, hospitals must schedule their interventions in a way that any upcoming
emergency can be scheduled as soon as possible. Given an a priori surgery schedule, what is
the expected delay of each scheduled surgery due to the arising of emergencies? A possible
PSTN representation of an operating room schedule, while considering online emergencies,
is shown in Fig. 14. Given the probability of an emergency arising during a time interval,
and the probability distribution of such an event duration, one can infer a contingent dura-
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Figure 14: Operations start with scheduled surgery S1, having uncertain duration. There is
a probability that an emergency appears in the meanwhile. If it does, depending
on its scheduled time, S2 may be delayed. Our framework has the particularity
to infer the time value assignment probabilities at any time event, such as S2.
This allows to compute expected delays, the probability to be on time, etc.

tion describing the additional time inquired at facing the emergency. Due to the inherent
non-symmetric multi-modal nature of such distributions describing events that may or not
arise, our method offers the only known efficient computation of the expected impact of
online events on predefined schedules. Here, the goal is not to compute a success probabil-
ity. Instead, our method can compute the exact probability distribution of each scheduled
surgery’s time assignment, and therefore its expected delay w.r.t. the initial schedule.

Non-Temporal Dispatching. PSTNs encode constraints in terms of valid duration in-
tervals, and unpredictable durations realizations, between events. In fact, it might be
interesting to remark that the (P)STN formalism actually extends to not only temporal,
but any possible notion of distance between events (e.g. space or quantity). For instance,
spatial distances may equivalently replace temporal distances in a classical PSTN. Consider
for instance the problem of piloting a complex aircraft braking system. In this context,
suppose time is not an issue, and the dispatching decisions relate to where (and not when)
to action which brake, knowing that some braking distances are uncertain and that, even-
tually, we must stop within the valid spatial interval of the airstrip. Furthermore, since
the formalism only encodes distances, it is in fact agnostic to the nature of the encoded
distances, and one could then encode PSTNs mixing scalar distances, such as both temporal
and spatial constraints and uncertainties. In this case however, the most limiting aspect of
the formalism in trying to mix several dimensions seems to be the controllable constraints,
restricted in the STN formalism to linear binary constraints.

8.2 Future work and Research Avenues

We identified several promising research directions throughout the work described in this
the paper.

Degree of dynamic controllability. Our theoretical results on the definitions of both
the DDC (degree of dynamic controllability) and DWC (degree of weak controllability)
show that not only an alternative lower bound on the DDC can be computed, but also
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that developing a method for computing the DWC would permit to bound the DDC from
above. Up to our knowledge, there is so far no existing method able to provide such an
upper bound on the DDC, which would provide valuable guarantees on the quality of any
lower bound in terms of DDC closeness. Our multistage stochastic formulation of the DDC
also suggests a new approximation method based on Monte Carlo Tree Search. MCTS
has proven its efficiency at solving many different problems from various domains. As
being a sampling based method, not only ordinary distributions can be easily handled, but
also the dependencies between random variables. Furthermore, this approach significantly
differ from previous ones as being the first sampling-based method to perform a simulations
without being restricted by a specific dispatching protocol, hence directly approximating
the behavior of an optimal online scheduler.

Interruptible activities and dependencies. In this work, we just started to explore
the possibilities offered by interruptible activities, such as the network expected utility met-
ric. In order to maintain a practical computational complexity, our method is limited to
the particular cases where either no task is interruptible, or all are. In some contexts, how-
ever, having both interruptible and non-interruptible activities would make perfect sense.
Furthermore, it may also be that a subset of tasks could not be even started in case some
conditions are not met, such as the successful completion of (a subset of) previous tasks in
the dependency chain (e.g. if pre-heating activity fails than subsequent science activities
that have specific thermal requirements won’t be able to start). Because of the combina-
torial aspect involved in the calculation of the conditional probabilities, sampling based
methods seem to be the only viable approach for now.

Strong controllability. We saw that the proposed framework allows, for a given static
policy, to compute its exact DP-robustness, i.e. probability of success under strong control-
lability. This suggests a potential contribution to the landscape of strong controllability.
In fact, the DP-robustness decreases monotonically, in the direction of the network’s edges,
as the function is being computed. In other words, when there is no interruptible task, the
(unconditional) success probability of one task is necessarily at most equal to that of its
predecessors (e.g. in Fig. 1, Rover1::drive is a predecessor of Rover1::expe). The latter
property can be efficiently exploited by embedding our DP-robustness function in a branch
and bound optimization process, in order to compute optimally robust static policies for
any PSTN (or STNU) being not purely strongly controllable by nature, thus computing the
exact degree of strong controllability. In this context, a constraint programming approach
may also be considered. This would provide an alternative to the method proposed by
Wang and Williams (2015), for now the only method computing the exact DSC of a PSTN.

Disjunctive Temporal Networks. Up to our knowledge, there is no existing study
in the literature on determining the DDC, or even robustness, of a disjunctive temporal
network under uncertainty (DTNU). By using the monotonic property described in the
previous paragraph, one could be able to embed our method in a decomposition algorithm,
such as branch ad bound, able to compute the exact DP-robustness (under NextFirst) of a
DTNU by solving an optimization problem on the DTNU’s many possible interpretations.
As our method deals with ordinary distributions, considering PDTNs would also be possible.
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