
Journal of Artificial Intelligence Research 73 (2022) 461-509 Submitted 05/2021; published 01/2022

Neural Character-Level Syntactic Parsing for Chinese

Zuchao Li charlee@sjtu.edu.cn
Junru Zhou zhoujunru@sjtu.edu.cn
Hai Zhao zhaohai@cs.sjtu.edu.cn
Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China

Zhisong Zhang zhisongz@cs.cmu.edu
Language Technologies Institute
Carnegie Mellon University, Pittsburg, USA

Haonan Li haonanl5@student.unimelb.edu.au
School of Computing and Information Systems
the University of Melbourne, Melbourne, Australia

Yuqi Ju tongkong@sjtu.edu.cn

Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai, China

Abstract

In this work, we explore character-level neural syntactic parsing for Chinese with two
typical syntactic formalisms: the constituent formalism and a dependency formalism based
on a newly released character-level dependency treebank. Prior works in Chinese parsing
have struggled with whether to define words when modeling character interactions. We
choose to integrate full character-level syntactic dependency relationships using neural rep-
resentations from character embeddings and richer linguistic syntactic information from
human-annotated character-level Parts-Of-Speech and dependency labels. This has the
potential to better understand the deeper structure of Chinese sentences and provides a
better structural formalism for avoiding unnecessary structural ambiguities. Specifically,
we first compare two different character-level syntax annotation styles: constituency and
dependency. Then, we discuss two key problems for character-level parsing: (1) how to
combine constituent and dependency syntactic structure in full character-level trees and
(2) how to convert from character-level to word-level for both constituent and dependency
trees. In addition, we also explore several other key parsing aspects, including different
character-level dependency annotations and joint learning of Parts-Of-Speech and syntac-
tic parsing. Finally, we evaluate our models on the Chinese Penn Treebank (CTB) and
our published Shanghai Jiao Tong University Chinese Character Dependency Treebank
(SCDT). The results show the effectiveness of our model on both constituent and depen-
dency parsing. We further provide empirical analysis and suggest several directions for
future study.

1. Introduction

Chinese natural language processing suffers because of an obvious aspect of writing Chi-
nese: there is no clear separator between Chinese words because Chinese is written in a
consecutive character sequence. Typically, this is solved using necessary pre-processing be-
fore word-level language processing tasks like syntactic or semantic parsing; that is word

©2022 AI Access Foundation. All rights reserved.

Li, Zhou, Zhao, Zhang, Li, & Ju

segmentation. However, wordhood in Chinese is loosely defined, so there are multiple Chi-
nese word segmentation conventions that all meet theoretical linguistics standards from
different perspectives. Take the sentence “这动画片超暴力诶this cartoon movie is super violent”
as an example. Some word segmenters cut this sentence into “这this / 动画片cartoon movie /
超暴力super violent / 诶eh”, and some segmenters cut that into “这this / 动画cartoon / 片movie

/ 超super / 暴力violent / 诶eh” due to different standards for wordhood. Since characters
are segmented into words during pre-processing, word segmentation is the basis of all later
language processes, so multiple or non-standardized word segmentations may lay a loose
underlying foundation for all the later processing tasks.

Also, from the perspective of Chinese grammar theory, characters in Chinese may be
more analogous to words in English: “there is such a unit: between the phoneme and the
sentence, it is a unit that ordinary people who don’t understand linguistics are aware of,
talk about, and use regular vocabulary to describe it; that unit is ‘sociological word’, in
English it is ‘word’, but in Chinese, it is ‘character’. (存在这样一个单位：大小在音素和
句子之间，是不懂语言学的普通大众都意识到、谈论到、并用日常词汇描述的单位；这
个单位是‘sociological word’，在英语中是‘词’，而在中文中是‘字’。)” (Yuan & Lv, 1979).
Additionally, when considering the lexical integrity hypothesis, “words are analogous to
atoms in that, from the point of view of syntax, words do not have any internal structure
and are impenetrable by syntactic operations” (Ackema & Neeleman, 2002). It is obvious
that in this hypothesis, we should make an analogy between English words and Chinese
characters instead of Chinese words because Chinese characters are grammatically atomic,
have no internal grammar structure, and are impenetrable by syntactic operations, unlike
Chinese words. For example,

辵文 / 云力 / 一由凵 / 丄丿㇆ / 走召 / 日共水 / 丿㇆ / 言矣

is the substructural sequence of the Chinese characters “这this /动move /画painting /片movie

/超super /暴violent /力strength /诶eh” and conforms to the lexical integrity hypothesis, while
the sequence of words “这this /动画片cartoon movie /超暴力super violent /诶eh” obviously does
not. This comparison and example may also show that the right counterpart for English
characters (letters) is Chinese character components (as shown in the above sequence) rather
than Chinese characters. Chinese words are thus not atomical like English words, and pre-
processing Chinese characters into words potentially ignores Chinese words’ salient internal
structure information (i.e., syntactic information) and hampers language understanding.

Since our previous work (Zhao, 2009) pointed out that Chinese parsing also suffers
because of the vague definition of words in Chinese, and we for the first time introduced
character-level syntactic structure for a better formalism of Chinese sentence in Zhao, Kit,
and Song (2009), a series of work (again including ours) have explored character-level parsing
as an alternative in syntactic parsing (Li & Zhou, 2012; Zhang et al., 2014; Li et al.,
2018). Chinese character-level parsing, which was proposed as an alternative to word-level
parsing, has two benefits: (1) using character-level trees circumvents the issue that no
universal standard exists for Chinese word segmentation, and (2) in-depth structure inside
words offers additional information for deeper level processing and better understanding
of the whole sentence. It is worth noting that, according to the discussion in Yan (2009),
from the perspective of Chinese modern linguistic theory, Chinese characters should be

462

Neural Character-Level Syntactic Parsing for Chinese

first regarded as morphemes, but they are also different from morphemes as characters
may be linguistically used as independent single-character words, while morphemes are
generally regarded as units that cannot be independently used in linguistics. However,
taking characters as the basic language processing units does not lose any generality, as
characters are truly atomic writing units in Chinese. Besides, morphemes may be parts
of larger units, meaning they may be units of larger constituents. The tasks of parsing a
Chinese word’s internal structure may be more aptly described as continuous string parsing
and bi-character dependency parsing, but in keeping with previous literature, we will use
the dependency and constituency terminology for describing the word-internal syntactic
structure as in word-level parsing.

The need for the first benefit has been demonstrated repeatedly, as linguistic views about
Chinese word standard have constantly diverged. Since the first SIGHAN Bakeoff shared
task for Chinese word segmentation (Sproat & Emerson, 2003), many different Chinese word
segmentation standards have been proposed. Until Bakeoff-4 (Jin & Chen, 2008), there were
seven kinds of word segmentation conventions. The discrepancies between these standards
arose because there are no obvious answers to whether a Chinese character sequence should
be divided and how granular segmentation should be.

（a）中西医 / 结合
 Chinese and Western medicine / integration

（b）中 / 西医
 Chinese / Western medicine

（c）中 / 西 / 医
 Chinese / Western /medicine

Figure 1: Example of different segmentation choices from Li et al. (2018).

Figure 1 illustrates a word segmentation case. Figure 1(a) shows that the three-character
segment中西医 is a noun phrase in a sentence. Figure 1(b) gives an intuitive but insufficient
example for the last two characters, which indeed compose a true word, Western medicine.
Figure 1(c) gives another unsatisfactory and problematic segmentation in which each char-
acter is a single-character word. Neither of the above segmentations is semantically proper,
as the character sequence 中西医 actually means Chinese medicine and Western medicine
and both the first character (meaning: Chinese) and the second (meaning: Western) are
modifiers of the third (meaning: medicine) just as shown as arcs in Figure 1(c). The above
example shows that word segmentation decisions are not so easy in Chinese. In addition,
all these problematic segmentations later impede syntactic parsing, as word segmentation
is a key and early aspect of all language processing pipelines. Though treating Chinese
word segmentation as a sequence learning task has been successful in recent years, as seen
in our previous work (Zhao et al., 2010; Zhao, 2011; Cai & Zhao, 2016; Cai et al., 2017),
the linguistic difficulties still persist and hamper further progress.

The second benefit, that of the additional information about the internal structure of
Chinese words, is also particularly relevant. It has been noticed for a long time that a

463

Li, Zhou, Zhao, Zhang, Li, & Ju

旅游业
tourism

NN

 陕西
Shaanxi

 NR

 计划
plans to

 VV 加速
accelerate

 AD
 发展

the development of
 VV

NP

NP

VP

IP

VP

VP

(a) Constituency structure

ROOT

OBJ
VMOD

VMOD

VMOD

 陕西 计划 加速 发展 旅游业
Shaanxi plans to accelerate the development of tourism

 NR VV AD VV NN

(b) Dependency structure

Figure 2: Constituent and dependency structures.

lot of Chinese words have internal structures as noted in Zhao (2009) and Zhang et al.
(2013). A Chinese word contains one or more characters that subtly affect each other,
both syntactically and semantically. For example, 窗window and 帘screen together create 窗
帘curtain, which indeed is a literal translation of the screen on the window. Additionally,
as demonstrated by the empirical results in Zhang et al. (2014), including character-based
information brings better performance for syntactic parsing.

In this paper, we are concerned with the combination of constituent and dependency
syntactic structure in character-level parsing. Shown in Figure 2, the constituency and
dependency formalisms are two typical syntactic structure representations that have been
well studied from both linguistic and computational perspectives (Chomsky, 1981; Bresnan
et al., 2015). Previous works on Chinese character-level parsing mainly focused on the
dependency structure (Li et al., 2018; Zhang et al., 2014), while works on the constituent
structure were often related to Chinese word segmentation. To the best of our knowledge,
only Zhang et al. (2013) proposed character-level parsing for the constituent structure using
a traditional method. By integrating constituent information in character-level parsing,
syntactic trees can be effectively converted from the character-level to the word-level without
relying on character-level POS tags (Li et al., 2018).

In addition, we also include joint learning of POS tags in our model, which means our
model can be regarded as a truly end-to-end framework , as it does not have an additional
POS tagger or word segmenter. In fact, nearly all parsing models are still based on the
traditional pipeline-styled workflow; even other character-level parsing models also rely on
extra POS taggers, as seen in Li et al. (2018), in which each step takes as input the output
of the previous step, resulting in an inevitable substantial error accumulation. Figure 3
compares Chinese sentence processing pipelines between traditional parsing models and our
joint learning character-level parsing models.

Since pre-training models have been successful with a wide range of NLP tasks, par-
ticularly improving parsing performance (Kitaev & Klein, 2018; Zhou & Zhao, 2019), we
also experimented with character-level syntactic parsing using Chinese pre-trained language
models (BERT, Devlin et al., 2018; RoBERTa, Liu et al., 2019; XLNet, Yang et al., 2019;
ALBERT, Lan et al., 2019; and ELECTRA, Clark et al., 2019) to evaluate pre-trained
models’ broad performance impact on character-level parsing.

464

Neural Character-Level Syntactic Parsing for Chinese

In summary, the main contributions of this work1 are:

(1) This work makes the first attempt to combine constituent and dependency structure
in Chinese character-level parsing using joint span structure (Zhou & Zhao, 2019) which
is related to the head-driven phrase structure grammar (HPSG) (Pollard & Sag, 1994)
that can incorporate head and phrase information of dependency and constituent syntax
representations. Based on the joint span structure, we propose an effective way to infer
syntactic trees from the character-level to the word-level without relying on character-level
POS tags.

(2) For Chinese, character-level dependencies have been previously explored by Zhang
et al. (2014), who used ZDep2 annotations, and Li et al. (2018), who used SCDT (Zhao,
2009)3. We make a comparison between these two annotations, which differ in character-
level POS tags and dependency labels, and we then show the advantages of our SCDT
annotations.

(3) We provide a truly end-to-end character-level parsing model by using character-
level annotations and joint learning of Char-POS tags and syntactic parsing. By finally
providing a full structure decomposition for Chinese sentences rather than enhancing word
segmentation or POS tagging to improve parsing (as in Zhao, 2009; Li and Zhou, 2012;
Zhang et al., 2013, 2014), our model can avoid the error propagation often present in
pipelines.

(4) Our experimental results show that our joint span character-based parser brings
better prediction on both constituent and dependency tree structures. In addition, the
empirical results show that coupled with pre-trained models, our parser reaches new state-
of-the-art in character-level evaluation and competitive results in word-level evaluation for
both parsing tasks.

2. Character-Level Structure

In this section, we focus on character-level structure for both the constituent and depen-
dency styles. In Chinese syntactic parsing, words are usually regarded as the atomic pro-
cessing unit, and the leaves in constituent trees and the nodes in dependency trees represent
the whole words. However, there still exists a smaller unit in Chinese: characters; therefore,
another possible level of analysis which goes deeper to the most basic composition units for
Chinese: character-level. At the character-level, by taking characters instead of words as
the basic units, the same syntactic analysis performed at the word level is possible at the
character-level. Just as syntax trees can be built oriented around words, character-oriented
constituent or dependency trees can also be established.

1. Part of the annotations of the SCDT dataset in this work was published in our AAAI conference paper
(Li et al., 2018). In this journal version, the difference from the AAAI version is that we 1) supplemented
a more complete linguistic motivation, 2) carried out a more complete introduction for the annotation
details and comparison between related works, 3) proposed new parsing models, 4) conducted a detailed
study on the performance of SCDT on downstream tasks and conducted a more in-depth discussion and
analysis.

2. https://github.com/zhangmeishan/ACL2014-CharDep/
3. SJTU (Shanghai Jiao Tong University) Chinese Character Dependency Treebank
5. Word tagging information is copied to all internal characters to help build a full character-level depen-

dency tree.

465

Li, Zhou, Zhao, Zhang, Li, & Ju

Traditional Model
(Zhao, 2009)

(Zhao, Song, Kit, 2009)

(Zhang et al., 2014)

(Li et al., 2018)

Word-split

Word-POS

Word-parsing

Raw Sentence

Char-POS
(Pseudo)

Char-POS

Non-Neural
Char-parsing

Neural
Char-parsing

Raw Sentence Raw Sentence

This work

Char-POS
Prediction &
Encoding

Neural
Char-parsing
(Const & Dep)

Raw Sentence

Word Info.
Encoding

Figure 3: A traditional parsing pipeline, two previous parsing pipelines, and our model’s
pipeline5. The red dashed box shows our previous and current work.

We manually annotated such character-level dependencies for all the words in the Chi-
nese Penn Treebank (CTB-7.0). We name the resulting corpus as SJTU Chinese Character
Dependency Treebank (SCDT)6. We will first describe the annotation guidelines of SCDT.

For the character-level structure of constituents, we construct the constituent repre-
sentation of SCDT based on the Head Feature Principle (HFP) (Pollard & Sag, 1994) in
which there is only one head word for each phrase. There is another character-level tree-
bank (Zhang et al., 2013), which we refer to as ZCTB. It contains constituent structures
for words and can be converted to dependency structures following Zhang et al. (2013).
We will compare between SCDT and ZCTB, looking at both constituent and dependency
structures and demonstrate the advantages of our annotations.

2.1 Annotations of SCDT

Our SCDT was manually labeled and transformed in steps according to linguistic hierar-
chies. First, we manually labeled the POS tags of Chinese characters inside words. Then,
we defined the head rules according to the dependency grammar (Robinson, 1970; Mel’cuk
et al., 1988) to get the dependency structure inside words. We then transformed the depen-
dency structure into an intra-word constituent structure according to the HFP. These head
rules we use here are consistent with the head rules used to transform word-level constituent
trees into dependency trees in terms of linguistic theory. The only differences are the tag
set and transfer rules. Therefore, this transformation has a solid linguistic foundation.

6. http://bcmi.sjtu.edu.cn/~zebraform/

466

Neural Character-Level Syntactic Parsing for Chinese

2.1.1 Annotation Goal

The general annotation strategy we used for character-level dependencies is proposed by
Zhao (2009). We assume that the annotators have basic knowledge about the Chinese
language for both writing and speaking. Most of the annotated words are extracted from
Chinese Penn Treebank (CTB-7.0), and consequently during the annotating, annotators
have to retrieve the original text of CTB to fully understand the meaning of some words. The
goal of our annotation is to annotate all character-level dependencies with both character-
level POS tags and dependency labels for all words.

2.1.2 Annotation Format

In this subsection, we will briefly describe the annotations presented later in this paper. For
an example, take the three-character Chinese word 天天天安安安门门门Tian’anmen Square. Each character
in the word is indexed from 1 to 3, so we have indices for “1:天天天, 2:安安安, 3:门门门”. Next,
structural annotation will be done by finding the head for each character. As 天天天’s head
is 安安安, 安安安’s head is 门门门 , and 门门门 is the root of this word. We denote this structure with
“1:天天天 2, 2:安安安 3, 3:门门门 0”. Here, index 0 signifies the root character. For annotations where
dependency labels are required, we add the labels for the dependencies: “1:天天天 2 n-n-v”,
“2:安安安 3 nn”, “3:门门门 0 root”. For the above words, there are three types of dependency
labels: n-n-v , nn , and root . For simplicity, we will write the annotation results using the
following description: “天天天安安安门门门; 2 3 0; n-n-v nn root”.

2.1.3 Special Word Types

We distinguish different word types for the annotation. Some special word types are de-
scribed as follows:

1. Single-character words: since there will be only one character, no annotation for this
type will be required.

2. Numbers and letters: words that only consist of numbers or letters, for example:
一一一百百百万万万; 2 3 0; g g root
100,000; 2 3 4 5 6 7 0; g g g g g g root
NATO; 2 3 4 0; l l l root

For these words, annotation for each character should be done in an incremental order:
each character takes its right neighbor as its head and the last character as the root.
We use dependency label g for number words, and l for letter words.

3. Named entities: words referring to people, locations, organizations, or other trans-
lated names, such as:

胡胡胡锦锦锦涛涛涛; 2 3 0; r r root
上上上海海海; 2 0; r root
纽纽纽约约约; 2 0; r root
奥奥奥巴巴巴马马马; 2 3 0; r r root

467

Li, Zhou, Zhao, Zhang, Li, & Ju

Like numbers and letters, annotation is also done for each character in an incremen-
tal order; each character takes its right neighbor character as its head and the last
character as the root, and r is the dependency label of the named entity.

4. Mixed names: a mixed name typically includes a non-Chinese name part and other
Chinese characters as follows:

纽纽纽约约约城城城; 2 3 0; r nn root

Here, the word consists of two parts: 纽纽纽约约约 (New York), which is a named entity and
城城城, which is the Chinese character denoting city.

2.1.4 Generic Annotation

In this subsection, we will describe how to annotate the basic dependencies between char-
acters to represent their syntactic and semantic relationships. We adopt an iterative anno-
tation strategy. For example, considering a four-character word: abcd , where abc is first
identified as an adjective constituent, and then d is identified as a noun constituent. We
could mark abc as the modifier and d as its head. Then, inside abc, bc is identified as a
verb constituent and a as an adverbial constituent, so bc will be selected as the head for
abc. Finally, in the last multiple character part, bc, c is taken as the head. Thus, after
this iterative annotation, we get the final annotation for the word, “abcd ; 2 3 4 0”. There
are no absolute rules for determining which character should be the head, but we propose
basic rules to direct the annotation. With this understanding of the basic strategy of our
annotating procedure, we now describe in detail the basic components in our annotations.

Word-Level POS Tags First, we need POS tags for the annotated words. Since the
annotation will be done without considering the context of the word, we will give a simplified
POS set for words. We define a group of “absolute POS tags” for words as shown in Table 1.
Note that Chinese is a language whose words may hold quite different POS tags compared
to how they are really used in the text, and nearly no Chinese word only fits one possible
POS tag. For this reason, when we say an absolute POS tag for a word, it means to choose
a possible tag from a priority list for the word. The following are the rules for making the
right choice in selecting the absolute POS tag for a given word:

Table 1: Word-level absolute POS tags.

Annotation POS tag Example

p Pronoun 这个(this one), 他们(they)

n Noun 大门(main door), 汽车(automobile)

v Verb 书写(write), 玩耍(play), 举行(held)

a Adjective 热闹(alive), 邪恶(evil), 平坦(plain)

d Adverb 最近(recently), 很难(difficultly), 大概(about)

468

Neural Character-Level Syntactic Parsing for Chinese

1. The most popular case for multiple POS involves the words that can either be nouns
or verbs. The rule for this is if a word can act as both a verb and as a noun, then its
absolute POS is verb.

2. For a word that can be either an adjective or a noun, its absolute POS is set to
adjective. To distinguish those words with nebulous POS, we set a semantic crite-
rion to make the decision: nouns refer to real entities, and adjectives give property
descriptions.

3. For a word that can be either an adjective or an adverb, the absolute POS for it is
adverb.

The absolute POS tag determines the most essential syntactic categories of words and is
then used for syntactic structure derivation. This derivation based on absolute POS tags can
be done accurately because a segmenter-created word having different context-dependent
meanings or internal syntactic structures is a rare linguistic phenomenon. In fact, in Chinese
language processing practice, when a “character string” does have such context-dependent
syntactic or semantic ambiguities, it may have been already segmented differently in the
first place by the word segmenter. Traditional Chinese word segmentation needs to solve
two kinds of ambiguities: combinational ambiguity and intersection ambiguity. Chinese
word segmentation thus immediately makes decisions to remove a large portion of syntactic
ambiguity at the very beginning of language processing. Taking Chinese sentence “鲁滨
逊的仆人星期五下午把棚子搭起来了” (Robinson’s Servant Friday set up the shed in
the afternoon) and sentence “星期五下午把棚子搭起来了” (Set up the shed on Friday
afternoon) as examples, the former sentence should be cut into

“鲁滨逊/的/仆人/星期五/下午/把/棚子/搭/起来/了”,

while the latter should be cut into

“星期五下午/把/棚子/搭/起来/了”.

This explains why each Chinese word rarely (or almost never) has different contextual
internal structures and meanings. Therefore, we propose to use character-level POS tags in
conjunction with word-level absolute POS tags as the subsequent head rule transformation
basis.

Character-Level POS Tags Next, we will delve into finer annotations for the characters
inside the words. Character-level POS tagging will be dynamic or contextual for these
annotations, just like typical word-level POS tagging, which is quite different from the
above absolute POS assignment without any context for the annotated word.

The adopted character-level POS tags are shown in Table 2. Note that the goal of
character-level POS tagging is to resolve the POS ambiguity that exists at the word-level.
For example, 书书书 is mostly considered as a noun character in 读读读书书书read book, but for 书书书
写写写write, writing 书书书 is actually a verb character. This is because in ancient Chinese, 书书书 was
typically a verb. Thus, the character-level POS annotation is context-sensitive, meaning all
the characters in the whole word should be taken into consideration.

469

Li, Zhou, Zhao, Zhang, Li, & Ju

Table 2: Character-level POS tags.

Annotation POS tag Example

p Pronoun 这(this), 那(that), 我(I), 一(one)

n Noun 门(door), 体(body), 名(name)

i Number and other characters 1, 2, . . .

v Verb 写(write), 跑(run)

a Adjective 红(red), 苦(difficult)

d Adverb 很(very), 最(most)

f Functional character 的(of), 们(-es), 在(at)

Head Rules Next, we will describe the core part of the annotation procedure; that is, the
annotation of the dependencies themselves: the head rules. Assuming that the absolute POS
tag for the given word and all character-level POS tags have been determined, we finish the
annotation by utilizing the following head rules, which observe the general principles defined
by traditional dependency grammar. For the dependency labels presented in examples, we
will describe them in the next part.

1. For a noun character and its modifier characters in a noun, the noun character should
be the head. For example:

蓝蓝蓝天天天; 2 0; ad root
一一一本本本书书书; 2 3 0; ad ad root

2. For a given word, the kernel verb character or the verb part (if there is only one)
should be the root for the word. For example:

吃吃吃掉掉掉; 0 1; root cd
快快快跑跑跑; 2 0; vv root

3. For a coordinate structure, the right character will be always be the head. For exam-
ple:

玩玩玩耍耍耍; 2 0; vc root
神神神仙仙仙; 2 0; nc root

4. If a functional character is involved in a constituent, then it should be always the
head. For example:

好好好的的的; 2 0; af root
我我我们们们; 2 0; pf root

Dependency Label Set Finally, we will also provide labels for the dependencies anno-
tated in the previous step. For a dependency relation, its dependency label is generally

470

Neural Character-Level Syntactic Parsing for Chinese

Algorithm 1 Constituent-Construction(u)

u is a node of character-level dependency tree.
if u is a leaf of the character-level dependency tree then

constructing constituent leaf node leaf-node using u
return leaf-node

end if
children-list = []
for each child v on the left of u do

left-node = Constituent-Construction(v)
putting left-node into children-list

end for
constructing constituent leaf node leaf-node using u
putting leaf-node into children-list
for each child v on the right of u do

right-node = Constituent-Construction(v)
putting right-node into children-list

end for
constructing constituent node constituent-node using children-list
return constituent-node

determined by POS tags of three constituents; i.e., those of its modifier, its head, and their
concatenation.

For a dependency relation where a is the modifier and b is the head, the corresponding
character subsequence should follow a...b, assuming there are some other characters be-
tween a and b. If p1, p2, and p are the POS tags of a , b, and a...b, respectively, then
the dependency label should be p-p1-p2. For the case that a is included in an inseparable
constituent such as a named entity created from transliteration, p1 should be the POS tag
of the constituent, and a should be its head.

For convenience, we will define a group of abbreviations for the frequent dependency
labels, specifically: ad for n-a-n , af for a-a-f , pf for p-p-f , vd for v-d-v , cd for v-v-
d , nn for n-n-n , vv for v-v-v . For other labels that appear less frequently, the original
format, such as d-d-f , will be used for the annotations.

For a coordinate relation of noun, verb, adjective and adverbial, we correspondingly
define four types of labels, nc, vc, ac, and dc. The following are two examples:

凤凤凤凰凰凰; 2 0; nc root ,
书书书写写写; 2 0; vc root .

Thus, nc and vc can be regarded as n-n-n and v-v-v , respectively; however, these are
different from nn and vv , which aim to represent modification relations between two noun or
verb characters. And for different word types, including numbers, letters, and inseparable
named entities, we use three labels to identify them, respectively: g for numbers, l for
letters, and r for named entities.

2.2 Constituent Representations of SCDT

Following the method of our previous work (Li et al., 2018), which focused on Chinese
character-level dependency parsing, we further explore Chinese character-level constituent
parsing and the relationship between character-level constituent parsing and dependency

471

Li, Zhou, Zhao, Zhang, Li, & Ju

root-n

vv
n-v-a

n-n-v

 从 长 远 来 看
 in the long run

 v a a v v

 从 长 远 来 看
 in the long run

 v a a v v

iw

iw

R

aa

Figure 4: Constituent and Dependency Representation of SCDT

parsing. Since SCDT annotations only include character-level dependencies for the words
of CTB without constituent representations, we construct the constituent representation of
the words based on the HFP that there is only one head word for each phrase.

Algorithm 1 shows the pseudo-code for constructing a constituent representation of the
words from a character-level dependency tree using a recursive method. We first traverse the
character-level dependency tree from the root. For each internal node u of the dependency
tree, we construct a constituent node that includes all the converted children of u and the
constituent leaf node of u, and then, we return this constituent node.

We assign the special category iw to each node of the word-level constituent tree be-
sides the root. Because the representations of two-character words are almost the same
as their corresponding word-level representations, in order to distinguish from the word-
level representations, we use the special token R as the category of root in character-level
constituent trees. The corresponding constituent and dependency word-level structure is
shown in Figure 4. In word-internal syntax structures, the constituent representation shows
the composition level of the word, while the dependency representation indicates which
characters dominate others.

Analyzing and assigning categories to characters is a complicated topic in linguistics
because the “syntactic distributions” of Chinese characters are rather unclear and may
not provide sufficient categorization evidence. Yang (2006) manually annotated 39,459
words from the Modern Chinese Grammar Information Dictionary. Their motivation is
similar to that of our work on constituent representation. However, our annotation is much
more comprehensive than theirs. Considering that part-of-speech should be essentially
defined as the most basic syntactic category, we perform the complete syntactic structure
annotation by decomposing complex annotation problems into multiple hierarchies. Due
to the lack of evidence, annotating categories directly has the risk of uneven quality. We
thus annotated gradually and according to linguistic hierarchies. We first annotated the
POS tags of characters, and then we used the dependency head rules and HFP to provide
categories.

2.3 Comparisons

For Chinese, character-level constituents and dependencies structures have been previously
explored by Zhang et al. (2013) and Zhang et al. (2014), respectively, whose annotations

472

Neural Character-Level Syntactic Parsing for Chinese

Table 3: Statistics for the two dependency treebanks. “Intersections” denotes the number
of intersecting words in the two datasets, while “Identical-Structures” denotes the
number of identically-structured words in the two datasets, and the last column
shows the percentage of identical structures.

Word Length ZCTB SCDT Intersections Identical-Structures Identical Percentage

2 40567 50639 39897 35641 89.33%
3 15972 20970 14709 8655 58.84%
4 6114 11232 5060 2468 48.77%
5 1922 1035 872 549 62.95%
>5 2610 923 788 205 26.01%

total 67185 84799 61326 47518 77.48%

have also been publicly available7. We denote these annotations as ZConst for constituents
and ZDep for dependencies in ZCTB8; however, there are quite a few differences between
their annotations and ours, some of which are rooted in the basic annotation schemes. We
will compare our SCDT annotation with ZDep both quantitatively and qualitatively and
will also compare our constructed character-level constituents with ZConst, showing that
our annotation potentially provides more character-level information.

Statistics Firstly, the statistics for the two treebanks are collected based on the distribu-
tions of lengths of the words, as shown in Table 3. Comparing the character-level annotation
sets, we see that SCDT includes more words than ZDep, especially for words less than five
characters. In fact, most Chinese words are quite short and some of the longer words can be
further cut into short words, indicating that SCDT could have better coverage of Chinese
words.

Structures Since the two treebanks adopt different annotation schemes (which we will
describe later), the unlabeled version of the dependencies, which reveals only the structures,
will be examined first. The statistics for intersecting words and identically-structured words
are also shown in Table 3. From the statistics, we can see that for shorter words, the rates of
structural agreement between the two datasets are much more higher than those for longer
words. This is natural since shorter-sized words are easier to annotate.

Table 4 lists some examples of the divergences between the two datasets. Comparing
the versions of unlabeled constituent trees, ZCTB treebank defines its constituency trees as
binary trees in order to indicate the head direction for generating corresponding dependency
trees, while our SCDT constituent treebank is converted from dependency structures and
thus is not restricted to being a binary tree. We also observe that some of the disagreements
occur over words like named entities and are due to the specified annotating schemes for
those special words.

7. https://github.com/zhangmeishan/ACL2013-CharParsing, https://github.com/zhangmeishan/ACL2014-
CharDep

8. ZDep can be converted from ZConst following Zhang et al. (2013)

473

Li, Zhou, Zhao, Zhang, Li, & Ju

Table 4: Examples of the structural divergence between the two treebanks (the annotations
for the dependency structures are described in Section 2.1.2).

Word ZCTB Head & Constituent SCDT Head & Constituent

竞拍 0 1 2 0
(auction) (z (b 竞) (i 拍)) (R (v 竞) (v 拍))

发愁 0 1 2 0
(worry) (z (b 发) (i 愁)) (R (v 发) (f 愁))

停车场 3 1 0 2 3 0
(parking-lot) (y (z (b 停) (i 车)) (i 场)) (R (iw (v 停) (n 车)) (n 场))

超暴力 3 3 0 2 3 0
(super-violent) (y (b 超) (y (i 暴) (i 力))) (R (iw (v 超) (a 暴)) (n 力))

有利可图 3 1 0 3 2 4 4 0
(profitable) (y (z (b 有) (i 利)) (x (i 可) (i 图))) (R (iw (v 有) (n 利)) (v 可) (v 图))

从长远来看 4 1 2 0 4 5 3 1 4 0
(in the long run) (y (z (b 从) (x (i 长) (i 远))) (x (i 来) (i 看))) (R (iw (v 从) (iw (a 长) (a 远))) (iw (v 来)) (v 看))

反其道而行之 5 3 1 1 0 5 3 3 4 6 6 0
(act in contravention) (y (z (z (b 反) (y (i 其) (i 道))) (i 而)) (z (i 行) (i 之))) (R (iw (iw (v 反) (n 其) (n 道)) (f 而)) (v 行) (f 之))

Table 5: Illustrations of different tagging schemes of the two datasets.

Word
Zdep SCDT

POS Dep. Label POS Dep. Label

开心(happy) b i out in v n a-v-n root-a

拥有者(owner) b i i in in out v v n vc n-v-n root-n

不起眼(inconspicuous) b i i in out in d v n vd n-v-n root-n

出乎意外(unexpected) b i i i out in in in v p n n v-v-p n-v-n nn root-n

民不聊生(destitute) b i i i in in in out n d v v n-n-d n-n-v vv root-n

Annotations The major differences between the two character-level trees are the annota-
tions for labels: character-level POS tags, dependency labels for characters, and constituent
labels for constituent tree nodes.

For character-level POS tags, we employ a more fine-grained tag-set that explores the
functional utilizations of individual characters; that is, we annotate characters with real
character-level POS tags like we do for words, as described in Section 2.1.4, while Zhang
et al. (2014) utilizes a simple scheme that only annotates the word-level POS and the
intra-word positions for the characters: b for the starting character of the word and i for
the continuing ones in the rest of the word. Obviously, our annotation scheme provides far
more information by indicating the fine-grained functionalities of the characters.

For dependency labels, we provide labels basing on the POS tags of the characters in
the dependency edge, which is still more informative than the scheme of Zhang et al. (2014)
that only discriminates between root and non-root characters (annotated as out and in ,
respectively).

For constituent labels, ZCTB treebank uses x , y and z labels that indicate the left,
right, and coordination head directions, respectively (Zhang et al., 2013), while our SCDT
converted constituent structure only contains R and iw labels, which aim to distinguish

474

Neural Character-Level Syntactic Parsing for Chinese

Table 6: Examples of full annotation.

Index Char POS Head Dep. Label Constituent Tree

Word: 鲟鱼(sturgeon)

1 鲟 n 2 nn
(R (n 鲟) (n 鱼))

2 鱼 n 0 root-n

Word: 天安门(Tian’anmen)

1 天 n 2 n-n-v
(R (iw (n 天) (v 安)) (n 门))2 安 v 3 nn

3 门 n 0 root-n

Word: 普天同庆(the whole world is celebrating)

1 普 a 2 ad

(R (iw (a 普) (n 天)) (d 同) (v 庆))
2 天 n 4 n-n-v
3 同 d 4 vd
4 庆 v 0 root-n

Word: 50余(more than fifty)

1 5 i 2 g
(R (iw (i 5) (i 0)) (a 余))2 0 i 3 a-g-a

3 余 a 0 root-a

Word: 拉美裔(Hispanic)

1 拉 n 2 r
(R (iw (n 拉) (n 美)) (n 裔))2 美 n 3 nn

3 裔 n 0 root-n

Word: 空对地(air to ground)

1 空 n 3 nn
(R (v 对) (iw (n 空) (n 地)))2 对 v 0 root-n

3 地 n 2 v-v-n

Word: 好人好事(good man and good deed)

1 好 a 2 ad

(R (iw (a 好) (n 人)) (a 好) (n 事))
2 人 n 4 nc
3 好 a 4 ad
4 事 n 0 root-n

the root nodes from internal nodes. Table 4 and 5 provides some examples to illustrate
these different schemes.

2.4 Examples of Full Annotation

Several examples for full annotations for our character-level dependency and converted
constituent structures are shown in Table 6. The annotations include character-level POS
tags, head indices, dependency labels, and constituent labels. Note that we require the
absolute POS tag when assembling character-level and word-level constituent dependency

475

Li, Zhou, Zhao, Zhang, Li, & Ju

or dependency trees. We format these in the form of root-xx where xx denotes word-level
POS tags, which will be described in the next section.

3. Complete Structure

In this section, we introduce the complete structure representation and two key problems
to solve: (1) how to assemble character-level and word-level treebanks, and (2) how to
combine the dependency and constituent representations in the fully annotated character-
level treebank.

Firstly, we discuss how to apply dependency and constituent structures inside words
(hereinafter, we refer to these as intra-word representations) to construct the full character-
level treebanks for both constituency and dependency trees. Secondly, we combine the
dependency and constituent representations in the fully annotated character-level treebanks
to create a formal structure called joint span following Zhou and Zhao (2019). The joint
span structure is able to cover both constituent and head information of syntactic trees
based on HPSG, which is a highly lexicalized, constraint-based grammar.

3.1 Assembling Character-Level and Word-Level Treebanks

At the word-level, as in traditional methods, we convert dependency treebanks from the
Chinese Penn Treebank (CTB), which uses constituent structure, as shown in Figure 5(a).
At the character-level, the dependencies will be from SCDT, which includes character-level
dependencies for all words of CTB. As has been already described in detail in Section 2.2,
SCDT directly describes the intra-word dependencies, and we apply Algorithm 1 to generate
intra-word constituent structure from SCDT. Each word is annotated with a dependency
tree and a constituent tree, both of which are built on its characters, as shown in Figure
5(b).

With the word-level and intra-word structures of both constituency and dependency
trees, the next task is to assemble them to construct the respective fully annotated character-
level constituent and dependency treebanks.

Assembling Unlabeled Constituents and Dependencies For the character depen-
dencies inside words, each word has its own root character, which is used to stand for the
whole word in the original word-level treebank. This allows character dependencies and
word dependencies to be connected naturally and without any ambiguity. Similarly, since
each word is represented as a leaf in the word-level constituent structure, we can replace
each leaf with a character-level constituent tree representing the word to construct fully
annotated character-level constituent trees naturally.

As shown in Figure 5, the final character-level trees will be obtained by combining
the following trees: its word-level constituent and dependency trees shown in 5(a) and all
related intra-word (character) constituent and dependency trees for all words as shown
in 5(b). Figure 5(c) shows the resulting fully annotated character-level constituent and
dependency trees for the whole sentence.

Assembling Character POS Tags, Constituent Categories, and Dependency La-
bels Characters that belong to a word may inherit the corresponding word-level POS and
dependency label from the word-level treebank, though each character already has its own

476

Neural Character-Level Syntactic Parsing for Chinese

ROOT

OBJ
VMOD

VMOD

VMOD

 陕西 计划 加速 发展 旅游业
Shaanxi plans to accelerate the development of tourism

 NR VV AD VV NN

旅游业
tourism

NN

 陕西
Shaanxi

 NR

 计划
plans to

 VV 加速
accelerate

 AD
 发展

the development of
 VV

NP

NP

VP

IP

VP

VP

陕 西 计 划 加 速 发 展 旅 游 业
 Shaanxi plan program rise speed exploit extend stay tour industry

 Shaanxi plan program rise speed exploit extend stay tour

 n n v v v n v v v v n

 n n v v v n v v v v

r vv v-v-n vv vv n-v-n

root root root root root

陕 西 计 划 加 速 发 展 旅 游

业

R

R

iwR R R n

industry

 (b) Word-internal constituent and dependency trees (c) Character-level constituent and dependency trees

 (a) Word-level constituent and dependency trees

陕 西 计 划 加 速 发 展 旅 游 业
 Shaanxi plan program rise speed exploit extend stay tour industry

 NR_n NR_n VV_v VV_v AD_v AD_n VV_ v VV_v NN_v NN_v NN_n

 NR_n NR_n

r vv v-v-n vv vv n-v-n

VMOD_root-n

VMOD-root-v

VMOD-root-v

ROOT_root-v

VMOD_root-r

陕 西
 VV_v VV_v

计 划
 AD_v AD_n

加 速

 VV_v VV_v

发 展

 NN_v NN_v

旅 游

 NN_n

业

NR-R VV-R

AD-R

VV-R

NN-R

iw

NP

NP

VP

IP

VP

VP

Figure 5: Character-level constituent and dependency trees (c) and the word-level and intra-
word trees used to build them (a and b, respectively).

character-level tag or label from character-level treebank. In a fully annotated character
dependency tree, we have to decide which detailed POS tag and dependency label, whether
from the character-level tree, the word-level tree, or both should be assigned to each char-
acter. In a fully annotated character constituent tree, we need to combine word-level POS
tags with the constituent categories of intra-word constituent trees.

For assembling POS tags, Zhang et al. (2014) explored a character POS tagging strategy,
in which they trivially assigned tags according to character position and word POS tags
from CTB9, but this under-utilized characters tags’ and labels’ ability to represent the true
syntactical roles of the characters within words.

While SCDT includes manual annotations of both character POS tags and dependency
labels, Li et al. (2018) considered four intuitive strategies for POS and dependency labels
based on SCDT as shown in Figure 6. They are specified as follows:

9. For example, if a Chinese word has POS tag NN , then the first character is labeled as NN-b, and
remaining characters are labeled as NN-i , where -b indicates the beginning character position and -i
indicates other positions.

477

Li, Zhou, Zhao, Zhang, Li, & Ju

NN#x

NN#y

NN#t

NN#b NN#i

NN#i

旅 游

业
iw

NN-R

v v

NN_n

(e) SCDT labels (f) ZPar labels

reside tour

industry

旅 游

业

reside tour

industry

 旅 游 业 旅 游 业
 reside tour industry reside tour industry
 NN_v NN_v NN_ n v v NN_n

 (c) Character + word (d) Root character +word

 旅 游 业 旅 游 业
 reside tour industry reside tour industry
 NN NN NN v v n

assmod assmod

assmod

 (a) Word only (b) Character only

vv n-v-n

root

assmod-vv assmod-n-v-n

assmod-root

vv n-v-n

assmod-root

Figure 6: Different strategies for tagging character POS tags, constituent labels, and de-
pendency labels.

• Using only word-level tags and labels. (Figure 6(a))

• Using only character-level tags and labels. (Figure 6(b))

• Combining word-level and character-level tags and labels for all characters. (Figure
6(c))

• Combining word-level and character-level tags and labels for only root characters.
(Figure 6(d))

Li et al. (2018) showed that combining word-level and character-level tags and labels
for only root characters (Figure 6(d)) achieves the best performance, and we apply this
strategy for our POS tags and dependency labels.

To assemble constituent categories, Zhang et al. (2013) assigned a word-level POS to
each character constituent category and constructed a new root for each character con-
stituent tree to represent the word segmentation, assigning the new root label t as show in
6(f). In our fully annotated constituent trees based on SCDT, we combine word-level POS
tags with only the root node and combine word-level and character-level POS tags for only
root characters in the character-level constituent trees, as shown in 6(e).

With these enhanced character tagging strategies, the final character constituent and
dependency trees express both lexical and syntactic information. As for word-level con-
stituent and dependency parsing, the learning pipeline includes identification of words and
prediction of syntactic tree. As to character analysis, we only need to train the prediction
of syntactic tree without word segmentation. The error propagation in different processing
hierarchies will be greatly reduced which is supposed to lead to a better learning effect.

Since the word is represented as a constituent in character-level constituent tree, we can
easily convert to word-level trees without POS information by constituent categories which
is different from Li et al. (2018) based on POS.

478

Neural Character-Level Syntactic Parsing for Chinese

加 装 闸 道 、 网 路 分 级 等
 Add gates , network grading, etc
 d VV-v n NN-n PU n NN-n n NN-n ETC

vd nn nn nn

root-n-dep punct

etc

root-n-dep

root-n-nnroot-n-dobj

 n NN-n

闸 道

 NN-n n

网 路

 n NN-n

分 级

 ETC

等
 PU

、

NN-R

NN-R

NN-R

NP

IP

VP

UCP

NP

 d VV-v

加 装

VV-R

NP

3 4

5

10

98

7621

gates

network

grading

Add

etc

(a) Constituent and dependency.

 d VV-v

加 装

 PU

 ETC

 NN-n n

网 路

 n NN-n

分 级

等

、

 n NN-n

闸 道

HEAD 装
Categ VV-R

HEAD 道
Categ NN-R

HEAD 道
Categ NP

HEAD 装
Categ UCP

HEAD 装
Categ IP

HEAD 装
Categ VP

ROOT

(1,2)

(3,4)

(3,4)
HEAD 级

Categ VV-R

HEAD 路
Categ NP

HEAD 级
Categ NP

HEAD 级
Categ #

(6,7)

(6,7) (8,9)

(6,9)(1,4)

(1,4) (6,10)

(1,10)

3 4

5

10

98

76

21

gates
network

gradingAdd

etc

vd

nn
nn

nn

root-n-dep

punct

etc

root-n-dep

root-n-nn
root-n-dobj

HEAD 路
Categ NN-R

(b) Joint span structure.

Figure 7: Constituent, dependency, and joint span structures (Zhou & Zhao, 2019). The
joint span structure is indexed from 1 to 10, and each node is assigned an in-
terval range. The dotted box represents the corresponding portions. The special
category # is assigned to divide phrases with multiple heads. The joint span
structure contains both constituents and dependency arcs. The Categ in each
node represents the set of constituent categories, which includes a collapsed entry
for each unary chain of each constituent. HEAD indicates the head word.

3.2 Joint Span Structure

Since constituent and dependency representations have strong inherent linguistic relations
and can benefit each other, we combine our full character-level constituent and dependency
trees to create a single structure representation. We call this structure joint span following
our previous work (Zhou & Zhao, 2019). This structure covers both constituent and head
information of syntactic trees. The joint span structure, which is related to the HFP of
HPSG, consists of all its children phrases in the constituent tree and all dependency arcs
between the heads and their children in the dependency tree. When we naturally re-define
Chinese sentence structure on a basis of character-level syntactic formalism, it is very natural
and straightforward to use our previously developed word-level modeling approach to study
the character-level parsing and special language phenomenon in Chinese.

For example, in the constituent tree of Figure 7(a), 加加加装装装闸闸闸道道道 (Add gates) is a phrase
(1, 4) assigned with category VP and in the dependency tree, 装装装 is parent of 加加加 and 道道道,
thus in our joint span structure, the head of phrase (1, 4) is 装装装. The node SH(1, 10) in
Figure 7(b) is represented as a joint span by:
SH(1, 10) = { SH(1, 4) , SH(5, 5) , SH(6, 10), l(1, 10, (UCP)) , d(、, 装) , d(级, 装) },

where l(i, j, (UCP)) denotes span (i, j) with category UCP, and d(r, h) indicates the
dependency between the word r and its parent h. The final entire syntactic tree T can be
represented in the joint span structure as:

SH(T) = {SH(1, 10), d(装, root)}.

479

Li, Zhou, Zhao, Zhang, Li, & Ju

现
VV_n

呈
d

业
NN_v

筑
v

国
 NR_n

建
v

局
NN_n

格
n

新
 JJ_n

中
n

呈现
 VV

建筑业
 NN

中国
 NR

格局
 NN

新
 JJ

Word internal dependency
Word external dependency

Figure 8: Word-level dependencies restored from character-level dependencies using POS
tags.

As shown in Figure 7(a), the phrase (1,10) with a category UCP contains 2 head words,
装装装 and级级级 in its dependency tree. To deal with phrases containing two or more head words,
we follow Zhou and Zhao (2019) to use a special category # to divide phrases with multiple
heads to ensure that there is only one head word for each phrase. We define the dependency
head of tokens in constituents which violate the HFP as “error”. This error still exists in
the transformed dataset because the original word-level dependency treebank transformed
by head rules such as Stanford (de Marneffe & Manning, 2008) does not completely follow
this principle. Therefore, after the character-level conversion, there are 364 heads in SCDT
and 340 heads in ZCTB fully annotated character-level trees that are errors.

Moreover, to simplify the syntactic parsing algorithm, we add a special empty category
Ø to spans to binarize the n-ary nodes and apply a unary atomic category to deal with
the nodes of the unary chain. This is a popular process adopted in constituent syntactic
parsing (Stern, Fried, & Klein, 2017b; Gaddy, Stern, & Klein, 2018).

3.3 Word-Level Restoration

As the parsing granularity has been shifted from word to character, directly comparing with
the results of word-based parsers will not be meaningful. Thus, it is necessary to restore
word-level trees from character-level parsing predictions, namely using word segmentation
for restoration. Li et al. (2018) shows a method to restore words based on the POS tag of
each character, which we use for our dependency trees, while we propose an intuitive way
to restore words based on the constituent categories of our joint span structure.

As shown in Figure 8, Li et al. (2018) adopts a heuristic method to transform parsing
predictions from character-level to word-level10. First, find all characters that are rooted by
a character whose character-level POS tag is root . Then, check each root character node
to see if its tag includes a word-level POS part. For example, if a character POS tag is

10. As character-level dependency trees contain word-level information, extracting or restoring the word-
level dependencies is always possible, although our character-level model does not rely on the concept of
words to convey information, even if it is derived from words.

480

Neural Character-Level Syntactic Parsing for Chinese

 n NR_n

中 国 JJ_n

 VV_n d

呈 现

 n NN_n

格 局

新

 v v

 NN_v

建

业

筑

HEAD 国
Categ NR-R

HEAD 筑
Categ iw

HEAD 业
Categ NN-R

HEAD 业
Categ NP

HEAD 国
Categ NP

HEAD 现
Categ IP

HEAD 业
Categ NP

HEAD 局
Categ NN-R

HEAD 局
Categ NP

HEAD 新
Categ ADJP

HEAD 局
Categ NP

HEAD 现
Categ VP

HEAD 现
Categ VV-R

 NR

中国

 JJ

 VV

呈现

 NN

格局新

 NN

建筑业

HEAD 中国
Categ NP

HEAD 呈现
Categ IP

HEAD 建筑业
Categ NP

HEAD 建筑业
Categ NP

HEAD 格局
Categ NP

HEAD 格局
Categ NP

HEAD 新
Categ ADJP

HEAD 呈现
Categ VP

Word internal structure
Word external structure

Figure 9: Word-level joint span structure restored from character-level joint span structures
using constituent categories.

NN n , then the corresponding character must be a root character because NN is known
as a word-level POS tag. This word-level POS tag will be given as the tag of soon-to-be-
found word. Once the root character is identified, all its descendant nodes (those with only
character-level POS tags) can be collected and combined with the root character to compose
a word. After all these character-level edge subtrees collapse into word-level subtrees with
corresponding POS tags, a word-level dependency tree can be finally built.

Li et al. (2018)’s word-level restoration is based on character-level POS tags and per-
formed on dependency tree, so its word segmentation results may conflict with those of
constituent trees. Thus, we propose a word-level restoration method based on the cat-
egories of our joint span structure that can transform both constituent and dependency
trees from the character-level to the word-level.

As shown in Figure 9, if the category in the node of our joint span structure tree indicates
ROOT for the word (has -R at the end of its category), all its leaf nodes can be collected
to compose a word. Then, we replace the subtree of this node with a leaf node containing
a word and word-level POS tag. Also, we change the HEADs from characters to words
for all nodes and replace the leaf nodes’ POS tags with word-level POS tags. Note that
when we transform our character-level joint span structure trees to the word-level, because
these trees contain both word-level constituent and dependency information, we then obtain
consistent constituent and dependency trees based on the same word segmentation.

4. Character-Level Parsing Model

In this section, we introduce the proposed character level parsing model. To parse our
character-level joint span structure, following Zhou and Zhao (2019), we apply an encoder-
decoder backbone with a self-attention encoder (Vaswani et al., 2017) with partitioned

481

Li, Zhou, Zhao, Zhang, Li, & Ju

装

.

.

.

级

 Token

 Representation Decoder LayerScoring Module

Dependency Score

Span Score
Joint Span Structure

Input

 Char

加

1

1 . .

.

等

.

.

.

VV-v

d

NN-n

ETC

 POS

Self-Attention

 Syntactic

Self-Attention

 POS Learning

 Module

 d VV-v

加 装

 PU

 ETC

 NN-n n

网 路

 n NN-n

分 级

等

、

 n NN-n

闸 道

HEAD 装
Categ VV-R

HEAD 道
Categ NN-R

HEAD 道
Categ NP

HEAD 装
Categ UCP

HEAD 装
Categ IP

HEAD 装
Categ VP

ROOT

(1,2)

(3,4)

(3,4)
HEAD 级

Categ VV-R

HEAD 路
Categ NP

HEAD 级
Categ NP

HEAD 级
Categ #

(6,7)

(6,7) (8,9)

(6,9)(1,4)

(1,4) (6,10)

(1,10)

3 4

5

10

98

76

21

gates
network

gradingAdd

etc

vd

nn
nn

nn

root-n-dep

punct

etc

root-n-dep

root-n-nn
root-n-dobj

HEAD 路
Categ NN-R

Figure 10: The framework of character-level parsing model.

position information (Kitaev & Klein, 2018). Recently, deep NLP modes have shown ben-
efits from predicting many increasingly complex tasks each at a successively deep layer.
Since the language is the construction of hierarchy: phonology, morphology, lexical, syntax,
semantics and pragmatics (Allen, 1995), we jointly learn POS tags by considering linguistic
hierarchies inspired by (Collobert et al., 2011; Hashimoto et al., 2017). Their work showed
that using linguistic hierarchies and predicting different linguistic parsing tasks at different
depth of NN layers jointly is more effective than handling different tasks in the same layer
or in entirely separate networks. As shown in Figure 10, our model includes five modules: a
token representation module, self-attention encoder, a POS learning module, a scoring mod-
ule, and a CKY-style decoder. We insert the POS learning module into the self-attention
encoder, which is divided into two encoders: a POS self-attention encoder and a syntactic
self-attention encoder. We take a multi-task learning (MTL) (Caruana, 1993) approach
and share the parameters of the token representation and the self-attention encoder. After
the decoding process, we convert our joint span structure to character-level constituent and
dependency trees and perform word-level restoration for evaluation and comparison.

4.1 Token Representation Module

The proposed model uses characters as the basic element for neural learning, so we naturally
use character embeddings instead of word embeddings to feed neural models. Character
embeddings in character-based and word embeddings in word-based model are the same in
implementation. In fact, character embeddings can be more conveniently trained than word
embeddings for Chinese by trivially segmenting each character as a single-character word.

Since characters instead of words are treated as the basic tokens, token representation
xi is only composed of character representations. We concatenate randomly initialized
embeddings xrand and pre-trained embeddings xpre as our token representation xi = [xrand;
xpre]. In addition, if we apply pre-trained language models such as BERT, RoBERTa or
XLNet, we replace character embeddings xi with the last layer outputs of the model to
create our token representation xi.

482

Neural Character-Level Syntactic Parsing for Chinese

4.2 Self-Attention Encoder

The encoder in our model is adapted from Vaswani et al. (2017). And the encoding
is factored into content information encoding process and position information encoding
process explicitly. The input matrix X = [x1, x2, . . . , xn], in which each xi is concatenated
with a position embedding, is transformed by a self-attention encoder. We factor both the
model’s self-attention sub-layers and feed-forward layers into explicit content information
and position information portions, following the settings of Kitaev and Klein (2018).

4.3 POS Learning Module

To account for linguistic hierarchies, we predict POS early in the process and use predicted
POS to aid in the subsequent parsing task. We insert our POS learning module into the
self-attention encoder and divide it into a POS self-attention encoder and a syntactic self-
attention encoder, in which the POS self-attention encoder only takes token information
for POS prediction, while the syntactic self-attention encoder takes both token and POS
information for later parsing tasks. The output of POS self-attention encoder XP is fed
into a one-layer feedforward network:

YP = WP
2 g(LN(WP

1 XP + bP1)) + bP2 ,

where LN denotes Layer Normalization, and g is the Rectified Linear Unit (ReLU) nonlin-
earity function.

We minimize the negative log-likelihood of the gold POS tag and implement this as a
cross-entropy loss:

J1(θ) = −logPθ(gp|yp),

where Pθ(gp|yp) is the probability of correct POS tag gp for yp.
Then, we use the predicted POS to get POS embedding ePOS and sum this with the

output of token self-attention encoder XP to get our POS representation: xPOS = xp +
ePOS, which is then used by the syntactic self-attention encoder for later parsing tasks.
Since we factor explicit content and position information in the self-attention process, we
only add POS embedding ePOS to the content information of xp.

4.4 Scoring Module

Since the joint span structure is composed of constituents and dependencies, we need two
types of scorers: constituent and dependency head scorers11.

Constituent Scorer We follow constituent syntactic parsing methods (Zhou & Zhao,
2019; Kitaev & Klein, 2018; Gaddy et al., 2018) and train a constituent scorer. Specifically,
span vector sij is a concatenation of vectors as:

sij = [−→y j −−→y i−1;←−y j+1 −←−y i],

in which −→y j is constructed by splitting in half the outputs from the syntactic self-attention
encoder. Notably, these over arrows do not indicate the direction information from encoder,

11. For the dependency label of each word, we train a separate multiclass classifier simultaneously with the
parser by optimizing the sum of their objectives.

483

Li, Zhou, Zhao, Zhang, Li, & Ju

but to illustrate whether the first half or the second half of the split representation is
employed. We apply one-layer feedforward networks to generate span scores vectors, taking
span vector sij as input:

S(i, j) = WS
2 g(LN(WS

1 sij + bS1)) + bS2 .

The individual score of a span with category ` is denoted by:

Scateg(i, j, `) = [S(i, j)]`,

where []` indicates the value corresponding to the `-th element of the score vector. The score
s(T) of the constituent parse tree T is obtained by adding the scores of all its spans, where
i and j denote a span’s fencepost (boundary) positions and ` denotes a span’s category:

s(T) =
∑

(i,j,`)∈T

Scateg(i, j, `).

The goal is then to find the tree with the highest score:

T̂ = arg max
T

s(T).

We use a CKY-style algorithm (Gaddy et al., 2018) to obtain the tree T̂ in O(n3) time com-
plexity. This structured prediction problem is tasked with satisfying the margin constraint:

s(T ∗) ≥ s(T) + ∆(T, T ∗),

where T ∗ denotes the correct parse tree, and ∆ is the Hamming loss on the spans with cat-
egories. The dynamic program portion is conducted with a slight modification as described
in Gaddy et al. (2018). The objective function is the hinge loss:

J2(θ) = max(0,max
T

[s(T) + ∆(T, T ∗)]− s(T ∗)).

Dependency Head Scorer We predict a distribution over the possible heads for each
word and use the biaffine attention mechanism (Dozat & Manning, 2017) to calculate the
score as follows:

αij = hTi Wgj + UThi + V T gj + b,

where αij indicates the child-parent score, W denotes the weight matrix of the bi-linear
term, U and V are the weight vectors of the linear term, b is the bias item, and hi and gi
are calculated by a distinct one-layer perceptron network.

We minimize the negative log-likelihood of the gold dependency tree Y , which is imple-
mented as a cross-entropy loss:

J3(θ) = − (logPθ(hi|xi) + logPθ(li|xi, hi)) ,

where Pθ(hi|xi) is the probability of correct parent node hi for xi, and Pθ(li|xi, hi) is the
probability of the correct dependency label li for the child-parent pair (xi, hi).

Finally, we train our scorer for simply minimizing the overall loss:

Joverall(θ) = J1(θ) + J2(θ) + J3(θ).

484

Neural Character-Level Syntactic Parsing for Chinese

Algorithm 2 Joint Span Syntactic Parsing Algorithm

Require: sentence length n, span and dependency score s(i, j, `), d(r, h), 1 ≤ i ≤ j ≤ n, ∀r, h, `
Ensure: maximum value SH(T) of tree T

Initialization:
sc[i][j][h] = si[i][j][h] = 0,∀i, j, h
for len = 1 to n do

for i = 1 to n− len+ 1 do
j = i+ len− 1
if len = 1 then
sc[i][j][i] = si[i][j][i] = max` s(i, j, `)

else
for h = i to j do
splitl = max

i≤r<h
{ max

r≤k<h
{ sc[i][k][r] + si[k + 1][j][h] }+ d(r, h) }

splitr = max
h<r≤j

{ max
h≤k<r

{ si[i][k][h] + sc[k + 1][j][r] }+ d(r, h) }

sc[i][j][h] = max { splitl, splitr }+ max
6̀=∅

s(i, j, `)

si[i][j][h] = max { splitl, splitr }+ max
`
s(i, j, `)

end for
end if

end for
end for
SH(T) = max1≤h≤n { sc[1][n][h] + d(h, root) }

4.5 Decoder Module

As the joint span is defined recursively, scoring the root joint span requires scoring all
spans and dependencies in a syntactic tree. During testing, we apply the joint span CKY-
style algorithm (Zhou & Zhao, 2019), as shown in Algorithm 2, to explicitly find the globally
highest score SH(T) of our joint span syntactic tree T 12 .

Also, to control the effect of combining span and dependency scores, we apply a weight13

λH :

s(i, j, `) = λHScateg(i, j, `), d(i, j) = (1− λH)αij ,

where λH is in the range of 0 to 1. With this weight, we can also trivially generate con-
stituent or dependency syntactic parsing trees by setting λH to 1 or 0, respectively.

5. Experiments of Empirical Evaluation

Next, we conduct an empirical evaluation of the character level parsing model we proposed14.

12. For further details, see Zhou and Zhao (2019), which discusses the differences in the constituent syntactic
parsing CKY-style algorithm, how to binarize the joint span tree, and the time and space complexity.

13. We also try to incorporate the head information in the constituent syntactic training process, namely
max-margin loss for both two scores, but it makes the training process become more complex and
unstable. Thus, we employ a parameter to balance two different scores in the joint decoder, an easily
implemented addition that produces better performance.

14. The code is available at https://github.com/bcmi220/ccharpar.

485

Li, Zhou, Zhao, Zhang, Li, & Ju

5.1 Settings

Data We use Chinese Penn Treebank 5.1 (CTB5) for both constituent and dependency
evaluation with articles 001-270 and 440-1151 for training, articles 301-325 as the develop-
ment set and articles 271-300 for the test set in constituent parsing evaluation following
the standard split seen in Liu and Zhang (2017b); with articles 001-815 and 1001-1136 for
training, articles 886-931, 1148-1151 as the development set, and articles 816-885 and 1137-
1147 for the test set in dependency parsing evaluation following the standard split seen in
Zhang and Clark (2008). Due to the difference in constituent and dependency evaluation
dataset splits, in order to be comparable with the existing parsers’ results, we trained a
model using the constituent split and one using the dependency split (though both were
jointly trained to handle both types of syntax trees). We then evaluated them on their
corresponding test splits. The placeholders with the -NONE- tag are stripped from the
CTB. To prepare the character-level treebank, the word-level dependencies are obtained
using Stanford Parser15 (De Marneffe, MacCartney, Manning, et al., 2006).

For the purpose of comparing our joint learning model with models that use traditional
pipelines, BaseSeg and BasePoS (Zhao, Huang, & Li, 2006) are used for predicting word seg-
mentation and POS tags, respectively, in word-level experiments. The predicted character-
level POS tags are learned and annotated with a Conditional Random Field (CRF) tagger
using the same features and settings as Chen, Zhang, and Sun (2008)16. If we use the gold
or predicted POS setting, we remove the POS learning module and concatenate gold or
predicted POS embeddings with character embeddings to create our token representation
xi, as noted in 4.1.

Then, we use two character treebanks, SCDT and ZCTB, as noted in Section 2.3. We
apply the assembling strategy from Section 3 for SCDT character treebank and follow Zhang
et al. (2013, 2014) to obtain ZConst (ZDep), respectively denoting final character-level
constituent and dependency trees.

Hyperparameters In our experiments, the dimension size of character-embedding is
100, we use pre-trained structured-skipgram (Ling et al., 2015) embeddings to initialize
our character embeddings. For the self-attention encoder, we apply 4 layers for the POS
self-attention encoder and 8 layers for the syntactic self-attention encoder, keeping other
hyperparameters settings are the same as Kitaev and Klein (2018). In the Pipeline settings
of POS tagging and syntactic parsing, the POS tag model uses the same model architecture
as in the main model, that is, 4-layers are used for the self attention encoder.

For span scores, we apply feed-forward networks with a hidden layer size of 250. For
the dependency biaffine scorer, we employ two 1024-dimensional MLP layers with ReLU as
the activation function and a 1024-dimensional parameter matrix for biaffine attention.

15. http://nlp.stanford.edu/software/lex-parser.html
16. In fact, Chen et al. (2008) used a maximum entropy Markov model as sequence labeling tool for word-

level POS tagging instead of CRF; however, maximum entropy models and CRF share similar feature
representations.

486

Neural Character-Level Syntactic Parsing for Chinese

For pre-trained language models used in Chinese character-level syntactic parsing, we use
the Chinese versions of BERT-base17, RoBERTa-large18, XLNet-mid19, ALBERT-xxlarge20,
and ELECTRA-180g-large21. In addition, when augmenting our model with the Chinese
pre-trained language models, we only use 2 layers for the POS self-attention encoder and 2
layers for the syntactic self-attention encoder.

Training Details We use dropout of 0.33 for biaffine attention and MLP layers. Adam
optimizer with initial learning rate 5e-3 and warmup steps 160 is employed for optimization.
We apply the same training settings as Kitaev and Klein (2018) and Kitaev et al. (2019) if
using BERT, RoBERTa or XLNet. It is worth noting that the pre-trained language model
(if used) in our proposed character-level parser will be further finetuned during the training
of parsing. Parsers that does not explicitly mark what kind of pre-trained language model
is used do not actually use pre-trained language model. All parse models are trained for up
to 150 epochs on a single NVIDIA GeForce GTX TITAN X GPU with Intel i7-7800X CPU.
In the text classification experiment, the initial learning rate is set to 2e-5, and a maximum
of 10 epochs are trained. The early stopping mechanism is used on the development set to
prevent overfitting. In the machine translation experiment, we use the open source Fairseq
as the basic implementation, the initial learning rate of the RNN models is set to 0.01,
and is set to 5e-4 for the Transformer models, and max update step is 200,000. In the
pre-trained language model experiments, we use WoBERT22 checkpoint for initialization in
LIMIT-BERT-word, while in LIMIT-BERT-char, we use the original BERT-base checkpoint
for initialization, 500,000 parsed Wikipedia sentences are used to continue training 100,000
steps.

Evaluation At present, there is no general standard to evaluate full character-level pars-
ing. Thus, we use two evaluation strategies: character-level evaluation and word-level eval-
uation, similar to Li et al. (2018). Since we need to find the best model on the development
set, we sum the F1 score of constituent parsing and the Labeled Attachment Score (LAS) of
dependency parsing (labeled F1 if performing word-level evaluation) for the model selection
criterion.

For constituent parsing, we use the standard evalb23 tool to evaluate the F1 score. For
dependency parsing, following (Dozat & Manning, 2017; Kuncoro et al., 2016; Ma et al.,
2018), we report the results without punctuation for both treebanks.

5.2 Character-Level Evaluation

For character-level evaluation, we still follow the practice of word-level parsing and take F1
scores for constituent parsing and Unlabeled Attachment Score (UAS) / Labeled Attach-
ment Score (LAS) on character-level tokens for dependency parsing as the metrics. In the
presentation of experimental results, the proposed model using constituent and dependency

17. https://github.com/google-research/bert
18. https://github.com/brightmart/roberta zh
19. https://github.com/ymcui/Chinese-XLNet
20. https://github.com/brightmart/albert zh
21. https://github.com/ymcui/Chinese-ELECTRA
22. https://github.com/ZhuiyiTechnology/WoBERT
23. http://nlp.cs.nyu.edu/evalb/

487

Li, Zhou, Zhao, Zhang, Li, & Ju

Figure 11: Syntactic parsing performance of our Joint Span Parser with different λH on the
SCDT development set.

Joint Span Structure is called Joint Span Parser. In addition, in order to demonstrate
the effects of joint syntactic structure learning, we also compared the two structures trained
separately instead of using the constituent and dependency joint structure and named it as
Disjoint Span Parser.

Moderating Constituent and Dependency This subsection examines the joint span
decoder from Section 4.5 with parameter λH on the development set of SCDT. The weight
parameter λH plays an important role: balancing the span and dependency scores. When
λH is set to 0 or 1, the joint span parser works as either the dependency-only parser or
constituent-only parser, respectively. Setting λH between 0 to 1 indicates the general setup
for joint span syntactic parsing, which provides both constituent and dependency structure
prediction. We set the λH parameter to 0 and increase by 0.1 until it reaches 1 as shown in
Figure 11. The best results occur when λH is set to 0.7, which we gauge by examining the
sum of the F1 constituent and UAS dependency scores. Thus, the λH in further experiments
is set to 0.7.

Model Comparison on Different Datasets Character-level parsing results on the test
sets of SCDT and ZCTB are given in Table 7 and 8, in which we see that the character-
level parsing seriously depends on the character-level POS tagging. The parser with gold
character POS greatly outperforms other POS settings. Overall, when comparing methods
using traditionally predicted character POS (i.e., Pipeline), our method of jointly learning
character POS tags achieves better results on POS, constituent, and dependency parsing.
Specifically, the joint POS tag and parsing method outperforms the pipeline method by
0.2-0.3 in POS accuracy, 0.2-0.3 in constituent F1, and 0.3-0.5 in dependency LAS for both
Disjoint Span Parser and Joint Span Parser. This demonstrates our end-to-end model can
effectively avoid error propagation that would arise from pipeline inputs.

In Table 7, the constituent F1 and dependency UAS differences between Disjoint Span
Parser and Joint Span Parser are only 0.15 and 0.05, respectively, which seems to be
marginal. In fact, the results of Disjoint Span Parser are evaluated from two separately
trained models, which originally benefited from being larger in total model parameters and
focusing on the parsing of single syntax form respectively. As a result, the improvement of

488

Neural Character-Level Syntactic Parsing for Chinese

Table 7: Character-level evaluation on the SCDT test set. The “Joint∗” in POS Setting
column indicates that POS tags were jointly learned with constituent or depen-
dency parsing (rather than joint span parsing) in Disjoint Span Parser. Our Joint
Span Parser† refers to the result of replacing the character POS tag in the SCDT
dataset with the boundary indicator tags (such as b, i) in the ZCTB dataset.

POS
Setting

POS
Accuracy

Constituent Dependency

LR LP F1 UAS LAS

(Li et al., 2018)
Gold 100.00 – – – 90.00 87.91
W/O – – – – 80.09 –

Predicted 90.12 – – – 82.53 80.47

Our Disjoint Span Parser

Gold 100.00 94.90 94.45 94.67 95.62 93.89
W/O – 88.97 89.75 89.35 92.63 88.48

Pipeline 94.15 89.23 88.94 89.08 92.40 88.16
Joint∗ 94.37 / 94.42 89.26 89.65 89.45 92.71 88.67

Our Joint Span Parser

Gold 100.00 94.75 94.88 94.82 95.73 94.01
W/O – 89.13 89.81 89.47 92.92 88.82

Pipeline 94.15 88.74 89.95 89.34 92.55 88.40
Joint 94.50 89.25 89.96 89.60 92.76 88.70

Our Joint Span Parser†
Gold 100.00 94.32 94.55 94.43 95.38 93.70

Pipeline 94.96 88.94 89.15 89.04 92.15 88.02
Joint 95.32 89.72 88.89 89.30 92.43 88.36

our joint span structure on such baseline may be not treated marginal considering that the
current parsing accuracy is very high and the error rate decrease cannot been ignored. Fur-
thermore, because the evaluation scores of our main experiment is the average of multiple
runs, these improvements are also stable.

In addition, we analyzed the joint learning and joint parsing (decoding) algorithm by
comparing the results of Joint Span Parser and Disjoint Span Parser on the SCDT and
ZCTB datasets. Thanks to the sharing of network parameters, the joint optimization in the
training stage, and the consideration of both constituent and dependency structures in the
decoding of inference phase, Joint Span Parser improved in various settings compared to
Disjoint Span Parser. This indicates that not only can word-level constituent structure and
dependency structure assist each other in linguistic structure learning (refer to our previous
work Zhou and Zhao, 2019), but their character-level counterparts can also mutually benefit
each other in linguistic structure learning. In addition, this performance advantage also
verifies the effectiveness of our proposed Joint Span Structure in modeling syntactical joint
structures and in accommodating both structures.

For reference, we also list previous character-level parsing models. Zhang et al. (2013,
2014) used a transition parser on the ZConst and ZDep dataset, which does not provide
character-level POS or dependency label annotation. Li et al. (2018) compared a traditional
model (Char MaltParser) and a neural model (Char LSTM Parser) on the SCDT dataset

489

Li, Zhou, Zhao, Zhang, Li, & Ju

Table 8: Character-level evaluation on the ZCTB test set. The “Joint∗” in POS Setting col-
umn indicates that POS tags were jointly learned with constituent or dependency
parsing (rather than joint span parsing) in Disjoint Span Parser.

POS
Setting

POS
Accuracy

Constituent Dependency

LR LP F1 UAS LAS

(Zhang et al., 2014) W/O – – – – 82.07 –

Our Disjoint Span Parser

Gold 100.00 96.35 96.42 96.38 93.05 93.00
W/O – 92.31 90.74 91.51 92.00 89.04

Pipeline 93.97 91.75 90.87 91.30 91.83 88.75
Joint∗ 94.20 / 94.23 92.06 91.94 92.00 92.17 89.20

Our Joint Span Parser

Gold 100.00 96.40 96.54 96.47 94.07 93.12
W/O – 91.63 92.14 91.88 92.07 89.18

Pipeline 93.97 91.73 91.85 91.79 91.96 88.92
Joint 94.28 92.24 92.55 92.39 92.22 89.59

Table 9: Comparison of the results of our proposed Parser and Multi-task Learned Parser.

Constituent Dependency

LR LP F1 UAS LAS

Our Disjoint Span Parser 89.23 88.94 89.08 92.40 88.16
Our Joint Span Parser 88.74 89.95 89.34 92.55 88.40
Multi-task Learning 88.69 89.17 88.93 92.25 88.03

with different POS sources. Our character-level Joint Span Parser achieved new state-of-
the-art results, surpassing all previous character-level parsing models on both datasets.

The distinction between SCDT and ZCTB is the annotations of character-level POS
tag and syntactic structure. Since we cannot directly compare character-level syntactic
structure, we can replace the manual annotated POS tag of SCDT with trivial tags used in
ZCTB like b and i. The corresponding experimental results are listed in Table 7 as “Our
Joint Span Parser†”. When compared to the Joint Span Parser utilizing the original SCDT
data set, the results of constituent and dependency parses have all dropped after switching
to the trivial tag adopted in ZCTB. Although the POS result of Joint Span Parser† is shown
to be higher than that of Joint Span Parser, it is actually incomparable because the former is
based on the trivial POS tag in ZCTB, while the latter is based on the character-level POS
tag in SCDT. This indicates that the word-internal POS tag information is also valuable
for overall parsing, as the information contained in the manually annotated tags extends
beyond the word boundary information given in the trivial tags.

Joint Span Structure vs. Multi-task Learning As Multi-task Learning can also
accomplish the joint learning of dependency syntax and constituent syntax in a single model,
we additionally trained a multi-task learning baseline. Specifically, we share the encoder in

490

Neural Character-Level Syntactic Parsing for Chinese

中 国 化 学 工 业 加 快 对 外 开 放 步 伐
Chinese chemical industry accelerates foreign opening-up pace

r nn nn v-v-ncd vv nn

ROOT_root-v

AMOD-root-v

DOBJ-root-n

NP

IP

NP

ADJP NP

NP

NPNP

NP NP

VV-R

v VV-d
加 快

JJ-R

JJ-v n
对 外

NN-R

n NN-n
化 学

NN-R

n NN-n
工 业

NR-R

n NR-n
中 国

NN-R

v NN-v
开 放

NN-R

n NN-n
步 伐

NSUBJ-root-nNN_root-n

NN_root-n

NN-root-v

中 国 化 学 工 业 加 快 对 外 开 放 步 伐
Chinese chemical industry accelerates foreign opening-up pace

nn nn
nn nn v-v-ncd vv nnnn

ROOT_root-v DOBJ-root-n

NP

IP

NPNN

NPNP

NP NP

VV-R

v VV-d
加 快

nn nn
对 外

n n
化 学

NN-R

n NN-n
工 业

NR-R

n NR-n
中 国

nnNN-v
开 放

NN-R

n NN-n
步 伐

NN_root-n
NN-root-v

ROOT_root-v

AMOD-root-v

DOBJ-root-n

r r nn vvcd vv nn

NP

IP

NP

ADJP NP

NP

NPNP

NP NP

VV-R

v VV-d
加 快

NN-R

NN-v n
对 外

NN-R

n NN-n
化 学

NN-R

n NN-n
工 业

NR-R

n NR-n
中 国

NN-R

v NN-v
开 放

NN-R

n NN-n
步 伐

NSUBJ-root-n

NN_root-n

NN_root-n NN-root-v

(a) gold tree (b) predicted tree from Disjoint Span Parser (c) predicted tree from Joint Span Parser

Figure 12: Case study on character-level parsing. The blue arc in the dependency tree is
the dependency relationship at the original word-level, and the red arc is the
dependency relationship newly introduced at the character-level.

a single model, learn the constituent and dependency syntax structure through two separate
neural scorer components. The overall loss in the training phase is obtained by sum of the
constituent and dependency parsing loss. And during the decoding phase, we adopt the
MST and CKY algorithms to obtain two parse trees separately.

We compare the results of the Joint Span Parser and Multi-task Learned Parser and
show them in Table 9. The results show that the performance of multi-task learned parser
is not even better than that of our individually trained Disjoint Span Parser. This could be
due to the fact that multi-task learning is not effective in all scenarios, though it enjoy the
convenience with a single model, the performance suffers as a result. Instead, in our Joint
Span parser, the training and decoding processes modeling the interactions between the
two tasks, thus it is better suited than multi-task learning for such two tasks with explicit
relationships or constraints.

Case Study on Character-Level Parsing To illustrate the role of Joint Span Structure
in character-level parsing more intuitively, we extracted an example from the test set for
case study, as shown in Figure 12. In the Disjoint Span Parser baseline, both “中国化
学” and “对外开放” produced dependency arcs within words, which means that the parser
treats these two spans as one word, so it will be wrong when restoring to the word-level
dependency tree. The parsing of the constituent tree is also similar. Due to the wrong
span division, the predicted constituent span is also with error. Thus the label based on
the wrong dependency arc or division span is basically wrong. While in the prediction of
our Joint Span Parser, since the dependency structure and the constituent structure are
taken into consideration simultaneously, which means more constraints are performed to the
decision-making, the overall structure is more likely to be correct. Although there are also
label prediction errors (For example, the label “JJ-R” of “对外” is predicted to be “NN-
R” in constituent tree, dependency relationship “v-v-n” of “对” → “外” is predicted to be
“vv”), our Joint Span Parser can generate overall better prediction due to the structure is
more correct.

491

Li, Zhou, Zhao, Zhang, Li, & Ju

In fact, since the neural scoring of span or dependency arc may produce errors, and
the tree decoded with the highest scores of single structures only may be misled by these
errors. Our joint span parsing takes into account both the span of the constituent syntax
and the arc of the dependency syntax, which alleviates the errors of neural scorers and thus
leads to better results. In other words, this shows that in the case when the dependency
information and the constituency information are complementary, they can be effectively
disambiguate each other.

5.3 Word-Level Evaluation

Because character-level syntax parsing lacks metrics that make it directly comparable to
the current word-level parsers, in this subsection, we convert our syntactic parse trees from
the character level to the word level to provide a comparison, relying on character-level con-
stituent categories for trees’ restoring. According to the character-level evaluation results,
we chose our best-performing system, Joint Span Parser, and convert the resultant parse
tree to word-level then compared it with the other word-level parsers. We use Char Joint
Span Parser to represent our system that is converted from character-level. For word-
level evaluation, we use F1 scores for both constituent and dependency parsing if there is
no gold word segmentation, i.e., UAS-F1/LAS-F1 replaces UAS/LAS scores for dependency
parsing following Hatori et al. (2012a), Zhang et al. (2014), Zhang et al. (2015), Kurita
et al. (2017) and Yan et al. (2020)24.

UAS-F1/LAS-F1 are used to evaluate the parsing performance in scenario of joint word
segmentation and dependency parsing, since the widely used UAS/LAS are not enough to
measure the performance in our scenario, as errors arise from two aspects: improper word
segmentation and incorrect predictions for head words. A dependent-head pair is correct
only when both the dependent and head words are accurately segmented and the dependent
word correctly finds its head word. The precision of unlabeled dependency parsing (denoted
as UAS-P) is calculated as the correct dependent-head pair versus the total number of
dependent-head pairs (namely the number of segmented words). The recall of unlabeled
dependency parsing (denoted as UAS-R) is computed by the correct dependent-head pair
divided by the total number of gold dependent-head pairs (namely, the number of gold
words). The calculation of UAS-F1 is similar to the normal F1. UAS-F1’s only difference
with LAS-F1 is that in addition to matching between the head and dependent words, the
pairs must have the same labels as the gold dependent-head pairs. The precision and
recall are calculated correspondingly. Notably, for word-level parsers, UAS-F1/LAS-F1 are
equivalent to UAS/LAS.

Word Restoration Comparison Firstly, we compare the different word restoration
strategies discussed in Section 3.3 on the development set of our Char Joint Span Parser.
As shown in Table 10, the Constituent Categ strategy can not only handle both constituent
and dependency word restoration, but also achieve better performance compared to the
POS Tags strategy (Li et al., 2018). Thus, we apply the Constituent Categ strategy in the
following word-level experiments.

24. In case a word is wrongly segmented, all later related parts like word POS tag and unlabeled/labeled
dependencies will be considered wrong, that means a complete error over the word.

492

Neural Character-Level Syntactic Parsing for Chinese

Table 10: Word restoration comparison on the SCDT development set.

Word Parsing

SEG POS Phrase-F1 UAS-F1 LAS-F1

Golden Restoration – – – 90.26 86.38

POS Tags 95.82 92.04 – 84.69 81.84
Constituent Categ 97.13 93.97 88.82 86.20 83.27

Table 11: Analysis of pipeline methods on the SCDT development set.

Input
SEG

Input
POS

Constituent Dependency

LR LP F1 UAS-F1 LAS-F1

Our Word-level Parser
Gold Gold 92.98 93.32 93.15 93.23 91.64

Predicted Predicted 86.43 88.52 87.46 84.64 82.17

Our Character-level Parser
– Gold 93.35 93.85 93.60 93.85 92.14
– Joint 88.52 89.13 88.82 86.20 83.27

Pipeline analysis Following Li et al. (2018), we also perform pipeline analysis at the
word level on our Joint Span Parser to demonstrate that our end-to-end model is resistant
from error propagation. The baseline model for comparison is the word-level HPSG model
we previously proposed for word-level syntactic parsing. There are two pipeline inputs: word
segmentation and POS tags25. In Table 11, using the SCDT development set, we compare
the performance of the Pipeline parsers using gold and predicted word segmentation and
POS, which of course have different accuracies. This comparison demonstrates how the
errors in precursor steps (word segmentation, POS tagging), can affect later performance.

According to the comparison at the word level, first, the gold POS tags show a very
significant improvement, which is consistent with the phenomenon in the character-level
evaluation. Second, when using gold POS tags to restore the word-level syntactic parse
trees, the character-level Joint Span Structure model obtains even better results than our
word-level baseline model that also uses gold POS tags. This shows that the syntactic struc-
ture information inside words is beneficial to the syntactic structure parsing of the whole
sentence. Third, our proposed joint learning of POS tags and syntactic parse tree restoration
(accommodated by the Constituent Categ strategy) also outperforms the pipeline process-
ing of word-level parser when gold word segmentation and POS tag information are not
used.

Word-Level Comparison To evaluate word-level performance, we perform two types of
comparison. One looks at previous character-level works which restore word-level parsing
trees, the other compares previous word-level parsing models based on gold word segmen-
tation and POS. Note that we are the first to report the accuracy of restored word-level
constituent parsing. Using predicted word segmentation and character POS, we compare
the accuracies of the restored trees in previous work including (Li, 2011; Zhang et al., 2014)

25. POS tagging type corresponds to word input or character input, namely if using character input character
input then POS tagging is character-level POS.

493

Li, Zhou, Zhao, Zhang, Li, & Ju

Table 12: Word-level evaluation on the test set. Our Char Joint Span Parser is trained on
the SCDT treebank. Since gold POS tags are usually not used in the evaluation
of word-level constituent parsing models (denoted as ∗), the comparison with
them is only for a rough reference. † indicates that the model uses the BERT
pre-trained language model for enhancement.

Word Constituent Dependency

SEG POS LR LP F1 UAS-F1 LAS-F1

Predicted SEG & POS
(Zhang et al., 2013) 97.84 94.80 84.43 84.43 84.43 – –
(Zhang et al., 2014) 97.84 94.62 – – – 82.14 –
(Li et al., 2018) 96.64 92.88 – – – 79.44 77.35
Char Joint Span Parser 96.90 93.27 85.76 86.93 86.34 85.26 81.56

+ BERT 97.35 95.12 91.06 91.22 91.14 90.75 88.03
+ RoBERTa 97.68 95.52 91.44 91.51 91.48 91.20 88.50
+ XLNet 98.06 95.62 91.44 91.21 91.33 90.80 88.14
+ ALBERT 97.66 95.30 91.56 90.95 91.25 90.77 87.96
+ ELECTRA 98.12 95.73 92.03 91.24 91.63 91.53 88.71

Golden SEG & POS
(Teng & Zhang, 2018)∗ – – 87.10 87.50 87.30 – –
(Kitaev et al., 2019)∗† – – 91.55 91.96 91.75 – –
(Dozat & Manning, 2017) – – – – – 89.30 88.23
(Li et al., 2018) – – – – – 88.78 86.23
(Ma et al., 2018) – – – – – 90.59 89.29
(Zhou & Zhao, 2019) – – 92.03 92.33 92.18 93.24 91.95
(Zhou & Zhao, 2019)∗ – – 89.09 89.70 89.40 – –

+ RoBERTa∗ – – 92.50 92.61 92.55 – –
Char Joint Span Parser – – 91.67 92.03 91.85 92.74 90.89

+ BERT – – 92.65 91.90 92.27 93.54 91.60
+ RoBERTa – – 92.99 92.73 92.86 94.28 92.19
+ XLNet – – 92.51 92.18 92.35 93.63 91.65
+ ALBERT – – 91.97 92.38 92.17 93.60 91.75
+ ELECTRA – – 93.14 92.83 92.98 94.46 92.39

and (Li et al., 2018) in the upper part of Table 12. The final results of restoring parse trees
from character-level to word-level reflect the overall performance of the separate parts: the
word segmenter, the POS tagger, and the syntactic parser. With the help of the new deep
neural network Transformer and the joint training and decoding of the Joint Span Struc-
ture we proposed, our model achieved better results than other character-level parsers at
the restored word-level, even though in some cases, the word segmentation accuracy of our
joint model was lower than that of the pipeline mode. Furthermore, with the help of pre-
trained language models, our performance has been further improved. Our proposed model
achieved state-of-the-art results for the word level using trees restored from the character
level without relying on any gold word segmentation or POS tag information. In addition,
the restored word-level parse trees, when compared to the parse trees of purely word-level
models with gold segmentation, (e.g., Kitaev et al., 2018), shows that our model gives
competitive performance on word-level dependency parsing, while our parser is required to

494

Neural Character-Level Syntactic Parsing for Chinese

produce much more informative intra-word syntactic structures compared to any previous
work.

Moreover, as shown in the bottom part of Table 12, we compared our character-level
parser with other word-level parsing models using gold word segmentation and POS tag
information. Since gold word segmentation and POS inputs are allowed to be used, our
Char Joint Span Parser applies gold character POS inputs and restores with gold word
segmentation instead of with the Constituent Categ for fair comparison. Without any help
from pre-trained language models and when using gold word segmentation information
for restoring, our Char Joint Span Parser does seem to be slightly weaker than word-
level parsers (namely, Zhou and Zhao, 2019) because our character-level syntax parser
needs to deal with more complex syntax structures. After augmenting our parser with
pre-trained language model embeddings, both constituent and dependency parsing make
obvious improvement gains and achieve new state-of-the-art.

6. The Value of Character-Level Syntactic Parsing

The discussion of whether to use character-based or word-based Chinese NLP has always
been the focus of the Chinese NLP community. With the support of deep networks and
stronger computing power, the mainstream approaches for many Chinese NLP tasks have
gradually changed from word-based to character-based. Character-level syntactic parsing
is one character-based method of understanding sentence structure, though its value as
a fundamental NLP task has not been well assessed. In addition, typical character-level
syntax tree annotations include transforming from the word level using BIO/BMSE tagging
strategies, ZCTB proposed by Zhang et al. (2013, 2014), and our manually annotated
SCDT. Due to the use of different models for different annotation strategies, seeing the
advantages and disadvantages of different character-level parse trees is difficult. In order
to bridge the gap between theoretical research and practicality for character-level syntactic
parsing, we chose two typical tasks for experiments: Text Classification (TC) and Neural
Machine Translation (NMT).

6.1 Text Classification

For text classification, three currently popular and public available benchmarks were adopted:
TouTiao Text Classification for News Titles (TNEWS), IFLYTEK (CO, 2019), and THUC-
News (Sun et al., 2016). TNEW, IFLYTEK and THUCNWES are short text, long text and
document text classification tasks, respectively. In our experiments, the text classification
task is used to evaluate the enhancement of the word-level and character-level dependency
parse trees. We considered three settings: 1) word-level RNN-based encoders, 2) word-level
Transformer-based encoders, and 3) character-level Transformer-based encoders.

In RNN-based models, we adopted the Bi-Tree-LSTM introduced in Chen et al. (2017),
which is a variant of an RNN-based tree encoder described in Tai et al. (2015). In
Transformer-based models, we use the Dependency Tree (Graph) Attention (Tree-Attn)
mechanism introduced in Jin et al. (2020) as the encoder for the dependency semantic
graph. This Graph Attention mechanism was first proposed by Veličković et al. (2018) for
undirected graph encoding, and Jin et al. (2020) adapted it to directed graphs by aggre-
gating neighbor relation triples rather than directly aggregating neighbor nodes. In this

495

Li, Zhou, Zhao, Zhang, Li, & Ju

experiment, the dependency syntax trees are provided by typical parsers. MaltParser is a
classic dependency parser proposed by Nivre et al. (2007), HPSG Parser is a word-level
joint syntactic parser we proposed that achieved advanced parsing performance, ZCTB and
SCDT refer to models trained using our proposed Joint Span Structure on the ZCTB and
SCDT datasets, respectively.

The experimental results are shown in Table 13. First, comparing the RNN-based and
Transformer-based baselines in the word-based setting, the Transformer-based model out-
performs the RNN-based model. Second, in the Transformer-based baseline, comparing
word-based and character-based approaches, the character-based approach generally has
better performance. The findings are consistent with Li et al. (2019), suggesting that with
deep neural networks (like Transformer), character-based approaches are better for lan-
guage encoding. Third, in the word-based approaches, the models that used syntactic tree
encoding achieved better performance, and MaltParser, which has relatively weaker parsing
performance, correspondingly had the least enhancement effect. Although in the previous
parsing evaluation, the restored trees from character-level is comparable to the original
word-level parse trees, the restored from character-level trees leads to less downstream per-
formance gains compared to trees originally parsed at the word-level due to the loss in
restoring. Forth, in the character-based setting, our results show that the true character-
level syntactic parsing in SCDT and ZCTB produces results significantly stronger than
those obtained from word-level conversions. This shows that the internal syntactic struc-
ture of a word is very useful, and only using character-level syntactic trees obtained by
word boundary-based conversions is not enough. In addition, comparing the character-level
parser trained on the two datasets, ZCTB and SCDT, in the Transformer-based model,
although both ZCTB and SCDT parsers use the same model structure, according to the
scores on the downstream task, the parse tree generated from the model trained on SCDT
obtains a better enhancement effect than the parser trained on ZCTB does.

Through these experimental analyses, we showed that our manually annotated dataset
is better than ZCTB, which was derived with heuristic rules, further illustrating the com-
pleteness of our SCDT dataset for character-level syntactic parsing. In addition, we also
demonstrate through experiments that character-level syntactic parsing and modeling have
advantages over their word-level counterparts under the current Transformer network struc-
ture. This also reflects the current trend of transitioning from word-based to character-based
modeling and reaffirms whether to use word segmentation, which has been a topic of dis-
cussion in the Chinese NLP community.

6.2 Neural Machine Translation

A Chinese-to-English machine translation task is used to evaluate the role of word-level and
character-level constituent parse trees. Similar to the experimental setting in the text classi-
fication evaluation, it is divided into word-based and character-based approaches according
to the granularity of Chinese inputs and divided into RNN-based and Transformer-based
according to the types of neural networks. In the RNN-based setting, we choose the base-
line model and syntax enhanced model in Chen et al. (2017) as our baselines. In the
Transformer-based setting, Transformer (base) (Vaswani et al., 2017) serves as our base-
line. Since the integration is based on constituent parse trees, we adopt the Tree-Attn

496

Neural Character-Level Syntactic Parsing for Chinese

Table 13: Results on the development and the test set for text classification task. ∗ indicates
that the word-level dependency trees used are restored from character-level parse
trees. † means that the character-level dependency trees used are transformed
from word-level trees through intra-word right dependent rules.

Model Parser
TNEWS IFLYTEK THUCNews

dev test dev test dev test

RNN-based + Word-based
1 BiLSTM no 51.3 50.9 48.3 48.4 91.6 91.2
4 +Bi-Tree-LSTM MaltParser 51.6 51.4 49.2 48.8 91.7 91.4
5 +Bi-Tree-LSTM HPSG 53.0 52.7 49.5 49.4 92.4 92.2
6 +Bi-Tree-LSTM ZCTB∗ 52.6 52.5 49.4 49.3 92.3 92.1
7 +Bi-Tree-LSTM SCDT∗ 52.7 52.5 49.2 49.3 92.4 92.0

Transformer-based + Word-based
8 Transformer no 51.9 51.7 48.7 48.6 92.5 92.0
9 +Tree-Attn MaltParser 52.4 51.9 49.2 48.8 92.5 92.1
10 +Tree-Attn HPSG 53.5 52.9 50.0 49.7 93.2 92.9
11 +Tree-Attn ZCTB∗ 53.2 52.8 49.7 49.5 93.3 92.8
12 +Tree-Attn SCDT∗ 53.2 52.9 49.7 49.3 93.1 92.6

Transformer-based + Char-based
13 Transformer no 52.2 52.0 48.9 48.8 93.2 92.8
14 +Tree-Attn MaltParser† 52.4 52.0 48.7 48.8 93.4 93.1
15 +Tree-Attn HPSG† 52.8 52.4 50.0 49.8 94.0 93.6
16 +Tree-Attn ZCTB 52.7 52.9 50.2 50.2 94.2 93.8
17 +Tree-Attn SCDT 53.4 53.1 50.8 50.6 94.3 94.0

proposed by Nguyen et al. (2019) instead of the Tree-Attn presented in the text classifica-
tion experiment as the parse tree encoder. All training details and hyper-parameters are
consistent with their implementations. We conduct the evaluation on the NIST Chinese-
English translation benchmark. The training set consists of 1.25M sentence pairs extracted
from the LDC corpora (LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08 and LDC2005T06). The development set is from NIST 2002
and the models are evaluated on NIST 2003, 2004, 2005, and 2006. In terms of the syn-
tactic parser, we chose the classical Berkeley Parser (Petrov & Klein, 2007) as the source
of the constituent word-level syntax trees. Other sources are the same as those in our text
classification experiment.

We present the results for Chinese-to-English translation in Table 14. Comparing the
results of the baseline models when not using syntax trees, Transformer and character-based
approach are important factors for translation performance. The best results of word-based
models using word-level parse trees lag behind the results of character-based models using
character-level parse trees, which shows that character-based inputs is a better option for
Chinese machine translation source input. In character-based modeling, the character-level
parse trees generated by the model trained on our manual annotation are better than those
produced using rule conversions from the word level. We see that the models with SCDT

497

Li, Zhou, Zhao, Zhang, Li, & Ju

Table 14: Results of different models on the Chinese-to-English machine translation task. ∗

indicates that the word-level constituent trees used are restored from character-
level parse trees. † means that the character-level constituent trees used are
transformed from word-level trees through rules.

Model Parser MT02 MT03 MT04 MT05 MT06 Average

RNN-based + Word-based SRC&TGT
1 BiLSTM no 33.76 31.88 33.15 30.55 27.47 31.36
4 +Bi-Tree-LSTM Berkeley 35.52 33.91 35.51 33.34 29.91 33.64
5 +Bi-Tree-LSTM HPSG 37.55 35.74 38.21 35.08 34.70 36.26
6 +Bi-Tree-LSTM ZCTB∗ 37.52 35.68 38.02 35.05 34.53 36.16
7 +Bi-Tree-LSTM SCDT∗ 37.50 35.65 38.11 35.02 34.49 36.15

Transformer-based + Word-based SRC + Word-based TGT
8 Transformer no 43.16 42.15 43.74 42.71 40.58 42.47

Transformer-based + Word-based SRC + Subword-based TGT
9 Transformer no 43.65 42.71 43.88 41.81 41.36 42.68
10 +Tree-Attn Berkeley 44.23 43.35 43.99 42.46 41.87 43.18
11 +Tree-Attn HPSG 44.85 43.98 44.52 43.18 42.28 43.76
12 +Tree-Attn ZCTB∗ 44.78 43.80 44.19 43.00 42.06 43.57
13 +Tree-Attn SCDT∗ 44.70 43.83 44.22 43.06 42.10 43.58

Transformer-based + Char-based SRC + Subword-based TGT
14 Transformer no 45.79 44.37 44.40 43.39 42.14 44.02
15 +Tree-Attn Berkeley† 45.95 44.52 44.65 43.62 42.20 44.19
16 +Tree-Attn HPSG† 46.44 44.86 44.90 43.89 42.55 44.53
17 +Tree-Attn ZCTB 46.86 45.10 45.21 44.20 43.09 44.89
18 +Tree-Attn SCDT 46.97 45.53 45.49 44.25 43.48 45.14

and ZCTB parse trees outperform other word-level transformed parse trees, which suggests
that Chinese words internal structures do benefit downstream performance.

Additionally, the character-based models trained on SCDT produce parse trees that
lead to more competitive performance on both text classification and machine transla-
tion compared to ZCTB. The reason for this might be that the character-level POS and
intra-word dependency relations in ZCTB only encode word boundaries extracted from the
segmentation annotation, while SCDT provides human-annotated rich intra-word syntactic
information.

6.3 Discussion for Enhancement

The improvements of character-level syntactic parsing are dependent on the characteristics
of the specific downstream task and datasets when it comes to aid the downstream tasks.
When some downstream tasks or datasets rely on these character-level syntactic features, the
improvement is bigger, while the existing word-level information suffices, the enhancement
of character-level features is underestimated. The enhancement on some tasks are not
significant enough when viewed individually, but more detailed character-level information
is generally more useful from a global view on all of these results. Specifically, character-level

498

Neural Character-Level Syntactic Parsing for Chinese

Table 15: The effects of character-level syntax for language model pre-training.

Model
CMRC18 (F1/EM) ChID (acc) C3 (acc)

dev test dev test dev test

BERT 85.48 / 64.77 71.60 / 88.10 82.20 82.04 65.70 64.50
BERT-wwm-ext 86.68 / 66.96 89.62 / 73.95 83.36 82.90 67.80 68.50
LIMIT-BERT-word 86.95 / 67.05 89.78 / 73.97 83.50 83.05 68.26 68.65
LIMIT-BERT-char 87.23 / 67.39 90.05 / 74.22 83.77 83.17 68.60 68.70

parsing provides more fine-grained syntactic structure information, which is more helpful
for tasks that rely on fine-grained structure of tokens in sentences, and less helpful for tasks
that rely less on word structures.

7. Character-Level Syntax for Language Model Pre-training

Recently, pre-trained language models have been shown to be greatly effective across a range
of linguistics-inspired NLP tasks such as syntactic parsing, semantic parsing, and machine
reading comprehension. In our previous work (Zhou et al., 2020), we presented Linguistics
Informed Multi-Task BERT (LIMIT-BERT) for learning language representations across
multiple linguistics tasks by using multi-task learning in English. Five key linguistics tasks
(Part-Of-Speech (POS) tags, constituent and dependency syntactic parsing, and both span
and dependency semantic role labeling (SRL)) are integrated in the pre-training to make
our LIMIT-BERT a fully linguistically-motivated approach. Benefiting from a regulariza-
tion effect and the linguistics information in the semi-supervised learning, LIMIT-BERT
achieved better results in comparison to the baseline.

Inspired by our work (Zhou et al., 2020), in order to better and more conveniently make
use of syntax (i.e., avoid adding additional tree encoders, etc.), we propose the Chinese
LIMIT-BERT-word and LIMIT-BERT-char. In Chinese LIMIT-BERT-word and LIMIT-
BERT-char, to focus on the role of syntactic parsing, we remove the semantic parsing
task. The suffixes word and char in LIMIT-BERT-word and LIMIT-BERT-char indicate
whether the parse trees used in multi-task training are word-level or character-level. The
word-level parse trees are generated from the model trained on CTB, while the character-
level parse trees are from the model trained on SCDT. We use the BERT model with
fine-tuned BERT-wwm-ext as the multi-task training baseline26 and CMRC18 (Cui et al.,
2019), ChID (Zheng et al., 2019), and C3 (Sun et al., 2019) as the evaluation tasks. To
fairly compare the baselines BERT and BERT-wwm-ext, we only used the plain text in the
Wikipedia corpus for parse trees’ generation and multi-task learning.

As shown in Table 15, BERT-wwm-ext significantly surpasses BERT, showing the effec-
tiveness of using more data during pre-training and whole-word-masking (wwm). LIMIT-
BERT surpasses our strong baseline BERT-wwm-ext, which illustrates that the integration
of syntactic information into the pre-training learning process can bring additional bene-
fits. The LIMIT-BERT-char further outperforms LIMIT-BERT-word, confirming our claim
that the internal syntactic structure of Chinese words is also useful; i.e., more fine-grained

26. https://github.com/ymcui/Chinese-BERT-wwm

499

Li, Zhou, Zhao, Zhang, Li, & Ju

syntactic information matters. Additionally, the results of whole-word-masking on Chinese
pre-trained language models show that using the word segmentation outputs as the learning
goal of the pre-training language model is very helpful. Chinese word segmentation can be
regarded as a rough syntactic parsing based on character sequence, as it essentially pro-
vides a kind of coarse-grained syntactic information in the form of word boundaries. As our
character-level syntactic parsing provides more informative and fine-grained syntax, better
results are to be expected.

8. Related Work

8.1 Constituent and Dependency Parsing

Constituent and dependency parsing are core problems in NLP where the goal is to obtain
representations for the syntactic structure of sentences. Constituent parsing aims to predict
a phrase structure tree, while dependency parsing predicts a dependency tree for the input
sentence (Nivre & McDonald, 2008). In parsing, the sentence is divided into segments that
correspond to leaves in constituent tree or nodes in dependency trees, respectively.

The two formalisms carry distinct information and each has its strength: the constituent
structure is better at describing phrasal continuity, while the dependency structure is better
at indicating the dependency relations between words. Since constituent and dependency
trees share many commonalities in their grammatical constructions and their machine learn-
ing solutions, studying the relationship between them, and the joint learning of their parsing
is also beneficial (Collins, 1997; Charniak, 2000; Charniak & Johnson, 2005; Farkas et al.,
2011; Green & Žabokrtský, 2012; Ren et al., 2013; Yoshikawa et al., 2017; Zhou & Zhao,
2019). Traditional parsing models usually use linear models and sparse features, while re-
cent models for constituency and dependency parsing have been well developed with neural
networks. These models attain state-of-the-art results for dependency parsing (Chen &
Manning, 2014; Dozat & Manning, 2017; Ma et al., 2018) and constituent parsing (Dyer,
Kuncoro, Ballesteros, & Smith, 2016; Cross & Huang, 2016; Kitaev & Klein, 2018).

Among these parsing models, graph-based (Zhang, Zhao, & Qin, 2016) and transition-
based parsing models (Chen & Manning, 2014; Weiss, Alberti, Collins, & Petrov, 2015) are
the most two popular styles. Transition-based methods , which are categorized by their three
different parsing directions, top-down (Dyer et al., 2016; Liu & Zhang, 2017b), bottom-up
(Zhu, Zhang, Chen, Zhang, & Zhu, 2013; Wang, Mi, & Xue, 2015; Cross & Huang, 2016),
and recently, in-order (Liu & Zhang, 2017a) generally suffer from compounding errors caused
by exposure to ground-truth decisions in model training phase, which creates a bias and has
catastrophic effects on test performance. Thus, Stern et al. (2017b) proposed an effective
inference method for generative parsing, which enables direct decoding in those models.
Other efforts researched neural graph-based (namely chart-based) parsing (Stern, Andreas,
& Klein, 2017a; Kitaev & Klein, 2018), which ensures structural consistency and offers exact
inference using the CKY (Cocke, 1969; Younger, 1967; Kasami, Tadao, 1965) algorithm at
the cost of high time complexity in O(n3) compared with transition-based methods.

500

Neural Character-Level Syntactic Parsing for Chinese

8.2 Chinese Character-Level Parsing

In the Chinese NLP community, whether to use word-based or character-based approaches
has been a constant debate. Simultaneously, there has also been a long-term argument in
theoretical Chinese linguistics as to which one is more essential, words or characters (i.e.,
“词本位word-based ” or “字本位character-based ”) (Huang & Zhao, 2007; Zhao, Cai, Huang,
& Kit, 2019). Especially when applying the outcome of such a core NLP task to down-
stream tasks, this dilemma is even more serious. Downstream NLP tasks introduce even
more uncertainty about word segmentation (though theoretical linguistics does have several
conflicting word segmentation conventions), domain-specific factors also influence which
segmentation standard is best in a given situation. Such scenario-based specificities make
Chinese word segmentation unlikely to have a universal convention any time soon. As an al-
ternative, however, a character-level uniform formalism over a sentence would conveniently
remove the need for word segmentation and a corresponding standard, thus providing a
unified, universal solution for all downstream tasks.

When using segmented sequences of words, Chinese word-level syntactic parsing is ex-
actly the same in form as in languages like English. Conventionally, traditional Chinese
parsing takes words as the input nodes, which require word segmentation beforehand. Ex-
isting character-based work on Chinese word-level dependency and constituent parsing is
mostly concerned with transforming word-level syntactic parsing and Chinese word segmen-
tation into a unified task so that they can be jointly processed. A unified model in this way
would solve the syntactic parsing and Chinese word segmentation issues once and for all.

For Chinese parsing, there are generally two solutions for tackling the word definition
ambiguity and the many hierarchies existing over a sentence. The first is to perform a joint
learning task for all levels of processing: word segmentation, POS tagging, and parsing (Luo,
2003; Hatori, Matsuzaki, Miyao, & Tsujii, 2012b; Qian & Liu, 2012; Yan et al., 2020). We
regard this as computationally-motivated solution. Although these works claimed to use
character-level parsing, their “character-level” parsing is very different from our character-
level parsing, as we create trees where nodes are characters rather than words (unlike these
previous works), and their models simply just process inputs at the character level before
generating word-level trees. In these works, BMSE/BIO tagging strategies were usually
adopted to re-encode word boundary information and create a character-level formalism, in
which the true grammatical functions of Chinese characters and the levels of word compo-
nents were not actually annotated, as only predictions based on rules were used. The second
solution is quite different and seeks to exploit the linguistic roots of the Chinese language.
It does not need this re-encoding step and formulates a unified framework starting from
characters.

We adopt the second solution in this work and present a fully character-level syntac-
tic parsing solution. This type of work was pioneered by Zhao (2009). Character-level
parsing for sentences is a linguistically-motivated rewriting scheme for hierarchical Chinese
processing. It removes the ambiguity around what constitutes a word and consequently
proposes a more natural and simpler computational framework. Zhao (2009) proposed that
dependencies inside words could be helpful for Chinese word segmentation, and he also sug-
gested integrating character-level dependencies into word-level dependency trees to create
a unified parsing scheme. The suggestion was soon implemented in Zhao et al. (2009),

501

Li, Zhou, Zhao, Zhang, Li, & Ju

which was the first work to produce a full character dependency parsing that gives bet-
ter Complete Match (CM) rate compared to the traditional word segmentation starting
pipelines. This research was further studied in two branches. One is the works of Li and
Zhou (2012) and Zhang et al. (2013) that considered using a constituent style of inter-
nal structure for words and focused on constituent parsing. The other branch came from
Zhang et al., Li et al. (2014, 2018), who again considered unified character dependency
parsing as Zhao (2009) suggested and how Zhao et al. (2009) implemented using a different
character treebank. Zhang et al. (2014) also gave important insight and empirical results
to show that a linguistically-motivated character-level model essentially outperformed the
computationally-motivated joint learning models (Hatori et al., 2012b; Qian & Liu, 2012)
with traditional workflows that included word segmentation and word-level parsing.

Unlike Zhang et al. (2014), in our annotation, we fully and manually annotated a tree-
bank using solid linguistic theory. Specifically, our treebank uses a complete character-level
grammar (including character-level POS tags and dependency head rules) and is manually
annotated by experienced human annotators instead of simply converting the only brack-
eted word structures and head annotations by heuristic rules. The motivation in creating
our treebank is to provide a fully and grammatically strict Chinese character-level treebank
for character-level parsing. Because syntactic parsing as a fundamental or core NLP task
is used to aid broad downstream tasks, the syntactic structures automatically derived from
only heuristic rules or lexicon structures cannot meet the diverse requirements of various
downstream tasks due to their limited accuracy and adaptiveness, while our manual anno-
tated syntax structures are much more comprehensive and hence have many advantages.

9. Conclusion

This paper firstly combines constituent and dependency parsing at a character level and
compares the different character level structure of two character-level treebanks. Our em-
pirical comparison shows that using a truly character-based parsing model born of both
computation and linguistic motivations can lead to improved performance and more infor-
mative structures for Chinese sentence analysis. Jointly learning parsing with POS tagging,
which can avoid error propagation in the pipeline, is also shown to be more effective than
the methods of previous traditional workflow parsers for both constituency parsing and
dependency parsing when evaluating using their respective main metrics. Our compar-
isons demonstrate that the proposed model gives promising performance aiming at a better
understanding of Chinese sentences.

10. Acknowledgments

This work was supported by Key Projects of National Natural Science Foundation of
China (U1836222 and 61733011) and Funding from Chinese National Key Laboratory
of Science and Technology on Information System Security. We thank Kevin Parnow
(parnow@sjtu.edu.cn), from the Department of Computer Science and Engineering Shang-
hai Jiao Tong University for his kind help in proofreading when we were working on this
paper. We also appreciate the help from the editors and anonymous reviewers. Correspond-
ing author: Hai Zhao.

502

Neural Character-Level Syntactic Parsing for Chinese

References

Ackema, P., & Neeleman, A. (2002). Syntactic atomicity. The Journal of Comparative
Germanic Linguistics, 6 (2), 93.

Allen, J. (1995). Natural language understanding. Pearson.

Bresnan, J., Asudeh, A., Toivonen, I., & Wechsler, S. (2015). Lexical-functional syntax,
Vol. 16. John Wiley & Sons.

Cai, D., & Zhao, H. (2016). Neural word segmentation learning for chinese. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 409–420, Berlin, Germany.

Cai, D., Zhao, H., Zhang, Z., Xin, Y., Wu, Y., & Huang, F. (2017). Fast and accurate
neural word segmentation for chinese. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 608–615, Vancouver,
Canada.

Caruana, R. A. (1993). Multitask Learning: A Knowledge-Based Source of Inductive Bias.
Machine Learning Proceedings, 10 (1), 41–48.

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. In 1st Meeting of the North
American Chapter of the Association for Computational Linguistics (NAACL).

Charniak, E., & Johnson, M. (2005). Coarse-to-Fine n-Best Parsing and MaxEnt Discrim-
inative Reranking. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 173–180.

Chen, A., Zhang, Y., & Sun, G. (2008). A two-stage approach to Chinese part-of-speech
tagging. In the Sixth SIGHAN Workshop on Chinese Language Processing (SIGHAN),
pp. 82–85, Hyderabad, India.

Chen, D., & Manning, C. (2014). A Fast and Accurate Dependency Parser using Neural
Networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 740–750.

Chen, H., Huang, S., Chiang, D., & Chen, J. (2017). Improved neural machine translation
with a syntax-aware encoder and decoder. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1936–
1945, Vancouver, Canada. Association for Computational Linguistics.

Chomsky, N. (1981). Lectures on Government and Binding. Mouton de Gruyter.

Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2019). Electra: Pre-training text
encoders as discriminators rather than generators. In International Conference on
Learning Representations.

CO, L. I. (2019). Iflytek: a multiple categories chinese text classifier. competition official
website..

Cocke, J. (1969). Programming Languages and Their Compilers: Preliminary Notes. New
York University.

Collins, M. (1997). Three Generative, Lexicalised Models for Statistical Parsing. In 35th
Annual Meeting of the Association for Computational Linguistics (ACL).

503

Li, Zhou, Zhao, Zhang, Li, & Ju

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).
Natural Language Processing (almost) from Scratch. Journal of Machine Learning
Research, 12 (1), 2493–2537.

Cross, J., & Huang, L. (2016). Span-Based Constituency Parsing with a Structure-Label
System and Provably Optimal Dynamic Oracles . In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 1–11.

Cui, Y., Liu, T., Che, W., Xiao, L., Chen, Z., Ma, W., Wang, S., & Hu, G. (2019). A span-
extraction dataset for Chinese machine reading comprehension. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 5883–5889, Hong Kong, China. Association for Computational Linguistics.

De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating Typed
Dependency Parses from Phrase Structure Parses. In Lrec, Vol. 6, pp. 449–454.

de Marneffe, M.-C., & Manning, C. D. (2008). The Stanford typed dependencies rep-
resentation. In Coling 2008: Proceedings of the workshop on Cross-Framework and
Cross-Domain Parser Evaluation, pp. 1–8, Manchester, UK. Coling 2008 Organizing
Committee.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. CoRR, abs/1810.04805.

Dozat, T., & Manning, C. D. (2017). Deep biaffine attention for neural dependency parsing.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Dyer, C., Kuncoro, A., Ballesteros, M., & Smith, N. A. (2016). Recurrent Neural Network
Grammars. In Proceedings of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies
(NAACL), pp. 199–209.

Farkas, R., Bohnet, B., & Schmid, H. (2011). Features for Phrase-Structure Reranking from
Dependency Parses. In Proceedings of the 12th International Conference on Parsing
Technologies, pp. 209–214.

Gaddy, D., Stern, M., & Klein, D. (2018). What’s Going On in Neural Constituency Parsers?
An Analysis. In Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies
(NAACL: HLT), pp. 999–1010.

Green, N., & Žabokrtský, Z. (2012). Hybrid Combination of Constituency and Depen-
dency Trees into an Ensemble Dependency Parser. In Proceedings of the Workshop
on Innovative Hybrid Approaches to the Processing of Textual Data, pp. 19–26.

Hashimoto, K., Xiong, C., Tsuruoka, Y., & Socher, R. (2017). A Joint Many-Task Model:
Growing a Neural Network for Multiple NLP Tasks. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 1923–1933.

Hatori, J., Matsuzaki, T., Miyao, Y., & Tsujii, J. (2012a). Incremental joint approach to
word segmentation, POS tagging, and dependency parsing in Chinese. In Proceedings

504

Neural Character-Level Syntactic Parsing for Chinese

of the 50th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1045–1053, Jeju Island, Korea. Association for Computational
Linguistics.

Hatori, J., Matsuzaki, T., Miyao, Y., & Tsujii, J. (2012b). Incremental joint approach to
word segmentation, pos tagging, and dependency parsing in Chinese. In Proceedings
of the 50rd Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 1045–1053, Jeju Island, Korea.

Huang, C., & Zhao, H. (2007). Chinese word segmentation: A decade review. Journal of
Chinese Information Processing, 21 (3), 8–20.

Jin, G., & Chen, X. (2008). The fourth international Chinese language processing bakeoff:
Chinese word segmentation, named entity recognition and Chinese pos tagging. In
the Sixth SIGHAN Workshop on Chinese Language Processing (SIGHAN), pp. 69–81,
Hyderabad, India.

Jin, H., Wang, T., & Wan, X. (2020). Semsum: Semantic dependency guided neural ab-
stractive summarization.. In AAAI, pp. 8026–8033.

Kasami, Tadao (1965). An Efficient Recognition and Syntax-Analysis Algorithm for
Context-Free Languages. Technical Report Air Force Cambridge Research Lab.

Kitaev, N., Cao, S., & Klein, D. (2019). Multilingual constituency parsing with self-attention
and pre-training. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 3499–3505, Florence, Italy. Association for Computa-
tional Linguistics.

Kitaev, N., & Klein, D. (2018). Constituency Parsing with a Self-Attentive Encoder. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 2676–2686.

Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., & Smith, N. A. (2016). Distilling an
Ensemble of Greedy Dependency Parsers into One MST Parser. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1744–1753.

Kurita, S., Kawahara, D., & Kurohashi, S. (2017). Neural joint model for transition-based
Chinese syntactic analysis. In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp. 1204–1214,
Vancouver, Canada. Association for Computational Linguistics.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert:
A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations.

Li, H., Zhang, Z., Ju, Y., & Zhao, H. (2018). Neural Character-level Dependency Parsing
for Chinese. In AAAI Conference on Artificial Intelligence.

Li, X., Meng, Y., Sun, X., Han, Q., Yuan, A., & Li, J. (2019). Is word segmentation necessary
for deep learning of Chinese representations?. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 3242–3252, Florence,
Italy. Association for Computational Linguistics.

505

Li, Zhou, Zhao, Zhang, Li, & Ju

Li, Z. (2011). Parsing the internal structure of words: a new paradigm for Chinese word
segmentation. In Meeting of the Association for Computational Linguistics: Human
Language Technologies (ACL), pp. 1405–1414, Portland, Oregon.

Li, Z., & Zhou, G. (2012). Unified dependency parsing of Chinese morphological and syn-
tactic structures. In Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pp. 1445–1454, Jeju Island, Korea.

Li, Z., Cai, J., He, S., & Zhao, H. (2018). Seq2seq Dependency Parsing. In Proceedings
of the 27th International Conference on Computational Linguistics (COLING), pp.
3203–3214.

Ling, W., Dyer, C., Black, A. W., & Trancoso, I. (2015). Two/Too Simple Adaptations
of Word2Vec for Syntax Problems. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL: HLT), pp. 1299–1304.

Liu, J., & Zhang, Y. (2017a). In-Order Transition-based Constituent Parsing. Transactions
of the Association for Computational Linguistics (TACL), 5, 413–424.

Liu, J., & Zhang, Y. (2017b). Shift-Reduce Constituent Parsing with Neural Lookahead
Features. Transactions of the Association for Computational Linguistics (TACL), 5,
45–58.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
& Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach.
CoRR, abs/1907.11692.

Luo, X. (2003). A maximum entropy Chinese character-based parser. In Proceedings of the
2003 Conference on Empirical Methods in Natural Language Processing, pp. 192–199.

Ma, X., Hu, Z., Liu, J., Peng, N., Neubig, G., & Hovy, E. (2018). Stack-Pointer Networks
for Dependency Parsing. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 1403–1414.

Mel’cuk, I. A., et al. (1988). Dependency syntax: theory and practice. SUNY press.

Nguyen, X.-P., Joty, S., Hoi, S., & Socher, R. (2019). Tree-structured attention with hier-
archical accumulation. In International Conference on Learning Representations.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., & Marsi,
E. (2007). Maltparser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering, 13 (2), 95–135.

Nivre, J., & McDonald, R. (2008). Integrating graph-based and transition-based dependency
parsers. In Proceedings of the Meeting of the Association for Computational Linguistics
(ACL), pp. 950–958, Columbus, Ohio.

Petrov, S., & Klein, D. (2007). Improved inference for unlexicalized parsing. In Human
Language Technologies 2007: The Conference of the North American Chapter of the
Association for Computational Linguistics; Proceedings of the Main Conference, pp.
404–411, Rochester, New York. Association for Computational Linguistics.

506

Neural Character-Level Syntactic Parsing for Chinese

Pollard, C., & Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. University of
Chicago Press.

Qian, X., & Liu, Y. (2012). Joint Chinese word segmentation, pos tagging and parsing.
In Proceedings of the 2012 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 501–511, Jeju Island, Korea.

Ren, X., Chen, X., & Kit, C. (2013). Combine Constituent and Dependency Parsing via
Reranking. In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence (IJCAI), pp. 2155–2161.

Robinson, J. J. (1970). Dependency structures and transformational rules. Language, 259–
285.

Sproat, R., & Emerson, T. (2003). The first international Chinese word segmentation bake-
off. In Proceedings of the Second SIGHAN Workshop on Chinese Language Processing
(SIGHAN), pp. 133–143, Sapporo, Japan.

Stern, M., Andreas, J., & Klein, D. (2017a). A Minimal Span-Based Neural Constituency
Parser. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pp. 818–827.

Stern, M., Fried, D., & Klein, D. (2017b). Effective Inference for Generative Neural Parsing.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1695–1700.

Sun, K., Yu, D., Yu, D., & Cardie, C. (2019). Probing prior knowledge needed in challenging
chinese machine reading comprehension. CoRR, abs/1904.09679.

Sun, M., Li, J., Guo, Z., Yu, Z., Zheng, Y., Si, X., & Liu, Z. (2016). Thuctc: an efficient
chinese text classifier. GitHub Repository.

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from
tree-structured long short-term memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1556–
1566, Beijing, China. Association for Computational Linguistics.

Teng, Z., & Zhang, Y. (2018). Two Local Models for Neural Constituent Parsing. In Proceed-
ings of the 27th International Conference on Computational Linguistics (COLING),
pp. 119–132.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
& Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information
Processing Systems (NIPS), pp. 5998–6008.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph
attention networks. In International Conference on Learning Representations.

Wang, Z., Mi, H., & Xue, N. (2015). Feature Optimization for Constituent Parsing via
Neural Networks. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing (ACL-IJCNLP), pp. 1138–1147.

507

Li, Zhou, Zhao, Zhang, Li, & Ju

Weiss, D., Alberti, C., Collins, M., & Petrov, S. (2015). Structured training for neural
network transition-based parsing. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (ACL-IJCNLP), pp. 323–333, Beijing, China.

Yan, C. (2009). The “sound, form, meaning, and law” of Chinese character as the basic
structural unit. Journal of PLA University of Foreign Languages, pp. 1–7.

Yan, H., Qiu, X., & Huang, X. (2020). A graph-based model for joint chinese word segmen-
tation and dependency parsing. Transactions of the Association for Computational
Linguistics, 8, 78–92.

Yang, M. (2006). Research on Word Formation of Modern Chinese Compound Words. Ph.D.
thesis, Nanjing Normal University.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., & Le, Q. V.
(2019). XLNet: Generalized Autoregressive Pretraining for Language Understand-
ing.. abs/1906.08237.

Yoshikawa, M., Noji, H., & Matsumoto, Y. (2017). A* CCG Parsing with a Supertag
and Dependency Factored Model. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 277–287.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3.
Information and control, 10 (2), 189–208.

Yuan, R., & Lv, S. (1979). Spoken Chinese Grammar. Beijing Commercial Press.

Zhang, M., Zhang, Y., Che, W., & Liu, T. (2013). Chinese parsing exploiting characters.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (ACL), pp. 125–134, Sofia, Bulgaria.

Zhang, M., Zhang, Y., Che, W., & Liu, T. (2014). Character-level Chinese dependency pars-
ing. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 1326–1336, Baltimore, Maryland.

Zhang, Y., Li, C., Barzilay, R., & Darwish, K. (2015). Randomized greedy inference for
joint segmentation, POS tagging and dependency parsing. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 42–52, Denver, Colorado. Association for
Computational Linguistics.

Zhang, Y., & Clark, S. (2008). A tale of two parsers: Investigating and combining graph-
based and transition-based dependency parsing. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 562–571, Hon-
olulu, Hawaii.

Zhang, Z., Zhao, H., & Qin, L. (2016). Probabilistic graph-based dependency parsing with
convolutional neural network. In Proceedings of the 54rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pp. 1382–1392, Berlin, Germany.

Zhao, H. (2011). Integrating unsupervised and supervised word segmentation: The role of
goodness measures. Information Sciences, 181 (1), 163–183.

508

Neural Character-Level Syntactic Parsing for Chinese

Zhao, H. (2009). Character-level dependencies in Chinese: Usefulness and learning. In
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL), pp.
879–887, Athens, Greece.

Zhao, H., Cai, D., Huang, C., & Kit, C. (2019). Chinese word segmentation: Another decade
review (2007-2017). CoRR, abs/1901.06079.

Zhao, H., Huang, C. N., & Li, M. (2006). An improved Chinese word segmentation system
with conditional random field. In the Fifth SIGHAN Workshop on Chinese Language
Processing (SIGHAN), pp. 162–165, Sydney, Australia.

Zhao, H., Huang, C. N., Li, M., & Lu, B. L. (2010). A unified character-based tagging
framework for chinese word segmentation. Acm Transactions on Asian Language
Information Processing, 9 (2), 1–32.

Zhao, H., Kit, C., & Song, Y. (2009). Character dependency tree based lexical and syn-
tactic all-in-one parsing for chinese. In The 10th Chinese National Conference on
Computational Linguistics (CNCCL-2009), pp. 82–88, Yantai, China.

Zheng, C., Huang, M., & Sun, A. (2019). ChID: A large-scale Chinese IDiom dataset for cloze
test. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 778–787, Florence, Italy. Association for Computational Linguistics.

Zhou, J., Zhang, Z., Zhao, H., & Zhang, S. (2020). LIMIT-BERT : Linguistics informed
multi-task BERT. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4450–4461, Online. Association for Computational Linguistics.

Zhou, J., & Zhao, H. (2019). Head-Driven Phrase Structure Grammar Parsing on Penn
Treebank. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pp. 2396–2408, Florence, Italy. Association for Computa-
tional Linguistics.

Zhu, M., Zhang, Y., Chen, W., Zhang, M., & Zhu, J. (2013). Fast and Accurate Shift-Reduce
Constituent Parsing. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 434–443.

509

