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Abstract

In classical AI planning, heuristic functions typically base their estimates on a relax-
ation of the input task. Such relaxations can be more or less precise, and many heuristic
functions have a refinement procedure that can be iteratively applied until the desired
degree of precision is reached. Traditionally, such refinement is performed offline to instan-
tiate the heuristic for the search. However, a natural idea is to perform such refinement
online instead, in situations where the heuristic is not sufficiently accurate. We introduce
several online-refinement search algorithms, based on hill-climbing and greedy best-first
search. Our hill-climbing algorithms perform a bounded lookahead, proceeding to a state
with lower heuristic value than the root state of the lookahead if such a state exists, or
refining the heuristic otherwise to remove such a local minimum from the search space
surface. These algorithms are complete if the refinement procedure satisfies a suitable con-
vergence property. We transfer the idea of bounded lookaheads to greedy best-first search
with a lightweight lookahead after each expansion, serving both as a method to boost
search progress and to detect when the heuristic is inaccurate, identifying an opportunity
for online refinement. We evaluate our algorithms with the partial delete relaxation heuris-
tic hCFF, which can be refined by treating additional conjunctions of facts as atomic, and
whose refinement operation satisfies the convergence property required for completeness.
On both the IPC domains as well as on the recently published Autoscale benchmarks, our
online-refinement search algorithms significantly beat state-of-the-art satisficing planners,
and are competitive even with complex portfolios.

1. Introduction

AI planning is a long-standing subfield of AI, concerned with general problem solving mech-
anisms that decide about the actions taken by an agent (for an overview, see Ghallab, Nau,
& Traverso, 2004). This work is set in so-called classical planning where the planning prob-
lem can be cast as finding a path from an initial state to a goal state (a plan) in a large state
space. The state space is compactly described in terms of a set of Boolean state variables,
with actions that have preconditions and effects over these variables. We focus on satisficing
planning, where the objective is to find a good plan as quickly as possible (as opposed to
scenarios where a guarantee on plan quality must be given).

One of the most prominent approaches to satisficing classical planning is heuristic state-
space search (e.g., Bonet & Geffner, 2001; Hoffmann & Nebel, 2001; Helmert, 2006; Richter
& Westphal, 2010), where a heuristic guides the search with estimates of the remaining
distance to a goal state. Such heuristics are domain-independent, that is, they use only the
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input task description as a basis to compute their heuristic values, without any human input
other than that description. Such heuristics are typically based on solving a relaxation (a
simplified version) of the task.

Most planning heuristics can compute their estimates at different levels of precision:
Abstraction heuristics (e.g., Clarke, Grumberg, & Long, 1994; Culberson & Schaeffer, 1998;
Edelkamp, 2001; Helmert, Haslum, & Hoffmann, 2007; Helmert, Haslum, Hoffmann, &
Nissim, 2014; Seipp & Helmert, 2018) construct an abstract state space, which can range
from just a single state (where all heuristic estimates would be zero) to the full state space
of the input task (computing the perfect heuristic h∗). Critical-path heuristics (Haslum
& Geffner, 2000; Haslum, 2006; Fickert, Hoffmann, & Steinmetz, 2016) compute their
estimates based on the most costly subgoals toward the goal, where considering larger
subgoals results in a more accurate heuristic. Partial delete relaxation heuristics (Keyder,
Hoffmann, & Haslum, 2014; Domshlak, Hoffmann, & Katz, 2015; Fickert et al., 2016) ignore
some of the delete effects of the input task, interpolating between the full delete relaxation
and non-relaxed semantics.

All of these techniques offer a trade-off between heuristic accuracy and computational
complexity. A practical approach to make this decision is based on iterative refinement
operations: starting from a base abstraction, the abstraction is repeatedly refined until the
desired level of precision is reached. Most such heuristics eventually converge to h∗ with
sufficient refinement operations if it is not made infeasible through technical limitations
(e.g., time or memory constraints).

One commonly used strategy to refine a heuristic is counterexample-guided abstraction
refinement (Clarke, Grumberg, Jha, Lu, & Veith, 2003), short CEGAR. Starting from a
simple abstraction, CEGAR identifies flaws in the current model that are then resolved by
making the abstraction more precise. This can be applied iteratively, and typically leads to
convergence as eventually the abstract model becomes perfect. The main advantage of the
CEGAR approach is that it focuses the refinement on areas where the heuristic is currently
flawed, making the refinement procedure more effective. In planning, CEGAR is used as
the refinement method for Cartesian abstractions (Seipp & Helmert, 2013, 2018), pattern
database heuristics (Rovner, Sievers, & Helmert, 2019), and the partial delete relaxation
heuristic hCFF based on atomic conjunctions (Keyder et al., 2014; Fickert et al., 2016).

Traditionally, the heuristic is refined offline, before starting the search, until some crite-
rion is met, such as hitting a time or memory bound. Yet the most challenging aspects of
the planning task at hand may only be discovered during the search, and these difficulties
may not be considered when constructing the heuristic offline (this is particularly true for
CEGAR approaches which may identify flaws in the heuristic on the current region of the
search space). Online relaxation refinement, during search, thus is a promising approach.
However, it has seen limited success in the literature so far.

In optimal planning, online refinement has been tried using Cartesian abstraction heuris-
tics (Eifler & Fickert, 2018), as their fine-grained CEGAR method is well-suited to be ap-
plied during search. However, in practice, state-of-the-art variants using offline refinement
are still superior due to the added overhead and other practical limitations of these online
approaches. A different form of online refinement are per-state heuristic value updates in
real-time search (e.g., Korf, 1990; Koenig & Sun, 2009), though this method of refining the
heuristic does not generalize to the part of the state space that has not been explored yet
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as the relaxation underlying the heuristic is not refined. If the search uses an ensemble of
heuristics, their combination can be improved via online refinement (Felner, Korf, & Hanan,
2004; Fink, 2007; Katz & Domshlak, 2010; Karpas, Katz, & Markovitch, 2011; Domshlak,
Karpas, & Markovitch, 2012; Seipp, 2021), but not with a guarantee of convergence.

Here, we explore online heuristic refinement for satisficing planning. A key issue for
online refinement is the question of when to refine the relaxation. Intuitively, refinement
should be triggered when the heuristic is inaccurate, such as in local minima or plateaus. In
satisficing planning, the state of the art is currently dominated by planners using systematic
search algorithms such as greedy best-first search (GBFS) or weighted A∗. Detecting local
minima or plateaus online is difficult in these search algorithms, as the search does not
focus on limited areas of the search space at a time. Local search algorithms like hill-
climbing seem more suitable for this task as their exploration is constrained to small areas
of the search space. Yet such algorithms have fallen out of favor, since they are incomplete
(the search can get stuck in dead ends), and have been outperformed by complete search
algorithms very broadly and consistently for more than a decade.

In this work, we introduce changes fundamentally altering the properties and compet-
itiveness of local search in this context. We introduce multiple search algorithms that
are designed for online refinement, in particular a family of hill-climbing algorithms that
we call Refinement-HC. Similar to FF’s enforced hill-climbing (Hoffmann & Nebel, 2001),
Refinement-HC explores the local search space around the current state, but with the ad-
dition of a bound on the local search. If the local search space does not contain a state
with lower heuristic value than that of the root state s of the local exploration, then s must
be a local minimum. Instead of trying to escape s through brute-force search (as enforced
hill-climbing would do), Refinement-HC aims to remove the local minimum from the search
space surface by refining the heuristic. If the refinement operation of the heuristic satisfies
a suitable convergence criterion, Refinement-HC is a complete search algorithm, thus fixing
the major theoretical weakness of local search in satisficing planning.

The simplest variant of Refinement-HC uses a depth bound to limit the local search. This
bound controls the trade-off between search and refinement: Smaller bounds shift the focus
toward refinement, while larger bounds give the search more time to find a better state. We
devise a more effective approach leveraging novelty pruning (Lipovetzky & Geffner, 2012,
2014) instead of a simple depth bound. This form of local search discards states that do
not contain facts that have not yet been seen in the current lookahead. We further combine
this technique with subgoal counting (Lipovetzky & Geffner, 2017), which can be used as a
simple and computationally efficient approximation for delete relaxation heuristics, reducing
the overhead of the local explorations.

In addition to our hill-climbing algorithms, we introduce an extension of GBFS with
online refinement. This variant of GBFS repeatedly performs bounded lookahead searches
based on Refinement-HC, trying to find a state with strictly better heuristic value. If the
lookahead search succeeds, it allows the GBFS search to quickly jump toward the goal;
otherwise refinement is triggered to improve the heuristic. This variant of GBFS is not just
useful for online refinement, but can also be used in combination with other heuristics to
boost search progress.

We instantiate our online-refinement search algorithms with the hCFF heuristic and eval-
uate them on the International Planning Competition (IPC) benchmarks as well as on the
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Autoscale benchmarks (Torralba, Seipp, & Sievers, 2021), which are designed to make per-
formance differences of recent planners more visible compared to the IPC instances of the
same domains. Our online-refinement methods yield substantial improvements over com-
parable baselines and state-of-the-art planners such as LAMA (Richter & Westphal, 2010),
MERWIN (Katz, Lipovetzky, Moshkovich, & Tuisov, 2018), and Dual-BFWS (Francès,
Lipovetzky, Geffner, & Ramı́rez, 2018; Lipovetzky & Geffner, 2017), and are competitive
even with complex state-of-the-art portfolios. On the Autoscale benchmarks the advantage
increases further, for example, beating the portfolio planner and winner of the IPC’18 sat-
isficing track Fast Downward Stone Soup (Seipp & Röger, 2018; Helmert, Röger, & Karpas,
2011) by more than 90 (out of 780) solved instances.

To summarize, our contributions are:

• A family of hill-climbing search algorithms called Refinement-HC that resolve local
minima through online refinement of the heuristic function instead of brute-force
search. We prove that Refinement-HC is complete if the refinement operation of the
heuristic meets a suitable convergence criterion.

• A variant of greedy best-first search augmented with local lookahead searches that
can be used both with and without online refinement.

• Extensive experiments on both the IPC and the Autoscale benchmarks, evaluating
different configurations of our algorithms, and demonstrating their advantages over
related baselines as well as state-of-the-art planners.

The paper is structured as follows. First, we introduce the general planning formalisms
and the common setup for the experiments throughout this paper (Section 2). We next give
a brief summary on the existing techniques that we use in our algorithms, including hCFF

and novelty pruning (Section 3). In Section 4, we give a formal description on heuristic
refinement operations, and describe the convergence property that is required to make our
hill-climbing search algorithms complete. We introduce our online-refinement hill-climbing
search algorithm Refinement-HC in Section 5, and show how to extend it with novelty
pruning (Section 6) and subgoal counting (Section 7). In Section 8, we show how the ideas
behind our hill-climbing algorithms can be transferred to GBFS. We empirically compare
our online-refinement search algorithms to related baselines and to the state of the art in
Section 9. Finally, we give a more detailed discussion of related work (Section 10) before
concluding the paper in Section 11.

2. Preliminaries

We first introduce the basic planning formalisms and notation. Since we interleave our
contributions with experimental evaluations focusing on the algorithms introduced in the
respective sections, we also discuss the common setup for the experiments here.

2.1 Planning Framework

We use the STRIPS framework for classical AI planning (Fikes & Nilsson, 1971), where
each state is a set of Boolean facts. Formally, a STRIPS task is a 4-tuple Π = 〈F ,A, I,G〉,
where
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• F is a set of propositional facts,

• A is a set of actions, where each action a ∈ A is a triple of the fact sets pre(a), add(a),
del(a) (preconditions, add effects, and delete effects),

• I ⊆ F is the initial state, and

• G ⊆ F is the goal.

A state s ⊆ F is a set of facts. An action a is applicable in s if pre(a) ⊆ s, and applying it in
s results in the state sJaK := (s \ del(a))∪ add(a). A plan for s is a sequence of successively
applicable actions leading from s to a goal state sG with G ⊆ sG, and a plan for I is a plan
for Π. A plan for s is called optimal if it is the shortest (we consider unit action costs in
this work) among all plans for s.

The set of all states is denoted by S. A heuristic function, short heuristic, is a function
h : S 7→ N0 ∪ {∞} estimating the length of a plan for the given state, or evaluating to ∞
to indicate that the state is a dead end (a state for which no plan exists). We assume that
heuristics are safe, that is, if h(s) = ∞ then s is indeed a dead end, which is the case for
most if not all planning heuristics. The perfect heuristic h∗ maps each state s to the length
of an optimal plan for s, or to ∞ if s is a dead end.

Most heuristics are based on a relaxation Π+ of the original task Π, and base their
estimate for a state s on a plan π[h](s) computed in that relaxation. In addition to a
heuristic value h(s), some heuristics also yield a set of helpful actions (in some contexts
also called preferred operators) H(s). For heuristics based on a relaxation, H(s) is typically
the subset of actions in π[h](s) that are applicable in s. A search that uses helpful actions
pruning only considers the actions H(s) when expanding a state s, discarding all other
successors of s.

A search algorithm is called complete if it terminates in finite time, returning a plan in
case the task is solvable, or proving unsolvability otherwise. One source of incompleteness
is helpful actions pruning, as H(s) may exclude the only actions that start a plan for s.

2.2 Experiments Setup

Our implementation is based on Fast Downward (Helmert, 2006). The code and raw ex-
periment data is available on GitHub.1 We evaluate our algorithms on all unique STRIPS
instances from the satisficing tracks of the International Planning Competition (IPC) do-
mains up to 2018, which yields a total of 1695 instances from 48 domains. All experiments
with hill-climbing search algorithms use helpful actions pruning, and all GBFS configura-
tions (including our GBFS extension introduced in Section 8) use a dual queue for preferred
operators. When comparing our methods to the state of the art, we additionally present
results on the Autoscale benchmarks (Section 9.3).

The experiments were run on a cluster of machines with Intel E5-2660 processors at
2.2GHz using the Downward Lab framework (Seipp, Pommerening, Sievers, & Helmert,
2017). All experiments use a timeout of 30 minutes and a memory limit of 4 GB.

Several of the algorithms we experiment with (hCFF, hill-climbing) use randomness to
break ties. In these cases, we average the results over 5 runs with different random seeds.

1. https://github.com/fickert/fast-downward-conjunctions
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3. Background: Techniques We Build On

Our online-refinement search algorithms leverage novelty pruning and subgoal counting for
the local exploration component, and we use hCFF as the heuristic of our choice in the
experiments. We summarize these techniques in the following.

3.1 Novelty Pruning and Subgoal Counting

Novelty is a concept to capture the similarity of a given state compared to a set of states
that have been seen before. Formally, given a set of states seen so far T , the novelty of a
state s is the size of the smallest tuple of facts t such that t ⊆ s and t * s′ for all s′ ∈ T .
In its simplest form, novelty can be used as a pruning function in a search, discarding all
states that are not sufficiently novel: A search with k-novelty pruning, which we denote by
Nk, prunes all states with novelty greater than k. This kind of pruning is used in Iterated
Width Search (IW) (Lipovetzky & Geffner, 2012), where each iteration IW(k) is a simple
breadth-first search with k-novelty pruning. IW(k) expands at most |F|k states, and is
incomplete unless k = |F|, where Nk only prunes duplicate states. Novelty relates to the
theoretical notion of width in that IW(w) is guaranteed to find a solution for tasks of width
at most w.

More recently, novelty measures have been introduced that take the heuristic into con-
sideration, comparing the novelty of a given state only to previously seen states with equal
(Lipovetzky & Geffner, 2017) or lower (Katz, Lipovetzky, Moshkovich, & Tuisov, 2017)
heuristic value. Best-First Width Search (BFWS) (Lipovetzky & Geffner, 2017) is a best-
first search which uses a novelty measure as the main evaluation function to guide the
search. The best-performing BFWS configuration uses the novelty measure w#g,#r as the
main search guidance (breaking ties by #g), where, for a state s,

• #g(s) is the number of unsatisfied goal facts in s, and

• #r(s) is the number of achieved subgoals of the last relaxed plan π+ along the path
to s from the state in which π+ was computed (Lipovetzky & Geffner, 2014).

Relaxed plans are only computed in states s where #g(s) is different from its parent (and
in the initial state). The path-dependent counter #r then keeps track of the relaxed plan’s
subgoals that are achieved below such a state s. Combined with the fact that the main
evaluation function is based on simple counters, the infrequent computation of the main
heuristic makes BFWS extremely lightweight, which is one of the main reasons for its success
at the 2018 IPC (Francès et al., 2018).

In this work, we introduce several search algorithms that make use of the idea to use
subgoal counting (similar to the #r counter) as an approximation of a relaxation heuristic.
Given a plan π[h](s), we denote the subgoal-counting heuristic for that plan by hSC[π[h](s)]
(or short hSC where the underlying plan is not relevant or clear from context). In the
context of hSC, a subgoal is a fact that appears as an effect in one of the actions of the plan
underlying hSC, and is either a goal or a precondition for another action in the plan. For a
state s′, the heuristic value hSC[π[h](s)](s′) is the number of subgoals that are not true in
at least one state along the path from s to s′.

The main difference of hSC compared to the #r counter is that hSC counts in the
opposite direction, making it consistent with other heuristics where lower values indicate
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that the state is closer to the goal (this was not a concern in BFWS where #r was only
used in a novelty measure, not as a heuristic). Additionally, we also make a slight technical
adjustment in our definition of subgoals for hSC: While #r considers all effects of the actions
in the underlying plan as subgoals, we only consider the necessary ones. This change more
accurately captures the “intention” of the underlying plan, and in preliminary experiments
we found that it improves the performance of our search algorithms introduced here as well
as that of BFWS (though to a lesser degree).

3.2 The hCFF Heuristic and its Refinement Operation

Our online-refinement search algorithms are generally independent of the used heuristic,
given that it offers a refinement operation with certain convergence properties. However, in
our experiments, we use the hCFF heuristic, and the required convergence properties have
been derived from those of hCFF. We give a brief summary of hCFF and its CEGAR-based
refinement operation here; further details can be found in Fickert et al.’s (2016) and Keyder
et al.’s (2014) work respectively.

3.2.1 The hCFF Heuristic

The delete relaxation, which assumes the delete lists of all actions to be empty, is one of
the most popular relaxations for heuristics used in satisficing planning. The perfect delete
relaxation heuristic h+ maps each state to the length of an optimal delete-free plan, or to∞
if no such plan exists. Computing an optimal delete-relaxed plan is NP-hard, so in practice
the approximative hFF heuristic (Hoffmann & Nebel, 2001) is used instead, which bases its
estimate on (not necessarily optimal) delete-relaxed plans π[hFF] (or returns∞ in the same
case as h+).

Example 1 Consider the following task:

A B C

The car must drive from A to C, consuming fuel at each step. Initially, the car holds one
unit of fuel, so a plan for this task must refuel at location B before it can proceed to C.

Formally, the task has a fact “fuel” indicating whether the car currently has fuel, and a
fact “at(x)” indicating the position of the car for each location x ∈ {A,B,C}. The “refuel”
action has no preconditions or delete effects, and its only add effect is the fuel fact. The
“drive(x, y)” actions take the car from location x to location y, and have preconditions
{at(x), fuel}, add effects {at(y)}, and delete effects {at(x), fuel}.

One plan for this task is 〈drive(A, B), refuel, drive(B, C)〉. A delete-relaxed plan, for
example 〈drive(A, B), drive(B, C)〉, does not need to include the refuel action, since the
drive actions do not delete the fuel fact under the relaxation.

The concept of partial delete relaxation aims to improve the accuracy of delete relaxation
heuristics by taking some delete information into account. One such technique is based on
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explicit conjunctions, where a given set of conjunctions (fact sets) C are treated as atomic,
and the facts contained in a conjunction c ∈ C must be achieved simultaneously (Haslum,
2012; Keyder, Hoffmann, & Haslum, 2012; Keyder et al., 2014; Hoffmann & Fickert, 2015;
Fickert et al., 2016). The hCFF heuristic and its idealized counterpart hC+ compute such
C-relaxed plans: Whenever a conjunction c ∈ C is a subset of the preconditions of an action,
the partially relaxed plan π[hCFF] must satisfy c instead of the individual facts contained
in c. A conjunction c can only be achieved by an action a if a achieves some part of the
conjunction (add(a)∩c 6= ∅) and does not delete another (del(a)∩c = ∅), and the remaining
facts of c that are not added by a (c \ add(a)) are treated as additional preconditions.

Example 2 Consider again the task shown in Example 1. The critical issue of the relaxed
plan in Example 1 is that the preconditions of the drive(B, C) action are not satisfied
under normal semantics, as the fuel fact is assumed to still be available after driving to B.
Consider the conjunction c = {fuel, at(B)}. If c is contained in the set of conjunctions C
used by the heuristic, then a C-relaxed plan must consider c as a required precondition for
drive(B, C). Observe that c can only be achieved through the refuel action: The only actions
that achieve some part of C are refueling and the drive(x, B) actions, but the latter also
remove part of c (the fuel fact). Furthermore, achieving c through refueling requires at(B)
to be true beforehand, so the C-relaxed plan that hC+ would compute for this example is
〈drive(A, B), refuel, drive(B, C)〉, which is also a real plan.

Throughout this paper, we assume that C always consists of at least all singleton facts,
that is, C ⊇ C0 where C0 := {{f} | f ∈ F}. In the experiments, we will sometimes discuss
the increase in computational complexity of hCFF as conjunctions are added to C. In
practice, hCFF is implemented through counters that keep track of the number of unsatisfied
preconditions that are required to reach a conjunction through a given action (Hoffmann
& Fickert, 2015; Fickert et al., 2016), similar to the hFF implementation, which tracks
the number of unsatisfied preconditions for each action (Hoffmann & Nebel, 2001). We
approximate the increase in computational complexity of hCFF by the number of counters
that were added by (non-singleton) conjunctions; for example, if the heuristic has a growth
factor of 2, that means that the implementation must keep track of twice as many counters
as with C0 (the number of counters that would need to be tracked by hFF).

3.2.2 The Refinement Operation of hCFF

The set of conjunctions C controls the degree of the relaxation for the corresponding heuris-
tic. If C does not contain any non-singleton facts (C = C0), then a C-relaxed plan is just
a relaxed plan and hC+ = h+. On the other hand, if it contains all combinations of facts,
that is, C = P(F), then every C-relaxed plan is also a plan under non-relaxed semantics,
and hC+ = h∗.

In practice, the set of conjunctions for hCFF must be chosen carefully, as the heuristic
becomes more expensive to compute with each added conjunction. The known methods
iteratively generate C via counterexample-guided abstraction refinement. Each refinement
step works as follows: Let s be a state where hCFF(s) 6= ∞, and let π[hCFF](s) be the
corresponding partially relaxed plan. Either π[hCFF](s) is a real plan for s, or there must
be a conflict in the form of a deleted precondition or goal. In the latter case, a conjunction
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c can be generated to address that conflict, and c is added to C. In the example discussed
in the previous subsection, the deletion of the fuel fact by the drive(A, B) action formed a
conflict, and the conjunction {fuel, at(B)} could be added to address it.

The original refinement algorithm by Haslum (2012) guarantees that π[hCFF](s) is no
longer a valid C-relaxed plans after adding the generated conjunctions to C. Keyder
et al.’s (2014) method generates only a single conjunction, with the weaker guarantee that
this conjunction was not contained in C before. However, this method is more efficient in
practice, since adding a single conjunction is typically sufficient for hCFF to compute a dif-
ferent plan, and it induces significantly less computational overhead. Hence, we use Keyder
et al.’s method here, with one minor change as suggested by Fickert and Hoffmann (2017b):
Instead of considering conflicts occurring in any of the valid orderings of the partially re-
laxed plan in the refinement process, we only consider those that actually appear in the
sequentialized plan returned by the heuristic.

4. Converging Heuristic Functions

Given a heuristic h and a refinement operation ρ, the strongest possible convergence prop-
erty would be to have h = h∗ after a finite number of applications of ρ. However, this
property is not always practical, and the hCFF heuristic in particular does not satisfy it.
We therefore identify a slightly weaker convergence property that suffices to make our online-
refinement hill-climbing algorithms complete. We start our discussion based on hCFF, and
then give a more general definition.

As pointed out in Section 3.2.2, the hC+ heuristic satisfies the strong convergence to
h∗. The hCFF heuristic on the other hand does not, because the C-relaxed plans are not
optimal, so the resulting heuristic value may be an overestimation of the actual goal distance.
However, there exists a set of conjunctions C such that hCFF agrees with h∗ on states s
where h∗(s) =∞, and its partially relaxed plans become real plans on solvable states.

More precisely, let C∗ := P(F) be the maximal set of conjunctions, considering all
combinations of facts of a given task with facts F . With C = C∗, the hCFF heuristic is
converged and we can prove the aforementioned property:

Proposition 1 Let Π = (F ,A, I,G) be a planning task, and let s be a state. Then there
exists a set of conjunctions C such that (i) in case s is unsolvable, we have hCFF(s) =∞;
and (ii) in case s is solvable, π[hCFF](s) is a plan for s. In particular, both (i) and (ii) hold
for C = C∗.

Proof: We prove (i) and (ii) for C = C∗ = P(F).

For (i): By Fickert et al.’s (2016) Corollary 1, hCFF(s) =∞ iff hC+(s) =∞, and there
exists C s.t. hC+(s) = h∗(s). As hC∗+ ≥ hC+ for any C, this shows the claim.

For (ii): As s is solvable, h∗(s) 6= ∞, so hC∗+(s) 6= ∞ and hC∗FF(s) 6= ∞. Thus we
can run C-refinement on s. Assume that π[hCFF](s) is not a plan for s. Then, by Keyder
et al.’s (2014) Lemma 3, C-refinement on s generates an atomic conjunction c 6∈ C∗, in
contradiction.

Since each refinement operation on hCFF adds a conjunction to C, eventually the heuris-
tic converges as C grows toward C∗. Proposition 1 shows that, with repeated refinement,
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hCFF eventually detects all dead ends, and computes real plans for all other states. This is
exactly the convergence property that is required for completeness in our online-refinement
hill-climbing search algorithms.

Formally, we define a refinement operation as a function ρ that maps a heuristic h to
a modified heuristic ρ[h], where ρ is again applicable to its output. This function may
possibly require a state s as a secondary input where h(s) 6= ∞ and the relaxed solution
π[h](s) is not a real plan (this is the case for the refinement operation of hCFF). This allows
us to define convergence as follows:

Definition 1 (Converging Heuristic) Let S be the set of states of a planning task Π,
and let h be a heuristic function with relaxed solutions π[h], and let ρ be a refinement
operation for h. The heuristic h converges with ρ if there exists N ∈ N0 such that, for all
states s ∈ S, (i) if h∗(s) =∞, then ρN [h](s) =∞, and (ii) otherwise π[ρN [h]](s) is a plan
for s.

As discussed, hCFF converges with Keyder et al.’s (2014) refinement method. Another
example for converging heuristics are abstraction heuristics (as long as their abstract state
space can be refined to the real state space, allowing them to converge to h∗). This is par-
ticularly true for Cartesian abstractions, which converge with a CEGAR-based refinement
operation similar to hCFF. However, in practice, combining multiple smaller Cartesian ab-
stractions (that are constrained to a subproblem of the input task) via cost partitionings
is the most effective approach (Seipp & Helmert, 2014, 2018; Seipp, Keller, & Helmert,
2020), yet convergence is only guaranteed if abstractions are merged (which is expensive)
or only a single abstraction is used (Eifler & Fickert, 2018). In principle though, any such
heuristic that converges according to Definition 1 is sufficient to guarantee completeness of
our hill-climbing algorithms introduced in the following.

5. Online-Refinement Hill-Climbing

We introduce a family of hill-climbing-style local search algorithms with the underlying idea
of escaping local minima by refining the heuristic instead of brute-force search. Standard
hill-climbing (HC) performs a simple gradient descent, selecting the action that leads to the
immediate successor with lowest h value at each step until it reaches a state s with h(s) = 0.
The FF planner (Hoffmann & Nebel, 2001) introduced enforced hill-climbing (EHC), which
replaces this strategy with a complete lookahead at each step: From the current state s, it
runs breadth-first search (BrFS) until it finds a state s′ with h(s′) < h(s). The lookahead
strategy of our algorithms lies between those extremes: We consider more than just the
immediate successors, but add a bound to the lookahead search. This bound can be defined
by a lookahead horizon k (i.e., maximum search depth). If the lookahead from s does not
yield a state s′ with h(s′) < h(s), then s is a local minimum of depth k under h. In that
case, the search algorithm will attempt to raise h(s) through heuristic refinement until the
local minimum is removed from the search space surface.

We first describe an intermediate algorithm called Episode-EHC, which augments EHC
with restarts and a global dead-end cache. Based on Episode-EHC, we introduce our local
search algorithm with online heuristic refinement which we call Refinement-HC.
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5.1 Episode-EHC

The FF planner uses EHC with helpful actions pruning as an incomplete first search phase,
switching to GBFS in case of failure. Without helpful actions pruning, EHC can still fail
to find a solution by walking into a dead end that is not recognized by the heuristic. In
Episode-EHC, we handle this situation by globally marking the state as a dead end, and
then restarting from the initial state. While Episode-EHC is merely an intermediate step
toward our online-refinement search algorithms, we include it to show that the addition of a
global dead end cache is already sufficient to achieve completeness (without helpful actions
pruning).

Algorithm 1: Episode-EHC

1 Cde := ∅ // cross-episode dead-end cache
2 s := I
3 while I /∈ Cde do
4 Run BrFS (pruning states in Cde) from s for a state s′ with h(s′) < h(s) or s′ ⊇ G
5 if no such s′ exists then
6 // mark s as a dead end and start a new episode
7 Cde := Cde ∪ {s}
8 s := I
9 else

10 s := s′

11 if s ⊇ G then
12 return SOLVED

13 return UNSOLVABLE

Algorithm 1 shows the pseudo-code for Episode-EHC. Essentially, it adds a restart
mechanism to the standard EHC procedure. While EHC gives up in case it cannot find a
better state in the BrFS phase, Episode-EHC instead marks the root state of the lookahead
as a dead end and starts a new EHC episode by resetting the search to the initial state
(Lines 5–8). The global dead end cache ensures that the search continually makes progress:
Either an EHC episode succeeds by finding a solution, or it adds a new state to the dead-end
cache, pruning it in subsequent iterations.

Proposition 2 Episode-EHC is a complete search algorithm.

Proof: Every EHC episode adds at least one new state into Cde. After at most N episodes,
where N is the number of dead-end states, Cde contains all dead-ends. Hence, EHC episode
N + 1 will either fail directly as I ∈ Cde, or will find a plan.

Note that using helpful actions pruning in Episode-EHC will break completeness: Since
the lookahead search space is not guaranteed to be fully explored (because successors via
non-helpful actions are pruned), the root state of the lookahead is not necessarily a dead
end and can not be safely added to Cde.
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5.2 Refinement-HC

Based on Episode-EHC, we can now introduce Refinement-HC (short RHC). The key ex-
tensions of Refinement-HC over (Episode-)EHC are bounding the lookahead search, and
handling the lookahead failure by refining the heuristic. We assume that the heuristic h is
(1) based on abstract plans π[h], and (2) has a refinement operation ρ, which is applicable in
a state s if h(s) 6=∞ and π[h](s) is not a real plan for s. We will show that Refinement-HC
is complete even if the lookahead itself is not (Section 5.3). Hence, the discussion below
assumes that the lookahead may use helpful actions pruning.

Algorithm 2: Refinement-HC (RHC)

1 s := I
2 while h(I) 6=∞ do
3 Run BrFS[k] from s for a state s′ with h(s′) < h(s) or s′ ⊇ G
4 if no such s′ exists then // lookahead failed
5 if the lookahead search space was exhausted before reaching the bound then
6 // s is likely a dead end
7 HANDLE EXHAUSTION

8 if the previous lookahead iteration also originated at s and s 6= I then
9 // previous refinement was unsuccessful

10 HANDLE STAGNATION

11 // raise h(s) to resolve the local minimum
12 Let hmin be the minimal h value observed in the current lookahead
13 while h(s) ≤ hmin do
14 REFINE HEURISTIC

15 if h(s) =∞ then
16 HANDLE DEAD END

17 break

18 else
19 s := s′

20 if s ⊇ G then
21 return SOLVED

22 return UNSOLVABLE

23 macro REFINE HEURISTIC

24 if π[h](s) is a plan for s then
25 return SOLVED

26 refine h on s, replacing h by ρ[h]

The pseudo-code for Refinement-HC is shown in Algorithm 2. The lookahead search
depth is bounded by a parameter k (denoted by BrFS[k]; Line 3). Like in (Episode-)EHC,
if the lookahead from the current state s succeeds in finding a state s′ with h(s′) < h(s)
within that horizon, the search proceeds to that state for the next lookahead iteration
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(Line 18). However, if the lookahead does not yield such a state, then the heuristic is
refined in s (Lines 11 to 17). The refinement proceeds until h(s) is raised above the minimal
heuristic value seen in the lookahead, which aims to ensure that the next lookahead search
succeeds in finding a better state. In contrast to Episode-EHC, Refinement-HC does not
need the cross-iteration dead-end cache. Instead, progress is guaranteed through converging
refinement operations, leading to completeness even with helpful actions pruning (see the
next subsection).

Note that the lookahead horizon k defines a trade-off between search and refinement.
For smaller values of k, most progress is made by refining the heuristic (with the extreme
at k = 1 which is similar to standard HC with the addition of heuristic refinement). On the
other hand, a larger horizon relaxes the requirement for refinement, thus giving the search
more opportunity to find a better state without frequent refinement operations; until at the
extreme end of k =∞, the search is similar to EHC, triggering heuristic refinement only if
the entire search space below s is exhausted unsuccessfully. Intermediate values of k allow
the refinement to focus on regions of the search space where the heuristic is poor (deep local
minima), leaving more shallow local minima to be escaped via search.

The Refinement-HC pseudo-code contains several macros (typeset in UPPERCASE), where
any control-flow statements like break, continue, or return inside a macro refer to the
position where the macro is inserted (in contrast to subprocedures). The REFINE HEURISTIC

macro applies one refinement step to the heuristic (Line 23). We first check whether the
underlying relaxed plan is a real plan. If that is the case, we can terminate the search,
and return the relaxed plan appended to the path to s as the solution. Otherwise, the
preconditions for the refinement operation are satisfied, and we can update the heuristic.

Algorithm 3: Backjump

input : a state s, a function λ : S 7→ bool describing the break condition
output: the first state s′ when chaining back toward I where λ(s′) = true, or I

1 while s 6= I do
2 s := the predecessor of s (along the path from I to s)
3 if λ(s) then
4 break

5 return s

The HANDLE * macros are called in specific situations that offer some freedom in our
search algorithm design. Before discussing the specific macros and the possible options for
each scenario, we introduce the Backjump function (see Algorithm 3). The function is given
a state s and a Boolean function λ as inputs, and chains backwards until it reaches a state
s′ where λ(s′) = true, which it returns (or I if no state along the path satisfies λ).

First, the HANDLE EXHAUSTION macro is called in case the search space is exhausted
without reaching the depth bound (Algorithm 2, Line 7). Since we assume that the search
uses helpful actions pruning, this does not guarantee that the root state of the lookahead
is a dead end. However, it can still be an indication that the state is likely a dead end
and should be avoided. Algorithm 4 shows the different options that we consider: We
can simply ignore this case and proceed as normal (ExhaustionContinue), restart from the
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Algorithm 4: Handle Lookahead Search Space Exhaustion

1 macro HANDLE EXHAUSTION

2 switch Exhaustion do
3 case ExhaustionContinue do
4 pass // do nothing

5 case ExhaustionRestart do
6 REFINE HEURISTIC

7 s := I
8 continue

9 case ExhaustionBackjump do
10 REFINE HEURISTIC

11 s := Backjump(s, λ(s) 7→
BrFS[k] from s does not exhaust its search space before reaching the bound)

12 continue

initial state (ExhaustionRestart), or jump back to a state where the lookahead search space
does not exhaust (ExhaustionBackjump). The backjump option performs a full lookahead
search as in a normal iteration of Refinement-HC, but prunes the states which the backjump
procedure has chained back from. This ensures that the search does not immediately move
back into the state from which we want to escape. Note that we need to do one iteration of
refinement when using either ExhaustionRestart or ExhaustionBackjump: Otherwise, the
search could eventually end up in the same state in which the exhaustion case was triggered,
causing an infinite loop.

Algorithm 5: Handle Refinement Stagnation

1 macro HANDLE STAGNATION

2 switch Stagnation do
3 case StagnationContinue do
4 pass // do nothing

5 case StagnationRestart do
6 s := I
7 continue

8 case StagnationBackjump do
9 s := Backjump(s, λ(s) 7→

BrFS[k] from s yields a state s′ with h(s′) < h(s) or s′ ⊇ G)
10 continue

If the lookahead from s fails to find a better state s′, the heuristic is refined until h(s)
increases over hmin (the lowest h value observed in the lookahead). Note that hmin is not re-
computed during the iterative refinement; hence, in the next lookahead after the refinement
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phase hmin might have increased as well, which would trigger another refinement phase
with the same root state. It might be useful to treat this case separately (Algorithm 2,
Line 10), and we consider several options via the HANDLE STAGNATION macro (see Algo-
rithm 5). Similar to the lookahead search space exhaustion case, we can opt to not do any
special handling (StagnationContinue), restart from the initial state (StagnationRestart),
or go back to the last state where the lookahead would succeed. Like with ExhaustionBack-
jump, the lookahead search in a backjump phase prunes states from which the backjump
procedure is backchaining.

Algorithm 6: Handle Dead End

1 macro HANDLE DEAD END

2 switch DeadEnd do
3 case DeadEndRestart do
4 s := I

5 case DeadEndBackjump do
6 s := Backjump(s, λ(s) 7→ h(s) 6=∞)

Finally, it might happen that the heuristic recognizes s as a dead end after a refine-
ment step (Algorithm 2, Line 16). In that case, it does not make sense to start the next
lookahead iteration from s, and instead we consider either restarting or going back along
the current path to the most recent state that is not a dead end for the HANDLE DEAD END

macro (Algorithm 6).

5.3 Completeness

Like Episode-EHC, Refinement-HC can be understood as a series of EHC episodes where
new episodes are started by changing the root state of the next lookahead iteration via
the Backjump or Restart options of the HANDLE * macros. Observe that in each such
episode, the search will either eventually reach a goal state or refine the heuristic at least
once: HANDLE EXHAUSTION explicitly invokes the refinement procedure before starting a new
episode, stagnation can only happen if the heuristic was refined in the previous lookahead
iteration (in that same episode), and HANDLE DEAD END is only invoked after the refinement
step. If the heuristic converges with the refinement procedure according to Definition 1,
then the search must eventually reach a goal or refine the heuristic to convergence, making
Refinement-HC complete.

Theorem 1 Given a heuristic h converging with ρ, Refinement-HC is a complete search
algorithm.

Proof: Observe that every (unsuccessful) episode refines h at least once, and that this
sequence of refinements stops only if either (a) a plan is found, or (b) h(I) =∞.

Say the input task Π is unsolvable. Then (a) never happens, and termination on (b) is an
unsolvability proof as desired. Unless termination on (b) happens earlier, h will eventually
converge. At this point, by Definition 1 (i) we have h(s) =∞ for all unsolvable s (including
I), leading to termination on (b) (Algorithm 2, Line 22).
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Say now that Π is solvable. Then (b) never happens, and (a) is the desired termination.
Unless that termination happens earlier, h will eventually converge, at which point h(s) =∞
for all unsolvable s, and (by Definition 1 (ii)) π[h](s) is a plan for all solvable s. If, at that
point, s is a dead end (h(s) =∞), the search will start a new episode from a solvable state
through HANDLE DEAD END (Line 16). In that episode, the search will eventually reach a goal
state (Line 21) or call REFINE HEURISTIC, where it terminates on (a) since π[h](s) is a plan
for s (Line 25).

Note that the completeness proof holds for all 18 possible instantiations of the HANDLE *

macros, and thus for an entire family of search algorithms. In fact, Refinement-HC does not
even depend on using depth-bounded breadth-first search as the lookahead search algorithm
– any incomplete lookahead search algorithm will do (even one that would always fail
immediately), as completeness is guaranteed through the converging heuristic.

For unsolvable tasks, completeness relies only on convergence property (i) (h(I) =∞).
For solvable tasks, if the heuristic were to converge to h∗, then each BrFS[k] lookahead
iteration from s would always succeed in finding a state s′ with h(s′) < h(s) until a goal
state is reached. Our weaker convergence property (ii) suffices since π[h](s) will be a plan
for s in case no better state is found during the lookahead and the refinement is triggered.

5.4 Experiments

Our experiments in this subsection focus on the heuristic refinement vs. search trade-off
from varying the depth bound parameter in Refinement-HC. The HANDLE * macros are in-
stantiated with DeadEndRestart, StagnationBackjump, and ExhaustionRestart (we evaluate
all possible instantiations in Section 6.3.2).

Figure 1 highlights key statistics for Refinement-HC on the IPC benchmarks with depth
bounds ranging from 1 to 8 and ∞. As expected, with lower depth bounds, the heuristic is
more accurate as refinement is triggered frequently, and the search needs fewer expansions
overall. On the other hand, frequent refinement makes the heuristic more expensive to
compute, and choosing larger depth bounds allows the heuristic to remain computationally
efficient. This trade-off has its sweet spot at a depth bound of 4, where Refinement-HC
reaches its peak coverage of 1413.8 (with a standard error of 5.89).

This pattern is consistent across most domains (though the exact sweet spot may vary
slightly). One notable exception is Sokoban, where the average coverage increases from 2.2
with a bound of 1 to 11.2 when setting the bound to infinity, and to a lesser degree on
Freecell (where coverage increases from 71.6 to 79.6). Conversely, smaller bounds work best
on Transport, where coverage decreases with growing bounds (from 56.2 down to 26.8);
similarly, on TPP and Woodworking the coverage is mostly unaffected, but search time
consistently increases with larger depth bounds. These domains correspond to cases where
the conjunctions are generally useful for hCFF (Transport, TPP, Woodworking) vs. cases
where hFF works better (Sokoban, Freecell); Section 9.1 discusses this in more detail.

Figure 2 shows the distribution of the lookahead results to give further insight into the
search behavior of Refinement-HC for different depth bounds. Recall that each lookahead
in Refinement-HC can have four distinct results: (1) it succeeds in finding a state with lower
heuristic value, (2) the heuristic is refined, (3) the HANDLE EXHAUSTION case is triggered,
or (4) the HANDLE STAGNATION case is triggered. With small depth bounds, the heuristic
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Figure 1: Results for Refinement-HC with varying depth bounds (x-axis): total coverage,
geometric mean of the heuristic evaluations per second, and geometric means
across commonly solved instances of the number of expansions and search time.

refined much more frequently (after 28.8% of lookaheads for a depth bound of 1), while
larger bounds let the lookahead search run longer, enabling it to find a better state more
often.

6. Refinement-HC with Novelty Pruning

We next show that the hill-climbing methods just introduced can be synergistically com-
bined with novelty pruning. We first discuss how to replace the depth bound in the
Refinement-HC lookahead with novelty pruning and why this is a good idea; then we in-
troduce a generalization of novelty pruning over arbitrary conjunction sets C and point out
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Figure 2: Lookahead result for Refinement-HC with varying depth bounds (x-axis).

the possible synergy with online refinement of hCFF; finally, we evaluate these techniques
experimentally as before.

6.1 Replacing the Depth Bound with Novelty Pruning

As pointed out in Section 5.3, Refinement-HC is complete irrespective of the specific looka-
head search algorithms used. Depth-bounded BrFS seems like an obvious choice since it
is a minimal change from the traditional EHC lookahead, and it yields a good intuition
for heuristic refinement: the search is stuck in a local minimum or plateau of the given
depth, so refining the heuristic can make that search region easier to navigate. Varying
the depth bound allows some trade-off between prioritizing progress via search vs. heuristic
refinement. However, a simple depth bound on the lookahead ignores the structure of the
local space: It might be useful to explore certain regions in more depth, while others could
be abandoned early. Additionally, BrFS does not use a heuristic for more effective guidance
(though the expansion order becomes less important if the lookahead uses a simple depth
bound).

A more practical choice for bounding the lookahead is to use incomplete novelty prun-
ing. Using novelty pruning instead of restricting search depth still effectively bounds the
lookahead search, as there is only a finite number of novel states (e.g., at most |F| states for
simple 1-novelty pruning). With novelty pruning, regions of the local search space that do
not contain novel facts are avoided, whereas branches with states that do pass the novelty
test can be explored in more depth.

Essentially, our Refinement-HC variants with novelty pruning replace BrFS[k] by a
search algorithm with incomplete novelty pruning like IW(k). The only other notable
change is that HANDLE EXHAUSTION is invoked if the lookahead search space was exhausted
without pruning a state due to novelty instead of search depth. Note that when using
novelty pruning instead of a depth bound, the expansion order of the lookahead becomes
important; not just to potentially find a state with lower heuristic value more quickly, but
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it also changes which states are novel. In our experiments, we consider best-first search
with the open list orderings g, g + h, and h, i.e., BrFS, A∗, and GBFS.

The novelty in the lookahead search is only evaluated locally (i.e., only within a single
lookahead iteration, not across the overall search), since its main goal is to bound each looka-
head search, and not to apply aggressive cross-iteration pruning. Thus we only exchange
the local search algorithm of the lookahead, retaining completeness of Refinement-HC as
discussed in Section 5.3.2

6.2 Novelty Pruning over Conjunctions

IW(k) applies k-novelty pruning (Nk), pruning all states that do not contain a novel fact
tuple of size at most k. We can generalize the definition of Nk to consider arbitrary con-
junctions instead of fixed-size tuples:

Definition 2 (C-Novelty Pruning) Given a set of conjunctions C and a set of states
seen so far T , a search with C-novelty pruning (denoted NC) prunes a state s if there does
not exist a conjunction c ∈ C such that c ⊆ s and c * s′ for all s′ ∈ T .

This idea of generalizing novelty pruning to arbitrary conjunctions was previously men-
tioned (e.g., in the conclusion of Katz et al.’s (2017) work on novelty heuristics), but has not
been explored before. A key problem is how to effectively generate a set C of conjunctions
specifically suited for novelty pruning. We do not provide an answer to that question here,
however, we realize the obvious synergy with partial delete relaxation methods selecting
such a set of conjunctions. Running Refinement-HC with hCFF, we can simply re-use the
set of conjunctions from hCFF for novelty pruning as well.

Using NC in the lookahead search for Refinement-HC with hCFF has an interesting
synergistic side-effect. The hCFF heuristic becomes more costly to compute with each
added conjunction, so refinement should be applied carefully. On the other hand, the
pruning provided byNC becomes less aggressive as C grows. Thus, as more conjunctions are
added to C, the lookahead can expand more states before refinement is triggered, reducing
the overhead for hCFF, and gradually shifting the trade-off between search and refinement
toward the former.

6.3 Experiments

We next compare Refinement-HC with different types of novelty pruning to the depth-
bounded variant, and then compare different expansion orders in the lookahead with novelty
pruning. Finally, we evaluate all instantiations of the HANDLE * macros with the best-
performing lookahead search.

6.3.1 Comparison of Lookahead Search Algorithms

We first compare different lookahead search algorithms for Refinement-HC, again using the
macro instantiations DeadEndRestart, StagnationBackjump, and ExhaustionRestart.

2. Note that even with global novelty pruning Refinement-HC would still be complete due to the refinement
of the heuristic, though extremely ineffective in practice as it would usually require convergence on the
initial state as the search eventually runs out of novel states.
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Lookahead Search BrFS[4] BrFS[N1] BrFS[NC ] BrFS[N2] A∗[NC ] GBFS[NC ]

Agricola (20) 7.8 10.2 10.0 11.8 11.0 11.6
Airport (50) 45.0 46.6 46.6 33.2 47.4 46.4
Barman (40) 30.8 30.4 28.8 3.6 40.0 40.0
Childsnack (20) 2.8 5.2 6.0 5.2 8.8 9.6
DataNetwork (20) 15.0 15.0 16.4 10.2 17.2 16.6
Freecell (80) 73.0 76.2 76.8 78.2 77.2 78.0
GED (20) 14.6 20.0 20.0 19.0 20.0 20.0
Logistics (63) 59.4 63.0 63.0 59.0 63.0 63.0
Parking (40) 23.4 40.0 39.4 33.2 40.0 40.0
Pipes-notank (50) 45.8 46.0 45.8 42.8 45.6 45.6
Snake (20) 6.8 10.4 10.2 11.8 12.6 12.4
Sokoban (30) 6.6 10.4 11.2 11.6 11.6 11.0
Spider (20) 1.0 9.6 11.6 12.0 12.4 12.2
Storage (30) 26.8 28.6 28.4 24.2 28.4 28.8
Tetris (20) 10.0 14.0 14.2 1.0 16.4 15.8
Transport (60) 39.2 43.4 42.0 33.8 51.6 54.2
VisitAll (37) 15.4 16.6 16.2 5.2 18.0 19.2

Others (1075) 990.4 984.6 991.0 982.8 994.0 993.0

Sum (1695) 1413.8 1470.2 1477.6 1378.6 1515.2 1517.4
Std. Error 5.9 5.3 5.2 4.9 4.2 4.6

Exp. per Lookahead 27.9 15.3 16.6 43.6 15.2 14.9
Lookahead Success 88.5% 87.8% 88.7% 95.4% 89.5% 89.6%

Table 1: Coverage results for Refinement-HC with BrFS lookahead and a depth bound of 4
compared to BrFS with different types of novelty pruning (left part of the table),
and A∗ and GBFS lookahead with C-novelty pruning (right part of the table).
Domains where the difference in coverage between the best and worst configuration
is at most 3 are grouped into “Others”. The last two rows additionally show the
number of expansions per fully explored lookahead (geometric mean across all
commonly solved instances where at least one lookahead was fully explored by all
configurations) and the average percentage of lookaheads that result in a state
with lower heuristic value to be found.

The left side of Table 1 shows the coverage for Refinement-HC with breadth-first search
lookahead using different bounding methods. The Refinement-HC variants with N1 and
NC heavily outperform the best depth-bounded variant by +56.4 respectively +63.8 overall
coverage. Comparing the IW(C) and BrFS[4] variants directly, the former is better in 23
domains and worse in only 6. The most significant gains come from Parking (+16 solved in-
stances), Spider (+10.6), and GED (+5.4). However, in domains where the depth-bounded
lookahead works better, the difference is comparatively small: The largest per-domain losses
in coverage are just two fewer solved instances in each of Barman and Nomystery.
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The novelty variant using N2 performs considerably worse compared to the ones with
N1 and NC because the pruning is much less aggressive, so each lookahead may expand a
large number of states before exhausting the novel ones. Most domains where the IW(2)
lookahead works well are those that also benefit from large depth bounds, examples are
Freecell, Sokoban, and Spider.

The last two rows of Table 1 give further insight into the difference between using a
depth bound compared to novelty pruning in the lookahead. The “Exp. per Lookahead”
statistic indicates the average lookahead search space size, giving some insight into the
search vs. refinement trade-off for the different bounding methods. Specifically, it shows how
many states are expanded in lookahead iterations where the search space is fully exhausted
until the depth bound is reached or all novel states are expanded (i.e., those resulting in
refinement or stagnation). While BrFS[4] considers more states on average compared to
IW(1) and IW(C), the percentage of lookahead iterations that result in a state with lower
heuristic value to be found is similar (88.5% compared to 87.8% respectively 88.7%), which
shows that the novelty-based lookahead is similarly effective with less search effort. Overall,
Refinement-HC with IW(C) needs on average 38% fewer expansions to find a solution
compared to Refinement-HC with BrFS[4] lookahead on commonly solved instances. For
our remaining experiments that use a novelty-based lookahead we stick to NC as the best-
performing novelty variant overall.

Consider now the right part of Table 1, which shows the results when the lookahead
uses the heuristic for guidance instead of a pure breadth-first search. Using either A∗ or
GBFS instead of BrFS for the lookahead (i.e., replacing BrFS[k] by A∗ or GBFS with
novelty pruning in Algorithm 2 and the HANDLE * macros) further boosts the performance
of Refinement-HC: The lookahead success rate improves slightly, and these variants achieve
37.6 respectively 39.8 more solved instances in total. The biggest difference can be seen in
Transport (+12.2 coverage for GBFS[NC ] compared to BrFS[NC ]) and Barman (+11.2),
though the advantage is consistent across most domains, dropping only slightly in 5 domains
(yet at most by −0.6).

6.3.2 Evaluating the Macro Choices

DEBackjump DERestart

SContinue SBackjump SRestart SContinue SBackjump SRestart

EContinue 1412.0 1422.0 1397.2 1451.8 1457.0 1415.8
EBackjump 1436.2 1440.6 1457.4 1476.8 1479.2 1465.4

ERestart 1510.6 1514.6 1467.8 1508.2 1517.4 1465.8

Table 2: Coverage of Refinement-HC using GBFS with C-novelty pruning as the lookahead
search algorithm for different instantiations of the HANDLE * macros (abbreviating
DeadEnd (DE), Stagnation (S), and Exhaustion (E); results are averaged over 5
runs, the standard error ranges from 4.0 to 6.5).
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Table 2 shows the coverage for all available combinations of options in the HANDLE *

macros. Depending on the chosen settings, the coverage can vary significantly. For the
DeadEnd and Stagnation options, there are no clear winners, but we can make some general
observations:

(a) DeadEndBackjump is inferior to DeadEndRestart in most cases.

(b) For Stagnation, Backjump is usually the best configuration, and Restart is generally
the worst.

(c) For Exhaustion, Restart is always the best configuration, and Continue is always the
worst.

Observation (a) shows that recognized dead ends are most effectively escaped through a
full restart. However, when combined with ExhaustionRestart, the results for the different
choices of the DeadEnd options are very close, as restarting too frequently diminishes its
benefit.

Regarding observation (b); restarting the search in case of stagnation seems to be an
overreaction, while backjumping can avoid excessive refinement in a single state. Both
Restart and Backjump reduce the number of conjunctions added during the search compared
to Continue as expected, but restarting from the initial state adds significant search effort
(+26% expansions compared to Continue, +25% over Backjump) as the search must redo
some of the effort to move away from the initial state.

For Exhaustion, restarting from the initial state is clearly the best choice. The results
indicate that, if the search space is exhausted with helpful actions pruning, the root state
of the lookahead is indeed likely a dead end, and a restart from the initial state effectively
escapes that region of the search space (similar to the observations for the DeadEnd options).
The advantage of ExhaustionRestart is most apparent in domains with many dead ends.
For example, in Sokoban, the ExhaustionRestart configurations have a coverage of 11.2 on
average compared to 3.3 for ExhaustionContinue and 6.7 for ExhaustionBackjump, and in
Pegsol the same comparison yields average coverage values of 34.7, 20.9, and 24.1.

The overall best-performing configuration is also the combination of the individually
strongest options in DeadEndRestart with StagnationBackjump and ExhaustionRestart,
with an overall coverage of 1517.4 ± 4.6. This result is robust across most domains; the
only two domains where other configurations solve at least three more instances on aver-
age are Snake (where the mentioned configuration has an average coverage of 12.4, but
configurations using StagnationBackjump and ExhaustionBackjump have 15.6) and Tetris
(15.8 vs. 19.2 for configurations with StagnationContinue and either ExhaustionContinue
or ExhaustionBackjump).

7. Refinement-HC with Relaxed Subgoal Counting

We now show that relaxed subgoal counting can be leveraged to speed up the costly com-
putation arising from refined heuristic functions during Refinement-HC. We first describe
our idea and method, then evaluate the method experimentally.
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7.1 Method

While the heuristic becomes more accurate through iterative refinement, it typically also
becomes more computationally expensive to compute, which is particularly true for hCFF. In
depth-bounded Refinement-HC, one can attempt to compensate for this effect by choosing
the depth bound sufficiently large, thereby avoiding too many refinement operations and
shifting more responsibility to the search (yet this is detrimental to overall performance).
Another strategy to counteract the computational complexity of the heuristic is to attempt
to reduce the frequency of heuristic evaluations. One way is to cache heuristic values,
thereby avoiding reevaluations on states that have been seen before, but that approach
contradicts the purpose of online refinement.

The solution that we propose here is to use an approximative heuristic instead: We
compute a relaxed plan only in the root state of the current lookahead, and then use a
subgoal-counting heuristic hSC based on that to guide the lookahead search. In Refinement-
HC, we check all states s′ that are explored in the lookahead from s for h(s′) < h(s),
considering them as potential root states for the next lookahead iteration. With our subgoal-
counting variant, we only compute h twice for each lookahead iteration: once in the root
state s, and then on the state from the lookahead with lowest hSC value s′, which is the
only state for which we test h(s′) < h(s). If the test passes, the next lookahead iteration
continues from s′ as before. Otherwise, we refine the heuristic once and continue again from
s.

The pseudo-code for Refinement-HC with subgoal counting (short RHC-SC) is shown
in Algorithm 7. The macros are defined as before (only in the Backjump procedure of the
HANDLE STAGNATION macro, we stop backchaining if the state with minimal hSC value seen
in the lookahead has a lower h value). One major change is that we do not use helpful
actions pruning in the lookahead since hSC does not define helpful actions. This means that
we can collapse the “search space exhaustion” case with the “dead end” case, as not reaching
the lookahead horizon means that s is in fact a dead end (Line 10). The main motivations
behind only doing a single iteration of refinement instead of refining h until h(s) > h(s′)
are (1) since we only sample one state in the lookahead, the difference between h(s) and
h(s′) might be large, leading to many iterations of refinement, and (2) the lookahead is very
cheap, so we can afford to start another one immediately after each refinement step.

When using a subgoal counting heuristic hSC, key challenges are (a) selecting the un-
derlying plan from which the subgoals are derived, and (b) ensuring that hSC values are
not compared across different underlying plans. In BFWS (Lipovetzky & Geffner, 2017),
relaxed plans for subgoal counting are computed in states where the number of satisfied
top-level goals increases over that of its parent. However, BFWS does compare subgoal-
counting values between states with potentially different underlying relaxed plans, though
the subgoal counting value is not used as a heuristic directly but instead as part of a nov-
elty measure, making challenge (b) less important. The lookahead of Refinement-HC is
perfectly suitable for a subgoal counting heuristic, since the root state of the lookahead is a
straightforward choice for computing a relaxed plan with which to instantiate hSC, and only
one instance of the heuristic is used in each lookahead (ensuring comparability between the
hSC values).
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Algorithm 7: Refinement-HC with Subgoal Counting (RHC-SC)

1 s := I
2 while h(I) 6=∞ do
3 Let hSC be the subgoal counting heuristic derived from π[h](s)
4 Run a bounded lookahead search from s
5 Let s′ be the state with minimal hSC value seen in the lookahead
6 if h(s′) ≥ h(s) then // lookahead failed
7 if lookahead search space was exhausted without pruning any state then
8 // s is a dead end (no helpful actions pruning)
9 Mark s as a dead end, pruning it in future lookaheads

10 HANDLE DEAD END

11 if the previous lookahead iteration also originated at s and s 6= I then
12 // previous refinement was unsuccessful
13 HANDLE STAGNATION

14 // refine h once
15 REFINE HEURISTIC

16 if h(s) =∞ then
17 HANDLE DEAD END

18 break

19 else
20 s := s′

21 if s ⊇ G then
22 return SOLVED

23 return UNSOLVABLE

Refinement-HC with subgoal counting inherits the completeness property from standard
Refinement-HC:

Proposition 3 Given a heuristic h converging with ρ, Refinement-HC with subgoal count-
ing is a complete search algorithm.

Proof: Observe again that every (unsuccessful) episode refines h at least once, and that
this sequence of refinements stops only if either (a) a plan is found, or (b) h(I) =∞. Then
by the same chain of reasoning as applied in the proof of Theorem 1, Refinement-HC with
subgoal counting is complete.

7.2 Experiments

First, we again evaluate the different choices for the HANDLE * macros and different expan-
sion orders for the lookahead search. We highlight an important implementation detail, and
finally compare RHC-SC to Refinement-HC without subgoal counting. In all experiments
for RHC-SC we use NC to bound the lookahead search.

90



Online Relaxation Refinement for Satisficing Planning

DEBackjump DERestart

SContinue SBackjump SRestart SContinue SBackjump SRestart

g 1419.0 1482.4 1277.2 1439.4 1491.2 1278.8
g + h 1479.8 1526.8 1437.6 1504.0 1534.0 1435.2
h 1450.2 1507.6 1428.0 1467.0 1510.4 1427.2

Table 3: Coverage of Refinement-HC with subgoal counting and C-novelty pruning for dif-
ferent instantiations of the HANDLE * macros and different expansion orders in the
lookahead (averaged over 5 runs, the standard error ranges from 4.5 to 5.8).

7.2.1 Evaluating the Macro Choices

Table 3 shows an overview of the different configurations for RHC-SC. The main takeaways
are:

(a) DeadEndRestart is better than DeadEndBackjump when using Continue or Backjump
for the HANDLE STAGNATION case, and they are close to equal when using Stagnation-
Restart.

(b) StagnationBackjump is generally the best option followed by StagnationContinue,
while the performance of StagnationRestart trails far behind.

(c) Using the expansion order g + h works best, followed by h and then g.

Consistent to our results in the previous section, restarts can help performance, but not
if done too frequently (i.e., combining DeadEndRestart with StagnationRestart is not a good
idea). Like before, DeadEndRestart is consistently the best option. The only configurations
where DeadEndBackjump and DeadEndRestart have similar performance are those that are
combined with StagnationRestart, but both StagnationBackjump and StagnationContinue
yield much better results overall.

Using hSC to guide the lookahead positively impacts the results compared to pure
breadth-first search. In Refinement-HC without subgoal counting, expanding nodes greedily
by hCFF in the lookahead works best, whereas for the less accurate hSC the more conserva-
tive choice of an open list ordered by g + h is superior.

Overall, the combination of DeadEndRestart and StagnationBackjump with an A∗ looka-
head works best, yielding a coverage of 1534 ± 5.1. There are domains where other com-
binations are better though: On Parking and Airport, configurations using BrFS for the
lookahead have a coverage of up to 39.6 (+19.8 over the overall best combination) respec-
tively 47.8 (+8); on Thoughtful, configurations using StagnationRestart have a coverage of
up to 20 (+8).

7.2.2 Memory Overhead

In satisficing planning with limits similar to the settings used by the International Plan-
ning Competitions (30 minute timeout and memory limits between 2 and 8 GB), time is
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Figure 3: Comparison of the peak search memory usage (in kilobytes) for Refinement-HC
with subgoal counting.

usually the most constraining factor. While there exist some domains where already the
(grounded) problem representation poses an issue for standard memory constraints (e.g.,
Organic Synthesis), the memory usage is mostly dominated by the state data of generated
states, which is kept for duplicate detection. Since many satisficing planners use heuris-
tics that are non-trivial to compute, they tend to hit the time limit before the number of
generated states becomes an issue.

The subgoal-based lookahead in RHC-SC may generate a large number of states very
quickly since the heuristic is a simple counter. To avoid memory issues, we release the
states that were generated in each lookahead from memory, keeping only the states along
the current path from the initial state and those that were evaluated by hCFF (to be able
to prune states with hCFF =∞).

Figure 3 shows a comparison of the memory usage of our implementation to a naive
version that keeps all generated states in memory. With the exception of few random
outliers, the naive implementation uses significantly more memory, often by more than
one order of magnitude. The naive implementation runs out of memory on 55-57 instances
(depending on the random seed) compared to just 5 instances when the lookahead states are
discarded. In Childsnack and Parking, this implementation detail has the biggest impact,
reducing the number of instances where the search runs out of memory from 11 (out of 20)
respectively 27 (out of 40) to zero, and increasing coverage by 3.6 respectively 5.4.
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Coverage RHC RHC-SC Diff.

Agricola (20) 11.6 11.8 +0.2
Airport (50) 46.4 39.8 -6.6
Childsnack (20) 9.6 13.4 +3.8
DataNetwork (20) 16.6 19.4 +2.8
Freecell (80) 78.0 77.4 -0.6
Nomystery (20) 10.4 10.0 -0.4
Openstacks (90) 89.6 90.0 +0.4
OrgSynth-split (20) 2.6 1.6 -1
Parcprinter (40) 40.0 39.8 -0.2
Parking (40) 40.0 19.8 -20.2
Pegsol (35) 35.0 33.8 -1.2
Pipes-notank (50) 45.6 48.8 +3.2
Pipes-tank (50) 44.2 47.0 +2.8
Satellite (36) 36.0 31.0 -5
Snake (20) 12.4 18.0 +5.6
Sokoban (30) 11.0 11.4 +0.4
Spider (20) 12.2 14.2 +2
Storage (30) 28.8 30.0 +1.2
Termes (20) 4.0 9.6 +5.6
Tetris (20) 15.8 20.0 +4.2
Thoughtful (20) 20.0 12.0 -8
Tidybot (20) 18.0 19.4 +1.4
Transport (60) 54.2 60.0 +5.8
Trucks (30) 16.2 18.8 +2.6
VisitAll (37) 19.2 37.0 +17.8

Others (817) 800.0 800.0 ±0

Sum (1695) 1517.4 1534.0 +16.6
Std. Error 4.6 5.1

Table 4: Coverage of Refinement-HC with vs. without subgoal counting. Domains with
equal coverage are grouped into “Others”.

7.2.3 Comparison to Refinement-HC without Subgoal Counting

Table 4 shows a direct comparison of the coverage for the best-performing variants of
Refinement-HC with vs. without subgoal counting. Both RHC and RHC-SC fully solve
all domains that are grouped into Others, except for Organic Synthesis, where both solve
3 instances and the Fast Downward translator runs out of memory on the other 17. None
of the two variants consistently outperforms the other, however, there are 16 domains
where RHC-SC has the upper hand compared to 9 where it is worse. The domains with
the biggest change in coverage are Parking (−20.2) and VisitAll (+17.8). In Parking, the
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Figure 4: Search time, solution cost, percentage of lookaheads that result in refinement, and
number of added conjunctions for commonly solved instances of RHC (X-axis)
and RHC-SC (Y-axis).

subgoal-counting heuristic is unreliable: Only 3.6% of lookahead searches result in a state
with lower hCFF value to be found for RHC-SC (compared to 93.7% for RHC). On the other
hand, hSC yields good guidance in VisitAll, enabling RHC-SC to make significant jumps
toward the goal after each lookahead iteration.

Figure 4 compares additional statistics between Refinement-HC with and without sub-
goal counting. When aggregating across the full benchmark set, the overall search times for
Refinement-HC and RHC-SC are very similar. However, the scatter plot reveals that there
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are many instances where they differ by multiple orders of magnitude. As mentioned above,
there are extreme cases where hSC is consistently accurate (VisitAll) or inaccurate (Park-
ing), but also many domains where either approach has an advantage on some instances.
Using the weaker hSC heuristic in the lookahead also comes with a slight penalty in solution
cost (on average, plans computed by RHC are 12.8% cheaper than those of RHC-SC).

Many more lookahead iterations of Refinement-HC with subgoal counting result in re-
finement compared to standard Refinement-HC. This is expected, since RHC-SC already
triggers refinement if one lookahead state (i.e., the state with minimal hSC value) does not
have a better hCFF value than the root state of the lookahead, whereas RHC may consider
all states that have been explored in the lookahead. However, this does not necessarily result
in more added conjunctions overall, mainly because the refinement procedure in RHC-SC
is more conservative, adding just one conjunction to hCFF instead of refining until the hCFF

value of the lookahead root state increases sufficiently.

8. Greedy Best-First Search

We finally consider greedy best-first search as a systematic-search alternative to hill climb-
ing. We first discuss general challenges with online refinement in GBFS, then introduce our
online-refinement GBFS variant, and evaluate it empirically.

8.1 Online Refinement in GBFS

Intuitively, hill-climbing algorithms are well suited for online refinement because of the local
exploration phases, giving a clear indication that the heuristic is weak on the local search
space. However, most state-of-the-art satisficing planners are based on greedy best-first
search, which maintains a global open list, and expands nodes by lowest h values. Since
GBFS does not have a similar focus on smaller areas of the search space, it is much harder
to identify local minima or plateaus in the search procedure (and thereby more difficult to
define suitable refinement criteria).

Our initial ideas for online refinement in GBFS were focused on attempting to identify
local minima, following the central paradigm of Refinement-HC. Specifically, we wanted to
consider the set S0 of states with the lowest h value seen so far, and then track the evalua-
tion of their successors (this is not straightforward even just for the immediate successors,
as GBFS is typically used with lazy evaluation, where the heuristic is only evaluated on
expansion, not generation, of a state). If h has been evaluated on all the successors of
at least one state s ∈ S0 and none of these successors have a better heuristic value, then
s is a local minimum under h and we have identified an opportunity for refinement. We
implemented this idea, including different variants where we require that all states in S0 are
proven local minima and/or consider successors up to a given depth, as well as refining only
a single conjunction instead of refining until the local minimum is removed from the search
space surface. However, in preliminary experiments, we found this variant of GBFS to be
vastly inferior to our hill-climbing algorithms, with the overall coverage ranging between
1368 and 1434.

Instead, we augment GBFS with a lookahead function similar to the one we use in
Refinement-HC. Note that the lookahead search based on subgoal counting as introduced
in Section 7 is particularly suitable as a lookahead function in GBFS due to its low over-
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head. This lookahead strategy achieves two purposes in GBFS: (i) it can identify states
where refining the heuristic may be effective (if the lookahead does not yield a better state
according to the heuristic), and (ii) it allows the search to skip ahead to a state closer to
the goal (if the lookahead does find a better state).3

8.2 GBFS with Subgoal-Counting Lookahead and Online Refinement

As discussed in the context of Refinement-HC, the lookahead search based on subgoals is
extremely lightweight, which opens up its use as a lookahead method in GBFS. Our GBFS
variant, that we call GBFS-SCL (GBFS with Subgoal-Counting Lookahead)4, invokes this
lookahead procedure after each expansion, and either inserts the resulting state at the front
of the open list, or refines the heuristic.

Algorithm 8: GBFS-SCL

1 Open := [I]
2 Closed := ∅
3 while Open 6= [] do
4 s := Open.pop()
5 if s ∈ Closed then
6 continue

7 if s ⊇ G then
8 return SOLVED

9 Closed := Closed ∪ {s}
10 if h(s) 6=∞ then
11 Insert the successors of s into Open
12 Let hSC be the subgoal counting heuristic derived from π[h](s)
13 Run a bounded lookahead search from s
14 Let s′ be the state with minimal hSC value seen in the lookahead
15 if s′ ∈ Closed then
16 continue
17 else if h(s′) < h(s) then
18 Insert s′ at the front of Open
19 else
20 REFINE HEURISTIC

21 return UNSOLVABLE

Algorithm 8 shows the pseudo-code of GBFS-SCL, with the changes to standard GBFS
highlighted in red. After each expansion, GBFS-SCL invokes the lookahead search that is
also used by RHC-SC, in other words, it performs a bounded lookahead search using hSC

3. This method relates to previous works on lookahead strategies in GBFS (Vidal, 2004, 2011; Nakhost &
Müller, 2009; Lipovetzky & Geffner, 2017); we will discuss these below.

4. In the original conference paper (Fickert, 2020) this algorithm was introduced as GBFS-RSL (for Re-
laxed Subgoals Lookahead). We prefer the name GBFS-SCL because it seems slightly more apt and for
consistency with RHC-SC.
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for guidance. The lookahead search maintains its own closed list starting from an empty
one at the beginning of each lookahead, and does not consider the closed list of the overall
search (neither for lookup nor updating). Like in RHC-SC, the lookahead search returns
the best lookahead state s′ according to hSC. If s′ is already closed, the search proceeds
like standard GBFS.5 Otherwise, s′ is evaluated with the main heuristic h. If the heuristic
value decreases from the root state of the lookahead, then s′ is inserted at the front of the
open list (irrespective of its heuristic value), and otherwise the heuristic is refined. When
GBFS-SCL finds a goal state, it reconstructs the plan from parent pointers like standard
GBFS. Hence, we store the parent information for the path to s′ from the lookahead, which
can be updated if a better path (with lower g value) is found.

Note that the online refinement of the heuristic causes the open list to be ordered
according to mixed versions of the heuristic (with different degree of refinement). This is
less significant with lazy evaluation, but it can create a small bias towards states closer to
the initial state as the heuristic values increase with refinement. On the other hand, this
can also help escape local minima as refinement should quickly cause the heuristic value
to increase in such regions, while open states that were evaluated before reaching the local
minimum retain their original value.

GBFS-SCL can not only be used as an online-refinement algorithm, but also as a stan-
dard search algorithm by simply continuing the search normally if the lookahead does not
return a state with lower h value (i.e., dropping the else case in line 19 that invokes
REFINE HEURISTIC). The only remaining requirement is that hSC must somehow be instan-
tiated, either by using heuristics that have an underlying relaxed plan (e.g., heuristics based
on (partial) delete relaxation or abstractions), or by using an alternative method to derive
subgoals such as landmarks. The addition of the lookahead is generally a non-intrusive
change to GBFS, and does not affect compatibility with most search-enhancing techniques
like a dual queue for preferred operators (Helmert, 2006) (which we use in our experiments).

GBFS-SCL is related to the YAHSP planner (Vidal, 2004, 2011). YAHSP is based on
greedy best-first search with hFF. After each expansion of a state s, YAHSP attempts to
repair the current relaxed plan π[hFF](s), and inserts the state resulting from following
the applicable (under non-relaxed semantics) prefix of the repaired plan into the open
list. Our lookahead based on subgoal counting uses the same underlying idea of extracting
information from the relaxed plan to generate a lookahead state. While YAHSP uses the
actions of the relaxed plan, GBFS-SCL uses its subgoals, following the relaxed plan more
loosely compared to YAHSP.

Extending GBFS with local exploration methods has been considered before, either via
random walks (Nakhost & Müller, 2009), or bounded local search (Xie, Müller, & Holte,
2014; Lipovetzky & Geffner, 2017). Lipovetzky and Geffner’s method is similar to ours
in that they also exploit novelty to enhance the exploration aspect, and they observed
significant gains over previous methods. The main difference to our work is that these
methods aim to use local exploration as a tool to escape local minima or plateaus, and it is
only triggered if the search is considered to be stuck (by tracking the number of expansions

5. We tested other options on what to do if s′ is closed (namely, (a) invoking REFINE HEURISTIC, or (b)
invoking REFINE HEURISTIC if h(s′) < h(s)), but found no statistically significant effect on the results.
We thus stick to what we consider the most straightforward option of just continuing without refinement
as shown in the pseudo-code.
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h
GBFS-SCL

GBFS YAHSP
BrFS A∗ GBFS

hFF 1390.6 1462.4 1457.6 1397.6 1477.0
hRB 1388 1425 1450 1397 1427
hgray 1437 1463 1469 1441 1467
hCFF

off 1406.8 (1400.6) 1490.2 (1491.8) 1463.2 (1465.4) 1372.6 1498.2

hCFF
on 1499.4 (1445.2) 1558.8 (1530.8) 1519.4 (1494.0) – 1464.6

Table 5: Coverage of GBFS-SCL with different configurations, compared to standard GBFS
and GBFS using YAHSP’s lookahead. The hCFF heuristic is included with offline
(hCFF

off ) and online (hCFF
on ) refinement variants. The GBFS-SCL configurations for

hFF, hRB, and hgray use 1-novelty pruning, for hCFF results for both C-novelty and
1-novelty pruning are shown (with the latter in parentheses). The best-performing
lookahead search algorithm in GBFS-SCL for each heuristic is underlined, and the
overall best configuration is boldfaced.

since the minimal heuristic value has decreased). GBFS-SCL instead uses low-overhead
local searches after each GBFS expansion with the main goal of accelerating the search,
and using it as a trigger to improve the heuristic in the online-refinement variant.

8.3 Experiments

GBFS-SCL does not have options like the HANDLE * macros of Refinement-HC that control
certain aspects of the algorithm, but there is still one choice to make: the instantiation
of the lookahead search algorithm. Like with RHC-SC, we evaluate BrFS, A∗, and GBFS
with novelty pruning. While we are mainly interested in GBFS-SCL with online refinement
of hCFF, we also evaluate the GBFS-SCL variant without online refinement using various
(partial) delete relaxation heuristics. Specifically, we consider standard hFF, as well as the
partial delete relaxation heuristics hRB, hgray, and hCFF with offline refinement. The red-
black heuristic hRB “un-relaxes” a subset of the finite-domain state variables (these variables
correspond to mutex groups in the STRIPS framework) by inserting repair sequences for
these variables into the relaxed plans (Domshlak et al., 2015). The gray planning heuristic
hgray extends hRB by additionally considering limited-memory variables that remember a
limited number of their most recent assignments (Speicher, Steinmetz, Gnad, Hoffmann,
& Gerevini, 2017). For hCFF with offline refinement, the heuristic is iteratively refined in
the initial state until its internal complexity has increased to a growth factor of 1.5 (or a
timeout of 15 minutes is reached), following the best performing settings of previous work
on hCFF (Fickert et al., 2016). We compare GBFS-SCL to standard GBFS, as well as to
a GBFS variant similar to GBFS-SCL but using YAHSP’s lookahead instead, that is, after
each expansion, we consider the state returned by YAHSP’s lookahead method and insert
it at the front of the open list if it has a lower heuristic value.

Table 5 shows an overview of the results. A∗ is the best choice for the lookahead search
algorithm when using hCFF (like with RHC-SC) and hFF, while GBFS works better for hRB
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and hgray.6 Regarding N1 vs. NC for hCFF; while there is no clear winner for the offline
variant of hCFF, NC is superior when using online refinement (as before). This observation
again highlights the synergistic effect of sharing the set of conjunctions with novelty pruning
for online refinement discussed in Section 6.2, namely, by sharing the set of conjunctions,
further refinement is reduced over time.

For all considered heuristics, GBFS-SCL (without online refinement) improves overall
coverage compared to standard GBFS: +64.8 for hFF, +53 for hRB, +28 for hgray, and
+117.6 for (offline) hCFF. For hFF, most of the advantage in coverage is gained in Transport
(+21.2), VisitAll (+17), and Barman (+15.6). In some domains, GBFS-SCL performs
worse because the lookahead only rarely yields a better state, in particular in domains
with many dead ends. For example, in Floortile, on average only 1% of lookaheads are
successful resulting in −4.4 coverage, and we get similar results in Sokoban (4% successful
lookaheads, −3.4 solved instances). Another source of ineffectiveness for GBFS-SCL is
the added overhead of the lookahead, for example, in Parking the lookahead uses 96%
of the overall time (mostly for successor generation and evaluating novelty), which, again
combined with a low lookahead success rate of 3%, leads to leading to 11 fewer solved
instances compared to standard GBFS.

Partial delete relaxation methods are designed to make delete relaxation heuristics more
accurate, which should intuitively mean that their subgoals provide better guidance, making
them better suited for GBFS-SCL. However, while the increase in coverage over standard
GBFS is greater for hCFF than it is for hFF, this is not the case for hRB and hgray. We believe
this can be explained by the structure of the partially relaxed plans: For red-black and gray
planning, repair sequences are inserted into the relaxed plan to resolve conflicts (unsatisfied
preconditions) on the un-relaxed variables. In the context of GBFS-SCL though, these
sequences may lead the lookahead search away from the “intended” path of the relaxed
plan, as the subgoal-based lookahead likely does not follow these sequences exactly.

Even in its variant without online refinement, GBFS-SCL can be an effective method to
boost the search, and sometimes makes big leaps to states closer to a goal in a single looka-
head (we illustrate such an example below). However, GBFS with YAHSP’s lookahead leads
to similar results, but this picture changes when considering the online-refinement variants.
In combination with hCFF and online refinement, GBFS-SCL clearly outclasses all other
configurations with an overall coverage of 1558.8± 4.7, beating for example its correspond-
ing offline-refinement configuration by +68.6, and configurations with other heuristics by
an even larger margin. Interestingly though, this is not the case if we add online refinement
to GBFS with YAHSP’s lookahead (i.e., invoking REFINE HEURISTIC if the lookahead does
not yield a state with lower heuristic value), suggesting that a failure of YAHSP’s looka-
head does not necessarily indicate that the heuristic needs improvement. In some domains,
YAHSP’s lookahead frequently fails to return a better state, leading to large computa-
tional overhead due to excessive refinement, for example, dropping down to just 2 out of 40
solved instances in Barman, 1.4 out of 40 in Parking, and 2.4 out of 20 on Termes (whereas
online-refinement GBFS-SCL has a coverage of 39.4, 35.6, and 6.8 in these domains).

Table 6 directly compares GBFS-SCL with hCFF using online vs. offline refinement. The
online-refinement variant is almost universally superior, with better coverage on 23 domains

6. For hFF here, we use the hCFF implementation with only singleton conjunctions, to avoid implementa-
tional differences when comparing hFF and hCFF throughout this paper (in particular in Section 9.1).
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Coverage hCFF
off hCFF

on Diff.

Airport (50) 37.6 41.2 +3.6
Barman (40) 37.8 39.4 +1.6
Childsnack (20) 6.8 8.4 +1.6
DataNetwork (20) 12.0 18.6 +6.6
Freecell (80) 78.4 80.0 +1.6
Nomystery (20) 6.2 9.6 +3.4
Openstacks (90) 63.8 90.0 +26.2
Parcprinter (40) 32.6 40.0 +7.4
Parking (40) 39.6 35.6 -4.0
Pathways (30) 23.2 24.8 +1.6
Pipes-notank (50) 44.2 49.6 +5.4
Pipes-tank (50) 43.6 48.8 +5.2
Snake (20) 14.4 17.2 +2.8
Sokoban (30) 23.2 17.8 -5.4
Spider (20) 13.8 15.8 +2.0
Storage (30) 25.8 30.0 +4.2
Termes (20) 12.8 6.8 -6.0
Tetris (20) 14.8 19.8 +5.0
Trucks (30) 14.8 18.4 +3.6

Others (995) 944.8 947.0 +2.2

Sum (1695) 1490.2 1558.8 +68.6
Std. Err. 5.8 4.7
Normalized (%) 84.5 88.0

Search Time (s) 0.86 0.36

Table 6: Coverage of GBFS-SCL (using A∗ in the lookahead) with hCFF
off and hCFF

on . Domains
where the difference in coverage is less than one are grouped into “Others”.

(worse on 5). The most significant exceptions are Termes (−6.0 coverage), Sokoban (−5.4),
and Parking (−4.0). In Termes and Sokoban, online refinement is triggered frequently,
making the heuristic much more costly to compute (the growth factor becomes more than
50 on some instances). On the other hand, in many domains few conjunctions suffice
(or even none at all), and hCFF

off incurs more overhead than hCFF
on . One such example is

Openstacks, where online refinement never triggered on 87 of the 90 tasks. Furthermore,
offline refinement results in a less informative heuristic than hFF. This combination of
unnecessary overhead and a weaker heuristic results in the large difference of 26.2 solved
instances between hCFF

on and hCFF
off . Overall, hCFF

on not only vastly improves coverage, but
also reduces search time on commonly solved instances by 58% on average.

VisitAll, where an agent must visit all cells in a given grid, is a simple domain that
is particularly well-suited for GBFS-SCL. Figure 5 illustrates the lookahead on a small
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Relaxed Plan Lookahead Search Tree Lookahead State

Figure 5: Illustration of GBFS-SCL’s lookahead on an 11x11 instance of VisitAll.

instance of that domain. The agent is located in the center of an 11x11 grid (illustrated by
the highlighted border), and must visit all other cells. For the experiment illustrated here,
we use hFF with arbitrary tie breaking and GBFS as the lookahead search algorithm in
GBFS-SCL. The first panel shows the relaxed plan computed by hFF, branching out in all
directions to reach each location of the grid. The center panel shows the search tree resulting
from the lookahead search in GBFS-SCL. Since the lookahead uses 1-novelty pruning, each
location is visited exactly once (each fact of the form at(x) is novel once). The highlighted
path leads to the state with lowest hSC value, which is shown in the third panel. In that
state, the agent has already visited 102 of the 121 locations in the grid, bringing it much
closer to the goal than the original state. After two more lookaheads, GBFS-SCL already
returns a solution, after having computed hFF only four times in total (on the three root
states of the lookaheads and in the goal state). For comparison, standard GBFS with hFF

expands 12227 states on this instance.

9. Experiments

In this section, we compare our algorithms to similar algorithms without online refinement
to highlight its benefits. Furthermore, we compare our algorithms to state-of-the-art plan-
ners, both on the IPC benchmarks as well as the recently published Autoscale benchmarks
(Torralba et al., 2021).

9.1 Comparison to Baselines without Online Refinement

Table 7 compares the best-performing configurations of our online-refinement algorithms
to related baselines. The baselines we consider here are incomplete enforced hill-climbing
(EHC), the FF (Hoffmann & Nebel, 2001) strategy of running EHC first and then switching
to GBFS in case of failure, and standard GBFS, each with hFF and (offline-refined) hCFF.

Comparing just hFF with offline hCFF; while the added conjunctions help in some do-
mains (in particular Floortile and Woodworking), the opposite is true in many others (e.g.,
Openstacks). In total coverage, both the FF and GBFS search algorithms perform better
with hFF than with hCFF. This has two major reasons. First, adding conjunctions intro-
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Coverage
EHC FF GBFS

RHC RHC-
SC

GBFS-
SCLhFF hCFF hFF hCFF hFF hCFF

Agricola (20) 4.6 3.8 13.4 13.0 12.8 12.8 11.6 11.8 12.4
Airport (50) 12.6 22.2 34.4 34.8 34.4 34.2 46.4 39.8 41.2
Barman (40) 31.6 19.2 31.2 18.6 24.4 5.4 40.0 40.0 39.4
Childsnack (20) 0.0 0.0 0.8 0.4 0.4 1.4 9.6 13.4 8.4
DataNetwork (20) 1.4 1.6 13.0 8.4 15.0 13.2 16.6 19.4 18.6
Depot (22) 11.2 16.4 19.8 21.8 19.0 21.4 22.0 22.0 22.0
DriverLog (20) 7.8 8.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Elevators (40) 40.0 37.0 40.0 37.4 40.0 39.4 40.0 40.0 40.0
Floortile (40) 0.0 37.2 8.4 39.6 8.8 39.8 40.0 40.0 40.0
Freecell (80) 59.6 62.6 80.0 79.8 79.4 78.8 78.0 77.4 80.0
GED (20) 18.2 16.2 18.6 16.4 20.0 19.2 20.0 20.0 20.0
Gripper (20) 20.0 19.8 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Hiking (20) 0.0 2.6 18.4 19.2 20.0 19.8 20.0 20.0 20.0
Logistics (63) 59.4 62.6 59.2 62.4 62.8 63.0 63.0 63.0 62.4
Miconic (150) 150.0 136.2 150.0 150.0 150.0 150.0 150.0 150.0 150.0
Mprime (35) 35.0 34.8 35.0 35.0 35.0 35.0 35.0 35.0 35.0
Mystery (19) 15.0 17.8 18.6 19.0 18.6 18.8 19.0 19.0 19.0
Nomystery (20) 2.2 0.4 8.4 6.2 8.6 6.0 10.4 10.0 9.6
Openstacks (90) 90.0 52.0 90.0 56.2 90.0 66.0 89.6 90.0 90.0
OrgSynth (20) 2.8 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0
OrgSynth-split (20) 0.4 0.0 11.2 10.4 10.6 10.4 2.6 1.6 8.0
Parcprinter (40) 19.0 26.2 33.6 34.0 28.8 32.8 40.0 39.8 40.0
Parking (40) 11.2 18.2 18.2 21.2 33.2 19.4 40.0 19.8 35.6
Pathways (30) 22.2 22.2 25.4 24.8 21.8 21.0 30.0 30.0 24.8
Pegsol (35) 3.6 5.6 35.0 35.0 35.0 35.0 35.0 33.8 34.6
Pipes-notank (50) 23.8 27.2 41.8 42.6 41.4 41.2 45.6 48.8 49.6
Pipes-tank (50) 28.4 27.6 38.8 38.0 38.4 39.0 44.2 47.0 48.8
PSR (50) 0.0 8.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Rovers (40) 39.2 38.4 39.0 39.0 40.0 40.0 40.0 40.0 40.0
Satellite (36) 35.8 35.0 35.8 36.0 36.0 35.8 36.0 31.0 30.8
Scanalyzer (28) 27.0 26.0 27.6 26.2 26.0 28.0 28.0 28.0 28.0
Snake (20) 3.6 5.0 4.6 6.8 6.8 6.2 12.4 18.0 17.2
Sokoban (30) 0.0 0.0 28.8 26.0 28.2 25.4 11.0 11.4 17.8
Spider (20) 3.2 4.0 13.6 12.6 13.6 12.8 12.2 14.2 15.8
Storage (30) 6.4 5.4 20.0 20.6 20.8 20.0 28.8 30.0 30.0
Termes (20) 0.0 0.6 2.4 3.6 13.4 11.8 4.0 9.6 6.8
Tetris (20) 0.0 0.2 12.2 8.6 14.4 13.8 15.8 20.0 19.8
Thoughtful (20) 12.0 12.2 14.0 15.4 10.8 12.8 20.0 12.0 15.0
Tidybot (20) 14.0 9.0 17.0 16.2 16.4 16.2 18.0 19.4 19.8
TPP (30) 27.6 27.6 27.6 28.0 30.0 30.0 30.0 30.0 30.0
Transport (60) 26.0 25.4 26.8 27.2 38.8 38.8 54.2 60.0 60.0
Trucks (30) 4.0 2.8 18.2 16.6 18.0 16.8 16.2 18.8 18.4
VisitAll (37) 5.8 5.4 5.6 5.4 20.0 18.2 19.2 37.0 37.0
Woodworking (40) 4.0 39.6 32.2 40.0 33.0 40.0 40.0 40.0 40.0

Others (90) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0

Sum (1695) 968.6 1014.8 1351.6 1335.4 1397.6 1372.6 1517.4 1534.0 1558.8
Std. Error 8.0 10.4 6.2 7.1 5.5 7.0 4.6 5.1 4.7
Normalized (%) 50.2 54.0 75.6 75.1 78.5 77.6 85.0 86.7 88.0

Table 7: Coverage on the IPC benchmarks for traditional search algorithms using hFF and
(offline-refined) hCFF compared to our online-refinement search algorithms.
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duces overhead in domains where standard hFF is already a sufficiently strong heuristic,
both through the time spent for the refinement at the start of the search, but also by slow-
ing down the heuristic computation. Second, while the heuristic becomes more informed
and its heuristic values increase, this added information may be confined to a small area of
the search space and harm the search performance overall (see e.g., Wilt & Ruml, 2016), as
the search may be guided into areas where the heuristic is less informed and its values are
closer to hFF.

Our online-refinement algorithms on the other hand are much more flexible, and ensure
that there is no unnecessary overhead by avoiding refinement if the heuristic is already
sufficiently accurate. Furthermore, the refinement can focus on areas of the search space
where the heuristic is inaccurate, resulting in very targeted refinement spread out over the
explored search space. RHC, RHC-SC, and GBFS-SCL are clearly superior to these base-
lines, dominating coverage over the baselines in almost all domains. The biggest gains are
in Barman, Childsnack, Parcprinter, Snake, Storage, and Transport, where even the worst
of our online-refinement algorithms beats the best baseline by a substantial margin. One
example where online refinement performs poorly is Sokoban. This domain contains many
dead ends, so the local lookahead searches of our algorithms frequently fail to yield a better
state, and our hill-climbing algorithms need to restart often from getting stuck in those
dead ends. Overall, our online-refinement algorithms consistently yield vast improvements
over traditional search algorithms with the same heuristic.

9.2 Online vs. Offline Conjunctions Quality

If the set of conjunctions C for hCFF is generated online, then the set of conjunctions at the
end of the search is composed of information gained from many different states observed
in an actual search. In contrast, if C is generated offline, it only contains information
learned from (partially) relaxed plans generated in the initial state. This observation should
conclude that the “quality” of an online-generated set of conjunctions Con should be superior
to a similar set of conjunctions Coff generated offline, that is, they should result in a heuristic
better suited to guide the search.

In order to assess this hypothesis, we compare runs of greedy best-first search with
hCFF using either a set of conjunctions Con generated by one of our online-refinement
search algorithms or a set of conjunctions Coff of the same size generated via repeated
refinement only in the initial state. Figure 6 compares the number of expansions of such
GBFS searches. In this experiment, Con is generated by RHC – we consider the final
set of conjunctions when RHC finds a solution or reaches the time limit of 30 minutes,
and then start GBFS with hCFF using these conjunctions. We only consider tasks where
such Con contains at least one added conjunction for all five random seeds (917 instances).
While there is some variance, Con leads to fewer expansions in 333 instances, compared to
207 instances where GBFS with Coff is better. Furthermore, the search with Con has a
better coverage (680.8 vs. 648.2), and averages 32% fewer expansions on the 544 commonly
solved instances. We repeated the experiment with conjunctions generated by RHC-SC and
GBFS-SCL, with similar results: 14% fewer expansions and +36.4 coverage (on 885 tasks)
for Con resulting from RHC-SC, and 19.5% fewer expansions and +37.8 coverage (on 953
tasks) for conjunctions generated by GBFS-SCL.
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Figure 6: Expansions for GBFS with hCFF using conjunctions generated online by RHC
(Con) vs. conjunctions generated offline in the initial state (Coff ).

9.3 Comparison to the State of the Art

We compare our best-performing search algorithms to the following state-of-the-art satis-
ficing planners:

• LAMA (Richter & Westphal, 2010), which runs a greedy best-first search using hFF

and a landmark-counting heuristic (Richter, Helmert, & Westphal, 2008) in an alter-
nating queue,

• Mercury (Katz & Hoffmann, 2014), which is based on LAMA, replacing hFF by a
partial delete relaxation heuristic hRB based on red-black planning (Domshlak et al.,
2015),

• MERWIN (Katz et al., 2018), which is similar to Mercury but replaces hRB with a
novelty heuristic that uses hRB for the underlying estimates (Katz et al., 2017),

• Dual-BFWS (Francès et al., 2018; Lipovetzky & Geffner, 2017), a best-first search
using a tie-breaking sequence of multiple novelty heuristics based on estimates using
delete relaxation, landmarks, and (sub-)goal counting,

• the 2018 version of Fast Downward Stone Soup (FDSS) (Seipp & Röger, 2018; Helmert
et al., 2011), an anytime portfolio planner running 41 different configurations in an
automatically tuned sequence with varying time limits, and
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• Saarplan (Fickert, Gnad, Speicher, & Hoffmann, 2018), another portfolio planner
using several different state-of-the-art techniques, including decoupled search (Gnad
& Hoffmann, 2018), gray planning (Speicher et al., 2017), and landmarks, and using
an earlier version of Refinement-HC with hCFF as one of its core components.

FDSS and Saarplan additionally use Alcazar and Torralba’s (2015) h2 preprocessor, which
can reduce the size of the translated task by pruning operators and facts that are detected
to be unreachable.

We include Saarplan not only to provide a comparison point to a state-of-the-art portfo-
lio planner, but also to demonstrate that Refinement-HC can be a strong component inside
a portfolio. Saarplan is set up as a sequential portfolio, starting with two different con-
figurations of decoupled search, then switching to gray planning (but only to evaluate the
heuristic on the initial state, returning the partially relaxed plan as solution if it is also a
plan under non-relaxed semantics) and finally to search with hCFF. This last component
first runs Refinement-HC (using BrFS and C-novelty pruning in the lookahead search) until
a time bound or a maximum growth factor of 8 is reached for hCFF, using the remaining
time for a LAMA-like configuration of GBFS with an alternating queue of hCFF and a
landmark heuristic.

Table 8 shows the coverage on the IPC benchmarks. Domains that are fully solved by all
shown planners are grouped into “Others”. While the complex portfolio planners FDSS and
Saarplan have the highest overall coverage, all three of our search algorithms with online
refinement of the hCFF heuristic solve more instances than LAMA, Mercury, MERWIN, and
Dual-BFWS. Our online-refinement planners are particularly effective in the Data Network
and Pipesworld (with tankage) domains, where each of them solves more instances than
any other planner except Saarplan (though in Data Network, 11 of the 19 solved instances
by Saarplan are only solved by its hCFF components). RHC-SC and GBFS-SCL beat all
other planners in the Snake domain by (except for Dual-BFWS) significant margins. On
the other hand, our planners have comparatively weak performance in Nomystery, where
fuel consumption causes issues for delete relaxation heuristics and is hard to capture with
conjunctions in hCFF, and Sokoban, which has a large number of dead ends where the
lookahead is not effective and our hill-climbing algorithms are frequently trapped.

The last rows of Table 8 additionally show the search time and solution cost as the
geometric means across all commonly solved instances (excluding FDSS and Saarplan). We
omit the portfolio planners as their search times and solution costs are not comparable since
they use additional preprocessing, potentially run many configurations before reaching one
that finds a solution, and continue search to improve plans after finding the first solution.
Our online-refinement algorithms beat LAMA, Mercury, MERWIN, and Dual-BFWS not
only with regard to coverage, but also in search time. GBFS-SCL needs less time to find
solutions than any of these planners in 15 domains (of the 47 domains where these planners
have at least one commonly solved instance); averaged across all domains GBFS-SCL is
23% faster than LAMA, 39% faster than Mercury, 49% faster than MERWIN, and 21%
faster than Dual-BFWS. On the other hand, our methods result in more expensive plans.
However, this disadvantage can potentially be compensated for by running them in an
anytime configuration where solutions are continually improved.

Since many domains are fully solved by all state-of-the-art planners (e.g., 11 domains
are fully solved by all planners we consider here), we also compare the performance on
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Agricola (20) 11.6 11.8 12.4 12 9 9 11 13 8
Airport (50) 46.4 39.8 41.2 34 35 36 44 47 45
Barman (40) 40.0 40.0 39.4 40 36 40 40 40 40
Childsnack (20) 9.6 13.4 8.4 6 5 0 8 18 20
DataNetwork (20) 16.6 19.4 18.6 11 13 16 9 11 19
Depot (22) 22.0 22.0 22.0 19 18 21 22 21 22
Elevators (40) 40.0 40.0 40.0 40 40 40 40 39 40
Floortile (40) 40.0 40.0 40.0 8 9 8 5 40 40
Freecell (80) 78.0 77.4 80.0 77 79 80 80 80 79
GED (20) 20.0 20.0 20.0 13 20 20 20 20 20
Hiking (20) 20.0 20.0 20.0 20 11 19 11 20 20
Logistics (63) 63.0 63.0 62.4 63 63 63 62 63 63
Mystery (19) 19.0 19.0 19.0 19 16 19 19 19 19
Nomystery (20) 10.4 10.0 9.6 11 13 19 18 19 19
Openstacks (90) 89.6 90.0 90.0 86 88 90 89 89 90
OrgSynth (20) 3.0 3.0 3.0 3 3 3 3 3 3
OrgSynth-split (20) 2.6 1.6 8.0 11 8 11 12 10 9
Parcprinter (40) 40.0 39.8 40.0 40 40 40 39 40 40
Parking (40) 40.0 19.8 35.6 40 34 40 40 40 40
Pathways (30) 30.0 30.0 24.8 23 29 30 30 30 29
Pegsol (35) 35.0 33.8 34.6 35 35 35 35 35 35
Pipes-notank (50) 45.6 48.8 49.6 43 43 44 50 44 48
Pipes-tank (50) 44.2 47.0 48.8 41 40 42 41 43 45
Satellite (36) 36.0 31.0 30.8 36 36 36 31 36 36
Snake (20) 12.4 18.0 17.2 4 5 6 15 8 11
Sokoban (30) 11.0 11.4 17.8 29 27 26 25 29 29
Spider (20) 12.2 14.2 15.8 19 12 14 16 11 15
Storage (30) 28.8 30.0 30.0 19 20 24 30 25 28
Termes (20) 4.0 9.6 6.8 14 13 13 9 12 14
Tetris (20) 15.8 20.0 19.8 6 14 18 15 19 20
Thoughtful (20) 20.0 12.0 15.0 15 12 17 19 20 20
Tidybot (20) 18.0 19.4 19.8 17 13 17 18 19 19
TPP (30) 30.0 30.0 30.0 30 30 30 29 30 30
Transport (60) 54.2 60.0 60.0 57 60 60 60 57 60
Trucks (30) 16.2 18.8 18.4 15 17 21 17 23 19
VisitAll (37) 19.2 37.0 37.0 37 37 37 37 37 37
Woodworking (40) 40.0 40.0 40.0 40 40 31 24 40 40

Others (433) 433.0 433.0 433.0 433 433 433 433 433 433

Sum (1695) 1517.4 1534.0 1558.8 1466 1456 1508 1506 1583 1604
Normalized (%) 85.0 86.7 88.0 81.8 80.4 85.1 85.0 90.1 91.9

Search Time (s) 0.32 0.36 0.26 0.34 0.43 0.51 0.33 – –
Solution Cost 87.4 100.3 94.8 79.7 78.2 76.9 62.9 – –

Table 8: Coverage on the IPC benchmarks.
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Barman (30) 4.4 8.0 6.0 22 18 15 4 12 17
Blocks (30) 29.0 22.8 16.8 22 18 22 9 15 24
Childsnack (30) 7.4 12.0 14.8 11 7 2 8 24 30
DataNetwork (30) 26.8 29.8 29.8 19 15 21 16 19 29
Depot (30) 25.8 26.0 26.0 18 15 15 20 16 22
DriverLog (30) 23.8 12.0 11.6 14 15 15 11 12 20
Elevators (30) 25.0 30.0 30.0 18 30 30 28 14 30
Floortile (30) 6.8 8.2 8.8 2 2 2 2 7 9
Grid (30) 12.0 21.0 19.6 15 5 12 14 12 14
Gripper (30) 30.0 30.0 30.0 30 30 30 30 30 30
Hiking (30) 6.0 28.8 15.2 15 4 6 6 9 23
Logistics (30) 20.0 21.0 17.6 15 26 26 12 15 15
Miconic (30) 30.0 30.0 30.0 30 30 30 30 30 30
Nomystery (30) 3.8 3.2 2.6 7 25 29 12 29 20
Openstacks (30) 13.8 15.0 17.0 13 20 21 15 14 19
Parking (30) 17.2 25.0 25.0 17 17 17 19 13 13
Rovers (30) 30.0 27.0 26.8 30 25 24 23 30 30
Satellite (30) 18.0 9.0 9.0 14 18 18 9 18 16
Scanalyzer (30) 15.0 15.0 15.0 15 13 13 12 13 12
Snake (30) 25.2 30.0 30.0 5 4 6 18 8 14
Storage (30) 9.4 14.0 14.0 5 7 9 12 8 17
TPP (30) 23.2 24.0 24.0 20 19 14 9 14 14
Transport (30) 18.0 18.0 18.0 12 16 16 13 13 15
VisitAll (30) 13.6 25.8 27.8 29 23 23 30 21 28
Woodworking (30) 30.0 13.0 19.8 10 17 6 3 12 29
Zenotravel (30) 16.0 16.0 16.0 16 14 14 12 14 13

Sum (780) 480.2 514.6 501.2 424 433 436 377 422 533

Search Time (s) 1.07 1.07 0.95 1.47 1.01 1.21 1.99 – –
Solution Cost 140 168 164 127 112 123 127 – –

Table 9: Coverage on the Autoscale benchmarks.

the Autoscale benchmarks (Torralba et al., 2021). This benchmark set is designed to be
challenging for recent planners through automatic tuning of the parameters of the instance
generators, and typically yields a much larger range of coverage values on most domains
when comparing state-of-the-art planners. Table 9 shows the results on these benchmarks.
Like on the IPC benchmarks, all of our online-refinement planners beat LAMA, Mercury,
MERWIN, and Dual-BFWS. FDSS also falls behind on these domains, which can be at-
tributed to two major factors. First, FDSS has been optimized for the IPC domains (before
2018) and thus may not be tuned effectively for this benchmark set. Second, the instances
here tend to be larger in size than the ones from the IPC benchmarks, so running many
different configurations with very small time limits may not be as effective as running fewer
configurations with larger bounds. Saarplan again has the highest coverage overall with
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533 solved instances, followed by RHC-SC (514.6 ± 3.2), GBFS-SCL (501.2 ± 3.6), and
RHC (480.2± 3.9). However, on half of the domains, RHC-SC is the (at least shared) best
configuration (in comparison to e.g. Saarplan, which is the best on only 7 out of the 26
domains). All our online-refinement search algorithms are particularly effective in Depot,
Snake, TPP, and Transport, where they beat all other considered planners, and partially also
in Blocksworld (RHC), DriverLog (RHC), Grid (RHC-SC and GBFS-SCL), Hiking (RHC-
SC), Parking (RHC-SC and GBFS-SCL), and Woodworking (RHC). Conversely, Barman
and again Nomystery are domains where our planners are generally inferior to the others.

Overall, all of our online-refinement algorithms, in particular RHC-SC and GBFS-SCL,
show very competitive performance on both the IPC and Autoscale benchmarks, even com-
pared to state-of-the-art portfolios.

10. Related Work

As pointed out above, the heuristic of our choice, hCFF, uses a refinement operation based on
counterexample-guided abstraction refinement (CEGAR) to instantiate its set of conjunc-
tions. CEGAR was originally established in model checking (Clarke et al., 2003), and has
recently been used in planning to great success. In optimal planning, it most prominently
serves as the refinement method for Cartesian abstraction heuristics (Seipp & Helmert,
2013, 2018). More recently, it has also been shown to be an effective method to instantiate
pattern database heuristics (Rovner et al., 2019).

The most closely related approach to ours using online heuristic refinement addresses
Cartesian abstraction heuristics in optimal classical planning (Eifler & Fickert, 2018), which
has been inspired by our earlier work on Refinement-HC (Fickert & Hoffmann, 2017a).
Like hCFF, their fine-grained CEGAR-based refinement operation makes them a suitable
candidate for online refinement. Abstraction heuristics, including those based on Cartesian
abstractions, are most effective when multiple smaller abstractions are combined via cost
partitionings (Seipp & Helmert, 2014, 2018). However, in order to guarantee convergence of
the heuristic, abstractions must be merged, which is expensive and diminishes the advantage
gained by effective cost partitionings. In practice, the results of this approach have been
promising, but have not yet reached the performance of state-of-the-art planners that are
based on Cartesian abstractions with offline refinement.

When multiple heuristics are used, their combination can be refined instead of the
heuristics themselves. For example, Fink (2007) refines a weighted sum of multiple admis-
sible heuristics for optimal heuristic search. Domshlak et al. (2012) use online learning to
obtain a classifier that selects the best heuristic to use in each state. Some approaches for
cost partitionings allow selecting the best one from a set of partitionings generated before
search (Felner et al., 2004; Karpas et al., 2011; Seipp et al., 2020), or may generate a new
partitioning optimized for each state (Katz & Domshlak, 2010; Seipp et al., 2020). More
recently, Seipp (2021) introduced a method to generate additional diverse partitionings on-
line, allowing the search to select the best one in each state for the remainder of the search.
However, none of these approaches refine the underlying abstractions, and they do not yield
a convergence guarantee.

Apart from refining the heuristic function, other forms of online relaxation refinement
exist: Steinmetz and Hoffmann (2017a) use online-refinement of conjunctions to learn a
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dead-end detector. Another example is Wilt and Ruml’s (2013) bidirectional search algo-
rithm, which uses the frontier of the backwards part to improve the heuristic in the forward
search component.

Arfaee, Zilles, and Holte (2011) learn a heuristic function for large state spaces through
a bootstrapping approach that trains a heuristic on increasingly difficult instances. While
this is still a form of offline refinement, the authors point out that it can be adapted
to solve single instances by interleaving refinement and search by periodically starting a
search algorithm in a new thread using the current version of the heuristic. In principle,
this strategy could be used with any offline refinement algorithm, but does not constitute
online refinement in the sense that the heuristic is static during each search.

In real-time search, per-state updates are a common approach to improve the heuristic
and ensure completeness (Korf, 1990; Barto, Bradtke, & Singh, 1995; Bonet & Geffner,
2003). In particular, the search strategy of LSS-LRTA* (Koenig & Sun, 2009) bears resem-
blance to Refinement-HC: Each search step first performs a bounded lookahead, after which
the heuristic values of the local search space are updated from observations of the frontier.
Such per-state updates only correct the heuristic values on states that have been explored,
but lack generalization to those that have not been encountered yet as the relaxation under-
lying the heuristic remains unchanged. Following the initial work on online refinement of
Cartesian abstractions (Eifler & Fickert, 2018), Eifler, Fickert, Hoffmann, and Ruml (2019)
have shown that the idea can be transferred to real-time planning, often resulting in better
performance due to the added generalization.

Finally, Thayer, Dionne, and Ruml (2011) provide a simple method to compute a linear
correction factor for the heuristic based on observed errors on the search space surface, but
this method does not yield convergence guarantees.

11. Conclusion

Typically, heuristics are instantiated before starting the search, yet many heuristics offer
a refinement operation that can in principle also be applied online. Online refinement has
obvious benefits: Computational overhead can be reduced by only refining the heuristic if
it is actually necessary, and online refinement can use information gained during the search,
allowing the heuristic to adapt to the state space explored by the search. Despite these
advantages, online relaxation refinement has barely been addressed before, as critical ques-
tions of when and how to refine have no clear answer. The search algorithms we introduced
in this work use local exploration to evaluate whether the heuristic is sufficiently accurate on
the local search space, and use online refinement to escape local minima and plateaus. Con-
verging refinement makes our hill-climbing algorithms complete, and instantiated with the
hCFF heuristic, makes them competitive with state-of-the-art systematic search approaches.
On the IPC and Autoscale benchmarks, our algorithms with hCFF online refinement sub-
stantially beat related state-of-the-art planners, and are highly competitive with complex
portfolios where they can also be used as a strong component.

One avenue for future work is to combine online relaxation refinement for the heuristic
with similar refinement operations for other purposes. A straightforward example is nogood
learning, choosing new conjunctions for hCFF so as to be able to prune more dead-end states
(Steinmetz & Hoffmann, 2017b, 2018). Another example, in the specific arrangement of our
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techniques relying crucially on novelty pruning, is conjunction learning for novelty pruning.
While, here, we already use C-novelty pruning with conjunctions added during the search,
we use the conjunctions that were selected to be useful for hCFF, without any information
flow specific to novelty pruning. It remains an open question how to identify conjunctions
that are useful for novelty, learning conjunctions specifically for that purpose. This could
be a promising way to improve planners such as MERWIN and Dual-BFWS, that rely on
novelty measures as the main function to guide the search.
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