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Abstract

The multi-armed bandit is a reinforcement learning model where a learning agent re-
peatedly chooses an action (pull a bandit arm) and the environment responds with a
stochastic outcome (reward) coming from an unknown distribution associated with the
chosen arm. Bandits have a wide-range of application such as Web recommendation sys-
tems. We address the cumulative reward maximization problem in a secure federated
learning setting, where multiple data owners keep their data stored locally and collaborate
under the coordination of a central orchestration server. We rely on cryptographic schemes
and propose Samba, a generic framework for Secure federAted Multi-armed BAndits. Each
data owner has data associated to a bandit arm and the bandit algorithm has to sequen-
tially select which data owner is solicited at each time step. We instantiate Samba for five
bandit algorithms. We show that Samba returns the same cumulative reward as the non-
secure versions of bandit algorithms, while satisfying formally proven security properties.
We also show that the overhead due to cryptographic primitives is linear in the size of the
input, which is confirmed by our proof-of-concept implementation.

1. Introduction

Federated learning is a machine learning paradigm where multiple data owners collaborate in
solving a learning problem, under the coordination of a central orchestration server (Kairouz,
McMahan, & et al., 2021). Each data owner’s raw data is stored locally and not exchanged
or transferred. The development of machine learning algorithms in federated learning set-
tings is a timely topic, which touches several communities: “a longstanding goal pursued
by many research communities (including cryptography, databases, and machine learning)
is to analyze and learn from data distributed among many owners without exposing that
data” (Kairouz et al., 2021). We tackle this goal by relying on cryptographic techniques to
develop a secure framework for learning on distributed data.

In particular, we focus on multi-armed bandits, a reinforcement learning model where
a learning agent needs to sequentially decide which “arm” to choose among several options
(with unknown reward distributions) available in the environment. After each arm selec-
tion, the environment responds with a stochastic reward drawn from the reward distribution
associated to the chosen arm. To maximize the cumulative reward, the learning agent has
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Figure 1: Instantiation of the federated learning paradigm for cumulative reward maximiza-
tion in multi-armed bandits.

to continuously face the so-called exploration-exploitation dilemma and decide whether to
explore by choosing arms with more uncertain associated values, or to exploit the infor-
mation already acquired by choosing the arm with the seemingly largest associated value.
Bandits have practical applications such as Web recommender systems, where the arms are
the recommended items and the rewards are given by the user ratings. More specifically,
we tackle the problem of secure cumulative reward maximization in federated multi-armed
bandits, a problem that to the best of our knowledge has not been previously studied in
the literature. Our goal is to propose a generic federated framework that is guaranteed to
return exactly the same cumulative reward as standard bandit algorithms (Sutton & Barto,
2018, Chapter 2), while guaranteeing formally proven security properties.

As depicted in Figure 1, we assume that the data i.e., the reward functions associated
to K bandit arms are stored locally by K data owners (DO1, . . . ,DOK). The data is
potentially sensitive, hence it should remain stored locally and cannot be seen in clear by
any participant other than its owner (this is why we depict locks near each DOi). As typically
done in federated learning, we assume that the learning algorithm is done by some central
orchestration server (referred to as server in the sequel). The data customer (DC) sends a
budget N to the server and receives the cumulative reward. Moreover, we assume that the
participants in Figure 1 (data owners, server, and data customer) are honest-but-curious
i.e., they correctly do the required computations, but try to gain as much information as
possible based on the data that they see. In particular, we aim at minimizing the data
leakage to the server (this is why we also depict a lock near the server) e.g., the server
cannot see rewards produced by each data owner. Additionally, an external observer that
has access to all messages exchanged between the aforementioned participants should not
be able to learn any input, output, or intermediate data.

To motivate our problem setting, we present an example based on federated learning in
recommendation systems (Shi & Shen, 2021; Li, Song, & Fragouli, 2020). In this case, the
K data owners are K local stores, each of them being able to recommend items based on
potentially sensitive data. Moreover, the data customer is a parent company that displays
on its Web site recommended items that can come from any of the K local stores. Given a
budget N (i.e., total number of recommended items that can be sequentially displayed by
the parent company), the goal of the parent company is to maximize the cumulative reward
(i.e., maximize the sum of obtained user ratings on the recommended items). The bandit al-
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gorithm has to decide how to sequentially choose the N recommended items, which should
come from the K local stores. The aforementioned recommendation systems motivating
example can be easily adapted to other classical federated learning applications where secu-
rity is of paramount importance e.g., commercial, financial, and medical domains (Kairouz
et al., 2021).

Our goal is to build a generic federated learning framework such that, given some stan-
dard bandit algorithm A, we are able to plug A in our framework and obtain the same
cumulative reward as A, while guaranteeing data security. Our goal could be theoreti-
cally achieved by relying on a fully homomorphic encryption (FHE) scheme (Gentry, 2009),
which allows to compute any function directly in the encrypted domain. Indeed, in the-
ory it would suffice that each data owner encrypts its data with a FHE scheme; then, the
server would do the computations needed for cumulative reward maximization directly in
the encrypted domain. However, it remains an open question how to build a practical FHE
system. Although state-of-the-art FHE systems (SEAL1 and HElib2) have done remarkable
progress, computations with real numbers are still limited because of the noise needed for
FHE multiplications. Moreover, even simple functions such as comparisons needed in all
bandit algorithms (e.g., compute an argmax or a probability matching) require complex
and time-consuming computations in FHE systems, even for approximate results and even
for recent state-of-the-art algorithms (Cheon, Kim, & Kim, 2020; Garcelon, Perchet, &
Pirotta, 2021). Since FHE systems cannot be currently used off-the-shelf to propose secure
federated bandit algorithms, our approach is based on simpler cryptographic schemes, in
conjunction with secure multi-party computation.

Summary of Contributions and Paper Organization

In Section 2, we discuss the positioning of our problem setting w.r.t. the related work. In
Section 3, we introduce basic notions on bandit algorithms and cryptographic tools.

In Section 4, we present Samba, a generic framework for secure cumulative reward
maximization for federated bandits. The key ingredients of Samba are:

• We distribute the server computations between two nodes: Controller (that sees only
encrypted messages and distributes computation tasks among participants) and Comp
(whose only goal is to compare numbers obtained after permuting and masking bandit
arm scores). This distribution technique allows to perform comparisons, without
revealing to the server neither the bandit arm scores nor the arm pulled at some time
step.

• We exchange only encrypted messages such that an external network observer cannot
learn any input, output, or intermediate data. Moreover, each data owner can see in
clear the raw data pertaining to its bandit arm and nothing else. The data owners
communicate only with Controller, with messages encrypted with indistinguishable
under chosen-plaintext attack (IND-CPA) cryptographic schemes, namely symmetric
AES-GCM (2001, 2007) and asymmetric (Paillier, 1999).

• At the end of Samba, we compute the cumulative reward by summing up the rewards
from each data owner directly in the encrypted domain, by relying on the additive

1. https://github.com/Microsoft/SEAL

2. http://homenc.github.io/HElib/
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Data
Participant

DOi DC Server Ext

Cumulative reward X

Sum of rewards and number of pulls for DOi X

Sum of rewards and number of pulls for DOj 6=i
Arm pulled at time step t X?

Reward at time step t X?

Figure 2: Security properties. The X should be read as: the participant can see in clear
the concerned piece of data, whereas an empty case means the opposite. The ?
should be read as: only if DOi is pulled at time step t. Ext should be read as:
an external network observer having access to all messages exchanged between
participants.

homomorphic property of Paillier. Hence, neither the data owners nor the server
nodes can see in clear the cumulative reward: only the data customer that invested a
budget for computing the cumulative reward is able to decrypt it.

We instantiate Samba to secure five bandit algorithms: ε-greedy, UCB, Thompson Sam-
pling, Softmax, and Pursuit. In Section 5, we provide the theoretical analysis of Samba.
In a nutshell, we show that Samba enjoys the following features:

• Genericity: Samba can be instantiated with any bandit algorithm that satisfies the
properties (i) computing the score of an arm does not depend on the other arms, and
(ii) selecting the arm to be pulled at some round can be done in the presence of some
random masks and permutations on which Samba relies to hide the real arm scores.
In particular, the five aforementioned bandit algorithms satisfy these properties. We
also include examples of bandit algorithms that cannot be instantiated in Samba: an
existing algorithm (Reinforcement Comparison) that cannot be instantiated because
of (i), and an hypothetical algorithm that cannot be instantiated because of (ii) as we
are not aware of any off-the-shelf algorithm that does not satisfy (ii).

• Correctness: Samba returns exactly the same cumulative reward as the standard (non-
secure and non-federated) bandit algorithms because the cryptographic primitives and
distribution of tasks do not change the arm selection strategy w.r.t. the standard
algorithms.

• Security: we summarize the security properties in Figure 2. We give a brief intuition
for each participant:

– DOi can see data concerning arm i and nothing else about other arms, nor about
the cumulative reward.

– Only DC can see the cumulative reward for which she spends a budget. She can
see only this piece of information for which she pays, and nothing else.

– The server nodes (Controller and Comp) and external observers cannot learn any
input, output, and intermediate data.

• Complexity: the number of cryptographic operations is linear in the input: Samba
uses O(NK) AES-GCM operations and O(K) Paillier operations. It is a desirable
feature that the number of Paillier operations does not depend on the budget N
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because N is typically larger than the number of arms K, and AES-GCM is much
faster than Paillier.

In Section 6, we report on a proof-of-concept empirical evaluation that shows the feasibility
and scalability of Samba. We present directions of future work in Section 7.

2. Related Work

In Section 2.1, we discuss the positioning of our problem setting w.r.t. the federated learning
literature. In Section 2.2, we discuss related works on federated and secure bandits.

2.1 Positioning in the Federated Learning Paradigm

We precisely position our problem setting w.r.t. a state-of-the-art federated learning sur-
vey (Kairouz et al., 2021). Our framework is built upon the typical federated learning
characteristics:

• Data distribution. Data is generated locally and remains decentralized. Each data
owner stores its own data and cannot read the data of the other data owners.

• Orchestration. A central orchestration server organizes the learning, but never sees
raw data.

Moreover, among the main federated learning settings (cross-silo vs cross-device) (Kairouz
et al., 2021), our framework pertains to the cross-silo federated learning setting, whose
typical characteristics are:

• Distribution scale. There are rather few data owners (less than 100), which can be
different organizations e.g., stores, hospitals.

• Data availability and reliability. Each data owner is assumed to be available when it
is required to do some computation tasks and there are no machine failures.

• Primary bottleneck. In general, it might be the computation and communication costs.
In our framework, both costs have the same asymptotic big-O complexity.

• Addressability. Each data owner has an id that allows the central orchestration server
to access it specifically.

• Statefulness. Each data owner is stateful i.e., it maintains local variables throughout
the execution of the entire framework.

• Data partition. The partition should be fixed. In our case, we assume feature-
partitioned (vertical) data i.e., each data owner has data pertaining to a single bandit
arm.

• Incentive mechanisms. There is the need for incentive mechanisms to ensure honest
participation of the data owners, since they may also be business competitors e.g.,
the local stores from our motivating example from the introduction. We assume a
monetary incentive derived from data customer’s budget.

As federated learning threat model, we assume that all participants (data owners, data
customer, central orchestration server) are honest-but-curious, which means that they can
inspect all received messages but cannot tamper the data and computations needed for the
learning algorithm. We assume the classical formulation (Goldreich, 2004) (Chapter 7.5,
where honest-but-curious is denoted semi-honest), in particular (i) each node is trusted:
it correctly does the required computations, it does not sniff the network and it does not
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collude with other nodes, and (ii) an external observer has access to all messages exchanged
over the network.

To deal with the honest-but-curious model, we rely on two standard cryptographic
techniques (Kairouz et al., 2021):

• Secure multi-party computation. The participants collaborate to simulate a fully
trusted third party who can: (i) compute a function of inputs provided by all the
participants, and (ii) reveal the computed value to a chosen participant (the data
customer), with no party learning anything further.

• Homomorphic encryption. As discussed in the introduction, it is not currently possible
to efficiently rely on a fully homomorphic encryption scheme. We can nonetheless rely
on the partially homomorphic Paillier scheme that is additive homomorphic and allows
to sum up the rewards from each data owner directly in the encrypted domain.

Being an emerging topic at the intersection of several communities, there are multiple
interesting variants of the cross-silo federated learning setting that we consider here. Most of
them are still open problems, in particular in settings of sequential decision making (Kairouz
et al., 2021), such as in the multi-armed bandit model. The very few recent works that we
are aware of are on the related best arm identification problem. (i) A recent study focuses
on federated learning aspects such as the incentivization of data owners (Shi, Xu, Xiong,
& Shen, 2021b), but without additionally considering the data security aspect. In their
setting, all DOs share the same K arms where an arm i yields different rewards from a DO
to another. The goal of each DO is selfish: they want to collect as much reward as possible
during a certain time horizon. They assume that the server can observe the rewards from
all DOs and use them to compute the arm with the highest average reward over all DOs.
(ii) Another study tackles the robustness with respect to Byzantine adversaries in federated
best arm identification (Mitra, Hassani, & Pappas, 2021). In their setting, each DO has
access to a subset of the K arms and to ensure robustness, their methods implies that each
subset of arms is sampled by multiple DOs. In contrast, in our proposed framework Samba,
the data of a DO is locally stored and never exchanged, hence it is hidden from all the other
participants. Furthermore, a main characteristic is that Samba keeps the same arm selection
strategy as the standard (non federated, non secure) bandit algorithm, a property that cannot
be achieved if some DOs are selfish or not robust. While changing some characteristics of
our federated learning setting will probably lead to interesting complementary problems,
these modifications are outside the scope of Samba.

2.2 Positioning w.r.t. Federated and Secure Bandits

To the best of our knowledge, our work is the first that relies on cryptographic techniques to
provide data security guarantees for federated multi-armed bandit algorithms.

Federated multi-armed bandits is an emerging topic, with few recent works that consider
the federated learning paradigm for sequential decision making problems, where data is
observed in response to interactions with an unknown environment. At each time step,
the learner has only limited feedback about the arm that is pulled and this makes the
setting more challenging compared to the typical supervised learning scenarios, where all
training data is available from the beginning of the learning process. The recent works
tackling federated bandits, consider different models: standard stochastic (Shi & Shen,
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2021; Li et al., 2020), bandits with graph structure (Zhu, Zhu, Liu, & Liu, 2021), and linear
bandits (Dubey & Pentland, 2020; Huang, Wu, Yang, & Shen, 2021). For all these works,
the main focus in on adapting bandit algorithm to the federated setting, and some of them
additionally rely on differential privacy (Dwork & Roth, 2014) to protect the data.

In particular, the first works on cumulative reward maximization in (private) federated
multi-armed bandits (Shi & Shen, 2021; Li et al., 2020; Zhu et al., 2021; Shi, Shen, &
Yang, 2021a) focus on the analysis of the gain in sharing data coming from multiple DOs
for obtaining better local (DO-specific) and respectively global cumulative rewards (for all
participants in the federated learning process). The typical assumption is that all DOs
have access to the same subset of arms, which corresponds to an horizontal data partition.
Another typical assumption from all these works is that the DOs exchange information about
the rewards they observe and about the indices of their selected arms with their neighbors (Li
et al., 2020; Zhu et al., 2021), respectively with the central orchestration server (Shi & Shen,
2021; Zhu et al., 2021). Before sharing these pieces of information, DOs apply differential
privacy mechanisms to inject noise in their local data to keep it private from the other
participants. For the next time steps, the bandit algorithm will continue to select arms
based on the differentially-private information that is transmitted between participants.

A differentially-private bandit algorithm takes roughly the same computation time as the
standard algorithm, but because of the noise that is injected in the data to ensure differential
privacy, the arm selection strategy is altered. Thus, the modified selection strategy leads
to a different output and a reduced performance (increased regret) compared to that of the
standard bandit algorithm. On the other hand, in a cryptographic approach, the local data
of each DO (concerning e.g., their observed rewards) is never exchanged in clear: encryption
techniques are used to guarantee that local data maintained by each DO is hidden from the
other participants. By relying on a carefully chosen set of primitives (AES-GCM and Paillier
in the case of Samba), cryptographic approaches do not change the arm selection and output
the same result as the standard algorithm, at the price of an increased computation time
due to the use of cryptographic primitives. Although we share the common goal of data
protection in federated bandits, the use of different techniques (differential privacy in the
related works vs cryptography in our work) leads to complementary systems, whose different
architecture and trade-offs are not comparable. In addition, in contrast with all previous
federated multi-armed bandit frameworks for cumulative reward maximization, we focus on
a vertical data partition (cf. Section 2.1) and our secure framework guarantees that local
data maintained by each DO is hidden from the other participants.

There exist only a few cryptography-based secure protocols for bandits, in settings where
all data is outsourced to the honest-but-curious cloud (Ciucanu, Lafourcade, Lombard-
Platet, & Soare, 2020; Ciucanu, Delabrouille, Lafourcade, & Soare, 2020; Ciucanu, Lafour-
cade, Lombard-Platet, & Soare, 2019) and no other work proposing cryptography-based
secure protocols for federated bandits. The protocol that is the closest to Samba also
considers the problem of secure cumulative reward maximization for standard stochastic
bandits (Ciucanu et al., 2020). There are two main differences between them (Ciucanu
et al., 2020) and Samba. (i) The data distribution assumptions are different: they assume
that all data is outsourced to the cloud, whereas Samba focuses on a federated learning
setting where data is stored locally by each owner and never exchanged. Consequently, the
respective distributed architectures are intrinsically different. (ii) Their protocol is catered
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for securing the UCB algorithm, whereas Samba is a generic framework where multiple
bandit algorithms can be easily plugged in. Among the algorithms supported in Samba,
we have UCB and similar argmax-based algorithms. Moreover, Samba also supports more
complex algorithms where arms are pulled based on a probability matching.

3. Preliminaries

We present bandit algorithms in Section 3.1 and cryptographic tools in Section 3.2. Before
that, we introduce some useful notation on which we rely throughout the paper:

• By [x1, . . . , xn] we denote the list containing, in order, the elements x1, . . . , xn.
• Given integers x and y such that x ≤ y, by Jx, yK we denote the list [x, x+ 1, . . . , y].

By JxK we denote the list [1, . . . , x].
• By [xi]i∈JnK we denote the list [x1, . . . , xn].
• A permutation σ : L → L is a function for which every element occurs exactly once

as an image value; by σ−1 we denote the inverse of σ.
• Given a permutation σ, by σ([xi]i∈JnK) we denote the permuted list [σ(x1), . . . , σ(xn)].

3.1 Bandit Algorithms

The historical motivation (Thompson, 1933) behind the multi-armed bandit model concerns
the adaptive design of clinical trials. For a given disease, a doctor can choose among K
drugs with probability of success µ1, . . . , µK unknown at the beginning of the clinical trial.
At each time step t, the doctor chooses a drug i ∈ JKK for a patient. If the drug i heals the
patient, we say that drug generates a reward 1; otherwise, we say that the reward is 0. The
K bandit arms model the effectiveness of the K treatments available in the clinical trial. The
assumption is that the rewards observed from each arm i are independent samples drawn
from a Bernoulli distribution associated to arm i. Maximizing the sum of observed rewards
means maximizing the number of healed patients from the clinical trial. The design of
efficient multi-armed bandit strategies is a dynamic research topic, also motivated by good
empirical performance in a wide range of modern applications, from Web advertisement
and recommender systems (Li, Chu, Langford, & Schapire, 2010) to game playing (Kocsis
& Szepesvári, 2006).

In this paper, we consider the typical setting of stochastic multi-armed bandits with
Bernoulli rewards. Next, we introduce the notation related to bandit algorithms.

A bandit algorithm takes as input the budget N and the number of arms K, and gives
as output the sum of observed rewards for all arms. The unknown environment of
the bandit algorithm consists of K distributions associated to the K arms. We consider
Bernoulli distributions with expected values µ1, . . . , µK unknown to the learning agent. The
agent has access to a reward function pull(.) that can be called N times. For a chosen arm i,
a call to the function pull(i) randomly returns 0 or 1 according to the associated Bernoulli
distribution, i.e., the probability of returning 1 is µi and the probability of returning 0 is
1–µi. The agent sequentially selects the N arms to be pulled with the goal of maximizing
the sum of rewards.

While Samba can incorporate several cumulative reward maximization algorithms
with Bernoulli rewards (we refer to Section 5.1 for an analysis of the property needed by
bandit algorithms to fit in Samba), in this paper we illustrate Samba using a representative
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/* Initialization: pull each arm once & initialize variables */
for i ∈ JKK
r ← pull(i) /* Random reward for arm i */
si ← r /* Sum of observed rewards for arm i */
ni ← 1 /* Number of pulls of arm i */

/* Exploration-exploitation: pull one arm at each time step t */
for t ∈ JK + 1, NK /* Only a budget of N −K is left */

Choose im according to algorithm A
r ← pull(im)
sim ← sim + r
nim ← nim + 1

return s1 + . . .+ sK

Figure 3: Generic cumulative reward maximization with bandit algorithm A.

selection of five textbook algorithms (Sutton & Barto, 2018; Kuleshov & Precup, 2014;
Russo, Van Roy, Kazerouni, Osband, & Wen, 2018), which represent a variety of strategies.
To minimize redundancy when presenting the aforementioned collection of algorithms, we
present what is common to all of them in Figure 3. In particular, each bandit algorithm
needs to store, for each arm i ∈ JKK, two variables si (sum of rewards) and ni (number of
pulls), based on which it can compute µ̂i = si

ni
(empirical mean). Each bandit algorithm

has its own strategy for choosing im for each time t, that we present in Figure 4. We stress
that at each time t only one arm is pulled, thus only the corresponding variables sim and
nim will be updated, while the sum of rewards and the number of pulls for all other arms
are not affected. To simplify notation, we drop the index indicating the time t whenever the
variables to be updated at time t are obvious for the context. In the sequel, by (arm) score
of a bandit algorithm A we mean, depending on A, either the argument of the argmax, or
the probability needed to compute a probability matching.

3.2 Cryptographic Tools

Samba relies on two cryptosystems: Paillier and AES-GCM, which are both IND-CPA
secure. In this section, we introduce these cryptographic tools, while aiming to provide
enough background to understand how they are useful in Samba to have formally proven
correctness and security properties. Each of the two cryptographic schemes has a security
parameter λ that is input to key generation. By 1λ we denote the unary representation
of λ, which is a standard notation in cryptography. Our security theorems are asymptotic
i.e., they describe the behavior when λ becomes infinitely large. In practice, the security
parameter is the length of the keys, for both Paillier and AES-GCM.

Paillier Asymmetric Encryption. Paillier’s cryptosystem (Paillier, 1999) is an asym-
metric partial homomorphic encryption scheme defined by a triple of polynomial-time al-
gorithms (G, E ,D) and a security parameter λ such that:

• G(1λ) generates two prime numbers p and q according to λ, sets n = p · q and
Λ = lcm(p − 1, q − 1) (i.e., the least common multiple), generates the group (Z∗n2 , ·),
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Algorithm A Strategy for choosing the arm at time t

ε-greedy with fixed or
decreasing ε

return

{
arg maxi∈JKK µ̂i , with probability 1− ε (exploit)

a random arm, with probability ε (explore)

UCB return arg maxi∈JKK(µ̂i +
√

2 ln(t)
ni

)

Thompson Sampling

for i ∈ JKK
sample θi ∼ Beta(si + 1, ni − si + 1)

return arg maxi∈JKK θi

Softmax – Boltzmann
distribution with tem-
perature τ

return arm i with probability eµ̂i/τ∑K
j=1 e

µ̂j/τ

Pursuit with learning
rate β

return arm i with probability pi,t =
1
K , if t = 0

pi,t−1 + β(1− pi,t−1), if t > 0 and i = arg maxi∈JKK µ̂i

pi,t−1 + β(0− pi,t−1), otherwise

Figure 4: Instantiations of Figure 3 for five cumulative reward maximization algorithms.
We recall that for each arm i ∈ JKK at time t, ni is the number of pulls, si is the
sum of rewards, and µ̂i = si

ni
is the empirical mean.

randomly picks g ∈ Z∗n2 such that M = (L(gΛ mod n2))−1 mod n exists, with
L(x) = (x− 1)/n. It sets sk = (Λ,M), pk = (n, g), it returns (sk, pk).

• Epk(m) randomly picks r ∈ Z∗n, computes c = gm · rn mod n2, and outputs c.
• Dsk(c) computes m = L(cΛ mod n2) ·M mod n, and outputs m.

We say that Paillier is asymmetric because it relies on different keys for encryption and
decryption. Moreover, Paillier is additive homomorphic. Let m1 and m2 be two plaintexts
in Zn. The product of the two associated ciphertexts with the public key pk = (n, g),
denoted c1 = Epk(m1) = gm1 · rn1 mod n2 and c2 = Epk(m2) = gm2 · rn2 mod n2, is the
encryption of the sum of m1 and m2. Indeed, we have:

Epk(m1) · Epk(m2) = c1 · c2 mod n2

= (gm1 · rn1 ) · (gm2 · rn2 ) mod n2

= (gm1+m2 · (r1 · r2)n) mod n2

= Epk(m1 +m2) .

AES-GCM Symmetric Encryption. AES (AES, 2001) is a NIST standard for sym-
metric encryption that encrypts messages of 128 bits. To encrypt messages larger than 128
bits, we use AES with a symmetric encryption mode. Among all existing modes, we rely
on GCM (Galois Counter Mode) (AES, 2007), which has been recently added to Transport
Layer Security (TLS3), a standard protocol that provides communication security over a

3. https://datatracker.ietf.org/doc/html/rfc8446
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computer network. The AES-GCM cryptosystem is defined by a triple of polynomial-time
algorithms (Gen,Enc,Dec) and a security parameter λ such that Gen(1λ) generates Key,
a uniformly random symmetric key of 128, 192 or 256 bits, according to λ. We say that
AES-GCM is symmetric because it relies on the same key for encryption and decryption.
Let c = Enc(m) be the encryption of m and m = Dec(c) be the decryption of c, with the
same symmetric key Key.

IND-CPA (INDistinguishability under Chosen-Plaintext Attack). Both Paillier
and AES-GCM are IND-CPA (Bellare, Desai, Jokipii, & Rogaway, 1997): (i) Paillier is IND-
CPA under the decisional composite residuosity assumption (Paillier, 1999), and (ii) AES-
GCM is IND-CPA under the assumption that AES is a pseudo-random permutation (Bellare
et al., 1997). In the security properties of Samba, the notion of “better than random” is
consistent with the IND-CPA property. Intuitively, this means that both cryptographic
schemes are secure against attackers that have access only to a polynomial number of
encrypted messages (and in particular have no access to a decryption oracle). This is a
reasonable assumption in the honest-but-curious model introduced in Section 2.1.

More precisely, let Π= (KeyGen, Encrypt, Decrypt) be a cryptographic scheme. The prob-
abilistic polynomial-time (PPT) adversary Adv tries to break the security of Π. The IND-
CPA game, denoted by EXP(Adv), works as follows: Adv chooses two messages (m0,m1)
and receives a challenge c = Encrypt(LRb(m0,m1)) from the challenger who selects a bit
b ∈ {0, 1} uniformly at random, and where LRb(m0,m1) is equal to m0 if b=0, and m1

otherwise. Adv knows m0,m1 and c, and is allowed to perform any number of polynomial
computations or encryptions of any messages, using the encryption oracle, in order to out-
put a guess b′ of the encrypted message in c chosen by the challenger. Intuitively, Π is
IND-CPA if there is no PPT adversary that can guess b with a probability significantly
better than 1

2 . By α = Pr[b′ ← EXP(Adv); b = b′], we denote the probability that Adv
correctly outputs her guessed bit b′ when the bit chosen by the challenger in the experiment
is b. A scheme is IND-CPA secure if α− 1

2 is negligible function in λ, where a function γ is
negligible in λ, denoted negl(λ), if for every positive polynomial p(·) and sufficiently large
λ, γ(λ) < 1/p(λ). We denote by negl(λ) any function negligible in λ. Notably, we have
negl(λ) + negl(λ) = negl(λ) and we may write x+ negl(λ) instead of x− negl(λ).

All theoretical security properties of Samba also hold if we choose any other IND-CPA
symmetric scheme instead of AES-GCM, and any other additive homomorphic IND-CPA
asymmetric scheme instead of Paillier. Our choice to rely on the aforementioned schemes is
due to practical reasons. AES-GCM is very efficient in practice and implemented in standard
libraries for modern programming languages. Paillier is also supported by a number of
libraries that can be used in practice.

4. A Generic Framework for Secure Federated Multi-Armed Bandits

As mentioned in the introduction, we have K data owners (DOi), one data customer (DC),
and the server. By looking at the bandit algorithms presented in Section 3.1, we can roughly
classify the bandit computations in two categories:

• Local computations, which can be done locally by each DOi e.g., pull an arm to
generate a reward, maintain variables needed for all algorithms (ni and si) as well as
algorithm-specific variables (e.g., pi,t).
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• Global computations, done by the server, where data from all DOi is required. The
two types of global computations that appear in Figure 4 are:

– Compute the argmax of the arm scores.
– Choose an arm according to a probability matching.

We recall that we aim at a secure protocol that leaks as little data as possible to the server.
For instance, we want to avoid that the server knows which arm is pulled at some time step.
Hence, we choose to distribute the server computations among two nodes, using an idea
already known in the literature e.g., in the context of private outsourced sort (Baldimtsi &
Ohrimenko, 2015):

• Controller. This node interacts with DC and DOi. More precisely, when we need to
do some global computation, each DOi sends to Controller a score encrypted with a
secret key unknown to Controller. After receiving the collection of scores from all DOi,
note that Controller cannot compare the scores in order to decide which arm to pull
next. Indeed, we encrypt the scores with the key of a second node, whose only task
is to compare scores.

• Comp. This node interacts only with Controller, who sends a collection of encrypted
scores each time we need to do a global computation. Comp is able to decrypt and
compare the scores. The subtlety is that Controller permutes the encrypted scores
before forwarding them to Comp, hence Comp is not able to associate the arm pulled
at some time step with the real arm index. Moreover, to hide the real scores from
Comp, we require each DOi to mask the real arm scores with a mask that is order-
preserving (to be able to correctly compute argmax) and proportion-preserving (to be
able to correctly compute a probability matching).

This leads us to the architecture of Samba outlined in Figure 5, where we have K + 3
participants: K data owners + 1 data customer + 2 server nodes (Controller and Comp).
We give pseudocode in Figure 6.

Before detailing the steps of Samba, we briefly introduce the needed cryptographic keys.
By Enc(·) we denote encryption using an AES key shared before starting the actual protocol
among Comp and all DOi (we stress that this key is unknown to Controller). Moreover, we
assume that DC generates a Paillier’s key pair (pk, sk) and for sake of clarity we denote by
E(·) the encryption with pk.

4.1 Architecture

We present the main bricks of Samba’s architecture, whose design is motivated by a trade-off
between its genericity (i.e., Samba should be generic enough to plug in different multi-armed
bandit algorithms) and efficiency (i.e., Samba should be efficient when executing typical
computations needed for multi-armed bandit algorithms). The architecture of Samba pre-
sented in Figure 5 and explained hereafter allows to directly plug in four bandit algorithms
instantiated earlier (UCB, Thompson Sampling, ε-greedy and Softmax). Finally, in
Section 4.2 we present the extension needed in Samba such that more complex algorithms
such as Pursuit can be easily plugged in.
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Comp Controller DC

DOi

(0) N,A

(1) N,A, seedαt

(1) N,A

(a) Parameter setup (Steps 0 and 1) done only once at the beginning.

ControllerComp

DOi

(2) Enc(αtvi,t)

(3) σt([Enc(αtvi,t)]i∈JKK)

(4) σt([Enc(bi,t)]i∈JKK)

(5) Enc(bi,t)

(b) Core of Samba (Steps 2–5) used to select the arm to be pulled. Repeated for each time step t until
the end of the budget.

Controller

DOi

DC

(6) E(si)

(7) E(
∑K

i=1 si)

(c) Cumulative reward computation (Steps 6 and 7) done once at the end.

Figure 5: Architecture of Samba.

4.1.1 Parameter Setup (Figure 5(a))

At Step 0, DC sends to Controller the budget N and the name of the algorithm A that
should be used for cumulative reward maximization. We list in Figure 4 the algorithms
currently supported in Samba, hence we allow DC to send to Controller any value from the
column “Algorithm A” in Figure 4 i.e., the name of the algorithm and the algorithm-specific
parameters, when applicable. Such parameters are ε (if ε is fixed) or fε (if ε is decreasing
over time) for ε-greedy, τ for Softmax, and β for Pursuit.

At Step 1, Controller forwards the received input to DOi and Comp. Additionally,
Controller sends to DOi a randomly generated seedαt , which is used to draw random masks
αt for the arm scores such that Comp cannot see the real arm scores. As detailed later in
the sequel, αt changes at each time step t ∈ JK + 1, NK.

At the end of Step 1, each DOi pulls its arm once, and initializes its variables si and ni.

4.1.2 Core of Samba (Figure 5(b))

The core of Samba (Steps 2-5) is executed for each time step t ∈ JK + 1, NK.
We first illustrate the core of Samba with the UCB algorithm, for K = 3. Assume

that we are at t = 68, when s1 = 24, s2 = 10, s3 = 2, and n1 = 33, n2 = 24, n3 = 10. At
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/* Parameter setup */
receive N,A, seedαt

from Controller (1)
r ← pull(i)
si ← r
ni ← 1

/* Core of Samba */
for t ∈ JK + 1, NK
αt ← nextValueFromSeed(seedαt

, t)
vi,t ← ComputeScore(A, t, si, ni)
send Enc(αtvi,t) to Controller (2)
receive Enc(bi,t) from Controller (5)
if Dec(Enc(bi,t)) = 1
r ← pull(i)
si ← si + r
ni ← ni + 1

/* Cumulative reward computation */
send E(si) to Controller (6)

(a) Pseudocode of DOi.

/* Parameter setup */
receive N,A from DC (0)
send N,A to Comp (1)
seedαt ← new random integer
for i ∈ JKK

send N,A, seedαt
to DOi (1)

/* Core of Samba */
for t ∈ JK + 1, NK

for i ∈ JKK
receive Enc(αt · vi,t) from DOi (2)

σt ← new random permutation
send σt([Enc(αt · vi,t)]i∈JKK) to Comp (3)
receive σt([Enc(bi,t)]i∈JKK]) from Comp(4)
for i ∈ JKK

send σ−1t (σt(Enc(bi,t)) to DOi (5)

/* Cumulative reward computation */
for i ∈ JKK

receive E(si) from DOi (6)
send E(s1) · ... · E(sK) to DC (7)

(b) Pseudocode of Controller.

/* Parameter setup */
receive N,A from Controller (1)

/* Core of Samba */
for t ∈ JK + 1, NK

receive σt([Enc(αt · vi,t)]i∈JKK) from Controller (3)
V ← σt([Dec(Enc(αt · vi,t))]i∈JKK)
σt(im)← SelectArm(A, t,V)
send σt([Enc(1i=σt(im))]i∈JKK) to Controller (4)

(c) Pseudocode of Comp.

/* Parameter setup */
send N,A to Controller (0)

/* Cumulative reward computation */

receive E(
∑K
i=1 si) from Controller (7)

(d) Pseudocode of DC.

Figure 6: Pseudocode of Samba participants. Numbers in () correspond to Steps in Fig-
ure 5.

Step 2, each data owner DOi computes Bi = si
ni

+
√

2 ln(t)
ni

, as presented in Figure 4. Hence,

we get B1 ≈ 1.23, B2 ≈ 1.01 and B3 ≈ 1.12. The random seed seedαt is useful such that all
DOi independently draw the same random mask needed to hide the real arm scores when
computing the argmax. Using seedαt , assume we draw α68 = 0.5, hence each DOi needs
to multiply its Bi with α68 before encrypting with Enc and sending to Controller. Hence,
Controller receives Enc(0.62) from DO1, Enc(0.5) from DO2, and Enc(0.56) from DO3. This
ends the Step 2 in Figure 5(b).

When receiving the aforementioned messages, Controller is not able to decrypt because
it does not know the AES key used in Enc (we recall that this key is known only by Comp
and all DOi). Before forwarding the messages to Comp that is able to decrypt and compare
scores, Controller permutes the messages in order to hide from Comp the correspondence
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between a score and the DOi that produced it. We stress that the permutation σt, which
is pseudo-random, changes at each time step t because we want to avoid that Comp ob-
serves patterns where there is an arm much better than the others. By continuing on our
example, assume that σ68(1) = 2, σ68(2) = 3, σ68(3) = 1. Hence, at Step 3, Controller
sends to Comp the list [Enc(0.56),Enc(0.62),Enc(0.5)]. Then, at Step 4, Comp decrypts
and computes argmax = 2, hence it sends to Controller the permuted list of pulling bits
[Enc(0),Enc(1),Enc(0)]. At Step 5, Controller inverts the permutation and sends Enc(1) to
DO1, and Enc(0) to DO2 and DO3. Then, each DOi can decrypt its pulling bit. In partic-
ular, DO1 can decrypt Enc(1), by computing Dec(Enc(1)) = 1. Since the pulling bit is 1,
DO1 pulls its arm and gets reward 1 at time step t = 68. We update arm variables: s1 = 25
and n1 = 34. No variable is updated for DO2 or DO3, who both had pulling bits 0. For
t = 69 and until the end of the budget, Steps 2-5 are repeated.

Plugging Thompson Sampling in Samba is done exactly as for UCB, the only change
being the arm score function (cf. Figure 4). As for UCB, no additional parameter is needed
for Thompson Sampling.

Plugging ε-greedy in Samba is also immediate. We recall that for ε-greedy the learn-
ing agent explores by choosing randomly the arm to pull at time t with probability ε and
exploits by choosing the best arm to pull at time t with probability 1 − ε. Next, we also
give details of the steps performed in Samba for securing ε-greedy for a time step t. We
recall that we have as specific parameter ε ∈ [0, 1] which gives the probability to explore,
which can be either fixed or decreasing according to a time-depending function fε. We
need another random seed, denoted seedε, that should be generated at Step 0 and send by
Controller to each DOi at Step 1. The random seed seedε is useful such that at each time
step all DOi independently draw the same random number x ∈ [0, 1], and compare it to ε
in order to decide whether we shall explore or exploit at some time step i.e., if x ≤ ε then
explore, else exploit.

For a concrete example, suppose that for K = 3 we have ε = 0.1 (thus, a learning
agent explores when choosing the arm to pull at time t with probability 0.1 and exploits
when choosing the arm to pull at time t with probability 0.9). Using seedε, assume we
draw x = 0.7, hence we need to exploit. As shown in Figure 4, for exploit in ε-greedy
we compute the empirical means si

ni
for each DOi, then pull the arm corresponding to the

largest empirical mean. This is done in Steps 2-5, exactly as exemplified for UCB.

Alternatively, assume that using seedε we draw x = 0.04, hence we need to explore i.e.,
randomly choose an arm. To do so, at Step 2, each DOi encrypts the same number, that we
set to 0 without loss of generality. At Step 3, Controller still permutes the list of encrypted
masked values received from DOi, before sending it to Comp. At Step 4, Comp computes
an argmax on a permuted list containing K identical values, then sends the corresponding
pulling bits to each DOi and the protocol continues as previously until the end of Step
5. Due to the random permutation, all arms have equal chance of being selected for this
explore step and the information about the arm that was chosen does not leak.

We continue with an example for Softmax, where the next pulled arm is chosen as a
probability matching based on a Boltzmann distribution with temperature parameter τ . As

shown in Figure 4, the probability to pull DOi is eµ̂i/τ∑K
j=1 e

µ̂j/τ
. For the computations needed

in the arm selection of Softmax, the frontier between local and global computations is

751



Ciucanu, Lafourcade, Marcadet & Soare

less clear. We remind that to easily plug-in an algorithm in Samba, one must be able to
compute the score of a DOi without seeing the variables of the other DOj 6=i. The Samba
implementation of Softmax requires: (i) at Step 2, each DOi computes eµ̂i/τ and then
applies a mask as explained previously, and (ii) at Step 4, Comp computes the sum and
subsequent fractions after receiving all masked probabilities before sending the pulling bits
to Controller. Thanks to the proportion-preserving mask, this operation does not modify
the computed probabilities. Hence, Comp can recover the same probability matching as in
the standard algorithm. All other steps are done as in the previous examples.

For clarity, we also provide a concrete example of the functioning of Softmax within
Samba. For simplicity, we do not explicitly write the cryptographic functions in the follow-
ing example. For every arm i ∈ JKK, we denote the score eµ̂i/τ by vi. We assume a setting
with K = 3 and τ = 0.1. At an arbitrary time t = 98, assume we have s1 = 49, s2 = 9, s3 = 1
and n1 = 68, n2 = 24, n3 = 5, hence µ̂1 = s1/n1 = 49/68 = 0.72, µ̂2 = 0.38 and µ̂3 = 0.2.
At Step 2, the DOi compute v1 = eµ̂1/τ = e0.72/0.1 = 1339.43, v2 = 44.7, and v3 = 7.39,
respectively. Each DOi uses the same mask, say α98 = 0.15 (coming from seed seedαt),
and sends to Controller his masked value α98v1 = 200.91, α98v2 = 6.71, and α98v3 = 1.11,
respectively. At Step 3, Controller permutes the list of received values [200.91, 6.71, 1.11]
with a randomly drawn σ98 and sends the result to Comp, assume [1.11, 6.71, 200.91]. At
Step 4, Comp divides each received element by s = 1.11 + 6.71 + 200.91 = 208.73, which
produces the probability matching list [0.01, 0.03, 0.96]. Each value in the aforementioned
list is the probability of an arm to be chosen e.g., the last arm has probability 96% to be
chosen, and assume that this arm is actually chosen. Hence, Comp sends the list of pulling
bits [0, 0, 1] to Controller who, at Step 5, inverts the permutation σ−1

98 ([0, 0, 1]) = [1, 0, 0],
and sends each pulling bit to the right DOi.

Abstracting Score Computation and Arm Selection. To implement the aforemen-
tioned algorithms in the Samba generic protocol, we simply need to instantiate the two
abstract functions ComputeScore and SelectArm from Figure 6:

ComputeScore: UCB: return µ̂i +
√

2 ln(t)
ni

Thompson Sampling: return θi cf. Figure 4
ε-greedy: return µ̂i or return 0 (depends on ε, seedε)
Softmax: return eµ̂i/τ

SelectArm: UCB, Thompson Sampling, ε-greedy: return arg maxσt(i)∈JKK(vσt(i),t)

Softmax: return arm σt(i) with probability
vσt(i),t∑K
j=1 vσt(j),t

We additionally point out that the multiplicative mask αt can be replaced by any order-
and proportion- preserving function, without changing the theoretical properties of Samba
(cf. Section 5). We chose to rely on a multiplicative mask in the presentation of Samba for
the sake of simplicity.

4.1.3 Cumulative Reward Computation (Figure 5(c))

When the budget has been spent (that is, after observing N rewards), each DOi can compute
its final cumulative reward si. We must now communicate

∑K
i=1 si to the Data Customer

(DC) in a secure way. To do so, we use partial homomorphic encryption within the last two
steps (Steps 5 and 6) of Samba, as depicted in Figure 5(c).
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Namely, at Step 5, each DOi sends E(si) to the Controller, who does not have the private
key needed to decrypt it.

At Step 6, Controller computes E(s1) · . . . · E(sK) = E(s1 + . . .+ sk), using the additive
homomorphic property, and sends the results to DC, who has the private key needed to
decrypt it and thus obtains the cumulative reward.

4.2 Extension

Pursuit is more challenging because it requires both argmax and probability matching
to choose the next arm to be pulled cf. Figure 4. Indeed, for all algorithms instantiated
until now, we had a single iteration over Steps 2-5, where we computed either an argmax
(ε-greedy, UCB, Thompson Sampling) or a probability matching (Softmax). Conse-
quently, to instantiate Pursuit in Samba, we need two iterations at each time step: a first
iteration to compute the argmax among all empirical means µ̂i, and a iteration to compute
a probability matching based on pi,t.

To illustrate the Samba instantiation of Pursuit, we take an example where K = 3,
and after the initialization (i.e., pull each arm once), s1 = 1, s2 = s3 = 0, n1 = n2 = n3 = 1,
and p1,3 = p2,3 = p3,3 = 1/3. We are at t = K + 1 = 4 and let β = 0.1. The two iterations
work as follows:

1. The first iteration computes probabilities pi,4. Each DOi sends its encrypted masked
µ̂i to Controller, which then forwards to Comp. Then, Comp computes an argmax
exactly as explained in Section 4.1.2. On our example, arm 1 has probability to be
pulled: p1,4 = 1/3 + 0.1 · (1 − 1/3) = 0.4, while the other arms have probabilities to
be pulled: p2,4 = p3,4 = 1/3 + 0.1 · (0− 1/3) = 0.3.

2. The second iteration computes the arm to be pulled according to a probability match-
ing. Each DOi sends his encrypted masked probability pi,4 to Controller, which then
forwards to Comp. Then, Comp randomly draws an arm according the the probabili-
ties pi,4, exactly as explained in Section 4.1.2 for Softmax.

To generalize the aforementioned ideas in order to instantiate arbitrary bandit algorithms
that need more iterations over Steps 2–5 of Samba, the main required modification is an
additional algorithm-dependent parameter nbA. The parameter nbA = 2 for Pursuit and
was by default =1 for all bandit algorithms seen in Section 4.1.2. In the pseudocode of
Controller, Comp, and DOi in Figure 6, we simply need to add another loop “for l ∈ JnbAK”
just below each “for t ∈ JK + 1, NK”. The semantics of the bits sent by Comp is different
compared to the case of a single iteration. More precisely, only at the last iteration the bits
are effectively used to pull an arm, whereas for the iterations l ∈ JnbA − 1K the bits are
simply used to compute the score needed for iteration l + 1. Finally, we need to add the
parameter l ∈ JnbAK to abstract functions ComputeScore and SelectArm, which for Pursuit
are:

ComputeScore:
if l=1 return µ̂i
else return pi,t cf. Figure 4

SelectArm:
if l=1 return arg maxσt(i)∈JKK(vσt(i),t)

else return arm σt(i) with probability
vσt(i),t∑K
j=1 vσt(j),t
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One can plug in Samba virtually any bandit algorithm having an arbitrary number of
iterations, as long as each iteration computes an argmax or a probability matching. We
discuss the genericity of Samba in Section 5.1.

5. Theoretical Analysis

We analyze the genericity, correctness, security, and complexity of Samba in Section 5.1, 5.2,
5.3, and 5.4, respectively. Some proofs are omitted here and are available in the Appendix4.

5.1 Genericity

In Section 4.1.2, we explained how to instantiate in Samba the algorithms ε-greedy, UCB,
Thompson Sampling, and Softmax, each of them requiring an iteration over the core
of Samba; then, in Section 4.2, we explained how to instantiate Samba with the Pursuit
algorithm, which requires two such iterations. While presenting the Samba instantiations
of the aforementioned algorithms, we introduced the abstract functions ComputeScore (exe-
cuted by each DOi) and SelectArm (executed by Comp). Intuitively, any cumulative reward
maximization algorithm can be instantiated in Samba as long as it can be reduced to a
federated version where only functions ComputeScore and SelectArm need to be specified.
To characterize the genericity of Samba, we detail the properties that an algorithm should
satisfy in order to be instantiated in Samba.

Theorem 1. A standard cumulative reward maximization algorithm A can be instantiated
in Samba if the computations of A can be distributed using nbA iterations over the core of
Samba such that the following two properties hold:

1. Arm score locality: At each time step t ∈ JK + 1, NK and iteration l ∈ JnbAK, DOi
can evaluate the function ComputeScore based only on its local variables ni and si.

2. Oblivious arm selection: At each time step t ∈ JK + 1, NK and iteration l ∈ JnbAK,
Comp can evaluate the function SelectArm based only on the current list V of permuted
masked arm scores.

Intuitively, the first property states that each arm score depends only on the local vari-
ables of its data owner and not on data stored by other data owners. Moreover, the second
property states that the only node that has access to non-encrypted data (i.e., Comp) sees
such data distorted with permutations and masks that change at each iteration. Thus, Comp
cannot learn the local variables pertaining to some arm. The aforementioned properties are
coherent with the secure federated learning paradigm because the data remains locally
stored and the central orchestration server cannot learn more than the minimum amount
of data needed to perform its tasks. We detail the security properties in Section 5.3.

Non-instantiable Algorithms. For each of the two conditions from Theorem 1, we give
an example of a bandit algorithm that cannot be instantiated in Samba.

For the first condition, the example is Reinforcement Comparison (Sutton & Barto,
2018), which maintains a preference πi,t for each arm i ∈ JKK. At time step t, the probability

to select arm i is given by pi,t = eπi,t∑K
j=1 e

πj,t
. Suppose that at time step t, the arm i has

4. https://raw.githubusercontent.com/gamarcad/paper-samba-code/master/pdf/appendix.pdf
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been selected and generated a reward rt. Then, the preference for arm i is updated as
πi,t+1 = πi,t + β(rt − r̄t), where r̄t is the reference reward that depends on all arms. At the
end of each time step t, r̄t+1 is updated as r̄t+1 = (1−α)r̄t+αrt. Both α and β are learning
rates between 0 and 1. To sum up, the probability of selecting an arm i in Reinforcement
Comparison depends on r̄t, which is obtained by averaging over the observed rewards
r1, . . . , rt, which come from all K arms. Therefore, computing the score of an arm does not
respect the Arm score locality property required by Theorem 1.

For the second condition, we are not aware of any off-the-shelf cumulative reward max-
imization algorithm for stochastic Bernoulli bandits that cannot be instantiated in Samba.
Such an algorithm should decide on the selected arm at time step t in a way that is not
compatible with the random masks and/or permutations from Samba. For the sake of
example, imagine an arm selection strategy that (i) filters the list of arms by keeping only
the ones with odd indices for odd time step t and even indices for even time step t, (ii)
filters the remaining arms by keeping only those with empirical means µ̂i in the interval
[0.5, 1], and (iii) returns the argmax of µ̂i among the arms that survived the filters (i) and
(ii). Note that (i) cannot be ensured by Comp in the presence of the random permutations,
whereas (ii) cannot be ensured by Comp in the presence of random masks.

We stress that all algorithms mentioned in this section (instantiable in Samba or not)
consider Bernoulli reward distributions cf. Section 3.1. We refer to Section 7 for a discussion
on the challenges to build a potential Samba-inspired framework for different bandit reward
models e.g., linear bandits.

5.2 Correctness

We show that the instantiation of a cumulative reward maximization algorithm in Samba
does not change its output.

Theorem 2. Take a standard cumulative reward maximization algorithm A and its feder-
ated version A′ instantiated in Samba (cf. Theorem 1), both initialized with the same seeds
for the needed randomness (e.g., pull function, argmax when ties have to be broken). For
every N,K, and µ1, . . . , µK , algorithms A and A′ return the same cumulative reward.

Proof. If we take A′ and remove all encryption/decryptions (both AES-GCM and Paillier),
we obtain Ano-enc where all messages are communicated in clear between participants. Al-
gorithms A′ and Ano-enc output the same result because of the consistency property of the
chosen cryptographic schemes i.e., if we encrypt a message M using Enc (or E , respectively)
to obtain a ciphertext C, then if we decrypt C using Dec (or D, respectively), then we
obtain exactly M .

TakeAno-enc and remove the distribution of data computation among participants, which
yields Ano-dist that returns the same result as Ano-enc because both algorithms do exactly
the same computations in the same order.

Take Ano-dist and remove the use of the permutation σt, which yields Ano-perm that
returns the same result as Ano-dist because the random permutation σt reduces to the
randomness in the argmax function used in standard bandit algorithms when ties have
to be broken among arms with the same score. As pointed out in the theorem statement,
this is ensured by fixing the same random seed.
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Data
Participant

DOi DC
Server

Ext
Comp Controller

Cumulative reward X E E
Sum of rewards and number of pulls for DOi X αt E E
Sum of rewards and number of pulls for DOj 6=i αt E E
Arm pulled at time step t X? σt Enc Enc

Reward at time step t X?

Figure 7: Security properties of Samba. The X means that the participant can see in clear
the concerned piece of data, with ? = only if DOi is pulled at time step t. Ext
means an external network observer having access to all messages exchanged
between participants. In the cells without X or X?, we indicate the technique
that we used to prevent the participant from seeing in clear the concerned data:
Paillier encryption (E), AES-GCM encryption (Enc), random masks (αt), and
random permutations (σt). A grayed cell means that the concerned participant
does not see any message about the concerned piece of data.

Take Ano-perm and remove the use of the multiplicative random mask αt, which yields
A that returns the same result as Ano-perm because the mask has no impact on the arm
selection strategy. Indeed, this holds ∀αt ∈ R∗+ regardless of the computations needed in
SelectArm:

• Order-preserving (needed if SelectArm does an argmax): given arm scores v1 and v2,
it holds that v1 ≤ v2 iff αtv1 ≤ αtv2.

• Proportion-preserving (needed if SelectArm does a probability matching): given arm
scores v1, . . . , vK , for every i ∈ JKK it holds that

αtvi∑K
j=1(αtvj)

=
αtvi

αt(
∑K

j=1 vj)
=

vi∑K
j=1 vj

Through the aforementioned sequence of reductions, we reduced the federated algorithm A′
to its standard non-federated version A, such that at each time step t, both A and A′ select
exactly the same arm to be pulled. In addition, as pointed out in the theorem statement, we
fix the same random seed for generating random rewards, hence pulling some arm i at time
step t in all aforementioned algorithms (A′,Ano-enc,Ano-dist,Ano-perm,A) returns exactly the
same reward. By summing up all these rewards, we obtain exactly the same cumulative
reward.

5.3 Security

In Figure 7, we summarize the security properties of Samba, which subsume their previous
presentation in Figure 2. In particular, note that the server is divided in two independent
nodes Comp and Controller.

Theorem 3. Take a standard cumulative reward maximization algorithm A and its fed-
erated version A′ instantiated in Samba (cf. Theorem 1). It holds that A′ satisfies the
security properties summarized in Figure 7 if the primitives used in Samba are secure.
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To give an intuition on why some security property holds, we indicate in Figure 7 the
technique that we used to prevent some participant from seeing in clear some concerned
data. We make available in the Online Appendix the formal statements and proofs of the
aforementioned security properties for each participant. We give a few more details next.

Security of DOi. By construction of Samba, each DOi knows data about its arm (e.g.,
its sum of rewards si) and knows the time step and the reward when its arm is pulled by
the cumulative reward maximization algorithm. Also by construction of Samba, DOi does
not see any other data about the cumulative reward except its si, or about other arms at
the time steps when DOi is not pulled. This means that at a time step when it is not pulled,
DOi cannot guess the pulled DOim with probability better than random. Moreover, DOi
cannot guess with probability better than random the sum of rewards of any other arm.

Security of DC. By construction of Samba, only DC sees in clear the cumulative reward
for which she spends a budget. This happens after Step 7 when she decrypts the cumulative
reward computed directly in the encrypted domain by Controller. Moreover, DC sees no
other data concerning the execution of the cumulative reward maximization algorithm. In
particular, DC cannot guess with probability better than random the arm that is pulled at
some time step or the partial sum of rewards produced by some arm.

Security of Comp. By construction of Samba, Comp is only involved at Steps 3 and 4,
when it sees in clear arm scores that have been (i) multiplied with a random mask αt and
(ii) permuted using a permutation σt, where both αt and σt change at each iteration. Hence,
Comp cannot guess with probability better than random the real arm scores (hence neither
the number of pulls nor the rewards produced by some arm) because of (i), or which is the
real arm index pulled at some time step because of (ii).

Security of Controller and of external observers. By construction of Samba, Controller
knows the permuted masked scores of all DOi given at Step 2, the selection bits of all DOi
sent by Comp at Step 4, both encrypted with AES-GCM. Additionally, at Step 6, Controller
knows the partial cumulative rewards encrypted with Paillier’s cryptosystem. By seeing
only data encrypted with AES-GCM (Enc) or Paillier (E), Controller cannot guess with
probability better than random the cumulative reward, the sum of rewards and number of
pulls for some arm, or the arm pulled at some time step. The security proofs of Controller
are the most technical among all participants because they require proofs by contradiction
as typically done in cryptographic proofs that rely on the hypothesis that the primitives
(in our case AES-GCM or Paillier) are secure. To give an idea on how this kind of proof
works, we need to introduce some additional notation, such as:

• si,t = the sum of rewards obtained by arm i until time step t.
• datatx = the data to which participant x has access until time step t, where x can be

virtually any participant from Figure 6 or the external observer (ext). If t is omitted,
this denotes the data to which x has access at the end of the execution of Samba.

• Advpb(.)(d) = the answer of a Probabilistic Polynomial-Time (PPT) adversary Adv
(we defined such an adversary in Section 3.2) that knows d and tries to solve the
problem pb. The problem pb may also take some input.

An example of security theorem for Controller is: For an arm i ∈ JKK and a time step
t ∈ JK + 1, NK, an honest-but-curious Controller cannot guess si,t, given datatController, with
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a probability better than random. More precisely, for all PPT adversaries Adv,∣∣∣Pr
[
(i, ŝi,t)← Advsum(t)(datatController); ŝi,t = si,t

]
− pS(si,t)

∣∣∣
is negligible in λ, where Advsum(t)(datatController) returns (i, ŝi,t) in which ŝi,t is Adv’s guess
on si,t for the arm i (chosen by Adv), and pS(si,t) is the probability of obtaining a sum
of rewards si,t for an arm i at time step t. The subtlety is that the sum guessed by
Adv is based on input data consisting of all the (encrypted) data that Controller has access
to, whereas pS is just the probability of randomly guessing a correct sum without having
access to any data. To prove such a theorem, we need to assume toward a contradiction
that there exists a PPT adversary Adv who is able to guess a correct sum of rewards from
datatController with a non-negligible advantage. After quantifying the implications of such an
assumption, we find that there exists a PPT adversary able to break the security of the
cryptographic primitive used to encrypt datatController, which contradicts the fact that the
employed primitives are secure (in our Samba theorems, we rely on AES-GCM or Paillier).

Regarding an external observer (ext) that has access to all messages exchanged over the
network between Samba participants, the proofs are very similar to the case of Controller
because all the exchanged messages are encrypted with AES-GCM or Paillier.

5.4 Complexity

We quantify the cryptographic overhead as well as the computation cost of Samba to
conclude that both complexity measures are linear in N and K.

Theorem 4. Take a standard cumulative reward maximization algorithm A and its feder-
ated version A′ instantiated in Samba (cf. Theorem 1).

1. A′ requires O(NK) AES-GCM encryptions and decryptions, K Paillier encryptions,
and one Paillier decryption.

2. A′ has communication cost of O(NK) messages, assuming as unit of measurement
the size of an encrypted number.

Proof. To prove 1), we quantify the number of cryptographic operations required by Samba.
The parameter setup (Steps 0, 1) requires no cryptography. The core of Samba (Steps 2, 3,
4, 5) requires 2K AES-GCM encryptions and 2K AES-GCM decryptions and is repeated
(N −K)nbA times. Since the number of iterations is constant (=1 or 2 in all algorithms
instantiated so far in Samba), by summing up we obtain O(NK) AES-GCM encryptions
and decryptions at the core of Samba. Finally, the cumulative reward computation (Steps
6, 7) requires K Paillier encryptions and one Paillier decryption.

To prove 2), we quantify the size of messages communicated among Samba participants.
The parameter setup (Steps 0, 1) requires a constant number of messages: ≥ 7 (cf. Figure 5),
but may additionally include algorithm-specific parameters (e.g., ε, fε, τ, β cf. Section 4.1.1).
The core of Samba (Steps 2, 3, 4, 5) communicates 4 lists of size K and is repeated
(N −K)nbA times. Finally, the cumulative reward computation (Steps 6, 7) communicates
K + 1 messages. In total, the communication cost is of O(NK).

It is a desirable feature that the number of Paillier operations does not depend on the
budget N because N is typically larger than the number of arms K, and AES-GCM is much
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faster than Paillier. Moreover, when quantifying the computation time, we looked only at
the cryptographic operations because they dominate the time required for the other compu-
tations. Our proof-of-concept empirical evaluation in Section 6 confirms the aforementioned
observations.

Algorithm-Specific Optimizations. We point out that the practical complexity (both
cryptographic and communication) of some bandit algorithm instantiated in Samba can
be diminished by leveraging algorithm-specific properties, while guaranteeing the same cor-
rectness and security properties. Among the algorithms instantiated so far in Samba, this
is true for the exploration time steps of ε-greedy, which occur with probability ε (either
fixed or decreasing). In the exploration time steps of ε-greedy, the next arm to be pulled
is selected randomly. Hence, it is not necessary that DOi send K encrypted messages to
Controller at Step 2. Instead, we can let Controller draw a random number as score for all
arms before sending a list to Comp at Step 3. In this case, Comp randomly chooses the
next arm to be pulled, the randomness in the argmax being simulated by the randomness
from the permutation σt. Then, Steps 4 and 5 are as usually, in particular Controller cannot
decrypt which arm has to be pulled because the pulling bits are encrypted with an AES key
known only by Comp and DOi. Although such an optimization of O(K) does not reduce the
overall asymptotic complexity of O(NK), we implemented it in our prototype to be able to
be slightly more efficient without jeopardizing the theoretical properties of Samba.

6. Experiments

We present a proof-of-concept empirical study of Samba. We explain the experimental
setting in Section 6.1 and we discuss the results in Section 6.2.

6.1 Setting

We study the feasibility and scalability of Samba through a proof-of-concept experimental
study using two datasets that contain user ratings for movies i.e., MovieLens (Harper & Kon-
stan, 2016) and jokes i.e., Jester (Goldberg, Roeder, Gupta, & Perkins, 2001), respectively.
The use of ratings for testing bandit algorithms is natural since the items (movies or jokes)
in the dataset correspond to the bandits arms, and a user rating given for a particular item
corresponds to the reward obtained when the corresponding arm is chosen. We preprocess
the datasets similarly to an existing technique (Kohli, Salek, & Stoddard, 2013). Namely, for
each item i, we compute the mean reward µi = (#of ratings above a threshold for item i)
/ (#of ratings received for item i). Without loss of generality, we consider the K items
with largest mean rewards. Note that this experimental setting is typical for stochastic
multi-armed bandit papers (Kohli et al., 2013; Ciucanu et al., 2020; Kuleshov & Precup,
2014; Shi & Shen, 2021). We tuned the algorithm-specific parameters (ε, τ, β) similarly to
an existing technique (Kuleshov & Precup, 2014). The budget varies from N = 5× 104 to
N = 105, and the number of arms from K = 10 to K = 100, which is coherent with the
typical distribution scale of cross-silo federated learning (cf. Section 2.1).

We implemented the five algorithms from Figure 4, with both fixed and decreasing ε-
greedy, which implies that we have a total number of six lines in each reported plot. We
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used Python 3. For AES-GCM we used the Cryptography library5 and keys of 256 bits. For
Paillier, we used the phe library6 in the default configuration with keys of 2048 bits. We
did our experiments on a virtual machine running Ubuntu, located in a server with 8GB of
RAM and 24 cores Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz. The reported points in
the plots are averaged over 50 runs.

Given the related work positioning from Section 2.2, a direct empirical comparison with
existing works on federated bandit algorithms with security/privacy guarantees would not
be very useful, given the fundamental differences between our work and existing approaches.
Indeed, (i) on the one hand, the running time of differentially-private federated bandit al-
gorithms is roughly the same as for the standard algorithms and is not reported in their
experiments; this is why such differentially-private works focus on quantifying the impact
on the cumulative reward, (ii) on the other hand, our Samba instantiations of bandit algo-
rithms are guaranteed to return the same cumulative rewards as the standard algorithms.

All details concerning our Samba prototype are available on a public GitHub reposi-
tory7, including our source code, the data, the generated results from which we obtained our
plots, and scripts that allow to install the needed libraries and reproduce the entire workflow
to generate our plots. We stress that due to the genericity of Samba, the prototype can be
easily extended to other bandit algorithms that satisfy Theorem 1.

6.2 Results

We discuss the scalability of Samba w.r.t. the budget N (Figure 8(a)) and the number of
arms K (Figure 8(b)). Our experimental results show that the execution time is linear in N
and K, which matches the theoretical complexity introduced in Section 5.4. The overhead
between the standard algorithms (shown in dotted lines) and their Samba instantiation is of
at most an order of magnitude and comes from the cryptographic primitives. In particular,
we recall that we have O(NK) AES-GCM operations and O(K) Paillier operations. Since
Paillier operations are longer to evaluate that AES-GCM, we naturally observe that the
lines from the scalability w.r.t. K (Figure 8(b)) increase more steeply than those from the
scalability w.r.t. N (Figure 8(a)).

For both datasets, for the maximal considered input (i.e., budget N = 105 and K = 100
arms), the majority of the Samba algorithms take around 15 minutes. The only exception is
Pursuit, whose execution time is double, which is expected because its Samba instantiation
requires two iterations (as explained in Section 4.2). We believe that such a waiting time
is reasonable for a data customer to obtain the cumulative reward, while ensuring security
guarantees for all participants in the federated learning setting.

By comparing the left vs right plots in each of Figure 8(a) and 8(b), we observe that
regardless the dataset, the shapes of the lines are exactly the same and in precisely the
same hierarchy. This is also a consequence of the theoretical properties of Samba because
its complexity depends on N and K, but not on the arm values µ1≤i≤K . As explained in
Section 6.1, only the µi change from a dataset to the other. The hierarchy between the times
taken by the 5 bandit algorithms that require only one iteration (i.e., all except Pursuit)

5. https://pypi.org/project/cryptography/

6. https://pypi.org/project/phe/

7. https://github.com/gamarcad/paper-samba-code
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Figure 8: Experimental results of Samba.

is rather easy to explain based on their standard (non-secure non-federated) versions cf.
Figure 4: Thompson Sampling is the slowest because sampling according to a Beta
distribution is costly, . . ., ε-greedy with fixed ε is the fastest because it does the simplest
computations.

Even though the hierarchy of execution times is rather clear and predictable, we cannot
state that there is a cumulative reward maximization algorithm that should always be
chosen. Indeed, besides execution time, there is also a qualitative measure that is the
actual cumulative reward that is returned, and which depends on the µi. We recall that
cf. Theorem 2, the Samba instantiation of an algorithm is guaranteed to return the same
cumulative reward as its standard (non-secure non-federated) version, hence Samba does
not yield any quality loss w.r.t. the standard versions.

The two different datasets (MovieLens and Jester) yield different cumulative rewards
(Figure 8(c)) for the instantiated algorithms, and different rankings in their performance,
according to the associated ratings of items (aka arm values). Hence, we cannot say that
there is algorithm clearly better or worst than the others. However, the Samba instantiation
of Thompson Sampling seems to provide a good trade-off because it always produces the
best rewards and its execution time is quite close to the other algorithms that require only
one iteration over the core of Samba.

761



Ciucanu, Lafourcade, Marcadet & Soare

Lastly, we show in Figure 8(d) the shares of each Samba participant. Our observations
are coherent with the role played by each participant, as visible from their involvement
in the Samba’s architecture in Figure 5. Comp is the most time-consuming node since it
performs the most work, and for the same N , the share of Comp stays the same, even for
different orders of magnitude of K. Each DOi has an equal share, since they all perform
the same amount of work. The share of Controller is roughly equivalent to that of an DOi,
whereas the share of DC is negligible.

To sum up, our proof-of-concept experiments confirm the theoretical complexity and
show that the overhead of Samba is reasonable, hence our protocols are feasible.

7. Conclusions and Future Work

We tackled the problem of secure cumulative reward maximization in multi-armed bandits
in a cross-silo federated learning setting. Under the orchestration of a central server, each
data owner participating at the cumulative reward computation has the guarantee that its
raw data is not seen by some other participant. We proposed Samba, a generic secure
protocol that is able to easily transform multi-armed bandit algorithms in their secure
federated version, while yielding the exact same cumulative reward as their standard (non-
secure non-federated) version. To achieve Samba’s security properties, we relied on secure
multi-party computations and cryptographic schemes under the honest-but-curious threat
model. Through a theoretical analysis and proof-of-concept experiments, we showed that
the cryptographic overhead implied by Samba remains reasonable in practice.

System Demonstration and Web Interface. In addition to the fundamental contri-
butions presented in this paper, we also implemented a Samba system demonstration (Mar-
cadet, Ciucanu, Lafourcade, Soare, & Amer-Yahia, 2022) that is based on a Web interface
simulating the Samba federated components. The user-friendly Samba Web interface al-
lows data scientists to configure the end-to-end workflow of deploying a federated bandit
algorithm, by examining the interaction between three key dimensions of federated bandits:
cumulative reward, computation time, and security guarantees.

Future Work. We plan to extend Samba such that it provides security guarantees in
more complex threat models and for more complex multi-armed bandit frameworks. More
in general, using cryptography to ensure data security for machine learning algorithms is a
promising, timely direction. We plan to pursue this direction and to design secure protocols
useful for other machine learning models and applications.

According to a recent keynote from a security conference (Yung, 2015), an important
factor that one should take into account when designing a secure multi-party computation
protocol is “Generality vs. specificity: Secure computation is a general scheme; in reality
one has to choose an application, starting from a very real business need, and build the solu-
tion from the problem itself choosing the right tools, tuning protocol ideas into a reasonable
solution, balancing security and privacy needs vs. other constraints.” We stress that feder-
ated learning is a timely, dynamic topic pertaining for both artificial intelligence/machine
learning and security/cryptography communities. One may see a particular class of AI/ML
problems as the “business need” from the aforementioned keynote. For Samba, the consid-
ered problem setting that is relevant and novel for all concerned communities is cumulative
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reward maximization in federated stochastic multi-armed bandits. We relied on secure
multi-party computations in order to guarantee formally proven correctness and security
properties, while yielding a reasonable cryptographic overhead. Moreover, Samba is generic
in the sense that multiple algorithms can be easily plugged in, and we already show five such
algorithms in the paper. Designing a generic framework with theoretical properties similar
to Samba but pertaining for other bandit problems (e.g., for best arm identification) or
different bandit models (e.g., for linear bandits) are completely different problem settings,
which require the development of new specific secure protocols, as also emphasized above.
Naturally, this is also the case for finding optimal strategies in the standard (non-federate,
non-secure) version of bandits algorithms designed for a specific setting, which are no longer
optimal for a different bandit problem or model.

For instance, in linear bandits, the bandit arms are vectors that are known by the
learner, hence there is no need in hiding them as it was the case in Samba, where each
bandit arm is known precisely by a data owner. Moreover, in linear bandits, the unknown
environment is given by a parameter vector θ (unknown to the learner), which is common
to all arms and is used to generate rewards by computing noisy scalar products with the
arm vectors. Hence, a potential Samba-inspired framework for linear bandits should make
data federation hypothesis different than Samba because the considered learning data are
genuinely different. Towards this goal, we first need to find techniques for federating the
storage of θ among several data owners before designing secure protocols that (i) enjoy
security and correctness guarantees similar to those of Samba and (ii) are able to run cu-
mulative reward maximization algorithms for linear bandits. The properties from Samba’s
genericity theorem (i.e., Arm score locality and Oblivious arm selection) will no longer be
fitted for linear bandits because by construction, the linear bandit arms are connected by
the global linear structure, whereas such connections between arms are not present in stan-
dard stochastic bandits as considered in Samba. Even without considering security and
federated aspects, a linear bandit algorithm cannot be optimal if it does not leverage the
global linear structure when designing the arm selection strategy. The challenge is thus
to find the right genericity properties, specific to the linear bandit setting, that will allow
cumulative reward maximization algorithms for linear bandits to be plugged in an adapted
secure, federated framework that enjoys theoretical properties similar to those of Samba.
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