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Abstract

Graph kernels have attracted a lot of attention during the last decade, and have evolved
into a rapidly developing branch of learning on structured data. During the past 20 years,
the considerable research activity that occurred in the field resulted in the development of
dozens of graph kernels, each focusing on specific structural properties of graphs. Graph
kernels have proven successful in a wide range of domains, ranging from social networks to
bioinformatics. The goal of this survey is to provide a unifying view of the literature on
graph kernels. In particular, we present a comprehensive overview of a wide range of graph
kernels. Furthermore, we perform an experimental evaluation of several of those kernels
on publicly available datasets, and provide a comparative study. Finally, we discuss key
applications of graph kernels, and outline some challenges that remain to be addressed.

1. Introduction

In recent years, the amount of data that can be naturally modeled as graphs has increased
significantly. Such types of data have become ubiquitous in many application domains,
ranging from social networks to biology and chemistry. A large portion of the available
graph representations corresponds to data derived from social networks. These networks
represent the interactions between a set of individuals such as friendships in a social web-
site or collaborations in a network of film actors or scientists. In chemistry, molecular
compounds are traditionally modeled as graphs where vertices represent atoms and edges
represent chemical bonds. Biology constitutes another primary source of graph-structured
data. Protein-protein interaction networks, metabolic networks, regulatory networks, and
phylogenetic networks are all examples of graphs that arise in this domain. Graphs are
also well-suited to representing technological networks. For example, the World Wide Web
can be modeled as a graph where vertices correspond to webpages and edges to hyperlinks
between these webpages. The use of graph representations is not limited to the above ap-
plication domains. In fact, most complex systems are usually represented as compositions
of entities along with their interactions, and can thus be modeled as graphs. Interestingly,
graphs are very flexible and rich as a means of data representation. It is not thus surpris-
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ing that they can also represent data that do not inherently possess an underlying graph
structure. For instance, sequential data such as text can be mapped to graph structures
(Filippova, 2010). From the above, it becomes clear that graphs emerge in many real-world
applications, and hence, they deserve no less attention than feature vectors which is the
dominant representation in data mining and machine learning.

The aforementioned abundance of graph-structured data raised requirements for auto-
mated methods that can gain useful insights. This often requires applying machine learn-
ing techniques to graphs. In chemistry and biology, some experimental methods are very
expensive and time-consuming, and machine learning methods can serve as cost-effective
alternatives. For example, identifying experimentally the function of a protein with known
sequence and structure is a very expensive and tedious process. Therefore, it is often de-
sirable to be able to use computational approaches in order to predict the function of a
protein. By representing proteins as graphs, the problem can be formulated as a graph
classification problem where the function of a newly discovered protein is predicted based
on structural similarity to proteins with known function (Borgwardt et al., 2005). Besides
the need for more efficient methods, there is also a need for automating tasks that were
traditionally handled by humans and which involve large amounts of data. For instance,
in cybersecurity, humans used to manually inspect code samples to identify if they contain
malicious functionality. However, due to the rapid increase in the number of malicious ap-
plications in the past years, humans are no longer capable of meeting the demands of this
task (Suarez-Tangil et al., 2014). Hence, there is a need for methods that can accumulate
human knowledge and experience, and that can successfully detect malicious behavior in
code samples. It turns out that machine learning approaches are particularly suited to this
task since most of the newly discovered malware samples are variations of existing malware.
By representing code samples as function call graphs, detecting such variations becomes
less problematic. Hence, the problem of detecting malicious software can be formulated as
a graph classification problem where unknown code samples are compared against known
malware samples and clean code (Anderson et al., 2011). From the above example, it be-
comes clear that performing machine learning tasks on graph-structured data is of critical
importance for many real-world applications.

A central issue for machine learning is modelling and computation of similarity among
objects. In the case of graphs, graph kernels have received a lot of attention in the past
years, and have been established as one of the major approaches for learning on graph-
structured data. A graph kernel is a symmetric, positive semidefinite function defined on
the space of graphs G. This function can be expressed as an inner product in some Hilbert
space. Specifically, given a kernel k, there exists a map φ : G → H into a Hilbert space H
such that k(G1, G2) = 〈φ(G1), φ(G2)〉 for all G1, G2 ∈ G. Roughly speaking, a graph kernel
is a measure of similarity between graphs. Graph comparison is a fundamental problem
with numerous applications in many disciplines (Conte et al., 2004). However, the problem
is far from trivial and requires considerable computational time. Graph kernels tackle this
problem by trying to both capture as much as possible the semantics inherent in the graph
but also to remain computationally efficient. One of the most important reasons behind
the success of graph kernels is that they allow the large family of kernel methods to work
directly on graphs. Therefore, graph kernels can bring to bear several machine learning
algorithms to real-world problems on graph-structured data. The field of graph kernels
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has been intensively developed recently. Interestingly, dozens of graph kernels have been
proposed in the past 20 years. Some of these kernels have achieved state-of-the-art results
on several datasets. Recently, there has been a significant surge of interest in Graph Neural
Network (GNN) approaches for graph representation learning. Most of these models follow
a neighborhood aggregation scheme similar to that of many graph kernels, and can be
reformulated into a single common framework (Gilmer et al., 2017). The main advantage of
GNNs over graph kernels is that their complexity is linear to the number of samples, while
kernels require quadratic time to compute all kernel values. For a detailed presentation of
this important emerging field, the interested reader is referred to Wu et al. (2020).

This paper is a survey of graph kernels, that is kernels that operate on graph-structured
data. We present a comprehensive study of these approaches. We begin with well-known
kernels that established the foundations of the field, and we proceed with more recent kernels
that are considered the state-of-the-art for many graph-related machine learning tasks.
Besides the detailed description of the kernels, we also provide an extensive experimental
evaluation of most of them. As we show in this survey, graph kernels are powerful tools with
a wide range of applications, while their empirical performance is superior to that of graph
neural networks for certain types of graphs. We thus expect these methods to gain soon
more attention in a wealth of applications due to their attractive properties. Importantly,
this study aims to assist both practitioners and researchers who are interested in applying
machine learning tasks on graphs. Furthermore, it should be of interest to all researchers
who deal with the problems of graph similarity and graph comparison. The abundance of
applications related to the above problems stresses the value of the survey. We should note
that three similar surveys reviewing work on graph kernels became very recently available
(Ghosh et al., 2018; Kriege et al., 2020; Borgwardt et al., 2020). One may thus ask the
question: why another survey within such a short period of time? The answer is that in
contrast to the first two above surveys, this survey is much more thorough and covers a larger
number of kernels. Moreover, it presents kernels in a more comprehensive way allowing
researchers to identify open problems and areas for further exploration, and practitioners
to gain a deeper understanding of kernels so that they can decide which kernel best suits
their needs. Specifically, the above two surveys do not go into sufficient details about the
mathematical foundations of the different kernels. On the other hand, we provide an in-
depth discussion of a large number of kernels along with all the mathematical details that
are of high importance in this domain. This survey also provides a much more meaningful
taxonomy of graph kernels. More specifically, kernels are grouped into classes based on
different criteria such as the type of data on which they operate, and the design paradigm
that they follow. The third survey (Borgwardt et al., 2020) is very detailed and well-
written, and there is a considerable intersection with this survey, especially in terms of the
articulation of the presentation of the kernels, however, it lags behind in terms of empirical
analysis. To the best of our knowledge, we provide the most complete evaluation in terms of
the number of considered graph kernels. Ghosh et al. (2018) do not perform original graph
classification experiments, but they only report results from the kernels’ original papers.
Kriege et al. (2020) perform original experiments, however, they only evaluate 9 kernels
(and their variants) and 1 framework in total, while Borgwardt et al. (2020) evaluate 12
kernels and 1 framework. On the other hand, our list of methods includes 16 different
kernels and 2 frameworks. Besides classification performance, we also measure and report
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running times (not provided by Kriege et al., 2020 or by Borgwardt et al., 2020). We believe
that running times are one of the major reasons behind the choice of a kernel for a practical
application. Also, we need to stress that such a wider, and more extensive experimental
comparison of graph kernels can provide useful insights into the strengths and weaknesses of
the different kernels. Furthermore, we compare graph kernels against graph neural networks
which we believe that is an important piece of exploration as to the comparison of two worlds
(neural networks and kernels) in the context of graphs. Finally, we empirically compare the
expressiveness of the kernels to each other, that is how well the different kernels capture
the similarity of graphs, something that is missing from the current literature.

The rest of this manuscript is organized as follows. In Section 2, we discuss why the
use of graphs as a means of object representation is vital and necessary in many domain
areas, and we also present the challenges of applying learning algorithms on graphs. In
Section 3, we introduce notation and background material that we need for the remainder
of the paper, including some fundamental concepts from graph theory and from kernel
methods. In Section 4, we discuss the core concepts of graph kernels, and we give an
overview of the literature on graph kernels. We begin by describing important kernels that
were developed in the early days of the field. We next present kernels that are based on
neighborhood aggregation mechanisms. We then describe more recent kernels that do not
employ neighborhood aggregation mechanisms. Subsequently, we present kernels that are
based on assignment, and methods that can handle continuous node attributes. Finally,
we give details about frameworks that work on top of graph kernels and aim to improve
their performance. The grouping of the reported studies is designed to make it easier for
the reader to follow the analysis of the literature, and to obtain a complete picture of
the different graph kernels that have been proposed throughout the years. In Section 5,
we provide a short introduction to graph neural networks, the main competitors of graph
kernels, and we discuss how the major family of these models is related to graph kernels.
In Section 6, we present applications of graph kernels in many different domain areas. In
Section 7, we experimentally evaluate the performance of many graph kernels on several
widely-used graph classification benchmark datasets. Furthermore, we measure the running
times of these kernels. Based on the obtained results, we provide guidelines for the successful
application of graph kernels in different classification problems. We also study the expressive
power of graph kernels from an empirical standpoint by comparing the obtained kernel
values against the similarities that are produced by a well-accepted but intractable graph
similarity function. Finally, Section 8 contains the summary of the survey, along with a
discussion about future research directions in the field of graph kernels.

2. Motivation and Challenges

In this Section, we present the main reasons that motivate the use of graphs instead of
feature vectors as a means of data representation. Furthermore, we describe the problem
of learning on graphs which arises in many application domains. We focus on the instance
of the problem where each sample is a graph, and highlight its relationship to the graph
comparison problem.
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2.1 Why Graphs

Graphs are a powerful and flexible means of representing structured data. The power of
graphs stems from the fact that they represent both entities, and the relationships between
them. Typically, the vertices of a graph correspond to some entities, and the edges model
how these entities interact with each other. It is important to note that several fundamental
structures for representing data can be seen as instances of graphs (Borgwardt, 2007). This
highlights the generality of graphs as a form of representation. For example, a vector
can be naturally thought of as a graph where vertices correspond to components of the
vector and consecutive components within the vector are joined by an edge. Associative
arrays can be modeled as graphs, with keys and values represented as vertices, and directed
edges connecting keys to their corresponding values. Strings can also be represented as
graphs, with one vertex per character and edges between consecutive characters. Due to
the power and the generality of graphs as representational models, in some cases, even
data that does not exhibit graph-like structure is mapped to graph representations. A very
common example is that of textual data, where graphs are usually employed to model the
relationships between sentences or terms (Mihalcea & Tarau, 2004).

In data mining and machine learning, observations traditionally come in the form of
vectors. However, vector representations suffer from a series of limitations. Specifically,
vectors have limited capability to model complex objects since they are unable to capture
relationships that may exist between different entities of an object. Furthermore, all the
input objects are usually represented as vectors of the same length, despite their size and
complexity. On the other hand, as discussed above, graphs are characterized by increased
flexibility which allows them to adequately model a variety of different objects. Graphs
model both the entities and the relationships between them. Moreover, they are allowed
to vary in the number of vertices and in the number of edges. Therefore, graphs address
several of the limitations inherent to vectors. It is thus clear that the need for methods that
perform learning tasks on graphs is intense.

2.2 Learning on Graphs and Challenges

Learning on graphs has gained extensive attention in the past years. This is mainly due
to the representational power of graphs which has established them as a major structure
for modeling data from various disciplines. Hence, it is not surprising that a plethora of
learning problems have been defined on graphs. Most of these learning problems focus
either on the node level or on the graph level. Node classification belongs to the former set
of problems, while graph classification belongs to the latter set of problems. In this survey,
we focus exclusively on tasks performed at the graph level. Therefore, all the kernels that
are presented correspond to functions between graphs.

Data representation is a key issue in the fields of data mining and machine learning.
Algorithms are mainly designed to handle data in a specific representation. Due to the
appealing properties of graphs, one would expect that there would be great progress in the
development of algorithms that can handle graph-structured data. However, the combina-
torial nature of graphs acts as a “barrier” since it is very likely that algorithms that operate
directly on graphs will be computationally expensive and will not scale to large datasets.
Thus, research in these areas has mainly focused on algorithms operating on vectors, as
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vectors possess many desirable mathematical properties and can be dealt with much more
efficiently. Hence, it is not surprising that the most popular learning algorithms are de-
signed for data represented as vectors. As a consequence, it has become common practice
to represent any type of data as feature vectors. Even in application domains where data
is naturally represented as graphs, attempts were made to transform graphs into feature
vectors instead of designing algorithms that operate directly on graphs. Ideally, we would
like to have a method that runs in polynomial time and is capable of transforming graphs
to feature vectors without sacrificing their representational power. Unfortunately, such a
method does not exist. Directly representing data as vectors is thus suboptimal since vec-
tors fail to preserve the rich topological information encoded in a graph. Hence, it would
be much more preferable to devise algorithms that operate directly on graphs.

The problem of learning on graphs (at the graph level) is directly related to that of graph
comparison. The ability to compute meaningful similarity or distance measures is often a
prerequisite to perform machine learning tasks. Such similarity and distance measures
are at the core of many machine learning algorithms. Examples include the k-nearest
neighbor classifier, and algorithms that learn decision functions in proximity spaces (Graepel
et al., 1999). These algorithms are very flexible since they require only a distance or
similarity function to be defined as the sole mathematical structure on the set of input
objects. Hence, by defining a meaningful distance function d : G × G → R+ between
graphs, we can immediately use one of the above algorithms to perform tasks such as
graph classification and graph clustering. However, it turns out that graph comparison is
a very complex problem. Specifically, graphs lack the convenient mathematical context of
vector spaces, and many operations on them, though conceptually simple, are either not
properly defined or computationally expensive. Perhaps the most striking example of these
operations is to determine if two objects are identical. In the case of vectors, it requires
comparing all their corresponding components, and it can thus be accomplished in linear
time with respect to the size of the vectors. For the analogous operation on graphs, known
as graph isomorphism, no polynomial-time algorithm has been discovered so far (Garey &
Johnson, 1979). In general, the problem of comparing two objects is much less well-defined
on graphs compared to vectors. For vectors, distance can be computed efficiently using the
universally accepted Euclidean distance metric. Unfortunately, there exists no such metric
on graphs. Several fundamental problems in graph theory related to graph comparison
such as the subgraph isomorphism problem and the maximum common subgraph problem
are NP-complete (Garey & Johnson, 1979). Furthermore, identifying common parts in two
graphs is computationally infeasible. Given a graph consisting of n vertices, there are 2n

possible subsets of vertices. Hence, there are exponentially many (in the size of the graphs)
pairs of subsets to consider. It becomes thus clear that although graphs offer a very intuitive
way of modeling data from diverse sources, their power and flexibility do not come without
a price.

3. Preliminaries

Before we delve into the details of graph kernels, we outline some fundamental aspects of
graph theory and kernel methods. We first introduce basic concepts from graph theory, and
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Figure 1: Examples of different types of graphs. A simple undirected graph (left), a labeled
graph (center), and an attributed graph (right).

define our notation. We also provide a short introduction to kernel functions and kernel
methods in machine learning.

3.1 Definitions and Notations

Definition 1 (Graph). A graph is a pair G = (V,E) consisting of a set of vertices (or
nodes) V and a set of edges E ⊆ V × V which connect pairs of vertices.

The size of the graph corresponds to its number of vertices denoted by |V | or n. As
regards the number of edges of the graph, we will denote it as |E| or m. An example of a
graph is given in Figure 1 (left). A graph may have labels on its nodes and edges. This is
often necessary for capturing the semantics of complex objects. For instance, most graphs
derived from chemistry (e. g., molecules) are annotated with categorical labels from a finite
set.

Definition 2 (Labeled Graph). A labeled graph is a graph G = (V,E) endowed with a
function ` : V ∪ E → Σ that assigns labels to the vertices and edges of the graph from a
discrete set of labels Σ.

A graph with labels on its vertices is called node-labeled. Similarly, a graph with labels
on edges is called edge-labeled. A graph with labels on both the vertices and edges is called
fully-labeled. An example of a node-labeled graph is given in Figure 1 (center). In many
settings, vertex and edge annotations are in the form of vectors. For example, vertices and
edges may be annotated with multiple categorical or real-valued properties. These graphs
are known as attributed graphs.

Definition 3 (Attributed Graph). An attributed graph is a graph G = (V,E) endowed with
a function f : V ∪ E → Rd that assigns real-valued vectors to the vertices and edges of the
graph.

An example of a node-attributed graph is given in Figure 1 (right). Note that labeled
graphs are a special case of attributed graphs. We can represent labeled graphs as attributed
graphs if we map the discrete labels to one-hot vector representations. A graph G = (V,E)
can be represented by its adjacency matrix A.
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Definition 4 (Adjacency Matrix). Let Aij be the element in the i-th row and j-th column
of matrix A. Then, the adjacency matrix A of a graph G = (V,E) can be defined as follows

Aij =

{
1 if (vi, vj) ∈ E,
0 otherwise

The adjacency matrix A consists of n rows and n columns, that is A ∈ Rn×n. The
neighborhood N (vi) of vertex vi is the set of all vertices adjacent to vi. Hence, N (vi) =
{vj : (vi, vj) ∈ E} where (vi, vj) is an edge between vertices vi and vj of V . A concept
closely related to the neighborhood of a vertex vi is its degree degG(vi).

Definition 5 (Degree). Given an undirected graph G = (V,E) and a vertex vi ∈ V , the
degree of vi is the number of edges incident to vi, and is defined as

deg(vi) = |{vj : (vi, vj) ∈ E}| = |N (vi)| (1)

The maximum of the degrees of the vertices of a graph is denoted by deg∗, and deg∗ =
maxv∈V deg(v). Besides the adjacency matrix A, a graph G = (V,E) can also be represented
by its Laplacian matrix L.

Definition 6 (Laplacian Matrix). Let A be the adjacency matrix of a graph G = (V,E)
and D a diagonal matrix with Dii =

∑
j Aij. Then, the Laplacian matrix L of a graph

G = (V,E) can be defined as follows

L = D −A (2)

Similarly to the adjacency matrix A, the dimensionality of the Laplacian matrix is n×n.
A subgraph of a graph G is a graph whose set of vertices and set of edges are both subsets
of those of G. Let G′ ⊆ G denote that G′ is a subgraph of G.

Definition 7 (Induced Subgraph). Given a graph G = (V,E) and a subset of vertices
S ⊆ V , the subgraph G(S) = (S,E(S)) induced by S consists of the set of vertices S and
the set of edges E(S) that have both end-points in S defined as follows

E(S) = {(vi, vj) ∈ E : vi, vj ∈ S} (3)

The degree of a vertex vi ∈ S, degG(S)(vi), is equal to the number of vertices that are
adjacent to vi in G(S). The density of a graph G is δ(G) = m/

(
n
2

)
, the number of edges

m over the total possible edges. A graph G with density δ(G) = 1 is called a complete
graph. In a complete graph, every pair of distinct vertices are adjacent. A clique is a subset
of vertices such that every pair of them are connected by an edge, that is, their induced
subgraph is complete.

Definition 8 (Walk, Path, Cycle). A walk in a graph G = (V,E) is a sequence of vertices
v1, v2, . . . , vk+1 where vi ∈ V for all 1 ≤ i ≤ k + 1 and (vi, vi+1) ∈ E for all 1 ≤ i ≤ k. The
length of the walk is equal to the number of edges in the sequence, that is k in the above case.
A walk in which vi 6= vj ⇔ i 6= j is called a path. A cycle is a path with (vk+1, v1) ∈ E.
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List of key symbols

G Set of graphs G A graph

V Set of vertices E Set of edges

n Number of vertices m Number of edges

N (v) Neighbors of v deg(v) Degree of vertec v

G(S) Subgraph of G induced by set of vertices S deg∗ Maximum degree

A Adjacency matrix of graph L Laplacian matrix of graph

` Function that assigns labels to vertices and edges δ Diameter of graph

f Function that assigns attributes to vertices and edges Nr(v) r-hop neighborhood of v

Table 1: Commonly used symbols and notations

Definition 9 (Shortest Path). A shortest path from vertex vi to vertex vj of a graph G
is a path from vi to vj such that there exist no other path between these two vertices with
smaller length.

The diameter of a graph G is the length of the longest shortest path between any pair of
vertices of G. The neighborhood of radius r (or r-hop neighborhood) of vertex vi is the set
of vertices whose shortest path distance from vi is less than or equal to r and is denoted by
Nr(vi). Table 1 gives a list of the most commonly used symbols along with their definition.

3.2 Kernel Functions and Kernel Methods

We next give an introduction to kernel functions and kernel methods.

Definition 10 (Gram Matrix). Given a set of inputs x1, . . . , xN ∈ X and a function
k : X × X → R, the N ×N matrix K defined as

Kij = k(xi, xj) (4)

is called the gram matrix (or kernel matrix) of k with respect to the inputs x1, . . . , xN .

In what follows, we will refer to gram matrices as kernel matrices.

Definition 11 (Positive Semidefinite Matrix). A real N×N symmetric matrix K satisfying

N∑
i=1

N∑
j=1

cicjKij ≥ 0 (5)

for all ci ∈ R is called positive semidefinite.

Definition 12 (Positive Semidefinite Kernel). Let X be a nonempty set. A function k :
X ×X → R which for all N ∈ N and all x1, . . . , xN ∈ X gives rise to a positive semidefinite
kernel matrix is called a positive semidefinite kernel, or just a kernel.

Informally, a kernel function measures the similarity between two objects. Furthermore,
kernel functions can be represented as inner products between the vector representations of
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these objects. Specifically, if we define a kernel k on X × X , then there exists a mapping
φ : X → H into a Hilbert space with inner product 〈·, ·〉, such that:

∀xi, xj ∈ X : k(xi, xj) = 〈φ(xi), φ(xj)〉 (6)

A Hilbert space is an inner product space which also possesses the completeness property
that every Cauchy sequence of points taken from the space converges to a point in the space.
Furthermore, the Hilbert space H has the following property known as the reproducing
property:

∀f ∈ H, ∀x ∈ X : f(x) = 〈f, k(x, ·)〉 (7)

By virtue of this property, H is called a reproducing kernel Hilbert space (RKHS) associated
with kernel k. It is interesting to note that every kernel function on X × X is associated
with an RKHS and vice versa (Aronszajn, 1950).

Kernel methods are a class of machine learning algorithms which operate on input data
after they have been mapped into an implicit feature space using a kernel function. One
of the major advantages of kernel methods is that they can operate on very general types
of data (Schölkopf & Smola, 2002). The input space X does not have to be a vector
space, but it can represent any structured domain, such as the space of strings or graphs
(Gärtner, 2003). Kernel methods can still be applied to such types of data, as long as we
can find a mapping φ : X → H, where H is an RKHS. This mapping is not neccasary to
be explicitly determined. These methods implicitly represent data in a feature space and
compute inner products between them in that space using a kernel function. These inner
products can be interpreted as the similarities between the corresponding objects. Machine
learning tasks such as classification and clustering can be carried out by using only the
inner products computed in that feature space. Kernel methods are very popular and have
been successfully used in a wide variety of applications. Here, we need to stress that the
optimization problem of several kernel methods such as the Support Vector Machines is
convex only if the employed function is positive semidefinite.

4. Graph Kernels

In this Section, we give an overview of the graph kernel literature. Our study is not ex-
haustive, however, we have tried to cover the most representative approaches that have
appeared in the literature of graph kernels. We first present some fundamental aspects
of graph kernels, and we then proceed by discussing the details of several graph kernel
instances.

4.1 Kernels between Graphs

Kernels on graphs can be divided into two categories: (1) those that compare nodes in a
graph, and (2) those that compare graphs. As mentioned above, in this survey, we focus on
the second category, that is, kernels between graphs and thus we exclusively use the term
graph kernel for describing such kernel functions. As regards the first category, we refer the
interested reader to the work of Kondor and Lafferty (2002) which was later extended by
Smola and Kondor (2003). Graph kernels have recently emerged as a promising approach
for learning on graph-structured data. These methods exhibit several attractive statistical
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G1

G2

G3

G

H
φ(G1)

φ(G2)
φ(G3)

Figure 2: Feature space and map defined by graph kernels. Any kernel on a space of graphs
G can be represented as an inner product after graphs are mapped into a Hilbert space H.

properties. They combine the representative power of graphs and the discrimination power
of kernel-based methods. Hence, they constitute powerful tools for tackling the graph
similarity and learning tasks at the same time.

From the previous Section, it is clear that the application of kernel methods consists of
two steps. First, a kernel function is designed, and based on this function the kernel matrix
is constructed. Second, a learning algorithm is employed to compute the optimal manifold
in the feature space (e. g., a hyperplane in binary classification problems). Since several
mature kernel-based classifiers are available in the literature, research on graph kernels has
focused on the first step. Hence, the main effort has been devoted to developing expressive
and efficient graph kernels capable of accurately measuring the similarity between input
graphs. These kernels implicitly (or explicitly sometimes) project graphs into a feature
space H as illustrated in Figure 2. As regards the second step, it is common to employ
off-the-shelf algorithms such as the Support Vector Machines classifier (Boser et al., 1992)
or the kernel k-means algorithm (Dhillon et al., 2004), and thus, we will not enter into
more details here. The interested reader is referred to Schölkopf and Smola (2002) or to
Shawe-Taylor and Cristianini (2004).

Concluding, the main challenge in applying kernel methods to graphs is to define ap-
propriate positive semidefinte kernel functions on the set of input graphs which are able to
reliably assess the similarity among them. We next present, for illustration purposes, two
very simple kernels that compare node and edge labels of the two involved graphs.

4.2 Simple Kernels

The vertex histogram and edge histogram kernels are very simple instances of graph kernels
which generate explicit graph representations.
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4.2.1 Vertex Histogram Kernel

The vertex histogram kernel is a basic linear kernel on vertex label histograms. The kernel
assumes node-labeled graphs. Let Σ = {1, . . . , d} be a set of node labels. Clearly, there
are d node labels in total, that is d = |Σ|. Then, the vertex label histogram of a graph
G = (V,E) is a vector f = (f1, f2, . . . , fd)

>, such that fi = |{v ∈ V : `(v) = i}| for each
i ∈ Σ. Let f, f ′ be the vertex label histograms of two graphs G,G′, respectively. The vertex
histogram kernel is then defined as the linear kernel between f and f ′, that is

k(G,G′) = 〈f, f ′〉 (8)

The complexity of the vertex histogram kernel is linear in the number of vertices of the
graphs.

4.2.2 Edge Histogram Kernel

The edge histogram kernel is a basic linear kernel on edge label histograms. The kernel
assumes edge-labeled graphs. Given a set of edge labels Σ = {1, . . . , d} (d edge labels in
total), the edge label histogram of a graph G = (V,E) is a vector f = (f1, f2, . . . , fd)

>, such
that fi = |{(v, u) ∈ E : `(v, u) = i}| for each i ∈ Σ. Let f, f ′ be the edge label histograms
of two graphs G,G′, respectively. The edge histogram kernel is then defined as the linear
kernel between f and f ′, that is

k(G,G′) = 〈f, f ′〉 (9)

The complexity of the edge histogram kernel is linear in the number of edges of the graphs.

4.3 Expressiveness vs Efficiency

The two kernels defined above are indeed positive semidefinite, but they both correspond
to rather naive concepts - as a distribution of values is. A question that may arise at this
point is how expressive can graph kernels be in practice.

Let us first define the class of kernels which are capable of distinguishing between all
(non-isomorphic) graphs in the feature space. Such kernels are called complete.

Definition 13 (Complete Graph Kernel). A graph kernel k(Gi, Gj) = 〈φ(Gi), φ(Gj)〉 is
complete if φ is injective.

Gärtner et al. (2003) showed that computing any complete graph kernel is at least as hard
as deciding whether two graphs are isomorphic. The above result, in effect, prohibits the use
of complete graph kernels in practical applications. Instead, by using kernels that are not
complete, it is not further guaranteed that non-isomorphic graphs will not be mapped into
the same point in the feature space. This is a negative result since it implies that to develop
expressive kernels, it is necessary to sacrifice some of their efficiency. More recently, Kriege
et al. (2018) showed that several established graph kernels, such as the Weisfeiler-Lehman
subtree kernel, cannot distinguish essential graph properties such as connectivity, planarity
and bipartiteness. Considering that the Weisfeiler-Lehman subtree kernel achieves state-of-
the-art results on most benchmark datasets, this result blurs even more the already vague
issue of choosing a graph kernel a practitioner is faced with when dealing with a particular
application. In fact, devising a good trade-off between efficiency and effectiveness is an issue
of vital importance when designing a graph kernel.
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Figure 3: Taxonomy of graph kernels.

4.4 Taxonomy of Graph Kernels

There exist many different criteria we can use to divide the various graph kernels into
different categories. For instance, graph kernels are traditionally grouped into some major
families, each focusing on a different structural aspect of graphs such as random walks,
subtrees, cycles, paths, and small subgraphs. Alternatively, graph kernels can be divided
into groups according to their ability to handle unlabeled graphs, node-labeled or node-
attributed graphs. Furthermore, graph kernels can be divided into approaches that employ
explicit computation schemes and approaches that employ implicit computation schemes
(Kriege et al., 2014). Graph kernels can also be grouped into categories based on the
design paradigm that they follow (i. e., if they are R-convolution, assignment or intersection
kernels). Note that groups emerging from different criteria may be related to each other.
For instance, graph kernels that can handle node-attributed graphs usually employ implicit
computation schemes. Figure 3 illustrates the taxonomy of graph kernels. The devised
taxonomy is based on some of the criteria mentioned above. However, in what follows, we
do not adopt exclusively any of these criteria. We begin our treatment with approaches that
were proposed in the early days of graph kernels, starting from the well-studied random
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Graph Kernel Exp. φ
Node Node

Type Complexity
Labels Attributes

Vertex Histogram 3 3 7 R-convolution O(n)

Edge Histogram 3 3 7 R-convolution O(m)

Random Walk 7† 3 3 R-convolution O(n3)

Subtree 7 3 3 R-convolution O(n24deg
∗
h)

Cyclic Pattern 3 3 7 intersection O((c+ 2)n+ 2m)

Shortest Path 7† 3 3 R-convolution O(n4)

Graphlet 3 7 7 R-convolution O(nk)

Weisfeiler-Lehman Subtree 3 3 7 R-convolution O(hm)

Neighborhood Hash 3 3 7 intersection O(hm)

Neighborhood Subgraph Pairwise Distance 3 3 7 R-convolution O(n2m log(m))

Lovász ϑ 3 7 7 R-convolution O(n(s+ nm
ε

) + s2)

SVM-ϑ 3 7 7 R-convolution O(n(s+ n2) + s2)

Ordered Decomposition DAGs 3 3 7 R-convolution O(n logn)

Pyramid Match 7 3 7 assignment O(ndL)

Weisfeiler-Lehman Optimal Assignment 7 3 7 assignment O(hm)

Subgraph Matching 7 3 3 R-convolution O(knk+1)

GraphHopper 7 3 3 R-convolution O(n4)

Graph Invariant Kernels 7 3 3 R-convolution O(n6)

Propagation 3 3 3 R-convolution O(hm)

Multiscale Laplacian 7 3 3 R-convolution O(n5h)

Table 2: Summary of selected graph kernels regarding computation by explicit feature
mapping (Exp. φ), support for node-labeled and node-attributed graphs, type, and compu-
tational complexity. A dagger (†) implies that the kernel admits an explicit feature mapping
for certain types of graphs. The complexity refers to the worst-case theoretical complexity
for evaluating the kernel between two graphs. In practice, and for certain kinds of graphs,
some graph kernels (e. g., the shortest-path kernel) can be evaluated much more efficiently.
The Table uses notation that has not been introduced yet: k: size of largest subgraph
considered, c: upper bound on the number of cycles, h: maximum distance between root of
neighborhood subgraph/subtree pattern and its nodes, s: number of sampled subgraphs, ε:
additive error associated with semidefinite programming solvers, d: dimensionality of node
representations, L: number of levels.

walk kernel till the very popular Weisfeiler-Lehman subtree kernel. We next present some
approaches that were inspired from the neighborhood aggregation schmeme of the Weisfeiler-
Lehman subtree kernel, and then kernels that do not fall into either of the previous two
categories. The subequent subsections are devoted to assignment kernels, and to kernels
that can handle continuous node attributes. The final subsections deals with frameworks
and approaches that can be applied on top of existing graph kernels. An overview of the
graph kernels that are presented in this survey and their properties is given in Table 2.

4.5 Early Days of Graph Kernels

While early studies on kernel functions and kernel methods focused almost exclusively on
input data represented as vectors, it soon became clear that these methods could handle
more complex structured objects such as strings, trees and graphs. One of the most popular
methods for defining kernels between such objects is to decompose the objects into their
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“parts”, and to compare all pairs of these “parts” by applying existing kernels on them.
Kernels constructed using the above framework are called R-convolution kernels (Haussler,
1999). Most graph kernels in the literature are instances of the R-convolution framework.
These kernels decompose graphs into their substructures and add up the pairwise similarities
between these substructures.

The most intuitive example of an R-convolution kernel is probably a kernel that decom-
poses each graph into the set of all of its subgraphs, and compares them pairwise. Gärtner
et al. (2003) showed that the problem of computing the kernel that compares all the sub-
graphs of two graphs is NP-hard. Based on this result, it becomes evident that we need
to consider alternative, less powerful graph kernels that can be computed in polynomial
time. However, as discussed above, it is necessary that these kernels provide an expressive
measure of similarity on graphs. Over the years, several graph kernels have been proposed,
each focusing on a different structural aspect of graphs. Such aspects involve comparing
graphs based on random walks, subtrees, cycles, paths, and small subgraphs, to name a few.
We next look at some kernels that date back to the early days of this field. Furthermore,
we present kernels that were motivated by problems encountered by the above instances,
and were proposed as more advanced alternatives.

4.5.1 Random Walk Kernel

The random walk kernels are perhaps one of the first successful efforts to design kernels
between graphs that can be computed in polynomial time. The members of this well-
studied family of graph kernels quantify the similarity between a pair of graphs based on
the number of common walks in the two graphs (Kashima et al., 2003; Gärtner et al.,
2003; Mahé et al., 2004; Borgwardt et al., 2005; Vishwanathan et al., 2010; Sugiyama &
Borgwardt, 2015; Zhang et al., 2018b). Kernels belonging to this family have concentrated
mainly on counting matching walks in the two input graphs. There are several variations of
random walk kernels. The k-step random walk kernel compares random walks up to length
k in the two graphs. The most widely-used kernel from this family is the geometric random
walk kernel (Gärtner et al., 2003) which compares walks up to infinity assigning a weight λk

(λ < 1) to walks of length k in order to ensure convergence of the corresponding geometric
series. We next give the formal definition of the geometric random walk kernel. Given two
node-labeled graphs G = (V,E) and G′ = (V ′, E′), their direct product G× = (V×, E×) is
a graph with vertex set:

V× = {(v, v′) : v ∈ V ∧ v′ ∈ V ′ ∧ `(v) = `(v′)} (10)

and edge set:

E× = {{(v, v′), (u, u′)} : (v, u) ∈ E ∧ (v′, u′) ∈ E′} (11)

An example of the product graph of two graphs is illustrated in Figure 4. Performing a
random walk on G× is equivalent to performing a simultaneous random walk on Gi and Gj .
The geometric random walk kernel counts common walks (of potentially infinite length) in
two graphs and is defined as follows.

Definition 14 (Geometric Random Walk Kernel). Let G and G′ be two graphs, let A×
denote the adjacency matrix of their product graph G×, and let V× denote the vertex set of
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Figure 4: Two graphs (top left and right) and their direct product (bottom). Each vertex
of the direct product graph is labeled with a pair of vertices; an edge exists in the direct
product if and only if the corresponding vertices are adjacent in both original graphs. For
instance, nodes 1 − 4 and 3 − 5 are adjacent because there is an edge between vertices 1
and 3 in the first, and 4 and 5 in the second graph.

the product graph G×. Then, the geometric random walk kernel is defined as

K∞× (G,G′) =

|V×|∑
p,q=1

[ ∞∑
l=0

λlAl×

]
pq

= e>(I − λA×)−1e (12)

where I is the identity matrix, e is the all-ones vector, and λ is a positive, real-valued
weight. The geometric random walk kernel converges only if λ < 1

λ×
where λ× is the largest

eigenvalue of A×.

Direct computation of the geometric random walk kernel requires O(n6) time. The
computational complexity of the method severely limits its applicability to real-world ap-
plications. To account for this, Vishwanathan et al. (2010) proposed four efficient methods
to compute random walk graph kernels which generally reduce the computational complex-
ity from O(n6) to O(n3). Mahé et al. (2004) proposed some other extensions of random walk
kernels. Specifically, they proposed a label enrichment approach which increases specificity
and in most cases also reduces computational complexity. They also employed a second or-
der Markov random walk to deal with the problem of “tottering”. Sugiyama and Borgwardt
(2015) focused on a different problem of random walk kernels, a phenomenon referred to
as “halting”. More recently, Zhang et al. (2018b) proposed a kernel that capitalizes on the
isomorphism-invariance property of the return probabilities of random walks.

958



Graph Kernels: A Survey

4.5.2 Subtree Kernel

Due to problems with the expressiveness of the random walk kernels that they identified,
Ramon and Gärtner (2003) worked on designing new kernels. Their research efforts re-
sulted in the development of the subtree kernel, an algorithm that counts the number of
common subtree patterns in two graphs. The kernel is more expressive (in the sense that
it can distinguish non-isomorphic graphs which walk-based kernels cannot), but also more
computationally expensive than the random walk kernels.

The subtree patterns that the subtree kernel considers correspond to rooted subgraphs.
Every subtree pattern has a tree-structured signature, and the kernel associates each pos-
sible subtree pattern signature to a feature. Given a graph, the value of each feature is the
number of times that a subtree of the signature that corresponds to this feature occurs in
the graph. Let kh(v, v′) be a kernel that counts the pairs of subtrees of the same signature
of height less than or equal to h, where the first subtree is rooted at v and the second one
is rooted at v′. The kernel kh(v, v′) is equal to:

kh(v, v′) =

{
δ(`(v), `(v′)) if h = 1

λvλv′
∑

R∈M(v,v′)

∏
(u,u′)∈R kh−1(u, u′) if h > 1

(13)

where λv and λv′ are positive values smaller than 1 to cause higher trees to have a smaller
weight in the overall sum, and δ is the dirac kernel. Therefore, if h = 1 and the two nodes
share the same label, then it holds that k1(v, v′) = 1. If h = 1 and the two nodes have
different labels, we have k1(v, v′) = 0. For h ≥ 1, one can compute kh(v, v′) using a recursive
scheme. Specifically, we define the set of all matchings from N (v) to N (v′) as follows

M(v, v′) =
{
R ⊆ N (v)×N (v′)|

(
∀(u, u′), (w,w′) ∈ R : u = w ⇔ u′ = w′

)
∧
(
∀(u, u′) ∈ R : `(u) = `(u′)

)} (14)

Each element R of M(v, v′) is a set of pairs of nodes from the neighborhoods of v ∈ V
and v′ ∈ V ′, such that nodes in each pair have identical labels and no node is contained in
more than one pair. The subtree kernel compares all pairs of vertices from two graphs by
iteratively comparing their neighborhoods.

Definition 15 (Subtree Kernel). Let G = (V,E) and G′ = (V ′, E′) be two graphs. Then,
the subtree kernel is defined as

k(G,G′) =
∑
v∈V

∑
v′∈V ′

kh(v, v′) (15)

The computational complexity of the subtree kernel for a pair of graphs is O(n24deg
∗
h).

Although in the worst-case scenario, the runtime complexity of the subtree kernel is very
high, in practice, it can be quite low if the input graphs are sparse or if there is sufficient
diversity in the labels of the vertices.

4.5.3 Cyclic Pattern Kernel

The cyclic pattern kernel is also one of the earliest approaches developed in the area of
graph kernels. This kernel decomposes a graph into cyclic and tree patterns, and counts
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the number of common patterns which occur in two graphs (Horváth et al., 2004). More
specifically, let G = (V,E) be a graph. Let also S(G) denote the set of cycles of G. Let
C = (v1, v2, . . . , vk, v1) be a sequence of vertices that forms a cycle in G, that is C ∈ S(G).
The canonical representation of a cycle C is the lexicographically smallest string π(C) among
the strings obtained by concatenating the labels along the vertices of the cyclic permutations
of C and its reverse. Formally, denoting by ρ(s) the set of cyclic permutations of a sequence
s and its reverse, the canonical representation of C is defined by

π(C) = min{w : w ∈ ρ
(
`(v1), `(v2), . . . , `(vk)

)
} (16)

where ` is a function that assigns labels to the vertices of the graph. In case of edge-labeled
graphs, edgle labels can also be taken into account. The set of cyclic patterns of G is then
defined by

C(G) = {π(C) : C ∈ S(G)} (17)

The kernel then extracts from G all the edges that do not belong to any cycle (a.k.a
bridges) by removing from G all the edges of all cycles. The set of bridges of G forms a
set of trees (each tree is a connected component composed of bridges). Then, similarly to
cycles, the kernel computes the canonical representation π(T ) of each tree T . The set of
tree patterns of G is then defined by

T (G) = {π(T ) : T is a tree} (18)

Then, given two graphs, the kernel computes the intersection of their sets of cyclic and tree
patters.

Definition 16 (Cyclic Pattern Kernel). Let G, G′ be two graphs, and C(G), C(G′) and
T (G), T (G′) be the sets of cyclic patterns and tree patters of the two graphs, respectively.
Then, the cyclic pattern kernel is defined as

k(G,G′) = |C(G) ∩ C(G′)|+ |T (G) ∩ T (G′)| (19)

Unfortunately, computing the cyclic pattern kernel is an NP-hard problem. The cardi-
nality of the set of cyclic and tree patterns of a graph can be exponential in the number
of vertices of the graph. However, the cyclic pattern kernel can prove useful for practical
problem classes where the number of cycles in the input graphs is bounded.

4.5.4 Shortest-Path Kernel

The high computational complexity of graph kernels based on walks, subtrees and cycles
renders them impractical for most real-world scenarios. Borgwardt and Kriegel (2005)
worked on developing more efficient kernels based on paths. However, computing all the
paths in a graph and computing the longest paths in a graph are both NP-hard problems.
Instead, shortest paths can be computed in polynomial time, and they gave rise to the
shortest-path kernel, one of the most popular kernels to this day.

The shortest-path kernel decomposes graphs into shortest paths and compares pairs of
shortest paths according to their lengths and to the labels of their endpoints. The first
step of the shortest-path kernel is to transform the input graphs into shortest-paths graphs.
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φ(Gi) = (2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0)>

φ(Gj) = (0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1)>

a

b

Gj

Figure 5: Example of explicit computation of the shortest path kernel. Each triple is a
feature and corresponds to: (label of source vertex; label of sink vertex; shortest path
length between the two vertices).

Given an input graph G = (V,E), the algorithm creates a new graph S = (V,Es) (i. e., its
shortest-path graph). The shortest-path graph S contains the same set of vertices as its
source graph. The edge set of the former is a superset of that of the latter, since in the
shortest-path graph S, there exists an edge between all vertices that are connected by a
walk in the original graph G. To complete the transformation, the algorithm assigns labels
to all the edges of the shortest-path graph S. The label of each edge is set equal to the
shortest distance between its endpoints in the original graph G.

Given the above procedure for transforming a graph into a shortest-path graph, the
shortest-path kernel is defined as follows.

Definition 17 (Shortest-Path Kernel). Let G, G′ be two graphs, and S = (V,E), S′ =
(V ′, E′) their corresponding shortest-path graphs. The shortest-path kernel is then defined
as

k(G,G′) =
∑
e∈E

∑
e′∈E′

k
(1)
walk(e, e

′) (20)

where k
(1)
walk(e, e

′) is a positive semidefinite kernel on edge walks of length 1.

In labeled graphs, the k
(1)
walk(e, e

′) kernel is designed to compare both the lengths of the
shortest paths corresponding to edges e and e′, and the labels of their endpoint vertices.

Let e = (v, u) and e′ = (v′, u′). Then, k
(1)
walk(e, e

′) is usually defined as

k
(1)
walk(e, e

′) = kv
(
`(v), `(v′)

)
ke
(
`(e), `(e′)

)
kv
(
`(u), `(u′)

)
(21)

where kv is a kernel comparing vertex labels, and ke a kernel comparing shortest path
lengths. Vertex labels are usually compared via a dirac kernel, while shortest path lengths
may also be compared via a dirac kernel or, more rarely, via a brownian bridge kernel
(Borgwardt & Kriegel, 2005). When kv and ke both are dirac kernels, an explicit compu-
tation scheme can be employed as shown in Figure 5. In terms of runtime complexity, the
shortest-path kernel can be computed in O(n4) time.
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4.5.5 Graphlet Kernel

The graphlet kernel decomposes graphs into graphlets (i. e., small subgraphs with k vertices
where k ∈ {3, 4, 5}) (Pržulj, 2007) and counts matching graphlets in the input graphs.
For example, the set of graphlets of size 4 is shown in Figure 6. This kernel was originally
designed to address scalability issues experienced by earlier approaches. In fact, the graphlet
kernel was one of the first kernels that could cope with very large graphs using a simple
sampling scheme. However, apart from the scalability issue, the graphlet kernel was also
motivated by the graph reconstruction conjecture (Bondy & Hemminger, 1977), which states
that any graph of size n can be reconstructed from the set of all its subgraphs of size n− 1.
This could possibly be interpreted as indicating that kernels that compare graphs based
on their subgraphs should reflect graph similarity better than approaches that are defined
based on random walks, subtrees, cyclic patterns or shortest paths. However, even if graphs
that have similar distributions of graphlets are very likely to be similar themselves, there is
no theoretical justification on why such a substructure (i. e., graphlets) is better than the
others.

As mentioned above, the graphlet kernel computes the distribution of small subgraphs
in a graph. Let G = {graphlet1, graphlet2, . . ., graphletd} be the set of size-k graphlets.
Let also fG ∈ Nd be a vector such that its i-th entry is equal to the frequency of occurrence
of graphleti in G, fG,i = #(graphleti v G). Then, the graphlet kernel is defined as follows.

Definition 18 (Graphlet of size k Kernel). Let G, G′ be two graphs of size n ≥ k, and
fG, fG′ vectors that count the occurrence of each graphlet of size k (not necessarily connected)
in the two graphs. Then the graphlet kernel is defined as

k(G,G′) = f>G fG′ (22)

As is evident from the above definition, the graphlet kernel is computed by explicit
feature maps. First, the representation of each graph in the feature space is computed.
And then, the kernel value is computed as the dot product of the two feature vectors. The
main problem of the graphlet kernel is that an exaustive enumeration of graphlets is very
expensive. Since there are

(
n
k

)
size-k subgraphs in a graph, computing the feature vector

for a graph of size n requires O(nk) time. To account for that, Shervashidze et al. (2009)
resorted to sampling. Following Weissman et al. (2003), they showed that by sampling a
fixed number of graphlets the empirical distribution of graphlets will be sufficiently close to
their actual distribution in the graph. An alternative proposed strategy that reduces the
expressivity of the kernel is to enumerate only the connected graphlets of k vertices, and
not all the possible graphlets.

4.5.6 Weisfeiler-Lehman Subtree Kernel

The Weisfeiler-Lehman subtree kernel is a very popular algorithm, and is considered the
state-of-the-art in graph classification. It belongs to the family of subtree kernels, and was
motivated by the need for a fast subtree kernel that scales up to large, labeled graphs. The
kernel is an instance of the Weisfeiler-Lehman framework. This framework operates on top
of existing graph kernels and is inspired by the Weisfeiler-Lehman test of graph isomorphism
(Weisfeiler & Lehman, 1968). The key idea of the Weisfeiler-Lehman algorithm is to replace
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G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11

Figure 6: All graphlets of size 4.

the label of each vertex with a multiset label consisting of the original label of the vertex
and the sorted set of labels of its neighbors. The resultant multiset is then compressed into
a new, short label. This relabeling procedure is then repeated for h iterations. Note that
this procedure is performed simultaneously on all input graphs. Therefore, two vertices
from different graphs will get identical new labels if and only if they have identical multiset
labels.

More formally, given a graph G = (V,E) endowed with a labeling function ` = `0, the
Weisfeiler-Lehman graph of G at height i is a graph Gi = (V,E) endowed with a labeling
function `i which has emerged after i iterations of the relabeling procedure described above.
The Weisfeiler-Lehman sequence up to height h of G consists of the Weisfeiler-Lehman
graphs of G at heights from 0 to h, {G0, G1, . . . , Gh}.

Definition 19 (Weisfeiler-Lehman Framework). Let k be any kernel for graphs, that we
will call the base kernel. Then the Weisfeiler-Lehman kernel with h iterations with the base
kernel k between two graphs G and G′ is defined as

kWL(G,G′) = k(G0, G
′
0) + k(G1, G

′
1) + . . .+ k(Gh, G

′
h) (23)

where h is the number of Weisfeiler-Lehman iterations, and {G0, G1, . . . , Gh} and {G′0, G′1,
. . . , G′h} are the Weisfeiler-Lehman sequences of G and G′ respectively.

From the above definition, it is clear that any graph kernel that takes into account
discrete node labels can take advantage of the Weisfeiler-Lehman framework and compare
graphs based on the whole Weisfeiler-Lehman sequence.

When the base kernel compares subtrees extracted from two graphs, the computation
involves counting the common original and compressed labels in the two graphs. The
emerging Weisfeiler-Lehman subtree kernel is a byproduct of the Weisfeiler-Lehman test of
isomorphism.

Definition 20 (Weisfeiler-Lehman Subtree Kernel). Let G, G′ be two graphs. Define Σi ⊆
Σ as the set of letters that occur as node labels at least once in G or G′ at the end of the i-th
iteration of the Weisfeiler-Lehman algorithm. Let Σ0 be the set of original node labels of G
and G′. Assume all Σi are pairwise disjoint. Without loss of generality, assume that every
Σi = {σi1, . . . , σi|Σi|} is ordered. Define a map ci : {G,G′} ×Σi → N such that ci(G, σij) is
the number of occurrences of the letter σij in the graph G.
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Figure 7: Illustration of the computation of the Weisfeiler-Lehman subtree kernel with
h = 1 for two graphs G and G′. Here, 1, 2, . . . , 13 ∈ Σ are letters that occur as node labels.
Compressed labels map to subtree patterns. For example, if a node has label 6, this means
that there is a subtree pattern of height 1 rooted at this node, where the root has label 1
and its single neighbor has label 4.

The Weisfeiler-Lehman subtree kernel on two graphs G and G′ with h iterations is
defined as

k(G,G′) = 〈φ(G), φ(G′)〉 (24)

where

φ(G) = (c0(G, σ01), . . . , c0(G, σ0|Σ0|), . . . , ch(G, σh1), . . . , ch(G, σh|Σh|)) (25)

and

φ(G′) = (c0(G′, σ01), . . . , c0(G′, σ0|Σ0|), . . . , ch(G′, σh1), . . . , ch(G′, σh|Σh|)) (26)

An illustration of the Weisfeiler-Lehman subtree kernel is given in Figure 7. It can be
shown that the above definition is equivalent to comparing the number of shared subtrees
between the two input graphs (Shervashidze et al., 2011). In contrast to the subtree kernel
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that was proposed by Ramon and Gärtner and was presented above, the Weisfeiler-Lehman
subtree kernel considers all subtrees up to height h, instead of subtrees of exactly height
h. Furthermore, the Weisfeiler-Lehman subtree kernel checks whether the neighborhoods of
two vertices match exactly, while the subtree kernel considers all pairs of matching subsets
of the neighborhoods of two vertices. It is interesting to note that the Weisfeiler-Lehman
subtree kernel exhibits a very attractive computational complexity since it can be computed
in O(hm) time.

4.6 Neighborhood Aggregation Approaches

The Weisfeiler-Lehman subtree kernel triggered a lot of activity in the field of graph ker-
nels. The relabeling procedure of the Weisfeiler-Lehman algorithm can be viewed as a
neighborhood aggregation scheme. The main idea behind neighborhood aggregation algo-
rithms (a.k.a. message-passing algorithms) is that each vertex receives messages from its
neighbors and utilizes these messages to update its representation. Following the success of
this kernel, several variations of it were proposed. All these variations employ a neighbor-
hood aggregation scheme similar to that of the Weisfeiler-Lehman algorithm. The goal of
most of these works is to speed-up the computation time of the Weisfeiler-Lehman subtree
kernel (Hido & Kashima, 2009; Kataoka & Inokuchi, 2016). However, other types of varia-
tions were also proposed such as a streaming version of the Weisfeiler-Lehman algorithm (Li
et al., 2012), a kernel that uses the k-dimensional Weisfeiler-Lehman test of isomorphism
(Morris et al., 2017), and a method that augments the subtree features with topological
information (Rieck et al., 2019). We next present the neighborhood hash kernel, a kernel
that was born out of these research efforts.

4.6.1 Neighborhood Hash Kernel

Similar to the Weisfeiler-Lehman subtree kernel, the neighborhood hash kernel also assumes
node-labeled graphs (Hido & Kashima, 2009). It compares graphs by updating their node
labels and counting the number of common labels. The kernel replaces the discrete node
labels with binary arrays of fixed length, and it then employs logical operations to update
the labels so that they contain information about the neighborhood structure of each vertex.

Let ` : V → Σ be a function that maps vertices to an alphabet Σ which is the set of
possible discrete node labels. Hence, given a vertex v, `(v) ∈ Σ is the label of vertex v. The
algorithm first transforms each discrete node label to a bit label. A bit label is a binary
array consisting of d bits as

s = (b1, b2, . . . , bd) (27)

where the constant d satisfies 2d − 1� |Σ| and b1, b2, . . . , bd ∈ {0, 1}.
The most important step of the algorithm involves a procedure that updates the labels

of the vertices. To achieve that, the kernel makes use of two very common bit operations:
(1) the exclusive or (XOR) operation, and (2) the bit rotation (ROT ) operation. Let
XOR(si, sj) = si ⊕ sj denote the XOR operation between two bit labels si and sj (i. e.,
the XOR operation is applied to all their components). The output of the operation is a
new binary array whose components represent the XOR value between the corresponding
components of the si and sj arrays. The ROTo operation takes as input a bit array and
shifts its last o bits to the left by o bits and moves the first o bits to the right end as shown
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a(#1000)

c(#1100)b(#1110)

#1110

#1100

⊕

#0010 ⊕ #0001

ROT1(#1000 )

= #0011

Figure 8: Example of computation of the simple neighborhood hash for a vertex (in green).
The vertex has two adjacent vertices (in red). The three vertices have different labels from
each other. The algorithm uses XOR and ROT operations to compute the neighborhood
hash of the vertex (#0011).

below

ROTo(s) = {bo+1, bo+2, . . . , bd, b1, . . . , bo} (28)

Below, we present in detail two procedures for updating the labels of the vertices: (1) the
simple neighborhood hash, and (2) the count-sensitive neighborhood hash.

Simple Neighborhood Hash. Given a graph G = (V,E) with bit labels, the simple
neighborhood hash update procedure computes a neighborhood hash for each vertex using
the logical operations XOR and ROT . More specifically, given a vertex v ∈ V , let N (v) =
{u1, . . . , ud} be the set of neighbors of v. Then, the kernel computes the neighborhood hash
as

NH(v) = ROT1

(
`(v)

)
⊕
(
`(u1)⊕ . . .⊕ `(ud)

)
(29)

The resulting hash NH(v) is still a bit array of length d, and we regard it as the new label
of v. This new label represents the distribution of the node labels around v. Hence, if vi and
vj are two vertices that have the same label (i. e., `(vi) = `(vj)) and the label sets of their
neighborhors are also identical, their hash values will be the same (i. e., NH(vi) = NH(vj)).
Otherwise, they will be different except for accidental hash collisions. The main idea behind
this update procedure is that the hash value is independent of the order of the neighborhood
values due to the properties of the XOR operation. Hence, one can check whether or not
the distributions of neighborhood labels of two vertices are equivalent without sorting or
matching these two label sets. Figure 8 illustrates how the simple neighborhood hash is
computed for a given vertex.

Count-sensitive Neighborhood Hash. The simple neighborhood hash update proce-
dure described above suffers from some problematic hash collisions. Specifically, the neigh-
borhood hash values for two independent nodes have a small probability of being the same
even if there is no accidental hash collision. Such problematic hash collisions may affect
the positive semidefiniteness of the kernel. To address that problem, the count-sensitive
neighborhood hash update procedure counts the number of occurences of each label in the
set. More specifically, it first uses a sorting algorithm (e. g., radix sort) to align the bit
labels of the neighbors, and then, it extracts the unique labels (set {`1, . . . , `l} in the case
of l unique labels) and for each label counts its number of occurences. Then, it updates
each unique label based on its number of occurences as follows

`′i = ROTo
(
`i ⊕ o

)
(30)
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a(#1000)

c(#1100)
#0110 ⊕ #0001

ROT1(#1000 )

= #0111
d(#0101)d(#0101)

#0101

#1100

#0010) =

#0001 =

⊕

⊕

ROT2(#0111) = #1101

ROT1(#1101) = #1011

ROT2(

ROT1(

⊕

Figure 9: Example of computation of the count-sensitive neighborhood hash for a vertex
(in green). The vertex has three adjacent vertices (in red). Two of these three vertices
have identical labels. The algorithm uses XOR and ROT operations to compute the count-
sensitive neighborhood hash of the vertex (#0111).

where `i, `
′
i is the initial and updated label respectively, and o is the number of occurences

of that label in the set of neighbors. The above operation makes the hash values unique
by depending on the number of label occurrences. Then, the count-sensitive neighborhood
hash is computed as

CSNH(v) = ROT1

(
`(v)

)
⊕
(
`′1 ⊕ . . .⊕ `′l

)
(31)

Figure 9 illustrates the operations of the count-sensitive neighborhood hash for a given
vertex. Both the simple and the count-sensitive neighborhood hash can be seen as gen-
eral approaches for enriching the labels of vertices based on the label distribution of their
neighborhood vertices.

Kernel Calculation. The neighborhood hash update procedures presented above aggre-
gate the information of the neighborhood vertices to each vertex. Then, given two graphs
G and G′, the updated labels of their vertices are compared using the following function

κ(G,G′) =
c

|V |+ |V ′| − c
(32)

where c is the number of labels the two graphs have in common. This function is equivalent
to the Tanimoto coefficent which is commonly used as a similarity measure between sets of
discrete values and which has been proven to be positive semidefinite (Gower, 1971).

The label-update procedures is not necessary to be applied once, but they can be applied
iteratively. By updating the bit labels several times, the new labels can capture high-order
relationships between vertices. For instance, if the procedure is performed h times in total,
the updated label `(v) of a vertex v represents the label distribution of its h-neighbors.
Hence, two vertices vi, vj with identical labels and connections among their r-neighbors will
be assigned the same label.

Definition 21 (Neighborhood Hash Kernel). Let G and G′ be two graphs, and let G1, . . . , Gh
and G′1, . . . , G

′
h denote their updated graphs where the node labels have been updated 1, . . . , h

times based on one of the two procedures presented above, respectively. Then, the neighbor-
hood hash kernel is defined as

k(G,G′) =
1

h

h∑
i=1

κ(Gi, G
′
i) (33)
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The computational complexity of the neighborhood hash kernel is O(deg nhd) where
n = |V | is the number of vertices of the graphs and deg is the average degree of their
vertices.

4.7 Other Approaches

Recently, several kernels were proposed that belong to the R-convolution framework, but
do not perform neighborhood aggregation. There are, for instance, kernels specially de-
signed for graphs with ordered neighborhoods (Draief et al., 2018), kernels that compare
pairs of rooted subgraphs containing vertices up to a certain distance from the root (Costa
& De Grave, 2010), kernels that extract directed acyclic graphs from the input graphs
(Da San Martino et al., 2012), and kernels that use the orthonormal representations of ver-
tices introduced by Lovász (Johansson et al., 2014). We next present some of these kernels
in detail.

4.7.1 Neighborhood Subgraph Pairwise Distance Kernel

The neighborhood subgraph pairwise distance kernel extracts pairs of rooted subgraphs
from each graph whose roots are located at a certain distance from each other, and which
contain vertices up to a certain distance from the root. It then compares graphs based
on these pairs of rooted subgraphs. To avoid isomorphism checking, graph invariants are
employed to encode each rooted subgraph (Costa & De Grave, 2010).

Let G = (V,E) be a graph. The distance between two vertices u, v ∈ V , denoted
D(u, v), is the length of the shortest path between them. The neighborhood of radius r
of a vertex v is the set of vertices at a distance less than or equal to r from v, that is
{u ∈ V : D(u, v) ≤ r}. Given a subset of vertices S ⊆ V , let E(S) be the set of edges
that have both end-points in S. Then, the subgraph with vertex set S and edge set E(S) is
known as the subgraph induced by S. The neighborhood subgraph of radius r of vertex v
is the subgraph induced by the neighborhood of radius r of v and is denoted by Nr(v). Let
also Rr,d(Av, Bu, G) be a relation between two rooted graphs Av, Bu and a graph G = (V,E)
that is true if and only if both Av and Bu are in {Nr(v) : v ∈ V }, where we require Av, Bu
to be isomorphic to some Nr(v) to verify the set inclusion, and that D(u, v) = d. We denote
with R−1(G) the inverse relation that yields all the pairs of rooted graphs Av, Bu satisfying
the above constraints. Hence, R−1(G) selects all pairs of neighborhood graphs of radius r
whose roots are at distance d in a given graph G.

Definition 22 (Neighborhood Subgraph Pairwise Distance Kernel). Let G,G′ be two graphs.
The neighborhood subgraph pairwise distance kernel extracts from the two graphs pairs of
rooted subgraphs of radius r whose roots are located at distance d from each other. It then
utilizes the following kernel to compare them

kr,d(G,G
′) =

∑
Av ,Bv∈R−1

r,d(G)

∑
A′
v′ ,B

′
v′∈R

−1
r,d(G′)

δ(Av, A
′
v′) δ(Bv, B

′
v′) (34)

where δ is 1 if its input subgraphs are isomorphic, and 0 otherwise. The above kernel counts
the number of identical pairs of neighboring graphs of radius r at distance d between two
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graphs. Then, the neighborhood subgraph pairwise distance kernel is defined as

k(G,G′) =

r∗∑
r=0

d∗∑
d=0

k̂r,d(G,G
′) (35)

where k̂r,d is a normalized version of kr,d, that is

k̂r,d(G,G
′) =

kr,d(G,G
′)√

kr,d(G,G)kr,d(G′, G′)
(36)

The above version ensures that relations of all orders are equally weighted regardless
of the size of the induced part sets. The neighborhood subgraph pairwise distance kernel
includes an exact matching kernel over two graphs (i. e., the δ kernel) which is equivalent
to solving the graph isomorphism problem. Solving the graph isomorphism problem is
not feasible. Therefore, the kernel produces an approximate solution to it instead. Given
a subgraph GS induced by the set of vertices S, the kernel computes a graph invariant
encoding for the subgraph via a label function `g : G → Σ∗, where G is the set of rooted
graphs and Σ∗ is the set of strings over a finite alphabet Σ. The function `g makes use of
two other label functions: (1) a function `n for vertices, and (2) a function `e for edges.
The `n function assigns to vertex v the concatenation of the lexicographically sorted list
of triplets 〈D(v, u), D(v, h), `(u)〉 for all u ∈ S, where h is the root of the subgraph and
` is a function that maps vertices/edges to their label symbol. Hence, the above function
relabels each vertex with a string that encodes the initial label of the vertex, the vertex
distance from all other labeled vertices, and the distance from the root vertex. The `e

(
(u, v)

)
function assigns to edge (u, v) the label 〈`n(u), `n(v), `

(
(u, v)

)
〉. The `e

(
(u, v)

)
function

thus annotates each edge based on the new labels of its endpoints, and its initial label, if any.
Finally, the function `g(GS) assigns to the rooted graph induced by S the concatenation of
the lexicographically sorted list of `e

(
(u, v)

)
for all {u, v} ∈ E(S). The kernel then employs

a hashing function from strings to natural numbers H : Σ∗ → N to obtain a unique identifier
for each subgraph. Hence, instead of testing pairs of subgraphs for isomorphism, the kernel
just checks if the subgraphs share the same identifier.

The computational complexity of the neighborhood subgraph pairwise distance kernel
is O(n|S||E(S)| log |E(S)|) and is dominated by the repeated computation of the graph
invariant for each vertex of the graph. Since this is a constant time procedure, for small
values of d∗ and r∗, the complexity of the kernel is in practice linear in the size of the graph.

4.7.2 Lovász ϑ Kernel

The Lovász number ϑ(G) of a graph G = (V,E) is a real number that is an upper bound
on the Shannon capacity of the graph. It was introduced by László Lovász in 1979 (Lovász,
1979). The Lovász number is intimately connected with the notion of orthonormal repre-
sentations of graphs. An orthonormal representation of a graph G consists of a set of unit
vectors UG = {ui ∈ Rd : ||ui|| = 1}i∈V where each vertex i is assigned a unit vector ui such
that (i, j) 6∈ E =⇒ u>i uj = 0. Specifically, the Lovász number of a graph G is defined as

ϑ(G) = min
c,UG

max
i∈V

1

(c>ui)2
(37)
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where c ∈ Rd is a unit vector and UG is an orthonormal representation of G. Geometrically,
ϑ(G) is defined by the smallest cone enclosing a valid orthonormal representation UG. The
Lovász number ϑ(G) of a graph G can be computed to arbitrary precision in polynomial
time by solving a semidefinite program.

The Lovász ϑ kernel utilizes the orthonormal representations associated with the Lovász
number to compare graphs (Johansson et al., 2014). The kernel is applicable only to un-
labeled graphs. Given a collection of graphs, it first generates orthonormal representations
for the vertices of each graph by computing the Lovász ϑ number. Hence, UG is a set that
contains the orthonormal representations of G. Let S ⊆ V be a subset of the vertex set of
G. Then, the Lovász value of the set of vertices S is defined as

ϑS(G) = min
c

max
i∈S

1

(c>ui)2
(38)

where c ∈ Rd is a unit vector and ui is the representation of vertex i obtained by computing
the Lovász number ϑ(G) of G. The Lovász value of a set of vertices S represents the angle
of the smallest cone enclosing the set of orthonormal representations of these vertices (i. e.,
subset of UG defined as {ui : ui ∈ UG, i ∈ S}).

Definition 23 (Lovász ϑ Kernel). Let G = (V,E) and G′ = (V ′, E′) be two graphs. The
Lovász ϑ kernel between the two graphs is defined as follows

k(G,G′) =
∑
S⊆V

∑
S′⊆V ′

δ(|S|, |S′|) 1

Z|S|
k
(
ϑS(G), ϑS′(G

′)
)

(39)

where Z|S| =
(|V |
|S|
)(|V ′|
|S|
)
, δ(|S|, |S′|) is a delta kernel (equal to 1 if |S| = |S′|, and 0 oth-

erwise), and k is a positive semi-definite kernel between Lovász values (e. g., linear kernel,
gaussian kernel).

The Lovász ϑ kernel consists of two main steps: (1) computing the Lovász number ϑ of
each graph and obtaining the associated orthonormal representations, and (2) computing
the Lovász value for all subgraphs (i. e., subsets of vertices S ⊆ V ) of each graph. Exact
computation of the Lovász ϑ kernel is in most real settings infeasible since it requires
computing the minimum enclosing cones of 2n sets of vertices.

When dealing with large graphs, it is thus necessary to resort to sampling. Given a
graph G, instead of evaluating the Lovász value on all 2n sets of vertices, the algorithm
evaluates it in on a smaller number of subgraphs induced by sets of vertices contained in
L ⊂ 2V . Then, the Lovász ϑ kernel is defined as follows

k̂(G,G′) =
∑
S∈L

∑
S′∈L′

δ(|S|, |S′|) 1

Ẑ|S|
k
(
ϑS(G), ϑS′(G

′)
)

(40)

where Ẑ|S| = |L|S|||L′|S|| and L|S| denotes the subset of L consisting of all sets of cardinality

|S|, that is L|S| = {B ∈ L : |B| = |S|}.
The time complexity of computing k̂(G,G′) is O(n2mε−1 + s2T (k) + sn) where T (k) is

the complexity of computing the base kernel k, n = |V |, m = |E| and s = max(|L|, |L′|).
The first term represents the cost of solving the semi-definite program that computes the

970



Graph Kernels: A Survey

Lovász number ϑ. The second term corresponds to the worst-case complexity of computing
the sum of the Lovász values. And finally, the third term is the cost of computing the
Lovász values of the sampled subsets of vertices.

4.7.3 SVM-ϑ Kernel

The SVM-ϑ kernel is closely related to the Lovász ϑ kernel (Johansson et al., 2014). The
Lovász ϑ kernel suffers from high computational complexity, and the SVM-ϑ kernel was
developed as a more efficient alternative. Similar to the Lovász ϑ kernel, this kernel also
assumes unlabeled graphs.

Given a graph G = (V,E) such that |V | = n, the Lovász number of G can be defined as

ϑ(G) = min
K∈L

ω(K) (41)

where ω(K) is the one-class SVM given by

ω(K) = max
αi>0

2

n∑
i=1

αi −
n∑
i=1

n∑
j=1

αiαjKij (42)

and L is a set of positive semidefinite matrices defined as

L = {K ∈ S+
n : Kii = 1,Kij = 0 ∀(i, j) 6∈ E} (43)

where S+
n is the set of all n× n positive semidefinite matrices.

The SVM-ϑ kernel first computes the matrix KLS which is equal to

KLS =
A

ρ
+ I (44)

where A is the adjacency matrix of G, I is the n × n identity matrix, and ρ ≥ −λn with
λn the minimum eigenvalue of A. The matrix KLS is positive semidefinite by construction
and it has been shown in (Jethava et al., 2013) that

ω(KLS) =

n∑
i=1

αi (45)

where αi are the maximizers of Equation (42). Furthermore, it was shown that on certain
families of graphs (e. g., Erdös Rényi random graphs), ω(KLS) is with high probability a
constant factor approximation to ϑ(G).

Definition 24 (SVM-ϑ Kernel). Let G = (V,E) and G′ = (V ′, E′) be two graphs. Then,
the SVM-ϑ kernel is defined as follows

k(G,G′) =
∑
S⊆V

∑
S′⊆V ′

δ(|S|, |S′|) 1

Z|S|
k
(∑
i∈S

αi,
∑
j∈S′

αj

)
(46)

where Z|S| =
(|V |
|S|
)(|V ′|
|S|
)
, δ(|S|, |S′|) is a delta kernel (equal to 1 if |S| = |S′|, and 0 oth-

erwise), and k is a positive semi-definite kernel between real values (e. g., linear kernel,
gaussian kernel).
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The SVM-ϑ kernel consists of three main steps: (1) constructing matrix KLS of G which
takes O(n3) time (2) solving the one-class SVM problem in O(n2) time to obtain the αi
values, and (3) computing the sum of the αi values for all subgraphs (i. e., subsets of vertices
S ⊆ V ) of each graph. Computing the above quantity for all 2n sets of vertices is not feasible
in real-world scenarios.

To address the above issue, the SVM-ϑ kernel employs sampling schemes. Given a graph
G, the kernel samples a specific number of subgraphs induced by sets of vertices contained
in L ∈ 2V . Then, the SVM-ϑ kernel is defined as follows

k̂(G,G′) =
∑
S∈L

∑
S′∈L′

δ(|S|, |S′|) 1

Ẑ|S|
k
(∑
i∈S

αi,
∑
j∈S′

αj

)
(47)

where Ẑ|S| = |L|S|||L′|S|| and L|S| denotes the subset of L consisting of all sets of cardinality

|S|, that is L|S| = {B ∈ L : |B| = |S|}.
The time complexity of computing k̂(G,G′) is O(n3 + s2T (k) + sn) where T (k) is the

complexity of computing the base kernel k and s = max(|L|, |L′|). The first term represents
the cost of computing KLS (dominated by the eigenvalue decomposition). The second term
corresponds to the worst-case complexity of comparing the sums of the αi values. And
finally, the third term is the cost of computing the sum of the αi values for the sampled
subsets of vertices.

4.7.4 Ordered Decomposition DAGs Kernel

In contrast to the above two kernels, the ordered decomposition DAGs kernel can handle
node-labeled graphs. The kernel decomposes graphs into multisets of directed acyclic graphs
(DAGs), and then uses existing tree kernels to compare these DAGs (Da San Martino et al.,
2012).

Given a graph G = (V,E), the kernel generates one unordered rooted DAG, say DDv,
for each vertex v ∈ V . To generate the DAG, the kernel keeps only those edges belonging
to the shortest paths between v and any vertex u ∈ V \ {v}. Furthermore, a direction is
given to each edge, while edges connecting vertices visited at level l to vertices visited at
level l′ < l are also removed. Figure 10 gives an example of the decomposition of a graph
into a set of DAGs.

Definition 25 (Ordered Decomposition DAGs Kernel). Let G = (V,E) and G′ = (V ′, E′)
be two graphs. Let also DD(G) and DD(G′) be multisets defined as {DDv : v ∈ V } and
{DDv′ : v′ ∈ V ′}, respectively. Then, the ordered decomposition DAGs kernel is defined as

k(G,G′) =
∑

D∈DD(G)

∑
D′∈DD(G′)

kDAG(D,D′) (48)

where kDAG is a kernel between DAGs.

The kernel is thus defined as the sum of the computation of a local kernel for DAGs,
over all pairs of DAGs in the multiset. Note that these DAGs are unordered. Moreover,
there is a large literature on kernels for ordered trees, but only a few kernel functions for
unordered trees. Hence, the ordered decomposition DAGs kernel transforms the unordered
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Figure 10: Example of decomposition of a graph into its four DAGs (one for each vertex).
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Figure 11: Two DAGs (left) and their associated tree visits T (u) starting from each vertex
u (right).

DAGs to ordered DAGs, and then applies a kernel for ordered trees. More specifically, the
kernel defines a strict partial order among the vertices of each DAG. This partial order takes
into account the labels of the vertices, the outdegrees of the vertices (in case of identical
node labels), and the relation between the sequence of successors of each vertex (in case of
identical node labels and equal outdegrees). Let ODDv denote the DAG of v ∈ V ordered
according to the above relation. Let a tree visit be a function T (u) that, given a vertex u
of a ODDv, returns the tree resulting from the visit of the DAG starting in u. Figure 11
gives an example of tree visits. Then, the ordered decomposition DAGs kernel uses tree
visits to project sub-DAGs to a tree space and applies tree kernels on the visits

kDAG(D,D′) =
∑
v∈VD

∑
v′∈VD′

ktree
(
root(T (v)), root(T (v′))

)
(49)

where VD, VD′ are the set of vertices of D and D′, respectivevly, and ktree is a kernel between
ordered trees. The time complexity of the ordered decomposition DAGs kernel depends on
the employed tree kernel ktree. For instance, using the subtree and subset tree kernel leads
to a time complexity of O(n3 log n) and O(n4), respectively. To reduce the time complexity,
the kernel employs a strategy that allows it to compute ktree once for each unique pair of
subtrees appearing in different DAGs. Furthermore, in case the subtree kernel is employed,
some other strategies can be applied to speed up the computation such as for instance
limiting the depth of the visits during the generation of the multiset of DAGs
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4.8 Assignment Kernels

The majority of kernels presented so far belong to the family of R-convolution kernels. Be-
sides this family of kernels, another family that has received a lot of attention recently is that
of assignment kernels. In general, these kernels compute a matching between substructures
of one object and substructures of a second object such that the overall similarity of the two
objects is maximized (Fröhlich et al., 2005; Schiavinato et al., 2015; Bai et al., 2015b, 2015a;
Kriege et al., 2016; Nikolentzos et al., 2017; Togninalli et al., 2019). Such a matching can
reveal structural correspondences between the two objects. However, defining valid graph
kernels that follow this design paradigm is not trivial. For example, an optimal assignment
kernel that was proposed in the early days of graph kernels to compute a correpondence
between the atoms of molecules (Fröhlich et al., 2005) was later proven not to always be
positive semidefinite (Vert, 2008). Despite these design difficulties, there is a handful of
valid assignment graph kernels. For instance, there is a method that capitalizes on the
well-known pyramid match kernel to match the node embeddings of graphs (Nikolentzos
et al., 2017), while another approach uses multi-graph matching techniques to obtain valid
assignment kernels (Schiavinato et al., 2015). More importantly, it was recently shown that
there exists a class of base kernels used to compare substructures that guarantees positive
semidefinite optimal assignment kernels (Kriege et al., 2016). We next present some of the
above instances of assignment kernels in detail.

4.8.1 Pyramid Match Graph Kernel

The pyramid match kernel is a very popular algorithm in Computer Vision, and has proven
useful for many applications including object recognition and image retrieval (Grauman
& Darrell, 2007; Lazebnik et al., 2006). The pyramid match graph kernel extends its
applicability to graph-structured data (Nikolentzos et al., 2017). The kernel can handle
unlabeled graphs as well as graphs that contain discrete node labels.

The pyramid match graph kernel first embeds the vertices of each graph into a low-
dimensional vector space using the eigenvectors of the d largest in magnitude eigenvalues
of the graph’s adjacency matrix. Since the signs of these eigenvectors are arbitrary, it
replaces all their components by their absolute values. Each vertex is thus a point in the
d-dimensional unit hypercube. To find an approximate correspondence between the sets
of vertices of two graphs, the kernel maps these points to multi-resolution histograms, and
compares the emerging histograms with a weighted histogram intersection function.

Initially, the kernel partitions the feature space into regions of increasingly larger size
and takes a weighted sum of the matches that occur at each level. Two points match
with each other if they fall into the same region. Matches made within larger regions are
weighted less than those found in smaller regions. The kernel repeatedly fits a grid with
cells of increasing size to the d-dimensional unit hypercube. Each cell is related only to
a specific dimension and its size along that dimension is doubled at each iteration, while
its size along the other dimensions stays constant and equal to 1. Given a sequence of
levels from 0 to L, then at level l, the d-dimensional unit hypercube has 2l cells along each
dimension and D = 2ld cells in total. Given a pair of graphs G,G′, let H l

G and H l
G′ denote

the histograms of G and G′ at level l, and H l
G(i), H l

G′(i), the number of vertices of G, G′

that lie in the i-th cell. The number of points in two sets which match at level l is then
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computed using the histogram intersection function

I(H l
G, H

l
G′) =

D∑
i=1

min
(
H l
G(i), H l

G′(i)
)

(50)

The matches that occur at level l also occur at levels 0, . . . , l − 1. The algorithm takes
into account only the new matches found at each level which is given by I(H l

G1
, H l

G2
) −

I(H l+1
G1

, H l+1
G2

) for l = 0, . . . , L− 1. Furthermore, the number of new matches found at each
level in the pyramid is weighted according to the size of that level’s cells. Matches found
within smaller cells are weighted more than those that occur in larger cells. Specifically,
the weight for level l is set equal to 1/2L−l. Hence, the weights are inversely proportional to
the length of the side of the cells that varies in size as the levels increase.

Definition 26 (Pyramid Match Graph Kernel). Let G = (V,E) and G′ = (V ′, E′) be two
graphs. The pyramid match kernel is defined as follows

k(G,G′) = I(HL
G, H

L
G′) +

L−1∑
l=0

1

2L−l
(
I(H l

G, H
l
G′)− I(H l+1

G , H l+1
G′ )

)
(51)

where L is the number of different levels.

The complexity of the pyramid match kernel is O(dnL) where n is the number of vertices
of the graphs under comparison.

In the case of labeled graphs, the kernel restricts matchings to occur only between
vertices that share same labels. It represents each graph as a set of sets of vectors, and
matches pairs of sets of two graphs corresponding to the same label using the pyramid match
kernel. The emerging kernel for labeled graphs corresponds to the sum of the separate
kernels

k(G,G′) =

|Σ|∑
i=1

ki(G,G′) (52)

where |Σ| is the number of distinct labels and ki(G,G′) is the pyramid match kernel between
the sets of vertices of the two graphs which are assigned the label i.

4.8.2 Weisfeiler-Lehman Optimal Assignment Kernel

The Weisfeiler-Lehman optimal assignment kernel is currently a state-of-the-art approach
for learning on graphs (Kriege et al., 2016). The kernel capitalizes on the theory of valid
assignment kernels to improve the performance of the Weisfeiler-Lehman subtree kernel.
Before we delve into the details of the kernel, it is necessary to introduce the theory of valid
optimal assignment kernels.

Let X be a set, and [X ]n denote the set of all n-element subsets of X . Let also X,X ′ ∈
[X ]n for n ∈ N, and B(X,X ′) denote the set of all bijections between X and X ′. The
optimal assignment kernel on [X ]n is defined as

Kk
B(X,X ′) = max

B∈B(X,X′)

∑
(x,x′)∈B

k(x, x′) (53)
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Figure 12: The matrix of a strong kernel on objects a, b and c (a) induced by the hierarchy
(b) and the derived feature vectors (c). A vertex v in (b) is annotated by its weights
w(v);ω(v).

where k is a kernel between the elements of X and X ′. Kriege et al. (2016) showed that
the above function KB(X ,X ′) is a valid kernel only if the base kernel k is strong.

Definition 27 (Strong Kernel). A function k : X × X → R≥0 is called strong kernel if
k(x, y) ≥ min{k(x, z), k(z, y)} for all x, y, z ∈ X .

Strong kernels are equivalent to kernels obtained from a hierarchy defined on set X .
More specifically, let T be a rooted tree such that the leaves of T are the elements of X .
Let V (T ) be the set of vertices of T . Each inner vertex v ∈ T corresponds to a subset of X
comprising all leaves of the subtree rooted at v. Let w : V (T )→ R≥0 be a weight function
such that w(v) ≥ w(p(v)) for all v in T where p(v) is the parent of vertex v. Then, the
tuple (T,w) defines a hierarchy. Let LCA(u, v) be the lowest common ancestor of vertices
u and v, that is, the unique vertex with maximum depth that is an ancestor of both u and
v.

Definition 28 (Hierarchy-induced Kernel). Let H = (T,w) be a hierarchy on X , then the
function defined as k(x, y) = w(LCA(x, y)) for all x, y in X is the kernel on X induced by
H.

Interestingly, strong kernels are equivalent to kernels obtained from a hierarchical par-
tition of the domain of the kernel. Hence, by constructing a hierarchy on X , we can derive
a strong kernel k and ensure that the emerging assignment function is a valid kernel.

Based on the property that every strong kernel is induced by a hierarchy, we can derive
explicit feature maps for strong kernels. Let ω : V (T )→ R≥0 be an additive weight function
defined as ω(v) = w(v) − w(p(v)) and ω(r) = w(r) for the root r. Note that the property
of a hierarchy assures that the values of the ω function are nonnegative. For v ∈ V (T ),
let P (v) ⊆ V (T ) denote the vertices on the path from v to the root r. The strong kernel
k induced by the hierarchy H can be defined using the mapping φ : X → Rn, where
n = |V (T )| and the components indexed by v ∈ V (T ) are

φ(v) =

{ √
ω(u) if u ∈ P (v),
0 otherwise

(54)

Figure 12 shows an example of a strong kernel, an associated hierarchy and the derived
feature vectors.
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Figure 13: An assignment instance (a) for X,Y ∈ [X ]5 and the derived histograms (b).
The set X contains three distinct vertices labeled a and the set Y two distinct vertices
labeled b and c. Taking the multiplicities into account the histograms are obtained from
the hierarchy of the base kernel k depicted in Figure 12. The optimal assignment yields
a value of Kk

B(X,Y ) =
∑n

i=1 min
(
HX(i), HY (i)

)
= min{5, 5} + min{8, 6} + min{3, 1} +

min{2, 4}+ min{1, 2} = 15.

Let H = (T,w) be a hierarchy on X . As mentioned above, the hierarchy H induces a
strong kernel k. Since k is strong, the function Kk

B defined in Equation 53 is a valid kernel.
The kernel Kk

B can be computed in linear time in the number of vertices n of the tree T
using the histogram intersection kernel (Swain & Ballard, 1991) as follows

Kk
B(X,X ′) =

n∑
i=1

min
(
HX(i), HX′(i)

)
(55)

which is known to be a valid kernel on Rn (Barla et al., 2003). Hence, the complexity of
the proposed kernel depends on the size of the tree T . Figure 13 illustrates the relation
between the optimal assignment kernel employing a strong base kernel and the histogram
intersection kernel.

We next present the Weisfeiler-Lehman optimal assignment kernel.

Definition 29 (Weisfeiler-Lehman Optimal Assignment Kernel). Let G = (V,E) and G′ =
(V ′, E′) be two graphs. The Weisfeiler-Lehman optimal assignment kernel is defined as

k(G,G′) = Kk
B(V, V ′) (56)

where k is the following base kernel

k(v, v′) =
h∑
i=0

δ(τi(v), τi(v
′)) (57)

where τi(v) is the label of node v at the end of the i-th iteration of the Weisfeiler-Lehman
relabeling procedure.

The base kernel value reflects to what extent two vertices v and v′ have a similar neigh-
borhood. It can be shown that the colour refinement process of the Weisfeiler-Lehman
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Figure 14: A graph G with uniform initial labels τ0 and refined labels τi for i ∈ {1, . . . , 3}
(a), and the associated hierarchy (b).

algorithm defines a hierarchy on the set of all vertices of the input graphs. Specifically,
the sequence (τi)0≤i≤h gives rise to a family of nested subsets, which can naturally be rep-
resented by a hierarchy (T,w). When assuming ω(v) = 1 for all vertices v ∈ V (T ), the
hierarchy induces the kernel defined above. Such a hierarchy for a graph on six vertices is
illustrated in Figure 14.

4.9 Kernels for Graphs with Continuous Attributes

Most existing graph kernels are designed to operate on both unlabeled and node-labeled
graphs. However, many real-world graphs contain continuous real-valued node attributes.
One example comes from the field of cybersecurity where the function call graphs extracted
from the source code of application programs typically contain multi-dimensional node
labels. Such types of graphs do not appear only in cybersecurity, but also in computer vision
(Harchaoui & Bach, 2007) or even in bioinformatics (Borgwardt et al., 2005), where labels
may represent RGB values of colors or physical properties of protein secondary structure
elements, respectively. Research in graph kernels has achieved a remarkable progress in
recent years. However, it has focused mainly on unlabeled graphs and graphs with discrete
node labels. For such kind of graphs, there are several highly scalable graph kernels available
which can handle graphs with thousands of vertices (e. g., the Weisfeiler-Lehman subtree
kernel). However, the same does not happen in the case of datasets where node labels
correspond to vectors. Some of the existing graph kernels for node-labeled graphs such
as the shortest-path kernel can be extended to handle continuous labels. Unfortunately,
by taking into account these labels, their computational complexity becomes prohibitive.
Designing graph kernels for graphs with continuous node labels is a much less well studied
problem which started to gain some attention recently (Kriege & Mutzel, 2012; Feragen
et al., 2013; Orsini et al., 2015; Neumann et al., 2016; Morris et al., 2016; Su et al., 2016;
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Kondor & Pan, 2016). There are mainly two categories of approaches for graphs with
continuous node labels: (1) those that directly handle continuous node labels, and (2) those
that first discretize the node labels and then employ existing kernels that operate on graphs
with discrete node labels. We will next present some kernels belonging to the first category.
With regards to the second category, worthy of mention is the work of Morris et al. (2016)
that proposes the hash graph kernel framework which iteratively transforms continuous
attributes into discrete labels using randomized hash functions, thus allowing kernels that
support discrete node labels to handle node-attributed graphs.

4.9.1 Subgraph Matching Kernel

The subgraph matching kernel counts the number of matchings between subgraphs of
bounded size in two graphs (Kriege & Mutzel, 2012). The kernel is very general since
it can be applied to graphs that contain node labels, edge labels, node attributes or edge
attributes.

Let G be a set of graphs. We assume that the graphs that are contained in the set are
labeled or attributed. Specifically, let ` be a labeling function that assigns either discrete
labels or continuous attributes to vertices and edges. A graph isomorphism between two
labeled/attributed graphs G = (V,E) and G′ = (V ′, E′) is a bijection φ : V → V ′ that
preserves adjacencies, that is ∀v, u ∈ V : (v, u) ∈ E ⇔ (φ(v), φ(u)) ∈ E′, and labels, that is
if ψ ∈ V × V → V ′ × V ′ is the mapping of vertex pairs implicated by the bijection φ such
that ψ((v, u)) = (φ(v), φ(u)), then, the conditions ∀v ∈ V : `(v) ≡ `(φ(v)) and ∀e ∈ E :
`(e) ≡ `(ψ(e)) must hold, where ≡ denotes that two labels are considered equivalent.

Definition 30 (Subgraph Matching Kernel). Given two graphs G = (V,E) and G′ =
(V ′, E′), let B(G,G′) denote the set of all bijections between sets S ⊆ V and S′ ⊆ V ′, and
let λ : B(G,G′)→ R+ be a weight function. The subgraph matching kernel is defined as

k(G,G′) =
∑

φ∈B(G,G′)

λ(φ)
∏
v∈S

κV (v, φ(v))
∏

e∈S×S
κE(e, ψ(e)) (58)

where S = dom(φ) and κV , κE are kernel functions defined on vertices and edges, respec-
tively.

The instance of the subgraph matching kernel that is obtained if we set the κV , κE
functions as follows

κV (v, v′) =

{
1, if `(v) ≡ `(v′),
0, otherwise and

κE(e, e′) =

{
1, if e ∈ E ∧ e′ ∈ E′ ∧ `(e) ≡ `(e′) or e 6∈ E ∧ e′ 6∈ E′,
0, otherwise.

(59)

is known as the common subgraph isomorphism kernel. This kernel counts the number of
isomorphic subgraphs contained in two graphs.

To count the number of isomorphisms between subgraphs, the kernel capitalizes on a
classical result of Levi (1973) which makes a connection between common subgraphs of two
graphs and cliques in their product graph. More specifically, each maximum clique in the
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product graph is associated with a maximum common subgraph of the factor graphs. This
allows someone to compute the common subgraph isomorphism kernel by enumerating the
cliques of the product graph.

The general subgraph matching kernel extends the theory of Levi and builds a weighted
product graph to allow a more flexible scoring of bijections. Given two graphs G = (V,E),
G′ = (V ′, E′), and vertex and edge kernels κV and κE , the weighted product graph GP =
(VP , EP ) of G and G′ is defined as

VP = {(v, v′) ∈ V × V ′ : κV (v, v′) > 0}
EP = {{(v, v′), (u, u′)} ∈ VP × VP : v 6= u ∧ v′ 6= u′ ∧ κE((v, u), (v′, u′)) > 0}
c(u) = κV (v, v′) ∀u = (v, v′) ∈ VP
c(e) = κE((v, u), (v′, u′)) ∀e ∈ EP ,

where e = ((v, u), (v′, u′))

(60)

After creating the weighted product graph, the kernel enumerates its cliques. The kernel
starts from an empty clique and extends it stepwise by all vertices preserving the clique
property. Let w be the weight of a clique C. Whenever the clique C is extended by a new
vertex v, the weight of the clique is updated as follows: first it is multiplied by the weight of
the vertex w′ = w c(v), and then, it is multiplied by all the edges connecting v to a vertex in
C, that is w′ =

∑
u∈C w c((v, u)). The algorithm effectively avoids duplicates by removing a

vertex from the candidate set after all cliques containing it have been exhaustively explored.

The runtime of the subgraph matching kernel depends on the number of cliques in
the product graph. The worst-case runtime complexity of the kernel when considering
subgraphs of size up to k is O(knk+1), where n = |V | + |V ′| is the sum of the number of
vertices of the two graphs.

4.9.2 GraphHopper Kernel

The GraphHopper kernel is closely related to the shortest path kernel. In the case of graphs
with discrete node labels, the kernels kv and ke of the shortest-path kernel which compare
vertex labels and path lengths correspond typically to dirac kernels. Hence, nodes and
shortest path lengths are considered similar if they are completely identical. That specific
instance of the shortest path kernel allows the use of an explicit computation scheme which
is very efficient, even for larger datasets. However, for attributed graphs, such an explicit
mapping is no longer possible. This has a large impact on the runtime of the algorithm
which is generally O(n4), and makes the kernel unfeasible for many real-world applications.
GraphHopper is a kernel which also compares shortest paths between node pairs from the
two graphs, but with a different path kernel (Feragen et al., 2013). The kernel takes into
account both path lengths and the vertices encountered while “hopping” along shortest
paths. The kernel is equivalent to a weighted sum of node kernels. Moreover, it can handle
both labeled and attributed graphs, and is much more efficient than the shortest-path kernel.

Let G = (V,E) be a graph. The graph contains discrete node labels, continuous node
attributes or both. Let ` be a labeling function that assigns either discrete labels or con-
tinuous attributes to vertices. The kernel compares node labels/attributes using a kernel
kn (e. g., delta kernel in the case of node labels, and linear or gaussian kernel in the case of
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node attributes). Given two vertices v, u ∈ V , a path π from v to u in G is defined as a
sequence of vertices

π = [v1, v2, v3, . . . , vl] (61)

where v1 = v, vl = u and (vi, vi+1) ∈ E for all i = 1, . . . , l− 1. Let π(i) = vi denote the i-th
vertex encountered when “hopping” along the path. Denote by l(π) the weighted length
of π and by |π| its discrete length, defined as the number of vertices in π. The shortest
path πij from vi to vj is defined in terms of weighted length. The diameter δ(G) of G is
the maximal number of nodes in a shortest path in G, with respect to the weighted path
length.

Definition 31 (GraphHopper Kernel). The GraphHopper kernel is defined as a sum of
path kernels kp over the families P, P ′ of shortest paths in G,G′

k(G,G′) =
∑
π∈P

∑
π′∈P ′

kp(π, π
′) (62)

The path kernel kp(π, π
′) is a sum of node kernels kn on vertices simultaneously encountered

while simultaneously hopping along paths π and π′ of equal discrete length, that is

kp(π, π
′) =

{∑|π|
j=1 kn(π(j), π′(j)), if |π| = |π′|,

0, otherwise.
(63)

The k(G,G′) kernel can be decomposed into a weighted sum of node kernels

k(G,G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)kn(v, v′) (64)

where w(v, v′) counts the number of times v and v′ appear at the same hop, or coordinate,
i of shortest paths π, π′ of equal discrete length |π| = |π′|. We can decompose the weight
w(v, v′) as

w(v, v′) =

δ∑
j=1

δ∑
i=1

|{(π, π′) : π(i) = v, π′(i) = v′, |π| = |π′| = j}| =
δ∑
j=1

δ∑
i=1

Mv
ijM

v′
ij (65)

where Mv is a δ × δ matrix whose entry Mv
ij counts how many times v appears at the i-th

coordinate of a shortest path in G of discrete length j, and δ = max(δ(G), δ(G′)). The
components of these matrices can be computed efficiently using recursive message-passing
algorithms. The total complexity of computing the GraphHopper kernel is O(n2(m +
log n + d + δ2)) where n is the number of vertices, m is the number of edges and d is
the dimensionality of the node attributes (d = 1 in the case of discrete node labels).

4.9.3 Graph Invariant Kernels

Kernels for attributed graphs have received increased attention recently, and research efforts
have focused not only on new kernels, but also on frameworks for building kernels that can
handle such continuous node attributes. Graph invariant kernels are instances of such a
framework (Orsini et al., 2015). These kernels decompose graphs into sets of vertices, and
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compare them to each other using a kernel that measures their similarity both in terms of
their attributes and in terms of their structural roles.

Let G be a graph. Let R be a decomposition relation that specifies a decomposition of
G into its parts. Then, we denote by R−1(G) the multiset of all patterns in G. An example
of such a decomposition relation is the one that generates neighborhood subgraphs. Graph
invariant kernels compare vertices of graphs based on their attributes, but also based on
their structural role in subgraphs obtained using a decomposition relation.

Definition 32 (Graph Invariant Kernel). Given two attributed graphs G = (V,E) and
G′ = (V ′, E′), the graph invariant kernels compare the attributes of all pairs of vertices of
the two graphs using a kernel

k(G,G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′) kattr(v, v
′) (66)

where kattr is a kernel between vertex attributes, and w(v, v′) is a weight function defined
as follows

w(v, v′) =
∑

g∈R−1(G)

∑
g′∈R−1(G′)

kinv(v, v
′)
δm(g, g′)

|Vg||Vg′ |
1{v ∈ Vg ∧ v′ ∈ Vg′} (67)

where δm is a dirac function that determines whether two patterns match, Vg, Vg′ are the
set of vertices of patterns g, g′, and 1 is an indicator function.

If g, g′ are subgraphs of G,G′, δm can be a dirac function that compares the canonical
representations of the subgraphs obtained by applying a labeling function which produces
efficient string encodings of the subgraphs along with a hash function from strings to natural
numbers. The indicator function 1{v ∈ Vg∧v′ ∈ Vg′} from all the subgraphs extracted from
the two graphs selects only those in which vertices v and v′ are involved into. The kernel
function kinv is used to measure the similarity between the colors produced by a vertex
invariant L and encodes the extent to which the vertices play the same structural role in
the two subgraphs. By employing different graph invariants L, different instances of graph
invariant kernels emerge. Some common graph invariants include the Weisfeiler-Lehman
relabeling procedure and coloring methods that capitalize on diffusion updates. For kernels
that decompose graphs into sets of subgraphs, their complexity is O

(
n2(dattr+dinvn

2|Vg|2)
)

4.9.4 Propagation Kernel

The propagation kernel is another instance of the neighborhood aggregation framework,
and in contrast to most other instances, it can handle continuous node attributes (Neu-
mann et al., 2016). The kernel leverages quantization in order to transform continuous
node attributes to discrete labels. Similarly to the Weisfeiler-Lehman subtree kernel, the
propagation kernel applies an iterative procedure which updates the node attributes, places
the nodes into bins based on their attributes, and counts nodes that fall into the same bins
in two graphs.

Let G = (V,E) be a node-attributed graph. Let also P0 be a matrix whose i-th row
contains the intial attribute of vertex vi ∈ V . The propagation kernel first uses a hash
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function that maps the node attributes to integer-valued bins, such that vertices with similar
attributes end up in the same bin. Hence, this function maps each row of matrix P0 to an
integer. Then, the kernel employs a propagation scheme to update the attributes of the
vertices. Different schemes can be employed. A common scheme updates node attributes
as follows

Pt+1 = D−1APt (68)

where D is a diagonal matrix with Dii =
∑

j Aij , and D−1A corresponds to the transition
matrix, that is the row-normalized adjacency matrix. The above two steps (hashing and
update of node attributes) are performed for T iterations.

Definition 33 (Propagation Kernel). Let G, G′ be two node-attributed graphs. Define ni
as the number of integer bins occupied by nodes of G and G′ after applying the hashing
function to the node attributes at the i-th iteration of the algorithm. Let also ct(G, i) be
the number of nodes of G placed into bin i at the t-th iteration of the algorithm. Then, the
propagation kernel on two graphs G and G′ with T iterations is defined as

k(G,G′) = 〈φ(G), φ(G′)〉 (69)

where

φ(G) = (c0(G, 1), . . . , c0(G,n0), . . . , cT (G, 1), . . . , cT (G,nT )) (70)

and

φ(G′) = (c0(G′, 1), . . . , c0(G′, n0), . . . , cT (G′, 1), . . . , cT (G′, nT )) (71)

An illustration of the propagation kernel is given in Figure 15. The total runtime
complexity of the kernel is O

(
(T − 1)m+ Tn

)
.

4.9.5 Multiscale Laplacian Graph Kernel

The multiscale Laplacian graph kernel can handle unlabeled graphs, graphs with discrete
node labels, but also graphs with continuous node attributes (Kondor & Pan, 2016). It
takes into account structure in graphs at a range of different scales by building a hierarchy
of nested subgraphs. These subgraphs are compared to each other using another graph
kernel, called the feature space Laplacian graph kernel. This kernel is capable of lifting a
base kernel defined on the vertices of two graphs to a kernel between the graphs themselves.
Since exact computation of the multiscale Laplacian graph kernel is a very expensive oper-
ation, the kernel uses a randomized projection procedure similar to the popular Nyström
approximation for kernel matrices (Williams & Seeger, 2001).

Let G = (V,E) be an undirected graph such that n = |V | and let L be the Laplacian of
G. Given two graphs G1 and G2 of n vertices, we can define the kernel between them to be a
kernel between the corresponding normal distributions p1 = N (0, L−1

1 ) and p2 = N (0, L−1
2 )

where 0 is the n-dimensional all-zeros vector. Note that the Laplacian matrices of the two
graphs have a zero eigenvalue eigenvector. Hence, in order to be able to invert them, the
algorithm adds a small constant “regularizer” ηI to them. In the following, we denote the
regularized Laplacians of G1 and G2 by L1 and L2, respectively. More specifically, given
two graphs G1 and G2 of n vertices with regularized Laplacians L1 and L2 respectively, the
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Figure 15: Propagation kernel computation. Distributions, bins, count features, and kernel
contributions for two graphs G and G′ with binary node labels and one iteration of label
propagation. Node-label distributions are decoded by color.

Laplacian graph kernel with parameter γ between the two graphs is

kLG(G1, G2) =
|(1

2S
−1
1 + 1

2S
−1
2 )−1|1/2

|S1|1/4|S2|1/4
(72)

where S1 = L−1
1 + γI, S2 = L−1

2 + γI and I is the n × n identity matrix. The Laplacian
graph kernel captures similarity between the overall shapes of the two graphs. However, it
assumes that both graphs have the same size, and it is not invariant to permutations of the
vertices.

To achieve permutation invariance, the multiscale Laplacian graph kernel represents
each vertex as a d-dimensional vector whose components correspond to local and permu-
tation invariant vertex features. Such features may include for instance the degree of the
vertex or the number of triangles in which it participates. Then, it performs a linear trans-
formation and represents each graph as a distribution of the considered features instead of
a distribution of its vertices. Let U1, U2 ∈ Rd×n be the feature mapping matrices of the
two graphs, that is the matrices whose columns contain the vector representations of the
vertices of the two graphs. Then, the feature space Laplacian graph kernel is defined as

kFLG(G1, G2) =
|(1

2S
−1
1 + 1

2S
−1
2 )−1|1/2

|S1|1/4|S2|1/4
(73)

where S1 = U1L
−1
1 U>1 + γI, S2 = U2L

−1
2 U>2 + γI and I is the d× d identity matrix. Since

the vertex features are local and invariant to vertex reordering, the feature space Laplacian
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graph kernel is permutation invariant. Furthermore, since the distributions now live in the
space of features rather than the space of vertices, the feature space Laplacian graph kernel
can be applied to graphs of different sizes.

Let φ(v) be the representation of vertex v constructed from local vertex features as
described above. The base kernel κ between two vertices v1 and v2 corresponds to the dot
product of their feature vectors

κ(v1, v2) = φ(v1)>φ(v2) (74)

Let G1 and G2 be two graphs with vertex sets V1 = {v1, . . . , vn1} and V2 = {u1, . . . , un2}
respectively, and let V̄ = {v̄1, . . . , v̄n1+n2} be the union of the two vertex sets. Let also
K ∈ R(n1+n2)×(n1+n2) be the kernel matrix defined as

Kij = κ(v̄i, v̄j) = φ(v̄i)
>φ(v̄j) (75)

Let u1, . . . , up be a maximal orthonormal set of the non-zero eigenvalue eigenvectors of K
with corresponding eigenvalues λ1, . . . , λp. Then the vectors

ξi =
1√
λi

n1+n2∑
l=1

[ui]lφ(v̄l) (76)

where [ui]l is the l-th component of vector ui form an orthonormal basis for the subspace

{φ(v̄1), . . . , φ(v̄n1+n2)}. Moreover, let Q = [λ
1/2
1 u1, . . . , λ

1/2
p up] ∈ Rp×p and Q1, Q2 denote

the first n1 and last n2 rows of matrix Q respectively. Then, the generalized feature space
Laplacian graph kernel induced from the base kernel κ is defined as

kκFLG(G1, G2) =
|(1

2S
−1
1 + 1

2S
−1
2 )−1|1/2

|S1|1/4|S2|1/4
(77)

where S1 = Q1L
−1
1 Q>1 + γI and S2 = Q2L

−1
2 Q>2 + γI where I is the p× p identity matrix.

The multiscale Laplacian graph kernel builds a hierarchy of nested subgraphs, where
each subgraph is centered around a vertex and computes the generalized feature space
Laplacian graph kernel between every pair of these subgraphs. Let G be a graph with
vertex set V , and κ a positive semi-definite kernel on V . Assume that for each v ∈ V , we
have a nested sequence of L neighborhoods

v ∈ N1(v) ⊆ N2(v) ⊆ . . . ⊆ Nlmax(v) (78)

and for each Nl(v), let Gl(v) be the corresponding induced subgraph of G. The multiscale
Laplacian subgraph kernels are defined as K1, . . . ,Klmax : V × V → R as follows

1. K1 is just the generalized feature space Laplacian graph kernel kκFLG induced from the
base kernel κ between the lowest level subgraphs (i. e., the vertices)

K1(v, u) = kκFLG(v, u) (79)

2. For l = 2, 3, . . . , lmax, Kl is the the generalized feature space Laplacian graph kernel
induced from Kl−1 between Gl(v) and Gl(u)

Kl(v, u) = k
Kl−1

FLG

(
Gl(v), Gl(u)

)
(80)
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Definition 34 (Multiscale Laplacian Graph Kernel). Let G1, G2 be two graphs. The mul-
tiscale Laplacian graph kernel between the two graphs is defined as follows

k(G1, G2) = k
Klmax
FLG (G1, G2) (81)

The multiscale Laplacian graph kernel computes K1 for all pairs of vertices, then com-
putes K2 for all pairs of vertices, and so on. Hence, it requires O(n2lmax) kernel evaluations.
At the top levels of the hierarchy each subgraph centered around a vertex Gl(v) may have
as many as n vertices. Therefore, the cost of a single evaluation of the generalized feature
space Laplacian graph kernel may take O(n3) time. This means that in the worst case,
the overall cost of computing k is O(n5lmax). Given a dataset of N graphs, computing the
kernel matrix requires repeating this for all pairs of graphs, which takes O(N2n5lmax) time
and is clearly problematic for real-world settings.

The solution to this issue is to compute for each level l = 1, 2, . . . , lmax + 1 a single
joint basis for all subgraphs at the given level across all graphs. Let G1, G2, . . . , GN be a
collection of graphs, V1, V2, . . . , VN their vertex sets, and assume that V1, V2, . . . , VN ⊆ V for
some general vertex space V. The joint vertex feature space of the whole graph collection
is W = span

{⋃N
i=1

⋃
v∈Vi{φ(v)}

}
. Let c =

∑N
i=1 |Vi| be the total number of vertices and

V̄ = (v̄1, . . . , v̄c) be the concatenation of the vertex sets of all graphs. Let K be the
corresponding joint kernel matrix and u1, . . . , up be a maximal orthonormal set of non-zero
eigenvalue eigenvectors of K with corresponding eigenvalues λ1, . . . , λp and p = dim(W ).
Then the vectors

ξi =
1√
λi

c∑
l=1

[ui]lφ(v̄l) i = 1, . . . , p (82)

form an orthonormal basis for W . Moreover, let Q = [λ
1/2
1 u1, . . . , λ

1/2
p up] ∈ Rp×p and Q1

denote the first n1 rows of matrix Q, Q2 denote the next n2 rows of matrix Q and so on. For
any pair of graphs Gi, Gj of the collection, the generalized feature space Laplacian graph
kernel induced from κ can be expressed as

kκFLG(Gi, Gj) =
|(1

2 S̄
−1
i + 1

2 S̄
−1
j )−1|1/2

|S̄i|1/4|S̄j |1/4
(83)

where S̄i = QiL
−1
i Q>i + γI, S̄j = QjL

−1
j Q>j + γI and I is the p× p identity matrix.

Computing the kernel matrix between all vertices of all graphs (c vertices in total)
and storing it is a very costly procedure. Computing its eigendecomposition is even worse
in terms of the required runtime. Morever, p is also very large. Hence, managing the
S̄1, . . . , S̄N matrices (each of which is of size p × p) becomes infeasible. Hence, the multi-
scale Laplacian graph kernel replaces W with a smaller, approximate joint features space.
Let Ṽ = (ṽ1, . . . , ṽc̃) be c̃ � c vertices sampled from the joint vertex set. Then, the corre-
sponding subsampled vertex feature space is W̃ = span{φ(v) : v ∈ Ṽ }. Let p̃ = dim(W̃ ).
Similarly to before, the kernel constructs an orthonormal basis {ξ1, . . . , ξp̃} for W̃ by form-
ing the (now much smaller) kernel matrix Kij = κ(ṽi, ṽj), computing its eigenvalues and

eigenvectors, and setting ξi = 1√
λi

∑c̃
l=1[ui]lφ(ṽl). The resulting approximate generalized

feature space Laplacian graph kernel is

kκFLG(G1, G2) =
|(1

2 S̃
−1
1 + 1

2 S̃
−1
2 )−1|1/2

|S̃1|1/4|S̃2|1/4
(84)

986



Graph Kernels: A Survey

where S̃1 = Q̃1L
−1
1 Q̃>1 +γI, S̃2 = Q̃2L

−1
2 Q̃>2 +γI are the projections of S̄1 and S̄2 to W̃ and I

is the p̃×p̃ identity matrix. Finally, the kernel introduces a further layer of approximation by
restricting W̃ to be the space spanned by the first p̂ < p̃ basis vectors (ordered by descending
eigenvalue), effectively doing kernel PCA on {φ(ṽ)}ṽ∈Ṽ . The combination of these two
factors makes computing the entire stack of kernels feasible, reducing the complexity of
computing the kernel matrix for a dataset of N graphs to O(Nc̃2p̂3lmax+Nc̃3lmax+N2p̂3).

4.10 Frameworks

Besides designing kernels, research on graph kernels has also focused on frameworks and
approaches that can be applied to existing graph kernels and increase their performance.
The most popular of all frameworks is perhaps the Weisfeiler-Lehman framework which has
been already presented (Shervashidze et al., 2011). Interestingly, any kernel that can handle
discrete node labels can be plugged into that framework. Recently, two other frameworks
were presented for deriving variants of popular R-convolution graph kernels (Yanardag &
Vishwanathan, 2015b, 2015a). Inspired by recent advances in NLP, these frameworks offer
a way to take into account similarity between substructures. In addition, a method that
combines several kernels using the multiple kernel learning framework was also recently
proposed (Aiolli et al., 2015). Another recently proposed framework generates a hierarchy
of subgraphs and compares the corresponding according to the hierarchy subgraphs using
graph kernels (Nikolentzos et al., 2018). Moreover, a recent approach employs graph kernels
and performs a series of successive embeddings in order to derive more expressive kernels
(Nikolentzos & Vazirgiannis, 2018). Some of these frameworks are described in more detail
below.

4.10.1 Frameworks Dealing with Diagonal Dominance

We next present two frameworks that are inspired by recent advances in natural language
processing, namely the deep graph kernels framework (Yanardag & Vishwanathan, 2015b)
and the structural smoothing framework (Yanardag & Vishwanathan, 2015a). These two
frameworks were developed to address the problem of diagonal dominance which is inherent
to R-convolution kernels. The feature space of these kernels is usually large (i. e., grows
exponentially) and we encounter the sparsity problem: only a few substructures will be
common across graphs, and therefore each graph is similar to itself, but not to any other
graph in the dataset. However, the substructures used to define a graph kernel are often
related to each other, but commonly-used R-convolution kernels respect only exact match-
ings. For example, when the features correspond to large graphlets (e. g., k ≥ 5), two graphs
may be composed of many similar graphlets, but not any identical. As a consequence, the
kernel value between the two graphs (i. e., inner product of their feature representations)
will be equal to 0 even though the two graphs are similar to each other.

Ideally, we would like the kernels to output large values for pairs of graphs that belong
to the class, and lower values for pairs of graphs that belong to different classes. To deal
with the aforementioned problem, the deep graph kernels framework computes the kernel
between two graphs G and G′ as follows

k(G,G′) = φ(G)> M φ(G′) (85)
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where M represents a positive semidefinite matrix that encodes the relationship between
substructures and φ(G), φ(G′) are the representations of graphs G,G′ according to a graph
kernel which contains counts of atomic substructures. Therefore, one can design an M
matrix that respects the similarity of the substructure space. Clearly, the deep graph kernels
framework can be applied only to graph kernels whose feature maps φ can be computed
explicitly.

Matrix M can be generated by manually defining functions to compare substructures
or alternatively, it can be learned using techniques inspired from the field of natural lan-
guage processing. When substructures exhibit a clear mathematical relationship, one can
define a function to measure the similarities between them (e. g., edit distance in the case of
graphlets). However, the above approach requires manually designing the similarity func-
tions. Furthermore, in many cases, it becomes prohibitively expensive to compare all pairs
of substructures. On the other hand, learning the latent representations of substructures
is more efficient and does not involve any manual intervention. Matrix M can then be
computed based on the learned representations. To learn a latent representation for each
substructure, the framework utilizes recent approaches for generating word embeddings
such as the continuous bag-of-words (CBOW) and Skip-gram models (Mikolov et al., 2013).
These models generate semantic representations from word co-occurrence statistics derived
from large text corpora. However, unlike words in a traditional text corpora, substructures
of graphs do not have a linear co-occurrence relationship. Hence, these co-occurrence re-
lationships need to be manually defined. Yanardag and Vishwanathan (2015b) proposed a
methodology on how to generate corpora where co-occurrence relationship is meaningful on
three popular kernels, namely the Weisfeiler-Lehman subtree kernel, the graphlet kernel,
and the shortest path kernel.

The structural smoothing framework is inspired by recent smoothing techniques in nat-
ural language processing. Similar to the deep graph kernels framework, this framework can
also only be applied to graph kernels whose feature maps φ can be computed explicitly. The
framework takes structural similarity into account by constructing a directed acyclic graph
(DAG) that encodes the relationships between lower and higher order substructures. Each
vertex of the DAG corresponds to a substructure (and also to a feature in the explicit graph
representation). For each substructure s of size k, the framework determines all possible
substructures of size k−1 into which s can be reduced. These substructures are the parents
of s, and a weighted directed edge is drawn from each parent to its children vertices. Since
all descendants of a given substructure at depth k − 1 are at depth k, the emerging graph
is indeed a DAG. Yanardag and Vishwanathan (2015b) present how such a DAG can be
constructed for three popular graph kernels, namely the Weisfeiler-Lehman subtree kernel,
the graphlet kernel, and the shortest path kernel. Given the DAG, the structural smoothing
for a substructure s at level k is defined as

P kSS(s) =
max(cs − d, 0)

m
+
dmd

m

∑
p∈Ps

P k−1
SS (p)

wps∑
c∈Cp wpc

(86)

where ci denotes the number of times substructure i appears in the graph, m =
∑

i ci
denotes the total number of substructures present in the graph, d > 0 is a discount factor,
md = |{i : ci > d}| is the number of substructures whose counts are larger than d, wij
denotes the weight of the edge connecting vertex i to vertex j, Ps denotes the parents of
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vertex s, and Cp the children of vertex p. The above equation subtracts a fixed discount
factor d from every substructure that appears in the graph, and accumulates it to a total
mass of dmd. Each substructure s receives some portion of this accumulated probability
mass from its parents. The proportion of the mass that a parent p at level k − 1 transmits
to a given child a depends on the weight wps between the parent and the child, and the
probability mass P k−1

SS (p) that is assigned to the parent. It is thus clear that, even if a
graph does not contain a substructure s (i. e., cs = 0), its value in the feature vector may
become greater than 0 (i. e., PSS(s) > 0).

4.10.2 Core Framework

The core framework is another tool for improving the performance of graph kernels (Niko-
lentzos et al., 2018). This framework is not restricted to graph kernels, but can be applied to
any graph comparison algorithm. It capitalizes on the k-core decomposition which is capa-
ble of uncovering topological and hierarchical properties of graphs. Specifically, the k-core
decomposition is a powerful tool for network analysis and it is commonly used as a measure
of importance and well connectedness of vertices in a broad spectrum of applications. The
notion of k-core was first introduced by Seidman to study the cohesion of social networks
(Seidman, 1983). In recent years, the k-core decomposition has been established as a stan-
dard tool in many application domains such as in network visualization (Alvarez-Hamelin
et al., 2006).

Core Decomposition. Let G = (V,E) be an undirected and unweighted graph. Given
a subset of vertices S ⊆ V , let E(S) be the set of edges that have both end-points in S.
Then, G′ = (S,E(S)) is the subgraph induced by S. We use G′ ⊆ G to denote that G′ is
a subgraph of G. Let G be a graph and G′ a subgraph of G induced by a set of vertices
S. Then, G′ is defined to be a k-core of G, denoted by Ck, if it is a maximal subgraph of
G in which all vertices have degree at least k. Hence, if G′ is a k-core of G, then ∀v ∈ S,
degG′(v) ≥ k. Each k-core is a unique subgraph of G, and it is not necessarily connected.
The core number c(v) of a vertex v is equal to the highest-order core that v belongs to. In
other words, v has core number c(v) = k, if it belongs to the k-core but not to the (k + 1)-
core. The degeneracy δ∗(G) of a graph G is defined as the maximum k for which graph G
contains a non-empty k-core subgraph, δ∗(G) = maxv∈V c(v). Furthermore, assuming that
C = {C0, C1, . . . , Cδ∗(G)} is the set of all k-cores, then C forms a nested chain

Cδ∗(G) ⊆ . . . ⊆ C1 ⊆ C0 = G (87)

Therefore, the k-core decomposition is a very useful tool for discovering the hierarchical
structure of graphs. The k-core decomposition of a graph can be computed in O(n + m)
time (Matula & Beck, 1983; Batagelj & Zaveršnik, 2011). The underlying idea is that we
can obtain the i-core of a graph if we recursively remove all vertices with degree less than
i and their incident edges from the graph until no other vertex can be removed.

Core Kernels. The k-core decomposition builds a hierarchy of nested subgraphs, each
having stronger connectedness properties compared to the previous ones. The core frame-
work measures the similarity between the corresponding according to the hierarchy sub-
graphs and aggregates the results. Let G = (V,E) and G′ = (V ′, E′) be two graphs. Let
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also k be any kernel for graphs. Then, the core variant of the base kernel k is defined as

kc(G,G
′) = k(C0, C

′
0) + k(C1, C

′
1) + . . .+ k(Cδ∗min , C

′
δ∗min

) (88)

where δ∗min is the minimum of the degeneracies of the two graphs, and C0, C1, . . . , Cδ∗min and
C ′0, C

′
1, . . . , C

′
δ∗min

are the 0-core, 1-core,. . ., δ∗min-core subgraphs of G and G′, respectively.
By decomposing graphs into subgraphs of increasing importance, the algorithm is capable
of more accurately capturing their underlying structure.

The computational complexity of the core framework depends on the complexity of the
base kernel and the degeneracy of the graphs under comparison. Given a pair of graphs
G,G′ and an algorithm A for comparing the two graphs, let OA be the time complexity
of algorithm A. Let also δ∗min = min

(
δ∗(G), δ∗(G′)

)
be the minimum of the degeneracies

of the two graphs. Then, the complexity of computing the core variant of algorithm A is
Oc = δ∗minOA.

4.11 Tree Kernels

Before delving into the connection between graph neural networks and graph kernels, it
is important to stress that graph kernels are also very related to tree kernels which have
been extensively studied mainly in the field of natural language processing (Collins & Duffy,
2001), but also in other fields (Vert, 2002). In fact, tree kernels were introduced prior to
graph kernels. A tree is an undirected graph in which any two vertices are connected by
exactly one path, and thus a tree is a special case of a graph. Therefore, tree kernels can be
thought of as instances of graph kernels specifically designed for trees. Note that any graph
kernel can be applied to trees. However, the opposite does not hold. Tree kernels cannot
be directly applied to general graphs. In should be mentioned that certain graph kernels
such as the subtree kernel build on ideas from tree kernels.

As already mentioned, tree kernels have found applications mainly in the field of natural
language processing. Examples of applications include semantic role labeling (Moschitti,
2004, 2006a; Moschitti et al., 2008; Croce et al., 2011), relation extraction (Zelenko et al.,
2003; Culotta & Sorensen, 2004; Bunescu & Mooney, 2005), syntactic parsing re-ranking
(Collins & Duffy, 2001) and question classification (Moschitti, 2006a; Croce et al., 2011).
In those tasks, an approach that has proven to be effective is to use a set of manually
designed features that can capture the syntactic and semantic information encoded into the
input data. However, this set of meaningful features is usually determined by some do-
main expert, while the whole process is in most cases very expensive and time-consuming.
Instead of computing such handcrafted features, previous studies have capitalized on struc-
tured representations of text (e. g., dependency parse trees) that might take into account
syntactic and semantic aspects of the input data, and have introduced kernels that operate
on these representations (e. g., tree kernels). Therefore, tree kernels are very useful since
they eliminate the need for the design of new features in the context of several natural
language tasks. Most tree kernels represent trees in terms of their substructures. And then,
they compute the number of common substructures between two trees. The most common
substructures are the subtrees, the subset trees, and the partial trees which give rise to
the subtree kernel (Smola & Vishwanathan, 2003), the subset tree kernel (Collins & Duffy,
2001), and the partial tree kernel (Moschitti, 2006a), respectively. A subtree is defined as a
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subgraph of the tree rooted at any non-leaf vertex along with all its descendants. A subset
tree is a more flexible structure since its leaves may correspond to non-leaf vertices of the
input tree. Subset trees satisfy the constraint that grammatical rules cannot be broken.
On the other hand, partial trees relax the above constraint and can be generated by the
application of partial production rules of the grammar.

It is interesting to mention that graph kernels and tree kernels suffer from common
limitations. For instance, they both fix a set of features in advance, and they thus decouple
data representation from learning. Furthermore, there is no justification on why certain
tree kernels perform better than others in a given task (Moschitti, 2006a, 2006b).

5. Link to Graph Neural Networks

In the past years, graph kernels have been largely overshadowed by a family of neural
network architectures which operate on graphs, known as graph neural networks (GNNs).
The field of graph neural networks has seen an explosion of interest in recent years, with
dozens of models developed which have been applied to various tasks such as to drug design
(Kearnes et al., 2016) and to modeling physical systems (Battaglia et al., 2016)

The first instances of GNNs were proposed several years ago (Sperduti & Starita, 1997;
Micheli, 2009; Scarselli et al., 2009), however, these models have only recently received
a great deal of attention, following the advent of deep learning. More specifically, GNNs
were initially categorized into spectral and spatial approaches (Bruna et al., 2014). The
first family of models operates on the spectral domain and draws on the properties of
convolutions in the Fourier domain, while the second family of models operates on the
spatial domain where the weights of the edges determine locality. Later, it became clear
that all these models are special cases of a simple message passing framework (MPNNs)
(Gilmer et al., 2017). Most of the recently proposed GNNs fit into this framework (Bruna
et al., 2014; Duvenaud et al., 2015; Li et al., 2016c; Defferrard et al., 2016; Zhang et al.,
2018a; Xu et al., 2019; Murphy et al., 2019). Specifically, MPNNs employ a message passing
procedure, where each vertex updates its feature vector by aggregating the feature vectors
of its neighbors. After k iterations of the message passing procedure, each vertex obtains
a feature vector which captures the structural information within its k-hop neighborhood.
MPNNs then compute a feature vector for the entire graph using some permutation invariant
readout function such as summing the feature vectors of all the vertices of the graph. In fact,
the family of MPNNs is closely related to the Weisfeiler-Lehman test of isomorphism, and
thus also to the Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011). Specifically,
these models generalize the relabeling procedure of the Weisfeiler-Lehman subtree kernel to
the case where vertices are associated with continuous feature vectors. Standard MPNNs
have been shown to be at most as powerful as the Weisfeiler-Lehman subtree kernel in
distinguishing non-isomorphic graphs (Xu et al., 2019; Morris et al., 2019).

It is interesting to mention that GNNs address some of the major limitations of graph
kernels. More specifically, as already discussed, graph kernels typically fix a set of features in
advance. This is one of the main limitations of graph kernels since data representation and
learning are independent from each other. The input samples are first implicitly or explicitly
transformed into feature vector representations using a user-defined kernel. Then, learning
is perfomed based on these representations regardless of their quality. Thus, the feature
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generation scheme is fixed and it does not adapt to the given data distribution. Another
limitation of graph kernels is that they cannot efficiently handle graphs whose vertices are
annotated with continuous multi-dimensional attributes. Indeed, while for unlabeled and
node-labeled graphs, there are now available very efficient kernels which can handle graphs
containing up to thousands of nodes, unfortunately, the same does not hold for graphs with
continuous node attributes. Such attributes play an important role in different fields such
as in bioinformatics and chemoinformatics, and this limitation renders kernels infeasible
for application to these domains. GNNs, on the other hand, have emerged as a machine
learning framework addressing the above two challenges.

5.1 Message Passing Models and the Weisfeiler-Lehman Test of Isomorphism

As mentioned above, the majority of existing GNNs belongs to the family of MPNNs.
Suppose we have a MPNN model that contains T neighborhood aggregation layers. In the

t-th neighborhood aggregation layer (t > 0), the hidden state h
(t)
v of a vertex v is updated

as follows

m(t)
v = AGGREGATE(t)

({
h(t−1)
u : u ∈ N (v)

})
h(t)
v = COMBINE(t)

(
h(t−1)
v ,m(t)

v

) (89)

By defining different AGGREGATE(t) and COMBINE(t) functions, we obtain a different
GNN variant. For the GNN to be end-to-end trainable, both functions need to be differ-
entiable. Furthermore, since there is no natural ordering of the neighbors of a vertex, the
AGGREGATE(t) function must be permutation invariant. Note that the neighborhood ag-
gregation procedure is closely related to the Weisfeiler-Lehman test of isomorphism and the
Weisfeiler-Lehman framework. More specifically, the number of neighborhood aggregation
layers is analogous to the number of iterations of the Weisfeiler-Lehman framework. Fur-
thermore, in the case of the Weisfeiler-Lehman framework, the employed AGGREGATE
function computes the sorted set of labels of vertex v’s neighbors, while the COMBINE
function adds the label of the vertex v itself as the first element of the above set.

To compute a representation for the entire graph, GNNs apply a READOUT function
to vertex representations generated by the final neighborhood aggregation layer to obtain
a vector representation over the whole graph

hG = READOUT
({
h(T )
v : v ∈ V

})
(90)

The READOUT function needs also to be differentiable and permutation invariant. Com-
mon readout functions include the sum, mean and max aggregators. These aggregators are
different than the one employed by the Weisfeiler-Lehman subtree kernel which produces
the histogram of the labels encountered during the different iterations of the algorithm.

Note that most standard GNNs are less powerful than the Weisfeiler-Lehman test of
isomorphism in terms of distinguishing non-isomorphic graphs. In fact, it has been shown
that if the AGGREGATE(t),COMBINE(t) and READOUT functions are injective, then
the emerging GNN model maps two graphs that the Weisfeiler-Lehman test of isomorphism
decides as non-isomorphic, to different embeddings (Xu et al., 2019). To achieve greater
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expressive power, some models have capitalized on high-order variants of the Weisfeiler-
Lehman test of isomorphism (Morris et al., 2019, 2020).

We next provide more details about four models which we employ in our experimental
evaluation, namely Deep Graph Convolutional Neural Network (DGCNN) (Zhang et al.,
2018a), GraphSAGE (Hamilton et al., 2017), Differentiable Graph Pooling (DiffPool) (Ying
et al., 2018), and Graph Isomorphism Network (GIN) (Xu et al., 2019). Note that for clarity
of presentation, in what follows, we omit biases.

5.1.1 Deep Graph Convolutional Neural Network

This model integrates the AGGREGATE(t) and COMBINE(t) functions into a single func-
tion as follows

h(t+1)
v = f

 ∑
u∈N (v)∪{v}

h
(t)
u

1 + deg(v)
W (t)

 (91)

where f is a nonlinear activation function. Thus, the model aggregates vertex information
in local neighborhoods to extract local substructure information. After T iterations, the

model concatenates the outputs h
(t)
v , for t = 1, . . . , T horizontally to form a concatenated

output

hv =
(
h(1)
v , h(2)

v , . . . , h(T )
v

)
(92)

To generate a representation for the entire graph, the model uses a SortPooling layer which
imposes an order on the vertices of the graph. More specifically, vertices are sorted in a
descending order based on the last component of their representations (i. e., hv for vertex
v), while vertices that have the same value in the last component are compared based on the
second to last component, and so on. Furthermore, to allow the model to handle graphs with
different numbers of vertices, this layer unifies the sizes of the outputs for different graphs
by truncating/extending the output tensor in the first dimension from n to k. Output is
then passed on to a traditional convolutional neural network.

5.1.2 GraphSAGE

The GraphSAGE model can deal with very large graphs since it does not take into account
all neighbors of a vertex, but uniformly samples a fixed-size set of neighbors. Let N k(v) be
a uniformly drawn subset (of size k) from the set N (v) of a vertex v. The neighborhood
aggregation scheme of GraphSAGE is defined as follows

m(t)
v = AGGREGATE(t)

({
h(t)
u

∣∣u ∈ N k(v)
})

h(t+1)
v = σ

(
W (t)

(
h(t)
v ,m

(t)
v

))
h(t+1)
v =

h
(t+1)
v∣∣∣∣h(t+1)
v

∣∣∣∣
2

(93)

where
(
h

(t)
v ,m

(t)
v

)
denotes the concatenation of the two input vectors. The model draws

different uniform samples at each iteration, while it uses one of the following aggregation
functions:
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(1) Mean aggregator: the mean operator computes the elementwise mean of the repre-
sentations of the neighbors and the vertex itself (the concatenation step shown above is
skipped)

h(t+1)
v = σ

W (t)

∑
u∈N k(v)∪{v} h

(t)
u

deg(v) + 1

 (94)

(2) Long short-term memory aggregator: the representations of the neighbors are passed on
to an long short-term memory (LSTM) architecture. However, LSTMs are not permutation
invariant.
(3) Pooling aggregator: an elementwise max-pooling operation is applied to aggregate in-
formation across the neighbor set

AGGREGATE(t) = max
({
σ
(
W

(t)
poolh

(t)
u

)∣∣u ∈ N k(v)
})

(95)

where max denotes the elementwise max operator.

5.1.3 Differentiable Graph Pooling

This model aggregates information in a hierarchical way to capture the structure of the entire
graph. More specifically, for each layer, the model learns a soft assignment of the vertices
of that layer to those of the next layer. This soft assignment considers both topological
and feature information. Formally, a matrix S(t) ∈ Rnt×nt+1 is associated with each layer of
the model which corresponds to the learned cluster assignment matrix at layer t. Each row
corresponds to one of the nt vertices (or clusters) at layer t and each column to one of the
nt+1 clusters of the next layer t+ 1. Matrix S(t) provides a soft assignment of each vertex
at layer t to a cluster in the next coarsened layer t+ 1. Each layer coarsens the input graph
as follows

X(t+1) = S(t)>Z(t)

A(t+1) = S(t)>A(t)S(t)
(96)

where A(t+1) is the coarsened adjacency matrix, and X(t+1) is a matrix of embeddings for
each vertex/cluster. To generate the assignment matrix S(t) and matrix Z(t), the model
utilizes two separate message passing neural networks. Both are applied to the input cluster
vertex features X(t) and coarsened adjacency matrix A(t) as follows

Z(t) = GNN
(t)
embed

(
A(t), X(t)

)
S(t) = softmax

(
GNN

(t)
pool(A

(t), X(t))
) (97)

where the softmax function is applied in a row-wise fashion. GNN
(t)
embed generates new

representations for the input vertices, while GNN
(t)
pool generates a probabilistic assignment

of the input vertices to nt+1 clusters. To generate a final embedding vector corresponding
to the entire graph, the model sets the final assignment matrix equal to a vector of ones,
that is all vertices at the final layer T are assigned to a single cluster.
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5.1.4 Graph Isomorphism Network

The neighborhood aggregation operation in MPNNs can be thought of as an aggregation
function over the multiset that contains the representations of the neighbors of a given ver-
tex. Specifically, a multiset is a generalized concept of a set that allows multiple instances
for its elements. When node features are from a countable universe, both the representations
of all vertices of a graph and the representations of the neighbors of a vertex can be thought
of as multisets (Xu et al., 2019). Furthemore, the representations of vertices that emerge at
deeper layers of a model are also from a countable universe (Xu et al., 2019). Importantly,
an MPNN can map two graphs that the Weisfeiler-Lehman test of isomorphism decides as
non-isomorphic to different embeddings if the AGGREGATE, COMBINE and READOUT
functions of the model are all injective (Xu et al., 2019). It turns out that the sum aggre-
gator is an injective multiset function. Based on the above result, the graph isomorphism
network utilizes the sum aggregator to model injective multiset functions for the neighbor-
hood and vertex aggregation, and has thus the same power as the Weisfeiler-Lehman test
of isomorphism. Each neighborhood aggregation layer is defined as

h(t+1)
v = MLP(t)

((
1 + ε(t)

)
h(t)
v +

∑
u∈N (v)

h(t)
u

)
(98)

where ε(t) is an irrational number of layer t and MLP(t) is a multi-layer perceptron of layer

t. The model also uses the sum aggregator as its readout function. Let h
(t)
G =

∑
v∈G h

(t)
v

denote the sum of vertex representations at layer t. To produce a graph-level representation,
the model utilizes the following readout function which concatenates information from all
neighborhood aggregation layers

hG =
(
h

(0)
G , h

(1)
G , . . . , h

(T )
G

)
(99)

5.2 Other Models

While graph kernels focus on several different structural aspects of graphs (e. g., walks,
subgraphs, cycles, etc.), the same does not hold for GNNs since most of these models are
members of the family of MPNNs. However, there are exceptions to this “rule”, and some of
these models draw inspiration from graph kernels. For instance, Lei et al. (2017) proposed
a class of GNNs and characterized their associated kernel spaces which were found to be
associated with either the random walk kernel or the Weisfeiler-Lehman subtree kernel.
Specifically, the hidden states of these models live in the reproducing kernel Hilbert space
of these kernels. In another study, Chen et al. (2020) generated finite-dimensional vertex
representations using the Nyström method to approximate a kernel that compares a set of
local patterns centered at vertices. These representations can be learned without supervision
by extracting a set of anchor points, or can be modeled as parameters of a neural network
and be learned end-to-end.

In the past years, several approaches have been proposed that combine graph kernels
with neural networks. For instance, Navarin et al. (2018) used graph kernels to pre-train
GNNs, while Nikolentzos et al. (2018) used graph kernels to extract features that are then
fed to convolutional neural networks. Du et al. (2019) followed the opposite direction and
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proposed a new graph kernel which corresponds to infinitely wide multi-layer GNNs trained
by gradient descent, while Al-Rfou et al. (2019) proposed an unsupervised method for
learning graph representations by comparing the input graphs against a set of source graphs.
Finally, Nikolentzos and Vazirgiannis (2020) proposed a neural network model whose first
layer consists of a number of latent graphs which are compared against the input graphs
using a random walk kernel. The emerging kernel values are fed into a fully-connected
neural network which acts as the classifier or regressor.

6. Applications of Graph Kernels

In the past years, graph kernels have been applied successfully to a series of real-world prob-
lems. Most of these problems come from the fields of bioinformatics and chemoinformatics.
However, graph kernels are not limited only to these two fields, but they have been applied
to problems arising in other domains as well. We list below some examples of such fields of
application.

6.1 Chemoinformatics

Traditionally, chemistry is one of the richest sources of graph-structured data. A common
problem in this field is to find chemical compounds with a specific property or activity.
The experimental characterization of molecules is often an expensive and time-consuming
process, and thus people usually resort to computational methods. Specifically, they model
chemical compounds as graphs where vertices correspond to atoms and edges to bonds, and
then they apply computational methods to identify a small set of potentially interesting
molecules for a given property or activity, which are then tested experimentally. Graph
kernels have been used extensively for predicting the mutagenicity, toxicity and anti-cancer
activity of small molecules (Swamidass et al., 2005; Ralaivola et al., 2005; Mahé et al., 2005;
Ceroni et al., 2007; Mahé & Vert, 2009; Smalter et al., 2009) Furthermore, graph kernels
have been applied to other problems such as the prediction of the atomization energies of
organic molecules (Ferré et al., 2017), the predicition of the boiling points of molecules
(Gaüzère et al., 2011), the prediction of the activity against HIV (Gaüzère et al., 2011),
and the prediction of properties of stereoisomers (Brown et al., 2010; Grenier et al., 2017).
A review of the applications of graph kernels in chemoinformatics is provided by Rupp and
Schneider (2010).

6.2 Bioinformatics

Bioinformatics is also one of the major application domains of graph representations and
therefore, of graph kernels. Recent advances in technology have delivered a step change in
our ability to sequence genomes, measure gene expression levels, and test large numbers of
potential regulatory interactions between genes. Despite these advancements, some prob-
lems of high interest such as the experimental determination of the function of a protein
still remain both expensive and time-consuming. Interestingly, the above-mentioned pro-
cesses produce large volumes of data which can give rise to various types of graphs, such as
protein structures, protein and gene co-expression networks, or protein-protein interaction
networks. These graphs can then be processed by computational approaches such as graph
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kernels, and provide solutions to some of these challenging problems. Among others, in the
field of bioinformatics, graph kernels have been applied to the prediction of the function of
proteins with known sequence and structure (Borgwardt et al., 2005; Schietgat et al., 2015),
to the identification of the interactions that are involved in disease outbreak and progres-
sion (Borgwardt et al., 2007), to the analysis of functional non-coding RNA sequences (Sato
et al., 2008), to the identification of temporally localized relationships among genes (An-
toniotti et al., 2010), and to the prediction of domain-peptide interactions (Kundu et al.,
2013).

6.3 Computer Vision

Graph representations have been investigated a lot in the fields of image processing and
computer vision. There exist many different approaches to represent images as graphs. For
instance, vertices usually correspond to pixels or to segmented regions, while edges join
neighboring pixels or neighboring regions with each other. Graph kernels have served as an
effective tool for many computer vision tasks such as for classifying images (Harchaoui &
Bach, 2007; Mahboubi et al., 2010; Antanas et al., 2012; Zhang et al., 2013), for detecting
objects represented as point clouds (Bach, 2008; Neumann et al., 2013), for achieving place
recognition (Stumm et al., 2016), for achieving action recognition (Wang & Sahbi, 2013;
Wu et al., 2014; Li et al., 2016a), for scene modeling (Fisher et al., 2011), and for matching
observations of persons across different cameras (Brun et al., 2011).

Besides the above applications, graphs are also used increasingly often in biomedical
imaging. Different types of graphs such as connectivity graphs are usually extracted from
functional magnetic resonance imaging (fMRI) data. Then, graph kernels capitalize on
these graphs to address various tasks such as to distinguish between different brain states
(Shahnazian et al., 2012; Mokhtari & Hossein-Zadeh, 2013; Vega-Pons & Avesani, 2013;
Vega-Pons et al., 2014), to determine whether a subject is cocaine-addicted or not (Gkirt-
zou & Blaschko, 2016), or to predict mild cognitive impairment, a prodromal stage of
Alzheimer’s disease (Jie et al., 2014, 2016). There have also been proposed kernels that can
handle inter-subject variability in fMRI data (Takerkart et al., 2014).

6.4 Cybersecurity and Software Verification

The number of malicious applications targeting desktop and mobile devices has increased
daramatically in the past few years. Due to this unprecedented increase in the number of
malicious applications, malware detection has recently become a very active area of research.
It has been observed that most newly discovered malware samples are variations of existing
malware. Furthermore, it has been shown that it is easier to detect these variations if high-
level code representations, such as function call graphs or control flow graphs, are employed.
It should be mentioned that these graphs can prove useful not only for detecting malware,
but also for retrieving similar application programs. Therefore, graph kernels can be applied
to such graphs, and have served as a common tool for detecting malware (Anderson et al.,
2011; Gascon et al., 2013; Narayanan et al., 2016), but also for analyzing execution traces
obtained from dynamic analysis (Wagner et al., 2009), for measuring the similarity between
programs (Li et al., 2016b), and for predicting metamorphic relations (Kanewala et al.,
2016).
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6.5 Natural Language Processing

Although textual documents do not exhibit an underlying graph structure, in many cases,
they are also modeled as graphs. A vertex corresponds to some meaningful linguistic unit
such as a sentence, a word, or even a character, while an edge corresponds to some rela-
tionship between two vertices which can be statistical, syntactic, or semantic among others.
A common representation is the word co-occurence network, where vertices correspond
to terms and edges represent co-occurrences between the terms within a fixed-size sliding
window. This representation addresses some of the limitations of the bag-of-words represen-
tation which treats terms as independent of one another. Graph kernels have proven useful
for several text mining applications such as for recognizing identical real-world events mod-
eled as event graphs (Glavaš & Šnajder, 2013), for classifying biomedical text documents
represented as concept graphs (Bleik et al., 2013), for extracting protein-protein interac-
tions from scientific literature (Airola et al., 2008a, 2008b), and for measuring the similarity
between documents represented as word co-occurence networks (Nikolentzos et al., 2017).
Besides the above applications, tree kernels (which can be considered as instances of graph
kernels) have been heavily applied to different problems in the field of natural language
processing (see subsection 4.11 for more details).

6.6 Other Applications

Graph kernels have been applied to many other practical problems involving graph repre-
sentations such as for classifying Resource Description Framework (RDF) data (Lösch et al.,
2012; De Vries & de Rooij, 2015), for entity disambiguation in anonymized graphs (Her-
mansson et al., 2013), for classifying architectural designs into architectural styles (Strobbe
et al., 2016), and for estimating the similarity of relational states in relational reinforcement
learning (Driessens et al., 2006; Halbritter & Geibel, 2007).

7. Experimental Comparison

In this Section, we experimentally evaluate many of the graph kernels presented above and
compare them to each other. Although there are approaches that measure the expressiveness
of graph kernels by using recent results from the field of statistical learning theory (Oneto
et al., 2017), empirically evaluating the graph kernels can provide insights into their utility
in real-world scenarios. We first present the problem of graph classification, and we evaluate
the kernels in this task. We describe the datasets that we used for our experiments, and give
details about the experimental settings. We then report on the performance and running
time of the different kernels. We finally experiment with a synthetic dataset, and compare
the emerging kernel values against the similarities produced by an expressive but intractable
graph similarity function.

7.1 Graph Classification

Classification is perhaps the most frequently encountered machine learning problem. In
classification, the goal is to learn a mapping from input objects to their class labels, given a
training set. When the input objects are graphs, the problem is called graph classification.
More formally, in this setting, we are given a training set D = {(Gi, yi)}Ni=1 consisting of N
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Dataset

Statistics
Node Labels/

Attributes

#Graphs #Classes
Max Class Avg. Avg. Labels Attributes

Imbalance #Nodes #Edges (Num.) (Dim.)

AIDS 2,000 2 1 : 4.0 15.69 16.20 + (38) + (4)

BZR 405 2 1 : 3.70 35.75 38.36 + (10) + (3)

COLLAB 5,000 3 1 : 3.35 74.49 2, 457.78 – –

D&D 1,178 2 1 : 1.41 284.32 715.66 + (82) –

ENZYMES 600 6 1 : 1 32.63 62.14 + (3) + (18)

IMDB-BINARY 1,000 2 1 : 1 19.77 96.53 – –

IMDB-MULTI 1,500 3 1 : 1 13.00 65.94 – –

MUTAG 188 2 1 : 1.98 17.93 19.79 + (7) –

NCI1 4,110 2 1 : 1 29.87 32.30 + (37) –

PROTEINS 1,113 2 1 : 1.47 39.06 72.82 + (3) + (1)

PROTEINS full 1,113 2 1 : 1.47 39.06 72.82 + (3) + (29)

PTC-MR 344 2 1 : 1.26 14.29 14.69 + (19) –

REDDIT-BINARY 2,000 2 1 : 1 429.63 497.75 – –

REDDIT-MULTI-5K 4,999 5 1 : 1 508.52 594.87 – –

REDDIT-MULTI-12K 11,929 11 1 : 5.05 391.41 456.89 – –

SYNTHETICnew 300 2 1 : 1 100.00 196.25 – + (1)

Synthie 400 4 1 : 1.22 95.00 172.93 – + (15)

Table 3: Summary of the 17 datasets used in our experiments. The “Max Class Imbalance”
column indicates the ratio of the size of the smallest class of the dataset to the size of its
largest class.

graphs along with their class labels. The goal is to learn a function f : G → Y, where G is
the input space of graphs and Y the set of graph labels. This function can then be used to
assign class labels to new previously unseen graphs, such as those contained in the test set.

The problem of graph classification has become a popular area of research in recent years
because it finds numerous applications in a wide variety of fields. Several of these application
have already been discussed above. For example, graph classification arises in applications
which range from predicting the mutagenicity of a chemical compound (Swamidass et al.,
2005), and predicting the function of a protein given its amino acid sequence (Borgwardt
et al., 2005), to detecting if a software object is infected with malware (Wagner et al., 2009).

7.1.1 Datasets

We next briefly describe the graph datasets used in our experiments. We have consid-
ered data from different domains, including chemoinformatics, bioinformatics and social
networks. All graphs are undirected. Furtermore, the graphs contained in the chemoinfor-
matics and bioinformatics datasets are node-labeled, node-attributed or both. All datasets
are publicly available (Kersting et al., 2016). Table 3 provides a summary of the employed
datasets.
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AIDS. It consists of molecular compounds represented as graphs. The compounds were
obtained from the AIDS Antiviral Screen Database of Active Compounds. Vertices corre-
spond to atoms and edges to covalent bonds. Vertices are labeled with the corresponding
chemical symbol and edges with the valence of the linkage. The task is to predict whether
or not each compound is active against HIV (Riesen & Bunke, 2008).

BZR. It contains 405 chemical compounds (ligands for the benzodiazepine receptor) which
are modeled as graphs. The task is to predict whether a compound is active or inactive
(Sutherland et al., 2003).

COLLAB. This is a scientific collaboration dataset consisting of the ego-networks of
several researchers from three subfields of Physics (High Energy Physics, Condensed Matter
Physics and Astro Physics). The task is to determine the subfield of Physics to which the
ego-network of each researcher belongs (Yanardag & Vishwanathan, 2015b).

D&D. This dataset contains over a thousand protein structures. Each protein is a graph
whose vertices correspond to amino acids and a pair of amino acids are connected by an
edge if they are less than 6 Ångstroms apart. The task is to predict if a protein is an enzyme
or not (Dobson & Doig, 2003).

ENZYMES. It comprises of 600 protein tertiary structures obtained from the BRENDA
enzyme database. Each enzyme is a member of one of the Enzyme Commission top level
enzyme classes (EC classes) and the task is to correctly assign the enzymes to their classes
(Borgwardt et al., 2005).

IMDB-BINARY and IMDB-MULTI. These datasets were created from IMDb (www.
imdb.com), an online database of information related to movies and television programs.
The graphs contained in the two datasets correspond to movie collaborations. The vertices
of each graph represent actors/actresses and two vertices are connected by an edge if the
corresponding actors/actresses appear in the same movie. Each graph is the ego-network of
an actor/actress, and the task is to predict which genre an ego-network belongs to (Yanardag
& Vishwanathan, 2015b).

MUTAG. This dataset consists of 188 mutagenic aromatic and heteroaromatic nitro
compounds. The task is to predict whether or not each chemical compound has mutagenic
effect on the Gram-negative bacterium Salmonella typhimurium (Debnath et al., 1991).

NCI1. This dataset contains a few thousand chemical compounds screened for activity
against non-small cell lung cancer and ovarian cancer cell lines (Wale et al., 2008).

PROTEINS, PROTEINS full. They contain proteins represented as graphs where ver-
tices are secondary structure elements and there is an edge between two vertices if they are
neighbors in the amino-acid sequence or in 3D space. The task is to classify proteins into
enzymes and non-enzymes (Borgwardt et al., 2005).

PTC-MR. This dataset contains 344 organic molecules represented as graphs. The task
is to predict their carcinogenic effects on male rats (Toivonen et al., 2003).
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REDDIT-BINARY, REDDIT-MULTI-5K, REDDIT-MULTI-12K. The graphs
contained in these three datasets represent social interaction between users of Reddit (www.
reddit.com), one of the most popular social media websites. Each graph represents an
online discussion thread. Specifically, each vertex corresponds to a user, and two users are
connected by an edge if one of them responded to at least one of the other’s comments. The
task is to classify graphs into either communities or subreddits (Yanardag & Vishwanathan,
2015b).

SYNTHETICnew. It comprises of 300 synthetic graphs divided into two classes of equal
size. Each graph is obtained by adding noise to a random graph with 100 vertices and 196
edges, whose vertices are endowed with normally distributed scalar attributes sampled from
N (0, 1). The graphs of the first class were generated by rewiring 5 edges and permuting 10
node attributes, while the graphs of the second class were generated by rewiring 10 edges
and permuting 5 node attributes. After the generation of all graphs, noise from N (0, 0.452)
was also added to every node attribute in every graph (Feragen et al., 2013).

Synthie. This dataset consists of 400 synthetic graphs, subdivided into four classes, with
15 real-valued node attributes. Two types of graphs and two types of attributes were
generated, and each combination of those gave rise to a class (four classes in total). All
graphs were generated by randomly adding edges between 10 perturbed instances of two
Erdös Rényi graphs. To generate graphs of the first type, perturbed instances of the first
Erdös Rényi graph were choosen with probability 0.8, while perturbed instances of the
second Erdös Rényi graph were choosen with probability 0.2. To generate graphs of the
second type, the two probabilities were reversed. The vertices of each graph were then
annotated by attributes drawn either from the first or from the second type of attributes
(Morris et al., 2016).

7.1.2 Experimental Setup

We evaluated the performance of the graph kernels on the datasets presented above. Specifi-
cally, we made use of the GraKeL library which contains implementations of a large number
of graph kernels (Siglidis et al., 2020). We used the following 20 kernels in our experi-
mental evaluation: (1) vertex histogram kernel (VH), (2) random walk kernel (RW), (3)
shortest path kernel (SP), (4) graphlet kernel (GR), (5) Weisfeiler-Lehman subtree ker-
nel (WL-VH), (6) Weisfeiler-Lehman shortest path kernel (WL-SP), (7) Weisfeiler-Lehman
pyramid match kernel (WL-PM), (8) Weisfeiler-Lehman optimal assignment kernel (WL-
OA), (9) neighborhood hash kernel (NH), (10) neighborhood subgraph pairwise distance
kernel (NSPDK), (11) Lovász ϑ kernel (Lo-ϑ), (12) SVM-ϑ kernel (SVM-ϑ), (13) ordered
decompositional DAGs with subtree kernel (ODD-STh), (14) pyramid match kernel (PM),
(15) GraphHopper kernel (GH), (16) subgraph matching kernel (SM), (17) propagation
kernel (PK), (18) multiscale Laplacian kernel (ML), (19) core Weisfeiler-Lehman subtree
kernel (CORE-WL-VH), and (20) core shortest path kernel (CORE-SP). Note that some of
the kernels (e. g., WL-SP, CORE-SP) correspond to frameworks applied to graph kernels.
Furthermore, since some kernels can handle different types of graphs than others, we con-
duct three distinct experiments. The three experiments are characterized by the types of
graphs contained in the employed datasets: (1) datasets with unlabeled graphs, (2) datasets
with node-labeled graphs, and (3) datasets with node-attributed graphs. It is important
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to mention that kernels that are designed for node-labeled graphs can also be applied to
unlabaled graphs by initializing the node labels of all vertices of the unlabaled graphs to the
same value. Hence, we evaluate these kernels on datasets that contain node-labeled graphs,
but also on datasets that contain unlabeled graphs. Moreover, kernels that are designed
for node-attributed graphs can be applied to unlabeled graphs and to graphs that contain
discrete node labels. To achieve that, in the case of unlabeled graphs, all the vertices of all
graphs are assigned the same attribute, while in the case of node-labeled graphs, node labels
are transformed into feature vectors (e. g., using a “one-hot” encoding scheme). Hence, we
evaluated these kernels on all three experimental scenarios.

We also compare the above graph kernels against the following 4 state-of-the-art GNNs:
(1) DGCNN (Zhang et al., 2018a), (2) GraphSAGE (Hamilton et al., 2017), (3) DiffPool
(Ying et al., 2018), and (4) GIN (Xu et al., 2019). Note that GNNs iteratively update
the feature vectors of the vertices of each graph, and thus, they assume node-attributed
graphs. Therefore, for unlabeled graphs and for graphs that contain discrete node labels,
we follow the procedure described above. In the cased of unlabeled graphs, all the vertices
of all graphs are assigned the same attribute, while in the case of node-labeled graphs, node
labels are transformed into feature vectors. It should be mentioned that we only compare
the performance of GNNs against that of kernels, and not their running time. The running
time of a GNN depends on the values of some hyperparameters (e. g., number of epochs,
batch size, etc.), while the different models run on a GPU instead of a CPU. Hence, the
running time of a GNN is not directly comparable to that of a graph kernel, and thus we
refrain from reporting those results.

In the case of graph kernels, to perform graph classification, we employed a Support
Vector Machine (SVM) classifier and in particular, the LIB-SVM implementation (Chang
& Lin, 2011). To evaluate the performance of the different kernels and GNNs, we employ the
framework proposed by Errica et al. (2020). Therefore, we perform 10-fold cross-validation
to obtain an estimate of the generalization performance of each method. For the common
datasets, we use the splits (and results) provided by Errica et al. (2020). For the remaining
datasets, we use the code provided by Errica et al. (2020) to evaluate the 4 GNNs. Within
each fold, the parameter C of the SVM and the hyperparameters of the kernels (see below)
and GNNs were chosen based on a validation experiment on a single 90% − 10% split
of the training data. We chose the value of parameter C from {10−7, 10−5, . . . , 105, 107}.
Moreover, we normalized all kernel values as follows k̂(Gi, Gj) = k(Gi,Gj)/

√
k(Gi,Gi) k(Gj ,Gj)

for any graphs Gi, Gj . All experiments were performed on a cluster of 80 Intel© Xeon©

CPU E7 − 4860 @ 2.27GHz with 1TB RAM. Note that each kernel was computed on a
single thread of the cluster. We set a time limit of 24 hours for each kernel to compute the
kernel matrix. Hence, we denote by TIMEOUT kernel computations that did not finish within
one day. We also set a memory limit of 64GB, and we denote by OUT-OF-MEM computations
that exceeded this limit.

As mentioned above, to choose the hyperparameters of the kernels, we performed a
validation experiment on a single 90%−10% split of the training set. Hence, given a kernel,
for each combination of hyperparameter values, we generated a seperate kernel matrix.
The hyperparameter values that result into the classifier with the best performance on
the validation set are the ones selected for the final model learning. The values of the
different hyperparameters of the kernels are shown in Table 4. It is interesting to mention
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Kernels
Hyperparameters

Fixed Chosen based on validation set performance

VH – –

RW λ = 10
dlog10( 1

deg2max
)e

k ∈ {2, . . . 10,∞}
SP – –

GR k = 5 nsamples = {200, 500, 1000, 2000, 5000}
WL – h ∈ {4, . . . , 8}
WL-OA – h ∈ {4, . . . , 8}
NH Count-sensitive neighborhood hash h ∈ {1, . . . , 6}
NSPDK – r∗ ∈ {1, . . . , 6}, d∗ ∈ {3, . . . , 7}
Lo-ϑ 2 ≤ |S| ≤ 8 nsamples = {100, 200, 500, 1000}
SVM-ϑ 2 ≤ |S| ≤ 8 nsamples = {100, 200, 500, 1000}
ODD-STh – h ∈ {1, . . . , 11}
PM – L ∈ {2, 4, 6}, d ∈ {4, 6, 8, 10}
GH – linear kernel/gaussian kernel

SM k = 3 –

PK w = 10−5 T ∈ {1, . . . , 6}
ML γ = 0.01, η = 0.01, p̂ = 10 lmax ∈ {0, . . . , 5}, c̃ ∈ {50, 100, 200, 300}
CORE – –

Table 4: Values of the hyperparameters of the graphs kernels and frameworks included in our
experimental comparison. Note that for some kernels, only a subset of the hyperparameters
was optimized, while the rest of the hyperparameters were kept fixed.

that the number of hyperparameters ranges significantly across kernels. For instance, some
kernels such as the vertex historgram kernel (VH) lack hyperparameters, while other kernels
such as the multiscale Laplacian kernel (ML) contain a large number of hyperparameters.
Hence, for the vertex historgram (VH) kernel, we compute only a single kernel matrix in
each experiment, while for the multiscale Laplacian (ML) kernel, we compute 24 different
kernel matrices in each experiment. Note also that instead of performing cross-validation
to identify the best combination of hyperparameter values, we could have applied multiple
kernel learning to the generated kernel matrices (Massimo et al., 2016).

For each experiment, we report the average accuracy over the 10 runs of the cross-
validation procedure. Furthermore, we report running times averaged over the 10 indepen-
dent runs. For each run, we compute running times as follows: for each fold of a 10-fold
cross-validation experiment, the running time of the kernel corresponds to the running time
for the computation of the kernel matrix that performed best on the validation experiment.

7.1.3 Experimental Results

We next present our experimental results. As mentioned above, we evaluate the graph
kernels by performing graph classification on unlabeled, node-labeled and node-attributed
benchmark datasets.

Node-Labeled Graphs. Tables 5 and 6 illustrate average prediction accuracies and av-
erage running times of the compared kernels and the GNNs on the datasets that contain
node-labeled graphs. We observe that the kernels that employ some neighborhood aggre-
gation mechanism (e. g., the Weisfeiler-Lehman framework) yield very good performance.
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Methods
DATASETS

MUTAG ENZYMES NCI1 PTC-MR

K
er

n
el

s

VH 69.1 (± 4.1) 20.0 (± 4.8) 55.7 (± 2.0) 57.1 (± 9.6)

RW 81.4 (± 8.9) 16.7 (± 1.8) TIMEOUT 54.4 (± 9.8)

SP 82.4 (± 5.5) 37.3 (± 8.7) 72.5 (± 2.0) 60.2 (± 9.4)

WL-VH 86.7 (± 7.3) 50.7 (± 7.3) 85.2 (± 2.2) 64.9 (± 6.4)

WL-SP 81.4 (± 8.7) 27.3 (± 7.4) 60.8 (± 2.4) 54.5 (± 9.8)

WL-PM 88.3 (± 7.1) 57.5 (± 6.8) 85.6 (± 1.7) 65.1 (± 7.5)

WL-OA 87.2 (± 5.4) 58.0 (± 5.0) 86.3 (± 1.6) 65.7 (± 9.6)

NH 88.3 (± 6.3) 54.5 (± 3.6) 84.7 (± 1.9) 63.4 (± 9.2)

NSPDK 85.6 (± 8.9) 42.2 (± 8.0) 74.3 (± 2.1) 59.1 (± 7.3)

ODD-STh 80.4 (± 8.8) 32.3 (± 4.8) 75.2 (± 2.0) 59.4 (± 9.8)

PM 85.1 (± 5.8) 43.2 (± 5.3) 73.5 (± 1.9) 60.2 (± 8.2)

GH 82.5 (± 5.8) 37.2 (± 6.6) 71.0 (± 2.3) 60.2 (± 9.4)

SM 85.7 (± 5.8) 35.7 (± 5.5) TIMEOUT 60.2 (± 6.8)

PK 76.6 (± 5.2) 44.0 (± 6.3) 82.1 (± 2.1) 65.1 (± 5.6)

ML 87.2 (± 7.5) 48.5 (± 7.8) 79.7 (± 1.8) 64.5 (± 5.8)

CORE-WL-VH 85.6 (± 6.5) 51.7 (± 7.0) 85.2 (± 2.2) 65.5 (± 5.6)

CORE-SP 85.1 (± 6.8) 39.5 (± 9.3) 73.8 (± 1.4) 57.3 (± 9.7)

G
N

N
s

DGCNN 84.0 (± 7.1) 46.3 (± 6.3) 76.4 (± 1.7) 59.5 (± 6.9)

GraphSAGE 83.6 (± 9.6) 46.1 (± 5.4) 76.0 (± 1.8) 61.7 (± 4.9)

DiffPool 79.8 (± 6.7) 50.7 (± 8.7) 76.9 (± 1.9) 61.1 (± 5.6)

GIN 84.7 (± 6.7) 44.5 (± 4.1) 80.0 (± 1.4) 59.1 (± 7.0)

Methods
DATASETS

Avg.
D&D PROTEINS AIDS Rank

K
er

n
el

s

VH 74.8 (± 3.7) 71.1 (± 4.4) 80.0 (± 2.3) 18.7
RW OUT-OF-MEM 69.5 (± 5.1) 79.7 (± 2.3) 19.9
SP 77.9 (± 4.5) 74.9 (± 3.6) 99.3 (± 0.4) 10.9
WL-VH 78.7 (± 2.3) 76.2 (± 3.5) 98.3 (± 0.8) 5.8
WL-SP 76.0 (± 3.5) 72.1 (± 3.1) 99.0 (± 0.6) 15.9
WL-PM OUT-OF-MEM 75.9 (± 3.8) 99.4 (± 0.2) 5.3
WL-OA 77.6 (± 3.0) 76.2 (± 3.9) 99.2 (± 0.3) 3.7
NH 74.6 (± 3.5) 75.0 (± 4.2) 99.2 (± 0.5) 6.5
NSPDK 78.9 (± 4.7) 72.5 (± 2.9) 97.8 (± 1.1) 11.8
ODD-STh 76.4 (± 4.5) 70.9 (± 4.1) 90.4 (± 2.0) 15.9
PM 77.9 (± 3.7) 70.9 (± 4.4) 99.7 (± 0.3) 10.6
GH TIMEOUT 74.8 (± 2.4) 99.4 (± 0.3) 12.8
SM OUT-OF-MEM OUT-OF-MEM 92.2 (± 1.8) 16.2
PK 77.7 (± 4.2) 73.1 (± 4.7) 96.3 (± 1.2) 11.1
ML 78.6 (± 4.0) 74.2 (± 4.4) 98.5 (± 0.5) 7.5
CORE-WL-VH 79.5 (± 3.2) 76.5 (± 4.4) 98.8 (± 0.5) 4.4
CORE-SP 79.3 (± 3.8) 76.5 (± 3.9) 99.5 (± 0.3) 8.7

G
N

N
s

DGCNN 76.6 (± 4.3) 73.2 (± 3.2) 99.1 (± 1.4) 10.6
GraphSAGE 72.9 (± 2.0) 74.3 (± 3.8) 97.7 (± 0.6) 11.9
DiffPool 75.0 (± 3.5) 72.5 (± 3.5) 99.2 (± 0.3) 11.1
GIN 75.3 (± 2.9) 72.8 (± 3.6) 98.8 (± 0.6) 11.7

Table 5: Average classification accuracy (± standard deviation) on the 7 classification
datasets containing node-labeled graphs. The “Avg. Rank” column illustrates the average
rank of each kernel/GNN. The lower the average rank, the better the overall performance
of the kernel/GNN.
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Kernels
DATASETS

MUTAG ENZYMES NCI1 PTC-MR

VH 0.01s 0.04s 0.84s 0.02s
RW 1m 31.24s 3h 36m 7.01s TIMEOUT 9m 9.27s
SP 0.92s 11.03s 1m 9.69s 1.52s
WL-VH 0.2s 3.54s 7m 5.11s 0.42s
WL-SP 6.3s 1m 15.06s 10m 55.37s 10.78s
WL-PM 2m 0.87s 1h 10m 28.36s 13h 28m 58.53s 11m 53.67s
WL-OA 0.65s 21.89s 2h 27m 25.05s 3.29s
NH 0.98s 12.65s 13m 56.45s 4.35s
NSPDK 3.94s 25.77s 4m 29.99s 7.81s
ODD-STh 1.49s 1m 2.86s 49m 2.76s 4.2s
PM 3.17s 30.86s 41m 51.78s 13.14s
GH 24.79s 15m 35.62s 3h 43m 7.2s 1m 33.9s
SM 1m 57.25s 3h 25m 43.59s TIMEOUT 4m 19.8s
PK 0.53s 11.71s 10m 30.02s 1.79s
ML 8m 16.84s 58m 40.97s 7h 18m 35.72s 22m 9.56s
CORE-WL-VH 0.63s 7.95s 12m 36.28s 1.01s
CORE-SP 2.69s 48.02s 3m 16.54s 3.97s

Kernels
DATASETS

Avg.
D&D PROTEINS AIDS Rank

VH 0.24s 0.1s 0.25s 1.0
RW OUT-OF-MEM 51m 10.11s 1h 51m 56.47s 15.1
SP 55m 58.79s 1m 18.91s 13.93s 4.7
WL-VH 4m 42.13s 25.34s 28.89s 2.7
WL-SP 6h 42m 57.36s 6m 55.52s 1m 22.62s 10.7
WL-PM OUT-OF-MEM 6h 20m 51.01s 6h 44m 21.01s 15.8
WL-OA 1h 22m 26.27s 3m 48.99s 4m 36.18s 8.6
NH 11m 31.88s 1m 4.52s 1m 16.5s 6.9
NSPDK 5h 15m 23.52s 6m 35.72s 56.01s 8.7
ODD-STh 30m 39.54s 2m 6.26s 1m 57.88s 9.0
PM 4m 55.53s 1m 15.8s 5m 33.7s 9.0
GH TIMEOUT 3h 44m 19.99s 38m 48.57s 13.8
SM OUT-OF-MEM OUT-OF-MEM 4h 26m 46.71s 15.7
PK 7m 29.57s 45.6s 1m 46.21s 5.1
ML 1h 26m 59.75s 1h 35m 36.4s 33m 16.63s 14.1
CORE-WL-VH 1m 53.21s 1m 11.44s 1m 15.03s 4.4
CORE-SP 5h 2m 39.71s 3m 31.97s 40.11s 7.6

Table 6: Average CPU running time for kernel matrix computation on the 7 classification
datasets containing node-labeled graphs. The “Avg. Rank” column illustrates the average
rank of each kernel. The lower the average rank, the lower the overall running time of the
kernel.

Specifically, the WL-OA kernel outperforms all the other kernels on 3 out of the 7 datasets
(ENZYMES, NCI1, and PTC-MR), while the CORE-WL-VH kernel is the best-performing
approach on 2 out of the remaining 4 datasets (D&D and PROTEINS). Moreover, the WL-
VH, WL-PM and NH kernels also achive high accuracies on most datasets. Surprisingly,
WL-SP, although equipped with a neighborhood aggregation scheme, performs much worse
than the other kernels which employ the same framework and also much worse than the SP
and CORE-SP kernels. The core framework leads to performance improvements on most
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datasets. For instance, in the case of the SP kernel, it leads to better accuracies on all but
one dataset. It is worth mentioning that CORE-SP provides the highest accuracy on the
PROTEINS dataset (along with CORE-WL-VH) and second best accuracy on the D&D
and AIDS datasets. As regards the kernels for graphs with continuous attributes (GH, SM,
PK, and ML), most of them failed to produce results comparable to the best-performing
kernels. The only exception is the ML kernel which yielded good results on most datasets.
Moreover, the GH kernel reached the highest accuracy on the AIDS dataset. It is also
interesting to mention that the VH and RW kernels achieved very low accuracy levels. The
4 GNN models also failed to yield performance competitive with that of the kernels that
employ neighborhood aggregation mechanisms. Specifically, all GNNs were outperformed
by some graph kernel on all 7 datasets. DGCNN performed better than the rest of the
GNNs, but in most cases, all GNN models achieved similar accuracies to each other.

On most datasets, the variability in the performance of the different kernels is low.
The ENZYMES dataset is an exception to that, since the average accuracy of the best-
performing kernel is equal to 58.0%, while that of the worst-performing kernel is equal to
16.7%. Furthermore, the AIDS dataset is almost perfectly classified by several kernels, and
this raises some concerns about the value of this dataset for graph kernel comparison.

In terms of running time, as expected, VH is the fastest kernel on all datasets. This
kernel computes the dot product on vertex label histograms, hence, its complexity is linear
to the number of vertices. The running time of WL-VH, CORE-WL-VH, SP, PK, and
NH is also low compared to the other kernels on most datasets. Note also that while the
worst-case complexity of SP is very high, by employing an explicit computation scheme, the
running time of the kernel in real scenarios is very attractive. We also observe that the ML,
RW, SM and WL-PM kernels are very expensive in terms of runtime. Specifically, the SM
kernel failed to compute the kernel matrix on NCI1 within one day, while it exceeded the
maximum available memory on two other datasets (D&D and PROTEINS). It should be
mentioned that the size of the graphs (i. e., number of vertices) and the size of the dataset
(i. e., number of graphs) have a different impact on the running time of the kernels. For
instance, the average running time of the PM kernel is relatively high on datasets that
contain small graphs. However, this kernel is much more competitive on datasets which
contain large graphs such as the D&D dataset on which it was the third fastest kernel.

Overall, when dealing with tasks that involve node-labeled graphs, we suggest to use
a kernel that utilizes some neighborhood aggregation mechanism. For instance, the WL-
VH and NH kernels achieve high accuracies and are very efficient even when the size of
the graphs and/or the dataset is large. The WL-OA kernel can potentially outperform
the above two kernels, however, it is also more expensive to compute. From the above
experimental evaluation, it is also clear that graph kernels are more effective than GNNs in
classifying graphs whose vertices are annotated with discrete labels. Still, we need to stress
that graph kernels do not scale to large datasets (e. g., datasets that contain hunderds of
thousands of graphs), and this is a limitation inherent to kernel methods in general. In such
scenarios, GNNs should be preferred over graph kernels.

Unabeled Graphs Tables 7 and 8 illustrate average prediction accuracies and average
running times of the compared kernels and GNNs on the 6 datasets that contain unlabeled
graphs. We observe that the GIN model is the best-performing method. It outperforms
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Methods
DATASETS

Avg.
IMDB IMDB REDDIT REDDIT REDDIT

COLLAB Rank
BINARY MULTI BINARY MULTI-5K MULTI-12K

K
er

n
el

s

VH 50.0 (± 0.0) 33.3 (± 0.0) 50.0 (± 0.0) 20.0 (± 0.0) 21.7 (± 1.5) 52.0 (± 0.1) 18.3
RW 64.1 (± 4.5) 44.6 (± 4.1) TIMEOUT TIMEOUT TIMEOUT 68.0 (± 1.7) 17.2
SP 58.2 (± 4.7) 39.2 (± 2.3) 81.7 (± 2.5) 47.9 (± 1.9) TIMEOUT 58.8 (± 1.2) 15.2
GR 66.1 (± 2.7) 39.5 (± 2.7) 76.1 (± 2.6) 34.7 (± 2.0) 23.0 (± 1.4) 73.0 (± 2.0) 12.8
WL-VH 70.7 (± 6.8) 51.3 (± 4.4) 67.8 (± 3.5) 50.5 (± 1.6) 38.7 (± 1.7) 78.3 (± 2.1) 6.5
WL-SP 58.2 (± 4.7) 39.2 (± 2.3) TIMEOUT TIMEOUT TIMEOUT 58.8 (± 1.2) 19.0
WL-PM 73.6 (± 3.4) 49.1 (± 5.5) OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM 14.9
WL-OA 72.6 (± 5.5) 51.1 (± 4.3) 89.0 (± 1.3) 54.0 (± 1.2) TIMEOUT 80.5 (± 2.0) 5.8
NH 71.6 (± 4.5) 50.5 (± 5.0) 81.2 (± 2.0) 49.9 (± 2.4) 39.6 (± 1.4) 81.1 (± 2.4) 5.8
NSPDK 67.4 (± 3.3) 44.6 (± 3.8) TIMEOUT TIMEOUT TIMEOUT TIMEOUT 18.2
Lo-ϑ 51.0 (± 4.2) 39.8 (± 2.6) TIMEOUT TIMEOUT TIMEOUT TIMEOUT 20.1
SVM-ϑ 52.3 (± 4.0) 39.5 (± 2.7) 74.8 (± 2.6) 31.4 (± 1.1) 22.9 (± 0.9) 52.0 (± 0.1) 15.8
ODD-STh 65.0 (± 4.0) 46.7 (± 3.4) 52.1 (± 3.2) 43.1 (± 1.8) 30.0 (± 1.6) 52.0 (± 0.1) 13.2
PM 66.3 (± 4.2) 46.1 (± 3.8) 86.5 (± 2.1) 48.3 (± 2.5) 41.1 (± 0.6) 74.0 (± 2.4) 8.7
GH 59.4 (± 3.4) 39.5 (± 2.6) TIMEOUT TIMEOUT TIMEOUT 60.0 (± 1.4) 18.1
SM TIMEOUT TIMEOUT OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM TIMEOUT –
PK 51.7 (± 3.7) 34.5 (± 3.0) 63.9 (± 3.0) 34.9 (± 1.7) 23.9 (± 1.2) 57.0 (± 1.2) 16.2
ML 69.9 (± 4.8) 47.7 (± 3.2) 89.4 (± 2.1) 35.4 (± 2.0) OUT-OF-MEM 75.6 (± 1.6) 9.1
CORE-WL-VH 73.5 (± 6.1) 51.7 (± 4.1) 73.0 (± 4.5) 51.1 (± 1.6) 40.2 (± 1.8) 84.5 (± 2.0) 4.5
CORE-SP 68.5 (± 3.9) 51.0 (± 3.5) 91.0 (± 1.8) TIMEOUT OUT-OF-MEM TIMEOUT 12.8

G
N

N
s

DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 43.9 (± 1.0) 71.2 (± 1.9) 7.9
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 43.5 (± 1.0) 73.9 (± 1.7) 7.3
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 44.4 (± 1.4) 68.9 (± 2.0) 7.2
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 48.3 (± 1.6) 75.6 (± 2.3) 3.6

Table 7: Average classification accuracy (± standard deviation) on the 6 classification
datasets containing unlabeled graphs. The “Avg. Rank” column illustrates the average
rank of each kernel/GNN. The lower the average rank, the better the overall performance
of the kernel/GNN.

all the other methods on 2 out of the 6 datasets (REDDIT-MULTI-5K and REDDIT-
MULTI-12K). The CORE-WL-VH kernel achieves the second best performance. Indeed,
the CORE-WL-VH kernel outperforms all the other approaches on 3 out of the 6 datasets
(IMDB-BINARY, IMDB-MULTI and COLLAB). The WL-OA, NH and WL-VH kernels
also yield high performance on most datasets. In fact, these kernels along with CORE-WL-
VH outperform the remaining 3 GNN models, that is DGCNN, GraphSAGE and DiffPool.
Furthermore, on the remaining datasets, it reached the second, the second and the eighth
best accuracy levels among all methods considered. We should note that the core framework
improved significantly the performance of the SP kernel on several datasets, while CORE-
SP achieved the highest average accuracy on the REDDIT-BINARY dataset. The Lo-ϑ
kernel was the worst-performing kernel, followed by VH, WL-SP, VH, NSPDK and GH in
that order. It is interesting to mention that most of the kernels that reached the highest
accuracies can also handle graphs with dicrete node labels. For those kernels, the label of
each vertex was set equal to its degree. The kernels that can handle only unlabeled graphs
(GR, Lo-ϑ, SVM-ϑ) failed to achieve accuracies competitive to the best-performing kernels.
With regards to the kernels that can handle graphs with continuous attributes (GH, SM,
PK, and ML), as mentioned above, ML yielded the best results. GH and PK achieved low
accuracy levels, while SM failed to generate even a single kernel matrix due to running
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Kernels
DATASETS

Avg.
IMDB IMDB REDDIT REDDIT REDDIT

COLLAB Rank
BINARY MULTI BINARY MULTI-5K MULTI-12K

VH 0.07s 0.15s 0.67s 2.2s 6.37s 0.24s 1.0
RW 10m 26.54s 12m 8.7s TIMEOUT TIMEOUT TIMEOUT 9h 41m 21.24s 15.6
SP 11.51s 7.92s 4h 48m 11.19s 12h 40m 19.5s TIMEOUT 24m 14.94s 8.3
GR 30m 6.66s 16m 13.44s 24m 32.66s 1h 13m 7.1s 30m 57.41s 49m 22.03s 10.8
WL-VH 12.21s 12.0s 13m 27.98s 6m 2.02s 5m 11.78s 24m 41.07s 4.7
WL-SP 1m 21.33s 1m 24.83s TIMEOUT TIMEOUT TIMEOUT 2h 53m 9.92s 13.2
WL-PM 2h 3m 26.51s 2h 25m 58.31s OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM 17.1
WL-OA 23.84s 40.96s 1h 37m 38.26s 15h 58m 53.54s TIMEOUT 7h 2m 16.42s 10.7
NH 25.08s 33.73s 20m 7.15s 3h 29m 27.55s 11h 44m 40.96s 15m 28.61s 7.5
NSPDK 2m 10.12s 3m 8.3s TIMEOUT TIMEOUT TIMEOUT TIMEOUT 15.2
Lo-ϑ 6h 4m 8.55s 5h 35m 19.86s TIMEOUT TIMEOUT TIMEOUT TIMEOUT 17.4
SVM-ϑ 30.37s 51.3s 19m 29.55s 24m 40.57s 47m 39.6s 1m 41.97s 6.3
ODD-STh 3.94s 4.55s 1m 53.5s 4m 48.92s 8m 20.66s 26m 9.55s 3.3
PM 1m 31.37s 3m 1.25s 10m 12.88s 51m 45.1s 3h 50m 38.6s 10m 22.45s 8.0
GH 2m 11.15s 2m 3.71s TIMEOUT TIMEOUT TIMEOUT 2h 19m 30.0s 13.8
SM TIMEOUT TIMEOUT OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM TIMEOUT –
PK 7.09s 13.43s 1m 26.03s 5m 52.84s 20m 22.64s 1m 11.76s 3.3
ML 1h 40m 28.88s 1h 50m 36.11s 8h 21m 18.76s 47m 21.37s OUT-OF-MEM 4h 28m 12.65s 13.3
CORE-WL-VH 55.99s 1m 13.89s 9m 52.79s 25m 1.53s 17m 37.71s 5h 4m 10.52s 7.5
CORE-SP 3m 58.29s 4m 29.55s 10h 37m 3.94s TIMEOUT OUT-OF-MEM TIMEOUT 15.1

Table 8: Average CPU running time for kernel matrix computation on the 6 classification
datasets containing unlabeled graphs. The “Avg. Rank” column illustrates the average
rank of each kernel. The lower the average rank, the lower the overall running time of the
kernel.

time or memory issues. In this set of experiments, the 4 GNN models provided very good
performance results. Before applying the GNNs to a dataset, the vertices of all graphs were
annotated with a single feature that was set equal to the degree of the vertex. As already
mentioned, GIN is the best-performing method. The remaining 3 GNNs yielded similar
performance to each other, but were still outperformed by a few graph kernels.

On most datasets, the variability in the performance of the different kernels is low.
The kernels achieve higher performance on binary classification tasks (IMDB-BINARY
and REDDIT-BINARY) than on multi-class classification tasks. For instance, on IMDB-
MULTI, REDDIT-MULTI-5K and REDDIT-MULTI-12K, the highest average accuracies
obtained by the considered approaches are 51.7%, 56.1% and 48.3%, respectively. Hence, it
is clear that these three datasets are very challenging even for state-of-the-art methods.

In terms of running time, similar to the labeled case, VH is again the fastest kernel on
all datasets. The running time of PK, ODD-STh, and WL-VH is also low compared to the
other kernels on most datasets. The SVM-ϑ, NH, PM, SP and CORE-WL kernels were
also competitive in terms of running time. Besides achieving low accuracy levels, the Lo-ϑ
kernel is also very computationally expensive. The WL-PM, RW, NSPDK, CORE-SP, WL-
SP and GH are also very expensive in terms of running time. The above 7 kernels did not
manage to calculate any kernel matrix on REDDIT-MULTI-5K and REDDIT-MULTI-12K
within one day. It should be mentioned that these two datasets contain several thousands
of graphs, while the size of the graphs is also large (i. e., several hundreds of vertices on
average). The SM kernel failed to compute the kernel matrix on IMDB-BINARY, IMDB-
MULTI and COLLAB within one day, while it exceeded the maximum available memory
on the remaining three datasets.

1008



Graph Kernels: A Survey

Methods
DATASETS

Avg.
ENZYMES PROTEINS full SYNTHETICnew Synthie BZR Rank

K
er

n
el

s

SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT –
GH 67.7 (± 6.5) 72.6 (± 1.9) 74.3 (± 5.6) 73.8 (± 7.3) 82.3 (± 7.2) 3.2
SM TIMEOUT OUT-OF-MEM TIMEOUT TIMEOUT 79.5 (± 5.6) 8.2
PK 21.5 (± 3.4) 59.6 (± 0.2) 47.7 (± 7.5) 46.2 (± 3.6) 78.8 (± 5.5) 7.1
ML 33.2 (± 5.8) 71.1 (± 4.6) 47.7 (± 7.3) 49.0 (± 8.3) 81.3 (± 6.2) 5.9

G
N

N
s

DGCNN 38.9 (± 5.7) 72.9 (± 3.5) 53.7 (± 3.1) 80.0 (± 3.4) 81.8 (± 4.4) 4.2
GraphSAGE 58.2 (± 6.0) 73.0 (± 4.5) 88.0 (± 7.3) 51.3 (± 9.9) 81.2 (± 4.2) 3.8
DiffPool 59.5 (± 5.6) 73.7 (± 3.5) 72.0 (± 6.7) 84.5 (± 3.9) 84.5 (± 4.2) 2.4
GIN 59.6 (± 4.5) 73.3 (± 4.0) 80.5 (± 6.6) 89.7 (± 4.6) 85.4 (± 5.1) 1.6

Table 9: Average classification accuracy (± standard deviation) on the 5 classification
datasets containing node-attributed graphs. The “Avg. Rank” column illustrates the aver-
age rank of each kernel/GNN. The lower the average rank, the better the overall performance
of the kernel/GNN.

Kernels

DATASETS
Avg.

ENZYMES PROTEINS full SYNTHETICnew Synthie BZR Rank

SP TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT –

GH 16m 36.48s 3h 15m 5.36s 12m 37.05s 17m 44.28s 4m 11.74s 2.2

SM TIMEOUT OUT-OF-MEM TIMEOUT TIMEOUT 6h 15m 59.36s 4.0

PK 14.93s 1m 10.25s 14.43s 11.37s 7.24s 1.0

ML 1h 4m 52.54s 2h 48m 24.59s 2h 49m 35.19s 1h 44m 10.48s 47m 44.62s 2.8

Table 10: Average CPU running time for kernel matrix computation on the 5 classification
datasets containing node-attributed graphs. The “Avg. Rank” column illustrates the aver-
age rank of each kernel. The lower the average rank, the lower the overall running time of
the kernel.

When dealing with tasks that involve unlabeled graphs, we suggest to assign discrete
node labels to the vertices of the graphs (e. g., set the label of each vertex equal to its degree),
and then to again employ kernels that utilize some neighborhood aggregation mechanism.
For instance, the CORE-WL-VH, WL-OA, NH, and WL-VH kernels achieve high accuracies,
while their computational complexity is realtively low. Altenatively, a GNN model could
be employed, especially in the case of large datasets. Note, however, that even though
GIN was found to be the best-performing approach in this set of experiments, the highest
performance on 4 out of the 6 datasets was achieved by some graph kernel and not by a
GNN. Therefore, kernels still seem to be well-suited for such kind of datasets.

Node-Attributed Graphs As mentioned above, the majority of graph kernels can han-
dle graphs that are either unlabeled or contain discrete node labels. On the other hand, the
number of graph kernels that can handle graphs that contain continuous vertex attributes is
limited. Moreover, most of these kernels do not scale even to relatively small datasets. Ta-
bles 9 and 10 illustrate average prediction accuracies and average runtimes of graph kernels
and GNNs on datasets that contain node-attributed graphs. Note that although the graphs
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of some of these datasets contain discrete node labels, we did not take these discrete labels
into account since our main aim was to evaluate the ability of the kernels to properly handle
continuous node attributes. GIN is the best-performing approach also in this set of experi-
ments, while GNNs generally outperform graph kernels. GH is the best-performing kernel
since it outperforms all the other kernels on all datasets. Furthermore, GH outperforms 2
out of the 4 GNNs (DGCNN and GraphSAGE). GH is followed by ML and PK in terms of
performance in that order. One of the most striking findings of this set of experiments is
that the SP kernel did not manage to compute the kernel matrix even on a single dataset
within one day, while the SM kernel finished its computations within one day only on the
BZR dataset on which it was outperformed by GH and ML. The 4 GNNs yielded in most
cases high levels of accuracy. However, some GNNs failed to produce competitive results
on some datasets. For instance, DGCNN achieved an average accuracy of 53.7% on SYN-
THETICnew, while GraphSAGE yielded an average accuracy of 51.3% on Synthie. This
might be due to the neighborhood aggregation mechanisms or readout functions employed
by these models.

In terms of running time, PK is the most efficient kernel since it handled all datasets
in less than two minutes. GH and ML are much slower than PK on all datasets. For
instance, the average computation time of ML and GH was greater than 2 hours and 3
hours on PROTEINS full, respectively. The SP and SM kernels, as already discussed, are
very expensive in terms of running time, and hence, their usefulness in real-world problems
is limited.

To sum up, it is clear that the running time of most kernels for node-attributed graphs
is prohibitive, especially considering the relatively small size of the datasets. Although the
running time of PK is attractive, it achieved low accuracies on almost all datasets. An open
challenge in the field of graph kernels is thus to develop scalable kernels for graphs with
continuous vertex attributes. On the other hand, GNNs can naturally handle continuous
node features, while they have also outperformed graph kernels in the experimental evalu-
ation. Therefore, when dealing with graphs whose vertices are annotated with continuous
attributes, we recommend using a GNN model instead of a graph kernel.

7.2 Expessiveness of Graph Kernels

Over the past years, the expessive power of graph kernels was assessed almost exclusively
from empirical studies. So far, there are only a few theoretical findings related to the ex-
pressiveness of graph kernels. For instance, as already mentioned, it has been shown that
the mapping induced by kernels that are computable in polynomial time is not injective
(and thus these kernels cannot solve the graph isomorphism problem) (Gärtner et al., 2003).
Recently, Kriege et al. (2018) proposed a framework to measure the expressiveness of graph
kernels based on ideas from property testing, and showed that some well-established graph
kernels such as the shortest path kernel, the random walk kernel, and the Weisfeiler-Lehman
subtree kernel cannot identify fundamental graph properties such as triangle-freeness and
bipartitness. It is thus clear that there are several interesting questions about the expres-
siveness of graph kernels which are far from being answered. An example of such a question
is whether a specific graph kernel captures graph similarity better than others for some
specific application.
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In what follows, we conduct an experiment to empirically answer the above question.
Specifically, we build a dataset that contains instances of different families of graphs. Then,
we compare the similarities (i. e., kernel values) produced by graph kernels against those
generated by an intractable graph similarity function which we consider to be an oracle
function that outputs the true similarity between graphs. Formally, for any two graphs
G1 = (V1, E1) and G2 = (V2, E2) on n vertices with respective n×n adjacency matrices A1

and A2, we define a function f : G ×G → R where G is the space of graphs which quantifies
the similarity of G1 and G2. The function can be expressed as the following maximization
problem:

f(G1, G2) = max
P∈Π

∑n
i=1

∑n
j=1

[
A1 � PA2P

>]
ij

||A1||F ||A2||F
(100)

where Π denotes the set of n×n permutation matrices, � denotes the elementwise product,
and || · ||F is the Froebenius matrix norm. For clarity of presentation we assume n to be
fixed (i. e., both graphs consist of n vertices). In order to apply the function to graphs of
different cardinality, one can append zero rows and columns to the adjacency matrix of the
smaller graph to make its number of rows and columns equal to n. Therefore, the problem
of graph comparison can be reformulated as the problem of maximizing the above function
over the set of permutation matrices. A permutation matrix P gives rise to a bijection
π : V1 → V2. The function defined above seeks for a bijection such that the number of
common edges |{(u, v) ∈ E1 :

(
π(u), π(v)

)
∈ E2}| is maximized. Then, the number of

common edges is normalized such that it takes values between 0 and 1. Observe that the
above definition is symmetric in G1 and G2. The two graphs are isomorphic to each other
if and only if there exists a permutation matrix P for which the above function is equal
to 1. Therefore, a value equal to 0 denotes maximal dissimilarity, while a value equal to
1 denotes that the two graphs are isomorphic to each other. Note that if the compared
graphs are not empty (i. e., they contain at least one edge), the function will take some
value greater than 0. Solving the above optimization problem for large graphs is clearly
intractable since there are n! permutation matrices of size n. In fact, the above function
is related to the well-studied Frobenius distance between graphs which is known to be an
NP-complete problem (Grohe et al., 2018).

7.2.1 Dataset

Since the function defined in Equation (100) is intractable for large graphs, we generated
graphs consisting of at most 9 vertices. Furthermore, each graph is connected and contains
at least 1 edge. We generated 191 pairwise non-isomorphic graphs. The dataset consists of
different types of synthetic graphs. These include simple structures such as cycle graphs,
path graphs, grid graphs, complete graphs and star graphs, but also randomly-generated
graphs such as Erdős-Rényi graphs, Barabási-Albert graphs and Watts-Strogatz graphs.
Table 11 shows statistics of the synthetic dataset that we used in our experiments. Figure 16
illustrates the distribution of the similarities of the generated graphs as computed by the
proposed measure. There are 191∗192/2 = 18, 336 pairs of graphs in total (including pairs
consisting of a graph and itself). Interestingly, most of the similarities take values between
0.5 and 0.8.
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Synthetic Dataset

Max # vertices 9
Min # vertices 2
Average # vertices 7.29

Max # edges 36
Min # edges 1
Average # edges 11.34

# graphs 191

Table 11: Summary of the synthetic
dataset that we used in our experi-
ment.
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Figure 16: Distribution of similarities between
the synthetic graphs.

7.2.2 Experimental Settings

The set of kernels for this experiment contains the same 20 kernels that were evaluated in
the context of the graph classification experiments. Once again, we use the implementations
of the kernels contained in the GraKeL library (Siglidis et al., 2020). Note that the synthetic
graphs are unlabeled. Therefore, for kernels that assume node-labeled graphs, all vertices of
all graphs are annotated with a single label, while for kernels that assume node-attributed
graphs, all the vertices of all graphs are assigned the same attribute.

As discussed above, the function defined in Equation (100) gives an output in the range
[0, 1]. We normalize the obtained kernel values as follows such that they also take values
in the range [0, 1]: k̂(Gi, Gj) = k(Gi,Gj)/

√
k(Gi,Gi) k(Gj ,Gj) for any graphs Gi, Gj . We should

stress that the normalized kernel value can take a value equal to 1 even if the compared
graphs are mapped to different representations. Indeed, if the angle between the vector
representations of two graphs is 0◦, then their normalized kernel value is equal to 1. To
avoid such a scenario, we could define a distance function between graphs and accordingly
compute the Euclidean distance between the graph representations generated by the differ-
ent approaches. However, it turns out that most widely-used learning algorithms compute
the inner products between the input objects or some transformations of these objects. In
fact, when learning with kernels, we usually normalize the kernel matrices using the equa-
tion defined above before feeding to a kernel method such as the SVM classifier. Therefore,
we believe that evaluating the “similarity” of the obtained representations is more natural
than evaluating their “distance”. With regards to the values of the hyperparameters of
the 20 kernels, we experiment with the same values as in the case of graph classification.
Specifically, we choose the hyperparameter values that result into the highest correlation
between the kernel values generated by a given kernel and the similarities produced by the
function of Equation (100).

To assess how well the different approaches approximate the similarity function, we
employed two evaluation metrics: the Pearson correlation coefficient and the mean squared
error (MSE). In our setting, a high value of correlation would mean that the approach
under consideration captures the relationships between the similarities (e. g., whether the
similarity of a pair of graphs is greater or lower than that of another pair). On the other
hand, a very small value of MSE denotes that the derived similarities are very close to
those produced by the function defined in Equation (100). A credible graph representation
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Figure 17: Correlation and mean squared error between the kernel values produced by the
20 kernels and the similarities produced by the function defined in Equation (100).

learning/similarity approach would yield both a high correlation and a small MSE. The
former would ensure that similar/dissimilar graphs are indeed deemed similar/dissimilar by
the considered approach, while the latter would verify that the similarity values are on par
with those produced by the similarity function of Equation (100).

7.2.3 Results

Figure 17 illustrates the correlation and MSE between the kernel values produced by the
20 kernels and the similarities produced by the function of Equation (100). In terms of
correlation, WL-PM and SM are the best-performing approaches followed by CORE-SP,
WL-SP, WL-OA and GR. The correlation between the first two kernels and the function of
Equation (100) is greater than 0.7, while the rest of the above kernels achieve a correlation
slightly lower than 0.7. On the other hand, VH, SVM-ϑ and PK yield very low levels of
correlation (smaller than 0.1) followed by Lo-ϑ, ODD-STh and ML. Note that for unlabeled
graphs, the normalized kernel values of the VH kernel are always equal to 1, and thus
correlation is not defined since the values produced by the constant function have a variance
equal to zero. Overall, the majority of correlations is greater than 0.5 which demonstrates
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Figure 18: Projection of the representations of the 20 kernels in R2 (using PCA). Each kernel
is represented as a vector of kernel values between the graphs of the synthetic dataset.

that most kernels indeed capture some notion of similarity between graphs. In terms of
MSE, the PM, WL-VH, WL-SP and CORE-SP kernels are the best-performing approaches.
Notably, these graph kernels achieve very low values of MSE which indicates that the
produced kernel values are very close to the similarities that emerge from the function of
Equation 100. It is interesting to mention that most kernels achieve an MSE smaller than
0.1. The Lo-ϑ kernel yields an MSE value much greater than those of the other kernels,
while the NH, ML, VH, PK and SVM-ϑ kernels also fail to achieve low levels of MSE. As
already mentioned, most graph kernels are generally motivated by runtime considerations.
They are computable in polynomial time, which usually has an impact on their expressive
power. Our results indicate that even though kernels do not provide any guarantees on how
well they can approximate the above function, empirically, they seem to capture several
aspects of graph similarity to a large extent.

We next study whether there exist groups of kernels that are more similar to each
other than to other kernels. To discover such groups of kernels, we utilize the kernel values
produced by the different kernels. When a kernel is applied to the synthetic dataset that was
introduced above, 191∗192/2 = 18, 336 kernel values are computed in total. We thus represent
each kernel as a vector in a common space (of dimension 18, 336) based on the emerging
kernel values. We then project the representations of the kernels to the 2-dimensional space
using PCA. The results are shown in Figure 18. The position of each dot represents a
projection of the kernel values generated by a single kernel. We observe that VH, RW, PK
and SVM-ϑ form a cluster, while NH and Lo-ϑ are isolated and are thus far from the other
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kernels. All the remaining kernels are close to each other in the low dimensional space, but
they do not form well-defined clusters. Interestingly, the SP and GH kernels which both
extract shortest paths are very close to each other, while all the Weisfeiler-Lehman kernels
(i. e., WL-VH, WL-SP, CORE-WL-VH, WL-OA and WL-PM) are also relatively close to
each other in the 2-dimensional space.

8. Conclusion

Recent years have witnessed a tremendous increase in the availability of graph-structured
data. Graphs arise in many different contexts where it is necessary to represent relationships
between entities. Specifically, graphs are the commonly employed structure for represent-
ing data in various domains including bioinformatics, chemoinformatics, social networks and
information networks. The abundance of graph-structured data and the need to perform
machine learning tasks on this kind of data led to the development of several sophisticated
approaches such as graph kernels. In this survey, we provided a detailed overview of graph
kernels. Furthermore, we empirically evaluated the effectiveness of several graph kernels,
and measured their running time. We hope that this survey will provide a better under-
standing of the current progress on graph kernels and graph classification, and offer some
guidelines on how to apply these approaches in order to solve real-world problems.

Although graph kernels have achieved remarkable results in many tasks, there are still
some challenges to be addressed, while there is also still some room for improvement. For
example, the majority of the kernels that can handle graphs with continuous attributes are
either very expensive in terms of computational complexity or fail to produce competitive
results. Hence, we believe that an important direction of research is the development of scal-
able graph kernels for graphs annotated with continuous attributes which will also provide
improvements over the state-of-the-art approaches. Another useful direction of research is
to capitalize on the framework for designing valid assignment kernels presented above, and
to develop new kernels which compute an optimal assignment between substructures ex-
tracted from graphs. In general, the complexity of the assignment kernels is more attractive
than that of kernels that belong to the R-convolution framework, and hence, it is our belief
that this framework can pave the way for the development of more efficient graph kernels.
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Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic Pattern Kernels for Predictive
Graph Mining. In Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 158–167.

Jethava, V., Martinsson, A., Bhattacharyya, C., & Dubhashi, D. (2013). Lovász ϑ function,
SVMs and Finding Dense Subgraphs. The Journal of Machine Learning Research,
14 (1), 3495–3536.

Jie, B., Liu, M., Jiang, X., & Zhang, D. (2016). Sub-network Based Kernels for Brain
Network Classification. In Proceedings of the 7th ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics, pp. 622–629.

Jie, B., Zhang, D., Wee, C.-Y., & Shen, D. (2014). Topological Graph Kernel on Mul-
tiple Thresholded Functional Connectivity Networks for Mild Cognitive Impairment
Classification. Human Brain Mapping, 35 (7), 2876–2897.

Johansson, F., Jethava, V., Dubhashi, D., & Bhattacharyya, C. (2014). Global graph kernels
using geometric embeddings. In Proceedings of the 31st International Conference on
Machine Learning, pp. 694–702.

1020



Graph Kernels: A Survey

Kanewala, U., Bieman, J. M., & Ben-Hur, A. (2016). Predicting metamorphic relations for
testing scientific software: a machine learning approach using graph kernels. Software
Testing, Verification and Reliability, 26 (3), 245–269.

Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized Kernels Between Labeled
Graphs. In Proceedings of the 20th Conference in Machine Learning, pp. 321–328.

Kataoka, T., & Inokuchi, A. (2016). Hadamard Code Graph Kernels for Classifying Graphs.
In Proceedings of the 5th International Conference on Pattern Recognition Applica-
tions and Methods, pp. 24–32.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., & Riley, P. (2016). Molecular graph con-
volutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design,
30 (8), 595–608.

Kersting, K., Kriege, N. M., Morris, C., Mutzel, P., & Neumann, M. (2016). Benchmark
data sets for graph kernels.. http://graphkernels.cs.tu-dortmund.de.

Kondor, R., & Pan, H. (2016). The Multiscale Laplacian Graph Kernel. In Advances in
Neural Information Processing Systems, pp. 2990–2998.

Kondor, R. I., & Lafferty, J. (2002). Diffusion Kernels on Graphs and Other Discrete Input
Spaces. In Proceedings of the 19th International Conference on Machine Learning,
Vol. 2, pp. 315–322.

Kriege, N., & Mutzel, P. (2012). Subgraph Matching Kernels for Attributed Graphs. In
Proceedings of the 29th International Conference on Machine Learning, pp. 291–298.

Kriege, N., Neumann, M., Kersting, K., & Mutzel, P. (2014). Explicit versus Implicit Graph
Feature Maps:A Computational Phase Transition for Walk Kernels. In Proceedings of
the 2014 IEEE International Conference on Data Mining, pp. 881–886.

Kriege, N. M., Giscard, P.-L., & Wilson, R. (2016). On Valid Optimal Assignment Ker-
nels and Applications to Graph Classification. In Advances in Neural Information
Processing Systems, pp. 1623–1631.

Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels. Applied
Network Science, 5 (1), 1–42.

Kriege, N. M., Morris, C., Rey, A., & Sohler, C. (2018). A Property Testing Framework for
the Theoretical Expressivity of Graph Kernels. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pp. 2348–2354.

Kundu, K., Costa, F., & Backofen, R. (2013). A graph kernel approach for alignment-free
domain–peptide interaction prediction with an application to human sh3 domains.
Bioinformatics, 29 (13), i335–i343.

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond Bags of Features: Spatial Pyra-
mid Matching for Recognizing Natural Scene Categories. In Proceedings of the 2006
Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 2169–2178.

Lei, T., Jin, W., Barzilay, R., & Jaakkola, T. (2017). Deriving Neural Architectures from
Sequence and Graph Kernels. In Proceedings of the 34th International Conference on
Machine Learning, pp. 2024–2033.

1021



Nikolentzos, Siglidis, & Vazirgiannis

Levi, G. (1973). A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. Calcolo, 9 (4), 341.

Li, B., Zhu, X., Chi, L., & Zhang, C. (2012). Nested Subtree Hash Kernels for Large-scale
Graph Classification over Streams. In Proceedings of the 12th IEEE International
Conference on Data Mining, pp. 399–408.

Li, M., Leung, H., Liu, Z., & Zhou, L. (2016a). 3d human motion retrieval using graph
kernels based on adaptive graph construction. Computers & Graphics, 54, 104–112.
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Mahé, P., & Vert, J.-P. (2009). Graph kernels based on tree patterns for molecules. Machine
Learning, 75 (1), 3–35.

Massimo, C. M., Navarin, N., & Sperduti, A. (2016). Hyper-Parameter Tuning for Graph
Kernels via Multiple Kernel Learning. In Proceedings of the 23rd International Con-
ference on Neural Information Processing, pp. 214–223.

Matula, D. W., & Beck, L. L. (1983). Smallest-last Ordering and Clustering and Graph
Coloring Algorithms. Journal of the ACM, 30 (3), 417–427.

Micheli, A. (2009). Neural Network for Graphs: A Contextual Constructive Approachs.
IEEE Transactions on Neural Networks, 20 (3), 498–511.

Mihalcea, R., & Tarau, P. (2004). TextRank: Bringing Order into Texts. In Proceedings of
the 2004 Conference on Empirical Methods in Natural Language Processing.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Repre-
sentations of Words and Phrases and their Compositionality. In Advances in Neural
Information Processing Systems, pp. 3111–3119.

1022



Graph Kernels: A Survey

Mokhtari, F., & Hossein-Zadeh, G.-A. (2013). Decoding brain states using backward edge
elimination and graph kernels in fMRI connectivity networks. Journal of Neuroscience
Methods, 212 (2), 259–268.

Morris, C., Kersting, K., & Mutzel, P. (2017). Glocalized Weisfeiler-Lehman Graph Kernels:
Global-Local Feature Maps of Graphs. In Proceedings of the 2017 IEEE International
Conference on Data Mining, pp. 327–336.

Morris, C., Kriege, N. M., Kersting, K., & Mutzel, P. (2016). Faster Kernels for Graphs with
Continuous Attributes via Hashing. In Proceedings of the 16th IEEE International
Conference on Data Mining, pp. 1095–1100.

Morris, C., Rattan, G., & Mutzel, P. (2020). Weisfeiler and Leman go sparse: Towards scal-
able higher-order graph embeddings. In Advances in Neural Information Processing
Systems, Vol. 33, pp. 21824–21840.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M.
(2019). Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence.

Moschitti, A. (2004). A Study on Convolution Kernels for Shallow Semantic Parsing. In
Proceedings of the 42nd Annual Meeting of the Association for Computational Lin-
guistics, pp. 335–342.

Moschitti, A. (2006a). Efficient Convolution Kernels for Dependency and Constituent Syn-
tactic Trees. In Proceedings of the 17th European Conference on Machine Learning,
pp. 318–329.

Moschitti, A. (2006b). Making Tree Kernels practical for Natural Language Learning. In
Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics.

Moschitti, A., Pighin, D., & Basili, R. (2008). Tree Kernels for Semantic Role Labeling.
Computational Linguistics, 34 (2), 193–224.

Murphy, R., Srinivasan, B., Rao, V., & Ribeiro, B. (2019). Relational Pooling for Graph
Representations. In Proceedings of the 36th International Conference on Machine
Learning, pp. 4663–4673.

Narayanan, A., Meng, G., Yang, L., Liu, J., & Chen, L. (2016). Contextual Weisfeiler-
Lehman Graph Kernel For Malware Detection. In Proceedings of the 2016 Interna-
tional Joint Conference on Neural Networks, pp. 4701–4708.

Navarin, N., Tran, D. V., & Sperduti, A. (2018). Pre-training Graph Neural Networks with
Kernels. arXiv preprint arXiv:1811.06930.

Neumann, M., Garnett, R., Bauckhage, C., & Kersting, K. (2016). Propagation kernels:
efficient graph kernels from propagated information. Machine Learning, 102 (2), 209–
245.

Neumann, M., Moreno, P., Antanas, L., Garnett, R., & Kersting, K. (2013). Graph Kernels
for Object Category Predictionin Task-Dependent Robot Grasping. In Proceedings of
the 11th Workshop on Mining and Learning with Graphs.

1023



Nikolentzos, Siglidis, & Vazirgiannis

Nikolentzos, G., Meladianos, P., Limnios, S., & Vazirgiannis, M. (2018). A Degeneracy
Framework for Graph Similarity. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, pp. 2595–2601.

Nikolentzos, G., Meladianos, P., Rousseau, F., Stavrakas, Y., & Vazirgiannis, M. (2017).
Shortest-path Graph Kernels for Document Similarity. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pp. 1890–1900.

Nikolentzos, G., Meladianos, P., Tixier, A. J.-P., Skianis, K., & Vazirgiannis, M. (2018).
Kernel Graph Convolutional Neural Networks. In Proceedings of the 27th International
Conference on Artificial Neural Networks, pp. 22–32.

Nikolentzos, G., Meladianos, P., & Vazirgiannis, M. (2017). Matching Node Embeddings
for Graph Similarity. In Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence, pp. 2429–2435.

Nikolentzos, G., & Vazirgiannis, M. (2018). Enhancing Graph Kernels via Successive Em-
beddings. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pp. 1583–1586.

Nikolentzos, G., & Vazirgiannis, M. (2020). Random Walk Graph Neural Networks. In
Advances in Neural Information Processing Systems, Vol. 33, pp. 16211–16222.

Oneto, L., Navarin, N., Donini, M., Sperduti, A., Aiolli, F., & Anguita, D. (2017). Measuring
the expressivity of graph kernels through statistical learning theory. Neurocomputing,
268, 4–16.

Orsini, F., Frasconi, P., & De Raedt, L. (2015). Graph Invariant Kernels. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence, pp. 3756–3762.
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