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Abstract

We present a scalable tree search planning algorithm for large multi-agent sequential
decision problems that require dynamic collaboration. Teams of agents need to coordinate
decisions in many domains, but naive approaches fail due to the exponential growth of
the joint action space with the number of agents. We circumvent this complexity through
an approach that allows us to trade computation for approximation quality and dynam-
ically coordinate actions. Our algorithm comprises three elements: online planning with
Monte Carlo Tree Search (MCTS), factored representations of local agent interactions with
coordination graphs, and the iterative Max-Plus method for joint action selection. We eval-
uate our approach on the benchmark SysAdmin domain with static coordination graphs
and achieve comparable performance with much lower computation cost than our MCTS
baselines. We also introduce a multi-drone delivery domain with dynamic coordination
graphs, and demonstrate how our approach scales to large problems on this domain that
are intractable for other MCTS methods. We provide an open-source implementation of
our algorithm at https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.

1. Introduction

Coordination is crucial for effective decision-making in cooperative multi-agent systems
with a shared objective. Various real-world problems like formation control (Oh et al.,
2015), package delivery (Choudhury et al., 2021), and firefighting (Oliehoek et al., 2008)
require a team of autonomous agents to perform a common task. Such cooperative sequen-
tial decision-making problems can be modeled as a multi-agent Markov decision process
(MMDP) (Boutilier, 1996), an extension of the Markov decision process (MDP) (Bellman,
1957). MMDPs can be reduced to centralized single-agent MDPs with a joint action space
for all agents. Such reductions often make large problems intractable because the action
space grows exponentially with the number of agents. Solving independent MDPs for all
agents yields suboptimal behavior in problems where reasoning about the effects of joint
actions is necessary for better performance (Matignon et al., 2012).

Many previous MMDP approaches have tried to balance these extremes of optimal-
ity and efficiency. In the offline setting, these include ad hoc function decomposition ap-
proaches, such as Value Decomposition Networks (Sunehag et al., 2018) and QMIX (Rashid
et al., 2018), or parameter sharing in decentralized policy optimization (Gupta et al., 2017).
Guestrin et al. (2002) introduced the concept of a coordination graph to reason about joint
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value estimates from a factored representation, while Kok and Vlassis (2004) used approxi-
mations to scale these ideas to larger problems. Monte Carlo Tree Search (MCTS) (Browne
et al., 2012), a common approach to online planning, has been combined with coordina-
tion graphs in Factored Value MCTS (Amato & Oliehoek, 2015). However, Factored Value
MCTS coordinates actions with an exact Variable Elimination (Var-El) step, which slightly
negates the anytime nature of MCTS planning.

The key idea of this paper is to build a scalable planning algorithm for MMDPs that re-
quire coordination, while fully retaining the anytime properties of Monte Carlo Tree Search.
To that end, we propose combining Max-Plus action selection, introduced by Vlassis et al.
(2004), with the Factored Value MCTS of Amato and Oliehoek (2015). We do so for several
reasons. Unlike Var-El, which is exact, Max-Plus is an iterative procedure and allows for
truly anytime behavior that can trade computation for approximation quality. The repre-
sentation of Max-Plus is much more efficient than that of Var-El for using dynamic, i.e.,
state-dependent, coordination graphs (state-dependent data-structures are a key benefit of
online planning for MDPs). Finally, Max-Plus can scale to much larger multiagent teams
and denser agent interactions than Var-El, and can be distributed for even more scalability
(Kok & Vlassis, 2005).

We present a scalable MMDP planning algorithm called Factored Value MCTS with
Max-Plus. On the standard SysAdmin benchmark domain with static coordination graphs,
we demonstrate that our approach performs as well as or better than Factored Value MCTS
with Var-El and is much faster for the same tree search hyperparameters. We also intro-
duce a new MMDP domain, Multi-Drone Delivery, with dynamic coordination graphs. On
the second domain, we show how our approach scales to problem sizes that are entirely
intractable for other MCTS variants, while also achieving better performance on smaller
problem sizes.

2. Background and Related Work

We first review MDPs and their multi-agent formulation. We then describe how coordi-
nation graphs can efficiently exploit the locality of interactions in multi-agent problems.
Finally, we discuss how to use coordination graphs to solve multi-agent MDPs.

2.1 Multi-Agent Markov Decision Processes

An MDP is defined by the tuple (S,A, T,R), where S is the state space, A is the action
space, T : S × A × S → [0, 1] is the transition function, and R : S × A → R is the reward
function. The objective for solving an MDP is to obtain a policy, π : S × A → [0, 1] that
specifies a probability distribution over actions for the agent to take from its current state
to maximize its value, i.e. its expected cumulative reward. An action-value function Q(s, a)
defines the expected cumulative reward after taking action a in state s before following the
specified policy.

We focus on decision-making settings where multiple agents cooperate to achieve a
shared objective (Boutilier, 1996). Such problems are multi-agent Markov decision processes
(MMDPs), where each agent takes an individual action and the controller policy observes
the states of all agents. In principle, we can solve an MMDP as a standard MDP with a
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joint action space A =
∏

iAi (Pynadath & Tambe, 2002). There exist both offline and
online methods for computing such MDP policies (Bertsekas, 2005).

Offline methods pre-compute a policy over the entire state space (exactly or approx-
imately) and query the policy during execution. Various exact offline methods exist, but
reinforcement learning has emerged as an attractive solution technique due to the complexity
of planning in large MMDPs (Sutton & Barto, 1998). Reinforcement learning approaches
attempt to compute an effective value function Q(s, a) or a policy π(a | s) through re-
peated interaction with the environments, either by directly learning those quantities, or
by learning transition and reward models to then plan with.

Most reinforcement learning approaches still struggle in large multi-agent problems,
where the size of the joint action space is exponential in the number of agents. A common
strategy is to decentralize the policy or value function, such that each agent’s performance
only depends on its own actions (Gupta et al., 2017; Rashid et al., 2018; Son et al., 2019;
Sunehag et al., 2018). Unfortunately, such decentralized approaches are often sub-optimal
for coordination and encounter exploration bottlenecks due to uncooperative random actions
from the agents (Böhmer et al., 2020). Zhang et al. (2021) summarizes several of these
approaches.

Online methods use an alternative strategy to handle the complexity of multi-agent
planning; they interleave planning and execution by focusing only on states that are reach-
able for the current state, while computing the next action to take. Monte Carlo Tree
Search (MCTS) is a common framework for online planning and has succeeded in a vari-
ety of domains from game-playing to scheduling to vehicle routing (Browne et al., 2012;
Świechowski et al., 2021), including in multi-player contexts (Nijssen & Winands, 2011;
Zerbel & Yliniemi, 2019).

The anytime nature of MCTS (search depth and number of simulations) allows us to
trade computation time for approximation quality. However, the exponentially large action
space of MMDPs can still be a bottleneck for the naive application of MCTS techniques
(Chaslot et al., 2008). Dec-MCTS tries to work around this bottleneck by allowing robots
to optimize their own actions and communicate their compressed trees (Best et al., 2019).
However, it directly chooses the next state, and thus does not apply to action-dependent
stochastic transitions of an MDP. A more recent work by Ma et al. (2020) uses an offline
heuristic obtained from centralized imitation learning to bias the online tree search that is
distributed across agents.

2.2 Monte Carlo Tree Search for MDPs

Because MCTS is the foundation of our proposed approach, we describe it in further detail,
following the presentation in Kochenderfer (2015). This description assumes a single-agent
MDP; we will discuss how it handles MMDPs in Section 2.1. MCTS runs simulations from
the current state to estimate the state-action value function. The estimate is updated by
gathering relevant statistics through interactions with a simulated generative model of the
environment (Silver & Veness, 2010). These statistics typically track the average simulated
reward obtained for trying an action, the frequency of action attempts, and the number of
occurrences of each state in the tree.
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Algorithm 1 Monte Carlo Tree Search

Require: time limit, depth, exploration constant c, state s

1: function MCTS(s, depth)
2: while time limit not reached
3: Simulate(s, depth)

4: a∗ ← argmax
a

Q(s, a) . No exploration here

5: return a∗ . Best action

6: function Simulate(s, depth)
7: if depth = 0
8: return 0
9: if s /∈ T . state not in tree

10: Initialize N(s, a) and Q(s, a) for all a ∈ A
11: T ← T ∪ s
12: return Rollout(s, depth)

13: a← argmax
a

Q(s, a) + c ·
√

logN(s)
N(s,a) . UCB Exploration

14: s′, r ∼ T (s, a), R(s, a) . Generative model
15: q ← r + γ· Simulate(s′, depth− 1)
16: N(s, a)← N(s, a) + 1

17: Q(s, a)← Q(s, a) + q−Q(s,a)
N(s,a)

Algorithm 1 provides the pseudocode of MCTS for online planning in MDPs. The
algorithm runs a number of simulations from the current state s up to some time limit,
which typically depends on the real-time computation constraints (line 2). The simulations
conduct a lookahead search up to some depth (line 3); after running them, we compute
and return the action that maximizes the estimated state action value function (lines 4–5).
Each individual simulation consists of three conceptual stages, which we now describe.

The expansion stage (lines 9–11) is triggered when the simulation reaches a state not in
the tree (either the root node in an empty tree or a leaf node in a non-empty one). This
stage initializes the N and Q statistics for the frequency and estimated value respectively, of
each action at that state. It then adds the state node to the tree. After expansion, we have
the rollout stage, where we select actions according to some default rollout policy for the
remaining depth and compute the accumulated return. Rollouts can allow domain experts
to encode heuristic knowledge and bias the search.

The third stage is the so-called search stage, where we choose a branch of the tree to
search further from the current state node. We choose the branch corresponding to the
action that maximizes the equation in line 13; the second term of that equation is the
Upper Confidence Bound exploration bonus, which encourages choosing actions that have
not been tried as much, i.e., that have low N(s, a). With this exploration strategy, MCTS is
called Upper Confidence Trees (Kocsis & Szepesvári, 2006). We simulate trying this action
and obtain a Monte Carlo sample of the next state s′ and reward from the generative model
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(b) Max-Plus passes messages
along the edges. Messages are
functions of the actions of the
receiving agent; e.g., agent 1
sends µ12(a2) to agent 2.

Figure 1: A coordination graph for an MMDP with 4 agents.

of the MDP (line 14). Finally, we recurse the simulation from s′ and update the Q and N
statistics at (s, a).

2.3 Coordination Graphs and Variable Elimination

Several real-world multi-agent systems demonstrate locality of interaction, i.e. the outcome
of an agent’s action depends only on the actions of a subset of other agents. The coordination
graph (CG) structure is often used to encode such interactions (Guestrin et al., 2003;
Guestrin et al., 2002). A CG for a multi-agent system has one node per agent, and edges
connect agents if their payoffs depend on each other. For now, we assume a stateless or
single-shot decision setting (rather than a sequential one). The CG structure induces a set
of payoff components, where each component is associated with a clique, i.e., a subset of
agents that are all mutually connected.

For CGs in multi-agent settings, we assume that we can factor the global payoff for
a joint action as the sum of local component payoffs, i.e. Q(a) =

∑
cQc(ac), where a

is the global joint action, and ac is the local component action (the projection of a on
component c). Given this factored representation and the local component payoffs , we
can compute the best joint action, argmaxa Q(a), with the Variable Elimination (Var-El)
algorithm originating from the probabilistic inference literature (Guestrin et al., 2003).
Computing the optimal joint action in a CG is equivalent to obtaining the maximum a
posteriori configuration in an undirected probabilistic graphical model.

Consider the 4-agent CG in Figure 1a. Here, Q(a) = Q12(a1, a2) + Q23(a2, a3) +
Q34(a3, a4), where ai is the action variable for agent i. In Var-El, we eliminate, i.e., maxi-
mize over variables one at a time by collecting the local payoffs that depend on them. For
instance, if we start with agent 2, then the first elimination is

max
a1,a3,a4

Q34(a3, a4) + max
a2

[Q12(a1, a2) +Q23(a2, a3)] . (1)

The optimal choice for agent 4 depends on a2 and a3. The internal max expression is sum-
marized by a new intermediate payoff function e2(a1, a3) = maxa2 [Q12(a1, a2)+Q23(a2, a3)]
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and a new edge between 1 and 3, after which the algorithm continues with Q34 and e2.
After all eliminations, we recover the action for each agent by maximizing the conditional
functions in reverse, finally obtaining the optimal joint action. Var-El is exponential in the
induced width of the CG, which depends on the elimination order (Dechter, 1999).

Although most works in the literature assume a domain-dependent static coordination
graph structure, some incorporate state-dependent or dynamic CGs (Yu et al., 2020), in-
cluding learning the most suitable CG structure from interactions with the environment
(Kok et al., 2005; Li et al., 2021).

2.4 Scalable MMDP Methods with Coordination Graphs

In the offline context of tabular reinforcement learning methods, Kok and Vlassis (2004)
explored action inference with predefined static coordination graphs over factorized value
functions; Van der Pol and Oliehoek (2016) and Böhmer et al. (2020) extended these ideas to
the neural network function approximation regime. We focus on online planning approaches
to solving MMDPs. Amato and Oliehoek (2015) provide an online planning solution by
extending the basic MCTS of Algorithm 1 to the regime of coordination graphs and factored
values. Although they apply their algorithm to partially observed MDPs, the key ideas are
the same for the fully observed case, which we describe now.

Recall that the CG topology induces payoff components, each associated with a graph
clique. Thus, they maintain local component statistics, i.e. the mean payoff of each local
component action ae and the number of times it was attempted in that component; they
call this mixture of experts optimization, albeit with a simple maximum likelihood estimator
expert. For instance, during tree search from the current joint state s ≡ {si} (where si is
the state of agent i), suppose the system simulates a joint action a and obtains a reward
vector r. Then, in a particular CG component e and the corresponding local subset of the
joint action ae, they augment the local component action frequency statistic N(s, ae) by 1
and update the local component payoff statistic Qe(s, ae) as

Qe(s, ae)
.
= Qe(s, ae) +

re −Qe(s, ae)

N(s, ae)
, (2)

which is a standard running average update. The UCB exploration step uses the current
statistics to select joint actions, i.e.,

max
a

∑
e

Ue(s, ae) = max
a

∑
e

Qe(s, ae) + c ·

√
logN(s)

N(s, ae)
, (3)

where N(s) is the visit frequency for state s. Given these local component payoffs, i.e., the
Qe functions, their method computes the best joint action at the next time-step through
Variable Elimination over the CG, as in Section 2.3. Consequently, it loses the anytime
property of MCTS because exact variable elimination cannot be stopped at an intermediate
step. Although Vlassis et al. (2004) explored various anytime algorithms for action selection
with coordination graphs, they did not investigate their interaction with online planning
algorithms like MCTS.
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Figure 2: Our MMDP planning algorithm, Factored Value MCTS with Max-Plus, com-
putes the best joint action a∗ for the current joint state s. The tree search uses an Upper
Confidence Bound (UCB) exploration bonus during action selection, while the final action
coordination does not.

3. Factored-Value Monte Carlo Tree Search with Max-Plus

We now discuss our method for online multi-agent MDP planning with coordination graphs,
Factored-Value Monte Carlo Tree Search with Max-Plus. To apply the mixture of experts
optimization to each node of the search tree, we must define the factored statistics to
maintain for each node. Given a potentially state-dependent undirected coordination graph
(CG), G = 〈V, E〉, we factor the CG-induced global payoff at the current state, s, as follows:

Q(a) =
∑
i∈V

Qi(ai) +
∑

(i,j)∈E

Qij(ai, aj). (4)

Here, Qij is a local payoff function for agents i and j connected by edge (i, j), while Qi is
an individual utility function for agent i, if applicable to the domain. All state-dependent
quantities in this section’s equations are defined implicitly for the current joint state s.

Exploiting the duality between computing the maximum a posteriori configuration in
a probabilistic graphical model and the optimal joint action in a CG, Vlassis et al. (2004)
introduced the Max-Plus algorithm for computing the joint action via message passing.
Each node, i.e., agent, iteratively dispatches messages to its neighbours j ∈ Γ(i) in the
CG (Figure 1b). A message from agent i is a scalar-valued function of the action space of
receiving agent j, i.e.,

µij(aj) = max
ai

{
Qi(ai) +Qij(ai, aj) +

∑
k∈Γ(i)\{j}

µki(ai)
}
, (5)

where Γ(i) is the set of neighbors of i. Agents exchange messages until convergence or for a
maximum number of rounds. Finally, each agent computes its optimal action individually,
i.e.,

a∗i = argmax
ai

{
Qi(ai) +

∑
j∈Γ(i)

µji(ai)
}
. (6)
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Max-Plus is equivalent to belief propagation in graphical models (Pearl, 1989) and its time
complexity scales linearly with the CG size (the number of edges); it is more suitable for
real-time systems and more tractable for large numbers of agents than Var-El.

Similar to Factored Value MCTS with Var-El, our method with Max-Plus (that we
illustrate in Figure 2) is more efficient than a naive application of MCTS with the joint
action space, since it maintains fewer statistics and performs efficient action selection. For
the rest of this section, we will discuss the key differences from the prior work of Amato
and Oliehoek (2015), which underscore how our approach is more suitable than theirs for
large multi-agent MDPs, especially with dynamic coordination.

3.1 UCB Exploration with Max-Plus

The key implementation issue for extending MCTS to factored value functions and coor-
dination graphs is that of action exploration as per the Upper Confidence Bound (UCB)
strategy. In the Var-El case, Amato and Oliehoek (2015) added the exploration bonus using
component-wise statistics during each elimination step in Equation (3). We cannot apply
this strategy with Max-Plus as it does not use components. In contrast to Var-El, Max-Plus
has two distinct phases of computation: message passing per edge in Equation (5), followed
by action selection per node in Equation (4). We use these two phases to define how our
algorithm explores.

Edge Exploration

Analogous to the edge payoff statistics Qij , we keep track of corresponding frequency statis-
tics Nai,aj (for pairwise actions). The natural exploration strategy over edges is to add the
bonus to Equation (5) as follows:

µij(aj) = max
ai

{
Qi(ai) + Qij(ai, aj) +

∑
k∈Γ(i)\{j}

µki(ai) + c

√
log(N + 1)

Nai,aj

}
. (7)

Adding this bonus during the message passing rounds can cause divergence for cyclic graphs
with any cycle of length less than the number of rounds. Figure 3 illustrates intuition for
this divergent behavior with a simple triangle graph. The bonuses accumulate in successive
rounds for messages in either direction along the cycle, making the effective bonus propor-
tional to the total number of rounds (divided by cycle length). Therefore, we only augment
each message once after the final round of message passing.

Node Exploration

We maintain individual action frequency statistics Nai and modify Equation (4) to add a
node exploration bonus during the action selection:

a∗i = argmax
ai

{
Qi(ai) +

∑
j∈Γ(i)

µji(ai) + c

√
log(N + 1)

Nai

}
. (8)

Note that the joint-action payoff Q(a) can be factorized over the CG nodes and edges

as in Equation (4), but the joint-action exploration bonus c
√

logN(s)
N(s,a) cannot. Therefore,
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Figure 3: For coordination graphs with cycles, adding an edge exploration bonus to the
messages at every round can lead to divergent behavior. The exploration bonuses accumu-
late over rounds from one node to the next (clockwise or anti-clockwise along the cycle).
If the number of rounds is greater than the length of a cycle (usually true), the effective
relevant exploration bonus for each edge gets compounded each time the messages loop
back around. We simplify some notation for convenience, i.e., Nij is a counting function for
the pairwise actions of agents i and j.

the node and edge exploration strategies we have defined here are heuristic choices that we
make and will evaluate empirically through an ablation. Our exploration strategies differ
from the component-wise exploration of Equation (3) in the previous work that uses Var-
El, because we do not consider cliques/components in the CG, only nodes and edges. We
outline our approach in Algorithm 2 as well as the Max-Plus routine in Algorithm 3.

3.2 Other Differences from FV-MCTS with Variable Elimination

In this section, we briefly discuss major differences that arise from the choice of Max Plus
over Variable Elimination in FV-MCTS.

3.2.1 Convergence

For graphs without cycles, Max-Plus converges to a fixed point in finitely many iterations
(Pearl, 1989). For cyclic graphs, there are no such guarantees in general (Wainwright et al.,
2004), but message passing on them can work well in practice (Murphy et al., 1999).

3.2.2 Agent Utilities

The Max-Plus global payoff in Equation (4) includes a utility function Qi for each individual
agent. The standard implementation of FV-MCTS with Var-El has no such individual
utility (unless a node has degree 0 in the CG). If such agent utilities were known or learned
independent of the payoffs, we would naturally use them during action coordination, with
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Algorithm 2 Factored Value MCTS with Max-Plus

Require: time limit, depth, exploration constant c, state s

1: Initialize Ni, Qi . Node statistics
2: Initialize Nij , Qij . Edge statistics
3: function FV-MCTS-MP(s, depth)
4: while time limit not reached
5: Simulate(s, depth)

6: a∗ ← MaxPlus(0) . No exploration here
7: return a∗ . Best joint action

8: function Simulate(s, depth)
9: if depth = 0

10: return 0
11: a← MaxPlus(c)
12: s′, r ∼ T (s, a), R(s, a) . Generative model
13: q ← r + γ· Simulate(s′, depth− 1)
14: UpdateStats(s, a, q)

15: function UpdateStats(s, a, q)
16: for every agent i
17: Ni(s, ai) += 1

18: Qi(s, ai) += qi−Qi(s,ai)
Ni(s,ai)

19: for every edge (i, j) ∈ G(s)
20: Nij(s, ai, aj) += 1
21: qe ← qi + qj

22: Qij(s, ai, aj) +=
qe−Qij(s,ai,aj)
Nij(s,ai,aj)

minor modifications to the update rules of Qi and Qij . However, in FV-MCTS we estimate
all statistics from the rewards obtained during tree search with a simulated environment
model; the environment model returns precisely one reward vector for each joint state-action
pair.

We already account for the simulated rewards in tree search through the Qij local payoff
statistics in Equation (2). We do not receive independent per-agent rewards, so utility
statistics would be derived from the same information we use for the payoff statistics.
Our experiments compare the benefit of these derived individual agent (node) utilities, in
addition to local edge payoffs. We maintain separate statistics Ni and Qi for the per-agent
frequencies and utilities respectively and estimate them from the joint rewards during tree
search; the corresponding updates are Ni(s, ai) = Ni(s, ai) + 1 and Qi(s, ai) = Qi(s, ai) +
ri−Qi(s,ai)

Nai
for an agent i. The results in Section 4.1 demonstrate how including derived node

utilities enables better empirical performance.
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Algorithm 3 MaxPlus Action Selection

Require: Coordination Graph G(s) = 〈V, E〉; state node statistics N,Q; max iterations M ;
flags (exploration; normalization)

1: function MaxPlus(c)
2: for t← 1 to M
3: µij(aj) = µji = 0 for (i, j) ∈ E , ai ∈ Ai, aj ∈ Aj

4: for every agent i
5: for all neighbors j ∈ Γ(i)
6: Compute µij(aj) using Equation (5)
7: if message normalization
8: µij(aj) −= 1

|Aj |
∑

aj∈A|
µij(aj)

9: Send message µij(aj) to agent j
10: if µij(aj) close to previous message
11: break
12: for every agent i
13: if edge exploration
14: for all neighbors j ∈ Γ(i)
15: Compute µij(aj) using Equation (7)

16: qi(ai) = Qi(ai) +
∑

j∈Γ(i) µji(ai)
17: if node exploration

18: qi(ai) += c
√

log(N+1)
Ni(ai)

19: a′i = arg maxai qi(ai)

20: if time limit reached
21: break
22: return a′

3.2.3 Dynamic Coordination Graphs

As demonstrated by Yu et al. (2020), static non-adaptive coordination graphs can be quite
ineffective for modeling realistic multi-agent situations like autonomous driving, where
“agents’ dependencies change continuously”. The runtime complexity of Var-El depends
on both the structure of the coordination graph and the elimination ordering; it is expo-
nential in the induced width, which depends on the size of the largest clique during the
elimination process). Recall that MCTS (and online MDP planning in general) can use
computational structures that vary with the current state, even within the same tree search
call. When the CG topology can change over the planning horizon for each encountered
state, the likelihood of yielding CGs with larger induced width during Var-El is quite high
for FV-MCTS, since no heuristic to minimize the induced width may work for all CGs. On
the other hand, while approximate, Max-Plus is an anytime algorithm. It does not suffer
from this issue because its complexity depends on the number of nodes and edges in the
graph, which is polynomial in the CG size. Therefore, dynamic CGs can be used seamlessly
in FV-MCTS with MaxPlus.
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3.2.4 Memory Complexity of Statistics

Factored Value MCTS collects frequency and payoff statistics for each unique joint state
encountered during tree search. Assume the same action set A for each agent, and a
CG with |V| nodes (agents), |E| edges, and C local components or cliques. Then, the
memory complexity of per-state statistics for Max-Plus is O(|V||A| + |E||A|2); the first
term only applies if we track per-node utilities. A popular instantiation of Var-El in
the probabilistic inference literature represents the graph in terms of the cliques or local
connected components C, which we follow in our implementation (Koller & Friedman,
2009). Such a representation implies that the per-state memory for Var-El statistics is
O(

∑
c∈C |A||V|c ·|V|c), where |V|c is the size of local component c. For a CG that is connected

(typically the case), the memory complexity for Var-El is at least O(|E||A|2), which is the
dominant term for Max-Plus, and more generally is exponential in the largest clique in the
CG. Therefore, as per our implementation, Max-Plus is more memory-efficient than Var-
El. Note that it is possible to use an alternative graph representation with Var-El (Vlassis
et al., 2004). While we do not implement this version of Var-El with FV-MCTS, the issue
of runtime complexity mentioned in the previous section would still hold.

3.2.5 Distributed Implementation

Unlike with Var-El, we can execute Max-Plus in a distributed manner by sending messages
in parallel, albeit incurring additional communication complexity. Such an implementation
can allow further scalability with available resources. Note that this is distinct from full
decentralization wherein the agent actions can be computed independently.

3.3 On the Application to Multi-Agent POMDPs

The prior work of Amato and Oliehoek (2015) plans for multi-agent POMDPs (rather than
MDPs), where the agents receive noisy observations of the true underlying state. Given
that our work is for MMDPs, we briefly comment on how and to what extent our approach
could be applied to an MPOMDP. We do so by referring separately to the two related but
distinct ideas in the prior work: the factored statistics technique that applies the mixture of
experts optimization to each node of the search tree and the factored trees technique that
additionally splits joint observation histories into local histories and distributes them over
the factors.

The factored statistics algorithm from Amato and Oliehoek (2015) is the primary ref-
erence point for our baseline approach of FV-MCTS with Var-El. It focuses entirely on
the challenge of the exploding joint action space in a Monte Carlo Tree Search planning
algorithm, which is just as pertinent for an MMDP as it is for an MPOMDP. To handle
partial observability, the prior work uses POMCP, a partially observable extension of MCTS
(specifically, Upper Confidence Trees) in which particle filters track and update the belief
state with new observations (Silver & Veness, 2010). Our approach with Max-Plus could
also be used straightforwardly with the POMCP of the factored statistics technique and
applied to MPOMDPs.

On the other hand, the factored trees algorithm from the prior work seeks to also ad-
dress the large number of joint observations in an MPOMDP. It does so by introducing
an expert for the observation history and action component of each factor e in the coordi-
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nation graph, which it implements by constructing multiple trees in parallel (one for each
factor). In MMDPs there is no such thing as an observation history, since the current system
state is fully observed; thus there is no equivalent variant to implement for the evaluation.
Furthermore, in contrast to the prior work, our approach can accommodate dynamic or
state-dependent coordination graphs where the factors can change between and within tree
searches. The question of how to incorporate our unique changes from Max-Plus into fac-
tored trees to plan for MPOMDPs (and indeed, whether it is possible to do so with dynamic
factors), besides the changes to action exploration and selection, is beyond the scope of our
current work.

4. Experiments and Results

We used cumulative discounted return as the primary metric to evaluate our approach, Fac-
tored Value MCTS with Max-Plus (FV-MCTS-MP). Our most relevant baseline is Factored
Value MCTS with Variable Elimination (FV-MCTS-Var-El). We also compared against
standard MCTS (with no factorization), independent Q-learning (IQL), and a random pol-
icy. Besides measuring performance, we examined the effect of different exploration schemes
on the performance of FV-MCTS-MP (as we discussed in Section 3.2), the effect of prob-
lem size on MCTS computation time, and various hyperparameter ablations. Both of our
experimental domains represent a range of MMDP problems and underlying coordination
graphs.1. All implementation and simulations are in Julia with the POMDPs.jl library
(Bezanson et al., 2017; Egorov et al., 2017)

We have shown qualitatively and quantitatively that using Max-Plus rather than Var-El
with MCTS results in a more scalable online planning algorithm. However, there are many
confounds in quantitatively evaluating the anytime property of our algorithm. Our metric
is the average discounted return over the episode, where the Max-Plus routine is called
several times; typical anytime evaluation reports improving solution quality with more
compute time for a single call to a method. MCTS itself has several hyper-parameters that
affect the computation-vs-quality tradeoff, such as tree depth, exploration constant, and
number of trials. With dynamic CGs as in our multi-drone delivery domain, the same Max-
Plus hyper-parameters lead to different computation times. Moreover, due to the difference
in how Var-El and Max-Plus represent CGs in our implementations, the statistical power
of the action-value estimates for the two approaches can vary. Distinguishing this effect
in performance from estimation and action selection can be a question for future work.
Note that Vlassis et al. (2004) do evaluate the anytime property of Max-Plus in a one-shot
decision-making domain that does not have any of the above confounds.

However, we do have some useful insights on the quantitative anytime-ness of FV-MCTS
with Max-Plus. Our many ablations in this section evaluate the impact of various hyper-
parameters on our approach, each of which independently influences the runtime (such
as the MCTS hyper-parameters and the number of Max-Plus message passing rounds).
Taken together, these individual ablations capture the anytime-ness well enough to serve
as a useful starting point for practitioners. The extent to which the anytime property is
ultimately useful in practice depends on the dynamics and reward structure of the MMDP,

1. Source code for experiments is available at https://sites.google.com/stanford.edu/fvmcts/
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Figure 4: Our SysAdmin experimental domain with three different topologies: Star (top),
Ring (middle) and Ring-of-Ring(bottom).
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Figure 5: The performance of FV-MCTS-MP varies with different combinations of explo-
ration strategies for the 4-agent Sysadmin on Ring (left) and Star (right) topologies. The
True/False (T/F) labels correspond to Agent Utilities, Node Exploration and Edge Explo-
ration in order, e.g. TTF implies agent utilities and only node (but not edge) exploration.

the real-time computational constraints of the application, and several other engineering
design decisions.

4.1 SysAdmin Domain

Our first domain is a standard MMDP benchmark: SysAdmin (Guestrin et al., 2003).
Each agent i represents a machine in a network with two state variables: Status Si ∈
{good, faulty,dead}, and Load Li ∈ {idle, loaded, success}. A dead machine in-
creases the probability that its neighbor also dies. The system gets a reward of 1 if a
process terminates successfully, processes take longer when status is faulty, and a dead
machine loses the process. Each agent must decide whether to reboot its machine, in which
case the Status becomes good and any running process is lost. The discount factor, γ used
in all the experiments is 0.9. All evaluations have been averaged over 40 runs. Error bars
indicate standard deviations. Figure 4 illustrates the three network topologies that we use
for SysAdmin: Star, Ring, and Ring-of-Ring.

4.1.1 Exploration Schemes for FV-MCTS-MP

The three knobs affecting exploration in FV-MCTS-MP are per-agent utility, node bonus,
and edge bonus. We compared the discounted return of variants that either use or ignore per-
agent utilities, and use either or both bonuses. Figure 5 demonstrates that the combination
of agent utilities and only node exploration (TTF) is enough; including the edge bonus as
well (TTT) does not have much effect. All other schemes are poorer. Therefore, we used
the TTF variant of FV-MCTS-MP to compare against the other baselines. The lack of a
noticeable difference between some of the exploration strategies is largely to do with the
small action space of the SysAdmin domain.

4.1.2 FV-MCTS-MP compared to baselines

For all three SysAdmin topologies (and corresponding fixed CGs), we varied the number of
machines (agents) and compared the performance of all methods in Figure 6. With fewer
agents, all MCTS methods perform similarly to each other and better than Q-Learning.
However, with more agents, standard MCTS runs out of memory even on our 128 GiB
RAM machine as expected for large joint action spaces. Both Factored Value MCTS variants
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Figure 6: On SysAdmin topologies: Ring (top), Star (middle), and Ring-of-Rings (bottom),
FV-MCTS with MaxPlus performs as well as or slightly better than Var-El, while being
much more efficient for larger problems as in Figure 7. NaN indicates that the algorithm
ran out of memory.
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Figure 7: Runtime comparisons (lower is better) for the same tree search hyperparameters
on SysAdmin with Ring (left) and Star (right) topologies. The NaiveMCTS baseline ran
out of memory with more than 8 agents.

perform comparably on larger problems (on ring-of-rings, our Max-Plus variant was slightly
better). However, as we discuss subsequently, FV-MCTS-Var-El is much slower than FV-
MCTS-MP, e.g., taking approximately 35 s versus 16 s for 32 agents on a single-threaded
implementation in the Ring topology.

4.1.3 Effect of Hyperparameters

We ran several ablation experiments by varying the exploration constant, tree search ex-
ploration depth, and number of Monte Carlo rollouts, for both FV-MCTS-Var-El and FV-
MCTS-MP. We show 3D plots of the cumulative reward for both approaches on the three
SysAdmin topologies: Ring (Figure 8), Star (Figure 9) and Ring-of-Ring (Figure 10). In
general, the performance of either approach does not vary appreciably with tree depth d,
and improves only slightly with increasing number of iterations. The exploration constant
c appears to have a range of effects. For Ring SysAdmin, a higher c significantly improves
Var-El but not Max-Plus, and the best combination for Var-El is significantly better than
the best for Max-Plus. For Star SysAdmin, both Var-El and Max-Plus improve with in-
creasing c. For Ring-of-Ring, Var-El shows minor improvement with increasing c, while
Max-Plus does not. For both of the latter two topologies, the best combinations for both
Var-El and Max-Plus are similar. These results underscore the complex effect of exploration
on Factored-Value MCTS, and suggests a need for deeper analysis in future work.

4.1.4 Computation Time

For the same tree search hyperparameters with number of iterations fixed as 16000, explo-
ration constant as 20 and tree search depth as 20, we compared the average time taken for
each action for different number of agents in the coordination graphs. For a fair compar-
ison, we used a single threaded implementation. As demonstrated in Figure 7, we found
FV-MCTS-MP to be consistently faster than FV-MCTS-Var-El. Although NaiveMCTS
was faster when there were a small number of agents, it scales poorly and thus ran out of
memory with an increasing number of agents.
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Figure 8: Results of the hyper-parameter ablation study for 32 agents on Ring SysAdmin.
For lower values of the exploration constant, Max-Plus consistently outperforms Var-El, but
the relative performance is reversed for higher values. The range of mean rewards for Max-
Plus is much lower than for Var-El. There is minor improvement for both with increasing
number of iterations, and negligible change with increasing search depth.
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Figure 9: Results of the hyper-parameter ablation study for 32 agents on Star SysAdmin.
Max-Plus slightly outperforms Var-El at lower values of the exploration constant, but the
two are comparable at higher values. Both of the other hyper-parameters have negligible
effects.
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Figure 10: Results of the hyper-parameter ablation study for 32 agents on Ring-of-Ring
SysAdmin. The two approaches are largely comparable throughout the grid of hyper-
parameter values.

Figure 11: Multi-Drone Delivery. Dotted lines illustrate a subset of the Coordination Graph
edges for the current state (for clarity, we omit some edges between drones of the same color,
i.e., assigned to the same goal).
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Figure 12: For Multi-Drone Delivery, FV-MCTS-MP vastly outperforms the baselines while
effectively using dynamic CGs without any memory issues. NaN indicates that the algorithm
ran out of memory.

4.2 Multi-Drone Delivery Domain

Besides the SysAdmin domain, previous multi-agent decision-making work has also used
the Firefighter (Amato & Oliehoek, 2015) and Traffic Control (Kuyer et al., 2008) domains
for benchmarking. Underneath the differing high-level descriptions, however, the MMDP
details of all three domains are very similar : a small state space and binary action space,
the degrees of most nodes in the coordination graph are independent of the total number
of agents (except the hub node for Star SysAdmin), and there is no scope in any of them
for dynamic or state-dependent CGs.

We introduce and use a truly distinct domain for our second set of experiments. It
simulates a team of delivery drones navigating a shared operation space to reach their as-
signed goal regions. We are motivated by recent advances in drone delivery technology, from
high-level routing to low-level control (Dorling et al., 2016; Lee, 2017); in particular, drones
using ground vehicles as temporary modes of transit to save energy and increase effective
travel range (Choudhury et al., 2019; Choudhury et al., 2021). Our domain models a key
component of such drone-transit coordination: multiple drones assigned to board transit
vehicles in close proximity to each other (within the same time window).

4.2.1 Domain Details

Figure 11 illustrates our Multi-Drone Delivery domain; for convenience and consistency with
MMDP benchmarks we discretize everything, but MCTS could accommodate a continuous
state space. Each drone starts in a randomly sampled unique cell in a grid (we use larger
grids for more drones in our simulations). There are four circular goal regions, one in each
quadrant, that represent a transit vehicle; each goal region has a radius and maximum
capacity of drones it can accommodate, since no two drones can occupy the same grid cell
(we also vary goal radius with grid size). We allocate the drones to the goal regions at
random such that at least two drones target every region.

Each drone has 10 actions in total: one for moving to each of the 8-connected grid
neighbors, a no-op action for staying in place, and a board action that is only valid when
the drone is inside its assigned goal region. The MMDP is episodic and terminates only
when all drones have reached their goals and executed Board inside them, thus boarding
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Agents XY axis res. Noise Expl. const. Expl. depth Iterations

8 0.20 0.10 5 10 4000
16 0.10 0.05 10 10 8000
32 0.08 0.05 20 10 16000
48 0.05 0.02 30 10 24000

Table 1: Multi-Drone Delivery hyperparameters.

the transit vehicle and receiving a reward of 1000. Drones also receive an intermediate
positive reward if they get closer to their assigned goals. Besides drone movement, the
other sources of negative reward, i.e., cost, are penalties for two or more drones being too
close to each other, attempting to enter the same cell (which makes them both stay in
place), and attempting to board in the same goal region at the same time.

Unlike the typical MMDP domains used in prior work, Multi-Drone Delivery motivates
dynamic or state-dependent coordination graphs; any two drones benefit from coordination
only when they are close to each other. Therefore, at the current joint state, we assign a CG
edge between any two drones whose mutual distance is lower than a resolution-dependent
threshold. We also add edges apriori between all drones assigned to the same goal region,
as they need to coordinate while boarding.

For all experiments, we set the discount factor γ to 1, the goal reaching reward to
1000.0 units, and the collision penalty to 10.0 units. Table 1 describes the full set of vary-
ing problem resolutions and MCTS hyperparameters. The average degree of the dynamic
coordination graphs ranged from 2.4 for 8 agents to 11.8 for 48 agents. We averaged all
evaluations over 20 runs. Unless otherwise stated, error bars indicate standard deviations.

4.2.2 FV-MCTS-MP Compared to Baselines

As with SysAdmin, we varied the number of drones (agents), discretizing the grid appro-
priately, and compared against all baselines (except Random) in Figure 12. We observed
that FV-MCTS-Var-El and MCTS quickly ran out of memory, which is expected given the
large action space per agent. Even on the problems where Var-El runs, its restriction to
static CGs leads to slightly worse performance. On the other hand, FV-MCTS-MP can
solve tasks even with 48 agents successfully. Moreover, even on the eight agent problem,
FV-MCTS-MP is much faster, taking on average approximately 1 s instead of 40 s for FV-
MCTS-Var-El for the same tree search hyperparameters. FV-MCTS-MP scales to MMDP
problem sizes that FV-MCTS-Var-El is unable to accommodate.

4.2.3 Effect of Message Passing Rounds

In Section 4.1.3, we ran an extensive set of ablation experiments for the Monte Carlo Tree
Search hyper-parameters on the SysAdmin domain. Given the computationally expensive
nature of the Multi-Drone Delivery domain, here we examine only the effect of the number
of message passing iterations on the performance of FV-MCTS-MP, keeping other hyper-
parameters fixed. For the 8-agent instantiation of our problem, we vary the number of
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Figure 13: Effect of number of message passing iterations for 8 agents on Multi-Drone
Delivery. Error bars refer to standard errors.

MaxPlus message passing iterations from 1 to 40, and compute the average discounted
return of FV-MCTS-MP over 40 trials.

Figure 13 summarizes the results of our study. The performance generally improves with
more iterations, which is to be expected with MaxPlus. However, the improvement is noisy
and non-monotonic, which is likely due to the underlying complexity of the problem and
that Coordination Graphs of the Multi-Drone Domain can have multiple cycles that change
over time. We did not run similar ablations on message passing rounds with SysAdmin
because the simple state and action spaces make it unlikely for there to be any variation in
FV-MCTS-MP performance.

5. Conclusion

We introduced a scalable online planning algorithm for multi-agent MDPs with dynamic
coordination graphs. Our approach, FV-MCTS-MP, uses Max-Plus for action coordination,
in contrast to the previously introduced FV-MCTS with Variable Elimination. Over the
standard SysAdmin and the custom Multi-Drone Delivery domains, we demonstrated that
FV-MCTS-MP performs as well as Var-El on static CGs, outperforms it significantly on
dynamic CGs, and is far more computationally efficient (enabling online MMDP planning
on previously intractable problems).

Several interesting questions arise for future work. We have already summarized ideas
for extensions to MPOMDPs in Section 3.3. We rely on a domain expert to pre-define
the coordination graph for the problem; a predetermined CG can be particularly difficult
with dynamic domains where the CG depends on the state. More work is required towards
learning the dynamic coordination graph itself via interaction with the model. Similarly,
extending ideas from Alpha-Zero (Anthony et al., 2017; Silver et al., 2018) would be partic-
ularly relevant for distilling the coordinated individual actions for the agents into decentral-
ized policies (Phan et al., 2019) with FV-MCTS acting as a scalable policy improvement
operator (Grill et al., 2020). Finally, a theoretical analysis of the exploration strategies and
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their interaction with MaxPlus’ convergence would improve our understanding of the per-
formance. While upper confidence bound exploration as well its alternatives have been quite
well studied in the context of single-agent MCTS (James et al., 2017; Kocsis & Szepesvári,
2006; Shah et al., 2020), there has not been nearly as much examination in the multi-agent
case. Moreover, as investigated by Mern and Kochenderfer (2021), the empirical perfor-
mance of MCTS with upper confidence bound exploration can be greatly improved even
in the single agent case. Finding out similar bottlenecks for the factored case would be
another important avenue for future work.
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