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Abstract

Large-scale labeled dataset is the indispensable fuel that ignites the AI revolution as
we see today. Most such datasets are constructed using crowdsourcing services such as
Amazon Mechanical Turk which provides noisy labels from non-experts at a fair price.
The sheer size of such datasets mandates that it is only feasible to collect a few labels
per data point. We formulate the problem of test-time label aggregation as a statistical
estimation problem of inferring the expected voting score. By imitating workers with
supervised learners and using them in a doubly robust estimation framework, we prove
that the variance of estimation can be substantially reduced, even if the learner is a poor
approximation. Synthetic and real-world experiments show that by combining the doubly
robust approach with adaptive worker/item selection rules, we often need much lower label
cost to achieve nearly the same accuracy as in the ideal world where all workers label all
data points.

1. Introduction

The rise of machine learning approaches in artificial intelligence has enabled machines to
perform well on many cognitive tasks that were previously thought of as what makes us
human. In many specialized tasks, for example, animial recognition in images (He et al.,
2015), conversational speech recognition (Xiong et al., 2018), translating Chinese text into
English (Hassan et al., 2018), learning-based systems are shown to have reached and even
surpassed human-level performances. These remarkable achievements could not have been
possible without the many large-scale datasets that are made available by researchers over
the past two decades. ImageNet, for instance, has long been regarded as what spawned the
AI revolution that we are experiencing today. These labels do not come for free. ImageNet’s
11 million images were labeled using Amazon Mechanical Turk (AMT) into more than 15,000
synsets (classes in an ontology). On average, each image required roughly 2−5 independent
human annotations, which were provided by 25,000 AMT workers over a period of three
years. We estimate that the cost of getting all these annotations goes well above one million
dollars.

As the deep learning models get larger and more powerful every day so as to tackle some
of the more challenging AI tasks, their ferocious appetites for even larger labeled dataset
have grown tremendously as well. However, unlike the abundant unlabeled data, it is often
difficult, expensive, or even impossible to consult expert opinions on large number of items.
Here the items can be images, documents, voices, sentences, and so on. Services such as
AMT have made it much easier to seek the wisdom of the crowd by having non-experts
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(called workers in the remainder of this paper) to provide many noisy annotations at a
much lower cost. A large body of work has been devoted to finding more scalable solutions.
These include a variety of label-aggregation methods (Sheng et al., 2008; Welinder et al.,
2010; Zhang et al., 2016; Zhou et al., 2015), end-to-end human-in-the-loop learning (Khetan
et al., 2018), online/adaptive worker selections (Branson et al., 2017; Van Horn et al., 2018)
and so on. At the heart of these approaches, there are various ways to evaluate individual
worker performances and quantify the uncertainty in their provided labels.

In this paper, we take a pre-trained crowdsourcing model with worker evaluation as a
blackbox and consider the problem of true label inference for new data points. We formulate
this problem as a statistical estimation problem and propose a number of ways to radically
reduce the number of worker annotations.

1. Worker imitation We propose to imitate each worker with a simple supervised
learner that learns to predict the worker’s label using the item feature.

2. Doubly robust crowdsourcing (DRC) By tapping into the literature on doubly
robust estimation, we design algorithms that exploit the possibly unreliable imitation
agents and significantly reduce the estimation variance (hence annotation cost) while
remaining unbiased.

3. Adaptive worker/item selection (AWS/AIS) We propose to bootstrap the imi-
tation agents’ confidence estimates to adaptively filter out high confidence items and
select the most qualified workers for low-confidence item, without additional cost.

Our results are summarized as follows.

1. We theoretically show that DRC technique can be used to generically improve any
given crowdsourcing models using any nontrivial learned imitation agents.

2. Synthetic and real-world experiments show DRC improves the label accuracy over
the standard probabilistic inference with Dawid-Skene and majority voting models in
almost all budget levels and all datasets.

3. AWS and AIS often reduce the cost by orders of magnitudes, while enjoying the same
level of accuracy. On several datasets, the proposed technique can often get away
with much fewer annotations per item while achieving almost the same accuracy that
can be obtained by having all workers annotating all items.

2. Related Work

In this section, we briefly summarize the related work.

Our study is motivated by the many trailblazing approaches in label-aggregation includ-
ing the wisdom-of-crowds (Welinder et al., 2010), Dawid-Skene model (Dawid and Skene,
1979; Zhang et al., 2016), minimax entropy approach (Zhou et al., 2015), permutation-based
model (Shah et al., 2020), worker cluster model (Imamura et al., 2018), crowdsourced re-
gression model (Ok et al., 2019) and so on. Our contribution is complementary as we can
take any of these models as blackboxes and hopefully improve their true-label inference.
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Doubly robust techniques originates from the causal inference literature (Rotnitzky and
Robins, 1995; Bang and Robins, 2005) and the use of it for variance reduction had led to
several breakthroughs in machine learning (e.g., Johnson and Zhang, 2013; Wang et al.,
2013). We drew our inspirations directly from the use of doubly robust techniques in the
off-policy evaluation problem in bandits and reinforcement learning (Dud́ık et al., 2014;
Jiang and Li, 2016; Wang et al., 2017). The variance analysis and weight-clipping are
adapted from the calculations in Dud́ık et al. (2014) and Wang et al. (2017) with some
minor differences. To the best of our knowledge, this is the first paper considering doubly
robust techniques in crowdsourcing.

Our idea of adaptive item/worker selection is inspired by the recent work of Branson
et al. (2017) and Van Horn et al. (2018). They propose an AI-aided approach that reduces
the number of worker labels per item to be smaller than 1 in an object detection task. The
key idea is to train a computer vision algorithm to detect the bounding boxes using the
aggregated labels that have been obtained thus far and if the algorithm achieves a high
confidence on a new image, then the annotation provided by the algorithm is taken.

The differences of our work is twofold. First, our use of supervised learner is not to
predict the true labels but rather to imitate workers. Second, our confidence measure is
determined by supervised learners’ approximation to what all workers would say about an
item, rather than as a prior distribution added to model-based probabilistic inference.

3. Problem Setup

In this section, we introduce the notations and formulate the problem as a statistical esti-
mation problem.

3.1 Notations

Suppose we have n items, m workers, and k classes. We adopt the notation [k] :=
{1, 2, 3, ..., k}. Each item j ∈ [n] is described as a d-dimensional feature vector xj , and
the feature matrix is X = [x1, x2, · · · , xn]⊤ ∈ Rn×d. Each item j ∈ [n] also has a hidden
true label yj ∈ [k] which indicates the correct class that item j belongs to.

Workers, such as those on AMT, are requested to classify items into one of the k classes.
We denote the label that worker i ∈ [m] assigns to item j as ℓij ∈ [k]. It is important
to distinguish the worker-produced labels ℓij with the true label yj , as the workers are
considered non-experts and they make mistakes. From here onwards, we will refer to the
potentially noisy and erroneous labels from workers as “annotations”. Conveniently, we
also collect ℓij into a matrix L ∈ ([k] ∪ {⊥})m×n, where any entries in L that are ⊥ are
unobserved labels. We use Ω ⊂ [m] × [n],Ωi ⊂ [n],Ωj ⊂ [m] to denote the indices of the
observed annotations, indices of all items worker i annotated and indices of all workers that
annotated item j respectively. For a generic item (x, y), Ωx collects the indices of workers
who annotated the item and the corresponding annotation is denoted by ℓi for each i ∈ Ωx.

3.2 Problem Statement

The goal of the paper is related to but different from the standard crowdsourcing problem
which aims at learning a model that one can use to infer the true label y1, ..., yn using noisy
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annotations L[Ω] (and sometimes item features X). Many highly practical models were
proposed for that task already (Dawid and Skene, 1979; Welinder et al., 2010; Zhang et al.,
2016; Zhou et al., 2015; Shah et al., 2020).

Complementary to the existing work that mainly focuses on label inference, we consider
the problem of cost-saving. Specifically, we would like to design algorithms to reduce the
expected number of new annotations needed to label a new item. The algorithm uses a
pre-trained crowdsourcing model as well as the training dataset X and L[Ω].

3.3 Dawid-Skene Model and Score Functions

The primary model that we work with in this paper is the Dawid-Skene (DS) model (Dawid
and Skene, 1979; Zhang et al., 2016), which assumes the following data generating process.

1. For each j ∈ [n], yj ∼ Categorical(τ).

2. For each j ∈ [n], i ∈ [m], ℓij ∼ Categorical(µyj ,i).

3. We observe ℓij with probability πij .

where τ and µy,i denote the probability distributions defined on [k]. In particular, µy,i is
the column y of the confusion matrix of worker i, which the DS model uses to describe
Pi(ℓ|y). We denote the confusion matrix associated with worker i by µi ∈ Rk×k. Once the
DS model is learned, we can make use of the learned parameters τ and µ to infer the true
labels using worker annotations via the posterior belief

P (y|ℓ1, ℓ2, ..., ℓm) ∝ P (y)

m∏
i=1

P (ℓi|y) = τ [y]

m∏
i=1

µi[ℓi, y]. (1)

Take log for both sides and dropping the additive constant, we obtain the score function
that is induced by the DS model

SDS(y|ℓi ∀i ∈ Ωx) = log τ [y] +

m∑
i=1

logµi[ℓi, y]. (2)

This is a weighted voting rule based on a pre-trained DS model. Similarly, we can cast the
inference procedure of other crowdsourcing models as maximizing such a score function as
well. For example, in the Majority Voting (MV) approach,

SMV(y|Ωx) =

m∑
i=1

1(ℓi(x) = y), (3)

where 1(·) is the indicator function. Notably, no training datasets are needed for majority
voting. The exposition above suggests that test time involves collecting a handful of worker
annotations (choosing Ωx) and calculating a voting score specified by the crowdsourcing
model in a form of

S(y|Ωx) =
∑
i∈Ωx

Si(y, ℓi(x)). (4)

where Si is supplied by the model that connects annotation ℓi to label y. Then the label y
that maximizes the score is chosen.
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3.4 A Statistical Estimation Framework

In the ideal world, when money is not a concern, we will poll all workers and calculate

S(y|[m]) =
m∑
i=1

Si(y, ℓi(x)). (5)

In practice, however, just as we cannot afford to poll all voters to estimate who is winning
the presidential election, we cannot afford to poll everyone to annotate a single data point
either. But do we have to?

Notice that we can frame the question as a classical point estimation problem in statis-
tics, where the statistical quantity of interest is

vx(y) := E
[
1

m

m∑
i=1

Si(y, ℓi(x))

]
, (6)

the expectation of the ideal world score function (5), rescaled by 1/m. In the above, the
expectation is taken over the randomness in worker’s annotation. For example, if we select
each worker independently with probability π, then the approach used in (2) and (3) would
be an unbiased estimate of vx(y), if we rescale them by a factor of π−1.

The advantage of translating the problem into a classical statistical estimation problem
is that there is now a century of associated literature that we can tap into, including those on
adaptive sampling and variance reduction techniques. We emphasize that while we will be
using a crowdsourcing model, for example, the Dawid-Skene model, we do not assume that
the data is generated according to the model. In fact, we are not imposing any restrictions
on how workers annotate items, except that

1. ℓi(x) ∀i ∈ [m] are mutually independent given any item x.

2. Var[Si(y, ℓi(x))] < +∞ ∀x, y.

These are very mild assumptions that are typically true in practice. It is generally difficult
to analytically model human behaviors because it depends on how the item is presented to
worker as well as the worker’s knowledge and cognitive processes. The agnostic learning
point of view helps disentangle the approximation-theoretic questions from the statistical
question of estimating the best approximation possible using a given crowdsourcing model.

The remainder of the paper will be about designing estimators of vx(y) that achieves
accurate label inference at a low cost and their corresponding theory and experiments. To
avoid any confusions, we emphasize again that item x is fixed. All the estimators are defined
for each y separately. ℓ1, ..., ℓm are random variables that comes out of the unknown process
of workers looking at the item x. Whenever the dependence is clear from context, we drop
the conditioning on x for better readability.

4. Benchmark Approaches

In this section, we describe a few baseline approaches for estimating vx(y) and their corre-
sponding cost in number of annotations.
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4.1 Ideal World (IW) Estimator

In the ideal world, all workers are required to label x:

v̂IW(y) =
1

m

m∑
i=1

Si(y, ℓi). (7)

This estimator incurs cost ofm and it is unbiased, with variance of 1
m2

∑m
i=1Var[Si(y, ℓi(x))].

This is arguably the best one can do with additional information.

4.2 Importance Sampling (IS) Estimator

A more affordable approach is to directly sample the workers. Specifically, we will include
worker i independently with probability πi

1.

v̂IS(y) =
1

m

m∑
i=1

1(i ∈ Ω)

πi
Si(y, ℓi). (8)

The expected cost of the IS estimator is
∑

i∈[m] πi and it is clearly an unbiased estimator.

Theorem 1. The v̂IS(y) is unbiased and

Var[v̂IS(y)] =
1

m2

( m∑
i=1

1

πi
Var[Si(y, ℓi)] + (

1

πi
− 1)E[Si(y, ℓi)]

2

)
.

Proof. By the independence of sampling,

E[v̂IS(y)] =
1

m

m∑
i=1

E
[
1(i ∈ Ω)

1

πi
Si(y, ℓi)

]
=

1

m

m∑
i=1

πi
1

πi
E[Si(y, ℓi)]

= vx(y).

To calculate the variance, we use the independence and then apply the law of total variance
on each i:

Var[v̂IS(y)] =
1

m2

m∑
i=1

1

π2
i

Var[1(i ∈ Ω)Si(y, ℓi)]

=
1

m2

m∑
i=1

1

π2
i

(
E[(1(i ∈ Ω))2]E[(Si(y, ℓi))

2]− E[1(i ∈ Ω)]2E[Si(y, ℓi)]
2
)

=
1

m2

m∑
i=1

1

π2
i

(
πiVar[Si(y, ℓi)] + πiE[Si(y, ℓi)]

2 − π2
i E[Si(y, ℓi)]

2
)

=
1

m2

( m∑
i=1

1

πi
Var[Si(y, ℓi)] + (

1

πi
− 1)E[Si(y, ℓi)]

2

)
.

1. This is called a Poisson sampling (Särndal et al., 2003) in the survey sampling theory.
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Remark. If πi ≡ π, then we are essentially doing the standard probabilistic inference as in
(2) and (3). When πi = 1, IS trivially subsumes IW (7) as a special case. Moreover, since
x is fixed, the sampling πi can be chosen as a function of the item x without affecting the
above results.

4.3 Direct Method (DM)

Finally, there is an option that comes with no cost. Recall that we have a dataset X and L
that were used to train the crowdsourcing model at our disposal. We can reuse the dataset
and train m supervised learners to imitate each worker’s behavior. Let ℓ̂1, ..., ℓ̂m be the
fictitious annotations provided by these supervised learners, we can simply plug them into
the ideal world estimator (7) without any cost,

v̂DM(y) =
1

m

m∑
i=1

E[Si(y, ℓ̂i)]. (9)

Following the convention in the contextual bandits literature (Jiang and Li, 2016), we call
this approach the direct method. The additional E is introduced to capture the case when
supervised learner outputs a soft annotation ℓ̂i.

The variance of this approach is 0. However, as we mentioned previously, we can never
hope to faithfully learn human behaviors, especially when we only have a small number of
annotations in the training data for each worker i. As a result, (9) may suffer from a bias
that does not vanish even as m → ∞.

5. Main Results

In this section, we adapt an old statistical technique, doubly robust estimation, to crowd-
sourcing problem.

5.1 Doubly Robust Crowdsourcing

As we established in the last section, IS estimator is unbiased but suffers from a large
variance, especially when we would like to cut cost and use a small sampling probability.
The DM estimator incurs no additional annotation cost and has no variance, but it can
potentially suffer from a large bias due to supervised learners not imitating the workers well
enough.

Doubly robust estimation (Rotnitzky and Robins, 1995; Dud́ık et al., 2014) is a powerful
technique that allows us to reduce the variance using a DM estimator while retaining the
unbiasedness, hence getting the best of both worlds. The doubly robust estimator works as
follows:

v̂DR(y) =
1

m

m∑
i=1

(
E[Si(y, ℓ̂i)] +

1(i ∈ Ω)

πi
(Si(y, ℓi)− E[Si(y, ℓ̂i)])

)
. (10)

The doubly robust estimator can be thought of using the DM as a baseline and then use IS
to estimate and correct the bias. Provided that the supervised learners are able to provide a
nontrivial approximation of the workers, the doubly robust estimator is expected to reduce
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the variance. Just to give two explicit examples of v̂DR(y), under the Dawid-Skene model,
the doubly robust estimator is

1

m

m∑
i=1

logPµi(ℓ̂i|y) +
1(i ∈ Ω)

πi
log

Pµi(ℓi|y)
Pµi(ℓ̂i|y)

. (11)

Similarly, for the majority voting model, we can write

1

m

m∑
i=1

eℓ̂i +
1

πi
1(i ∈ Ω)(eℓi − eℓ̂i), (12)

where eℓ is the basis vector where ℓ indicates the location of 1, otherwise 0.

Theorem 2 (DRC). The doubly robust estimator (10) is unbiased and its variance is:

1

m2

( m∑
i=1

1

πi
Var[Si(y, ℓi)] +

( 1

πi
− 1

)
E[Si(y, ℓi)− Si(y, ℓ̂i)]

2

)
.

Proof Sketch. Note that the first part 1
m

∑m
i=1 E[Si(y, ℓ̂i)] of the estimator is not random.

The result follows directly by invoking Theorem 1 on the second part of the estimator,
which is an importance sampling estimator of the bias.

Proof. By the independence of sampling,

E[v̂DR(y)] =
1

m

m∑
i=1

E
[
E[Si(y, ℓ̂i)]

]
+

1

πi
E
[
1(i ∈ Ω)(Si(y, ℓi)− E[Si(y, ℓ̂i)])

]
=

1

m

m∑
i=1

E
[
E[Si(y, ℓ̂i)]

]
+ πi

1

πi
E[Si(y, ℓi)− E[Si(y, ℓ̂i)]]

=
1

m

m∑
i=1

E[Si(y, ℓi)]

= vx(y).

To calculate the variance, we use the independence and then apply the law of total variance
on each i:

Var[v̂DR(y)] =
1

m2

m∑
i=1

1

π2
i

Var
[
1(i ∈ Ω)(Si(y, ℓi)− E[Si(y, ℓ̂i)])

]
=

1

m2

m∑
i=1

1

π2
i

(
E[(1(i ∈ Ω))2]E[(Si(y, ℓi)− E[Si(y, ℓ̂i)])

2]

− E[1(i ∈ Ω)]2E[Si(y, ℓi)− E[Si(y, ℓ̂i)]]
2
)

=
1

m2

m∑
i=1

1

π2
i

(
πiVar[Si(y, ℓi)] + πiE[Si(y, ℓi)− E[Si(y, ℓ̂i)]]

2

− π2
i E[Si(y, ℓi)− E[Si(y, ℓ̂i)]]

2
)

=
1

m2

( m∑
i=1

1

πi
Var[Si(y, ℓi)] +

( 1

πi
− 1

)
E[Si(y, ℓi)− Si(y, ℓ̂i)]

2

)
.
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Remark. First, if workers are deterministic, the first part of the variance Var[Si(y, ℓi)] ≡ 0.
Second, if the supervised learner imitates workers perfectly in expectation, the second part
of the variance vanishes. Finally and most importantly, the supervised learner does not have
to be perfect. In the simple case of a deterministic workers, the percentage of agreements
between supervised learners and their human counterparts directly translate into a reduction
of the variance of about the same percentage, for free.

The third point is especially remarkable as it implies that even a trivial surrogate that
outputs a label at random could lead to a 1/k factor reduction of the variance. In addition,
a good set of worker imitators with 90% accuracy can lead to an order of magnitude smaller
variance and hence allow us to incur a much lower cost on average. We will illustrate
the effects of doubly robust estimation more extensively in the experiments. This feature
ensures that our proposed method remains applicable even in the case when the training
dataset contain few annotations from some subset of the features.

5.2 Confidence-Based Adaptive Sampling

Doubly robust estimation allows us to reduce the variance. However, doubly robust is
still an importance sampling-based method that requires the number of new annotations
to be at least linear in the number of data points to label. In this section, we propose
using supervised worker imitation to obtain confidence estimates for free and using them
to construct confidence-based adaptive sampling schemes.

We propose two rules.

1. Adaptive item selection For each new data point, run DM first. If DM predicts
label y with an overwhelming confidence, then chances are, there is no need to collect
more annotations. If not, human workers are needed.

2. Adaptive worker selection We can adaptively choose which worker to annotate
a given item. Instead of sampling at random with probability π, we choose a set of
adaptive sampling probability π1, · · · , πm that makes high confidence workers more
likely to be selected. As different workers have different skill sets, confidence may
depend strongly on each item x. We propose to calculate such item-dependent confi-
dence using outcome of the imitated workers and the confusion matrices from the DS
model.

In both cases, we need a way to measure confidence given a probability distribution. A
threshold is introduced to decide whether accept predicted labels or not (Branson et al.,
2017). Margin in multi-class classification is defined as the difference between the score of
true label and the largest score of other labels (Mohri et al., 2012). Inspired by them, we
define confidence margin of a probability as follows.

Definition 1 (Confidence Margin). Given a discrete probability distribution π1, ..., πm, its
confidence margin ρ is defined as the difference between the largest probability and the second
largest one.
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Based on confidence margin, we propose three new methods: DRC with Adaptive Item
Selection (DRC-AIS), DRC with Adaptive Worker Selection (DRC-AWS), and the combi-
nation DRC-AWS-AIS. In DRC-AIS, DM is performed on all labels. For each item, the
surrogate label given by DM follows (1) to get the posterior belief, which describes how
confidently DM gives the label of this item. Based on posterior belief, its confidence margin
ρAIS is compared with the given confidence margin parameter ρ. If ρAIS is larger, DRC-AIS
takes the surrogate label provided by DM with no worker cost, otherwise, DRC-AIS follows
the regular DRC model which incures cost. In DRC-AWS, again DM runs first and gets
surrogate labels ℓ̂i. Then from each worker i’s confusion matrix we can get the labeling
probability P (ℓ̂i|y), whose confidence margin is used as the worker score γi and γ1, · · · , γm
are normalized to be a distribution. For each item, worker i will be sampled with prob-
ability γi. However, in this case the sampling probability for each worker is usually very
small, thus, we can introduce a parameter λ to multiply with γi to increase the sampling
probability. If a worker is sampled, the corresponding label is used as regular DRC model.

Table 1 shows the summary of benchmark and DRC approaches. As we can see, IW
and IS take the fewest input elements while IW uses the most worker cost. DM uses no
cost because it only takes advantage of surrogate labels given by worker imitation. DRC
has similar cost as IS while it is expected to improve the ground truth inference with less
variance. Thanks to the confidence-based adaptive sampling techniques, DRC-AIS and
DRC-AWS are able to save more cost than DRC.

Table 1: Summary of benchmark and DRC approaches in DS models. L,X are annotation
matrix and item feature matrix. µ, τ are probability distributions from DS models.
f denotes the supervised classifier for worker imitation.

Methods Input Sampling Cost

IW L No O(nm)

IS L π O(πnm)

DM X + f No 0

DRC L+ µ+ τ(y) + f π O(πnm)

DRC-AIS L+ µ+ τ(y) + f π O(πn∗m)

DRC-AWS L+ µ+ τ(y) + f π1:m O(
∑

i∈[m] πin)

n∗ ≪ n denotes number of items AIS selected as low-confidence.

5.3 Weight-Clipping in DRC

Adaptive worker selection involves making selection probability π larger for some workers
while smaller for others. According to Theorem 2, the variance is proportional to

∑
i π

−1
i ,

hence even a single πi being close to 0 would result in a huge variance. In off-policy
evaluation (Wang et al., 2017) problems this issue is addressed by clipping the importance
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weight at a fixed threshold η. This results in the clipped doubly robust estimator.

v̂DRη(y) =
1

m

m∑
i=1

(
E[Si(y, ℓ̂i)] + 1(i ∈ Ω)min{η, π−1

i }(Si(y, ℓi)− E[Si(y, ℓ̂i)])
)
. (13)

Its bias and variance are given as follows.

Theorem 3. The clipped doubly robust estimator obeys that:

Bias(v̂DRη(y)) =

∣∣∣∣ 1m
m∑
i=1

min{πiη − 1, 0}E[Si(y, ℓi)− Si(y, ℓ̂i)]

∣∣∣∣.
Var[v̂DRη(y)] =

1

m2

m∑
i=1

min{η2π2
i , 1}

(
1

πi
Var[Si(y, ℓi)] +

( 1

πi
− 1

)
E[Si(y, ℓi)− Si(y, ℓ̂i)]

2

)
.

Proof. By definition of bias,

Bias(v̂DRη(y)) =
∣∣∣E[v̂DRη(y)]−

1

m

m∑
i=1

E[Si(y, ℓi)]
∣∣∣

=

∣∣∣∣ 1m
m∑
i=1

(
E[E[Si(y, ℓ̂1)]] + E

[
1(i ∈ Ω)min{η, π−1

i }(Si(y, ℓi)− E[Si(y, ℓ̂i)])
]

− E[Si(y, ℓi)]
)∣∣∣∣

=

∣∣∣∣ 1m
m∑
i=1

(
E[Si(y, ℓ̂1)] + min{πiη, 1}E[Si(y, ℓi)− E[Si(y, ℓ̂i)]]− E[Si(y, ℓi)]

)∣∣∣∣
=

∣∣∣∣ 1m
m∑
i=1

min{πiη − 1, 0}E[Si(y, ℓi)− Si(y, ℓ̂i)]

∣∣∣∣.
And the variance can be calculated as,

Var[v̂DRη(y)] =
1

m2

m∑
i=1

min{η2, π−2
i }Var[1(i ∈ Ω)(Si(y, ℓi)− E[Si(y, ℓ̂i)])]

=
1

m2

m∑
i=1

min{η2, π−2
i }

(
E[(1(i ∈ Ω))2]E[(Si(y, ℓi)− E[Si(y, ℓ̂i)])

2]

− E[1(i ∈ Ω)]2E[Si(y, ℓi)− E[Si(y, ℓ̂i)]]
2
)

=
1

m2

m∑
i=1

min{η2, π−2
i }

(
πiVar[Si(y, ℓi)] + πiE[Si(y, ℓi)− E[Si(y, ℓ̂i)]]

2

− π2
i E[Si(y, ℓi)− E[Si(y, ℓ̂i)]]

2
)

=
1

m2

m∑
i=1

min{η2π2
i , 1}

(
1

πi
Var[Si(y, ℓi)] + (

1

πi
− 1)E[Si(y, ℓi)− Si(y, ℓ̂i)]

2

)
.
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Remark. The bias bound indicates that only those workers we clipped who contribute to
the bias. The variance bound implies that the part of variance from Worker i is reduced to
O(min{1/πi, η2πi}) from O(1/πi). If the total amount of additional Bias2 introduced by the
clipping is smaller than the corresponding savings in the variance, then clipping makes the
estimator more accurate in Mean Squared Error (MSE). The theory inspires us to design
an algorithm to automatically choose the threshold.

Remark (Automatic choice of threshold). Assume ℓ1, ..., ℓm are deterministic, |E[Si(y, ℓi)−
Si(y, ℓ̂i)]| ≤ ϵ. Then the bias of v̂DRη(y) can be bounded by ϵ

∑
i 1(π

−1
i > η)/m, and

variance of v̂DRη(y) can be bounded by ϵ2η2/m. Recall that MSE can be decomposed in
to Bias2 + Var. The optimal choice of η that minimizes this upper bound is the one that
minimizes |η −

∑
i 1(π

−1
i > η)/

√
m|. This can be found numerically in time O(m log(m))

by sorting [π−1
1 , ..., π−1

m ] and applying binary search.

6. Experiments

In this section, we report our experimental results, including both synthetic and real-world
experiments.

6.1 Synthetic Experiments

First we describe our experimental settings and then move to synthetic experiment results.

6.1.1 Experimental Settings

We are using supervised classification datasets to do synthetic experiments. Due to absence
of labeling matrix, we follow the workflow shown in Figure 1 to do worker imitation to
generate crowdsourcing datasets, which has three steps.

1. We starts with the raw dataset in step 1. If the dataset was split into training and
test parts, we combine them together.

2. In step 2, we uniformly sample the dataset into two equal parts, one for training and
the other for test. In order to remove the randomness of this splitting process, the
sampling index is fixed and saved for all further experiments. Training means we
use this part of data to train m decision trees to simulate the generating process of
crowdsourcing labels. For one item only

√
d features, a subset of all d features, can be

observed by each tree where d is the total number of features. Then these m decision
trees are used to make predictions on the test set to obtain the item label matrix.

3. In step 3, we uniformly sample the test part of step 2 into two equal parts, one working
as source part and the other working as target part. For all experiments, this sampling
process will be repeated 20 times. Also, m classifiers, one for each worker, are trained
on source dataset to simulate worker behaviors to give surrogate labels for all DRC
approaches. For all synthetic experiments, m = 50. Evaluations are performed on the
target label matrix.

We use five classification datasets, Segment, Satimage, Usps (Hull, 1994), Pendigits,
and Mnist (LeCun et al., 1998), collected by Libsvm (Chang and Lin, 2011), which are all
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Figure 1: Workflow of generating crowdsourcing datasets with item features.

publicly available. Table 2 shows their statistics of test dataset and item label matrix of
Step 2.

Table 2: Statistics of synthetic datasets.

Dataset # item # worker # dimension # class

Segment 1, 155 50 19 7

Satimage 3, 217 50 36 6

Usps 4, 649 50 256 10

Pendigits 5, 496 50 16 10

Mnist 35, 000 50 780 10

All experimental results, in figures or tables, are presented after repeating 20 times with
98% asymptotic confidence interval of the expected accuracy based on inverting Wald’s test,
that is,

µ± 1.96σ/
√
20, (14)

where µ, σ are the mean and stand error of accuracy. Based on Wald’s test, statistical
conclusions can be made with 98% confidence.

6.1.2 Algorithm Comparison

In order to show our approach DRC is able to infer true labels with low worker cost, we
compare our DRC approach with Importance Sampling (IS). In particular, we do experi-
ments with both Dawid-Skene (DS) model and Majority Voting (MV) model. Therefore, we
are comparing DRC-DS, DS, DRC-MV, and MV. Moreover, we have Direct Method (DM)
and Classifiers trained on Inferred Labels (CI) as baselines. CI means classifiers are trained
with inferred labels from source part and then make predictions for the target part, thus
incurring no labeling cost. In detail, we do Poisson sampling over workers with π going from
0.1 to 1.0 with interval of 0.1. Decision trees with maximum depth 3 are used to generate
surrogate labels for DRC-DS, DRC-MV, and DM.

Results are shown in Figure 2, which have three observations.

• Given the same worker sampling rate, DRC-DS outperforms DS and DRC-MV works
better than MV on all datasets, which shows the effectiveness of DRC and matches
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Figure 2: Performances of DRC-DS, DRC-MV, DS, MV, and DM.

our theoretical understanding. Moreover, our DRC approaches work well with very
few workers and then perform better with sampling rate increasing.

• Because CI and DM involve no worker cost, they are two nodes in the figures cor-
responding to π = 0. Due to high bias incurred, DM performs unstably across all
datasets. It performs well in some cases, but poorly on Satimage and Usps.

• On all datasets, except Satimage, DS performs better than MV. However, performance
comparison between DS and MV is out of scope of this paper. We are focusing on
improving existing approaches with DRC method.

6.1.3 Effectiveness of AIS and AWS

To show effectiveness of AIS and AWS, we compare four methods: DRC-DS, DRC-AIS,
DRC-AWS, and DRC-AWS-AIS, while DM is used as the baseline. AWS and AIS rules are
expected to save a lot of worker cost, so logarithmic worker cost is used, where cost is defined
as number of workers that per item use. For DRC-AIS and DRC-AWS-AIS, the confidence
margin parameter ρ is set to be 0.03, 0.06, and 0.09. For DRC-AWS and DRC-AWS-AIS,
the multiplier parameter λ is set to be 1, 2, 3, 4, 5, 7, 10, 15, 25, and 50.

With dashed black lines being performances of DM, results are shown in Figure 3, which
have five observations:

• Compared with DRC-DS, all AIS/AWS approaches are able to save labeling cost while
maintaining almost the same accuracy, which validates AIS and AWS do play key roles
in improving inference accuracy and saving worker cost at the same time.

• Among all four methods, DRC-AWS-AIS enjoys the lowest worker cost, which means
AIS and AWS can work together.

• There is an accuracy-cost tradeoff for all approaches. All performances can be im-
proved by introducing more worker cost, that is, greater ρ, λ.
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Figure 3: Performances of DRC-DS, DRC-AIS, DRC-AWS, and DRC-AWS-AIS.

• DRC-AWS and DRC-DS enjoy the same performance pattern while DRC-AWS-AIS
and DRC-AIS have the same one. Specifically, because DM is applied at the first
stage of algorithms, performances of DRC-AIS and DRC-AWS-AIS increase from the
DM when worker cost is very small.

• No statistical conclusions can be made on Segment dataset due to high error bar.

6.1.4 Ablation Study on Model Misspecification

As mentioned in experimental settings, decision trees are used to generate the crowdsourc-
ing datasets with item features, however, in real-world tasks, we have no idea of the label
generating process. Therefore, model misspecification must be studied. In detail, Decision
Trees (DT), Logistic Regression (LR), and Gaussian Naive Bayes (GNB) are used as super-
vised classifiers for DRC-DS, DRC-MV, and DM. π = 0.5 is set over source label matrix. All
parameters of DT, LR, and GNB are set as default according to sklearn package. Other
experimental settings are the same as before.

In Table 3, based on Wald’s test, statistically better results are set in bold fonts.
Decision trees perform only slightly better than other two classifiers, which is good because
it show our approaches are able to work without knowing the label generating process. In
real crowdsourcing problem, it is of a high chance that we have no idea of this process.

6.2 Real-world Experiments

Following synthetic experiments, we do algorithm comparison and study the effectiveness
of AIS and AWS on real-world experiments.

6.2.1 Algorithm Comparison

We do experiments on three real-world datasets: Music Genre (Rodrigues et al., 2013),
Dog (Zhou et al., 2012), and Rotten Tomatoes (Rodrigues et al., 2013). Because now we
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Table 3: Performances of DRC-DS, DRC-MV, and DM with different supervised classifiers.

Dataset Method DT LR GNB

Segment
DRC-DS 0.7385± 0.0065 0.7425± 0.0063 0.7386± 0.0066
DRC-MV 0.7731± 0.0053 0.7698± 0.0064 0.7677± 0.0053

DM 0.7419± 0.0061 0.7788± 0.0084 0.6969± 0.0084

Satimage
DRC-DS 0.8483± 0.0021 0.8452± 0.0028 0.8421± 0.0034
DRC-MV 0.8470± 0.0025 0.8416± 0.0029 0.8415± 0.0030

DM 0.8478± 0.0016 0.8270± 0.0024 0.7940± 0.0033

Usps
DRC-DS 0.8323± 0.0024 0.8293± 0.0020 0.8260± 0.0017
DRC-MV 0.8067± 0.0023 0.8022± 0.0029 0.7963± 0.0018

DM 0.8315± 0.0021 0.8374± 0.0022 0.7740± 0.0034

Pendigits
DRC-DS 0.8196± 0.0021 0.8156± 0.0018 0.8156± 0.0020
DRC-MV 0.7359± 0.0018 0.7274± 0.0027 0.7266± 0.0023

DM 0.8193± 0.0020 0.8259± 0.0024 0.8223± 0.0017

Mnist
DRC-DS 0.6470± 0.0020 0.6426± 0.0022 0.5939± 0.0017
DRC-MV 0.5317± 0.0013 0.5240± 0.0015 0.4997± 0.0011

DM 0.6471± 0.0019 0.6474± 0.0021 0.4240± 0.0035

Table 4: Statistics of real-world datasets.

Dataset # item # worker # dimension # class

Music 700 44 124 10

Dog 798 109 5, 376 4

Tomato 4, 999 203 1, 200 2
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have label matrix, we start from test dataset and item label matrix in Step 2 in Figure 1.
Statistics of real-world datasets are shown in Table 4. Due to extreme few labels given by
workers, two settings are different from synthetic experiments. First, only workers providing
more than 40% labels are modeled and depth of decision trees is set to be 100 in order to
ensure quality of surrogate labels. Second, worker sampling is conducted over existing labels
given by worker, and the sampling rate goes from 0.1 to 0.5 with an interval of 0.1.

Table 5: Performances of compared algorithms on real world datasets. Based on Wald’s
test, statistically better results are shown in bold fonts.

Dataset π Algorithms and Performances

Music

DM CI
0.0 0.2286± 0.0134 0.2734± 0.0124

MV DRC-MV DS DRC-DS
0.1 0.2557± 0.0087 0.3449± 0.0097 0.2166± 0.0080 0.2931± 0.0113
0.2 0.3610± 0.0108 0.4181± 0.0110 0.3006± 0.0102 0.3300± 0.0075
0.3 0.4493± 0.0105 0.4824± 0.0088 0.3559± 0.0103 0.3716± 0.0107
0.4 0.5097± 0.0091 0.5247± 0.0073 0.3926± 0.0108 0.3951± 0.0104
0.5 0.5494± 0.0123 0.5601± 0.0085 0.4236± 0.0127 0.4159± 0.0109

Dog

DM CI
0.0 0.3637± 0.0086 0.4115± 0.0102

MV DRC-MV DS DRC-DS
0.1 0.5481± 0.0092 0.5860± 0.0068 0.5703± 0.0098 0.5904± 0.0072
0.2 0.6644± 0.0121 0.6792± 0.0091 0.6875± 0.0080 0.6919± 0.0066
0.3 0.7238± 0.0080 0.7286± 0.0066 0.7450± 0.0078 0.7431± 0.0084
0.4 0.7538± 0.0073 0.7593± 0.0074 0.7786± 0.0061 0.7741± 0.0077
0.5 0.7749± 0.0064 0.7746± 0.0069 0.7906± 0.0069 0.7872± 0.0059

Tomato

DM CI
0.0 0.5196± 0.0041 0.5373± 0.0036

MV DRC-MV DS DRC-DS
0.1 0.6263± 0.0051 0.6368± 0.0037 0.6311± 0.0033 0.6425± 0.0037
0.2 0.7134± 0.0034 0.7169± 0.0041 0.7285± 0.0035 0.7329± 0.0038
0.3 0.7637± 0.0040 0.7663± 0.0039 0.7925± 0.0027 0.7924± 0.0034
0.4 0.8025± 0.0030 0.8046± 0.0031 0.8374± 0.0021 0.8361± 0.0026
0.5 0.8294± 0.0036 0.8295± 0.0035 0.8666± 0.0030 0.8629± 0.0030

For algorithm comparison, results are shown in Table 5, which have four observations:

• Given the same worker sampling rate, DRC-MV works better than MV and DRC-DS
is better than DS, especially in low sampling rate cases. It shows our DRC approaches
work in practice.
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• As the sampling rate increasing, performances of DRC approaches converges to non-
DRC approaches, which matches our understanding according to theorems.

• There are large improvements on Music and Dog datasets, while small improvements
on Tomato datasets, potentially due to number of classes being too small. In other
words, binary classification remains a easy task on Tomato dataset for workers. Bn
contrast, it shows our DRC apporach is able to help in difficult multi-class classification
problems.

• Compared between two zero cost methods, CI performs better than DM, which shows
the effectiveness of supervised learners.

6.2.2 Effectiveness of AIS and AWS
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Figure 4: Performances of DRC-AIS, DRC-AWS, DRC-AWS-AIS, and DRC-DS on real-
world datasets.

Similar to synthetic experiments, we do experiments of DRC-AWS-AIS, DRC-AIS, DRC-
AWS, and DRC-DS on real-world datasets. λ is set to be 1, 2, 4, 7, 10 and ρ is set in Figure
4. Other settings remain the same as above. There are four observations from results shown
in Figure 4:

• On Music dataset, DRC-AIS-0.01 enjoys the least worker cost, but with poor accuracy.
DRC-AWS performs better than DRC-DS, both in cost and accuracy, which shows
effectivenss of our weight-clipping technique.

• On Dog dataset, DRC-AWS-AIS enjoys the least worker cost, but performances in-
crease quickly with DRC-AIS and DRC-DS.

• On Tomato dataset, it’s hard to break the accuracy-cost tradeoff using AIS or ASW
as the DRC-DS performance increases rapidly with more workers.

• There is an accuracy-cost tradeoff for all approaches on all datasets. For practical
use, ρ is suggested to set from 0.0001 to 0.03, small for easy tasks, for example, binary
classification, while large for multi-class classification. λ is suggested to set from 1 to
c, where c is the average labels received per item. Small λ leads to low cost and low
accuracy while large λ results in high cost and high accuracy.
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7. Conclusion

We formulate crowdsourcing as a statistical estimation problem and propose a new approach
DRC to address it where worker imitation and doubly robust estimation are used. DRC can
work with any base models such as Dawid-Skene model and majority voting and improve
their performance. With adaptive item/worker selection, our proposed approaches are able
to achieve nearly the same accuracy of using all workers but with less worker cost. In
the future, there are many problems worth trying. Since item features are helpful for
crowdsourcing problems, worker features can be taken into consideration as well. Also, if
there are new workers joining the project, it needs special considerations.
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