
Journal of Artificial Intelligence Research 73 (2022) 553-618 Submitted 09/2021; published 02/2022

Migrating Techniques from Search-Based Multi-Agent Path Finding
Solvers to SAT-Based Approach

Pavel Surynek PAVEL.SURYNEK@FIT.CVUT.CZ
Faculty of Information Technology, Czech Technical University in Prague
Thákurova 9, 160 00 Praha 6, Czechia

Roni Stern STERNRON@BGU.AC.IL
Ben Gurion University, Beer-Sheva 84105, Israel
Palo Alto Research Center, CA, USA

Eli Boyarski BOYARSKE@POST.BGU.AC.IL

Ariel Felner FELNER@BGU.AC.IL

Ben Gurion University, Beer-Sheva 84105, Israel

Abstract
In the multi-agent path finding problem (MAPF) we are given a set of agents each with re-

spective start and goal positions. The task is to find paths for all agents while avoiding colli-
sions, aiming to minimize a given objective function. Many MAPF solvers were introduced in
the past decade for optimizing two specific objective functions: sum-of-costs and makespan. Two
prominent categories of solvers can be distinguished: search-based solvers and compilation-based
solvers. Search-based solvers were developed and tested for the sum-of-costs objective, while the
most prominent compilation-based solvers that are built around Boolean satisfiability (SAT) were
designed for the makespan objective. Very little is known on the performance and relevance of
solvers from the compilation-based approach on the sum-of-costs objective. In this paper, we start
to close the gap between these cost functions in the compilation-based approach. Our main con-
tribution is a new SAT-based MAPF solver called MDD-SAT, that is directly aimed to optimally
solve the MAPF problem under the sum-of-costs objective function. Using both a lower bound
on the sum-of-costs and an upper bound on the makespan, MDD-SAT is able to generate a rea-
sonable number of Boolean variables in our SAT encoding. We then further improve the encoding
by borrowing ideas from ICTS, a search-based solver. In addition, we show that concepts applica-
ble in search-based solvers like ICTS and ICBS are applicable in the SAT-based approach as well.
Specifically, we integrate independence detection, a generic technique for decomposing an MAPF
instance into independent subproblems, into our SAT-based approach, and we design a relaxation
of our optimal SAT-based solver that results in a bounded suboptimal SAT-based solver. Experi-
mental evaluation on several domains shows that there are many scenarios where our SAT-based
methods outperform state-of-the-art sum-of-costs search-based solvers, such as variants of the ICTS
and ICBS algorithms.

1. Introduction and Background

The multi-agent path finding (MAPF) problem consists of an undirected graph, G = (V,E) with
V = {u1, u2, ..., un} and a set A = {a1, a2, . . . ak} of k agents. Time is discretized into time steps.
The configurations of agents at time-step t are denoted as αt : A → V . Each agent ai has a start
position α0(ai) ∈ V and a goal position α+(ai) ∈ V . At each time step an agent can either move

c©2022 AI Access Foundation. All rights reserved.

SURYNEK, STERN, BOYARSKI, & FELNER

α0

5

1

9

2

6

10

3

7

4

8

11

12 13 14
a1

a2

a3

MAPF Σ=(G, {a1,a2,a3}, α0, α+) α+

5

1

9

2

6

10

3

7

4

8

11

12 13 14

a1 a2

a3

S(Σ)

a1

a2

a3

α0 α1 α2 α3 α4 α5= α+

14 11 8 7 6 6

4 4 4 4 8 7

12 9 5 1 2 3

Figure 1: Example of MAPF problem instance for agents a1, a2, and a3 over a 4-connected grid
(left) and its solution (right).

to an adjacent empty position in the previous step 1 or wait in its current position. The task is to
find a sequence of move/wait actions for each agent ai, moving it from α0(ai) to α+(ai) such that
agents do not conflict, i.e., do not occupy the same position at the same time. Formally, an MAPF
instance is a tuple Σ = (G = (V,E), A, α0, α+). A solution for Σ is a sequence of configurations
π = [α0, α1, ..., αµ] such that αµ = α+ where αt+1 results from valid movements from αt for
t = 1 = 0, 1, ..., µ− 1. An example of MAPF and its solution are shown in Figure 1.

MAPF has practical applications in video games, traffic control, robotics etc., please see a survey
for more applications (Sharon, Stern, Felner, & Sturtevant, 2015). The scope of this paper is limited
to the setting of fully cooperative agents that are centrally controlled. MAPF is usually solved
aiming to minimize one of the two commonly-used global cumulative cost functions:

(1) sum-of-costs (denoted ξ) is the summation, over all agents, of the number of time steps required
to reach the goal position (Dresner & Stone, 2008; Standley, 2010b; Sharon, Stern, Goldenberg, &
Felner, 2013; Sharon et al., 2015). Formally, ξ =

∑k
i=1 ξ(ai), where ξ(ai) is an individual path

cost of agent ai.

(2) makespan: (denoted µ) is the total time until the last agent reaches its destination (i.e., the
maximum of the individual costs) (Surynek, 2010, 2014a, 2015).

It is important to note that in any solution S(Σ) it holds that µ ≤ ξ ≤ k · µ. Similarly it
holds that the optimal makespan is smaller or equal to the optimal sum-of-costs since otherwise the
inequalities would be violated.

Intuitively, sum-of-costs can be regarded as the total energy consumption of all agents such that
at each time step spent before reaching the goal the agent consumes one unit of energy. In this
respect, it is not surprising that optimization of one of these two objectives goes against the other
- total time can be saved at the cost of increased energy consumption and vice versa. An example
of an MAPF instance where any makespan-optimal solution has sum-of-costs that is greater than
the optimum and any sum-of-costs optimal solution has makespan that is greater than the optimal
makespan is shown in Figure 2.

1. Some variants of MAPF relax the empty position requirement by allowing a chain of neighboring agents to move,
given that the head of the chain enters an empty positions. Most MAPF algorithms are robust (or at least can be easily
modified) across these variants.

554

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

S(Σ)

a1

a2

α0

A

7

α1

F

2

α2

E

3

α3

D

4

α6 = α+

6

8

μ* = 6
ξ = 12

α4

C

5

α5

B

9

Makespan optimal

S(Σ)

a1

a2

α0

A

7

α1

9

C

α2

5

D

α3

4

E

α7 = α+

6

8

μ = 7
ξ* = 11

α4

3

8

α5

2

8

α6

1

8

Sum-of-costs optimal

1

2

3

4

5

6

A

C

F

D

E

a2

a1

7

8

9

B

Figure 2: An instance of MAPF where makespan and sum-of-costs optimal solutions differ - that is,
any makespan-optimal solution is strictly sum-of-costs suboptimal and any sum-of-costs
optimal solution is strictly makespan suboptimal.

Finding optimal solutions for both variants with any standard style of agents’ movement is
NP-hard even on planar graphs (Ratner & Warmuth, 1986, 1990; Surynek, 2010, 2015; Yu &
LaValle, 2013b; Yu, 2016). Therefore, many suboptimal solvers were developed, and are usu-
ally used, when the number of agents or the graph is very large (Cohen, Uras, & Koenig, 2015;
Khorshid, Holte, & Sturtevant, 2011; Röger & Helmert, 2012; Ryan, 2010; Silver, 2005; Wang &
Botea, 2011). In contrast to the difficulty of finding optimal solutions, finding any feasible solution
or detecting unsolvability of a given instance can be done in polynomial time (de Wilde, ter Mors,
& Witteveen, 2014; Kornhauser, Miller, & Spirakis, 1984; Luna & Bekris, 2011; Surynek, 2009,
2014c).

1.1 Optimal MAPF Solvers

Many optimal solvers were introduced in the past decade, most of which focus on one of these cost
functions:

• (1) Sum-of-costs. Most optimal MAPF solvers that optimize this cost function are based
on search. Some of these search-based solvers are variants of the A* algorithm on a global
search space in which all different ways to place k agents into V vertices, one agent per
vertex, are considered (Standley, 2010b; Wagner & Choset, 2015). Others employ novel
search trees (Boyarski, Felner, Stern, Sharon, Tolpin, Betzalel, & Shimony, 2015; Sharon
et al., 2015, 2013). Search-based solvers feature various search-space pruning techniques
like independence detection (ID) (Standley, 2010b) or multi-value decision diagrams (MDDs)
(Sharon et al., 2013).

• (2) Makespan. Many optimal solvers that optimize this cost function are compilation-based
solvers, which means they solve MAPF by reducing it to known problems such as Constraint
Satisfaction (CSP) (Ryan, 2010), Boolean Satisfiability (SAT) (Surynek, 2012c), Integer Lin-
ear Programming (ILP) (Yu & LaValle, 2013), or Answer Set Programming (ASP) (Erdem,
Kisa, Oztok, & Schueller, 2013). These works mostly prove a polynomial-time reduction

555

SURYNEK, STERN, BOYARSKI, & FELNER

from MAPF to these problems. Notably, these reductions are usually not directly applicable
for the sum-of-costs variant.

1.2 Current Shortcomings and Contribution

A major weakness across all these works is that each of these algorithms was introduced and applied
for one of these objective functions only. Furthermore, the connection/comparison between different
algorithms was usually done only within a given class of algorithms but not across these two classes.
Finally, experiments were always performed on one objective-function and very little is known on
the performance and relevance of any given algorithm (developed for one cost function) on the other
objective function.

This paper aims to start to close the gap. First, we discuss how to migrate algorithms across the
different objective functions. Most of the search-based algorithms developed for the sum-of-cost
objective function can be modified to the makespan variant with some technical adaptations such as
modifying the cost function and the way the state-space is represented. Some initial directions are
given by Sharon et al. (2015) and we give a complete picture here. By contrast, the compilation-
based algorithms that were developed for the makespan objective function are not trivially modified
to the sum-of-costs variant and sometimes a completely new encoding is needed.

A major algorithmic contribution of this paper is that we develop the first compilation-based
solver for the sum-of-costs variant to SAT. Our SAT-based solver is based on establishing relations
between the maximum makespan under the given sum-of-costs which enables to build SAT encod-
ings that represent all feasible solutions for the given sum-of-costs. Bounds on the sum-of-costs in
the SAT encoding are established by cardinality constraints (Bailleux & Boufkhad, 2003; Silva &
Lynce, 2007). We show how to use known lower bounds on the sum-of-costs to reduce the number
of Boolean variables that encode these cardinality constraints so as to be practical for current SAT
solvers.

We then present how to migrate various techniques used in search-based approaches to our new
SAT-based solver. First, we adapt ideas from the ICTS algorithm (Sharon et al., 2013) that uses
multi-value decision diagrams (MDDs) (Srinivasan, Ham, Malik, & Brayton, 1990) to further re-
duce the size of SAT encodings. Next, we show how to integrate a modification of the independence
detection technique (Standley, 2010b) into the SAT-based solver. Finally, we demonstrate the flex-
ibility of our SAT-based solver by modifying it into a bounded-suboptimal sum-of-costs solver - a
modification applicable in search-based approaches to trade-off the quality of solutions for shorter
runtime (Barer, Sharon, Stern, & Felner, 2014).

Successful migration of techniques demonstrates the potential of combining ideas from both
classes of approaches - search-based and compilation-based. Experimental results show that our
SAT solver with various enhancements outperforms the best existing search-based solvers for the
sum-of-costs variant on many scenarios. Hence, as a result of our unification provided in the begin-
ning of this paper, we have a variety of algorithms which can be applied for both objective functions.
We conclude this paper by providing experimental results comparing the hardness of solving MAPF
with SAT-based and search-based solvers under the makespan and the sum-of-costs objectives in a
number of domains.

Results presented in this work partly appeared in several conference papers (Surynek, Felner,
Stern, & Boyarski, 2016a, 2016b, 2017a; Surynek, Svancara, Felner, & Boyarski, 2017c, 2017b).
Here we provide a significantly more comprehensive summarization and extension of these results.

556

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

All SAT-based algorithms and encodings are described here in greater details, including detailed
pseudo-codes. Detailed proofs of important properties such as completeness and time/space com-
plexity are given. A broader context of how this work fits with existing works in classical planning,
multi-agent planning, and planning using Markov Decision Processes is given. The experimental
evaluation has been extended significantly, including experiments not reported in the conference
papers that explore:

(i) The impact of using a newer SAT solver on the ability of our algorithms to solve more MAPF
problems;

(ii) The relation between the computed makespan and the number of time expansions needed to
prove its optimality;

(iii) The distribution of runtime spent in each time expansion.

1.2.1 ORGANIZATION

This paper is organized as follows. We first summarize related work on MAPF and introduce the
context in which new methods are developed (section 2). Then a SAT-based solver for MAPF is
introduced in several steps - starting with a basic solver (sections 3 and 4), which is further im-
proved to obtain the final solver called MDD-SAT (section 5). A thorough experimental evaluation
of MDD-SAT with respect to comparable search-based solvers is presented next (section 6). To
further demonstrate the versatility of SAT-based approach, we show how to integrate independence
detection into MDD-SAT (section 7) and how to build a bounded suboptimal solver using MDD-
SAT (section 8) both with relevant experimental evaluation.

2. Related Work

We briefly summarize existing algorithmic approaches to MAPF in this section. We categorize
algorithms into two streams according to the objective function they use. For optimization of sum-
of-costs a great variety of algorithms has been proposed. On the other hand, previous makespan-
optimal algorithms are limited to the compilation-based approach where the target formalism is
represented by Boolean satisfiability. Many sum-of-costs optimal algorithms can be directly mod-
ified for the makespan variant. The opposite migration from the makespan-optimal case to the
sum-of-costs optimality in compilation-based algorithms is however not straightforward.

2.1 Previous Sum-of-Costs Optimal Algorithms and Techniques

A*-based Algorithms. A* is a general-purpose algorithm that is well suited to solve MAPF. A
common straight-forward state-space where the states are the different ways to place k agents into
n = |V | vertices, one agent per vertex is used. In the start and goal states agent ai is located at
vertices α0(ai) and α+(ai), respectively. Operators between states are all non-conflicting combina-
tions of actions (including wait) that can be taken by the agents.

The branching factor in A*-based algorithms is an important measure. Let b(ai) be the branch-
ing factor of single agent ai. Then the effective branching factor for k agents, denoted by b, is
b =

∏k
i=1 b(ai). For example, in a 4-connected grid b(ai) = 5 for most of agents; an agent can

either move in four cardinal directions or wait at its current position. Then b is roughly 5k; though

557

SURYNEK, STERN, BOYARSKI, & FELNER

usually a bit smaller because many possible combinations of moves result in immediate conflicts,
especially when the environment is dense with agents.

A simple admissible heuristic that is used within A* for MAPF is to sum the individual heuristics
of single agents such as the Manhattan distance for 4-connected grids or the Euclidean distance for
Euclidean graphs (Ryan, 2008). A more-informed heuristic is called the sum of individual costs
heuristic . For each agent ai we calculate its optimal path cost from its current state to α+(ai)
assuming that other agents do not exist. Then, we sum these costs over all agents. More-informed
heuristics use forms of pattern-databases (Goldenberg, Felner, Sturtevant, Holte, & Schaeffer, 2013;
Goldenberg, Felner, Stern, Sharon, Sturtevant, Holte, & Schaeffer, 2014).

The most important drawback of A*-based algorithms is they need to tackle that the branching
factor b of a given state may be exponential in k. We briefly summarize attempts to overcome the
high branching factor.

Operator Decomposition (OD). Instead of moving all the agents to their next positions at once,
agents advance to the next position one by one in a fixed order within the OD concept. The original
operator for obtaining the next state is thus decomposed into a sequence of operators for individual
agents each of branching factor b(ai). OD together with a reservation table enabled computations of
next states where agents do not collide with each other in CA*, HCA*, and WHCA* (Silver, 2005).

Pruning of states by OD with respect to a given admissible heuristic was suggested by Standley
(2010b). Two conceptually different states are distinguished - standard and intermediate. The in-
termediate states correspond to the situation when not all the agents performed their move while the
standard states correspond to states in the original representation with no OD. The major strength
of OD lies in the fact that the top-level A* algorithm does not need to distinguish between standard
and intermediate states. The next node for expansion is selected among both standard and interme-
diate states while the cost function applies to both types of states. It may thus happen that a certain
intermediate state is not expanded towards a standard state because other states turned out to be
better according to the cost function. Such search space pruning cannot be done without operator
decomposition as there would be standard states only.

Independence Detection (ID). Closely related to OD is the concept of independence detection
(Standley, 2010b), which can be regarded as another branching factor reduction technique. The main
idea behind this technique is that the difficulty of solving MAPF optimally grows exponentially with
the number of agents. It would be ideal, if we could divide the problem into a series of smaller sub
problems, solve them independently, and then combine them. The simple approach, called simple
independence detection (SID), works as follows. First, it finds the shortest path for each agent to
its goal, ignoring all other agents. Every pair of these single-agent paths is checked for conflicts
(that is, when a collision between the agents will occur if they follow these paths concurrently). If
a conflict is found, these agents are grouped together and a new optimal solution is found for the
resulting group. This process continues, merging conflicting agents or groups of agents into larger
groups until a set of solutions are found that do not conflict. This approach can be further improved
by deliberately attempting to avoid the merging of groups.

More A*-based Algorithms. Enhanced Partial Expansion (EPEA*) (Goldenberg et al., 2014)
avoids the generation of surplus nodes by using a priori domain knowledge. When expanding a
node N EPEA* generates only the children Nc with f(Nc) = f(N). The other children of N (with
f(Nc) 6= f(N)) are discarded. This is done with the help of a domain-dependent operator selection
function (OSF) (Goldenberg et al., 2014).

558

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

M* (Wagner & Choset, 2015) and its enhanced recursive variant (RM*) are important A*-based
algorithms related to ID. M* dynamically changes the dimensionality and branching factor based on
conflicts. The dimensionality is the number of agents that are not allowed to conflict. When a node
is expanded, M* initially generates only one child in which each agent takes (one of) its individual
optimal moves towards the goal (dimensionality 1). This continues until a conflict occurs between
q ≥ 2 agents at node N . At this point, the dimensionality of all the nodes on the branch leading
from the root to N is increased to q and all these nodes are placed back in the OPEN list. When
one of these nodes is re-expanded, it generates bq children where the q conflicting agents make all
possible moves and the k − q non-conflicting agents make their individual optimal move.

An enhanced variant of M* called ODRM* (Ferner, Wagner, & Choset, 2013) builds RM* on
top of Standley’s OD rather than plain A*.

Increasing Cost Tree Search. The increasing cost tree search algorithm (ICTS) (Sharon et al.,
2013) is a two-level MAPF solver that is conceptually different from A*. This algorithm is par-
ticularly important as its concepts will be be migrated into the SAT framework we are about to
introduce. ICTS works as follows.

At its high level, ICTS searches the increasing cost tree (ICT). Every node in ICT consists of a
k-ary vector [C1, . . . Ck], which “represents all possible solutions in which the individual path cost
of agent ai is exactly Ci” (Sharon et al., 2013). The root of ICT is [opt1, ..., optk], where opti is the
optimal individual path cost for agent ai ignoring other agents, i.e., it is the length of the shortest
path from α0(ai) to α+(ai) in G.

A child in ICT is generated by increasing the cost for one of the agents by 1. An ICT node
[C1, .., Ck] is a goal if there is a complete non-conflicting solution such that the cost of the individual
path for any agent ai is exactly Ci. Figure 3 illustrates an ICT with 3 agents, all with optimal
individual path costs of 10. Dashed lines mark duplicate children which can be pruned. The total
cost of a node is C1 + . . .+Ck. For the root this is exactly opt1 + opt2 + . . . optk. Since all nodes
at the same height have the same total cost, a breadth-first search of the ICT will find the optimal
solution.

10,10,10

10,10,1210,11,1110,12,1011,10,1111,11,1012,10,10

10,10,1110,11,1011,10,10

Figure 3: Increasing cost tree (ICT) for three
agents.

The low level acts as a goal test for the
high level. For each ICT node [C1, .., Ck] vis-
ited by the high level, the low level is invoked.
Its task is to find a non-conflicting complete
solution such that the cost of the individual
path of agent ai is exactly Ci. For each agent
ai, ICTS stores all single-agent paths of cost
Ci in a special compact data-structure called
a multi-value decision diagram (MDD) (Srini-
vasan et al., 1990).

The low level searches the cross product
of the MDDs in order to find a set of k non-
conflicting paths for the different agents. If such a non-conflicting set of paths exists, the low level
returns True and the search halts. Otherwise, False is returned and the high level continues to the
next high-level node (of a different cost combination).

ICTS also implements various pruning rules to enhance the search. These pruning rules and
their connection to CSP was also studied (Sharon et al., 2013).

559

SURYNEK, STERN, BOYARSKI, & FELNER

Conflict-based Search (CBS). Another optimal MAPF solver not based on A* is conflict-based
search (CBS) (Sharon et al., 2015). In CBS, agents are associated with constraints. A constraint for
agent ai is a tuple 〈ai, v, t〉 where agent ai is prohibited from occupying vertex v at time step t. A
consistent path for agent ai is a path that satisfies all of ai’s constraints, and a consistent solution is
a solution composed of only consistent paths.

Once a consistent path has been found for each agent, these paths are validated with respect to
the other agents by simulating the movement of the agents along their planned paths.

If all agents reach their goal without any conflict the solution is returned. If, however, while
performing the validation, a conflict is found for two (or more) agents, the validation halts and a
conflict is resolved by adding constraints. If a conflict, 〈ai, aj , v, t〉 is encountered, that is agents ai
and aj collide in vertex v at time t, we know that in any valid solution at most one of the conflicting
agents, ai or aj , may occupy vertex v at time t. Therefore, at least one of the constraints, 〈ai, v, t〉
or 〈aj , v, t〉, must be satisfied. Consequently, CBS splits the search into two branches where one of
these constraints is imposed in each branch.

2.2 Previous Makespan-Optimal Algorithms for MAPF

A major development in makespan-optimal MAPF solving has been done under the Boolean satisfi-
ability (SAT) (Biere, Biere, Heule, van Maaren, & Walsh, 2009) compilation paradigm. Early works
that compile MAPF to SAT focused on solution improvements in terms of shortening the makespan
towards the optimum in an anytime manner (Surynek, 2012d). First, a makespan-suboptimal solu-
tion of the input MAPF is generated by a fast polynomial rule-based algorithm like BIBOX (Surynek,
2014c) or PUSH-AND-SWAP (Luna & Bekris, 2011; de Wilde, ter Mors, & Witteveen, 2013). Then
continuous sub-sequences of time steps in the current solution are replaced by makespan-optimal
ones. The length of replaced sub-sequences is increased in each iteration of the algorithm until it
eventually covers the entire makespan. This ensures that given enough time the algorithm returns a
makespan-optimal solution. A suboptimal solution is available at any stage of the algorithm.

INVERSE SAT encoding. Historically the first encoding of MAPF to SAT INVERSE relies
on log-space encoded finite domain variables (Petke, 2015) that represent what agent is located at
vertex v at each time step t - that is, the inverse α−1

t : V → A∪{⊥} of α : A→ V (where assigning
⊥ to a vertex means no agent is located at that vertex) is represented using log-space encoded bit-
vectors Avt ∈ {0, 1, 2, ..., k}. MAPF movement rules and state transitions are encoded by a number
of constraints over Avt (Surynek, 2012d). Altogether Boolean formula Fµ is constructed on top Avt
Boolean variables such that it is satisfiable if and only if a solution to the input MAPF of makespan
µ exists. The advantage of this encoding is that the frame problem (McCarthy & Hayes, 1969) of
propagation of agents’ positions to the next time step can be easily done by enforcing equalities
between Avt and Avt+1 (bit-wise equality for all bits of a pair of log-space encoded variables).

Further works in SAT-based approach to MAPF (Surynek, 2013a, 2013b) omitted the phase
in which suboptimal solution was improved and a makespan-optimal solution was generated di-
rectly instead. The process of finding a makespan-optimal solution follows the scheme described
in Algorithm 1. Assuming a solvable MAPF instance, a makespan-optimal solution is obtained by
answering satisfiability of Fµ0 ,Fµ0+1, ... until a satisfiable formula is found. The search starts with
µ0, the lower bound on makespan obtained as the length of longest path over all shortest paths con-
necting starting position α0(ai) and goal α+(ai) of each agent ai. The first satisfiable Fµ represents
the optimal makespan and an optimal solution can be extracted from its satisfying assignment.

560

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Algorithm 1: Framework of makespan-optimal SAT-based MAPF solving
1 Solve-MAPF-SATMAKESPAN (G = (V,E), A, α0, α+)
2 π ← {shortest path from α0(ai) to α+(ai) | i = 1, 2, ..., k}
3 µ← maxki=1 (length(π(ai)))
4 while TRUE do
5 F(µ)← encode(µ,G,A, α0, α+)
6 assignment← consult-SAT-Solver(F(µ))
7 if assignment 6= UNSAT then
8 π ← extract-Solution(assignment)
9 return π

10 µ← µ+ 1

A

B

C

D

E

A

B

C

D

E

a1

a2

a3

a1

a2

a3

α0 α
+

a1

a2

a3

A

B

C

D

E

0 1 2 3
4

a1

a3

a2 a1

a2

a3

0 1 2 3 4

a1

a3

a2 A

C

D

E

B

4

Figure 4: Searching of non-conflicting paths over
anonymized agents - conflicts are reflected
but an agent may end up in the wrong goal
(lower right part).

ALL-DIFFERENT SAT encoding. The
ALL-DIFFERENT encoding again employs
the log-space representation of finite do-
main variables (Surynek, 2012b). The po-
sition of agent ai at time step t, that is, αt
is represented instead of representing ver-
tex occupancy - that is, finite domain vari-
ables Dait ∈ V are represented using log-
space encoding. To ensure that conflicts
among agents at vertices do not occur, the
ALL-DIFFERENT constraint (Régin, 1994)
is introduced for Dait variables over all
agents for each time step t. The advan-
tage of the ALL-DIFFERENT encoding is
that various efficient encodings of the ALL-
DIFFERENT (Biere & Brummayer, 2008;
Surynek, 2012a) constraint over bit vectors
can be integrated.

MATCHING SAT encoding. The next
development has been done in SAT encod-

ing called MATCHING that separates conflict rules in MAPF and agents transitions between time
steps (Surynek, 2014a). Conflict rules are expressed over anonymized agents that are encoded by
direct variablesMv

t ∈ {TRUE ,FALSE} (Tamura, Taga, Kitagawa, & Banbara, 2009).
The presence of some agent in vertex v at time step t is indicated by a single propositional

variable (Mv
t = TRUE if and only if ∃ai ∈ A such that αt(ai) = v). Using anonymized agents

is however not enough as agents may end up in other agent’s goal - see Figure 4. For transitions
where individual agents need to be distinguished, log-space encoded variables Avt ∈ {0, 1, 2, ..., k}
represent what agent occupies a given vertex (Avt if and only if αt(ai) = v) (Surynek, 2014a). The
advantage of MATCHING over previous encodings INVERSE and ALL-DIFFERENT is that move-
ment conflict rules can be expressed in a simpler way over direct variables Mv

t for anonymized
agents. Compared to doing so over log-space encoded variables Avt or Dait that distinguish individ-
ual agents, smaller formula can be obtained with conflict reasoning overMv

t .

561

SURYNEK, STERN, BOYARSKI, & FELNER

DIRECT SAT encoding. Lessons taken from the previous development was that introduction
of directly encoded variables leads to significant performance improvements although encoding set
of states by direct variable is not as space efficient as the in the log-space encoding case. The next
encoding purely based on direct variables - called DIRECT MAPF encoding (Surynek, 2014b) -
introduces a single Boolean variable for every triple of agent, vertex, and time step; formally there
is a Boolean variable X (ai)

v
t such that it is TRUE if and only if agent ai occupies v at time step t

(some triples may be forbidden as unreachable). In this work we are partly inspired by the DIRECT

encoding as for the idea of directly encoded variables.
ASP, CSP, and ILP approach. Although much work in makespan-optimal solving has been

done for SAT, other compilation-based approaches to MAPF like ASP-based (Erdem et al., 2013)
and CSP-based (Ryan, 2010) exist. Both ASP and CSP offer rich formalism to express various
objective functions in MAPF. The ASP-based approach adopts a more specific definition of MAPF
where bounds on lengths of paths for individual agents are specified as a part of the input. Except the
bound on sum-of-costs the ASP formulation works with other constraints such as no-cycle (the agent
shall not visit the same part of the environment multiple times), no-intersection (only one agent
visits each part of the environment), or no-waiting (when minimization of idle time is desirable).
The ASP program for a given variant of MAPF consisting of a combination of various constraints
is solved by the CLASP SAT solver (Gebser, Kaufmann, Neumann, & Schaub, 2007).

Ryan (2010) proposed a CSP-based approach that focuses on the structure of the underlying
graph G. The graph is partitioned into halls (singly-linked chain of vertices with any number of
entrances and exits) and cliques (represents large open spaces with many entrances and exists)
commonly referred to as sub-graphs. The plan is searched using CSP techniques over an abstract
graph whose nodes are represented by the sub-graphs. Specific properties of different sub-graphs
are reflected in the constraints - for example, agents in a clique sub-graph usually cannot exceed
the capacity of the clique while in a hall sub-graph the agents must preserve their ordering. The
resulting CSP is eventually solved using the GECODE solver (Tack, 2009).

The similarity of MAPF and multi-commodity flows has also been studied (Yu & LaValle,
2013b), where each agent is regarded as a different commodity of a multi-commodity flow. The
individual depths of the multi-commodity flow are associated with individual time steps of MAPF
solution. Finding optimal solutions of MAPF with respect to various objective functions can be
then modeled as finding an optimal solution to a Integer Linear Programming (ILP) problem (Yu &
LaValle, 2013a).

2.3 Multi-agent Planning and Multi-robot Planning

Multi-agent path finding can be understood as a specific problem in the wider paradigm of multi-
agent planning (MAP) (de Weerdt & Clement, 2009; Torreño, Onaindia, Komenda, & Stolba, 2018).
Agents in MAP operate in a shared environment and fulfil a given common goal. To achieve the
common goal the agents need to be assigned their individual goals. The planning phase in MAP
needs to coordinate actions of individual agents so that they benefit from positive interactions and
avoid harmful interactions (Dimopoulos & Moraitis, 2006).

There exist many diverse techniques for MAP including heuristic search-based techniques with
various improvements like divide-and-conquer (Ephrati & Rosenschein, 1994) as well as compilation-
based techniques using SAT (Dimopoulos, Hashmi, & Moraitis, 2012) or classical planning (Di-
mopoulos & Moraitis, 2006) as a target formalism.

562

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

An important issue in MAP is also the negotiation phase in which agents decompose the com-
mon goal and assign individual tasks. Popular source methods for negotiation in MAP are game
theoretical methods such as combinatorial auctions (Robu, Noot, Poutré, & van Schijndel, 2011),
voting (Rosenschein, 1995), and argumentation (Sapena, Onaindia, & Torreño, 2010). Another im-
portant issue in MAP is that agents deliberately do not share their knowledge completely with other
agents, referred to as privacy-preserving MAP (Tozicka, Jakubuv, Komenda, & Pechoucek, 2016).

MAPF as a special MAP task is greatly simplified as individual agents’ goals are assigned as
part of the input so the negotiation phase is missing in MAPF. On the other hand, there is a strong
emphasis on avoiding the negative interactions during the planning phase in MAPF.

Natural motivation for multi-agent path finding on graphs rests in multi-robot planning and
coordination (Chai & Su, 2013; Jones, Dias, & Stentz, 2011) (MRPC). The MRPC task consists in
determining actions for a team of robots so that the team can fulfill a given task by executing the
actions by individual robots. It is important that robots in the team collaborate with each other to
fulfill the task, for example certain actions may require multiple robots to be executed.

One stream of research in MRPC focuses on heterogeneous teams of mobile robots (Parker,
1994), the team usually consists of a small number of robots. Typical applications are search and
rescue operations (Beck, 2016) with multiple robots each with different abilities to perform rel-
atively complex actions (Jorgensen, Chen, Milam, & Pavone, 2018). The other stream of works
focuses on homogeneous teams of mobile robots (Oh, Park, & Ahn, 2015). The homogeneous
teams typically consist of larger number of robots but individual robots can perform only simpler
actions such as motion and actions like loading and unloading.

MAPF appears in MRPC as a sub-problem when robots need to plan their paths to reach des-
tinations where actions are performed. Physical occupation of space by robots in MRPC can be
modeled by MAPF rules so collision free planning can be carried out via MAPF. In the case of
homogeneous teams, the MAPF problem can represent even the whole phases of the MRPC such
as in the case of motion planning for swarms of UAVs (Kumar & Michael, 2012; Sørli, Graven, &
Bjerknes, 2017).

3. SAT-Based Solvers for Makespan-Optimal MAPF

SAT-based MAPF solvers reduce the question of existence of a solution to given MAPF instance to
the Boolean satisfiability problem (SAT) (Biere et al., 2009). The reduction encompasses Boolean
variables to model the MAPF problem. As Boolean satisfiability answers binary questions the
challenge is to apply SAT for MAPF where there is a cumulative cost function. A general scheme
for using SAT solvers to solve an optimization problem is to reduce the optimization problem into
a sequence of decision problems. The questions are which decision problem to encode, how to
encode it, and how to devise an appropriate sequence of these decision problems that will guarantee
a solution to the optimization problem at hand.

This challenge is stronger for the sum-of-costs variant where each agent has its own cost. We
first recall concepts from SAT encodings for the makespan objective. Then, we present our SAT
encoding for sum-of-costs.

A time expansion graph (denoted TEG) is a basic concept used by SAT-based MAPF solvers
(Surynek, 2014a; Surynek et al., 2016a). We use it too in the sum-of-costs variant below. A TEG is
a directed acyclic graph (DAG). First, the set of vertices of the underlying graphG are duplicated for
all time-steps from 0 up to the given makespan bound µ. Then, possible actions (move along edges

563

SURYNEK, STERN, BOYARSKI, & FELNER

or wait) are represented as directed edges between successive time steps. Figure 5 shows graph
G = (V,E) and its TEG of depth 2 for time steps 0, 1 and 2 (vertical layouts) denoted TEG(2).
Copies of the underlying graph G within TEG will be called layers.

It is important to note that in this example (1) horizontal edges in TEG correspond to wait
actions. (2) diagonal moves in TEG correspond to real moves. Formally a TEG is defined as
follows:

Definition 1 Time expansion graph of depth µ corresponding to undirected graph G = (V,E)
is a digraph TEG(µ) = (V ′, E′) where V ′ = {utj | t = 0, 1, ..., µ ∧ uj ∈ V } and E′ =

{(utj , u
t+1
l) | t = 0, 1, ..., µ− 1 ∧ ({uj , ul} ∈ E ∨ j = l)}.

u2

u1

u3

G=(V,E)

u0
1

u0
2

u0
3

u2
1

u2
2

u2
3

time step

0 1 2

u1
1

u1
2

u1
3

𝜇=2

TEG(G,2)=(V’,E’)

Figure 5: An example of time expansion graph:
input graph (left) and its expansion for
3 steps (depth 2). For each vertex
uj ∈ V its copy utj indexed by time
step t is introduced and corresponding
directed edges are added between suc-
cessive time steps to represent actions
including wait actions.

The encoding for MAPF introduces TEGs
for individual agents. That is, we have
TEGi(µ) = (Vi, Ei) for each agent ai ∈
{1, 2, ..., k}. Directed non-conflicting paths
in TEGs correspond to valid non-conflicting
movements of agents in the underlying graph
G. The existence of non-conflicting paths in
TEGs is encoded as satisfiability of a Boolean
formula. Next, we describe in more details the
encoding style used in the DIRECT encoding.

Boolean variables and constraints (clauses)
for a single time step t ∈ {0, 1, ..., µ} in
TEGi(µ) represent any possible position of
agent ai at time step t; that is, we have X (ai)

t
v

from the DIRECT encoding. Boolean variables
for all TEGs together represent all possible con-
figurations of agents from time step 0 up to time
step µ. It is ensured by constraints that config-
urations of agents in consecutive time steps of
TEGs correspond to valid actions: agent ai can
appear in vertex utj if it can move there from the
previous time step in TEGi along a directed
edge, that is, if ai is in some ut−1

l such that
(ut−1
l , utj) ∈ Ei. We also have inter-TEG constrains ensuring that agents do not collide with each

other (detailed list of constraints will be introduced lter for the sum-of-costs variant).
Given a desired makespan µ, formula Fµ represents the question of whether there is a collection

of non-conflicting directed paths in TEG1,...,TEGk of depth µ such that the first configuration
equals to α0 and the last one equals to α+. The search for optimal makespan is done by iteratively
incrementing µ = 0, 1, 2... until a satisfiable formula Fµ is obtained as shown in Algorithm 1.

This process ensures finding a makespan-optimal solution in case of a solvable input MAPF
instance, since the satisfiability of Fµ is a non-decreasing function of µ. It is important to note that
solvability of a given MAPF can be checked in advance by a fast polynomial algorithm like PUSH-
AND-ROTATE (de Wilde et al., 2013). More information on SAT encoding for the makespan-optimal
variant can be found in various studies (Surynek, 2014a, 2014, 2014b). The detailed transformation

564

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

of a question of whether there are non-conflicting paths in TEGs will be shown in the following
sections.

4. SAT-Based Solvers for Sum-of-costs Optimal MAPF

The general scheme described above for finding the optimal makespan is to convert the optimiza-
tion problem (finding the minimal makespan) to a sequence of decision problems. The decision
problem was: is there a solution of makespan µ, and the sequence of decision problems was to
increment µ until the minimal makespan is found. The numeric objective function to minimize, i.e.,
the makespan µ corresponds directly to the number of time expansions of the underlying graphG in
TEG. Thus, the decision problem corresponded to the existence of directed paths in TEGs satisfying
additional constraints encoding the MAPF rules.

We apply an analogous scheme for finding the optimal sum-of-costs, converting it to a sequence
of decision problems – is there a solution of a given sum-of-costs ξ, and the sequence of decision
problems is to increment ξ until finding the minimal sum-of-costs.

It is important to note that an incremental strategy to obtain the optimal value of the objective
function is suitable only when the cost of a query is exponential in µ or ξ. In the case of uniform
query costs different strategies, like binary search, would be more suitable. This roughly holds in
MAPF, as increasing µ corresponds to adding a fresh time step in the TEGs, which is reflected in
the encoded Boolean formula by adding a number of variables and constraints proportional to the
size of G.

Since the runtime of a SAT solver is exponential in the size of the input formula in the worst
case we have that the runtime for answering Fµ is exponential in µ in the worst case. In such a
setup with incremental strategy, the cost/runtime of the last query is roughly the same as the total
cost/runtime of previous queries in the worst case. As we will see later, the same applies also for
the sum-of-costs ξ.

However, encoding the decision problem for the sum-of-costs is more challenging than the
makespan case, because one needs to both bound the sum-of-costs, but also to predict how many
time expansions are needed. We address this challenge by using two key techniques described next:
(1) Cardinality constraint for bounding ξ and (2) Bounding the makespan.

• Cardinality constraints. This is a technique from the SAT literature that enables counting
and bounding a numeric cost in a Boolean formula (Bailleux & Boufkhad, 2003; Silva &
Lynce, 2007; Sinz, 2005). Technically this is done by counting and bounding the number
of Boolean variables from a given set that are assigned TRUE . This consequently enables
encoding in a Boolean formulate a constraint that bounds the sum-of-costs (details in Sec-
tion 4.3).

• Upper bound on the required time expansions. We show below how to compute for a
given sum of cost value ξ a value µ such that all possible solutions with sum-of-costs ξ must
be possible for a makespan of at most µ (details in Section 4.2). This enables encoding the
decision problem of whether there is a solution of sum-of-costs ξ by using a SAT encoding
similar to the makespan encoding with µ time expansions. In other words, it will be sufficient
to use TEGs of depth µ in order to represent all solutions that fits under the given sum-of-costs
ξ.

565

SURYNEK, STERN, BOYARSKI, & FELNER

In the following sections, we explain each of this techniques in detail, along with additional
implementation details.

4.1 Bounding ξ via Cardinality Constraint

The SAT literature offers a technique for encoding a cardinality constraint (Silva & Lynce, 2007;
Sinz, 2005), which allows calculating and bounding a numeric cost within the Boolean formula.
Formally, for a bound λ ∈ N and a set of Boolean variables X = {x1, x2, ..., xm} the cardinality
constraint ≤λ {x1, x2, ..., xm} is satisfied if and only if the number of variables from the set X that
are set to TRUE is ≤ λ. There are various ways how to encode cardinality constraints in Boolean
formulae. The standard approach is to simulate arithmetic circuits (Bailleux & Boufkhad, 2003)
within the formula (either using binary or unary representation of numbers encoded by vectors of
Boolean variables).

In our SAT encoding, we use such cardinality constraints to encode a constraint that upper
bounds the sum-of-costs. Specifically, we map every agent’s action to a Boolean variable, which
is TRUE if that action is performed in the plan. Then, we add cardinality constraint over these
variables, thereby encoding a bound on the sum-of-cost of the plan. To find a plan with an optimal
sum-of-cost, we use the general structure of the makespan SAT encoding, increasing this sum-of-
cost bound by one in every iteration, until a solution is found.

A challenge with such a SAT encoding is that we must set both the number of time expansions
as well as the sum of cost bound in every iteration. We address below the challenge of how to
connect these two factors – the number of time expansions and the sum of cost bound. The explicit
form of the cardinality constraint will be expressed later after we will define the Boolean variables
that the cardinality constraint will bound.

4.2 Bounding the Makespan for the Sum of Costs

We compute how many time expansions µ are needed to guarantee that if a solution with sum-
of-costs ξ exists then it will be found within at most µ time expansions. In other words, in our
encoding, the values we give to ξ and µ must fulfill the following requirement:

Requirement (R1): All possible solutions with sum-of-costs ξ must be possible for a makespan of
at most µ.

To find a µ value that meets (R1) for given ξ, we require the following definitions. Let ξ0(ai)
be the cost of the shortest individual path for agent ai, and let ξ0 =

∑
ai∈A ξ0(ai). ξ0 is called the

sum of individual costs (SIC) (Sharon et al., 2013). ξ0 is an admissible heuristic for optimal sum-
of-costs search algorithms, since ξ0 is a lower bound on the minimal sum-of-costs. ξ0 is calculated
by relaxing the problem by omitting the other agents.

Similarly, we define µ0 = maxai∈A ξ0(ai). µ0 is length of the longest of the shortest individual
paths and is thus a lower bound on the minimal makespan. Finally, let ∆ be the extra cost over SIC.
That is, let ∆ = ξ − ξ0.

Proposition 1 For makespan µ of any solution with sum-of-costs ξ, where ξ = ξ0 + ∆, it holds that
µ ≤ µ0 + ∆. Hence (R1) is satisfied for setting µ = µ0 + ∆.

566

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Algorithm 2: Basic SAT-based sum-of-costs optimal MAPF solving.
1 Solve-MAPF-SATSOC (Σ = (G = (V,E), A, α0, α+))
2 if Σ is unsolvable then
3 return UNSOLVABLE

4 µ0 ← maxai∈A ξ0(ai)
5 ξ0 ←

∑
ai∈A ξ0(ai)

6 ∆← 0
7 while TRUE do
8 µ← µ0 + ∆
9 for each agent ai ∈ A do

10 TEGi(µ, ξ
i
0)← build-TEG(ai, µ, ξ0(ai), Σ)

11 F(µ0, ξ0,∆)← encode-MAPF(Σ, ∆, TEG1(µ, ξ10), ..., TEGk(µ, ξk0))
12 π ← consult-SAT-SOLVER(F(µ0, ξ0,∆))
13 if π 6= UNSAT then
14 return π

15 ∆← ∆ + 1

Proof: The worst-case scenario, in terms of makespan, is that all the ∆ extra moves belong to a
single agent. Given this scenario, in the worst case, ∆ is assigned to the agent with the largest
shortest-path. Thus, the resulting path of that agent would be µ0 + ∆, as required. 2

Using Proposition 1, we can safely encode the decision problem of whether there is a solution
with sum-of-costs ξ, knowing that if a solution of cost ξ exists then it will be found within µ =
µ0 + ∆ time expansions. In other words, Proposition 1 shows the relation between the parameters
µ and ξ, which will both be changed by changing ∆.

Algorithm 2 summarizes our optimal sum-of-costs algorithm. In every iteration, µ is set to
µ0 + ∆ (line 7) and the relevant TEGs of depth µ for various agents are built (these TEGs also take
into account the minimum individual cost ξi0 = ξ0(ai) of individual agents ai, described below).
Using TEGs of individual agents a formula F(µ0, ξ0,∆) is constructed that encodes a decision
problem whether there is a solution with sum-of-costs ξ = ξ0 + ∆ and makespan µ = µ0 + ∆.
Afterwards the formula is queried to the SAT solver (line 12).

The first iteration starts with ∆ = 0. If such a solution exists, it is returned. Otherwise ∆ is
incremented by one, µ and consequently ξ are modified accordingly and the next iteration of SAT
consulting is activated.

Proposition 2 The SAT-based algorithm MAPF-SAT (Algorithm 2) is sound and complete.

Proof: This algorithm clearly terminates; for unsolvable instances after the initial solvability test;
for solvable MAPF instances as we start seeking a solution of ξ = ξ0 (∆ = 0) and increment ∆
(which increments ξ and µ as well) to all possible values. Hence using assumption that solvability of
MAPF with respect to the sum-of-costs bound is non-decreasing function we eventually encounter
∆ (ξ and µ) for which Σ is solvable and valid solution is calculated and returned. 2

The initial unsolvability check of an MAPF instance can be done by any polynomial-time com-
plete suboptimal algorithm such as PUSH-AND-ROTATE (de Wilde et al., 2014).

567

SURYNEK, STERN, BOYARSKI, & FELNER

Algorithm 3: Construction of the time expansion graph.
1 Construct-TEG(µ, ξi0, G = (V,E))
2 Vi ← ∅
3 Ei ← ∅
4 Fi ← ∅
5 for uj ∈ V do
6 E ← E ∪ {uj , uj} /* adding loops to ensure the frame axiom */

7 for t ∈ {0, 1, ..., µ} do
8 Vi ← Vi ∪ {utj | uj ∈ V }
9 for t ∈ {0, 1, ..., µ− 1} do

10 for each {uj , ul} ∈ E do
11 if t ≤ ξ0(ai) then
12 Ei ← Ei ∪ {utj , ut+1

l }
13 else
14 if {uj , ul} 6= {t} then
15 Fi ← Fi ∪ {utj , ut+1

l }
16 else
17 Ei ← Ei ∪ {utj , ut+1

l }

18 return (TEGi(µ, ξi0) = (Vi, Ei, Fi))

α+

α0

a1

MAPF Σ=(G, {a1}, α0, α+)

a1

TEG1(G,3)=(V1,E1,F1)

a1

(V1,E1,F1)

u0
1

u0
2

u0
3

u3
1

u3
2

u3
3

Ei standard
Fi extra

edges

time step

0 1 2 3

u2
1

u2
2

u2
3

u1
1

u1
2

u1
3

u2

u1

u3

u2

u1

u3

µ=3

Figure 6: A TEG1(3, 2) for agent a1 that needs to go from u1 to u3.

4.2.1 EFFICIENT USE OF THE CARDINALITY CONSTRAINT

The complexity of basic encoding of a cardinality constraint depends quadratically on the number
of constrained variables (Silva & Lynce, 2007; Sinz, 2005); more precisely ≤λ {x1, x2, ..., xm}
requires O(m2) Boolean variables and clauses. Hence bounding too many variables using the car-
dinality constraint may contribute significantly to the total size of the encoding.

Since each agent ai must move at least ξi0 = ξ0(ai) times, we can reduce the number of vari-
ables counted by the cardinality constraint by only counting the variables corresponding to extra
movements over the first ξ0(ai) movements ai makes. We implement this by introducing a slightly
modified TEG for a given agent ai, labeled TEGi(µ, ξi0).

Algorithm 3 lists how to construct the TEG for a given makespan bound µ and individual cost
bound ξi0, agent ai, and the underlying graph G. TEGi(µ, ξi0) = (Vi, Ei, Fi) differs from TEG
(Definition 1) in that it distinguishes between two types of edges: Ei and Fi. Ei are (directed)

568

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

edges whose destination is at time step ≤ ξi0 = ξ0(ai) or represent a wait action in the goal vertex.
These are called standard edges. Fi denoted as extra edges are directed edges whose destination is
at time step > ξi0 = ξ0(ai) and do not correspond to a wait action in the goal vertex.

Figure 6 shows an underlying graph for agent a1 (left) and the corresponding TEG1(3, 2). Note
that the optimal solution of cost 2 is denoted by the diagonal path in TEG1(3, 2). Edges that belong
to Fi are those that their destination is time step 3 and are not corresponding to wait actions (dotted
lines). The key in this definition is that the cardinality constraint would only be applied to the
extra edges, that is, we will only bound the number of extra edges (they sum up to ∆) making the
cardinality constraint more efficient (bounding the number of all edges by ξ = ξ0 + ∆ is equivalent
to bounding the number of extra edges by ∆). The case when agent ai leaves its goal vertex at time
step t > ξi0 will be treated separately. In such a case, we need to bound the number of wait actions
in the goal vertex between time steps ξi0 and t, let us call these wait actions non-terminal.

4.3 Detailed Description of the SAT Encoding

Agent ai must go along a directed path from its initial position to its goal within TEGi(µ, ξi0);
that is from a vertex in the first layer corresponding to the start position α0(ai) to a vertex in the
µ-th layer corresponding to the goal position α+(ai). The directed path in TEGi(µ, ξi0) simulates
movement of agent in the underlying graph G (waiting and repeated visits to the same vertex can be
modeled).

Hence we need to encode searching for a path from α0
0(ai) to αµ+(ai) in TEGi(µ, ξi0) within the

Boolean formula. To solve the MAPF problem we need to search for directed paths for individual
agents in parallel. Thus possible interactions between agents need to be taken into account to reflect
the MAPF movement rules correctly. Additional constraints will be added to capture collision
avoidance etc. Finally, we will encode the cardinality constraint saying that the number of extra
edges and non-terminal wait actions across all TEGs is at most ∆.

We want to ask whether a sum-of-costs solution of ξ exist. For this we build TEGi(µ0 +
∆, ξi0) = (Vi, Ei, Fi) for each agent ai ∈ A. Next we introduce the Boolean encoding (denoted
BASIC-SAT), formula FBASIC(µ0, ξ0,∆), which has the following Boolean variables:

1:) X tj (ai) for every t ∈ {0, 1, ..., µ} and utj ∈ Vi – Boolean variable of whether agent ai is in
vertex uj at time step t.

2:) E tj,k(ai) for every t ∈ {0, 1, ..., µ−1} and (utj , u
t+1
l) ∈ (Ei∪Fi) – Boolean variables that model

transition of agent ai from vertex uj to vertex ul through any edge (standard or extra) between time
steps t and t+ 1 respectively.

3:) Ct(ai) for every t ∈ {0, 1, ..., µ − 1} such that there exist utj ∈ Vi and ut+1
l ∈ Vi with

(utj , u
t+1
l) ∈ Fi — Boolean variables that model cost of movements along extra edges (from Fi)

between time steps t and t+ 1. We denote by C the set of all such variables.

We now introduce constraints on these variables to restrict illegal values as defined by our variant
of MAPF. Other variants may use a slightly different encoding but the principle is the same. Let
Tµ = {0, 1, ..., µ − 1}. Several groups of constraints are introduced for each agent ai ∈ A as
follows:

569

SURYNEK, STERN, BOYARSKI, & FELNER

C1: If an agent appears in a vertex at a given time step, then it must follow through exactly one
adjacent edge into a vertex in the next time step. This is encoded by the following two constraints,
which are posted for every t ∈ Tµ and utj ∈ Vi

X tj (ai)⇒
∨

(utj ,u
t+1
l)∈Ei∪Fi

E tj,l(ai), (1)

∑
(utj ,u

t+1
l)∈Ei∪Fi

E tj,l(ai) ≤ 1 (2)

The pseudo-Boolean constraint (2) (often called at-most-one constraint) can be translated to
clauses in multiple different ways (Ansótegui, Bofill, Coll, Dang, Esteban, Miguel, Nightingale,
Salamon, Suy, & Villaret, 2019). One simple and efficient translation at the same time is to forbid
all possible pairs variables to be simultaneously TRUE as follows. As the translation consists of
binary clauses only it supports unit propagation (Dowling & Gallier, 1984) inside the SAT solver.∧

(utj ,u
t+1
l),(utj ,u

t+1
l′)∈Ei∪Fi∧l<l′

¬E tj,l(ai) ∨ ¬E tj,l′(ai) (3)

C2: Whenever an agent occupies an edge it must also enter it before and leave it at the next time-
step. This is ensured by the following constraint introduced for every t ∈ Tµ and (utj , u

t+1
l) ∈

Ei ∪ Fi:
E tj,l(ai)⇒ X tj (ai) ∧ X t+1

l (ai) (4)

C3: The target vertex of any movement except a wait action must be empty. This is ensured by the
following constraint introduced for every t ∈ Tµ and (utj , u

t+1
l) ∈ Ei ∪ Fi such that j 6= l.

E tj,l(ai)⇒
∧

ai′∈A∧i′ 6=i∧utj∈Vi′

¬X tj (ai′) (5)

C4: No two agents can appear in the same vertex at the same time step. That is the following
constraint is added for every t ∈ Tµ and vertex utj ∈ V t:∑

utj∈Vi

X tj (ai) ≤ 1 (6)

Again this pseudo-Boolean at-most-one constraint can be translated to clauses by forbidding
any pair of agents ai, ai′ ∈ A such that i < i′ to appear simultaneously in a vertex:∧

utj∈Vi∩Vi′

¬X tj (ai) ∨ ¬X tj (ai′) (7)

570

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

C5: Whenever an extra edge is traversed the cost needs to be accumulated. In fact, this is the cost
that we accumulate as discussed above. This is done by the following constraint for every t ∈ Tµ
and extra edge (utj , u

t+1
l) ∈ Fi.

E tj,l(ai)⇒ Ct(ai) (8)

C6: If agent ai leaves the goal all wait actions before leaving the goal must be accumulated to
the cost. These actions correspond to non-terminal wait actions. Hence the following constraint is
added for each agent ai and t ∈ Tµ:

Ct(ai)⇒
∧

t′∈{ξ0i ,ξ0i+1,...,t−1}

Ct′(ai) (9)

C7: Cardinality constraint. Finally the bound on the total cost needs to be introduced. Reaching
the sum-of-costs of ξ corresponds to traversing exactly ∆ extra edges from Fi or non-terminal wait
actions. This corresponds to the following simple cardinality constraint over the variables in C:

≤∆ {C ∈ C} (10)

Final formula. The resulting Boolean formula FBASIC(µ0, ξ0,∆) is a conjunction of C1, C2,
. . . C7 and is the one that is constructed and consulted by Algorithm 2 (lines 11 and 12).

The constraints also imply that agent cannot swap their positions, that is for example two agents
moving in opposite directions in a corridor to cross each other and move on is forbidden. The
following propositions summarize the correctness and the space complexity of our BASIC-SAT
encoding.

Proposition 3 MAPF Σ = (G = (V,E), A, α0, α+) has a sum-of-costs solution of ξ if and only if
FBASIC(µ,∆) is satisfiable. Moreover, a solution of MAPF Σ with the sum-of-costs of ξ can be
extracted from the satisfying assignment of FBASIC(µ0, ξ0,∆) by interpreting its X tj (ai) variables.

Proof: The direct consequence of the above definitions is that a valid solution of a given MAPF Σ
of sum-of-costs ξ corresponds to non-conflicting directed paths in the TEGs of the individual agents
that in total use at most ∆ extra edges and non-terminal wait actions. These non-conflicting paths
further correspond to variable assignment satisfying FBASIC(µ0, ξ0,∆), i.e., variable assignments
represent directed paths in TEGs plus they satisfy bounds imposed by the cardinality constraint. 2

Proposition 4 LetD be the maximal degree of any vertex inG and let k be the number of agents. If
k · |E| ≥ ∆ = ξ−ξ0 and k ≥ D then the number of clauses in FBASIC(µ0, ξ0,∆) isO(µ ·k2 · |E|),
and the number of variables is O(µ · k · |E|)

Proof: The components of FBASIC(µ0, ξ0,∆) are described in equations (1) – (10). Equation (1)
introduces at most O(k · µ · |E|) clauses. Equation (3) introduces at most O(k · µ|E| ·D) clauses.
Equation (4) introduces at most O(k · µ · |E|) clauses. Equation (5) introduces at most O(k2 ·

571

SURYNEK, STERN, BOYARSKI, & FELNER

µ · |E|). Equation (7) introduces at most O(k2 · µ · |V |) clauses. Equation (8) introduces at most
O(k · µ · |E|) clauses. Equation (9) introduces at most O(k · µ · (ξ − ξ0)) binary clauses since
each implication from (9) develops into at most ξ − ξ0 binary clauses. Equation (10) introduces at
most O(k · µ · (ξ − ξ0)) clauses, since the constraint checking that m variables has a cardinality
constraint of λ requires O(m · λ) clauses (Sinz, 2005). Summing all the above results in a total of
O(µ · k · (|E| · (D+ k) + (ξ − ξ0))). If we assume that k > D and that k · |E| > (ξ − ξ0) then the
number of clauses is O(µ · k2 · |E|). The number of variables is computed in a similar way. 2

4.4 Improving Basic SAT by Adding MDDs

The major parameter that affects the speed of solving of Boolean formulae is their size (Petke,
2015). The size of formulae in the BASIC-SAT encoding is affected mostly by the size of the TEGs
(this is embodied in the |V | and |E| factors in the encoding size). To obtain a significant speedup
we reduce the size of TEGi for agent ai in terms of the number of vertices while the soundness of
encoding is preserved. To do this we borrow the ideas of Multi-Value Decision Diagram (MDD)
(Andersen, Hadzic, Hooker, & Tiedemann, 2007) from the search-based MAPF algorithm ICTS

(Sharon et al., 2013). This shows the advantage of combining techniques from both classes of
approaches (search-based and SAT).

14

11 8 7
a1 a1 : (V1,E1,F1)

6

6

4

3

7 7 7

7

8

a2

12
9

5 1 2

3
10 6

7

a3

a2 : (V2,E2,F2)

a3 : (V3,E3,F3)

Sum of costs 𝜉 ≤ 11, makespan 𝜇 = 5

time step 0 1 2 3 4 5

u0
12 u5

3

u0
4

u0
14 u5

6

u5
7

Figure 7: MDDs for agents a1, a2, and a3 for the MAPF from Figure 1 for sum of individual cost
ξ ≤ 11. Specifically, MDD1(5, 4), MDD2(5, 2), and MDD3(5, 5) are shown (no extra
edges are present).

Let TEGi(µ, ξi0) denote TEGi for µ time expansions where µ = µ0 + ∆. MDDi(µ, ξ
i
0) is a

digraph that represents all possible valid paths from α0(ai) to α+(ai) of makespan/cost µ for agent
ai (in the case of single agent the makespan and the sum-of-costs are the same). MDDi(µ, ξ

i
0) has

572

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

a single source node at level 0 and a single sink node at level µ. Every node at depth t of MDDµ
i

corresponds to a possible position of ai at time t, that is a position on a path of cost µ from α0(ai) to
α+(ai). In other words, vertex uj ∈ V that is too far from either α0(ai) or α+(ai) is not represented
in MDDi(µ, ξ

i
0). If there is no path of makespan/cost µ from α0(ai) to α+(ai) containing uj , then

uj is not included in MDDi(µ, ξ
i
0). Similarly as in TEGi(µ, ξ

i
0), the parameter ξi0 is used to

distinguish between the standard edges (those that terminate in time step ≤ ξi0 or represent the wait
action in the goal vertex) in MDD and extra edges (those that terminate at time step > ξi0 and do not
correspond to the wait action in the goal vertex).

14 a1 (V1,E1,F1)
6

4

3

7
7

7 7

8

a2

12

10

a3

(V2,E2,F2)

(V3,E3,F3)

Sum of costs 𝜉 ≤ 12, makespan 𝜇 = 6

6

7

3

11

14 11

8

8

7

7

6

4

5

9

9

12 6

5

10

1

6

2

7

1

3

2

7

3

8

time step 0 1 2 3 4 5 6

u0
14

u0
4

u0
12

u6
6

u6
7

u6
3

Ei standard
Fi extra

edges

Figure 8: MDDs from Figure 7 for the incremented individual cost from 11 to 12 (ξ ≤ 12).

It is easy to see that MDDi(µ, ξ
i
0) is a subgraph of TEGi(µ, ξi0). While TEGi(µ, ξi0) includes

all vertices of G at each time step, MDDi(µ, ξ
i
0) includes only those vertices and edges that are

reachable within makespan/cost µ, and thus vertices not in MDDi(µ, ξ
i
0) can be ignored.

Moreover, the maximum cost that can be consumed by single agent ai under given sum-of-costs
bound ξ = ξ0 + ∆ is ξ0(ai) + ∆ where, as defined above, ξ0(ai) is the length of the shortest
path connecting α0(ai) with α+(ai) in G (assuming no other agent exists). Thus, it is sufficient to
replace TEGi(µ0 + ∆, ξi0) with MDDi(µ0 + ∆, ξi0) in the algorithm.

MDDs for the agents of Figure 1 are shown in Figures 7 and 8. Indeed, the size of the MDDs is
much smaller than the corresponding TEGs, which include all states for all time steps. Though the
increase in size caused by ability to reach more vertices under given the next sum-of-costs bounds
is observable between Figures 7 and 8.

573

SURYNEK, STERN, BOYARSKI, & FELNER

𝒳
0

12 a3 𝒳
6

3

𝒳
2

5

𝒳
2

9

𝒳1
12

𝒳
3

5

𝒳
3

10

𝒳
3

1

𝒳4
2

𝒳4
1

𝒳
5

2

ℰ5
2,3

ℰ5
7,3

𝒳1
9

𝒳
2

10

𝒳
3

6

𝒳5
3

a2

𝒳0
4

𝒳1
3

𝒳
2

7

𝒳
1

8

𝒳
6

7 𝒳
1

4

𝒳
2

3
ℰ

2
3,7

ℰ
2

8,7

𝒳0
14 𝒳5

6 𝒳6
6

𝒳1
14 𝒳2

11 𝒳3
8

ℰ
0

14,11

ℰ
0

14,14

ℰ
1

11,11

ℰ1
11,8

ℰ1
14,11

ℰ2
8,7

ℰ2
8,8

ℰ
2

11,8 ℰ
3

8,7

ℰ
3

7,7

ℰ
3

7,6

ℰ
4

6,6

ℰ
5

6,6

ℰ4
7,6

a1

𝒳1
11

a1

a2

a3

time step

0 1 2 3 4 5 6

(V3,E3,F3)

Ei standard
Fi extra

𝒳
4

7

𝒳
3

7 𝒳2
8

𝒳2
8

𝒳3
7 𝒳4

7

𝒳
4

6

𝒳
5

7

𝒳4
7

𝒳
5

7

𝒳4
6

Figure 9: An illustration of MDD-SAT encoding using MDDs from Figure 8. Mutual exclusion
constraints (C4) that prevent multiple agent occurrence in the same vertex are shown
using dashed edges.

The encoding that uses MDD-based time expansion will be called MDD-SAT and the corre-
sponding formulae will be denoted as FMDD(µ0, ξ0,∆). The formula is similar to the BASIC-SAT
encoding. The only difference is that in BASIC-SAT there is a variable for all vertices and edges of
the TEGs while in MDD-SAT, only variables for the vertices and edges of the MDDs are needed.
This difference can be significant. Table 1 presents the number of Boolean variables and clauses
accumulated over all the constructed formulae for a given MAPF instance for BASIC-SAT and for
MDD-SAT over 8 × 8 grid with 10% obstacles. The average values out of 10 random instances
per number of agents are shown. Up to two orders of magnitude reduction can be observed when
MDDs are used.

An illustration of the FMDD(µ0, ξ0,∆) formula is shown in Figure 9. It is particularly ob-
servable that MDDs reduce the number of mutual exclusion (mutex) constraints (dashed edges) by
omitting unreachable vertices (and all the constraints incident with them).

5. Experimental Results for MDD-SAT

We experimented on 4-connected grids with randomly placed obstacles (Silver, 2005) and on Dragon
Age maps (Sharon et al., 2015; Sturtevant, 2012). Both settings are a standard MAPF benchmarks.
The initial position of the agents was randomly selected. To ensure solvability the goal positions
were selected by performing a long random walk from the initial configurations.

574

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Grid 8x8
m

BASIC-SAT MDD-SAT
Variables Clauses Variables Clauses

1
4
8

16

1 552.8 11 617.6 20.6 27.9

14 712.0 127 732.2 276.5 554.0

226 391.2 2 099 127.6 18 355.6 68 826.0

4 075 187.2 32 108 347.2 2 253 508.2 13 128 646.9

Table 1: The effect of using MDDs in the encoding in terms of the number of variables and clauses.

We compared our SAT solvers to several state-of-the-art search-based algorithms: the increasing
cost tree search - ICTS (Sharon et al., 2013), Enhanced Partial Expansion A* - EPEA* (Goldenberg
et al., 2014) and improved conflict-based search - ICBS (Boyarski et al., 2015). For all the search
algorithms we used the best known setup of their parameters and enhancements suitable for solving
the given instances over 4-connected grids.

The SAT approaches were implemented in C++ 2. The implementation consists of a top level
algorithm for finding the optimal sum-of-costs ξ and CNF formula generator (Biere et al., 2009)
that prepares input formula for a SAT solver into a file. The SAT solver is an external module our
this architecture. We used Glucose 3.0 (Audemard & Simon, 2009; Audemard, Lagniez, &
Simon, 2013), which is a top-performing SAT solver in the recent editions of the SAT Competition
(Järvisalo, Berre, Roussel, & Simon, 2012; Surynek, 2014a; Balyo, Heule, & Järvisalo, 2017).
Since the SAT solver is called multiple times when solving a single MAPF problem, we call it
directly through its API. This SAT solver also supports incremental SAT solving (Fazekas, Biere, &
Scholl, 2019; Audemard et al., 2013), that is, it is possible to add variables and clauses incrementally
between calls, and the solver is able utilize this to learn clauses and speedup its search.

The cardinality constraint was encoded using the standard circuit based encoding called sequen-
tial counter (Sinz, 2005). In our initial testing we considered various encodings of the cardinality
constraint (Bailleux & Boufkhad, 2003; Silva & Lynce, 2007). Our finding is that changing the
encoding has a minor effect 3

ICTS and ICBS were implemented in C#, based on their original implementation (here we used
a slight modification in which the target vertex of a move must be empty). All experiments were
performed on a system with Xeon 2.8Ghz core with 32 Gb of memory.

5.1 Square Grid Experiments

We first experimented on 8 × 8, 16 × 16, and 32 × 32 grids with 10% obstacles while increasing
the number of agents from 1 up to the last number where at least one solver was able to solve an
instance with that number of agents (in case of the 8×8 grid this is 17 agents; and 32 and 60 in case
of 16 × 16 and 32 × 32 grids respectively). For each number of agents 10 random instances were
generated.

Figure 10 presents success rate results where each algorithm was given a time limit of 300 sec-
onds (as was done by Sharon et al., 2013, Boyarski et al., 2015; Sharon, Stern, Felner, & Sturtevant,

2. The implementation is available as part of a MAPF experimental project on: https://github.com/surynek/reLOC.
3. Due to the knowledge of lower bounds on the sum-of-costs, the number of variables involved in the cardinality

constraint is relatively small and hence the different encoding style has not enough room to show its benefit.

575

SURYNEK, STERN, BOYARSKI, & FELNER

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16

Number of agents

Success rate
Grid 8x8 | 10% obstacles

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 12 16 20 24 28
Number of agents

Success Rate
Grid 16x16 | 10% obstacles

MDD-SAT

ICBS

EPEA

ICTS

BASIC-SAT
0

0,2

0,4

0,6

0,8

1

0 4 8 16 24 40 48 56
Number of agents

Success Rate
Grid 32x32 | 10% obstacles

Figure 10: Success rate results for 8 × 8, 16 × 16, and 32 × 32 grids (10 instances per number of
agents).

2015a). Success rate corresponds to percentage out of given 10 random instances solved within the
time limit as a function of the number of agents (higher curves are better).

0,0001

0,001

0,01

0,1

1

10

0 1 2 3 4 5 6 7

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Number of agents

Average Runtime
Grid 8x8 | 10% obstacles

0,0001

0,001

0,01

0,1

1

10

100

1000

0 1 2 3 4 5 6 7 8 10

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Number of agents

Average Runtime
Grid 16x16
| 10% obstacles

MDD-SAT
ICBS
EPEA
ICTS
BASIC-SAT

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

0 1 2 3 4 5 6 7 8 10

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Number of agents

Average Runtime
Grid 32x32 | 10% obstacles

Figure 11: Average runtime for 8× 8, 16× 16, and 32× 32 grids measured out of 10 instances per
number of agents (vertical axis uses a logarithmic scale).

Figure 11 reports the average runtime for instances that were solved by all algorithms (lower
curves are better). Here, we required 100% success rate for all the tested algorithms to be able to
calculate the average runtime; this is also the reason why the number of agents is smaller.

Figure 12 visualizes the results on 8×8, 16×16, 32×32 grid in a different way. Here, we present
the number of instances (out of all instances for all number of agents) that each method solved (y-

576

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

0

20

40

60

80

100

120

140

160

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 8x8|10% obstacles

MDD-SAT
ICBS
EPEA
ICTS
BASIC-SAT

0

20

40

60

80

100

120

140

160

180

1 10 100
N

u
m

b
e

r
o

f
in

st
an

ce
s

Runtime (seconds)

Solved instances
Grid 16x16|10% obstacles

0

50

100

150

200

250

300

350

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 32x32 | 10% obstacles

Figure 12: Number of solvable instances in 8× 8, 16× 16, and 32× 32 grids as a function of time
limit (the horizontal runtime axis uses logarithmic scale).

axis) as a function of the elapsed time (x-axis). Thus, for example says that MDD-SAT was able
to solve 145 instances in time less than 10 seconds on the 16 × 16 (higher curves are better). A
different view is provided when instances are sorted according to their runtimes for each individual
tested algorithm (Figure 13). The lower curve now represents a better performing algorithm.

The first trend is that MDD-SAT significantly outperforms BASIC-SAT in all aspects. This
shows the importance of developing enhanced SAT encodings for the MAPF problem. The perfor-
mance of the BASIC-SAT encoding compared to the search-based algorithm degrades as the size
of the grids grows larger: in the 8x8 grids it is second only to MDD-SAT, in the 16x16 grid it is
comparable to most search-based algorithms, and in the 32x32 grid it is even substantially worse.

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

0 20 40 60 80 100 120 140

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Grid 8x8|10% obstacles

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

0 40 80 120 160

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Grid 16x16|10% obstacles

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

0 80 160 240

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Grid 32x32 | 10% obstacles

MDD-SAT

ICBS

EPEA

ICTS

BASIC-SAT

Figure 13: Sorted runtimes for 8 × 8, 16 × 16, and 32 × 32 grids (the horizontal axis corresponds
to instances sorted differently for each tested algorithm).

577

SURYNEK, STERN, BOYARSKI, & FELNER

In addition, a prominent trend observed in all the plots is that MDD-SAT has higher success rate
and solves more instances than all other algorithms. In particular, in highly constrained instances
(containing many agents) the MDD-SAT solver is the best option.

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of obstacles

Success rate
Grid 8x8 | 10 agents

MDD-SAT
ICBS
EPEA
ICTS

0

50

100

150

200

250

0,1 10

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 8x8|10 agents

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of obstacles

Average runtime
Grid 8x8 | 10 agents

MDD-SAT
ICBS
EPEA
ICTS

Figure 14: Success rate and runtime on the 8 × 8 grid with increasing number of obstacles (out of
64 cells).

However, on the 32 × 32 grid (rightmost figure) for easy instances when the available runtime
was less than 10 seconds, MDD-SAT is weaker than the search-based algorithms. This is mostly
due to the architecture of the MDD-SAT solver, which has an overhead of constructing the formula,
running the external SAT solver, passing the input to it, and extracting the output from it (the truth-
value assignment of variables needs to be interpreted back to agents’ moves).

This effect is also seen in the 8x8 plot for the BASIC-SAT solver, which out of all solvers has
the highest runtime for instances containing few agents. The effect of the overhead with calling the
external SAT solver is multiplied by relatively inefficient formula based on TEGs in terms of its
size.

Next, we varied the number of obstacles for the 8 × 8 grid with 10 agents to see the impact
of shrinking free space and increasing the frequency of interactions among agents. Success rate,
the number of solved instances, and the average runtime are shown in Figure 14. BASIC-SAT is
omitted in this experiment due to its weaker performance from the previous test. MDD-SAT has the
highest success rate except for some easy instances (that needed up to 1 second) where ICBS was
slightly faster, which is again due to the overhead in the setup of SAT solving by an external solver.

We observe counter-intuitive behavior of MDD-SAT here. Increasing the number of obstacles
reduces the number of open cells. This is an advantage for the SAT formula generator in MDD-
SAT as the formula has fewer variables and constraints. By contrast, the combinatorial difficulty of
instances increases with adding obstacles for all the solvers as it means that graphs gets denser with
agents (i.e., the ratio of agents to possible agent positions gets higher) and harder to solve.

The rightmost part of Figure 14 shows average runtime for each number of agents out of 10
instances being solved under the time limit. Here we can see that MDD-SAT tends to use more time
in more difficult instances while other search based solvers tend to finish quickly on easier instances
while being not successful on harder ones.

578

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

5.2 MDD-SAT and the Makespan Objective

a3

a2

Gridnet (4⨯4, 2 internal verties)

a1

Figure 15: An example of MAPF with 3 agents
on a gridnet(4×4, 2) graph originat-
ing from a 4× 4 grid with obstacles.

To provide more comprehensive picture we
compare MDD-SAT with previous SAT-based
solvers. However previous SAT-based solvers
for MAPF using the MATCHING encoding
(the solver called MATCHING-SAT) (Surynek,
2014a) and the DIRECT encoding (DIRECT-
SAT) (Surynek, 2014b) are implemented for the
makespan objective. Hence comparing MDD-
SAT directly with these solvers is not rele-
vant. Therefore we modified MDD-SAT for
the makespan objective as first suggested by
Surynek et al. (2016b). The modified solver
will be denoted MDD-SAT(make).

The modification of MDD-SAT for the
makespan objective consists in removing the
cost bound ξ from the formula. That is, car-
dinality constraints concerning bounding ξ are
omitted. The rest of iterative scheme that in-
creases makespan µ is kept. In the course of
execution of MDD-SAT(make), we again generate the sequence of MDDs. However these MDDs
are different from those in MDD-SAT for the sum-of-costs where each MDDs is constructed for dif-
ferent cost ξ0(ai)+∆. We need to ensure that each agent can use all cost bounded only by common
makespan µ applicable to all agents. Hence all MDDs in MDD-SAT(make) are constructed for cost
µ = µ0 + ∆, where µ0 = maxki=1{ξ0(ai)}.

Agents for which ξ0(ai) < µ0 are given more freedom due to larger MDDs in MDD-SAT(make)
compared to the original MDD-SAT. Due to this relaxation and absence of the overall cost bound
represented by the cardinality constraint the resulting encodings in MDD-SAT(make) is simpler and
less constrained. Therefore we hypothesize that MDD-SAT(make) will be faster than MDD-SAT.

We also modified search-based solvers ICTS, EPEA*, and ICBS for the makespan objective.
Since these MAPF solving algorithms are defined for any cumulative cost, their adaptation for the
makespan objective is done in straightforward way by replacing the calculation of sum-of-costs by
the calculation of makespan. The modified algorithms are denoted ICTS(make), EPEA*(make), and
ICBS(make).

Comparison of sum-of-costs and makespan variants of all above-mentioned algorithms on 4-
connected grid 16× 16 is shown in Figure 17 (upper part). The figure shows sorted runtimes for all
instances solved under given timeout of 300 seconds (lower line is better). We put results for both
objectives into the same plot to see both: comparison of different algorithms for single objective
and comparison of single algorithm across different objectives.

Given the results, it cannot be universally said that the makespan objective is easier than sum-of-
costs. EPEA* performs better than EPEA*(make) while in the case of ICTS and ICBS, the makespan
objective is easier. Search-based solvers perform better than compilation-based solvers in easier
instances but as the difficulty grows their runtime goes up faster than in compilation-based solvers.

579

SURYNEK, STERN, BOYARSKI, & FELNER

The notable exception is MDD-SAT, which is competitive to search-based solvers even for easy
instances.

a3

a2 a1

Hyper-cube (3D, 3 internals)

Figure 16: An example of MAPF with 3 agents
on a hypercube(3D, 3).

Comparison across SAT-based solvers shows
that the previous MATCHING-SAT solver is far
behind DIRECT-SAT and MDD-SAT(make)
while the latter two solvers are very close to
each other, still MDD-SAT(make) is faster.
MATCHING-SAT uses the log-space encoding
(Petke, 2015) for representation of the decision
variables, which seemingly does not perform
well due to poor Boolean constraint propaga-
tion (BCP) /unit propagation (UP) (Dowling &
Gallier, 1984) on top of this encoding. Both
DIRECT-SAT and MDD-SAT(make) are based
on the direct encoding (Tamura et al., 2009),
which, on the other hand, supports BCP/UP
well.

Several trends can be observed in the re-
sults. The hypothesis that MDD-SAT(make)
performs better than MDD-SAT is confirmed
by the results. However MDD-SAT(make)
starts to prevail only in difficult problems where
runtime of MDD-SAT grows much faster to-

wards the time limit. The explanation of this behavior is that in larger and more difficult instances
the cost bound represented by the cardinality constraint has more significant aggravating effect with
respect to the performance.

In addition to square grids, we tested SAT-based solvers on other types of graphs representing
different structure and connectivity to see whether it has any impact on the difficulty of finding
optimal solution by a particular solver. We used two types of graphs:

• a gridnet graph, which can be constructed by starting with a 4-connected grid with obsta-
cles (discussed previously) where edges are replaced by paths consisting of non-zero number
internal vertices. Gridnet graphs originating from a 4-connected grid of size m ×m where
edges are replaced by paths with p internal vertices are denoted gridnet(m×m, p). Example
of gridnet graph denoted gridnet(4 × 4, 2) is shown in Figure 15 - it is constructed from
4-connected grid 4 × 4 taken from Figure 1 where edges are replaced by paths containing 2
internal vertices.

• a hyper-cube graph, which is constructed by starting with a hyper-cube of certain dimension.
Similarly to previous construction, we take the standard d-dimensional hyper-cube graph as
a basis. Then each edge in the starting hype-cube is replaced by a path consisting of non-
zero number of internal vertices. Analogously to the previous notation hypercube(dD, p)
denotes the hyper-cube graph originating from a d-dimmensional hyper-cube where edges
are replaced by paths consisting of p internal vertices. An example of 3-dimensional hyper-
cube (that is a cube) with 3 internal vertices per edge - denoted as hypercube(3D, 3) - is
shown in Figure 16.

580

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (
se

co
n

d
s)

Sorted Runtimes - Grid 16x16|10% obstacles

MATCHING-SAT DIRECT-SAT

ICBS ICBS(make)

EPEA EPEA(make)

ICTS ICTS(make)

MDD-SAT MDD-SAT(make)

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300

R
u

n
ti

m
e

 (
se

co
n

d
s)

Sorted Runtimes
Gridnet (6x6, 6 internals)

MATCHING-SAT

DIRECT-SAT

MDD-SAT

MDD-SAT(make)

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250

R
u

n
ti

m
e

 (
se

co
n

d
s)

Sorted Runtimes
Hyper-cube (4D, 7 internals)

Figure 17: MDD-SAT with the makespan objective and the sum-of-costs objective compared to
ICTS and ICBS and previous makespan-optimal SAT-based solvers MATCHING-SAT
and DIRECT-SAT (lower line means better solver).

Paths replacing edges of the high level graph structure represent narrow corridors where it is
expected that avoidance of agents will be more difficult than in the standard 4-connected grids.
Moreover there is also practical motivation for such graphs. Floor-plans of many warehouses or
shop-like spaces show similar structure where storage areas are surrounded by narrow aisles (Claes,
Oliehoek, Baier, & Tuyls, 2017; Tsang, Ni, Wong, & Shi, 2018).

In the experiment with gridnet and hyper-cube graphs we need to omit comparison with ICTS

and ICBS since their implementation does not support graphs other than grids. We also omit BASIC-
SAT in this experiment. Results for gridnet(6 × 6, 6) and hypercube(7D, 7) are shown in Figure
17 (lower part). The figure shows sorted runtimes of each tested solver across all instances solvable
under the time limit (lower line corresponds to a better solver).

581

SURYNEK, STERN, BOYARSKI, & FELNER

The relative ordering of individual solvers in terms of their performance for the makespan objec-
tive is almost the same as for the 16×16 grid. The notable difference is only diminishing difference
between MDD-SAT(make) and DIRECT-SAT on hard instances. We attribute this to relatively long
makespans in case of hard instances. Moreover in gridnet and hyper-cube tend to lead to long
makespans because of the presence of narrow corridors in these graphs. When the makespan is long
the effect of using MDDs compared to the TEG-based time expansion of the underlying graph is
negligible.

The relative performance of sum-of-costs MDD-SAT compared to makespan-optimal solvers is
far worse than in the 16 × 16 grid. While in the grid case MDD-SAT clearly dominates in easy
instance no such clear dominance is observed in hyper-cube and only less significant dominance in
easy cases is observed in the gridnet graph. Moreover the worst-performing makespan-optimal
solver, MATCHING-SAT, eventually outperforms MDD-SAT for harder instances, which never
happened in the grid case. We explain this trend by a great difference between the true optimal
sum-of-costs and the lower bound estimation ξ0 calculated as the sum of lengths of shortest paths:∑k

i=1 ξ0(ai). This difference is greater in case of gridnet and hyper-cube than in 4-connected
grids due to narrow corridors where avoidance between agents is necessary. In such a case the
lower bound estimation is inaccurate because it ignores this avoidance. This altogether leads to
more iterations of the MDD-SAT algorithm. Moreover the sub-formula encoding the cardinality
constraint representing the cost bound tends to be more complex in such a case.

5.3 Experiments with Large Maps

Experiments with MDD-SAT on large grid-based maps is presented in this section. We used bench-
marks from Sturtevant’s repository (Sturtevant, 2012) - three structurally different Dragon Age Ori-
gin (DAO) maps denoted as brc202d, den520d, and ost003d, which are a standard benchmark
for MAPF (see Figure 18), are used. The size of the underlying grids for these maps is: 530× 481
in brc202d, 256 × 257 in den520d, and 194 × 194 in ost003d. The relative size of the map
belonging to the free space is depicted in Figure 18.

brc202d den520d ost003d

Figure 18: Dragon Age maps include: narrow corridors in brc202d, large open space in
den520d, and open space with almost isolated rooms in ost003d.

The tests include optimal sum-of-costs algorithms MDD-SAT, ICTS and ICBS that were com-
pared on instances containing 16, 24, and 32 agents in the selected DAO maps. To obtain instances

582

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

MAPF
Ost003d (seconds)

16 agents, distance=168
MDD-SAT ICBS ICTS

1 101.4 N/A N/A
2 12.8 9.7 2.4
3 13.2 4.4 2.4
4 3.8 0.6 1.2
5 13.5 9.6 3.2
6 22.7 10.7 N/A
7 N/A N/A N/A
8 36.9 49.6 2.5
9 12.0 2.6 1.4

10 N/A N/A N/A

m

Distance

MDD-SAT, 16 agents

Variables Clauses

8 758.0 1 169.7
64 34 648.7 120 961.1

128 932 440.9 9 128 568.8

m

Distance

MDD-SAT, 32 agents

Variables Clauses

8 2 377.6 3 751.3
64 571 915.1 3 672 249.3

128 5 163 157.0 49 201 960.0

Table 2: Runtime for 10 instances (left) and the average size of the MDD-SAT formulae for
ost003d (right)

of various difficulties we varied the average distance of agents from their goals. This particular mea-
sure is important for MDD-SAT as the distance of agent from its goal is the major parameter that
determines the size of MDDs being generated during the solving process. The greater the distance
is the larger MDD is produced and the instance is expected to be harder for MDD-SAT.

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Brc202d|16 agents

MDD-SAT

ICBS

ICTS

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Brc202d|32 agents

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Brc202d|16 agents

MDD-SAT

ICBS

ICTS

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Brc202d|32 agents

Figure 19: Runtime results for brc202d DAO map. Sorted runtimes (top) and number of solved
instances as a function of time are shown (bottom).

583

SURYNEK, STERN, BOYARSKI, & FELNER

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Den520d|16 agents

MDD-SAT

ICBS

ICTS

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Den520d|32 agents

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Den520d|16 agents

MDD-SAT

ICBS

ICTS

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Den520d|32 agents

Figure 20: Runtime results for den520d DAO map. Sorted runtimes (top) and number of solved
instances as a function of time are shown (bottom).

The initial positions of agents is set randomly. Given the average distance, the goals for agents
were generated in two steps: (i) Potential goals for each agent were generated by long random walk
in the graph in order to ensure solvability while for each potential goal its distance from the initial
position was kept. (ii) Then random goal from potential goals for each agent was selected using
the uniform distribution across distances from the initial position so that the given average distance
is obtained. The mean distance from initial positions is varied from 8 up to 320 using step 8. Ten
random instance were generated per distance. The maximum mean distance was set so that no of
the tested algorithms was able to solve instances for the maximum average distance given the time
limit of 300 seconds.

The illustration of the average size of formulae generated by MDD-SAT on ost003d is shown
in Table 2 (right). For greater distance between the initial positions and the goals we can see rapid
growth of the size of formulae. For the distance being increased twice from 64 to 128 the size of
formulae in terms of the number of clauses increased 13-times for 32 agents, but 76 times for the 16
agents case. The size of formula is directly determined by the size of MDDs being generated whose
size is proportional to the number of time expansions that is correlated with the agent’s distance to
the goal. The observed rapid growth of the size of formulae however needs additional explanation.
We also need to take into account that using MDDs for great distances from the goal not only
increases the makespan (the number of time expansions) but also can make more vertices accessible
at individual layers of MDD.

584

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Ost003d|16 agents

MDD-SAT

ICBS

ICTS

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Ost003d|32 agents

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Ost003d|16 agents

MDD-SAT

ICBS

ICTS

0

50

100

150

200

250

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Ost003d|32 agents

Figure 21: Runtime results for ost003d DAO map. Sorted runtimes (top) and number of solved
instances as a function of time are shown (bottom).

Runtime results for MDD-SAT, ICTS and ICBS on large maps are presented in Figures 19, 20,
and 21. The figures show the number of solved instances as a function of runtime (left - the higher
line means better solver) and a different view showing sorted runtimes (right - higher line means
better solver).

Two clear trends can be observed in the results. MDD-SAT is weak in easy instances where it
is outperformed by both ICTS and ICBS. This observation is universal across all types of maps.

The explanation for poor performance of MDD-SAT on easy instances is that it consumes a
lot of runtime for constructing MDDs with respect to large input map while at the same time the
combinatorial difficulty of such instances is not significant hence the SAT solver inside MDD-SAT
has an easy job. The benefit of using strong external solver is little in such case.

The second strong trend is that as the average distance of agents from their goals increases
and instances become harder, the MDD-SAT solver starts to show its strength. MDD-SAT often
outperforms other two search-based solvers though not always as in the case of ost003d with 32
agents where ICTS dominates. The explanation for having stronger MDD-SAT in harder instances
is that in such cases the external SAT solver is employed in longer runs where its techniques like
learning and constraint propagation have chance to prune the search space more significantly. In
other words, not all runtime is consumed by the overhead of constructing MDDs and formulae from
it and significant time is spend more efficiently during SAT solving.

Interestingly, comparison between ICTS and ICBS indicates a pattern in which ICBS is better in
easy instances but is dominated by ICTS in harder ones. This suggests an explanation that represent-

585

SURYNEK, STERN, BOYARSKI, & FELNER

ing the search space as MDDs, which is done in both MDD-SAT and ICTS and performing search
on top of this data structure is beneficial.

More detailed results concerning runtimes on individual random instances for specific distance
from the goal are shown in the left part of Table 2. Although both search-based solvers ICBS and
ICTS achieve better runtimes when they manage to solve the instance, the success rate is eventually
better for MDD-SAT. The explanation of this behaviour is that MDD-SAT is more likely to succeed
in a hard instance requiring longer runtime.

Altogether we cannot say that there is universal winner across tested solvers in large maps as
for different setups different solver turns out to be most promising.

5.4 In-Depth Evaluation of MDD-SAT

In this section, we provide a more detailed analysis of MDD-SAT’s performance in order to under-
stand it more deeply, including analyses of:

1. the solving runtime per time expansion,

2. the relation between the number of time expansions needed to prove optimality and the
makespan of the optimal solution, and

3. the impact of using different SAT solvers on the performance of MDD-SAT.

5.4.1 EVALUATION OF RUNTIME PER TIME EXPANSION

To provide a better insight in how MDD-SAT works we evaluate its runtime per individual iteration
of ξ to verify whether the adopted scheme of incrementing ξ by one is a good choice or whether there
is a room for adopting a different scheme. MDD-SAT starts with ξ that equals to the lower bound
ξ0 (∆ = 0) and usually continues by answering the satisfiability of F(µ0, ξ0,∆) for few increments
of ξ (∆) by one until the first satisfiable F(µ0, ξ0,∆) is found. The answers from the underlying
SAT solver hence form a monotonic sequence of negative answers (unsatisfiable) followed by one
positive answer (satisfiable).

Results from classical planning with SATPlan and SAT-based related planners (Kautz & Selman,
1992; Kautz, McAllester, & Selman, 1996; Kautz, 2006; Rintanen, 2012) indicate that difficulty
of satisfiability testing of formulae modelling the existence of bounded-step plan exhibits a phase
transition behavior where the phase changes on the boundary between the unsatisfiable and the
satisfiable case. Namely the unsatisfiable case exhibits the exponential growth of difficulty (runtime)
as a function of the bound while the satisfiable case is usually easier and more moderate growth of
difficulty can be observed there.

Our hypothesis is that the difficulty of SAT solving within MDD-SAT behaves similarly. In
order to verify this, we modified MDD-SAT to add few extra iterations of ξ (∆) above the first
satisfiable formula and measured runtimes per iteration in this satisfiable phase.

Results are for the 8× 8, 16× 16, and 32× 32 grids with 10% random obstacles are shown in
Figure 22 and results for DAO maps brc202d, den520d, and ost003d are shown in Figure 23.
Three sizes of the set of agents for each map are selected for the presentation. We select the sizes
of the set of agents for presentation according to the fact that in these cases MDD-SAT exhibits
relatively many iterations in the unsatisfiable phase.

586

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

0

5

10

15

20

25

8 7 6 5 4 3 2 1 0

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - SAT
Grid 8x8 | 10% obstacles

25 agents

18 agents

13 agents

0

5

10

15

20

25

8 7 6 5 4 3 2 1 0
R

u
n

ti
m

e
sh

ar
e

(%
)

Iteration (0 = first SAT)

Runtime per iteration - SAT
Grid 16x16 | 10% obstacles

28 agents

24 agents

20 agents

0

5

10

15

20

25

30

8 7 6 5 4 3 2 1 0

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - SAT
Grid 32x32 | 10% obstacles

32 agents

26 agents

21 agents

0

1

2

3

4

5

6

0 -8 -16 -24 -32 -40

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - UNSAT
Grid 8x8 | 10% obstacles

25 agents

18 agents

13 agents

0

1

2

3

4

5

6

7

0 -4 -8 -12 -16 -20 -24

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - UNSAT
Grid 16x16 | 10% obstacles

28 agents

24 agents

20 agents

0

1

2

3

4

0 -2 -4 -6 -8 -10 -12 -14 -16 -18

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - UNSAT
Grid 32x32 | 10% obstacles

32 agents

26 agents

21 agents

Figure 22: Runtime results for individual iterations in 8 × 8, 16 × 16, and 32 × 32 grids. The
satisfiable (top) and the unsatisfiable (bottom) phases are shown. Eight extra iterations
in the satisfiable phase are evaluated. The ratio of the total runtime consumed by each
iteration is shown.

The horizontal axis shows iterations of ξ (∆) indexed from the first satisfiable iteration that
is assigned the index 0, iterations in the satisfiable phase are assigned positive indices while the
unsatisfiable phase is assigned negative indices. The results for each grid/map are divided into
separate plots for the satisfiable phase (upper plot) and for the unsatisfiable phase (lower plot).
MDD-SAT runs for 8 extra iterations of ξ (∆) above the first satisfiable one. The plots show the
ratio of the total runtime consumed per iteration (the sum of runtimes in all iterations corresponds
to 1.0). The results are averaged through 10 random instances per each number of agents.

The results show that in small grids the runtime in the unsatisfiable case exhibits an exponential
growth as getting closer to the first satisfiable formula (lower three plots in Figure 22). After reach-
ing the satisfiable phase the growth of rutimes is slower (upper three plots in Figure 22). Similar
results can be observed for large maps in Figure 23 though there the hypothesized behaviour is less
pronounced.

This result experimentally verifies that the adopted incremental scheme is suitable as answering
by the SAT solver the formulae around the boundary between the unsatisfiable and the satisfiable

587

SURYNEK, STERN, BOYARSKI, & FELNER

0

5

10

15

20

25

8 7 6 5 4 3 2 1 0

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - SAT
Brc202d

19 agents

17 agents

9 agents

0

5

10

15

20

25

8 7 6 5 4 3 2 1 0
R

u
n

ti
m

e
sh

ar
e

(%
)

Iteration (0 = first SAT)

Runtime per iteration - SAT
Den520d

26 agents

20 agents

13 agents

0

5

10

15

20

8 7 6 5 4 3 2 1 0

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - SAT
Ost003d

24 agents

15 agents

11 agents

0

1

2

3

4

0 -1 -2 -3 -4 -5

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - UNSAT
Brc202d

19 agents

17 agents

9 agents

0

1

2

3

0 -1 -2 -3 -4

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - UNSAT
Den520d

26 agents

20 agents

13 agents
0

1

2

3

4

5

6

0 -2 -4 -6 -8 -10

R
u

n
ti

m
e

sh
ar

e
(%

)

Iteration (0 = first SAT)

Runtime per iteration - UNSAT
Ost003d

24 agents

15 agents

11 agents

Figure 23: Runtime results for individual iterations in DAO maps brc202d, den520d, and
ost003d. The satisfiable (top) and the unsatisfiable (bottom) phases are shown. Eight
extra iterations in the satisfiable phase are evaluated. The ratio of the total runtime con-
sumed by each iteration is shown.

case is as hard as to answer all formulae in the unsatisfiable phase. Different strategies that attempt
to go further in the satisfiable phase could only add significant computational effort even by single
consultation with the SAT solver.

5.4.2 EVALUATION OF TIME EXPANSIONS

The number of MDD time expansions (denoted µ in the pseudo-codes) needed to find an optimal
solution may either be greater than or equal to the makespan of that optimal solution. Intuitively
said the MDD-SAT algorithm needs to permit that all the extra cost when ∆ is consumed by a single
agent, resulting in the makespan of µ0 + ∆. Since the runtime of our algorithm depends strongly on
the number of time expansions, the gap between the number of time expansions and the makespan of
the optimal solution suggests that suboptimal solutions (or even optimal solutions without proving
they are optimal) may be found faster by having fewer time expansions.

588

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Figures 24 and 25 plot the difference between the optimal makespan and number of time expan-
sions done by our algorithm, for different MAPF configurations (number of agents, grid/map type).
Results are aggregated for 10 random instances in a box-plot showing the median, the 1st and the
3rd quartil, maximum and minimum, and outliers.

As can be seen, the gap grows as we increase the number of agents. This trend is especially
visible in grids. This suggests that a suboptimal variant of our algorithm in which we relax the cost
bound constraint may be able to find valid solutions much faster for harder problems. We explore
this option in Section 7.

Makespan vs. Expansions
Grid 8x8 | 10% obstacles

Number of agents

Makespan vs. Expansions
Grid 16x16 | 10% obstacles

Number of agents

Number of agents

Makespan vs. Expansions Grid 32x32 | 10% obstacles

Figure 24: Comparison of computed makespan in sum-of-costs optimal solutions and the number
of time expansions of MDDs in 8× 8, 16× 16, and 32× 32 grids.

5.4.3 REFLECTING ADVANCES OF RECENT SAT SOLVERS

The major advantage of SAT-based solvers in general such as MDD-SAT is that they are modular
and it is easy to exchange the SAT module for a newer one. The SAT-based solvers expected to
perform better as the state of the art in SAT solving advances. In fact, in the course of writing

589

SURYNEK, STERN, BOYARSKI, & FELNER

Makespan vs. Expansions
Map Brc202d

Number of agents

Number of agents

Makespan vs. Expansions Map Ost003d

Makespan vs. Expansions
Map Den520d

Number of agents

Figure 25: Comparison of computed makespan in sum-of-costs optimal solutions and the number
of time expansions of MDDs in DAO maps brc202d, den520d, and ost003d.

the paper, a new SAT solver appeared, namely MapleCOMSPS (Liang, 2018; Liang, Oh, Mathew,
Thomas, Li, & Ganesh, 2018), that according to the results in recent SAT competitions outperforms
the Glucose SAT solver (Balyo et al., 2017), originally used in MDD-SAT. Indeed, the integration
of this new solver resulted in an improvement of MDD-SAT in some cases.

To demonstrate this, we run MDD-SAT with the MapleCOMSPS SAT solver and compared
it with MDD-SAT using the Glucose SAT solver (that is the SAT solver used in all the other
experiments). We performed this comparison in a range of maps, including the 8× 8, 16× 16, and
32×32 grids with 10% obstacles and all the DAO maps used in our experiments above. There were
no significant difference in performance for the grids. However, we have observed a significant
advantage for MDD-SAT with the MapleCOMSPS SAT solver on the DAO maps. These results are
given in Figure 26, which follows the same format as in Figure 21. The results suggests that the
MapleCOMSPS SAT solver can tackle large formulae resulting from solving MAPF on large DAO
maps more efficiently than the Glucose SAT solver.

590

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted instances

Glusoce vs. MapleCOMSPS
Map Brc202d

0,1

1

10

100

1000

0 100 200 300 400
R

u
n

ti
m

e
 (s

ec
o

n
d

s)

Sorted instances

Glusoce vs. MapleCOMSPS
Map Den520d

MDD-SAT
(glucose)

MDD-SAT
(COMSPS)

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted instances

Glusoce vs. MapleCOMSPS
Map Ost003d

Figure 26: Sorted runtimes of MDD-SAT with the Glucose SAT solver and MDD-SAT with the
MapleCOMSPS for DAO maps brc202d, den520d, and ost003d.

6. Independence Detection in SAT-Based Approach

A successful method for increasing performance of MAPF solving algorithms is a technique called
independence detection (ID). In this section, we describe how to integrate independence detection
for MAPF (Standley, 2010b; Standley & Korf, 2011) into MDD-SAT. We summarize here and
extend the results originally published as conference papers (Surynek et al., 2017b, 2017c).

The main idea behind this technique is that the difficulty of optimal MAPF solving grows ex-
ponentially with the number of agents. It would be ideal, if we could divide the problem into a
series of smaller independent sub-problems, solve them independently, and merge solutions to the
sub-problems to form a solution of the original problem. Having exponential complexity for the
original instance such decomposition could lead to significant speed up.

More precisely, assume that the time complexity of solving the given MAPF problem with k
agents isO(2k). Then the problem is decomposed into say two independent sub-problems with k/2
agents and these two sub-problems are solved separately taking time of O(2

k
2) +O(2

k
2) = O(2

k
2).

If the dividing phase and the final sub-solution merging phase have lower than exponential time
complexity, for example polynomial in the number of agents, then the overall speed up could be
O(2

k
2)-fold.

The important assumption that only some problems satisfy is the requirement of having inde-
pendent sub-problems that can be solved separately. In MAPF fortunately, this is relatively common
situation in sparse environments. Consider groups of agents in distant sub-graphs whose goals are
located in the same sub-graph. Then it is unlikely that these groups will ever have chance to meet
each other in an optimal solution. Hence optimal solution to the problem can be constructed as the
union of optimal solutions for individual groups.

6.0.1 INDEPENDENCE DETECTION VARIANTS IN SEARCH-BASED SOLVERS

For completeness, we first give a detailed description of ID as it has been described by prior work
in a search-based MAPF solver, namely A* (Standley, 2010a). The basic approach, called simple

591

SURYNEK, STERN, BOYARSKI, & FELNER

independence detection (SID), divides agents into multiple groups. Initially, each agent is assigned
into its own group (consisting of a single agent). The algorithm regards each of these groups as
independent sub-problem and searches for optimal MAPF solutions of individual groups. Solutions
obtained from this independent solving are then checked for conflicts. For every pair of solutions,
it checks if a collision between agents from different solutions/groups occurs.

If a collision occurs then respective groups are merged together and new optimal solution is
found for the merged group. The process is repeated until there are no conflicts between group
solutions. If there are no conflicting solutions, the solutions for individual groups can be merged
together to from a single solution of the original problem.

Merging groups together after detecting a conflict could quickly lead to large groups (an extreme
case is having single group consisting of all agents). The SID approach can be further improved by
avoiding group merging if possible.

Generally, there exists more than one optimal path of each agent or more than one optimal
MAPF solutions for a group of agents. The SID technique, however, ignores these alternative paths
and solutions. The improvement of SID known as independence detection (ID) is as follows.

Algorithm 4: MAPF solving algorithm based on independence detection technique. Plan-
ning for groups is always done to have the least number of conflicts with respect to conflict
avoidance table.
1 Solve-MAPF-A*+ID(Σ = (G = (V,E), A, α0, α+))
2 for each ai ∈ A do
3 Gi ← {ai}
4 π(Gi)←plan-MAPF-A*(G = (V,E), Gi, α0, α+)

5 while Gi and Gj exist such that π(Gi) and π(Gj) conflict do
6 if π(Gi) and π(Gj) not conflicted before then
7 π′(Gi)←replan-MAPF-A*(G = (V,E), Gi, α0, α+, π,Gj)
8 if π′(Gi) =Fail then
9 π(Gj)←replan-MAPF-A*(G = (V,E), Gj , α0, α+, π,Gi)

10 else
11 π(Gi)← π′(Gi)

12 else
13 π(Gi)← Fail
14 π(Gj)←Fail

15 if π(Gi) = Fail or π(Gj) = Fail then
16 Gi ← Gi ∪Gj
17 Gj ← ∅
18 π(Gi)←plan-MAPF-A*(G = (V,E), Gi, α0, α+)

19 return π

Assume two conflicting groups of agents Gi and Gj . We try to avoid merging Gi with Gj via
re-planning. First, we try to re-plan for Gi so that the new solution has the same cost but conflicts
with Gj are forbidden. If no such solution exists, we try to replan for Gj . If re-planning for Gj fails
as well, then we merge Gi and Gj into a new group. After successful re-planning, the new MAPF
solution for the group needs to be evaluated with every other group again. This could lead to infinite
cycle. Therefore, if two groups were in conflict before, we merge them without trying to replan.

592

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

The original ID technique was used in combination with the A* algorithm that was used for path
finding (searching for solutions for individual groups). The independence detection can be further
supported at the level of path finding. The A* algorithm can be fine tuned to prefer paths that create
as few as possible conflicts with other groups that have their solutions finished.

The MAPF solving algorithm based on A* and ID is listed using pseudo-code as Algorithm 4.
Let us note that initial paths for a group are found while ignoring all agents outside the group (lines
4 and 13) but when re-planning for a group we take into account existing paths for other groups
including the group towards which we are trying to resolve conflicts (lines 7 and 9). When A*
has a choice between several nodes with the same minimum f() cost in the re-planning phase,
the one with the least amount of conflicts with respect to other group’s paths is expanded first.
This technique, which is also known as using a Conflict Avoidance Table (CAT), yields an optimal
solution that has the minimal number of conflicts with other groups. In other words, the re-planning
phase strictly avoids paths of the other group in conflicting pair but also prefers avoiding paths of
other groups though this is a preference only (not a strict constraint).

Both SID and ID do not solve MAPF on their own, they only divide the problem into smaller
sub-problems that are solved by any possible MAPF algorithms. Thus, ID and SID are general
frameworks which can be executed on top of any MAPF solver.

6.0.2 INTEGRATION OF INDEPENDENCE DETECTION INTO MDD-SAT

Next, we describe how ID can be applied in SAT based MAPF solvers. The common feature of
SAT based MAPF solvers, MDD-SAT included, is that they consider the entire MAPF instance as a
whole which can limit their scalability for large instances.

vertices

time

u2 u1 u3 u4 u5 u2 u1 u3 u4 u5

G1 G2 G3 G1 G2 G3

Figure 27: Groups G1 conflicts with groups G2

and G3 (left). After replanning G1 in-
dependent solutions for G1, G2, and
G3 can be merged together.

With large instances and many agents,
MDD-SAT will eventually encounter a formula
of prohibitive size even with the use of MDDs.
In contrast to this, search-based solvers often
use some variant of ID to further mitigate the
size of the instance needed to be tackled at
once.

The logical step is hence to integrate a vari-
ant of ID into MDD-SAT. The SAT-based ap-
proach however requires modification of the
original ID since in the propositional formula
it is not possible to express preference that in-
dividual paths of groups of agents should avoid
the occupied positions by other groups. In the
yes/no SAT environment we either manage to
avoid occupied positions or not while in the
negative case there is no tool how to control the
number of conflicts. In other words, in our im-
plementation of ID there we do not use a CAT
to bias the paths returned for the agents.

The SAT-based version of ID works in a
similar way to the original version but instead

593

SURYNEK, STERN, BOYARSKI, & FELNER

of resolving conflicts between a pair of conflicting groups Gi and Gj it resolves conflict of group
Gi with all other groups. If this attempt is successful, Gi is independent on others and the process
can continue with resolving conflicts between remaining groups (see Figure 27 where G1 has been
made independent of G2 and G3). If the attempt to resolve conflicts between Gi and Gj by making
Gi independent of all other groups fails, the same is tried for Gj . If the attempt for Gj fails too,
then Gi and Gj are merged. The pseudo-code of the process is shown in Algorithm 5.

In contrast to the original ID we strictly require avoidance with respect to other groups. This is
technically done by omitting the conflicting vertices in the MDD. More precisely, when planning
for group Gi (line 7) we first build MDDs for agents a ∈ Gi. For each node in MDD we need to
check whether it conflicts with paths for agents in the remaining groups.

Assume node utj in MDD for agent a corresponding to uj ∈ V and time step t. Several cases
need to be distinguished 4:

• Case (i) occurs if vertex uj is occupied by some agent a′ ∈ A \ Gi at time step t (that is,
π(a′)[t] = uj ; where π(a′)[t] denotes the t-th vertex of path for agent a′). This situation
corresponds to violation of the constraint that at most one agent reside in each vertex. If this
is detected then utj is omitted from given MDD for agent a.

• Case (ii) occurs if vertex uj was occupied by some agent a′ ∈ A \Gi at time step t− 1 which
corresponds to violation of the constraint that agent can enter a vacant vertex only. Again in
such case using uj at time step t is forbidden for agent a and thus utj is omitted from MDD.

The rest is automatically expressed by the semantics of the formula. Occupied vertices omitted
from MDD are not represented in the formula. Hence the SAT solver cannot use these vertices for
planning agents’ paths. If the SAT solver succeeds with path finding then resulting paths automati-
cally avoid missing vertices and resulting paths do not conflict with paths of other groups.

The resulting algorithm is called MDD-SAT+ID. The algorithm returns sum-of-costs optimal
solutions for solvable MAPF instances. The optimality guarantees are a direct consequence of
properties of ID. The ID technique can be also used with the makespan-optimal version of MDD-
SAT.

6.1 Experimental Results for MDD-SAT with Independence Detection

We followed the same pattern in experiments for ID as in previous sections. Experiments were done
on small 4-connected grids with obstacles and on large DAO maps. We implemented extensions
of MDD-SAT using both simple independence detection (the solver denoted MDD-SAT+SID) and
MDD-SAT with a independence detection (denoted MDD-SAT+ID). The implementation extends
previous C++ implementation of MDD-SAT. The SID version only replans the conflicting group
against the single group with which the conflict has been detected while other groups are ignored.
We implement MDD-SAT+SID for having a reference base-line variant of independence detection.
MDD-SAT+SID is expected to perform worse than MDD-SAT+ID where re-planning of conflicting
group is done with respect to all remaining groups. MDD-SAT was also included in comparison
too to see what is the benefit of ID in relation to its overhead. In addition to this, we included
an implementation of Algorithm 4 referred to as A*+ID in the plots. A*+ID implements operator

4. Depending on the variant of MAPF the cases can be different. Here we follow the move-to-unoccupied variant where
agents move to vacant vertices.

594

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Algorithm 5: Independence detection in the sum-of-cost optimal SAT-based solver MDD-
SAT. Conflict avoidance is strictly required.
1 Solve-MAPF-SATSOC+ID(Σ = (G = (V,E), A, α0, α+))
2 for each ai ∈ A do
3 Gi ← {ai}
4 π(Gi)←Solve-MAPF-SATSOC(G = (V,E), Gi, α0, α+)

5 while Gi and Gj exist such that π(Gi) and π(Gj) conflict do
6 if π(Gi) and π(Gj) not conflicted before then
7 π′(Gi)←reSolve-MAPF-SATSOC(G = (V,E), Gi, α0, α+, π)
8 if π(Gi) =Fail then
9 π(Gj)←reSolve-MAPF-SATSOC(G = (V,E), Gj , α0, α+, π)

10 else
11 π(Gi)← π′(Gi)

12 else
13 π(Gi)← Fail
14 π(Gj)←Fail

15 if π(Gi) = Fail or π(Gj) = Fail then
16 Gi ← Gi ∪Gj
17 Gj ← ∅
18 π(Gi)←Solve-MAPF-SATSOC(G = (V,E), Gi, α0, α+)

19 return π

0

50

100

150

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 8x8|10% obstacles

MDD-SAT

ICBS

ICTS

MDD-SAT+SID

MDD-SAT+ID

A*+ID
0

50

100

150

200

250

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 16x16|10% obstacles

0

50

100

150

200

250

300

350

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 32x32 | 10% obstacles

Figure 28: Evaluation of ID and SID integrated in MDD-SAT - the number of solvable instances in
8× 8, 16× 16, and 32× 32 grids as a function of the time limit (the horizontal runtime
axis uses logarithmic scale).

decomposition OD in the A*-based search for non-conflicting paths (procedures plan-MAPF-A*
and replan-MAPF-A*), hence A*+ID corresponds to Standley’s OD+ID (Standley, 2010a).

In all tests we used time limit of 300 seconds. Testing instances for both the small grids and
large DAO maps are identical to those used in previous tests. The hypothesis is that independence

595

SURYNEK, STERN, BOYARSKI, & FELNER

 0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Grid 8x8|10% obstacles

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Grid 16x16|10% obstacles

ICTS

ICBS

MDD-SAT

MDD-SAT+SID

MDD-SAT+ID

A*+ID

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Grid 32x32 | 10% obstacles

Figure 29: Evaluation of ID and SID integrated in MDD-SAT - sorted runtimes for 8× 8, 16× 16,
and 32 × 32 grids (the horizontal axis corresponds to instances sorted differently for
each tested algorithm).

detection could be helpful in instances with few agents and lot of free space where there is a little
interaction among agents and/or the environment provides opportunity to perform a collision free
avoidance if necessary. On the other hand, detecting independence could represent a significant
overhead on small densely populated maps where eventually all agents merge into one large group.

6.1.1 RESULTS OF INDEPENDENCE DETECTION ON SMALL GRIDS

Results obtained with independence detection integrated in MDD-SAT on small grids of sizes 8×8,
16 × 16, and 32 × 32 are presented in Figures 28 and 29. We show two projections of the results:
Figure 28 shows the number of successfully solved instances as a function of time. In Figure 29 we
take all instances that the selected solver managed to finish under the given time limit and sort them
according to the ascending runtime.

The trends we can observe in the result supports the hypothesis. On 8 × 8, MDD-SAT+SID
represents almost no significant improvement compared to MDD-SAT. MDD-SAT+ID even shows
worsening in harder instances (needing longer runtime) compared to MDD-SAT. In easy instances
we can observe that ID contributes to some minor improvement but SID does the opposite. We can
attribute this behavior to the situation where agents do interact so collision avoidance is needed but
there is enough free space at the same time to plan collision avoidance successfully (the ID case)
but there is no abundance of free space so SID often hits some other group after re-planning.

In larger girds, 16 × 16, and 32 × 32 results suggest that different effect takes places. We can
observe two significant patterns: (i) there is a consistent significant benefit of using both SID and ID

596

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

across tested instances while the improvement decreases towards harder instances containing more
agents, (ii) in instances of medium difficulty ID provides better results than SID.

The explanation for pattern (i) is that larger free space gives opportunity to independence detec-
tion to actually find independent groups of agents and finish searching with relatively small groups
(small independent sub-problems). The region where pattern (ii) can be observed corresponds to the
situation where we have enough free space for avoidance between groups but such free space is not
abundant so all groups need to be carefully taken into account (like in the ID case) since otherwise
some other group may be hit by the re-planned group (the SID case).

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Brc202d|16 agents

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Brc202d|32 agents

ICTS

ICBS

MDD-SAT

MDD-SAT+SID

MDD-SAT+ID

A*+ID

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Brc202d|16 agents

ICTS
ICBS
MDD-SAT
MDD-SAT+SID
MDD-SAT+ID
A*+ID

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Brc202d|32 agents

Figure 30: Runtime results with ID and SID for brc202d DAO map. Sorted runtimes (top) and
the number of solved instances as a function of time are shown (bottom).

6.1.2 RESULTS OF INDEPENDENT DETECTION ON LARGE MAPS

Instances using DAO maps contained 16 and 32 agents. To obtain various difficulties we varied the
distance of agents from their goals. This is again identical to the previous experimental setup with
DAO maps. MDD-SAT with versions integrating SID and ID are compared. Results for DAO maps
brc202d, den520d, and ost003d are shown in Figures 30, 31, and 32.

597

SURYNEK, STERN, BOYARSKI, & FELNER

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Den520d|16 agents

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Den520d|32 agents

ICTS

ICBS

MDD-SAT

MDD-SAT+SID

MDD-SAT+ID

A*+ID

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Den520d|16 agents

ICTS

ICBS

MDD-SAT

MDD-SAT+SID

MDD-SAT+ID

A*+ID
0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Den520d|32 agents

Figure 31: Runtime results with ID and SID for den520 DAO map. Sorted runtimes (top) and the
number of solved instances as a function of time are shown (bottom).

Results offers various patterns and it seems that no easy generalization valid across all types
of maps is possible. Results suggest that structure of the map plays an important role. On the
brc202d map we can observe that SID leads to a better performance only in minority of cases of
easy instances where the distance from the goal small. In all other cases, SID represents an overhead
and the plain MDD-SAT performs better. ID on the other hand has some observable benefit, we can
see that for hard instances with 32 agents MDD-SAT+ID performs as the best.

The explanation of this behavior rests in the structure of the map which consists of long narrow
corridors. After having the goal positions far enough from the initial positions, agents inevitably
interact through encountering each other in the corridors and are merged into larger groups which
pushes the performance of both ID and SID towards and behind the plain MDD-SAT. However the
overhead with independence detection has slower growth than the complexity of solving one large
group of agents which explains the convergence the performance of MDD-SAT and the versions
with SID and ID in harder instances and better performance of MDD-SAT+ID in case of 32 agents.

The den520d map features a different structure. It can be regarded as one large open space
surrounded by a shaped border. Such structure suggests a hypothesis that when the distance from
the goal is small then lot of independence could be detected and both SID and ID should improve

598

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

0,0001

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Ost003d|16 agents

ICTS

ICBS

MDD-SAT

MDD-SAT+SID

MDD-SAT+ID

A*+ID

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted Runtimes
Ost003d|32 agents

0

100

200

300

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Ost003d|16 agents

0

50

100

150

200

250

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Ost003d|32 agents

ICTS

ICBS

MDD-SAT

MDD-SAT+SID

MDD-SAT+ID

A*+ID

Figure 32: Runtime results with ID and SID for ost003 DAO map. Sorted runtimes (top) and the
number of solved instances as a function of time are shown (bottom).

the plain MDD-SAT. The verification against actual results supports the hypothesis. In addition to
this, we can observe that longer distance from the goals causes worse performance of both SID and
ID with respect to the plain MDD-SAT. Longer paths often go near the boundary of the open space
where agents have an opportunity to meet each other and the group merging often arises from such
situation.

The ost003d map can be regarded as relatively large open rooms separated by walls with nar-
rows doors. This is again a different structure from both previous maps. Here we should expect that
shortest paths need to touch the walls and corners which is again a situation that can give rise to the
group merging. Comparing the shape of den520d and ost003d we can see that it is more likely
to touch a wall or a corner in ost003d than touching the open space boundary in the den520d
map. Results supports this hypothesis as we can see that significantly better performance is achieved
with SID and ID only in a small portion of instances with the small distance from the goals. We
can also observe that ID improves the plain MDD-SAT significantly in hard instances which sug-
gests that we are able to detect non-trivial independences in such cases. Again the overhead caused

599

SURYNEK, STERN, BOYARSKI, & FELNER

by using ID is less time consuming than the extra time needed to solve one large group instead of
several smaller groups.

7. Bounded Suboptimal SAT-Based MAPF Solving

The versatility of SAT-based approach for solving MAPF can be further demonstrated by adapting
it for suboptimal variants of the problem. Adaptation for suboptimal variants has been successfully
done with search-based solvers including ICTS (Aljalaud & Sturtevant, 2013) and CBS (Barer et al.,
2014). The motivation behind having a suboptimal solver is that we can trade-off the quality of
solutions with respect to a given objective and the runtime. Usually lower quality solutions can
be obtained faster 5. In the bounded case, we have the control of how much do we tolerate the
suboptimal solution to differ from the ideal optimal one.

In this section, we show how to convert MDD-SAT to a bounded suboptimal algorithm for the
sum-of-costs objective. Converting MDD-SAT to a suboptimal any solution algorithm can be simply
done by removing the cardinality constraints from the construction of F(µ0, ξ0,∆). Let F ′(µ0,∆)
denote the resulting formula. Since F ′(µ0,∆) has all constraints from original F(µ0, ξ0,∆) ex-
cept the cardinality constraints, then clearly a satisfying assignment to F ′(µ0,∆) still represents
a feasible solution (no collisions between agents etc.). Since F ′(µ0,∆) is less constrained than
F(µ0, ξ0,∆), we expect it to be solved faster. Indeed, we observed this in our preliminary experi-
ments. Using F ′(µ0,∆) in Algorithm 2 instead of F(µ0, ξ0,∆), however, looses the sum-of-cost
optimality.

Hence, replacing F(µ0, ξ0,∆) with F ′(µ0,∆) in Algorithm 2 leads to a suboptimal version of
the MDD-SAT solver that is faster than the optimal version. We refer to this unbounded version of
MDD-SAT denoted as uMDD-SAT.

A key question is what is the suboptimality of the solutions returned by uMDD-SAT? Is it really
unbounded? We show later that even without the cardinality constraints, the suboptimality of the
solutions outputted is bounded, due to how F(µ0, ξ0,∆) and F ′(µ0,∆) are constructed.

Next, we show how to control the suboptimality of the returned solution by introducing a relaxed
version of the optimal cardinality constraints, allowing the algorithm’s user to balance the runtime
and the suboptimality.

7.1 Bounded Suboptimal Version of MDD-SAT

The key to our bounded-suboptimal SAT-based solver is that it splits the ∆ parameter used in
construction of F(µ0, ξ0,∆) into two parameters ∆µ and ∆ξ. The resulting formulae, denoted
F(µ0, ξ0,∆µ,∆ξ), represents the decision problem “is there a valid solution to the given MAPF
problem with a makespan smaller than or equal to µ0 + ∆µ and a sum-of-costs smaller than or
equal to ξ0 + ∆ξ”.

One can view MDD-SAT as solving a sequence of such decision problem, setting ∆µ = ∆ξ =
∆ and incrementing both ∆µ and ∆ξ by one in every iteration. To return bounded-suboptimal
solutions, we allow ∆ξ to be less restrictive; that is, larger than ∆µ by some integer value δ ≥ 0.
This produces a formula F(µ0, ξ0,∆,∆ + δ) which is approximately the same size as F(µ0, ξ0,∆)

5. Ignoring the quality completely could open opportunity to use polynomial time algorithms like PUSH-AND-ROTATE

(de Wilde et al., 2014) or BIBOX (Surynek, 2009) where runtime is usually not a problematic factor.

600

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

but represents more solutions6. Since ∆ + δ > ∆, we expect a formula with the sum-of-costs
bounded by ∆ + δ to be easier to solve than that with the original ∆.

The following proposition shows that for a solvable MAPF Σ the sum-of-costs of the solution
obtained by the above process differs from the optimal one by at most δ.

Proposition 5 Let δ be a non-negative integer and let F(µ0, ξ0,∆,∆ + δ) be the first satisfiable
formula found in the sequence of formulae F(µ0, ξ0, 0, δ), F(µ0, ξ0, 1, 1 + δ),...,F(µ0, ξ0,∆ −
1,∆ + δ− 1), F(µ0 + ∆, ξ0,∆,∆ + δ). Then the solution represented by F(µ0, ξ0,∆,∆ + δ) has
sum-of-costs ξ ≤ ξopt + δ where ξopt is the optimal sum-of-costs for input MAPF Σ.

Proof: Since F(µ0, ξ0,∆,∆ + δ) is the first satisfiable formula in the sequence, we know that
previous formula F(µ0, ξ0,∆ − 1,∆ + δ − 1) is not solvable. This means that no solution of
makespan at most µ0 +∆−1 and sum-of-costs at most ξ0 +∆+δ−1 exists. In addition to this, we
know that all solutions of sum-of-costs ξ0 + ∆− 1 fit under the makespan of at most µ0 + ∆− 1.

Hence unsolvability of F(µ0, ξ0,∆− 1,∆ + δ− 1) together with δ ≥ 0 implies that there is no
solution of sum-of-costs smaller than or equal to ξ0 +∆−1 (without restricting the makespan) since
otherwise F(µ0, ξ0,∆− 1,∆ + δ− 1) would be solvable. Therefore, the optimal sum-of-costs is at
least ξ0 +∆. The solvability ofF(µ0, ξ0,∆,∆+δ) tells that there is a solution of Σ of sum-of-costs
ξ0 + ∆ + δ which differs from the optimum by at most δ. �

Observe that the only property of δ we used was that it is a non-negative integer but there is
no requirement that it must be constant across individual iterations of the algorithm. Proposition 5
holds even if we use a non-negative δ as a function of ∆ instead of a constant. This property can be
used to modify the above SAT-based framework to a (1 + ε)-bounded suboptimal algorithm. That
is, the algorithm produces solutions that are no worse than (1 + ε) times than the optimum. How to
calculate δ from given ε is summarized in the following corollary.

Corollary 1 Given an error ε > 0 the iterative SAT-based suboptimal framework can modified to
an (1 + ε)-bounded suboptimal algorithm by appropriate setting of δ.

Proof: As δ is in fact a function of the number of iterations we will use notation δ(∆). Let
δ(∆) = ε · (ξ0 + ∆). Then the sum-of-costs of the solution returned by the algorithm is at most
(1+ε)·(ξ0+∆). Following the arguments from the proof of Proposition 5, the optimal sum-of-costs
is at least ξ0 + ∆ hence the ratio between the sum-of-costs of returned solution and the optimum is
at most (1 + ε). �

The pseudo-code of the (1 + ε)-bounded suboptimal version of the MDD-SAT algorithm is
presented as Algorithm 6. We refer to this algorithm as eMDD-SAT.

Let us note that a further minor improvement of the pseudo-code could be done which uses a
basic relation of time expansion used in the formula. Observe that in any solution to an MAPF
problem it holds that µ ≤ ξ ≤ k · µ where k is the number of agents. Therefore, if ξ0 +∆+δ(∆) ≥
µ · k, then there is no need to add any cardinality constraints to F(µ,∆) to bound the sum-of-costs,
since any solution of the makespan at most µ has automatically bounded its sum-of-costs by µ · k.

6. The MDDs used for construction of F(µ0, ξ0,∆,∆ + δ) are identical as those for F(µ0, ξ0,∆) but the former
uses different cost bounds in the cardinality constraints whose encoding based on sequential counter has the size
proportional to the value of the bound (Sinz, 2005).

601

SURYNEK, STERN, BOYARSKI, & FELNER

Algorithm 6: eMDD-SAT, an (1 + ε)-bounded suboptimal version of the MDD-SAT
MAPF solver
1 eSolve-MDD-SATSOC (MAPF Σ = (G = (V,E), A, α0, α+),ε)
2 if Σ is unsolvable then
3 return UNSOLVABLE
4 end
5 µ0 = maxai∈A ξ0(ai)
6 ξ0 =

∑
ai∈A ξ0(ai)

7 ∆← 0
8 while TRUE do
9 ∆µ ← ∆

10 δ ← ε · (ξ0 + ∆)
11 ∆ξ ← ∆µ + δ
12 F(µ0, ξ0,∆µ,∆ξ)← encode-MAPF(Σ, µ0, ξ0, ∆µ, ∆ξ)
13 π ← consult-SAT-SOLVER(F(µ0, ξ0,∆µ,∆ξ))
14 if π 6= UNSAT then
15 return π
16 end
17 ∆← ∆ + 1

18 end
19 end

This inequality represents a limit of the relaxation achievable by allowing more freedom over
the cost bound imposed by the cardinality constraints. Hence the (1+ε)-bounded suboptimal MDD-
SAT algorithm tends to be near optimal anyway. The algorithm can be at most

(k·(µ0+∆)
ξ0+∆

)
-bounded.

7.2 Experimental Results for uMDD-SAT and eMDD-SAT

We again evaluated suboptimal variants of MDD-SAT on small grids with obstacles and on large
DAO maps. The set of instances for small grids was the same as in the previous experiments. Again
we changed number of agents from 1 until we reach unsolvable instances under the given runtime
of 300 seconds. For each number of agents 10 instances with random initial and goal configuration
were generated.

In DAO maps we varied the number of agents instead of varying the distance from their goals
to obtain instances of various difficulties. The number of agents is varied from 1 to 256 where the
steps is initially 1 and then increased to 16. Ten instances with random initial and goal configuration
per number of agents were used.

7.2.1 THE UNBOUNDED VARIANT: UMDD-SAT

Comparison of unbounded algorithms including SAT-based UNIAGENT (Surynek, 2015), ECBS

(Barer et al., 2014), PUSH-AND-SWAP (Luna & Bekris, 2011), and uMDD-SAT are shown in Fig-
ures 33, 34, 35, and 36.

All these algorithms represent different approaches to finding unbounded suboptimal solutions.
UNIAGENT is an unbounded suboptimal SAT-based method. Unlike MDD-SAT, the time expan-
sion in the UNIAGENT algorithm adds a new layer, a copy of the underlaying graph G, only after
agents cannot avoid each other within the existing layers. ECBS is a representative of subopti-
mal search-based algorithms, a relaxation of CBS. PUSH-AND-SWAP on the other hand views the

602

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

MAPF problem via transforming permutations of agents in the graph and is a major representative
of rule-based algorithms.

Sorted runtimes of instances on 8× 8, 16× 16, and 32× 32 grids solvable under the time limit
are shown in Figure 33 (the lower line means faster algorithm). We can see clear dominance of the
rule-based polynomial time PUSH-AND-SWAP algorithm whose runtime grows only moderately in
more difficult instances. The opposite can be seen for search-based and compilation-based algo-
rithms. Their runtime grows fast and in some cases UNIAGENT and uMDD-SAT fail to solve all
instances. The UNIAGENT algorithm performs well only in harder instances on the 8×8 grid where
it outperforms uMDD-SAT and is close to ECBS, but in other cases it is clearly loosing. Comparison
of ECBS and uMDD-SAT does not show a clear winner. On easier instances ECBS tends to be faster
white in harder cases uMDD-SAT tends to be faster.

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes
Grid 8x8 | 10% obstacles

ECBS

uMDD-SAT

UniAGENT

Push&Swap

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes
Grid 16x16 | 10% obstacles

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes
Grid 32x32 | 10% obstacles

Figure 33: Comparison of unbounded suboptimal solvers - sorted runtimes for uMDD-SAT, PUSH-
AND-SWAP, ECBS, and UNIAGENT are compared in 8× 8, 16× 16, and 32× 32 grids.

To understand the performance of individual algorithms better we also present comparison of
the sum-of-costs of solutions produced by tested algorithms in Figure 34 (lower line is closer to the
optimum). We can see here that although PUSH-AND-SWAP is the fastest algorithm the quality of
its solutions it the worst, that is the sum-of-costs is the highest among all tested algorithms. Sum-
of-costs in UNIAGENT is also high. Comparison between uMDD-SAT and ECBS indicates that
ECBS tends to generate lower sum-of-costs.

The generalization from the observed trends is that even if we completely relax from the quality
of solutions in search-based and compilation-based algorithms still their performance cannot match
the polynomial-time rule-based methods. Another generalization is that despite the relaxation of
the cost bound search-based and compilation-based algorithms tend to produce solutions of higher
quality than rule-based algorithm does.

The explanation of the observed trends is that search-based and compilation-based algorithms
eventually traverse search space of exponential size. Relatively good performance of ECBS can
attributed to its greedy nature after the cost bound is relaxed which more likely leads to guessing a
solution. On the other hand uMDD-SAT is slowed down by proving non-existence of solutions for
lower makespans.

603

SURYNEK, STERN, BOYARSKI, & FELNER

1

10

100

1000

10000

100000

0 50 100 150 200

Su
m

 o
f

co
st

s
Sorted sum-of-costs
Grid 8x8 | 10% obstacles

1

10

100

1000

10000

100000

1000000

0 100 200 300
Su

m
 o

f
co

st
s

Sorted sum-of-costs
Grid 16x16 | 10% obstacles

1

10

100

1000

10000

100000

1000000

0 100 200 300

Su
m

 o
f

co
st

s

Sorted sum-of-costs
Grid 32x32 | 10% obstacles

ECBS

uMDD-SAT

UniAGENT

Push&Swap

Figure 34: Comparison of solutions produced by unbounded suboptimal solvers - sorted sum-of-
costs of solutions by uMDD-SAT, PUSH-AND-SWAP, ECBS, and UNIAGENT are com-
pared in 8× 8, 16× 16, and 32× 32 grids.

Results of the test of unbounded algorithms on large DAO maps is reported in Figures 35 and
36. The former shows sorted runtimes while the latter shows sorted sum-of-costs (lower plot means
a better results in both figures). Due to its weak performance on large maps, the UNIAGENT
algorithm was omitted in this test.

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes | Brc202d

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes | Den520d

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes | Den520d

ECBS

uMDD-SAT

Push&Swap

Figure 35: Comparison of unbounded suboptimal solvers on DAO maps - sorted runtimes for
uMDD-SAT, ECBS, and PUSH-AND-SWAP.

Results indicate clear dominance of the ECBS algorithm which consistently outperforms the
uMDD-SAT algorithm and even PUSH-AND-SWAP except hardest cases containing many agents.
There is no significant difference in the sum-of-costs of solutions of uMDD-SAT and ECBS but
PUSH-AND-SWAP produces solutions with significantly higher sum-of-costs. These trends can be
explained two-fold: (i) uMDD-SAT has relatively big overhead of constructing large MDDs and it

604

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

must often prove the non-existence of a solution which is hard; (ii) ECBS has a great freedom to
navigate itself greedily towards guessing a correct solution.

1

10

100

1000

10000

100000

1000000

0 100 200 300

Su
m

 o
f

co
st

s

Sorted sum-of-costs
Brc202d

ECBS

uMDD-SAT

Push&Swap

1

10

100

1000

10000

100000

1000000

0 100 200 300

Su
m

 o
f

co
st

s

Sorted sum-of-costs
Den520d

1

10

100

1000

10000

100000

1000000

0 100 200 300

Su
m

 o
f

co
st

s

Sorted sum-of-costs
Ost003d

Figure 36: Comparison of unbounded suboptimal solvers on DAO maps - sorted sum-of-costs for
uMDD-SAT, ECBS, and PUSH-AND-SWAP.

7.2.2 THE BOUNDED VARIANT: EMDD-SAT

In test of the bounded variants we used ε = 0.01 and tested algorithms eMDD-SAT(1.01) and
ECBS(1.01). Both algorithms were tested on small grids with obstacles and large DAO maps. Re-
sults are presented in Figures 37 and 38 showing sorted runtimes on small grids and large DAO
maps respectively.

It can be observed that in small grids eMDD-SAT(1.01) provides better performance than ECBS(1.01).
However as the environment gets larger the performance gap between the two algorithms narrows
especially in easier instances. The continuation of this trend can be seen in results for DAO maps
where ECBS(1.01) dominates except hard instances with many agents.

The explanation for these trends is that once the overhead of constructing MDDs is less sig-
nificant, eMDD-SAT(1.01) has an advantage over ECBS(1.01). On the other hand if large MDDs
are needed to be constructed then eMDD-SAT(1.01) maintains the advantage only for hard cases
where ECBS(1.01) cannot find a solution greedily and is forced to perform intensive search while
eMDD-SAT(1.01) can use smarter exploration of the search space through learning and Boolean
constraint propagation.

Additional experiments confirmed that increasing ε generally leads to improving performance
of ECBS(1 + ε) while eMDD-SAT(1 + ε) relatively looses. Ultimately increasing ε converges to the
unbounded case.

7.2.3 EVALUATION OF THE NUMBER OF TIME EXPANSIONS

When using the unbounded MAPF solver uMDD-SAT, the actual number of time expansions of
MDDs made by the algorithm and the resulting makespan are equal. But as shown in Section 5.4.2

605

SURYNEK, STERN, BOYARSKI, & FELNER

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes
Grid 8x8 | 10% obstacles

0,001

0,01

0,1

1

10

100

1000

0 50 100 150
R

u
n

ti
m

e
 (s

ec
o

n
d

s)

Sorted runtimes
Grid 16x16 | 10% obstacles

0,001

0,01

0,1

1

10

100

1000

0 50 100 150 200 250

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes
Grid 32x32 | 10% obstacles

ECBS(1.01)

eMDD-SAT(1.01)

Figure 37: Comparison of bounded suboptimal solvers - sorted runtimes for eMDD-SAT(1.01) and
ECBS(1.01) in 8× 8, 16× 16, and 32× 32 grids.

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes| Brc202d

ECBS(1.01)

eMDD-SAT(1.01)

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes | Den520d

0,001

0,01

0,1

1

10

100

1000

0 100 200 300

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Sorted runtimes | Ost003d

Figure 38: Comparison of bounded suboptimal solvers on DAO maps - sorted runtimes for eMDD-
SAT(1.01) and ECBS(1.01) are reported.

there is a significant difference between these values when optimal MDD-SAT is used. Hence the
natural question is: What is the trend of the difference between the number of MDD expansions and
the makespan for bounded suboptimal variants of MDD-SAT depending on error ε?

Results analyzing the difference between the number of expansions and the makespan for grids
are shown in Figures 39, 40, and 41. The plots use the same format as in Figures 24 and 25, that
is a box plot based on 10 random instances per various number of agents is shown. Results for
three values of the ε error are shown: ε = 0.0 (corresponds to optimal MDD-SAT), ε = 0.01, and
ε = 0.05.

Results for DAO maps using the same format as results for grids are shown in Figures 42, 43,
and 44.

606

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Makespan vs. Expansions
Grid 8x8 | 10% obstacles | ε=0.0

Number of agents Number of agents

Grid 8x8 | 10% obstacles| ε=0.01

Grid 8x8 | 10% obstacles| ε=0.05

Number of agents

Figure 39: Comparison of computed makespan and the number of time expansions of MDDs in the
8× 8 grid for MDD-SAT, eMDD-SAT(1.01), and eMDD-SAT(1.05).

Makespan vs. Expansions
Grid 16x16| 10% obstacles| ε=0.0

Number of agents Number of agents

Grid 16x16| 10% obstacles| ε=0.01

Grid 16x16| 10% obstacles| ε=0.05

Number of agents

Figure 40: Comparison of computed makespan and the number of time expansions of MDDs in the
16× 16 grid for MDD-SAT, eMDD-SAT(1.01), and eMDD-SAT(1.05).

A clearly observable trend in the grids is that the difference between the number of expansions
and the resulting makespan quickly decreases even for very small increase of ε. Moreover, the
larger is the grid the convergence of the difference towards zero is faster. The trend is even stronger
in DAO maps where the non-zero difference is rare even for the optimal MDD-SAT and quickly
diminishes with increased ε in bounded suboptimal eMDD-SAT.

The difference between the number of expansions of MDDs, that equals µ0 + ∆, and the
makespan of computed solution can be regarded through the distribution of extra cost ∆ among
agents. When the distribution is unequal, that is, most of the extra cost is consumed by few agents
while other agents consume only little in addition to the cost of their shortest paths ξ0(ai), then the
difference between the number of expansions and the computed makespan is small. On the other

607

SURYNEK, STERN, BOYARSKI, & FELNER

Makespan vs. Expansions
Grid 32x32| 10% obstacles| ε=0.0

Number of agents Number of agents

Grid 32x32| 10% obstacles| ε=0.01

Grid 32x32| 10% obstacles| ε=0.05

Number of agents

Figure 41: Comparison of computed makespan and the number of time expansions of MDDs in the
32× 32 grid for MDD-SAT, eMDD-SAT(1.01), and eMDD-SAT(1.05).

hand, when the distribution of the extra cost is distributed equally among the agents, then the differ-
ence is large. This is implied by the design of MDD expansion scheme that counts with the worst
case when all extra cost is consumed by a single agent.

The factors behind the large difference between the number of expansions and the makespan is
first advancing to large extra cost ∆ and second distributing large ∆ equally between the agents so
that the distribution is far from the worst case. This situation naturally appears on maps densely
occupied by agents (small grids) where agents need to diverge far from their shortest individual
paths due to intensive avoidance among each other while it is less common on large DAO maps.

Increasing ε enables the eMDD-SAT algorithm to find a solution with equally distributed extra
cost ∆ increased by the ε factor while only making µ0 +∆ expansions which reduces the difference.

Makespan vs. Expansions
Map Brc202d | ε = 0.0

Number of agents Number of agents Number of agents

Map Brc202d | ε=0.01

Map Brc202d | ε = 0.05

Figure 42: Comparison of computed makespan and the number of time expansions of MDDs in
DAO map brc202d for MDD-SAT, eMDD-SAT(1.01), and eMDD-SAT(1.05).

608

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Makespan vs. Expansions
Map Den520d | ε = 0.0

Number of agents Number of agents Number of agents

Map Den520d | ε = 0.01

Map Den520d | ε = 0.05

Figure 43: Comparison of computed makespan and the number of time expansions of MDDs in
DAO map den520d for MDD-SAT, eMDD-SAT(1.01), and eMDD-SAT(1.05).

Makespan vs. Expansions
Map Ost003d | ε = 0.0

Number of agents Number of agents Number of agents

Map Ost003d | ε=0.01

Map Ost003d | ε = 0.05

Figure 44: Comparison of computed makespan and the number of time expansions of MDDs in
DAO map ost003d for MDD-SAT, eMDD-SAT(1.01), and eMDD-SAT(1.05).

8. Discussion

In this paper, we focused on how to migrate techniques from search-based to SAT-based MAPF
solvers. This raises the higher-level question of whether the techniques from MAPF research in
general can be migrated to and from other forms of multi-agent planning. For example, consider
the relation between MAPF and Dec-POMDP (Bernstein, Givan, Immerman, & Zilberstein, 2002;
Oliehoek, Witwicki, & Kaelbling, 2012; Witwicki, 2011; Witwicki & Durfee, 2010; Varakantham,
Kwak, Taylor, Marecki, Scerri, & Tambe, 2009; Becker, Zilberstein, Lesser, & Goldman, 2004).
Briefly, MAPF can be viewed as a special case of Dec-POMDP where the agents are fully ob-
servable, all action outcomes are deterministic, and the actions of each agent is just to move to

609

SURYNEK, STERN, BOYARSKI, & FELNER

an adjacent cell. In MAPF, the agents’ goal is to reach their corresponding goal positions, while
in Dec-POMDP the goal is to maximize a joint reward function. In MAPF, the only interaction
between the agents is negative, i.e., agents cannot help each other to achieve their goals, that is,
adding agents can only make the problem solving harder. In contrast, in Dec-POMDP agents may
assist each other, and having more agent may yield higher reward. In both cases, however, a major
speedup can be obtained by decoupling the planning process as much as possible. The ID frame-
work is one such example in MAFP, while all the mentioned references are examples of doing this
for Dec-POMDP. Technically, in MAPF transitions are not independent, since agents may collide
with each other. The reward function for the sum of costs is independent, as it adds one unit cost
per movement of each agent.

In particular, the technique of independence detection (ID) is not limited to MAPF setting. ID
in the MAPF setting considers local interactions between agent groups through collisions while
collisions can be understood as a form of local interactions that altogether compose a network of
interactions.

More general approaches for dealing with networks of interactions have been developed in
multi-agent planning (MAP), especially in MAP under uncertainty addressed via partially observ-
able Markov decision processes (POMDPs) (Nair, Varakantham, Tambe, & Yokoo, 2005). Finding
optimal policies in POMDPs is a computationally hard problem in general, hence various tech-
niques that simplify the problem via exploiting the structure of the interaction network have been
developed. Specifically local independence such as observation independence and transition in-
dependence can be used for more efficient policy generation for POMDPs. Important concept for
analyzing dependencies among agents is represented by coordination graphs (Guestrin, Koller, &
Parr, 2001; Guestrin, Venkataraman, & Koller, 2002) that can be used to decompose the problem
into smaller independent parts for which the policy generation is easier.

The assumption in the MAPF setting is that suitable actions for agents are being determined
so that collisions are avoided and agents maximize their objective, that is, they head towards their
goal positions. In contrast to this, different MAP approaches do not explicitly assume what are
the correct actions leading to achieving the objective but instead agents learn suitable actions via
reinforcement learning during the planning process (Kok & Vlassis, 2006).

Another important question is how to extend this work in the context of recent research of the
interaction of SAT-based and search-based MAPF solvers. Contemporary studies indicate that SAT-
based and search-based solvers are complementary in terms of suitability for certain types of MAPF
(Kaduri, Boyarski, & Stern, 2020, 2021). That is, there exist types of MAPF instances in which the
SAT-based approach dominates the search-based one and vice versa. These studies suggest that a
more sophisticated portfolio-based solvers for MAPF could be a promising research direction.

9. Conclusion

The paper summarizes MDD-SAT, the first state-of-the-art SAT-based solver for the sum-of-costs
variant of MAPF. We explain in details ideas necessary to reach the resulting enhanced propositional
encoding that migrates the ideas from the search-based methods for the use by SAT solvers. MDD-
SAT was experimentally compared to state-of-the-art search-based solvers over a variety of domains
such as 4-connected grids with random obstacles and large maps from computer games. Our results
show that MDD-SAT is often the better option in hard scenarios, while the search-based solvers
may perform better in easier cases.

610

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Nevertheless, there is no universal winner and each of the approaches has pros and cons and
thus might work best in different circumstances. This calls for a deeper study of various classes
of MAPF instances and their characteristics, and how the different algorithms behave across them.
Although early studies were made, not too much is known at present to the MAPF community about
these aspects.

There are several factors behind the performance of the SAT-based approach: clause learning,
constraint propagation, and an efficient implementation of the SAT solver. On the other hand, the
SAT solver does not understand the structure of the encoded problem which may downgrade the
performance. Hence, we consider that implementing techniques such as learning directly into the
dedicated MAPF solver may be a future direction.

Versatility of SAT-based approach is further demonstrated through integrating the independence
detection technique into the MDD-SAT solver and by introducing the unbounded suboptimal and
the bounded suboptimal variants of the solver. In both modifications of the basic solver, we obtained
analogous results as in the case when these modifications were carried out for search-based solvers.
Independence detection in MDD-SAT helps significantly when there is little interaction between
agents. Suboptimal variants of MDD-SAT enables trading the solution quality for the runtime.

For our future work we plan to use the SAT solver more actively during the construction of
propositional encoding. Mechanisms that build the encoding and simultaneously check its satis-
fiability seem to be of great potential. Another direction for future work is to develop efficient
encodings for MAPF problems beyond classical MAPF, e.g., where edges have non-uniform costs.

Acknowledgments

This research was supported by the Czech Science Foundation (GAČR), the grant registration num-
ber 19-17966S.

References

Aljalaud, F., & Sturtevant, N. R. (2013). Finding bounded suboptimal multi-agent path planning
solutions using increasing cost tree search (extended abstract). In Helmert, M., & Röger, G.
(Eds.), Proceedings of the Sixth Annual Symposium on Combinatorial Search, (SoCS 2013).
AAAI Press.

Andersen, H. R., Hadzic, T., Hooker, J. N., & Tiedemann, P. (2007). A constraint store based on
multivalued decision diagrams. In Principles and Practice of Constraint Programming - CP
2007, Proceedings, Vol. 4741 of Lecture Notes in Computer Science, pp. 118–132. Springer.

Ansótegui, C., Bofill, M., Coll, J., Dang, N., Esteban, J. L., Miguel, I., Nightingale, P., Salamon,
A. Z., Suy, J., & Villaret, M. (2019). Automatic detection of at-most-one and exactly-one rela-
tions for improved SAT encodings of pseudo-boolean constraints. In Schiex, T., & de Givry,
S. (Eds.), Principles and Practice of Constraint Programming - 25th International Confer-
ence, CP 2019, Vol. 11802 of Lecture Notes in Computer Science, pp. 20–36. Springer.

Audemard, G., Lagniez, J., & Simon, L. (2013). Improving glucose for incremental SAT solving
with assumptions: Application to MUS extraction. In Theory and Applications of Satisfiability
Testing - SAT 2013, pp. 309–317.

611

SURYNEK, STERN, BOYARSKI, & FELNER

Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers. In
Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, pp. 399–404.

Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of boolean cardinality constraints. In
CP, pp. 108–122.

Balyo, T., Heule, M. J. H., & Järvisalo, M. (2017). SAT competition 2016: Recent developments.
In Singh, S. P., & Markovitch, S. (Eds.), Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pp. 5061–5063. AAAI Press.

Barer, M., Sharon, G., Stern, R., & Felner, A. (2014). Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem. In ECAI 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 961–962.

Beck, Z. (2016). Collaborative search and rescue by autonomous robots. Ph.D. thesis, University
of Southampton.

Becker, R., Zilberstein, S., Lesser, V. R., & Goldman, C. V. (2004). Solving transition independent
decentralized markov decision processes. J. Artif. Intell. Res., 22, 423–455.

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decentral-
ized control of markov decision processes. Math. Oper. Res., 27(4), 819–840.

Biere, A., Biere, A., Heule, M., van Maaren, H., & Walsh, T. (2009). Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press.

Biere, A., & Brummayer, R. (2008). Consistency checking of all different constraints over bit-
vectors within a SAT solver. In Formal Methods in Computer-Aided Design, FMCAD 2008,
Portland, Oregon, USA, 17-20 November 2008, pp. 1–4.

Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., & Shimony, S. (2015).
ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In IJCAI, pp.
740–746.

Chai, R., & Su, J. (2013). Motion planning for multi-robot coordination. IFAC Proceedings Volumes,
46(13), 129–134. 13th IFAC Symposium on Large Scale Complex Systems: Theory and
Applications.

Claes, D., Oliehoek, F. A., Baier, H., & Tuyls, K. (2017). Decentralised online planning for multi-
robot warehouse commissioning. In Larson, K., Winikoff, M., Das, S., & Durfee, E. H. (Eds.),
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, pp. 492–500. ACM.

Cohen, L., Uras, T., & Koenig, S. (2015). Feasibility study: Using highways for bounded-suboptimal
mapf. In SOCS, pp. 2–8.

de Weerdt, M., & Clement, B. (2009). Introduction to planning in multiagent systems. Multiagent
Grid Syst., 5(4), 345–355.

de Wilde, B., ter Mors, A., & Witteveen, C. (2014). Push and rotate: a complete multi-agent
pathfinding algorithm. J. Artif. Intell. Res. (JAIR), 51, 443–492.

de Wilde, B., ter Mors, A. W., & Witteveen, C. (2013). Push and rotate: cooperative multi-agent
path planning. In AAMAS, pp. 87–94.

612

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Dimopoulos, Y., Hashmi, M. A., & Moraitis, P. (2012). µ-satplan: Multi-agent planning as satisfia-
bility. Knowl. Based Syst., 29, 54–62.

Dimopoulos, Y., & Moraitis, P. (2006). Multi-agent coordination and cooperation through classical
planning. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, Hong Kong, China, 18-22 December 2006, pp. 398–402. IEEE Computer
Society.

Dowling, W. F., & Gallier, J. H. (1984). Linear-time algorithms for testing the satisfiability of
propositional horn formulae. J. Log. Program., 1(3), 267–284.

Dresner, K., & Stone, P. (2008). A multiagent approach to autonomous intersection management.
JAIR, 31, 591–656.

Ephrati, E., & Rosenschein, J. S. (1994). Divide and conquer in multi-agent planning. In Proceed-
ings of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31 -
August 4, 1994, Volume 1, pp. 375–380. AAAI Press / The MIT Press.

Erdem, E., Kisa, D. G., Oztok, U., & Schueller, P. (2013). A general formal framework for pathfind-
ing problems with multiple agents. In AAAI.

Fazekas, K., Biere, A., & Scholl, C. (2019). Incremental inprocessing in sat solving. In International
Conference on Theory and Applications of Satisfiability Testing, pp. 136–154.

Ferner, C., Wagner, G., & Choset, H. (2013). ODrM* optimal multirobot path planning in low
dimensional search spaces. In ICRA, pp. 3854–3859.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007). clasp : A conflict-driven answer set
solver. In Logic Programming and Nonmonotonic Reasoning, 9th International Conference,
LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, pp. 260–265.

Goldenberg, M., Felner, A., Stern, R., Sharon, G., Sturtevant, N., Holte, R., & Schaeffer, J. (2014).
Enhanced partial expansion A*. JAIR, 50, 141–187.

Goldenberg, M., Felner, A., Sturtevant, N. R., Holte, R. C., & Schaeffer, J. (2013). Optimal-
generation variants of EPEA. In SoCS.

Guestrin, C., Koller, D., & Parr, R. (2001). Multiagent planning with factored mdps. In Diet-
terich, T. G., Becker, S., & Ghahramani, Z. (Eds.), Advances in Neural Information Process-
ing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001,
December 3-8, 2001, Vancouver, British Columbia, Canada], pp. 1523–1530. MIT Press.

Guestrin, C., Venkataraman, S., & Koller, D. (2002). Context-specific multiagent coordination
and planning with factored mdps. In Dechter, R., Kearns, M. J., & Sutton, R. S. (Eds.),
Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artificial Intelligence, July 28 - August 1, 2002,
Edmonton, Alberta, Canada, pp. 253–259. AAAI Press / The MIT Press.

Järvisalo, M., Berre, D. L., Roussel, O., & Simon, L. (2012). The international SAT solver compe-
titions. AI Magazine, 33(1).

Jones, E. G., Dias, M. B., & Stentz, A. (2011). Time-extended multi-robot coordination for domains
with intra-path constraints. Auton. Robots, 30(1), 41–56.

613

SURYNEK, STERN, BOYARSKI, & FELNER

Jorgensen, S., Chen, R. H., Milam, M. B., & Pavone, M. (2018). The team surviving orienteers
problem: routing teams of robots in uncertain environments with survival constraints. Auton.
Robots, 42(4), 927–952.

Kaduri, O., Boyarski, E., & Stern, R. (2020). Algorithm selection for optimal multi-agent pathfind-
ing. In International Conference on Automated Planning and Scheduling (ICAPS), pp. 161–
165.

Kaduri, O., Boyarski, E., & Stern, R. (2021). Experimental evaluation of classical multi agent path
finding algorithms. In International Symposium on Combinatorial Search (SoCS), Vol. 12,
pp. 126–130.

Kautz, H. A. (2006). Deconstructing planning as satisfiability. In Proceedings, The Twenty-First
National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference (AAAI 2006), 2006, pp. 1524–1526. AAAI Press.

Kautz, H. A., McAllester, D. A., & Selman, B. (1996). Encoding plans in propositional logic.
In Aiello, L. C., Doyle, J., & Shapiro, S. C. (Eds.), Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning (KR’96), pp. 374–
384. Morgan Kaufmann.

Kautz, H. A., & Selman, B. (1992). Planning as satisfiability. In Neumann, B. (Ed.), 10th European
Conference on Artificial Intelligence, ECAI 1992. Proceedings, pp. 359–363. John Wiley and
Sons.

Khorshid, M. M., Holte, R. C., & Sturtevant, N. R. (2011). A polynomial-time algorithm for non-
optimal multi-agent pathfinding. In Symposium on Combinatorial Search (SOCS).

Kok, J. R., & Vlassis, N. A. (2006). Collaborative multiagent reinforcement learning by payoff
propagation. J. Mach. Learn. Res., 7, 1789–1828.

Kornhauser, D., Miller, G. L., & Spirakis, P. G. (1984). Coordinating pebble motion on graphs, the
diameter of permutation groups, and applications. In 25th Annual Symposium on Foundations
of Computer Science, West Palm Beach, Florida, USA, 24-26 October 1984, pp. 241–250.

Kumar, V., & Michael, N. (2012). Opportunities and challenges with autonomous micro aerial
vehicles. Int. J. Robotics Res., 31(11), 1279–1291.

Liang, J. H. (2018). Machine Learning for SAT Solvers. Ph.D. thesis, University of Waterloo.

Liang, J. H., Oh, C., Mathew, M., Thomas, C., Li, C., & Ganesh, V. (2018). Machine learning-based
restart policy for CDCL SAT solvers. In Beyersdorff, O., & Wintersteiger, C. M. (Eds.), Pro-
ceedings of the Theory and Applications of Satisfiability Testing - SAT 2018 - 21st Interna-
tional Conference, SAT 2018, Vol. 10929 of Lecture Notes in Computer Science, pp. 94–110.
Springer.

Luna, R., & Bekris, K. E. (2011). An efficient and complete approach for cooperative path-finding.
In AAAI.

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artifi-
cial intelligence. In Meltzer, B., & Michie, D. (Eds.), Machine Intelligence 4, pp. 463–502.
Edinburgh University Press. reprinted in McC90.

Nair, R., Varakantham, P., Tambe, M., & Yokoo, M. (2005). Networked distributed pomdps: A syn-
thesis of distributed constraint optimization and pomdps. In Veloso, M. M., & Kambhampati,

614

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

S. (Eds.), Proceedings, The Twentieth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005,
Pittsburgh, Pennsylvania, USA, pp. 133–139. AAAI Press / The MIT Press.

Oh, K., Park, M., & Ahn, H. (2015). A survey of multi-agent formation control. Autom., 53,
424–440.

Oliehoek, F. A., Witwicki, S. J., & Kaelbling, L. P. (2012). Influence-based abstraction for multi-
agent systems. In Hoffmann, J., & Selman, B. (Eds.), AAAI Conference on Artificial Intelli-
gence.

Parker, L. E. (1994). Heterogeneous Multi-Robot Cooperation. Ph.D. thesis, Massachusetts Institute
of Technology.

Petke, J. (2015). Bridging Constraint Satisfaction and Boolean Satisfiability. Artificial Intelligence:
Foundations, Theory, and Algorithms. Springer.

Ratner, D., & Warmuth, M. K. (1986). Finding a shortest solution for the nxn extension of the
15-puzzle is intractable. In National Conference on Artificial Intelligence, pp. 168–172.

Ratner, D., & Warmuth, M. K. (1990). Nxn puzzle and related relocation problem. J. Symb. Comput.,
10(2), 111–138.

Régin, J. (1994). A filtering algorithm for constraints of difference in csps. In Proceedings of the
12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4,
1994, Volume 1., pp. 362–367.

Rintanen, J. (2012). Engineering efficient planners with SAT. In Raedt, L. D., Bessiere, C., Dubois,
D., Doherty, P., Frasconi, P., Heintz, F., & Lucas, P. J. F. (Eds.), ECAI 2012 - 20th Euro-
pean Conference on Artificial Intelligence. Including Prestigious Applications of Artificial
Intelligence (PAIS-2012) System Demonstrations Track, Vol. 242 of Frontiers in Artificial
Intelligence and Applications, pp. 684–689. IOS Press.

Robu, V., Noot, H., Poutré, H. L., & van Schijndel, W. (2011). A multi-agent platform for auction-
based allocation of loads in transportation logistics. Expert Syst. Appl., 38(4), 3483–3491.

Röger, G., & Helmert, M. (2012). Non-optimal multi-agent pathfinding is solved (since 1984).. In
SOCS).

Rosenschein, J. S. (1995). Multiagent planning as a social process: Voting, privacy, and manip-
ulation. In Proceedings of the First International Conference on Multiagent Systems, June
12-14, 1995, San Francisco, California, USA, pp. 431–431. The MIT Press.

Ryan, M. (2008). Exploiting subgraph structure in multi-robot path planning. JAIR, 31, 497–542.

Ryan, M. (2010). Constraint-based multi-robot path planning. In ICRA, pp. 922–928.

Sapena, O., Onaindia, E., & Torreño, A. (2010). On the use of argumentation in multi-agent plan-
ning. In ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal,
August 16-20, 2010, Proceedings, Vol. 215 of Frontiers in Artificial Intelligence and Appli-
cations, pp. 1001–1002. IOS Press.

Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal
multi-agent pathfinding. Artif. Intell., 219, 40–66.

615

SURYNEK, STERN, BOYARSKI, & FELNER

Sharon, G., Stern, R., Goldenberg, M., & Felner, A. (2013). The increasing cost tree search for
optimal multi-agent pathfinding. Artificial Intelligence, 195, 470–495.

Silva, J., & Lynce, I. (2007). Towards robust CNF encodings of cardinality constraints. In CP, pp.
483–497.

Silver, D. (2005). Cooperative pathfinding. In AIIDE, pp. 117–122.

Sinz, C. (2005). Towards an optimal CNF encoding of boolean cardinality constraints. In CP, pp.
827–831.

Sørli, J., Graven, O. H., & Bjerknes, J. D. (2017). Multi-uav cooperative path planning for sensor
placement using cooperative coevolving genetic strategy. In Advances in Swarm Intelligence
- 8th International Conference, ICSI 2017, Fukuoka, Japan, July 27 - August 1, 2017, Pro-
ceedings, Part II, Vol. 10386 of Lecture Notes in Computer Science, pp. 433–444. Springer.

Srinivasan, A., Ham, T., Malik, S., & Brayton, R. (1990). Algorithms for discrete function manip-
ulation. In (ICCAD, pp. 92–95.

Standley, T. (2010a). Finding optimal solutions to cooperative pathfinding problems.. In AAAI, pp.
173–178.

Standley, T. S. (2010b). Finding optimal solutions to cooperative pathfinding problems. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010. AAAI
Press.

Standley, T. S., & Korf, R. E. (2011). Complete algorithms for cooperative pathfinding problems.
In Walsh, T. (Ed.), IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, 2011, pp. 668–673. IJCAI/AAAI.

Sturtevant, N. R. (2012). Benchmarks for grid-based pathfinding. Computational Intelligence and
AI in Games, 4(2), 144–148.

Surynek, P. (2010). An optimization variant of multi-robot path planning is intractable. In AAAI.

Surynek, P. (2014). A simple approach to solving cooperative path-finding as propositional satisfi-
ability works well. In PRICAI, pp. 827–833.

Surynek, P. (2015). Reduced time-expansion graphs and goal decomposition for solving cooperative
path finding sub-optimally. In IJCAI, pp. 1916–1922.

Surynek, P. (2009). A novel approach to path planning for multiple robots in bi-connected graphs. In
2009 IEEE International Conference on Robotics and Automation, ICRA 2009, Kobe, Japan,
May 12-17, 2009, pp. 3613–3619.

Surynek, P. (2012a). An alternative eager encoding of the all-different constraint over bit-vectors.
In ECAI 2012 - 20th European Conference on Artificial Intelligence. Including Prestigious
Applications of Artificial Intelligence (PAIS-2012) System Demonstrations Track, Montpellier,
France, August 27-31 , 2012, pp. 927–928.

Surynek, P. (2012b). On propositional encodings of cooperative path-finding. In IEEE 24th In-
ternational Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece,
November 7-9, 2012, pp. 524–531.

Surynek, P. (2012c). Towards optimal cooperative path planning in hard setups through satisfiability
solving. In PRICAI 2012: Trends in Artificial Intelligence - 12th Pacific Rim International

616

MIGRATING TECHNIQUES FROM SEARCH-BASED MAPF SOLVERS TO SAT-BASED APPROACH

Conference on Artificial Intelligence, 2012. Proceedings, Vol. 7458 of Lecture Notes in Com-
puter Science, pp. 564–576. Springer.

Surynek, P. (2012d). Towards optimal cooperative path planning in hard setups through satisfiability
solving. In PRICAI 2012: Trends in Artificial Intelligence - 12th Pacific Rim International
Conference on Artificial Intelligence, pp. 564–576. Springer.

Surynek, P. (2013a). Mutex reasoning in cooperative path finding modeled as propositional satisfia-
bility. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, November 3-7, 2013, pp. 4326–4331.

Surynek, P. (2013b). Optimal cooperative path-finding with generalized goals in difficult cases.
In Proceedings of the Tenth Symposium on Abstraction, Reformulation, and Approximation,
SARA 2013, 11-12 July 2013, Leavenworth, Washington, USA.

Surynek, P. (2014a). Compact representations of cooperative path-finding as SAT based on match-
ings in bipartite graphs. In 26th IEEE International Conference on Tools with Artificial Intel-
ligence, ICTAI 2014, Limassol, Cyprus, November 10-12, 2014, pp. 875–882.

Surynek, P. (2014b). Simple direct propositional encoding of cooperative path finding simplified yet
more. In Nature-Inspired Computation and Machine Learning - 13th Mexican International
Conference on Artificial Intelligence, MICAI 2014, Tuxtla Gutiérrez, Mexico, November 16-
22, 2014. Proceedings, Part II, pp. 410–425.

Surynek, P. (2014c). Solving abstract cooperative path-finding in densely populated environments.
Computational Intelligence, 30(2), 402–450.

Surynek, P. (2015). On the complexity of optimal parallel cooperative path-finding. Fundam.
Inform., 137(4), 517–548.

Surynek, P., Felner, A., Stern, R., & Boyarski, E. (2016a). Efficient SAT approach to multi-agent
path finding under the sum of costs objective. In European Conference on Artificial Intelli-
gence (ECAI), Vol. 285, pp. 810–818.

Surynek, P., Felner, A., Stern, R., & Boyarski, E. (2016b). An empirical comparison of the hardness
of multi-agent path finding under the makespan and the sum of costs objectives. In Proceed-
ings of the Ninth Annual Symposium on Combinatorial Search, SOCS 2016., pp. 145–147.

Surynek, P., Felner, A., Stern, R., & Boyarski, E. (2017a). Modifying optimal sat-based approach
to multi-agent path-finding problem to suboptimal variants. In Fukunaga, A., & Kishimoto,
A. (Eds.), Symposium on Combinatorial Search (SOCS), pp. 169–170.

Surynek, P., Svancara, J., Felner, A., & Boyarski, E. (2017b). Integration of independence detection
into sat-based optimal multi-agent path finding - A novel sat-based optimal MAPF solver.
In van den Herik, H. J., Rocha, A. P., & Filipe, J. (Eds.), Proceedings of the 9th Interna-
tional Conference on Agents and Artificial Intelligence, ICAART 2017, Volume 2, pp. 85–95.
SciTePress.

Surynek, P., Svancara, J., Felner, A., & Boyarski, E. (2017c). Variants of independence detection in
sat-based optimal multi-agent path finding. In van den Herik, H. J., Rocha, A. P., & Filipe,
J. (Eds.), Agents and Artificial Intelligence - 9th International Conference, ICAART 2017,
Revised Selected Papers, Vol. 10839 of Lecture Notes in Computer Science, pp. 116–136.
Springer.

617

SURYNEK, STERN, BOYARSKI, & FELNER

Tack, G. (2009). Constraint Propagation - Models, Techniques, Implementation. phdthesis, Saarland
University, Germany.

Tamura, N., Taga, A., Kitagawa, S., & Banbara, M. (2009). Compiling finite linear CSP into SAT.
Constraints An Int. J., 14(2), 254–272.

Torreño, A., Onaindia, E., Komenda, A., & Stolba, M. (2018). Cooperative multi-agent planning:
A survey. ACM Comput. Surv., 50(6), 84:1–84:32.

Tozicka, J., Jakubuv, J., Komenda, A., & Pechoucek, M. (2016). Privacy-concerned multiagent
planning. Knowl. Inf. Syst., 48(3), 581–618.

Tsang, K. F. E., Ni, Y., Wong, C. F. R., & Shi, L. (2018). A novel warehouse multi-robot automa-
tion system with semi-complete and computationally efficient path planning and adaptive
genetic task allocation algorithms. In 15th International Conference on Control, Automation,
Robotics and Vision, ICARCV 2018, pp. 1671–1676. IEEE.

Varakantham, P., Kwak, J., Taylor, M. E., Marecki, J., Scerri, P., & Tambe, M. (2009). Exploiting
coordination locales in distributed pomdps via social model shaping. In Proceedings of the
19th International Conference on Automated Planning and Scheduling, ICAPS 2009, Thes-
saloniki, Greece, September 19-23, 2009. AAAI.

Wagner, G., & Choset, H. (2015). Subdimensional expansion for multirobot path planning. Artif.
Intell., 219, 1–24.

Wang, K., & Botea, A. (2011). MAPP: a scalable multi-agent path planning algorithm with tractabil-
ity and completeness guarantees. JAIR), 42, 55–90.

Witwicki, S. (2011). Abstracting Influences for Efficient Multiagent Coordination Under Uncer-
tainty. Ph.D. thesis, University of Michigan.

Witwicki, S. J., & Durfee, E. H. (2010). Influence-based policy abstraction for weakly-coupled dec-
pomdps. In Brafman, R. I., Geffner, H., Hoffmann, J., & Kautz, H. A. (Eds.), Proceedings
of the 20th International Conference on Automated Planning and Scheduling, ICAPS 2010,
Toronto, Ontario, Canada, May 12-16, 2010, pp. 185–192. AAAI.

Yu, J., & LaValle, S. (2013). Planning optimal paths for multiple robots on graphs. In ICRA, pp.
3612–3617.

Yu, J. (2016). Intractability of optimal multirobot path planning on planar graphs. IEEE Robotics
and Automation Letters, 1(1), 33–40.

Yu, J., & LaValle, S. M. (2013a). Planning optimal paths for multiple robots on graphs. In 2013
IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10,
2013, pp. 3612–3617.

Yu, J., & LaValle, S. M. (2013b). Structure and intractability of optimal multi-robot path planning
on graphs. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA.

618

