
Journal of Artificial Intelligence Research 73 (2022) 117-171 Submitted 09/2021; published 01/2022

Jointly Learning Environments and Control Policies with
Projected Stochastic Gradient Ascent

Adrien Bolland adrien.bolland@uliege.be
Ioannis Boukas ioannis.boukas@uliege.be
Mathias Berger mathias.berger@uliege.be
Damien Ernst dernst@uliege.be
Montefiore Institute
University of Liège
Liège, Belgium

Abstract
We consider the joint design and control of discrete-time stochastic dynamical systems

over a finite time horizon. We formulate the problem as a multi-step optimization problem
under uncertainty seeking to identify a system design and a control policy that jointly
maximize the expected sum of rewards collected over the time horizon considered. The
transition function, the reward function and the policy are all parametrized, assumed known
and differentiable with respect to their parameters. We then introduce a deep reinforcement
learning algorithm combining policy gradient methods with model-based optimization
techniques to solve this problem. In essence, our algorithm iteratively approximates the
gradient of the expected return via Monte-Carlo sampling and automatic differentiation and
takes projected gradient ascent steps in the space of environment and policy parameters.
This algorithm is referred to as Direct Environment and Policy Search (DEPS). We assess
the performance of our algorithm in three environments concerned with the design and
control of a mass-spring-damper system, a small-scale off-grid power system and a drone,
respectively. In addition, our algorithm is benchmarked against a state-of-the-art deep
reinforcement learning algorithm used to tackle joint design and control problems. We
show that DEPS performs at least as well or better in all three environments, consistently
yielding solutions with higher returns in fewer iterations. Finally, solutions produced by our
algorithm are also compared with solutions produced by an algorithm that does not jointly
optimize environment and policy parameters, highlighting the fact that higher returns can
be achieved when joint optimization is performed.

1. Introduction

Problems involving the design of a system that must be actively controlled afterwards are
ubiquitous in the field of engineering. Examples range from the joint design and control of
robot hands in order to achieve a specific task (Chen et al., 2021) to the design and control
of small-scale power systems such as microgrids that aim to provide a cheap, low-carbon
source of electricity (François-Lavet et al., 2016). The interplay between design and control
strategies and their impact on overall system performance have long been recognized, both
in artificial (Li et al., 2001), and natural systems such as the human body (Anderson, 2003).
The idea that the design and control strategies of systems must be jointly optimized in order
to achieve maximum performance naturally followed, and the topic has received a great deal
of interest in recent years (Ha et al., 2017; Dinev et al., 2021).

c©2022 AI Access Foundation. All rights reserved.

Bolland, Boukas, Berger, & Ernst

In this paper, we consider the joint design and control of discrete-time stochastic
dynamical systems over a finite time horizon (Bertsekas, 2005) and formulate the problem as
a multi-step optimization problem under uncertainty (Bakker et al., 2020). In this framework,
an agent seeks to identify a system design and a control policy (i.e., a mapping between
system states and control decisions) that jointly maximize the expected sum of rewards
collected over the time horizon of interest (i.e., the expected return of the policy in the
environment). On one hand, the transition dynamics of the system and the reward function
are parametrized by so-called system (or environment) parameters. On the other hand, the
policy is a parametric function that depends on distinct policy parameters. Furthermore,
these parametric functions are assumed to be known and to be differentiable with respect to
their parameters. Solving the problem thus consists in finding the combination of system and
policy parameters that jointly maximize the expected return of the policy in the environment.

To this end, we introduce a deep reinforcement learning algorithm combining policy
gradient methods with model-based optimization techniques. More specifically, in each
iteration, the algorithm approximates the gradient of the expected sum of rewards with
respect to both environment and policy parameters via Monte-Carlo sampling and automatic
differentiation, and takes projected gradient ascent steps in the space of environment and
policy parameters. The resulting algorithm is called the Direct Environment and Policy
Search (DEPS) algorithm. The performance of the DEPS algorithm is empirically evaluated
in three environments. The first environment is a mass-spring-damper system. The second
environment deals with the design and control of an off-grid microgrid, while the third
environment is concerned with the design and control of a drone. The complexity of the
latter two environments is on a par with that of typical benchmark environments found
in the OpenAI Gym library (Brockman et al., 2016). In addition, for each environment,
the performance of the DEPS algorithm is benchmarked against that of a state-of-the-art
algorithm proposed to tackle joint design and control problems (Schaff et al., 2019). Finally,
in order to assess the effectiveness of the joint design and control approach, we compare
the outcomes of the DEPS algorithm with the outcomes produced by an algorithm that
does not perform joint optimization. More precisely, this algorithm consists in designing a
control policy a priori and then optimizing environment parameters using derivative-free
optimization methods so as to maximize the expected return.

This paper is organized as follows. In Section 2, we review the relevant literature. In
Section 3, we present the theoretical background and introduce the problem statement more
formally. In Section 4, the proposed methodology as well as the algorithmic implementation
for direct environment and policy search are described. The experimental protocol for the
evaluation of the proposed algorithm is introduced and the results are discussed in Section
5. Finally, the conclusions and future work directions are discussed in Section 6.

2. Related Work

In this section, we discuss the different methods that have been used for tackling the problem
statement we introduced in Section 1. We first review stochastic programming approaches
and simulation-based methods relying on derivative-free optimization techniques. We then
discuss reinforcement learning approaches and how policy gradient methods can be extended

118

Jointly Learning Environments and Control Policies

to tackle our problem. Finally, we briefly compare our method with existing state-of-the-art
approaches from the literature.

Multi-stage stochastic programming has been widely used for a variety of applications
described in the literature (Wallace & Fleten, 2003). In general, a mathematical model of the
system is assumed to be available. The design and operational decisions as well as the system
states are represented as optimization variables, while the system dynamics are encoded via a
set of equality and inequality constraints. Some model parameters may be uncertain and may
be represented as realizations of random variables or stochastic processes whose probability
distributions are assumed to be known (Birge & Louveaux, 2011). The tractability of this
approach depends on several factors, including the number of stages, the nature of the
uncertainty (i.e., whether its probability distribution depends on optimization variables
(Goel & Grossmann, 2006) and whether the latter can be accurately approximated using a
small number of scenarios (Heitsch & Roemisch, 2009)), and the convexity (or lack thereof)
of the resulting constrained optimization problem (Nemirovsky & Yudin, 1983). In practice,
system design problems are often approximated via two-stage stochastic programs where
the first stage represents design decisions and the second stage corresponds to operational
decisions, respectively. This approach has, for instance, been applied in the context of energy
systems (Wallace & Fleten, 2003), supply chains (Marufuzzaman et al., 2014), as well as
robotics (Bravo-Palacios et al., 2020). Once a system design has been selected, real-time
operation is usually conducted using receding horizon control strategies, such as model
predictive control (Camacho & Alba, 2013).

A common approach used in the literature to tackle joint design and control problems
consists in simulating different configurations of system designs and control policies and
selecting the configuration that yields the most desirable outcome (Brekken et al., 2010).
Such methods can properly capture the impact of the uncertainty on system design and
operation, provided that a sufficient number of simulations can be run. Systems with highly-
nonlinear (and non-convex) dynamics are also easier to handle with such methods. Originally,
these techniques relied on derivative-free optimization methods to navigate through the
space of system design and policy parameters and find the combinations that perform best.
However, this can be ineffective and time-consuming, especially in high-dimensional spaces
(Jamieson et al., 2012; Oliveto & Witt, 2015). In many problems, the number of design
parameters remains moderate but the overall number of parameters grows substantially as
soon as complex policies are considered (e.g., based on neural networks). As a consequence,
this method is usually limited to solving problems with policies that depend on relatively few
parameters. For example, in the work of Digumarti et al. (2014), the policy takes the form of
an optimization problem that depends on a few hyperparameters. This optimization problem
is solved at each time step in order to compute a control action that is then applied to a robot.
Brekken et al. (2010) compare myopic rule-based policies depending on the environment
parameters with a policy whose hypothesis space is defined by a small multi-layer perceptron
comprising a few neurons. In both papers, derivative-free optimization methods are used to
jointly update the system and policy parameters.

On the other hand, gradient descent (or ascent) methods have been very successful at
learning complex function approximators with a large number of parameters (e.g., deep
neural networks) for machine learning tasks such as supervised learning (Bottou, 2010;
Kingma & Ba, 2014). These ideas have also be applied in the realm of reinforcement learning

119

Bolland, Boukas, Berger, & Ernst

(RL) (Kaelbling et al., 1996), giving rise to the class of techniques known as policy gradient
methods (Grondman et al., 2012). The basic idea behind these methods, as formulated in
the seminal work of Williams (1992) on the REINFORCE algorithm, consists in sampling
trajectories from a parametrized policy, computing the gradient of the log-likelihood of the
sequence of actions taken in each trajectory, and updating the policy parameters by stepping
in the direction given by a weighted sum of these gradients. The weight assigned to each
gradient is the cumulative reward observed in the corresponding trajectory. Hence, these
methods are best viewed as model-free gradient-based optimization techniques that make
it possible to learn expressive control policies for complex decision-making problems. In
recent years, new policy gradient methods have met with considerable success in challenging
applications dealing with high-dimensional parameter spaces such as robotics. In particular,
Schulman et al. (2015) applied the ideas of trust region methods for nonlinear optimization to
reinforcement learning and derived the trust region policy optimization (TRPO) algorithm.
This algorithm was then improved to yield proximal policy optimization (PPO) methods
(Schulman et al., 2017). Roughly speaking, in PPO, the trust regions previously used in
TRPO are approximated in order to reduce the computational cost of parameter updates.
In the policy gradient methods discussed so far, the computation of the gradients relies on
the computation of the expected return of a policy, which is usually approximated by the
cumulative reward observed when playing the policy. An alternative to this approximation
consists in learning the expected return using an additional function approximator. Such
algorithms are referred to as actor critic methods, where the additional function approximator
is called a critic while the policy network is referred to as the actor. In particular, the
advantage actor critic (A2C) (Mnih et al., 2016) is very popular due to its effectiveness
on complex problems. Another popular algorithm is the soft actor critic (SAC) algorithm
(Haarnoja et al., 2018), which takes the entropy of the policy into account for learning
optimal policies.

Building on the success of policy gradient methods, a number of researchers have proposed
ways of extending them to tackle joint design and control problems and devise algorithms
with a much better sample efficiency than earlier derivative-free methods. Schaff et al.
(2019) extended the REINFORCE algorithm to account for system parameters. More
precisely, their algorithm maintains a parametrized distribution over environments, which
corresponds in some sense to an environment policy, in addition to the usual control policy.
Environments are then sampled from this distribution and the control policy is executed
in each environment. Using information from the sampled trajectories, policy parameters
are updated via PPO, while the parameters of the environment distribution are updated
using the simple REINFORCE update rule. The same idea was applied in different robotic
environments and was shown to perform better than other optimization techniques by Ha
(2019). Another RL technique based on the SAC algorithm (Haarnoja et al., 2018) for joint
design and control was proposed by Luck et al. (2020). Here, the critic function approximator
in the SAC is made explicitly dependent on the environment parameters. The update of the
parametric functions (the critic and the policy) is nevertheless inefficient as it requires the
maximization of the critic function with respect to environment parameters, which implies
that a strongly non-convex optimization problem must be solved in each iteration.

Finally, the DEPS algorithm proposed in this paper can be interpreted as combining
policy gradient methods with model-based optimization techniques to tackle joint design and

120

Jointly Learning Environments and Control Policies

control problems more effectively. It extends the REINFORCE algorithm (Williams, 1992)
to take advantage of the knowledge of the analytical form of the environment to compute the
gradients of the expected cumulative reward with respect to system parameters. The works
that are closest to ours, combining policy gradients with the knowledge of system dynamics,
are those of Chen et al. (2020) and Jackson et al. (2021). First, Chen et al. (2020) assume
that the transition dynamics of the decision process depend on environment parameters.
Then, they express the dependence of the cumulative reward on these parameters via a
computational graph and use this graph to learn a joint distribution over environment
parameters and control actions using a variant of the REINFORCE algorithm (Williams,
1992). In the same vein, Jackson et al. (2021) directly learn the parameters of the dynamics
jointly with those of a control policy. This is achieved by performing gradient descent on a
variant of the loss function defined in the A2C algorithm, which is made explicitly dependent
on the environment parameters. The method of Jackson et al. (2021) is more flexible than
that of Chen et al. (2020), as it does not require to explicitly encode the dependence of
the cumulative reward on system parameters in a computational graph. In addition, it
directly learns system parameters instead of learning a distribution over these parameters.
Nevertheless, both methods differ from the DEPS algorithm as they only assume that the
system dynamics are parametrized. The latter assumption is restrictive for modeling a large
class of problems where the decision concerning the design is associated with an explicit
reward or cost (e.g., to represent some notion of investment cost).

3. Theoretical Background and Problem Statement

In this section, we provide a generic formulation for the problem of controlling a discrete-time
stochastic dynamical system over a finite time horizon. We then introduce parametrized
environments and parametrized policies. Subsequently, we formulate the problem of jointly
optimizing the environment and policy parameters so as to maximize the expected sum of
rewards.

3.1 Discrete-Time Dynamical Systems

Let us consider the problem of controlling a discrete-time (time-invariant) stochastic dy-
namical system over a finite time horizon (Bertsekas, 2005). Our formulation relies on two
crucial elements, namely a state-space model representing the system dynamics and a reward
function defining the control objective. Let T ∈ N be the optimization horizon, which refers
to the number of decision stages in the control process. The system is defined by a state
space S, an action space A, a disturbance space Ξ, a transition function f : S ×A× Ξ→ S,
and a conditional probability distribution Pξ giving the probability P (ξt|st, at) of drawing a
disturbance ξt ∈ Ξ when taking an action at ∈ A while being in a state st ∈ S. A probability
measure P0 yields the probability P0(s0) of each state s0 ∈ S to be the initial state. At time
t ∈ {0, 1, . . . , T − 1}, the system moves from state st ∈ S to state st+1 ∈ S under the effect
of an action at ∈ A and a random disturbance ξt ∈ Ξ, which is captured by the transition
function f :

st+1 = f(st, at, ξt) . (1)

121

Bolland, Boukas, Berger, & Ernst

Moreover, a reward function ρ : S ×A× Ξ→ R (R modelling the control objective is also
defined and a reward rt = ρ(st, at, ξt) is collected after each state transition. We consider
bounded reward functions, such that |rt| ≤ rmax. The different elements of this optimal
control problem are gathered in a tuple (S,A,Ξ, P0, f, ρ, Pξ, T), which is referred to as the
environment.

We define a closed-loop policy π ∈ Π as a function associating a probability distribution
with support A to the state st of the system at decision stage t = 0, . . . , T − 1. At
each iteration, an action at is sampled from the policy with probability π(at|st, t) and
applied to the dynamical system, giving rise to a state transition. A trajectory τ =
(s0, a0, ξ0, a1, ξ1, . . . aT−1, ξT−1) contains the information collected by executing policy π over
the horizon T . The cumulative reward R(τ) over trajectory τ can be computed as:

R(τ) =
T−1∑
t=0

ρ(st, at, ξt) , (2)

where st+1 = f(st, at, ξt). The expected cumulative reward associated with a policy π and a
state st ∈ S at time t is called the return of the policy and is given by:

V π(st, t) =
T−1∑
t′=t

E
at′∼π(·|st′ ,t′)
ξt′∼Pξ(·|st′ ,at′)

{ρ(st′ , at′ , ξt′)} . (3)

Optimal policies are defined by the principle of optimality (Bertsekas, 2005). This principle
states that a policy is optimal in state st at time t if it maximizes the expected reward-to-go
from that state at that time. An optimal policy π∗ ∈ Π is thus such that, ∀st ∈ S, ∀t ∈
{0, . . . , T − 1}:

π∗ ∈ argmax
π∈Π

{V π(st, t)} . (4)

3.2 Problem Statement: Optimizing over a Set of Environments and Policies

We consider a parametrized version of the environment defined in Section 3.1, with continuous
state space S (R

dS , dS ∈ N, action space A (R
dA , dA ∈ N, disturbance space Ξ (R

dΞ ,
dΞ ∈ N, distribution P0 over the initial states and horizon T . The state, action and
disturbance spaces are assumed to be compact. Moreover, the transition and reward
functions fψ and ρψ are parametrized by the vector ψ defined over the compact Ψ (R

dΨ ,
dΨ ∈ N. Both functions are assumed continuously differentiable on the parameter space Ψ
and the state space S for every action in A and every disturbance in Ξ. Furthermore, the
disturbance distribution Pξ is assumed to be differentiable on the state space S for every
action in A and every disturbance in Ξ. Additionally, the policy πθ is parametrized by a real
vector θ taking values in the compact Θ (R

dΘ , dΘ ∈ N. The policy is assumed continuously
differentiable on its parameter space Θ and on the state space S for every action in A and
every time t. We seek to identify a pair of parameter vectors (ψ, θ) such that the policy πθ
maximizes the expected return, on expectation over the initial states, in the environment

122

Jointly Learning Environments and Control Policies

(S,A,Ξ, P0, fψ, ρψ, Pξ, T). We thus aim to solve the following optimization problem:

ψ∗, θ∗ ∈ argmax
ψ∈Ψ,θ∈Θ

V (ψ, θ) (5)

V (ψ, θ) = E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{
T−1∑
t=0

rt} (6)

st+1 = fψ(st, at, ξt) (7)
rt = ρψ(st, at, ξt) . (8)

4. Direct Environment and Policy Search

In this section, we address the problem defined in Section 3.2. First, we show in Section 4.1
that the expected return is differentiable with respect to the parameters of the environment
and the policy if the different parametric functions and the disturbance probability function
are continuously differentiable. In such a context, we derive an analytical expression for
the gradient of the expected return. The results are also extended to discrete action and
disturbance spaces. In addition, we derive the expression of an unbiased estimator of the
gradient from the differentiation of a loss function built from Monte-Carlo simulations.
In Section 4.2, we discuss update rules for environment and policy parameters using the
aforementioned gradient estimator and projection operators. Finally, our Direct Environment
and Policy Search (DEPS) algorithm is detailed in section 4.3.

4.1 Environment and Policy Gradients

In this section, we derive an analytical expression for the gradients of the expected cumulative
reward of a policy with respect to the parameters of the environment and the policy.
Furthermore, we explain how we can use automatic differentiation (also referred to as
autodifferentiation or autodiff) to compute an unbiased estimator of these gradients in
practice.

In Theorem 1, we first prove the differentiability of the expected cumulative reward
with respect to the policy and the environment parameters, under the assumption that the
functions used to build the environment and the policy are continuously differentiable. We
then extend these results in a straightforward way to the case where A and/or Ξ are discrete
in Corollary 1. Corollaries 2 and 3 finally give the expressions of the gradients.

Theorem 1. Let (S,A,Ξ, P0, fψ, ρψ, Pξ, T) and πθ be an environment and a policy as
defined in Section 3.2. Additionally, let the functions fψ, ρψ and Pξ be continuously
differentiable on the parameter space Ψ and on the state space S for every action in A and
every disturbance in Ξ. Furthermore, let the policy πθ be continuously differentiable on its
parameter space Θ and on the state space S for every action in A and for every time t. Let
V (ψ, θ) be the expected cumulative reward of policy πθ, averaged over the initial states, for
all (ψ, θ) ∈ Ψ×Θ, as defined in equation (6). Then, the function V exists, is bounded, and
is continuously differentiable in the interior of Ψ×Θ.

123

Bolland, Boukas, Berger, & Ernst

Corollary 1. The function V , as defined in Theorem 1, exists, is bounded, and is continu-
ously differentiable in the interior of Ψ×Θ if A and/or Ξ are discrete.

Corollary 2. The gradient of the function V defined in equation (6) with respect to the
parameter vector ψ is such that:

∇ψV (ψ, θ) = E
s0∼P0(·)
at∼πθ(·|s,t)
ξt∼Pξ(·|st,at)

{(T−1∑
t=0

(
∇s log πθ(at|s, t)|s=st +∇s logPξ(ξt|s, at)|s=st

)
· ∇ψst

)

×
(T−1∑
t=0

rt
)

+
(T−1∑
t=0
∇ψρψ(s, at, ξt)|s=st +∇sρψ(s, at, ξt)|s=st · ∇ψst

)}
, (9)

where:

∇ψst = (∇sfψ)(s, at−1, ξt−1)|s=st−1 · ∇ψst−1 + (∇ψfψ)(s, at−1, ξt−1)|s=st−1 , (10)

with ∇ψs0 = 0.

Corollary 3. The gradient of the function V , defined in equation (6), with respect to the
parameter vector θ is given by:

∇θV (ψ, θ) = E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{(
T−1∑
t=0
∇θ log πθ(at|st, t))(

T−1∑
t=0

rt)} . (11)

Definition 1. Let (S,A,Ξ, P0, f, ρ, Pξ, T) and π be an environment and a policy, respec-
tively, as defined in Section 3. A history h of the policy in the environment is a sequence:

h = (s0, a0, ξ0, r0, a1, ξ1, r1, . . . aT−1, ξT−1, rT−1) , (12)

where s0 is an initial state sampled from P0, and where, at time t, ξt is a disturbance sampled
from Pξ, at is an action sampled from π, and rt is the reward observed.

The DEPS algorithm will exploit the following theorem that shows that an unbiased
estimate of the gradients of the expected cumulative reward can be obtained by evaluating
the gradients of a loss function computed from a set of histories. Automatic differentiation
will later be used for computing these gradients in our simulations.

Theorem 2. Let (S,A,Ξ, P0, fψ, ρψ, Pξ, T) and πθ be an environment and a policy, respec-
tively, as defined in Section 3.2. Let V (ψ, θ) be the expected cumulative reward of policy πθ
averaged over the initial states, as defined in equation (6). Let D = {hm|m = 0, . . . ,M − 1}
be a set of M histories sampled independently and identically from the policy πθ in the
environment. Let L be a loss function such that, ∀(ψ, θ) ∈ Ψ×Θ:

L(ψ, θ) = − 1
M

M−1∑
m=0

(T−1∑
t=0

log πθ(amt |smt , t) + logPξ(ξmt |smt , amt)
)

×
(
(
T−1∑
t=0

rmt)−B
)

+
(T−1∑
t=0

ρψ(smt , amt , ξmt)
))
, (13)

124

Jointly Learning Environments and Control Policies

where B is a constant value called the baseline. The gradients with respect to ψ and θ of
the loss function are unbiased estimators of the gradients of the function V as defined in
equation (6) with opposite directions, i.e., they are such that:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇ψL(ψ, θ)} = −∇ψV (ψ, θ) (14)

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θL(ψ, θ)} = −∇θV (ψ, θ) . (15)

Corollary 4. The gradient of the loss function, defined in equation (13), with respect to
θ corresponds to the opposite of the update direction computed with the REINFORCE
algorithm (Williams, 1992) averaged over M simulations.

The proofs for the theorems and corollaries presented in this section are given in Appendix
A.

4.2 Projected Gradient Ascent

In this section, we discuss gradient-based update rules for the environment and policy
parameters. These rules make use of projection operators (Cohen et al., 2016) in order to
account for constraints on the values that parameters can take.

Gradient ascent is an iterative optimization technique where optimization variables are
updated in each iteration k by taking a step of pre-specified size α in the direction provided
by the gradient of the objective function with respect to optimization variables. In machine
learning applications, the step size is also called the learning rate. In the problem defined in
equation (5), we aim to find a parameter vector x = (ψ, θ) ∈ X = Ψ × Θ (R

dΨ+dΘ that
maximizes the expected return. Standard gradient ascent thus consists in updating the
parameter vector xk in iteration k using the following rule:

xk+1 ← xk + α · ∇xV (xk) . (16)

However, xk+1 may not always belong to the constraint set X. In projected gradient
ascent, we choose the point in X that is the closest to xk+1 according to the Euclidean
distance. The projection ΠX(y) of a point y onto a set X is defined as:

ΠX(y) = arg min
x∈X

1
2 ‖ x− y ‖

2
2 . (17)

Using projected gradient ascent, we first compute the update:

yk+1 = xk + α · ∇xV (xk) , (18)

and we then project yk+1 onto the feasible set X:

xk+1 ∈ ΠX(yk+1) . (19)

The computational cost of a projected gradient descent (or ascent) step largely depends
on the amount of effort required to compute the projection in equation (19), which itself
depends on the properties of X. In practice, this approach works best with simple constraint
sets for which a closed-form of the projection is readily available and inexpensive (e.g.,
hypercubes, for which a projection boils down to clipping the values of variables).

125

Bolland, Boukas, Berger, & Ernst

4.3 Optimizing Environment and Policy Parameters

In this section, we detail the DEPS algorithm that combines the computation of the
gradients of the expected return with projected gradient ascent to find the parameters of an
environment and a policy as described in the problem statement.

The DEPS algorithm iteratively updates the vectors of parameters ψ and θ using projected
gradient ascent according to equations (18) and (19). The gradients are approximated using
Theorem 2. In practice, we thus generate histories of the policy in the environment to
compute the loss function (13). Furthermore, the baseline is taken as the estimate of the
expected cumulative reward obtained by averaging the observed cumulative reward over the
M histories hm used for computing the loss function:

B = 1
M

M−1∑
m=0

T−1∑
t=0

rmt . (20)

A Monte-Carlo approximation of the exact gradients of the loss function with respect to ψ
and θ is obtained via automatic differentiation. This procedure is referred to as projected
stochastic gradient ascent, since a Monte-Carlo approximation of the gradients is used. Let
us remark that, in practice, we assume that the gradients exist on the boundary of Ψ×Θ. If
this assumption does not hold, we can consider a compact subset K of the interior of Ψ×Θ
such that Theorem 1 ensures the existence of the gradients on K. Algorithm 1 summarizes
the steps performed in the DEPS algorithm.

Algorithm 1 DEPS
loop

Generate a batch D of M histories
Compute the baseline using the histories B = 1

m

∑M−1
m=0

∑T−1
t=0 rt

Compute the loss function L given in equation (13)
Compute the gradients of the loss function L via automatic differentiation
Perform gradient ascent as in equation (18)
Project the parameters as in equation (19)

end loop

The execution of the projected stochastic gradient ascent algorithm for optimizing the
objective in equation (5) is shown in more details in Algorithm 2 in Appendix B.

5. Experiments

In this section, we first introduce the methodology used for assessing the performance of
DEPS. Afterwards, we test the DEPS algorithm in three parametrized environments and
compare its performance with that of alternative approaches. The first environment is a
Mass-Spring-Damper (MSD) environment, the second one is related to the design and control
of an off-grid microgrid and the last one focuses on the design and control of a drone 1.

1. The implementation of our algorithm and of the different benchmarks are provided in the follow-
ing GitHub repository: https://github.com/adrienBolland/Jointly-Learning-Environments-and-
Control-Policies-with-Projected-Stochastic-Gradient-Ascent

126

Jointly Learning Environments and Control Policies

5.1 Experimental Protocol

In the following, the DEPS algorithm is benchmarked against several methods computing
pairs of policies and environments. The performance of each algorithm is measured in terms
of the expected return achieved by the associated policy in the associated environment.
The expected return is computed from 64 Monte-Carlo samples (i.e., by sampling 64 i.i.d.
trajectories). In addition, we note that the different algorithms we use for selecting policies
are stochastic. Hence, we naturally report the average expected return of the pair of policies
and environments computed by those algorithms, which is estimated by averaging the
performance over ten runs (random seeds) of those algorithms. Finally, the different RL
algorithms involve several hyperparameters that have to be tuned to achieve satisfactory
results. First, we followed the recommendations of Andrychowicz et al. (2020) and scaled
the state and action variables as well as the parameters that are learned. The scaling factors
used for each environment are discussed in sections 5.2, 5.3, and 5.4. Then, the learning
rates were tuned in a heuristic way (i.e., we started with a large value and decreased it if
the learning did not converge, as suggested by Bengio (2012)).

First, for each environment, we compare the DEPS algorithm with a state-of-the-art
algorithm solving joint design and control problems, namely the so-called JODC algorithm
(Schaff et al., 2019). The latter is also a gradient-based iterative RL algorithm and is
described in detail in Appendix C. For both algorithms, in every iteration k, we compute the
average expected return of the policy in the environment for the current pair of parameter
vectors (θk, ψk). In addition, the normalized second-order lower and upper partial moments
with respect to the expectation, which will be denoted as σ− and σ+, respectively, are also
computed with the ten runs of the algorithms and are reported as a confidence band.

Second, we want to verify that the DEPS algorithm indeed converges to a (near-) global
optimum. This could, for instance, be done by discretizing the joint space of policy and
environment parameters very finely and selecting the optimal pair from the resulting (finite)
set of policy-environment pairs. This pair would thus be globally optimal, up to a certain
precision. However, this approach is computationally intractable in practice, especially given
the high dimension of the space of policy parameters in our benchmarks. We therefore
reduce the complexity introduced by the discretization of the space of policy parameters
by applying the REINFORCE algorithm to compute a (near-) optimal policy for each
set of environment parameters ψd ∈ Ψd resulting from the discretization Ψd (Ψ of the
space of environment parameters Ψ. The best policy-environment pair is then selected
from this reduced set of pairs. Assuming that the REINFORCE algorithm finds a (near-)
optimal policy, the method then still yields a (near-) optimal policy-environment pair. In
the following, this optimization technique is referred to as the REINFORCE Applied on a
Discretized Set of Environments (RADE). Ideally, we would like to apply this method to
each of the parametrized environments but this approach is only computationally tractable
for the first benchmark (discussed in Section 5.2), where the problem can be reduced to
a two-dimensional discretization of the space of environment parameters and where the
REINFORCE algorithm has been observed to converge to near-optimal solutions in a few
iterations.

Finally, we want to compare the difference in final performance between a joint opti-
mization algorithm, such as DEPS, and an alternative optimization algorithm such that

127

Bolland, Boukas, Berger, & Ernst

a rule-based policy is fixed a priori and the environment is optimized so as to guarantee
that the fixed policy has a high expected return. Such policies often take the form of
myopic control rules that depend on environment parameters and are designed using expert
knowledge. More specifically, we use the dual annealing algorithm (Xiang & Gong, 2000),
which is a derivative-free optimization technique, to navigate towards an environment where
the policy has a high expected return, as described in Appendix C. In the following, this
method is referred to as the rule-based optimization algorithm. This method is not applicable
to the third environment that is too complex to develop such a rule-based policy a priori.

5.2 Mass-Spring-Damper Environment

In section 5.2.1, we briefly describe the Mass-Spring-Damper (MSD) environment and detail
the different parameters of the DEPS algorithm. Section 5.2.2 discusses simulation results.

5.2.1 Parameters of the Joint Design and Control Problem

Let us describe the different elements of the optimization problem we are trying to solve
when jointly designing and controlling the MSD.

Parametrized environment. We consider the MSD environment where we model the
motion of an object attached to a spring and a damper that we aim to stabilize at a reference
position xref . The environment is described in detail in Appendix D.

Hypothesis Spaces. The environment is parametrized by the real vector ψ ∈ Ψ, where
ψ = (ω, ζ, φ0, φ1, φ2) ∈ Ψ = [0.1, 1.5]× [0.1, 1.5]× [−2, 2]× [−2, 2]× [−2, 2]. The hypothesis
space of policy parameters Θ is defined as follows. Any policy in the parameter space is a
multi-layer perceptron (MLP) with three inputs: one for each of the |S| = 2 values of the
state vector st and one for the time t. Each MLP is composed of one hidden layer featuring 64
neurons with hyperbolic tangent activation functions and has five output neurons (|A| = 5)
without activation and from which a probability distribution over A is inferred using a
softmax function.

Parameters of the DEPS Algorithm. The gradients are evaluated by applying auto-
matic differentiation on the loss function defined in equation (13). Furthermore, the Adam
algorithm (Kingma & Ba, 2014) is used for updating (ψ, θ). This algorithm is a variant
of the vanilla stochastic gradient ascent given in Algorithm 2 that has proven to perform
well on highly non-convex problems. The gradients are estimated on batches of M = 64
trajectories and the step size α of the Adam algorithm is chosen equal to 0.005 for both the
environment and the policy gradients. We retain the default values for the other parameters
of the Adam algorithm. Moreover, the inputs of the policy are z-normalized using mean
vector (xref , 0, 0) and standard deviation vector (0.005, 0.02, 100), which is an approximation
of the standard deviation vector of the states collected over high-performing trajectories.

5.2.2 Experimental Results

In this section, we apply the experimental protocol of Section 5.1 to the MSD environment
and provide an analysis of the experimental results.

128

Jointly Learning Environments and Control Policies

Performance of DEPS. The blue line in Figure 1a shows the evolution of the average
expected return of the DEPS algorithm as the iteration count grows. The normalized partial
moments σ− and σ+ between the different runs are illustrated by the shaded area under and
above the average, respectively. The values of these statistics for the final pairs of policy and
environment are reported in Table 1. As we can see, the DEPS algorithm converges towards
a maximal expected return almost equal to 100. We note that 100 is an upper-bound on the
return that can only be reached if at each time step t, the position of the mass is at the
reference position xref , as detailed in Appendix D. The moments σ− and σ+ also strongly
decrease as the iteration count increases. Table 2 provides the average and the standard
deviation of the final value of the parameter ψ, computed over the ten runs of the algorithm.
For each simulation, the algorithm converges to a parameter ψ = (ω, ζ, φ0, φ1, φ2), where ω
and ζ are both equal to 0.5 and where (at least) one of the components φ0, φ1 or φ2 is equal
to c0, c1 or c2, respectively. We note that any triplet (φ0, φ1, φ2) satisfying this condition
can be considered optimal, as described in Appendix D.

Comparison with JODC. In Figure 1a, the evolution of the average expected return of
the JODC algorithm (using the parameters given in Appendix G) is also reported in green.
In addition, Table 1 provides the average and the moments of the expected return for the
final pairs of policy and environment. As can be seen in the table, both algorithms converge
to parameters leading to similar average expected returns. However, JODC converges more
slowly and its variance is higher across the different simulations, as can be seen in Figure 1a.
This phenomenon can also be observed in Figure 1b, where the same experiments were carried
out with batches of M = 4 trajectories. These results suggest that the DEPS algorithm is
less subject to noise than the JODC algorithm and is thus more stable. Furthermore, DEPS
manages to reach better performance across the different simulations faster than the JODC
algorithm, indicating that DEPS is also more sample-efficient. Concerning the parameters
of the environment, the JODC algorithm converges to values that are similar to the ones
identified by the DEPS algorithm, as can be seen from Table 2.

100 200 300 400
Iteration k

20

40

60

80

100

E
xp

ec
te

d
re

tu
rn
V

(ψ
k
,θ

k
)

DEPS

JODC

(a) Batches of M = 64 trajectories.

300 600 900 1200
Iteration k

20

40

60

80

100

E
xp

ec
te

d
re

tu
rn
V

(ψ
k
,θ

k
)

DEPS

JODC

(b) Batches of M = 4 trajectories.

Figure 1: Average expected return of the policy in the environment parametrized by (θk, ψk)
as a function of the iteration number k of the DEPS and the JODC algorithms when using
batches of M = 64 trajectories (left) and batches of M = 4 trajectories (right) in the MSD
environment.

129

Bolland, Boukas, Berger, & Ernst

Comparison with RADE. Figure 2 shows the average expected return of each pair of
environment and policy computed with the RADE algorithm, where ψd ∈ Ψd = Ωd × Zd ×
{c0}×{c1}×{c2} and where Ωd = Zd = {0.1+k ·∆|k = 1, . . . , 15} with ∆ = 0.082. We note
that c0, c1 and c2 correspond to a triplet of optimal values for φ1, φ2 and φ3, respectively,
as described in Appendix D. Similarly to the DEPS and the JODC algorithms, the highest
average expected return of the policies occurs for (ω, ζ) = (0.5, 0.5). In addition, the highest
average return of the policies identified by the REINFORCE algorithm was almost identical
to the average expected returns obtained by the aforementioned algorithms. This experiment
indicates that, under the previously described assumptions on the convergence of the RADE
algorithm, the DEPS algorithm converges to an optimal policy-environment pair.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ω

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ζ

23.2

31.2

39.2

47.2

55.2

63.2

71.2

79.2

87.2

95.2

E
xp

ec
te

d
re

tu
rn

Figure 2: Average expected return of each pair of policy and environment computed with
the RADE algorithm in the MSD environment.

Comparison with Rule-Based Optimization. When applying the rule-based optimiza-
tion method with policies πmsd,1 and πmsd,2 (which are detailed in Appendix D), it takes
an average of 2251 and 2554 iterations of the dual annealing algorithm (Xiang & Gong,
2000) to identify an optimal set of environment parameters. The standard deviations are
equal to 239 and 409 iterations for πmsd,1 and πmsd,2, respectively. Table 1 provides the
average value and the partial moments of the expected return of the computed pairs of policy
and environment parameters. Table 2 provides the average and the standard deviation of
the parameters ψ computed by the rule-based optimization method. For the first policy
πmsd,1, the resulting average expected return is lower than the average returns obtained
by the DEPS and the JODC algorithms. The second policy πmsd,2, on the other hand,
achieved average returns that are similar to the ones of DEPS and JODC. Let us note that
the optimization with πmsd,1 overestimates the optimal pair of parameters (ω, ζ) while the
optimization with πmsd,2 converges towards a near-optimal pair. This experiment allows
us to conclude that the performance of the method is strongly related to the quality of the
rule-based policy that is used. Moreover, even in the case where a policy reflecting expert
knowledge about the environment is used, the final average expected return is lower than
that achieved with the joint optimization of the policy and the environment. This validates

130

Jointly Learning Environments and Control Policies

the hypothesis that the joint optimization of environment and control policy offers a real
advantage in terms of final performance.

Table 1: Final expected return in the MSD environment.

Algorithm Average value Moment σ− Moment σ+

DEPS 99.90 0.06 0.04
JODC 99.80 1.18 0.13
Rule-based πmsd,1 62.93 0.29 0.26
Rule-based πmsd,2 99.55 0.05 0.03

Table 2: Final parameters computed for the MSD environment.

Algorithm ω ζ φ0 φ1 φ2
DEPS 0.50± 0.01 0.50± 0.00 0.45± 0.51 −0.17± 0.63 0.16± 0.82
JODC 0.50± 0.01 0.50± 0.01 0.54± 0.38 −0.32± 0.83 0.39± 1.11

Rule-based πmsd,1 0.57± 0.03 0.70± 0.03 0.16± 0.95 −0.70± 0.68 0.05± 0.46
Rule-based πmsd,2 0.50± 0.01 0.50± 0.01 −0.17± 0.99 −0.22± 0.53 −0.04± 0.40

5.3 Sizing and Operation of an Off-Grid Microgrid

In section 5.3.1, we briefly describe the microgrid environment and detail the different
parameters of the DEPS algorithm. Section 5.3.2 discusses simulation results.

5.3.1 Parameters of the Joint Design and Control Problem

Let us describe the different elements of the joint design and control optimization problem
related to the microgrid environment.

Parametrized environment. We consider an environment modeling a problem where
an agent seeks to design a small-scale off-grid electrical power system and operate it so
as to minimize the cost of serving some electricity demand (including investment and
operating costs) over the system lifetime. The investment costs are proportional to the size
of the components of the microgrid, namely the battery, the solar panels and the diesel
generator. Operating costs stem from any mismatch that may arise between production
and consumption in the system as well as from the operation of the diesel generator. The
environment is presented in Appendix E.

Hypothesis Spaces. The environment is parametrized by the vector ψ = (CB, CPV , CG) ∈
Ψ, where the parameter space is chosen equal to Ψ = [20, 200]× [20, 200]× [1.6, 16]. The
selection of parameter ranges is based on their respective physical interpretations. In particu-
lar, simultaneously setting all parameters equal to their upper and lower bounds yields large
and small installations, respectively. More specifically, for the larger installation, the daily
solar production nearly equals the daily consumption level. In this context, the full daily

131

Bolland, Boukas, Berger, & Ernst

PV production can be stored in the battery. Finally, it is possible to cover the whole hourly
consumption with the diesel generator. For the smaller installation, the consumption level is
impossible to cover which results in high unserved demand penalties. We will constrain the
hypothesis space for the policies to multivariate Gaussian policies of dimension |A| = 2 such
that πθ(at|st, t) = N (at|µθ(st, t), I · σ2

θ(st, t)), ∀at ∈ A,∀st ∈ S, ∀t ∈ {0, . . . , T − 1} where
I ∈ R2 is the identity matrix of size two and where µθ(st, t) ∈ R2 and σθ(st, t) ∈ R2 are the
expectation and the standard deviation of the multivariate normal distribution N . The
expectation and standard deviation are expressed as functions of the state st, the time t
and the parameter vector θ. Let us note that the actions are mutually independent (i.e.,
their covariance is equal to zero). The vectors µθ(st, t) and σ2

θ(st, t) are output by an MLP
taking seven values as input: one for each of the |S| = 6 values of the state vector st and
one for the time t. The MLP is composed of one hidden layer of 64 neurons with hyperbolic
tangent activation functions and has four output neurons. The two outputs corresponding
to µθ(st, t) do not have activation functions while the outputs corresponding to σ2

θ(st, t) are
squared by their activation function. The set of values that the parameters of the MLP can
take defines the space of policy parameters Θ.

Parameters of the DEPS Algorithm. Similarly to the MSD environment, the gradients
are evaluated using automatic differentiation and the parameters are updated with the
Adam algorithm (Kingma & Ba, 2014). The gradients are estimated on batches of M = 64
trajectories and the step size α of the Adam algorithm is chosen equal to 0.001 for both
the environment and the policy parameters. The default values are kept for the other
parameters of the Adam algorithm. In addition, the norm of the gradient of the transition
function in equation (10) is scaled in order to avoid gradient explosion (here, the scaling
guarantees that the norm of gradients does not exceed one hundred billion). Doing so keeps
the direction of the gradient unchanged and avoid numerical issues when performing gradient
ascent. The input of the MLP corresponding to the time t is scaled by the horizon T = 120.
Furthermore, the rewards collected are scaled linearly from the interval [−5000, 0] to the
interval [0, 1]. Finally, the vector ψ is scaled by the vector (100, 100, 8) in order to keep
the order of magnitude of the (scaled) environment parameters similar to that of the MLP
parameters.

5.3.2 Experimental Results

In this section, we apply the experimental protocol of Section 5.1 to the microgrid environment
and provide an analysis of the experimental results.

Performance of DEPS. The blue line in Figure 3 presents the evolution of the average
expected (scaled) return collected in the off-grid microgrid environment when applying
the DEPS algorithm. It can be seen in Figure 3 that the moments σ− and σ+ strongly
decrease as the iteration count increases. The final average expected return and moments are
reported in Table 3. In addition, the average and the standard deviation of the environment
parameters learned are reported in Table 4. Let us also note that in this experiment, the
parameters ψ learned by the algorithm suffer from a rather high degree of variance, indicating
that several combinations of parameters yield high expected returns.

132

Jointly Learning Environments and Control Policies

Comparison with JODC. The evolution of the average expected (scaled) return collected
when applying the JODC algorithm is also reported in Figure 3. Table 3 provides the final
value. As can be seen from Figure 3, the JODC algorithm converges to policy-environment
pairs with a lower average expected return compared with the DEPS algorithm. This
difference could be partly explained by the fact that the JODC algorithm converges to
parameters ψ that differ on average from the parameters found by DEPS and have a much
higher degree of variance, as shown in Table 4.

2.0 4.0 6.0 8.0 10.0 12.0 14.0

Iteration k (in thousands)

−400

−300

−200

−100

0

25

50

75

100
E

xp
ec

te
d

re
tu

rn
V

(ψ
k
,θ

k
)

DESGA

JODC

100 200 300 400
Iteration k

20

40

60

80

100
E

xp
ec

te
d

re
tu

rn
V

(ψ
k
,θ

k
)

DEPS

JODC

Figure 3: Average expected return of the policy in the environment parametrized by (θk, ψk)
as a function of the iteration number k of the DEPS and JODC algorithms in the microgrid
environment.

Comparison with Rule-Based Optimization. When applying the rule-based optimiza-
tion method with policies πmg,1 and πmg,2 (which are detailed in Appendix E), it takes an
average of 4967 and 4931 iterations of the dual annealing algorithm (Xiang & Gong, 2000) to
identify an optimal set of environment parameters. The standard deviations are equal to 649
and 455 iterations for πmg,1 and πmg,2, respectively. Table 3 provides the average value and
the partial moments of the expected return of the computed pairs of policy and environment
parameters. Table 4 provides the average and the standard deviation of the parameters
ψ computed by the rule-based optimization method. Both optimization procedures result
in final average expected returns that are slightly lower than that of the DEPS algorithm,
which supports the conclusions already drawn in Section 5.2. In particular, we see that
different policies result in very different environment configurations, which emphasizes the
interdependence between environment and policy parameters and thus suggests that both
should be jointly optimized to achieve high expected returns.

133

Bolland, Boukas, Berger, & Ernst

Table 3: Final expected return in the microgrid environment.

Algorithm Average value Moment σ− Moment σ+

DEPS 47.60 5.79 4.97
JODC −24.17 53.71 65.53
Rule-based πmg,1 44.08 0.29 0.27
Rule-based πmg,2 45.90 1.62 0.85

Table 4: Final environment parameters computed for the microgrid environment.

Algorithm CB CPV CG

DEPS 131.23± 30.03 73.57± 12.18 5.96± 0.88
JODC 102.50± 30.88 34.97± 39.21 6.86± 2.23
Rule-based πmg,1 164.73± 5.09 86.52± 4.58 8.74± 0.18
Rule-based πmg,2 127.80± 26.56 95.73± 14.07 4.64± 1.02

5.4 Drone Design and Control

In section 5.4.1, we briefly describe the drone environment. Section 5.4.2 discusses simulation
results.

5.4.1 Parameters of the Joint Design and Control Problem

Let us describe the different elements of the joint design and control optimization problem
related to the drone environment.

Parametrized environment. In this section, we consider the drone environment where
we design and control a drone that has to fly along an elliptical trajectory as fast as possible.
This environment is presented in detail in Appendix F.

Hypothesis Spaces. The environment is parametrized by the vector ψ = (D,R,H,W) ∈
Ψ, where the parameter space is chosen equal to Ψ = [0.05, 0.2]× [0.01, 0.2]× [0.001, 0.01]×
[0.001, 0.01] and represents realistic ranges for the geometric parameters defining the drone
design. The environment is parametrized by the real vector ψ ∈ Ψ, where ψ = (D,R,H,W) ∈
Ψ = [0.05, 0.2]× [0.01, 0.2]× [0.001, 0.01]× [0.001, 0.01]. Similar to the hypothesis space of
policies in the microgrid environment, multivariate Gaussian policies of dimension |A| = 4
of the same form as in Section 5.3 are considered. The expectation µθ(st, t) ∈ R4 and the
variance σ2

θ(st, t) ∈ R
4 of the distribution are provided by an MLP. The network takes

as input the |S| = 12 state variables and the time t, has one hidden layer of 64 neurons
using hyperbolic tangent activation functions, and has eight output neurons with parabolic
activation functions for the outputs corresponding to σ2

θ(st, t) and without activation for the
outputs corresponding to µθ(st, t). The space of policy parameters Θ is defined by the set of
values that the parameters of the MLP may take.

134

Jointly Learning Environments and Control Policies

Parameters of the DEPS Algorithm. Similar to the MSD and the microgrid environ-
ments, the gradients are evaluated using automatic differentiation and the parameters are
updated with the Adam algorithm (Kingma & Ba, 2014). The same batch size of M = 64
trajectories and the same scaling strategy for the gradient of the transition function as in
Section 5.3 are used. In addition, the step size α of the Adam algorithm is chosen equal
to 0.00005 for the gradient ascent steps taken in both the environment and policy spaces.
Moreover, Andrychowicz et al. (2020) observed that reducing the variance of the initial policy
as well as its initial dependency on the observations has a high impact on the training of this
policy. Andrychowicz et al. (2020) recommend initializing the MLP with smaller weights
in the last layer in order to achieve this reduction of variance. To this end, we divide the
initial weights of the last layer of the MLP by a factor 30, which yielded the best empirical
results, before performing gradient ascent. The input of the MLP is also z-normalized
by the mean vector (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) and by the standard deviation vector
(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 1, 1, 0.1, 100). In addition, the states are clipped
to stay in the range [−100, 100] during the learning process in order to avoid numerical
problems when the policy still behaves sub-optimally and the position of the drone tends
to diverge from the desired trajectory. The outputs of the neural network corresponding
to the expectation of the distribution N are centered at the stationary speed required for
counterbalancing the mass of the drone. This is achieved by adding ωstat =

√
mg/(4b) to

these outputs. Doing so, we only learn the variations in speed of the propellers that are
required for moving the drone along the desired trajectory. Finally, the vector ψ is scaled
by the vector (0.2, 0.2, 0.01, 0.01) to keep these parameters in a range similar to that of the
MLP parameters.

5.4.2 Experimental Results

In this section, we apply the experimental protocol of Section 5.1 to the drone environment
and provide an analysis of the experimental results.

Performance of DEPS. The blue line in Figure 4 presents the evolution of the average
expected return collected in the drone environment when applying the DEPS algorithm. This
value, as well as the partial moments of the final pairs of policy and environment parameters,
are reported in Table 5. The average and the standard deviation of the environment
parameters computed by DEPS are given in Table 6.

Comparison with JODC. Figure 4 also provides the evolution of the average expected
return collected in the drone environment when applying the JODC algorithm with the
parameters given in Appendix G. As can be seen from Table 5, the DEPS algorithm finds a
better combination of parameters compared to the JODC algorithm. The average and the
standard deviation of the parameters ψ are given in Table 6. Unlike the DEPS algorithm,
the JODC algorithm never converges to a fixed environment over its ten runs. Instead, the
parameters identified by JODC oscillate throughout the iterations of the algorithm around
the set of parameter values ψ = (0.05, 0.2, 0.01, 0.01) identified by DEPS. This observation
partly accounts for the difference between the final average expected returns produced by
the two algorithms.

135

Bolland, Boukas, Berger, & Ernst

2.0 4.0 6.0 8.0

Iteration k (in ten thousands)

−200

−150

−100

−50

0

10

20

30

E
xp

ec
te

d
re

tu
rn
V

(ψ
k
,θ

k
)

DESGA

JODC

100 200 300 400
Iteration k

20

40

60

80

100

E
xp

ec
te

d
re

tu
rn
V

(ψ
k
,θ

k
)

DEPS

JODC

Figure 4: Average expected return of the policy in the environment parametrized by (θk, ψk)
as a function of the iteration number k of the DEPS and the JODC algorithms in the drone
environment.

Table 5: Final expected return in the drone environment.

Algorithm Average value Moment σ− Moment σ+

DEPS 23.20 0.30 0.30
JODC 16.39 1.23 -0.65

Table 6: Final parameters computed for the drone environment.

Algorithm D R H W

DEPS 0.05± 0.00 0.02± 0.00 0.01± 0.00 0.01± 0.00
JODC 0.05± 0.07 0.02± 0.03 0.01± 0.00 0.01± 0.00

Since constructing a meaningful rule-based policy a priori or applying the RADE
algorithm is particularly challenging for the drone environment, we have no other points
of comparison to evaluate the performance of the DEPS and JODC algorithms. We thus
validate the quality of the policy and the environment learned by both algorithms graphically.
Figure 5 shows two typical drone trajectories sampled from the policies and environments
learned with the DEPS and JODC algorithms. Both algorithms manage to learn environment
and policy parameters resulting in a drone that follows the elliptic trajectory. In the case
of JODC, the drone travels over a smaller portion of the ellipse compared with DEPS. Its
average speed is thus lower. This phenomenon explains the fact that the DEPS algorithm
performs better. We also previously stated that both algorithms converge (or approach,
in the case of JODC) to parameters ψ = (0.05, 0.2, 0.01, 0.01). Bearing in mind that these
parameters essentially define the mass and moments of inertia of the drone, the drone
design resulting from the optimization process in fact has high translational inertia and low

136

Jointly Learning Environments and Control Policies

rotational inertia around its principal axes. This observation makes direct physical sense,
as a heavy drone is less sensitive to wind gusts and a drone with low moments of inertia is
more maneuverable.

x

0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

y

1.5
1.0

0.5
0.0

0.5
1.0

1.5

z

1.0

0.5

0.0

0.5

1.0

(a) Drone trajectory obtained with DEPS.

x

0
1

2
3

y

1.0
0.5

0.0
0.5

1.0
1.5

z

1.0

0.5

0.0

0.5

1.0

(b) Drone trajectory obtained with JODC.

Figure 5: Typical trajectory obtained by applying a control policy in an environment
optimized with DEPS (left) and with JODC (right). The elliptical trajectory that the drone
should follow is shown in green, while the successive positions traveled clockwise by the
drone are shown in blue.

5.5 Discussion

In this section, we discuss the two approaches that we have tested to perform joint design and
control, namely DEPS and JODC. We first compare the hypotheses required for computing
a solution to the problem statement using the DEPS and the JODC algorithms (i.e., their
applicability to variants of the problem). Then, we summarize the differences observed
between these algorithms in the previous experiments. More particularly, we focus on the
speed of convergence of the algorithms and on the quality of the final solution.

Applicability. As already discussed in Section 4.1, DEPS is applicable under smoothness
assumptions imposing restrictions on the transition function, on the reward function, as
well as on the disturbance probability distribution of the dynamical system. In practice,
it implies that the (first-order) derivatives of these functions must exist and be readily
computable in order to identify a policy-environment pair. Contrary to this, JODC makes
no such assumptions and thus also makes it possible to compute a solution for non-smooth
environments.

Rate of Convergence. In the experiments, both algorithms converge to high-quality
policy and environment pairs. However, we observe that DEPS converges faster in the
MSD and in the microgrid environment. In the drone environment, the JODC algorithm
initially performs better but it is quickly outperformed by the DEPS algorithm. The faster
convergence of the DEPS algorithm can be explained by the way the gradients are computed
in the two algorithms. For both methods, the computation of the gradients is based on the
estimation of the expectation of a random variable using Monte-Carlo samples. In DEPS,

137

Bolland, Boukas, Berger, & Ernst

the random variable is defined over the space of trajectories. On the other hand, in JODC,
it is defined over the joint space of trajectories and environment parameters. For a given
number of sampled trajectories, the update of the parameters in JODC is thus likely to
be subject to more variance as the support of the random variable used for computing the
gradients is much larger than the one used in DEPS. This is also the justification for our
method being more sample efficient, as shown previously in numerical simulations.

Solution Quality. In our experiments, DEPS outperformed JODC in all three environ-
ments. A first explanation may be that the gradient approximations in the JODC algorithm
suffer from a high degree of variance, such that the gradient is unlikely to vanish when
approaching an optimal solution. Second, we surmise that when approaching a (locally)
optimal solution, the distribution over environments maintained by the JODC algorithm
will shift its mass around parameters corresponding to this local optimum. The density
probability function of environments in the neighborhood of an optimum, which is used when
computing the gradients, then tends to take very large values, which may result in numerical
issues. In practice, it seems to cause instabilities as we observe that the distribution over
the environment parameters computed by JODC oscillates close to the (local) optimal
solution computed with DEPS between iterations. This observation is directly reflected in
the standard deviations of the final environment parameters learned with JODC, which are
higher than those produced by the DEPS algorithm.

6. Conclusions and Future Work

In this paper, we studied problems where an agent seeks to design and control discrete-
time stochastic dynamical systems such that the resulting design and control policy jointly
maximize the expected sum of rewards collected over a finite time horizon. In this context,
the transition and reward functions are parametrized by environment parameters, while
the policy is parametrized by policy parameters. In addition, these parametric functions
are assumed known and differentiable with respect to their parameters. We introduced
the DEPS algorithm, which is a deep RL algorithm combining policy gradient methods
with model-based optimization techniques, to solve this problem. At its core, the algorithm
iteratively updates the environment and policy parameters by approximating the gradient
of the expected return with respect to these parameters via Monte-Carlo sampling and
automatic differentiation and taking projected gradient ascent steps. The performance of
the DEPS algorithm was empirically evaluated in three environments. The first environment
is a mass-spring-damper system. The second and third environments, which are much
more complex, are concerned with the design and control of an off-grid microgrid and
a drone, respectively. In addition, for each environment, the performance of the DEPS
algorithm is benchmarked against that of the so-called JODC algorithm (Schaff et al., 2019),
which is a state-of-the-art algorithm designed to tackle joint design and control problems.
Results show that the DEPS algorithm performs at least as well or better than the JODC
algorithm in all three environments, consistently yielding solutions with higher returns
in fewer iterations. In addition, in the first two environments, solutions produced by our
algorithm are also compared with solutions produced by an algorithm that does not jointly
optimize environment and policy parameters. The latter consists in designing a control policy
a priori and then optimizing environment parameters using derivative-free optimization

138

Jointly Learning Environments and Control Policies

methods so as to maximize the expected return. We highlighted that higher returns were
achieved when joint optimization was performed.

We identified three research directions that would be worth pursuing in future work.
First, since the computational complexity of automatic differentiation is proportional to the
length of the optimization horizon, the problem may become intractable for long horizons. A
common solution applied in deep learning consists in truncating the back-propagation when
computing gradients. Obtaining an analytical bound on the error when performing this
approximation would be valuable for striking a trade-off between computational efficiency
and solution quality. Second, the proposed method could also be combined with recent
research in gradient-based direct policy search. In particular, the use of actor-critic methods,
proximal policy optimization, etc., that are shown to result in stable learning and efficient
exploration, could lead to better performance. Finally, in this paper we assume that we have
direct access to the parametrized transition and reward functions of the system in addition
to the disturbance distribution. These assumptions could be relaxed, and an approximate
representation of these functions could be learned instead (e.g., using differentiable function
approximators). This model could then be used in the DEPS algorithm for performing
the usual parameter updates. A direct connection would then exist between the resulting
algorithm and model-based RL techniques (Moerland et al., 2020), where an additional
learning step is introduced in order to build an approximate model of the system from
sampled trajectories. The latter class of methods has been successively applied on diverse
problems (Serban et al., 2020; Bechtle et al., 2020; Wu et al., 2020).

Acknowledgments

The authors would like to thank Hatim Djelassi for valuable comments on this manuscript
and François Cornet for his work on an early version of this article. Adrien Bolland
gratefully acknowledges the financial support of a research fellowship of the F.R.S.-FNRS.
The authors also acknowledge the financial support of the Belgian government through the
INTEGRATION project. Finally, the authors would like to thank the anonymous reviewers,
whose comments and suggestions helped improve the clarity and quality of this manuscript.

139

Bolland, Boukas, Berger, & Ernst

Appendix A. Analytical Derivation of the Gradient for Learning Optimal
Environments

Theorem 1. Let (S,A,Ξ, P0, fψ, ρψ, Pξ, T) and πθ be an environment and a policy as
defined in Section 3.2. Additionally, let the functions fψ, ρψ and Pξ be continuously
differentiable on the parameter space Ψ and on the state space S for every action in A and
every disturbance in Ξ. Furthermore, let the policy πθ be continuously differentiable on its
parameter space Θ and on the state space S for every action in A and for every time t. Let
V (ψ, θ) be the expected cumulative reward of policy πθ, averaged over the initial states, for
all (ψ, θ) ∈ Ψ×Θ, as defined in equation (6). Then, the function V exists, is bounded, and
is continuously differentiable in the interior of Ψ×Θ.

Proof. Let us first define the random variable associating the cumulative reward to a
realization of a trajectory sampled from a policy in the environment for fixed parameter
vectors (ψ, θ) ∈ Ψ × Θ. We show that its expectation exists and is bounded for all
(ψ, θ) ∈ Ψ×Θ. Furthermore, V (ψ, θ) is defined by a parametric integral which we prove to
be continuously differentiable for all (ψ, θ) ∈ Ψ×Θ.

Let Rψ,θ be the real-valued random variable that, given ψ ∈ Ψ and θ ∈ Θ, associates its
cumulative reward to the realization of a trajectory. Thus, given a trajectory τ , the random
variable Rψ,θ takes value Rψ,θ(τ), as defined in equation (2). Let PRψ,θ be the probability
of this random variable. We can write:

PRψ,θ(τ) = Pψ,θ(s0, a0, ξ0, a1, ξ1, . . . , aT−1, ξT−1) (21)

= P0(s0)
T−1∏
t=0

πθ(at|st, t)Pξ(ξt|st, at) , (22)

where the dependence upon ψ is implicit through st+1 = fψ(st, at, ξt). The expected
cumulative reward given in equation (6) is the expectation of the random variable Rψ,θ. If
the expectation exists, it can therefore be written as:

V (ψ, θ) =
∫ (

P0(s0)
T−1∏
t=0

πθ(at|st, t)Pξ(ξt|st, at)
)

(T−1∑
t=0

ρψ(st, at, ξt)
)
ds0da0 . . . daT−1dξ0 . . . dξT−1 , (23)

or, more simply, as:

V (ψ, θ) =
∫
PRψ,θ(τ)Rψ,θ(τ)dτ . (24)

The theory of integration shows that a measurable function whose norm is upper-bounded
almost-everywhere by that of an integrable function on a domain is itself integrable on this
domain. Moreover, a random variable is measurable by definition and the reward function is
bounded by rmax such that:∫

|PRψ,θ(τ)Rψ,θ(τ)|dτ ≤
∫
PRψ,θ(τ) T rmaxdτ (25)

140

Jointly Learning Environments and Control Policies

In addition, by the Kolmogorov axioms, we know that:∫
PRψ,θ(τ) T rmaxdτ = T rmax . (26)

The integral defined by equation (24) thus exists and the function V is bounded for all
(ψ, θ) ∈ Ψ×Θ as follows:

|
∫
PRψ,θ(τ)Rψ,θ(τ)dτ | ≤

∫
|PRψ,θ(τ)Rψ,θ(τ)|dτ ≤ T rmax . (27)

Finally, as a corollary to the Leibniz integral rule, a function defined as in equation (24)
is continuously differentiable on the interior of the set Ψ×Θ if PRψ,θRψ,θ(τ) is continuously
differentiable on the compact Ψ×Θ for all trajectories τ ∈ X, where X = S × (A× Ξ)T is
the compact set of all trajectories. The latter is a composite function of fψ, ρψ, Pξ, and
πθ. The composite function is thus continuously differentiable if the functions composing it
are continuously differentiable, which is true by hypothesis. Furthermore, it implies that
the partial derivative of the integral is equal to the integral of the partial derivative of the
integrand.

�

Corollary 1. The function V , as defined in Theorem 1, exists, is bounded, and is continu-
ously differentiable in the interior of Ψ×Θ if A and/or Ξ are discrete.

Proof. Let us write the expression of the expectation (6) in the three cases depending on
whether A and/or Ξ are discrete and let us show that the different results of Theorem 1 are
still valid.

1. If A is discrete:

V (ψ, θ) =
∫ ∑

(a0,...aT−1)∈AT

(
P0(s0)

T−1∏
t=0

πθ(at|st, t)Pξ(ξt|st, at)
)

(T−1∑
t=0

ρψ(st, at, ξt)
)
ds0dξ0 . . . dξT−1 . (28)

2. If Ξ is discrete:

V (ψ, θ) =
∫ ∑

(ξ0,...ξT−1)∈ΞT

(
P0(s0)

T−1∏
t=0

πθ(at|st, t)Pξ(ξt|st, at)
)

(T−1∑
t=0

ρψ(st, at, ξt)
)
ds0da0 . . . daT−1 . (29)

3. If A and Ξ are discrete:

V (ψ, θ) =
∫ ∑

(a0,...aT−1)∈AT

∑
(ξ0,...ξT−1)∈ΞT

(
P0(s0)

T−1∏
t=0

πθ(at|st, t)Pξ(ξt|st, at)
)

(T−1∑
t=0

ρψ(st, at, ξt)
)
ds0 . (30)

141

Bolland, Boukas, Berger, & Ernst

In the three cases, we can still bound the integral, as done in equation (27), and apply
the corollary of the Leibniz integral rule if the integrand is continuously differentiable for
all discrete values. Finally, by linearity of the differential operator, the operator can be
distributed on the terms of the different sums when computing the derivative of the function
V .

�

Corollary 2. The gradient of the function V defined in equation (6) with respect to the
parameter vector ψ is such that:

∇ψV (ψ, θ) = E
s0∼P0(·)
at∼πθ(·|s,t)
ξt∼Pξ(·|st,at)

{(T−1∑
t=0

(
∇s log πθ(at|s, t)|s=st +∇s logPξ(ξt|s, at)|s=st

)
· ∇ψst

)

×
(T−1∑
t=0

rt
)

+
(T−1∑
t=0
∇ψρψ(s, at, ξt)|s=st +∇sρψ(s, at, ξt)|s=st · ∇ψst

)}
, (31)

where:

∇ψst = (∇sfψ)(s, at−1, ξt−1)|s=st−1 · ∇ψst−1 + (∇ψfψ)(s, at−1, ξt−1)|s=st−1 , (32)

with ∇ψs0 = 0.

Proof. To compute this gradient, we first apply the product rule for gradients to equation
(6). Afterwards, we exploit the identity∇f = f∇ log f (which we refer to as the log-derivative
trick) that holds if f is a continuously differentiable function.

∇ψV (ψ, θ) =
∫

(∇ψPRψ,θ(τ))Rψ,θ(τ)dτ +
∫
PRψ,θ(τ)(∇ψRψ,θ(τ))dτ (33)

=
∫
PRψ,θ(τ)(∇ψ logPRψ,θ(τ))Rψ,θ(τ)dτ +

∫
PRψ,θ(τ)(∇ψRψ,θ(τ))dτ (34)

= E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{(∇ψ logPRψ,θ(τ))Rψ,θ(τ) + (∇ψRψ,θ(τ))} . (35)

By applying the logarithmic operator to both sides of equation (22), we have:

logPRψ,θ(τ) = logP0(s0) +
T−1∑
t=0

log πθ(at|st, t) +
T−1∑
t=0

logPξ(ξt|st, at) . (36)

Let · denote the dot product operator. Using the chain rule formula together with
equation (2), we can write:

∇ψ log πθ(at|st, t) = ∇s log πθ(at|s, t)|s=st · ∇ψst (37)
∇ψ logPξ(ξt|st, at) = ∇s logPξ(ξt|s, at)|s=st · ∇ψst (38)
∇ψρψ(st, at, ξt) = ∇ψρψ(s, at, ξt)|s=st +∇sρψ(s, at, ξt)|s=st · ∇ψst , (39)

142

Jointly Learning Environments and Control Policies

where:

∇ψst = (∇sfψ)(s, at−1, ξt−1)|s=st−1 · ∇ψst−1 + (∇ψfψ)(s, at−1, ξt−1)|s=st−1 , (40)

with ∇ψs0 = 0.
Finally, combining the previous results with equations (35) and (36), we have:

∇ψV (ψ, θ) = E
s0∼P0(·)
at∼πθ(·|s,t)
ξt∼Pξ(·|st,at)

{(T−1∑
t=0

(
∇s log πθ(at|s, t)|s=st +∇s logPξ(ξt|s, at)|s=st

)
· ∇ψst

)

×
(T−1∑
t=0

rt
)

+
(T−1∑
t=0
∇ψρψ(st, at, ξt)

)}
. (41)

�

Corollary 3. The gradient of the function V , defined in equation (6), with respect to the
parameter vector θ is given by:

∇θV (ψ, θ) = E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{(
T−1∑
t=0
∇θ log πθ(at|st, t))(

T−1∑
t=0

rt)} . (42)

Proof. Using techniques similar to the ones used in the proof of Corollary 1 for the gradient
with respect to θ, we find:

∇θV (ψ, θ) = E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{(∇θ logPRψ,θ(τ))Rψ,θ(τ)} (43)

= E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{(
T−1∑
t=0
∇θ log πθ(at|st, t))(

T−1∑
t=0

rt)} . (44)

�

Theorem 2. Let (S,A,Ξ, P0, fψ, ρψ, Pξ, T) and πθ be an environment and a policy, respec-
tively, as defined in Section 3.2. Let V (ψ, θ) be the expected cumulative reward of policy πθ
averaged over the initial states, as defined in equation (6). Let D = {hm|m = 0, . . . ,M − 1}
be a set of M histories sampled independently and identically from the policy πθ in the
environment. Let L be a loss function such that, ∀(ψ, θ) ∈ Ψ×Θ:

L(ψ, θ) = − 1
M

M−1∑
m=0

(T−1∑
t=0

log πθ(amt |smt , t) + logPξ(ξmt |smt , amt)
)

×
(
(
T−1∑
t=0

rmt)−B
)

+
(T−1∑
t=0

ρψ(smt , amt , ξmt)
))
, (45)

143

Bolland, Boukas, Berger, & Ernst

where B is a constant value called the baseline. The gradients with respect to ψ and θ of
the loss function are unbiased estimators of the gradients of the function V as defined in
equation (6) with opposite directions, i.e., they are such that:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇ψL(ψ, θ)} = −∇ψV (ψ, θ) (46)

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θL(ψ, θ)} = −∇θV (ψ, θ) . (47)

Proof. Let us first rewrite the loss function using the notations of Theorem 1. We have:

L(ψ, θ) = − 1
M

M−1∑
m=0

(logPRψ,θ(τ
m)− logP0(sm0))

(
(
T−1∑
t=0

rmt)−B
)

+ (Rψ,θ(τm)) . (48)

The expectation of the gradient with respect to ψ is given by:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇ψL(ψ, θ)} = E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{− 1
M

M−1∑
m=0
∇ψ(logPRψ,θ(τ

m)− logP0(sm0))

×
(
(
T−1∑
t=0

rmt)−B
)

+∇ψ(Rψ,θ(τm))} . (49)

Observing that every term in the sum has the same expectation and that ∇ψ logP0(sm0) = 0,
we can write:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇ψL(ψ, θ)} = − E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇ψ(logPRψ,θ(τ))×
(
(
T−1∑
t=0

rt)−B
)

+∇ψ(Rψ,θ(τ))} .

(50)

Moreover, using the log-derivative trick:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇ψ(logPRψ,θ(τ))B} = ∇ψ E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{B} = 0 , (51)

such that:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇ψL(ψ, θ)} = −∇ψV (ψ, θ) . (52)

144

Jointly Learning Environments and Control Policies

Equivalently, the expectation of the gradient with respect to θ is given by:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θL(ψ, θ)} = − E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θ(logPRψ,θ(τ))

×
(
(
T−1∑
t=0

rt)−B
)

+∇θ(Rψ,θ(τ))} . (53)

The expectation of the term relative to the baseline is zero:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θ(logPRψ,θ(τ))B} = ∇θ E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{B} = 0 . (54)

Furthermore, the gradient of the reward function with respect to θ is zero:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θ(Rψ,θ(τ))} = E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{(
T−1∑
t=0
∇θρψ(st, at, ξt)} = 0 . (55)

We thus have that:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θL(ψ, θ)} = − E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θ(logPRψ,θ(τ))×
(T−1∑
t=0

rt
)
} (56)

= − E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θ(
T−1∑
t=0

log πθ(at|st, t))×
(T−1∑
t=0

rt
)
} , (57)

and thus:

E
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{∇θL(ψ, θ)} = −∇θV (ψ, θ) . (58)

�

Corollary 4. The gradient of the loss function, defined in equation (13), with respect to
θ corresponds to the opposite of the update direction computed with the REINFORCE
algorithm (Williams, 1992) averaged over M simulations.

Proof. The gradient of the loss function with respect to θ is given by:

∇θL(ψ, θ) = −
M−1∑
m=0

(
∇θ(logPRψ,θ(τ

m))×
(
Rψ,θ(τm)−B

))
. (59)

The gradient is the opposite of the average over M trajectories of the update direction
of the REINFORCE algorithm (Williams, 1992).

�

145

Bolland, Boukas, Berger, & Ernst

Appendix B. The Direct Environment and Policy Search Algorithm

Algorithm 2 DEPS
function Optimize((S,A,Ξ, P0, fψ, ρψ, Pξ, T), πθ, ΠΨ, ΠΘ)
Parameter Number of gradient ascent steps N
Parameter Batch size M
Parameter Learning rate α
for all n ∈ {0, . . . , N − 1} do

for all m ∈ {0, . . . ,M − 1} do
h = GenerateHistory((S,A,Ξ, P0, fψ, ρψ, Pξ, T), πθ)
Add h to the set D

end for
Compute the baseline using the histories B = 1

m

∑M−1
m=0

∑T−1
t=0 rt

Differentiate equation (13) for estimating the gradients equations (9) and (11) using D
(ψ, θ) = VanillaGradientAscent(ψ, θ, α, ∇̂ψV (ψ, θ), ∇̂θV (ψ, θ))
ψ ← ΠΨ(ψ)
θ ← ΠΘ(θ)

end for
return (ψ, θ)

function GenerateHistory((S,A,Ξ, P0, fψ, ρψ, Pξ, T), πθ)
Sample an initial state: s0 ∼ P0(·)
for all t ∈ {0, . . . , T − 1} do

at ∼ πθ(·|st, t)
ξt ∼ Pξ(·|st, at)
st+1 = fψ(st, at, ξt)
rt = ρψ(st, at, ξt)

end for
h = (s0, a0, ξ0, r0, a1, ξ1, . . . , aT−1, ξT−1, rT−1)
return h

function VanillaGradientAscent(ψ, θ, α, ∇̂ψV (ψ, θ), ∇̂θV (ψ, θ))
ψ ← ψ + α · ∇̂ψV (ψ, θ)
θ ← θ + α · ∇̂θV (ψ, θ)
return (ψ, θ)

146

Jointly Learning Environments and Control Policies

Appendix C. Jointly Optimizing the Design and the Policy of a System

In this section, we review two alternatives to the DEPS algorithm. First, we discuss the
Joint Optimization of Design and Control (JODC) algorithm (Schaff et al., 2019), an
algorithm that jointly optimizes a control policy and a distribution over the environment
parameters in order to maximize the return of the policy on expectation over the distribution
of environments. Then, we discuss a method that consists in designing a control policy
a priori and then optimizing environment parameters using derivative-free optimization
methods.

C.1 Joint Optimization of Design and Control Algorithm

The JODC algorithm is an RL algorithm for jointly optimizing the design and the control
policy of an environment (Schaff et al., 2019). The formalization is nevertheless slightly
different from our problem statement equation (5). In contrast to the DEPS algorithm,
the JODC algorithm does not optimize the environment parameters directly but instead
optimizes the parameters of a distribution defined over these environment parameters in
order to maximize the expected return of the policy on expectation over the distribution of
environments.

Formally, let pφ be a distribution defined over the set of environment parameters Ψ.
The distribution pφ is parametrized by the vector φ ∈ Φ (R

dΦ , where dΦ is the dimension
of the space of parameters of such distributions. In the following, pφ is referred to as the
environment policy. Furthermore, let us use the same notations as in Section 3.2. Thus,
πθ is a parametrized control policy and V (ψ, θ) is the expected return of this policy in the
environment parametrized by ψ. The pair (φ∗, θ∗) is optimal if it is such that:

φ∗, θ∗ ∈ argmax
φ∈Φ,θ∈Θ

E
ψ∼pφ(·)

{V (ψ, θ)} . (60)

Using the log-derivative trick, the gradient with respect to φ can be computed as follows:

∇φ E
ψ∼pφ(·)

{V (ψ, θ)} = E
ψ∼pφ(·)
s0∼P0(·)

at∼πθ(·|st,t)
ξt∼Pξ(·|st,at)

{(∇φ log pφ(ψ))(
T−1∑
t=0

rt)} . (61)

The JODC algorithm then approximates this gradient via Monte-Carlo sampling and exploits
it to update the environment policy parameters. More precisely, a batch of M environments
E = {ψm|m = 0, . . . ,M − 1} is first sampled from pφ. Then, the control policy is executed
for each environment in the batch that was sampled. Afterwards, the parameters of the
environment policy are updated by stochastic gradient ascent using the sampled trajectories
to approximate the expectation in equation (61). In practice, the Adam algorithm (Kingma
& Ba, 2014) is used and gradients are computed by automatic differentiation of the following
loss function:

L = − 1
M

M−1∑
m=0

log(pφ(ψm))
(T−1∑
t=0

rt
)
. (62)

147

Bolland, Boukas, Berger, & Ernst

Finally, the control policy parameters are updated by applying the proximal policy optimiza-
tion (PPO) algorithm (Schulman et al., 2017) using the sampled trajectories. This algorithm
is a variant of the vanilla stochastic gradient ascent of the REINFORCE algorithm that has
been shown to perform well for learning control policies in complex environments. The main
steps of the JODC algorithm are summarized in Algorithm 3.

Algorithm 3 JODC
loop

Sample M environment parameters φm from pφ
Execute the control policy πθ in each sampled environment
Autodifferentiate L and apply Adam for updating φ
Apply PPO for updating θ

end loop

Let us note that Schaff et al. (2019) applied two additional changes compared to the
pseudocode displayed in Algorithm 3. First, they pre-fit the policy based on trajectories
generated in environments sampled at random. Second, they make the policy explicitly
dependent on the environment parameters ψ as well.

C.2 System Optimization with Rule-Based Policies

The second method is a decomposition of the design and the policy optimization processes
as follows. First, we design a policy a priori based on expert knowledge. For example, the
policy could be a rule-based policy or a model-based controller (e.g., a linear-quadratic
regulator or a model predictive controller). The environments are then optimized in order
to find the parameters maximizing the reward given the policy. Formally, let π(at|st, t;ψ)
be the policy that gives the probability of selecting action at when the system parametrized
by ψ is in state st at time t. The optimal environment parameters are then computed by
solving the following optimization problem:

ψ∗ ∈ argmax
ψ∈Ψ

E
s0∼P0(·)

at∼π(·|st,t;ψ)
ξt∼Pξ(·|st,at)

{
T−1∑
t=0

rt} (63)

st+1 = fψ(st, at, ξt) (64)
rt = ρψ(st, at, ξt) . (65)

In practice, this objective is pursued using a derivative-free optimization method and
computing a Monte-Carlo estimation of the objective function at each point estimation of ψ.

148

Jointly Learning Environments and Control Policies

Appendix D. Mass-Spring-Damper Environment

m

k

b

a

ξ

x

Figure 6: Mass-Spring-Damper system.

Let us consider a Mass-Spring-Damper (MSD) system where an object, modeled as a point
mass, is attached to a spring and a damper, as represented in Figure 6. In addition to the
forces applied by the spring and the damper, the object is subject to a random force that
depends on its position and velocity. An agent interacts with the system by applying a control
force on the object. The control objective of the agent is to stabilize the spring at a fixed
reference position. The agent also seeks to optimize a design function parametrized by the
Hooke constant of the spring and the damping coefficient of the damper. Hence, the objective
of the joint design and control problem is to optimize these objectives simultaneously.

Optimization Horizon. The optimization horizon is denoted by T = 100 and is equal
to the number of actions to be taken throughout the discrete decision process.

State Space. The state st at time t is described by two variables, namely the position xt
and the velocity vt of the object. The position is positive when the spring is extended (i.e.,
elongated to the right in Figure 6) and negative when it is compressed (i.e., elongated to the
left in Figure 6). In addition, the velocity is positive when the mass moves to the right in
Figure 6 and negative when it moves to the left. The state space of the system is thus the
following:

S = R
2 . (66)

Initial State Distribution. The initial state s0 = (x0, v0) is drawn uniformly at random
from a subset of the state space S0 = [x0,min, x0,max]× [v0,min, v0,max] (S.

Action Space. At time t, an agent can apply a control force on the object. In the most
general setting, this force may take values in R. However, in this paper, we will consider
that the agent can only apply a force selected from the following discrete set:

A = {−0.3,−0.1, 0.0, 0.1, 0.3} . (67)

149

Bolland, Boukas, Berger, & Ernst

Disturbance Space. We consider a stochastic version of the problem where a real-valued
disturbance ξt is added to the action at at each time step t, such that the input effectively
applied to the system is at + ξt. In this context, we have:

ξt ∈ Ξ = R . (68)

Disturbance Distribution. The disturbance at time t is sampled from a normal distribu-
tion centered at the current position xt, and whose standard deviation is a linear combination
of the magnitudes of the action at and the velocity vt:

Pξ(ξt|st, at) = N (ξt
∣∣xt, 0.1× |at|+ |vt|+ ε) , (69)

where ε is a constant equal to 10−6 ensuring that the standard deviation of the distribution
remains strictly positive. Note that the disturbance is endogenous in the sense that it
depends on the system state. This also introduces a feedback loop that can render the
system unstable.

Transition Function. Let x denote the position of the object. The spring has Hooke
constant k and the damper has damping coefficient b. The force exerted by the spring on
the object is in the direction opposite to its elongation and the damping force acts in the
direction opposite to its motion. Furthermore, the system is subject to a control force as
well as a random perturbation. Both are proportional to the mass m, and are obtained by
multiplying the action a and the disturbance ξ by m, respectively. Then, the continuous-time
dynamics of the system are described by Newton’s second law as:

mẍ = −kx− bẋ+ma+mξ , (70)

which can equivalently be written as:

ẍ+ 2ζωẋ+ ω2x = a+ ξ , (71)

where:

ω =

√
k

m
(72)

ζ = b

2mω . (73)

In order to obtain the transition function of the discrete-time system, the optimization
horizon is split into a set of successive time periods. Each time period t has a duration of
∆t = 50ms. Then, the transition dynamics are obtained from the analytical solution of
equation (71). More precisely, let g be the function computing the new position xt+1 of the
point mass based on xt and vt after a period τ = ∆t during which the constant inputs at
and ξt are applied. The transition function f thus updates the state variables as follows:

xt+1 = g(xt, vt, at, ξt,∆t) (74)

vt+1 = ∂g

∂τ
(xt, vt, at, ξt, τ)|τ=∆t , (75)

150

Jointly Learning Environments and Control Policies

where:

g(xt, vt, at, ξt, τ) = at + ξt
ω2 + exp(−ζωτ)×

(xt − at+ξt
ω2) cosh(

√
ζ2 − 1ωτ) +

vt
ω

+ζ(xt−at+ξt
ω2)√

ζ2−1
sinh(

√
ζ2 − 1ωτ) , if ζ > 1

(xt − at+ξt
ω2) +

(
vt + ω(xt − at+ξt

ω2)
)
τ , if ζ = 1

(xt − at+ξt
ω2) cos(

√
1− ζ2ωτ) +

vt
ω

+ζ(xt−at+ξt
ω2)√

1−ζ2
sin(

√
1− ζ2ωτ) , if 0 < ζ < 1 .

(76)

Reward Function. The reward function is defined as:

ρ(at, st, ξt) = exp
(
− |xt − xref | − (ω − cω)2 − (ζ − cζ)2 −

K∏
k=1

(φk − ck)2
)
, (77)

where ω, ζ and φk, k = 1, . . . ,K, are parameters of the system that need to be optimized.
Furthermore xref , cω, cζ , K and ck are constant values. Note that the reward function does
not depend on the disturbance.

The first term in the exponential will be minimized if the mass is stabilized at some
reference position xref . The second and third terms are minimized if the parameters ω and
ζ are equal to cω and cζ , respectively. The last term is a strictly positive function that
is minimized if at least one of the parameters φk is equal to the corresponding constant
ck. This term is a non-convex function introduced to artificially increase the size of the
parameter space and the complexity of the reward function. Simultaneously minimizing
these terms is equivalent to maximizing the reward. Furthermore, since the reward function
is the exponential of an expression only taking negative values, the reward is upper-bounded
by rmax = 1. Hence, the expected return is upper-bounded by T .

Parametrized MSD Environment. A parametrized MSD environment is an 8-tuple
(S,A,Ξ, P0, fψ, ρψ, Pξ, T) parametrized by the real vector ψ = (ω, ζ, φ0, φ1, φ2) ∈ R+2 × R3.

Rule-Based Policies. Several rule-based policies can be envisaged for the MSD system.
First, let aeq be the steady-state normalized force that must be applied on the system in
order to maintain the mass at the reference position xref , assuming that the disturbance is
equal to zero. This normalized force is given by:

aeq = ω2xref . (78)

The first rule-based policy πmsd,1 makes use of a categorical distribution over the actions
at ∈ A with expectation aeq and the smallest possible standard deviation. Let alower and
aupper be such that:

alower = argmax
a∈A

{a|a < aeq} (79)

aupper = argmin
a∈A

{a|a ≥ aeq} . (80)

Then, to any state st, the first rule-based (stochastic) policy πmsd,1 associates an action
at ∈ {alower, aupper} by sampling from the following distribution:{

alower , w.p. aupper−aeq
aupper−alower

aupper , w.p. aeq−alower
aupper−alower .

(81)

151

Bolland, Boukas, Berger, & Ernst

For the second rule-based policy, we propose a policy that seeks to move the point mass
towards the reference position xref if it happens to be outside of a neighborhood of xref .
Assuming xref is positive and takes the value provided in Table 7, let xpush and xpull be
the bounds of the interval defining the neighborhood of xref , such that xpush ≤ xref ≤ xpull.
Let apush and apull be the actions taken when the position of the mass xt is smaller than
xpush and larger than xpull, respectively. The second rule-based (deterministic) policy πmsd,2
thus selects one of following actions with probability one:

apull , if xt > xpull
0. , if xpush ≤ xt ≤ xpull

apush , if xt < xpush .
(82)

After performing some simulations, we empirically observed that the average expected return
of the second policy πmsd,2 over these simulations nearly equals the upper bound discussed
previously with the following parameters: apush = 0, xpull = xpush = xref , and apull = −0.3.
In other words, we counterbalance the effect of the spring when the point mass compresses
the spring and passes the reference position xref , and otherwise let the system evolve freely:{

−0.3 , if xt > xref
0.0 , otherwise .

(83)

Numerical Values. In this work, we will consider the values given in Table 7 for the
constant parameters.

Table 7: Parameters for the MSD.

Symbol Value
x0,min 0.198
x0,max 0.202
v0,min −0.010
v0,max 0.010
xref 0.200
cω 0.500
cζ 0.500
K 3.000
c0 0.500
c1 −0.300
c2 0.200
T 100

152

Jointly Learning Environments and Control Policies

Appendix E. Optimal Design of a Solar Off-Grid Microgrid

Solar Off-Grid Microgrid

Battery Load

Solar Panels

Diesel
Generator

Figure 7: Microgrid configuration.

A solar off-grid microgrid is a small-scale electrical grid composed of photovoltaic (PV)
panels converting solar energy into electricity, a battery storing electricity, and a dispatchable
diesel generator (genset), which can be switched on and off to supply an electrical load. A
sketch of the system configuration considered is presented in Figure 7. We are interested in
optimally sizing and controlling the microgrid, that is, identifying the capacity of components
and the control policy that jointly minimize the total cost of the system over its lifetime.
The total cost of the microgrid is the sum of the overnight investment costs incurred when
installing the various components and the operating costs incurred over the lifetime of
the system. The latter include the fuel costs of the genset and the penalties incurred for
shedding the load (in the event of a power shortage) and curtailing the electricity generation
(if the production surplus cannot be stored). An agent jointly designing and controlling
the system faces a trade-off between building a large installation, which typically leads to
high investment costs but low (variable) operating costs, and deploying a small installation,
which often results in low investment costs but high (variable) operating costs.

Before formally introducing this benchmark problem, let us mention that we will use
the notation [·] to indicate the physical unit of the symbol preceding it. In this section, [W]
denotes instantaneous power production in Watts, [Wp] denotes nameplate (manufacturer)
power capacity, [Wh] denotes energy in Watt-hours and [Whp] denotes nameplate (manu-
facturer) energy capacity. In addition, [h] denotes the unit of time (hours) and [$] denotes
the currency considered in this problem.

In the following, the solar off-grid microgrid system is modeled as a discrete-time
dynamical system that fits into the framework introduced in Section 3. In addition, the time
period [t, t+ 1[between any two successive time steps t and t+ 1 corresponds to one hour

153

Bolland, Boukas, Berger, & Ernst

(i.e., ∆t = 1 hour) during which the consumption and the production levels are assumed
constant.

Optimization Horizon. The optimization horizon is denoted as T = 120, and corresponds
to the number of hours over which the system is optimized. The horizon corresponds to a
truncation of the system lifetime.

State Space. The state of the system can be fully described by st = (SoCt, ht, PGt , P̄Ct , P̄PVt) ∈
S =

[
0, CB

]
× {0, ..., 23} × R+ × R+ × R+, where:

• SoCt [Wh] ∈
[
0, CB

]
denotes the state of charge of the battery at time t, with

CB [Whp] ∈ R+ the installed battery capacity (i.e., the maximum amount of energy
that can be stored in the battery).

• ht [h] ∈ {0, ..., 23} denotes the hour of the day at time t.

• PGt [W] ∈
[
0, CG

]
denotes the power produced by the genset at time t, where CG [W] ∈

R
+ is the capacity of the generator (i.e., its maximum power output).

• P̄Ct [W] ∈ R+ denotes the expected value of the electrical demand at time t.

• P̄PVt [W] ∈ R+ denotes the expected value of the PV power generation at time t. In
addition CPV [Wp] ∈ R+ denotes the installed capacity of PV panels and p̄PV,h [%] is
the expected PV production per unit of installed capacity for hour h of the day. The
latter is a known parameter given in the last column of Table 9 for every hour h of
the day.

Initial State Distribution. The initial state of charge SoC0 is set to half the capacity
of the battery CB, the initial hour h0 is set to zero and the generator is initially shut down,
such that PG0 is set equal to zero with probability one. The initial value for P̄C0 is given on
the first line of Table 9 in the corresponding column. Finally, the initial value for P̄PV0 is
given by the product of CPV and the first entry in column p̄PV,h in Table 9.

Action Space. The available actions correspond to the power exchanged with the battery
(in order to charge or discharge it) as well as the power produced by the generator. The
former, which is denoted as P̃Bt [W], is assumed to be positive if the battery is being charged
and negative if it is being discharged. The latter is denoted as P̃Gt [W]. We therefore consider
the following continuous action space:

A =
[
−CB, CB

]
×
[
0, CG

]
. (84)

Disturbance Space. The disturbance ξt = ECt ∈ Ξ ⊆ R is assumed to represent the
stochastic deviation from the expected electricity consumption for hour ht.

Disturbance Distribution. The disturbance at time t is sampled from a normal distri-
bution centered at zero with standard deviation σC,h depending on the hour of the day
h = ht:

Pξ(ξt|st, at) = N (ξt|0, σC,h) . (85)

The values of the standard deviation σC,h are given in Table 9 for every hour h of the day.

154

Jointly Learning Environments and Control Policies

Transition Function. The state of charge of the battery SoCt is updated based on the
action P̃Bt , which represents the amount of power that we would like to charge into/discharge
from the battery during one hour (∆t = 1h). However, given an action P̃Bt , the actual power
that can be exchanged with the battery is constrained either by the battery capacity when
charging it or by the energy stored in the battery when discharging it. Thus, the actual
power exchanged with the battery PBt [W] ∈

[
−CB, CB

]
can be expressed as follows:

PBt =


(CB − SoCt) , if P̃Bt > (CB − SoCt)
−SoCt , if P̃Bt < −SoCt
P̃Bt , otherwise .

(86)

The state of charge of the battery is then updated using a linear water tank model (Boukas
et al., 2020) as follows:

SoCt+1 = SoCt + ∆t · PBt . (87)

Each time step in the discrete system corresponds to one hour, which is captured by the
transition of the state variable h:

ht+1 = (ht + 1) mod 24 . (88)

Furthermore, we compute the power produced by the generator at time t+ 1 from the action
P̃Gt as follows:

PGt+1 = P̃Gt . (89)

The variable P̄Ct+1 takes the value reported in Table 9 on the line corresponding to hour
h = ht+1. Finally, the variable P̄PVt+1 is updated as:

P̄PVt+1 = p̄PV,ht+1 · CPV , (90)

where p̄PV,ht+1 takes the value reported in Table 9 in the last column on the line corresponding
to hour h = ht+1.

Reward Function. The reward signal is, in this case, a cost function composed of two
parts, namely the investment cost and the operating cost. The reward signal is given by:

rt = ρ(st, at, ξt) = −(cfixt + copt) , (91)

where cfixt [$] ∈ R+ represents a fixed hourly payment that goes towards the settlement of
the initial investment cost and copt [$] ∈ R+ corresponds to the operating cost at each time
step t.

In order to compute the fixed-cost term cfixt , we first compute the investment costs
of the three components of the microgrid. We assume a small-scale installation where
investment costs are quadratic functions of the installed capacity, reflecting diseconomies
of scale (Friedman, 2007). Let cPV1 [$/Wp] ∈ R+ and cPV2

[
$/W 2

p

]
∈ R+ denote the cost per

155

Bolland, Boukas, Berger, & Ernst

unit and per squared-unit of installed PV capacity, respectively. The total installation cost
of PV panels IPV [$] ∈ R+ is defined as:

IPV = cPV1 · CPV + cPV2 · CPV 2
. (92)

Let cB1 [$/Whp] ∈ R+ and cB2
[
$/Wh2

p

]
∈ R+ denote the cost per unit and per squared-unit

of installed battery capacity, respectively. The total installation cost of the battery storage
system IB [$] ∈ R+ is defined as:

IB = cB1 · CB + cB2 · CB
2
. (93)

In addition, let cG1 [$/Whp] ∈ R+ and cG2
[
$/Wh2

p

]
∈ R+ denote the cost per unit and per

squared-unit of diesel generator capacity, respectively. The total installation cost of the
genset IG [$] ∈ R+ is defined as:

IG = cG1 · CG + cG2 · CG
2
. (94)

The total investment cost I [$] ∈ R+ is the sum of the investment costs of each component
of the microgrid, and is thus defined as:

I = IB + IPV + IG . (95)

We assume that this investment is financed via a loan. Hence, an annuity cyear [$] ∈ R+ is
paid on a yearly basis over the lifetime of the system in order to pay back the principal and
interests, which are charged at a yearly rate r ∈ [0, 1]. This annuity is given by the following
accounting formula:

cyear = I
r(1 + r)n

(1 + r)n − 1 , (96)

where n [year] ∈ N is the number of years assumed for the economic lifetime of the system.
Since a common (non-leap) year has 8760 hours, we define the fixed hourly cost as:

cfixt = cyear

8760 . (97)

In order to compute the operating cost copt , we proceed as follows. First, let PCt [W] ∈ R+

be the realization of the consumption after an action is taken at time t, that is:

PCt = P̄Ct + ECt . (98)

Then, we denote by PB,efft [W] the effective power charged or discharged from the battery
(i.e., accounting for losses). The latter is computed as follows:

PB,efft =
{
PBt /ηch , if PBt ≥ 0
ηdisP

B
t , if PBt < 0 ,

(99)

where ηch ∈ [0, 1] and ηdis ∈ [0, 1] represent the charging and discharging efficiencies of
the battery storage system. At each time step t in the horizon, power production and

156

Jointly Learning Environments and Control Policies

consumption must be balanced. The residual power that may result from any mismatch
between production and consumption is denoted as P rest [W] ∈ R. Formally, the residual
power is given by:

P rest = P̄PVt + P̃Gt − PCt − P
B,eff
t . (100)

If P rest is positive, the associated generation surplus is penalized with a cost πcurtail [$/W] ∈
R

+. If P rest is negative, the associated power shortage is penalized with a cost πshed [$/W] ∈
R

+. The cost crest [$] ∈ R+ resulting from any production-consumption mismatch is therefore
computed as:

crest =
{
πcurtail · P rest , if P rest ≥ 0
πshed · P rest , if P rest < 0 .

(101)

In addition, two types of costs stem from the operation of the diesel generator. First, for
each watt produced by the diesel generator, a cost πfuel [$/W] ∈ R+ is incurred for buying
diesel, such that the fuel cost cfuelt [$] ∈ R+ at time t is computed as follows:

cfuelt = πfuel · P̃Gt /ηG , (102)

where ηG ∈ [0, 1] represents the thermal efficiency of the diesel generator. Second, a ramping
cost cramp [$] ∈ R+ is associated with changes in the output of the diesel generator between
successive time periods. This cost is assumed to be a quadratic function of the change in
power output and takes the following form:

crampt =
{
πup · (P̃Gt − PGt)2 , if P̃Gt ≥ PGt
πdown · (P̃Gt − PGt)2 , if P̃Gt < PGt ,

(103)

where πup
[
$/W 2] ∈ R

+ and πdown
[
$/W 2] ∈ R

+ represent the cost of increasing and
decreasing the power output of the generator from time t to time t+ 1, respectively. Finally,
the total operating cost is the sum of the production-consumption mismatch, fuel and
ramping costs:

copt = crest + cfuelt + crampt . (104)

Parametrized Environment. The off-grid microgrid environment is the 8-tuple
(S,A,Ξ, P0, fψ, ρψ, Pξ, T), which is parametrized by the vector ψ = (CB, CPV , CG) ∈ R+3.
We note that, strictly speaking, the transition and reward functions of this environment
are not differentiable. First, the state variable ht takes values in a discrete set and its
update involves modular arithmetic. However, this update is independent of the environment
parameters. In this case, the state variable ht is thus considered as a constant by the gradient
operator and does not participate in the update of the environment parameters when doing
gradient ascent/descent. Second, the clipping operations (e.g., equation (86)) that depend
on state variables and on the environment parameters are also locally non-differentiable. In
the latter case, gradients are replaced by subgradients when updating parameters. In our
implementation, PyTorch handles this automatically.

157

Bolland, Boukas, Berger, & Ernst

Rule-Based Policies. We propose two rule-based control policies for the microgrid system.
The first one seeks to greedily minimize the average operating cost. More precisely, the solar
panels are first used to supply as much of the expected demand as possible at zero marginal
cost. If the power production from PV panels exceeds the expected demand, the battery
is charged with the production surplus and the diesel generator remains unused. On the
other hand, if the expected demand exceeds the PV production, the battery is discharged
to compensate for the power shortage. If the combined output from the PV panels and
the battery is insufficient to supply the demand in full, the diesel generator is activated.
Formally, given the state st, the first (deterministic) rule-based policy πmg,1 selects one of
the following actions with probability one:

(min(CB − SoCt, P̄PVt − P̄C,ht), 0) , if P̄C,ht ≤ P̄PVt
(−SoCt,min(CG, P̄C,ht − P̄PVt − SoCt) , if P̄C,ht ≥ P̄PV,ht + SoCt

(max(−SoCt, P̄PVt − P̄C,ht), 0) , otherwise .
(105)

This policy neglects the ramping costs of the diesel generator and may lead to large operational
costs for systems with small batteries and large diesel generators. An alternative consists in
using the diesel generator at full capacity in order to provide a constant power supply and
using the PV panels as well as the battery to balance the production and the consumption.
Formally, given the state st, the second (deterministic) rule-based policy πmg,2 selects one of
the following actions with probability one:{

(min(CB − SoCt, P̄PVt + CG − P̄C,ht), CG) , if P̄C,ht − CG ≤ P̄PVt
(max(−SoCt, P̄PVt + CG − P̄C,ht), CG) , if P̄C,ht − CG ≥ P̄PVt .

(106)

Numerical values. Table 8 summarizes the parameter values used in the microgrid
experiments presented in this paper.

158

Jointly Learning Environments and Control Policies

Table 8: Parameters used for the solar off-grid microgrid.

Symbol Value Unit
ηch 1 -
ηdis 1 -
ηG 1 -
cPV1 200 $/Wp

cPV2 100 $/Wp

cB1 100 $/Wp

cB2 20 $/Wp

cG1 1000 $/Wp

cG2 10000 $/Wp

r 0.1 -
n 20 years
πshed 25 $/Wh
πcurtail 25 $/Wh
πfuel 4 $/Wh
πup 0.5 $/Wh
πdown 0 $/Wh
T 120 hour
∆t 1 hour

159

Bolland, Boukas, Berger, & Ernst

Table 9: Electrical load consumption and PV production capacity factor data.

Hour h P̄C,h σC,h p̄PV,h

0 10.4 0.55 0.0
1 9.7 0.50 0.0
2 9.3 0.43 0.0
3 8.9 0.39 0.0
4 8.6 0.39 0.0
5 8.2 0.37 0.0
6 7.3 0.37 0.0
7 6.8 0.36 0.0
8 6.9 0.40 0.0
9 7.0 0.43 0.04
10 7.2 0.44 0.08
11 7.4 0.47 0.12
12 7.7 0.42 0.14
13 8.0 0.40 0.15
14 8.2 0.42 0.14
15 8.2 0.47 0.12
16 8.1 0.43 0.08
17 8.8 0.44 0.04
18 12.6 0.81 0.0
19 16.0 0.60 0.0
20 16.5 0.55 0.0
21 15.8 0.57 0.0
22 13.9 0.60 0.0
23 11.8 0.59 0.0

160

Jointly Learning Environments and Control Policies

Appendix F. Drone Design and Control

This section formulates the problem of jointly designing and controlling a drone in the
framework of Section 3. More specifically, the drone design considered here is a so-called
quadrotor, which relies on four independently actuated propellers to fly, as shown in Figure 8.
Such systems have been studied extensively in recent years (Habib et al., 2014; Sabatino,
2015; Hwangbo et al., 2017; Wang et al., 2017; Hodge et al., 2021), but mostly from a control
perspective.

L

D R

Ω4

Ω1

Ω2

Ω3

yB

xB

zB

H

W

Figure 8: Schematic representation of a quadrotor.

The quadrotor is modelled as a rigid body moving in three-dimensional space. The
quadrotor possesses six degrees of freedom, namely three translations and three rotations.
Hence, the position of the quadrotor is described by six variables, which are expressed using
two different references frames. The first reference frame, which is called the earth frame,
is an inertial frame used to measure the position of the center of mass of the quadrotor.
In this paper, the center of mass and the barycenter of the drone are assumed to coincide.
The second reference frame, which is referred to as the body frame, is attached to the
barycenter of the quadrotor and its axes are parallel to the quadrotor’s principal axes of
inertia. This frame is used to measure the rotation of the quadrotor around its barycenter.
The quadrotor is actuated via the angular speed of its four propellers, and the system
is therefore underactuated. The equations of motion are derived using Newton’s second
law and Euler’s rotation equations, resulting in a system of highly nonlinear second-order
ordinary differential equations that describe the dynamics of the system in time. The design
of the quadrotor is defined by four physical parameters, namely the length, the thickness
and the width of the arms connecting its propellers to its barycenter, as well as the radius
of its propellers. The goal is then to design a quadrotor that can move as fast as possible
around an elliptical trajectory while being subject to random wind gusts. This objective
involves a trade-off between the inertia of the drone and its controllability. Indeed, a heavy

161

Bolland, Boukas, Berger, & Ernst

drone will typically be much less sensitive to wind gusts than a light one is but increasing
its weight and size will also make it more difficult to control and maneuver (and vice-versa).

Optimization Horizon. The trajectory of the drone is optimized over T = 100 time
steps. The time elapsed between two successive time steps t and t+ 1 is denoted as ∆t and
reported in Table 10, resulting in a total flight time of seven seconds.

State Space. The state space model has twelve state variables. These variables represent
the three angular positions and the three linear positions in the earth frame (φt, θt, ϕt, xt, yt, zt),
as well as the three angular velocities and the three linear velocities in the body frame
(pt, qt, rt, ut, vt, wt) at time t (i.e., t×∆t seconds into the flight):

st = (φt, θt, ϕt, pt, qt, rt, ut, vt, wt, xt, yt, zt) ∈ S = R
12 . (107)

Initial State Distribution. The drone initially starts at rest at the origin of the earth
frame with probability one:

s0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) . (108)

Action Space The drone is controlled through the angular speeds of its propellers:

at = (Ω1,Ω2,Ω3,Ω4) ∈ A = [Ωmin,Ωmax]4 (R
4 . (109)

Disturbance Space. The disturbance space consists of the three forces (in the body
frame) and three torques (also in the body frame) applied on the drone by the wind, such
that:

ξt = (fwx, fwy, fwz, τwx, τwy, τwz) ∈ Ξ = R
6 . (110)

Disturbance Distribution. Let us assume that the force applied by the wind on the
center of mass of the drone follows a multivariate normal distribution with mean µw1 and
covariance matrix σwI, with 1 ∈ R3 a vector with all entries equal to 1 and I ∈ R3×3 the
identity matrix of size three. In addition, let us assume that the wind applies no torque on
the drone. Hence, we get:

(fwx, fwy, fwz) ∼ N (·|µw1, σ2
wI) (111)

(τwx, τwy, τwz) = 0 . (112)

Transition Function. The model used in this section is adapted from the work of Sabatino
(2015), and we only briefly review its derivation. The equations of motion of the drone are
derived from Newton’s second law and Euler’s rotation equations, which can be expressed as
vectorial second-order ordinary differential equations where the dependent variables are the
linear and angular positions of the drone, respectively. These differential equations represent
how the linear and angular positions evolve over time in response to the application of forces
and torques on the drone (by its own propellers and wind gusts), and can be equivalently
expressed as a system of first-order differential equations with twelve scalar variables. These
two laws, which are stated in the body frame, only provide six equations. Thus, six equations
describing the kinematics of the drone (i.e., linking the linear and angular velocities in the

162

Jointly Learning Environments and Control Policies

earth and body frames) are added in order to obtain the required twelve equations. These
equations are then discretized in time order to obtain the state space model. We start with
the equations modeling the dynamics of the drone and then proceed with the description of
its kinematics.

Let ftr be the total thrust generated by the propellers, let (fwx, fwy, fwz) be the forces
produced by wind on the quadrator, let (τx, τy, τz) denote the control torques generated by
the propellers and let (τwx, τwy, τwz) be the torques produced by the wind. In addition, let g
and m be the gravitational acceleration and the mass of the drone, and let (Ix, Iy, Iz) be the
moments of inertia around the principal axes of the drone. Then, applying Euler’s rotation
equations and Newton’s second law in the body frame yields the following equations:

ṗ = Iy − Iz
Ix

rq + τx + τwx
Ix

(113)

q̇ = Iz − Ix
Iy

pr + τy + τwy
Iy

(114)

ṙ = Ix − Iy
Iz

pq + τz + τwz
Iz

(115)

u̇ = rv − qw − g sin θ + fwx
m

(116)

v̇ = pw − ru+ g sinφ cos θ + fwy
m

(117)

ẇ = qu− pv + g cos θ cosφ+ fwz − ftr
m

. (118)

Note that the force ftr and the torques (τx, τy, τz) produced by the propellers can be expressed
in terms of their angular speeds (Ω1,Ω2,Ω3,Ω4). More precisely, let b and d be the thrust
and drag factors of the drone, and let L be the length of its arms. Then, the force and
torques can be expressed as:

ftr
τx
τy
τz

 =


b b b b
−bL 0 bL 0

0 −bL 0 bL
−d d −d d




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 . (119)

The kinematic model of the drone relies on a rotation matrix to link the linear velocities
in the earth frame to the ones in the body frame:ẋẏ

ż

 =

cos θ cosϕ sinφ sin θ cosϕ− cosφ sinϕ cosφ sin θ cosϕ+ sinφ sinϕ
cos θ sinϕ sinφ sin θ sinϕ+ cosφ cosϕ cosφ sin θ sinϕ− sinφ cosϕ
− sinϕ sinφ cos θ cosφ cos θ


uv
w

 ,

(120)

while an angular transformation matrix is used to link the angular velocities in the earth
frame to the ones in the body frame:φ̇θ̇

ϕ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ

cos θ
cosφ
cos θ


pq
r

 . (121)

163

Bolland, Boukas, Berger, & Ernst

Finally, these ordinary differential equations are discretized using the forward Euler
method to yield a discrete-time state space model. In order to simulate the drone dynamics
as accurately as possible, ne Euler integration steps are taken between successive time
periods t and t+ 1. Note that both the control input and the disturbance remain constant
during the Euler integration between successive time periods and their values are set to at
and ξt, respectively.

Reward Function. In this problem, the objective is to move the drone around an elliptical
trajectory as quickly as possible. In other words, we seek to minimize the distance to the
ellipse while maximizing the speed of the drone in the direction tangent to the ellipse.

More formally, let E be set the of points describing the desired trajectory, and let rx ∈ R+

and ry ∈ R+ denote the lengths of the two axes of symmetry of the associated ellipse. Then,
the ellipse E is given by the points (x, y, z) ∈ R3 satisfying the following equations:

E :
{ (x−rx)2

r2
x

+ y2

r2
y

= 1
z = 0 .

(122)

Let pd,t = (xt, yt, zt) ∈ R3 be the linear position of the drone in the earth frame at time t
and let pe,t = (xe,t, ye,t, ze,t) ∈ R3 be the projection of pd,t on the ellipse E :

pe,t ∈ argminx∈E ||x− pd,t|| , (123)

where || · || denotes the Euclidean norm. The coordinates of pe,t in the earth frame can be
computed in terms of the coordinates of pd,t as follows:

xe,t = sign(yt)(xt − rx) rx√
r2
x+(xt−rx)2 + rx

ye,t = sign(yt) rx√(
rx
ry

)2
+
(
xt−rx
yt

)2
ze,t = 0 ,

(124)

which holds true if yt is non-zero. If yt is equal to zero, on the other hand, the projection of
pd,t on the ellipse is either (0, 0, 0) or (2rx, 0, 0), depending on the sign of xt.

In addition, let γ(pe,t) = (γx,t, γy,t, γz,t) be the tangent vector of E at pe,t, which has the
following coordinates in the earth frame:

γx,t = rx
ye,t
ry

γy,t = −ry xe,t−rxrx
γz,t = 0 .

(125)

Then, the reward function can be expressed as:

rt = −||pd,t − pe,t||2 + λmax
(
vmax, pd,t ·

γ(pe,t)
||γ(pe,t)||

)
, (126)

where the first term measures the distance from the ellipse and the second term quantifies
the speed at which the drone travels around the ellipse. The scalar parameter λ ∈ R

+

controls the extent to which one objective is preferred over the other. In addition, in the

164

Jointly Learning Environments and Control Policies

second term, the speed of the drone in the direction given by γ(pe,t) is clipped if it exceeds
a threshold speed vmax. This provides better control over the relative contributions of both
terms in the objective.

Using the coordinates of the various vectors, the reward function can be equivalently
written as:

rt = −
(
(xe,t − xt)2 + (ye,t − yt)2 + z2

t

)
+ λmax

(
vmax,

rxry√
r4
xy

2
e,t + r4

y(xe,t − rx)2

(
ẋtrx

ye,t
ry
− ẏtry

xe,t − rx
rx

)
. (127)

Parametrized Drone Environment. Let D be the distance from the barycenter of the
drone to the tip of the propellers (see Figure 8). Let H andW be the thickness and the width
of the arms connecting the barycenter of the drone to the center of its propellers, respectively.
In addition, let R be the radius of the propellers. Then, the drone environment is the 8-tuple
(S,A,Ξ, P0, fψ, ρψ, Pξ, T), which is parametrized by the vector ψ = (D,R,H,W) ∈ R+4.
The distance from the barycenter of the drone to the center of the propellers L, the mass
m, the moments of inertia (Ix, Iy, Iz), as well as the thrust factor b and the drag factor d
depend directly on these parameters. We derive their expressions next.

First, as can be seen in Figure 8, the distance from the barycenter of the drone to the
center of the propellers L can be expressed as the sum of the distance from the barycenter
to the tip of the propellers D and the radius of the propellers R:

L = D +R . (128)

In the following, for the sake of clarity, expressions will be directly written in terms of L
where appropriate. Note that these expressions can be written solely in terms of D and R
by substitution.

Second, the mass of the drone can be computed as the integral of the density of the
material used to construct the drone ρ over its volume Σ. The latter essentially corresponds
to the volume of the four arms and the joint linking them. By symmetry, it can be computed
as the sum of two terms. First, we count the mass of an arm connecting the barycenter of
the drone to a propeller four times. Then, we add the mass of the joint and get the total
mass of the drone as follows:

m =
∫

Σ
ρ dσ = 4

∫ W/2

−W/2

∫ L

W/2

∫ H/2

−H/2
ρ dxdydz +

∫ W/2

−W/2

∫ H/2

−H/2

∫ H/2

−H/2
ρ dxdydz (129)

= 4ρHW (L− W

2) + ρHW 2 . (130)

Note that the mass of the propellers is neglected.
Third, by definition, Ix can be computed as the integral of the product of the density

with the square of the distance σ from the center of gravity to each point of the structure
projected on the yz-plane Σyz:

Ix =
∫

Σyz
ρσ2 dσ =

∫ L

−L

∫ H/2

−H/2
ρ(y2 + z2) dydz = 1

6ρLH(4L2 +H2) . (131)

165

Bolland, Boukas, Berger, & Ernst

By symmetry, the moments of inertia Ix and Iy around the x and y principal axes are equal,
thus:

Iy = Ix = 1
6ρLH(4L2 +H2) . (132)

By definition, the moment of inertia Iz is computed as follows:

Iz =
∫

Σxy
ρσ2 dσ . (133)

Let us decompose the projected surface Σxy into the four arms and the joint linking them.
By symmetry, the moments of inertia of the four arms are equal. We thus have that:

Iz = 4
∫ W/2

−W/2

∫ L

W/2
ρ(x2 + y2) dxdy +

∫ W/2

−W/2

∫ W/2

−W/2
ρ(x2 + y2) dxdy (134)

= 1
3ρW (4L3 + LW 2 −W 3) + 1

6ρW
4 . (135)

Finally, we can compute the thrust factor b and the drag factor d as follows (Habib et al.,
2014):

b = 1
2ρairCbAR

2 (136)

d = 1
2ρairCdAR

2 (137)

A = πR2 , (138)

where Cb and Cd are two aerodynamical parameters, ρair is the density of air and A is the
propeller disk area.

Numerical Values. Table 10 summarizes the parameter values used in the drone experi-
ments presented in this paper.

Table 10: Parameters used for the drone.

Symbol Value Unit
ρair 1.225 kg/m3

ρ (Polypropylene) 900 kg/m3

Cb 1.0 −
Cd 1.0 −
λ 0.3 m2/(m/s)
µw 0.0 N
σw 0.003 N
ne 1 −
∆t 0.07 s
vmax 1.0 m/s
rx 1.0 m
ry 1.5 m
Ωmin 0.0 rad/s
Ωmax 20.0 rad/s

166

Jointly Learning Environments and Control Policies

Appendix G. Optimization Parameters of the JODC Algorithm

In this section, we provide the parameters used in each experiment involving the JODC
algorithm (Schaff et al., 2019). For each environment, we used the same policy hypothesis
space as the one used for the DEPS algorithm. Similarly, the same scaling and clipping were
used. The parametric distribution over environments was chosen to be a normal distribution,
parametrized by its mean and its standard deviation. Additional parameters specific to the
JODC algorithm are provided in Table 11, 12 and 13 for the MSD, the microgrid and the
drone environments, respectively.

Table 11: JODC parameters for the MSD environment.

Parameter Experiment 1 Experiment 2
Step size policy parameters 0.001 0.001
Step size environment parameters 0.005 0.005
Batch size M 64 4
PPO epochs 5 5
PPO epsilon clip 0.1 0.1

Table 12: JODC parameters for the microgrid environment.

Parameter Value
Step size policy parameters 0.001
Step size environment parameters 0.001
Batch size M 64
PPO epochs 5
PPO epsilon clip 0.1

Table 13: JODC parameters for the drone environment.

Parameter Value
Step size policy parameters 0.00005
Step size environment parameters 0.0005
Batch size M 64
PPO epochs 5
PPO epsilon clip 0.1

167

Bolland, Boukas, Berger, & Ernst

References

Anderson, Michael L. 2003. Embodied cognition: A field guide. Artificial intelligence,
149(1), 91–130.

Andrychowicz, Marcin, Raichuk, Anton, Stańczyk, Piotr, Orsini, Manu, Girgin, Sertan,
Marinier, Raphael, Hussenot, Léonard, Geist, Matthieu, Pietquin, Olivier, Michalski,
Marcin, et al. 2020. What matters in on-policy reinforcement learning? a large-scale
empirical study. arXiv preprint arXiv:2006.05990.

Bakker, Hannah, Dunke, Fabian, & Nickel, Stefan. 2020. A structuring review on multi-stage
optimization under uncertainty: Aligning concepts from theory and practice. Omega, 96,
102080.

Bechtle, Sarah, Lin, Yixin, Rai, Akshara, Righetti, Ludovic, & Meier, Franziska. 2020.
Curious ilqr: Resolving uncertainty in model-based rl. Pages 162–171 of: Conference on
Robot Learning. PMLR.

Bengio, Yoshua. 2012. Practical recommendations for gradient-based training of deep
architectures. Pages 437–478 of: Neural networks: Tricks of the trade. Springer.

Bertsekas, Dimitri P. 2005. Dynamic programming and optimal control. Vol. 1. Athena
scientific Belmont, MA.

Birge, John R, & Louveaux, Francois. 2011. Introduction to stochastic programming. Springer
Science & Business Media.

Bottou, Léon. 2010. Large-scale machine learning with stochastic gradient descent. Pages
177–186 of: Proceedings of COMPSTAT’2010. Springer.

Boukas, Ioannis, Ernst, Damien, Théate, Thibaut, Bolland, Adrien, Huynen, Alexandre,
Buchwald, Martin, Wynants, Christelle, & Cornélusse, Bertrand. 2020. A Deep Rein-
forcement Learning Framework for Continuous Intraday Market Bidding. arXiv preprint
arXiv:2004.05940.

Bravo-Palacios, Gabriel, Del Prete, Andrea, & Wensing, Patrick M. 2020. One robot for
many tasks: Versatile co-design through stochastic programming. IEEE Robotics and
Automation Letters, 5(2), 1680–1687.

Brekken, Ted KA, Yokochi, Alex, Von Jouanne, Annette, Yen, Zuan Z, Hapke, Hannes Max,
& Halamay, Douglas A. 2010. Optimal energy storage sizing and control for wind power
applications. IEEE Transactions on Sustainable Energy, 2(1), 69–77.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John,
Tang, Jie, & Zaremba, Wojciech. 2016. Openai gym. arXiv preprint arXiv:1606.01540.

Camacho, Eduardo F, & Alba, Carlos Bordons. 2013. Model predictive control. Springer
Science & Business Media.

168

Jointly Learning Environments and Control Policies

Chen, Tianjian, He, Zhanpeng, & Ciocarlie, Matei. 2020. Hardware as policy: Mechanical
and computational co-optimization using deep reinforcement learning. arXiv preprint
arXiv:2008.04460.

Chen, Tianjian, He, Zhanpeng, & Ciocarlie, Matei. 2021. Co-designing hardware and control
for robot hands. Science Robotics, 6(54).

Cohen, Kobi, Nedic, Angelia, & Srikant, R. 2016. On Projected Stochastic Gradient
Descent Algorithm with Weighted Averaging for Least Squares Regression. arXiv preprint
arXiv:1606.03000.

Digumarti, Krishnamanaswi M, Gehring, Christian, Coros, Stelian, Hwangbo, J, & Siegwart,
Roland. 2014. Concurrent optimization of mechanical design and locomotion control of a
legged robot. Pages 315–323 of: Mobile Service Robotics. World Scientific.

Dinev, Traiko, Mastalli, Carlos, Ivan, Vladimir, Tonneau, Steve, & Vijayakumar, Sethu. 2021.
Co-Designing Robots by Differentiating Motion Solvers. arXiv preprint arXiv:2103.04660.

François-Lavet, Vincent, Gemine, Quentin, Ernst, Damien, & Fonteneau, Raphaël. 2016.
Towards the minimization of the levelized energy costs of microgrids using both long-term
and short-term storage devices. Smart Grid: Networking, Data Management, and Business
Models, 295–319.

Friedman, Milton. 2007. Price theory. Transaction Publishers.

Goel, Vikas, & Grossmann, Ignacio E. 2006. A class of stochastic programs with decision
dependent uncertainty. Mathematical programming, 108(2-3), 355–394.

Grondman, Ivo, Busoniu, Lucian, Lopes, Gabriel AD, & Babuska, Robert. 2012. A survey
of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(6), 1291–1307.

Ha, David. 2019. Reinforcement learning for improving agent design. Artificial life, 25(4),
352–365.

Ha, Sehoon, Coros, Stelian, Alspach, Alexander, Kim, Joohyung, & Yamane, Katsu. 2017.
Joint Optimization of Robot Design and Motion Parameters using the Implicit Function
Theorem. In: Robotics: Science and systems, vol. 8.

Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, & Levine, Sergey. 2018. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. Pages
1861–1870 of: International conference on machine learning. PMLR.

Habib, Maki K, Abdelaal, Wahied Gharieb Ali, Saad, Mohamed Shawky, et al. 2014. Dynamic
modeling and control of a quadrotor using linear and nonlinear approaches.

Heitsch, Holger, & Roemisch, Werner. 2009. Scenario Tree Modelling for Multistage
Stochastic Programs. Mathematical Programming, 118, 371–406.

169

Bolland, Boukas, Berger, & Ernst

Hodge, Victoria J, Hawkins, Richard, & Alexander, Rob. 2021. Deep reinforcement learning
for drone navigation using sensor data. Neural Computing and Applications, 33(6),
2015–2033.

Hwangbo, Jemin, Sa, Inkyu, Siegwart, Roland, & Hutter, Marco. 2017. Control of a
quadrotor with reinforcement learning. IEEE Robotics and Automation Letters, 2(4),
2096–2103.

Jackson, Lucy, Walters, Celyn, Eckersley, Steve, Senior, Pete, & Hadfield, Simon. 2021.
ORCHID: Optimisation of Robotic Control and Hardware In Design using Reinforcement
Learning. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2021). University of Surrey.

Jamieson, Kevin G, Nowak, Robert, & Recht, Ben. 2012. Query complexity of derivative-free
optimization. Advances in Neural Information Processing Systems, 25, 2672–2680.

Kaelbling, Leslie Pack, Littman, Michael L, & Moore, Andrew W. 1996. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4, 237–285.

Kingma, Diederik P, & Ba, Jimmy. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Li, Q, Zhang, WJ, & Chen, Li. 2001. Design for control - a concurrent engineering approach
for mechatronic systems design. IEEE/ASME transactions on mechatronics, 6(2), 161–169.

Luck, Kevin Sebastian, Amor, Heni Ben, & Calandra, Roberto. 2020. Data-efficient co-
adaptation of morphology and behaviour with deep reinforcement learning. Pages 854–869
of: Conference on Robot Learning. PMLR.

Marufuzzaman, Mohammad, Eksioglu, Sandra D., & (Eric) Huang, Yongxi. 2014. Two-
stage stochastic programming supply chain model for biodiesel production via wastewater
treatment. Computers & Operations Research, 49, 1 – 17.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap,
Timothy, Harley, Tim, Silver, David, & Kavukcuoglu, Koray. 2016. Asynchronous methods
for deep reinforcement learning. Pages 1928–1937 of: International conference on machine
learning. PMLR.

Moerland, Thomas M, Broekens, Joost, & Jonker, Catholijn M. 2020. Model-based rein-
forcement learning: A survey. arXiv preprint arXiv:2006.16712.

Nemirovsky, Arkadii Semenovich, & Yudin, David Borisovich. 1983. Problem complexity
and method efficiency in optimization.

Oliveto, Pietro S, & Witt, Carsten. 2015. Improved time complexity analysis of the simple
genetic algorithm. Theoretical Computer Science, 605, 21–41.

Sabatino, Francesco. 2015. Quadrotor control: modeling, nonlinearcontrol design, and
simulation.

170

Jointly Learning Environments and Control Policies

Schaff, Charles, Yunis, David, Chakrabarti, Ayan, & Walter, Matthew R. 2019. Jointly
learning to construct and control agents using deep reinforcement learning. Pages 9798–
9805 of: 2019 International Conference on Robotics and Automation (ICRA). IEEE.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan, Michael, & Moritz, Philipp. 2015.
Trust region policy optimization. Pages 1889–1897 of: International conference on machine
learning.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, & Klimov, Oleg. 2017.
Proximal Policy Optimization Algorithms.

Serban, Iulian Vlad, Sankar, Chinnadhurai, Pieper, Michael, Pineau, Joelle, & Bengio,
Yoshua. 2020. The bottleneck simulator: A model-based deep reinforcement learning
approach. Journal of Artificial Intelligence Research, 69, 571–612.

Wallace, Stein W, & Fleten, Stein-Erik. 2003. Stochastic programming models in energy.
Handbooks in operations research and management science, 10, 637–677.

Wang, Chao, Wang, Jian, Zhang, Xudong, & Zhang, Xiao. 2017. Autonomous navigation
of UAV in large-scale unknown complex environment with deep reinforcement learning.
Pages 858–862 of: 2017 IEEE Global Conference on Signal and Information Processing
(GlobalSIP). Ieee.

Williams, Ronald J. 1992. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4), 229–256.

Wu, Ga, Say, Buser, & Sanner, Scott. 2020. Scalable planning with deep neural network
learned transition models. Journal of Artificial Intelligence Research, 68, 571–606.

Xiang, Y, & Gong, XG. 2000. Efficiency of generalized simulated annealing. Physical Review
E, 62(3), 4473.

171

