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Abstract 

   Distributional semantic models represent the meaning of words as vectors. We introduce a selec-
tion method to learn a vector space that each of its dimensions is a natural word. The selection 

method starts from the most frequent words and selects a subset, which has the best performance. 

The method produces a vector space that each of its dimensions is a word. This is the main ad-

vantage of the method compared to fusion methods such as NMF, and neural embedding models. 

We apply the method to the ukWaC corpus and train a vector space of N=1500 basis words. We re-

port tests results on word similarity tasks for MEN, RG-65, SimLex-999, and WordSim353 gold 

datasets. Also, results show that reducing the number of basis vectors from 5000 to 1500 reduces 

accuracy by about 1.5-2%. So, we achieve good interpretability without a large penalty. Interpreta-

bility evaluation results indicate that the word vectors obtained by the proposed method using 

N=1500 are more interpretable than word embedding models, and the baseline method. We report 

the top 15 words of 1500 selected basis words in this paper. 
 

1. Introduction 

Distributional semantics (DS), also known as vector space semantics, is a model that presumes a key 

role for the statistical distribution of linguistic items in determining their semantic behavior (Lenci, 

2018). In the vector space models of word meaning, the distribution of the word's contexts for deriv-

ing an appropriate meaning representation is too important (Clark, 2015). The distributional models of 
meaning build co-occurrence vectors for every word in a corpus, based on its context following Firth's 

intuition that ''you should know a word by the company it keeps'' (Kartsaklis, 2014). 

At first, we must determine which words will be 'target' words and which words will form 'context' 
words. The target words are co-occurred with some context words in the corpus. Target and context 

words are typically selected based on the word's frequency. Second, for constructing "word space", we 

count the occurrences of our target words within the context words in a corpus. Counts of co-
occurrences of target words with context words construct a co-occurrence matrix where the rows are 

the target words, the columns are the context words, and each cell represents the number of times each 

target word occurred within the context word (Heunen et al., 2013).  
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As a small artificial example, given a corpus including sentences like these (Heunen et al., 2013):  

Bank erosion and stream widening may occur with strong water flow. 

One way of raising this finance is to go a bank. 

etc. 

We might construct a matrix like: 

 
 Context words 

Target River Stream Money Raise Finance 

Bank 10 15 25 20 13 

Water 28 25 2 15 0 

Cheque 0 0 30 20 25 

Table 1: Co-occurrence Matrix (Heunen et al., 2013) 

The resulting rows of the co-occurrence matrix can be considered as vectors in a multidimensional 

space. Words that have similar meanings have vectors with similar directions (Heunen et al., 2013). 

1.1. Distributional Semantic Vectors 

The distribution of word meaning is a vector in a vector space that the context determines the basis 

vectors. The vector spaces of distributional semantic models (DSMs) have orthogonal bases. The in-
ner product of each basis vector with others is zero. A semantic vector of a word can be represented as 

the weighted superposition of the basis vectors (Grefenstette, 2013): 

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ∑     ⃗⃗  ⃗       (1) 

Where a set of orthogonal unit vectors    ⃗⃗  ⃗   is the basis of vector space that the word meaning 

lives in. Parameter    is a weight for basis vector   ⃗⃗  ⃗. We represent these basis vectors with the context 

words (Grefenstette, 2013). The most basic form of the    is co-occurrence counts, but a function on 

counts is often used to reduce unavoidable frequency bias (Kartsaklis, 2014). 

1.2. Positive Pointwise Mutual Information (PPMI)  

A measure of association determines how much two words co-occur. Pointwise mutual information 

(PMI) is a measure that represents how often event x and event y co-occur in contrast to when they 
were independent (Jurafsky & Martin, 2014):  

 (   )      

 (   )

 ( ) ( )
                     ( )

We can define the pointwise mutual information association for a target word w and a context 
word c as 

   (   )      

 (   )

 ( ) ( )
                   ( ) 

 (   ) determines how often two words co-occur.   ( ) ( ) informs us that how often we ex-
pect the two words to co-occur when they each occur independently. Consequently, this ratio tells us 

how much more than our expectation the target word w and the context word c co-occur. The range of 
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PMI values is negative to positive infinity. Negative PMI values indicate that two words are co-

occurring less than our expectation by chance. It is more common to use Positive PMI (PPMI) be-

cause negative PMI values just are reliable when the corpus is huge. PPMI replaces all negative PMI 
values with zero (Jurafsky & Martin, 2014).    

    (   )     (    

 (   )

 ( ) ( )
  )                 ( ) 

In this paper, for the first time, we introduce a framework to get basis vectors as N final basis 

words. First, our proposed method begins with a set of initial basis words, which are the most frequent 
in the corpus. We start from a 5K initial set and refine it to a final N dimension vector space relying on 

the concept of distance matrices. Our method produces a vector space that each of its dimensions is a 

natural word. This is the main difference of the selection method compared to the so-called fusion 
methods such as NMF and neural embedding models. Basis vectors in the fusion methods and neural 

embedding have no direct interpretable meaning. The resulting word vectors quality is usually evalu-

ated on word similarity tasks for standard test sets. These test sets include word pairs and correspond-
ing gold standard scores. These scores show the similarities between the words that are found out by 

human judges via an annotation task (Bruni et al., 2012). We compare predicted word similarity with 

the gold standard to evaluate the model. We use Spearman's correlation test to evaluate the frame-

work. We also evaluate the qualitative and quantitative interpretability of the proposed method com-
pared to word embedding models and the Baseline method. 

We present the related work in the next Section, and we describe the original contribution in Sec-

tion 3. In Section 4, we describe the importance of dimensional reduction in semantic vectors. Sec-
tions 5, 6, and 7 are three main sections. Section 5 fully introduces the proposed framework. We de-

scribe the experimental settings in detail in Section 6. A discussion of the results is given in Section 7. 

The evaluations include word similarity task, qualitative interpretability, and quantitative interpretabil-
ity are discussed in Subsections 7.1, 7.2, and 7.3, respectively. The conclusion is presented in Section 

8. 

2. Related Work 

Distributional semantic models indicate a real-valued vector for each word. Different applications, 

such as information retrieval, document classification, question answering, named entity recognition, 
and parsing, consider these vectors as features. Most word vector methods attain distance or angle 

between pairs of word vectors to assess the word representation quality (Pennington et al., 2014). Vec-

tor space models (VSMs) perform well on tasks that involve measuring the similarity of meaning be-
tween words, phrases, and documents. Salton et al. (1975) focus on measuring document similarity, 

treating a query to a search engine as a pseudo-document. The relevance of a document to a query is 

given by the similarity of their vectors. Deerwester et al. (1990) show that we can focus on measuring 

word similarity, instead of document similarity, by looking at row vectors in the term-document ma-
trix instead of column vectors. The distributional hypothesis in linguistics is that words that occur in 

similar contexts tend to have similar meanings. This hypothesis is the justification for applying the 

VSM to measuring word similarity. A word may be represented by a vector that derives vector ele-
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ments from the word occurrences in various contexts. Similar row vectors in the co-occurrence matrix 

indicate similar word meanings (Turney & Pantel, 2010). 

There are two methods for word representation: “count-based” representations, and “neural” or 

“prediction-based” embeddings. Explicit PPMI matrix, non-negative matrix factorization (NMF) 

(Wang & Zhang, 2012), or singular value decomposition (SVD) (Landauer & Dumais, 1997) of the 

co-occurrence matrix is count-based, and Skip-gram negative sampling (SGNS) (Mikolov et al., 
2013a, 2013b), Global vectors for word representation (Glove) (Pennington et al., 2014), and FastText 

(Bojanowski et al., 2017), are “predictive” embeddings. The skip-gram with a negative-sampling 

training method (SGNS) was popularized via word2vec (Mikolov et al., 2013a; Mikolov et al., 
2013b). Recent trends suggest that neural network-inspired word embedding models outperform tradi-

tional count-based distributional models on word similarity and analogy detection tasks. These models 

represent each word as a d dimensional vector of real numbers. Vectors that are close to each other are 
shown to be semantically related (Levy et al., 2015). 

Nearly all such embedding methods produce dense representations for words whose coordinates in 

themselves have no meaningful interpretation. The numerical values of a word’s embedding are inter-

pretable only about other word representations. It is substantial to design an interpretable embedding 

whose coordinates have a distinct meaning to humans. Panigrahi et al. (2019) are reporting that 

there are multiple authors who have considered converting the existing embeddings to interpreta-

ble ones. Murphy et al. (2012) use non-negative matrix factorization of the co-occurrence matrix to 

derive interpretable word embeddings. Yogatama and Smith (2015) propose Sparse Overcomplete 
Word Vectors by solving an optimization problem in the dictionary learning setting. It produces a 

sparse non-negative high dimensional projection of word embeddings.  Sun et al. (2016) use the 

CBOW model in their study and add the    regularizer into its learning objective to generate interpret-
able sparse vectors. Subramanian et al. (2018) use a k-sparse denoising autoencoder to construct a 

sparse non-negative high dimensional projection of word embeddings, which they called SParse In-

terpretable Neural Embeddings (SPINE). Sparseness and non-negativity are desirable characteristics 

of word vectors that make them interpretable.    

In general, the main idea of above-mentioned studies on the construction of interpretable word vec-

tors using neural word embedding is to induce sparseness in the dimensions of word vectors. They 

have not attempted to elucidate the dimensions of dense word embeddings. Instead, they have learned 
sparse interpretable vectors with high dimensions (even 3000). They use projection vectors for word 

vector transformation and do not have a semantic category label to describe each dimension (Arora et 

al., 2018; Yogatama & Smith, 2015). These articles used the word intrusion test to quantify the inter-
pretability. Reference (Park et al., 2017) applies the matrix rotation algorithm to get low-dimensional 

interpretable word vectors. But the resulting vectors cannot elucidate a conceptual label for each di-

mension. Jang and Myaeng (2017) try to identify conceptual property for each dimension of word 

embeddings using a categorization dataset called HyperLex. On average, there are a small number of 
words in the HyperLex dataset for each semantic category (2 words per category). Therefore, it cannot 

provide a comprehensive analysis of the word vectors dimensions. Şenel et al. (2018) produce a com-

prehensive dataset called SEMCAT. It transforms Glove vectors into interpretable word vectors that 
have 110 dimensions. Each dimension corresponds to a category word of SEMCAT. The word intru-

sion test needs human annotations and is an expensive evaluation method. So, the article by Park et al. 

(2017) quantifies interpretability using the distance ratio (DR) criterion. This method of evaluating 
interpretability does not represent human interpretations because it uses word vectors directly. Şenel et 

al. (2018) produce a comprehensive dataset called SEMCAT, with an average of 90 words per catego-

ry. It also tries to evaluate the interpretable Glove vectors with 110 dimensions, using the interpretabil-

ity score. Each dimension of the interpretable word vectors obtained in this method is equivalent to a 
category word. The main disadvantage of methods in references (Jang & Myaeng, 2017; Şenel et al., 

https://www.aclweb.org/anthology/D14-1162.pdf
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2018) is that the equivalent concept of each dimension of the resulting interpretable word vectors is 

strongly dependent on the category dataset and cannot find equivalents for each dimension using the 

corpus knowledge.  

Although studies have made good progress on the generation of interpretable word vectors, there 

are still some drawbacks. No attempt been made to clarify a particular concept by a specific dimension 

using corpus knowledge. For example, in the paper by Şenel et al. (2018) Glove embeddings are 

transformed to a 110-dimensional space corresponding to SEMCAT dataset categories, but the inter-

pretability score of the resulting interpretable word vectors is strongly dependent on the number of 
SEMCAT categories. But in the proposed method, we have introduced a basis word for each dimen-

sion, independent of the SEMCAT dataset, which presents the word vectors dimensions at the grain 

level. Also, in addition to constructing interpretable word vectors and finding the fine-grained equiva-

lent of each dimension of the word vector, the proposed method introduces N of the most informative 
context words in the corpus as the final basis words. The extracted final basis words with higher rank 

can be used for applications such as keyword extraction and topic mining. 

3. Original Contribution 

We propose a framework that uses a new word selection method via the comparison of distance ma-
trices to derive basis vectors for distributional representations. Distributional semantic vectors are high 

dimensional, and most researchers use fusion methods like SVD or NMF methods to reduce distribu-

tional vectors dimensions. We introduce a method to produce low dimensional word vector using the 
word selection concept. The main advantage of this method is constructing word vectors that are fully 

interpretable. It means that every basis vector of such word vectors is a meaningful basis word, while 

SVD or NMF produces word vectors with no interpretability. Word embedding methods such as 

word2vec, Glove, and so on have nothing to do with the interpretability of word vectors. To the best 
of our knowledge, this is the first approach that yields a semantic representation of words satisfying 

interpretability. Besides, in this framework, we have introduced a projection function  . It derives the 

co-occurrence matrix of the vocabulary based on the localized co-occurrence. We describe this new 
framework in Section 5. 

4. Dimensionality Reduction and Interpretability 

Word vectors usually have high dimensions. Dimension reduction is significantly necessary to achieve 

higher efficiency in working with high dimensional semantic vectors. Reducing vectors to lower di-
mensionality is common in the construction of distributional semantic vectors. According to evidence, 

dimension reduction methods like NMF do not affect the quality of semantic vectors, and it maybe 

improves the quality of these vectors (Mikolov et al., 2013c). However, reduced vectors are not mean-

ingful. This paper intends to introduce a method that is capable of producing some meaningful basis 
vectors while the efficiency degradation keeps low. NMF keeps all information; therefore, it provides 

good performance. The drawback of NMF is basis vectors with no possibility for meaningful interpre-

tation. We show that you can obtain meaningful basis vectors while using a word selection method for 
controlling the information loss. In this research, we begin with 5K most frequent words as initial ba-

sis words. We introduce a word selection method for selecting N final basis words from the initial ba-
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sis words. We determine N in a way that the Spearman’s correlation coefficient does not degrade 

more than a given margin. Our experiments, which using MEN and Simlex-999 data sets, show we 
can reduce the dimensionality up to 1500 while the drop in Spearman’s correlation coefficient perfor-

mance is about 1.5 to 2%. 

Despite NMF's considerable success and widespread adoption, a drawback of dimension reduction 

methods lies in their inability to provide a meaningful interpretation of the new dimensions. It is im-
portant to understand what exactly these dimensions signify. What kinds of properties are being ob-

tained by these dimensions?  

An interpretable word representation allows us to develop the word similarity measure that can jus-
tify why two words are similar. The first step to work on sentiment, concreteness, and frequency is a 

general decomposition of word vector spaces into meaningful, dense subspaces. Also, we need inter-

pretable dimensions; because all information contained in a word vector does not help the model accu-
rately attain the meaning of a word in the context (e.g., company-related senses of apple in fruit-

implying context). 

In this research, we introduce a word selection method. It selects N most important initial basis 

words with high ranks as final basis words. The N selected basis words represent interpretable basis 
vectors, and semantic vectors have meaningful dimensions. In contrast with NMF, which is a fusion 

method and semantic vectors dimensions produced with it have no interpretation. Intuitively, our 

method vectors have many zero values, so they inevitably carry less information, and we have found 
that this interpretability comes at a cost. However, it is possible to achieve good interpretability with-

out a large penalty. 

5. Proposed Framework 

In this Section, we propose a framework for obtaining interpretable distributional semantic vectors 
using the new word selection method. In this framework, we use several steps to attain distributional 

semantic vectors that are meaningful, and each final basis word is equivalent to one context word. The 

operational steps of this framework are outlined below. 

5.1. The Similarity between Two Target Words Using a Set of Basis Words 

Corpus C contains M sentences that each word of a sentence has a POS tag. We arrange the words 
that are nouns, verbs, adjectives, and adverbs based on the number of events in the corpus. Then, we 

consider   words with higher frequency as the initial basis words. We refer to initial basis words set 

by BW. This set contains   initial basis words, which are defined as follows. 

   [             ]               (5) 

For each target word   , we consider the word    vector named   ⃗⃗⃗⃗⃗⃗ 
  as follows. The number of 

components in   ⃗⃗⃗⃗⃗⃗ 
  is equal to the number of initial basis words in the BW set. 

  ⃗⃗⃗⃗⃗⃗ 
  [                   ]                          ( ) 

Then, we use the cosine similarity measure to calculate the similarity of the target words     and 

    in the corpus C. 

  (     )                   (  ⃗⃗⃗⃗⃗⃗ 
     ⃗⃗⃗⃗⃗⃗ 

  )            ( ) 
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We use projection function   to obtain components of the vector   ⃗⃗⃗⃗⃗⃗ 
 , Which indicates the degree 

of co-occurrence of the target word    and the basis word    . 

       (      )                                      ( ) 

5.2. Projection Function   

We introduce a projection function   to produce the real vector   ⃗⃗⃗⃗⃗⃗ 
 . The function relies on two quan-

tities, namely localized co-occurrences between the target word    and the basis word    , and a 

measure of association PPMI. Function   is introduced here. We denote the localized co-occurrences 

by LCO(       ). It is an extension to co-occurrence number which, simply is the number of sen-

tences in the corpus that    and     co-occur. The localization method obtains the localized co-

occurrence of the target word    and the basis word    . 

To count the co-occurrence of the target word and the context word    ,      can be in any situa-
tion within a sentence containing the target word. If we consider a window with a size of ± Win, the 

context word     can be in the Win word before and after the target word situation. But if the context 

word     is out of the window, it will not be counted. In this study, we present a localization method 

and assign a more significant weight to the context words closer to the target word. We also assign a 
smaller weight to words farther away from the target word. Sentences in the ukWaC corpus usually 

have a large number of words. We use the exponential coefficient      (       ) to count the co-

occurrence. If the distance between the context word      and the target word     is less, the expo-

nential function considers a higher weight for the count, and the greater distance leads to a smaller 

weight. But unlike the window method, the word effect is not removed. When the number of words in 
a sentence is high, many words are not placed in the window. 

We obtain localized co-occurrence as follows: 

For all M sentences in the corpus: 

1. Find sentences containing words    and    . 

2. Calculate   (       ), which is the distance of the words    and     in the sentence s.  

3. Put LCO for sentence s equal to       

4. Add up to LCO’s of previous sentences 

So, localized co-occurrence counts of the basis word     and target word    is defined by 

   (       )         ∑     (       )

   

              ( ) 

Note that,   (       ) is the distance of 2 words and there is no distinction between the left and 

right words. Higher        means that the target word    and the basis word     have co-occurred 

many times in the sentences of the corpus. 

We attain the localized co-occurrence matrix based on Equation (9) for i=1, …   and k=1, …,  . 

  is the total number of target words. The ith row of the co-occurrence matrix is the vector   ⃗⃗⃗⃗⃗⃗ 
 , and 

the kth column of the co-occurrence matrix refers to kth basis word. Next, we replace each component 
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of the localized co-occurrence matrix by applying the PPMI method to the component. The resulting 

is our final co-occurrence matrix. 

To construct the co-occurrence matrix, we count the vocabulary target words with initial basis 

words based on the following Equation: 

∑  ∑ ∑       

                             

 

   

 ∑  ∑  ∑      (      )  

 

   

   (  )

 

   

 

   

 

M is the number of sentences in the corpus.   is the number of initial basis words, and   is the 

number of target words. The time complexity of the co-occurrence matrix construction is O(    
 ). Therefore, by reducing the number of context words from 5000 to 1500, the time complexity is 
reduced by 3.3 times. Because the number of sentences in corpus and the number of target words in 

the vocabulary is very large, the execution time is significantly reduced.  

5.3. Refining Initial Basis Words (BWs) 

 

In this section, we explain how we attain important words in initial basis words set. At first, we setup a 

vocabulary of target words based on the corpus C. The target words will be embedded using final ba-

sis words. The vocabulary is set up as follows. 

1. Extract nonstop words from corpus C 

2. Rank most frequent nouns (m.f.Noun) 

3. Rank most frequent verbs (m.f.Verb) 

4. Rank most frequent adjectives (m.f.adjectives) 

5. Rank most frequent adverbs(m.f.adverbs) 

6. Set vocabulary with{

              
              

                     

                   

   

In the second step, we create a vector   ⃗⃗⃗⃗⃗⃗ 
  for each target word    in the vocabulary. Component 

      of the target word vector   ⃗⃗⃗⃗⃗⃗ 
  are obtained by applying the projection function    to a target 

word    and an initial basis word    . The resulting target words vectors form the rows of the local-
ized co-occurrence matrix. The number of columns of the localized co-occurrence matrix equals the 

number of the initial basis words. We call this localized co-occurrence matrix X. The matrix X is a 

    data matrix with   rows of target words that have   columns. Let   ( ) denotes the full 

distance matrix of X, which is symmetric and non-negative. Distance between the target words    and 

   in X is characterized by entry   ( )  , which is calculated by the Euclidean distance of the vectors 

  ⃗⃗⃗⃗⃗⃗ 
  and   ⃗⃗⃗⃗⃗⃗ 

 .  

We examine the significance of kth initial basis word by removing kth column from the matrix X. 

The matrix     denotes X in which the column k is removed. Then we calculate the distance matrix 

for the matrix    , and call it the restricted distance matrix (RD(   )). Then, we obtain the restricted 

distance matrix for each initial basis word. Both full distance matrix and restricted distance matrix are 
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   . In the following, we use the ranking algorithm to select some of the initial basis words as final 

basis words, which are important and effective.  

We use a simple removal algorithm for basis word selection. The algorithm ranks the initial basis 

words using the following pseudo-code: 

1) Calculate the full distance matrix   ( ). 

2) For all initial basis words k=1, …,   

a) Calculate the distance matrix when kth initial basis word is excluded (RD (   )).  
b) Calculate the difference between   ( ) and RD (   ) matrices. 

c) Calculate the Frobenius norm of the difference. The norm is a measure of importance of 
kth initial basis word. 

3) Rank the initial basis words based on the Frobenius norm. Higher norm gets a higher rank. 

In step 2.c of the above pseudocode, we need to calculate the distance between two distance matri-
ces. We use the Frobenius norm, which is one of the matrix norms also called the Euclidean norm. 

Frobenius norm calculates the 2-norm of the column vector. When we want to compute how close are 

two matrices A and B, we use  ‖   ‖  . The Frobenius norm of matrix A which is     is de-

fined as follows (Yang & Shahabi, 2004): 

‖ ‖  (∑∑(   )
 

 

   

 

   

)
 

 ⁄  (     (   ))
 

 ⁄            (  )

Hence, for each initial basis word k, we calculate the difference matrix (A=   ( )    (   )), 

then we compute ‖ ‖ .  

Here, we consider  =5K of the most frequent nouns, verbs, adjectives, and adverbs in corpus C as 
initial basis words. So, we calculate the Frobenius norm for all 5K initial basis words. We sort Fro-

benius norms of initial basis words in descending order because the big Frobenius norm means that 

the full distance matrix and the restricted distance matrix are more distanced.  

6. Experimental Setup 

We have studied extensively the processes that have high impacts on the efficiency of our approach. 

We have looked at the distance choices for calculating   ( ) and RD (   ) and in the meantime the 

choices for ranking calculation. We have examined various combinations of Euclidean distances and 

cosine similarities for matrix calculation on one hand, and Frobenius norm, Pearson correlation coeffi-

cient and    coefficient on the other hand. We report here that the best choice is Euclidean distance 

for the matrix calculation and the Frobenius norm for the ranking calculation. 

6.1. Corpus 

We use co-occurrence data from the Web-derived ukWaC corpus (http://wacky.sslmit.unibo.it/ ). The 

ukWaC is a very large English corpus that is built by web crawling. This corpus contains basic lin-
guistic annotation (part-of-speech tagging and lemmatization) and it aims to serve as a general-

http://wacky.sslmit.unibo.it/
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purpose resource for the English language. This corpus contains more than a billion words (Baroni et 

al., 2009). The ukWaC is among the largest corpora (Baroni et al., 2009), so we are using the first part 
of data that is named ukwac_dep_parsed_01 to resolve computational limits. 

6.2. Construction of Localized Co-occurrence Matrix 

We constitute the vocabulary with the top 20K most frequent noun lemmas, 10K verb lemmas, 10K 
adjective lemmas, and 5K adverb lemmas from the corpus. The 5K most frequent lemmas (nouns, 

verbs, adjectives, and adverbs) constitute the initial basis words (columns) of our co-occurrence ma-
trix. For all target words, we extract localized co-occurrence counts of a target word in vocabulary 

with      initial basis words. So we obtain localized co-occurrence matrix X. Each row of matrix 

X is a semantic vector. 

6.3. PPMI 

We know that raw word frequency is not a great measure of association between words. Positive 
Pointwise Mutual Information (PPMI) is a measure to determine that an initial basis word is particu-

larly informative about target words or not. We transformed raw localized co-occurrence counts into 

Positive Pointwise Mutual Information (PPMI) scores. 

6.4. Selection of N Final Basis Words as Basis Vectors  

We used our word selection method to choose N final basis words as basis vectors from  =5K initial 
basis words via comparison of distance matrices. We have applied the word selection method to two 

training sets. The first training set includes 18K target words. This set contains 8K most frequent 

nouns, 4K most frequent verbs, 4K most frequent adjectives, and 2K most frequent adverbs. As a re-

sult, we use a localized co-occurrence matrix Xt1 with 18K rows and  =5K columns. 

  The second training set contains 12K target words. We deal with a localized co-occurrence matrix 

Xt2 with 12K target words and  =5K initial basis words. Target words include 6K most frequent 

nouns, 3K most frequent verbs, 2K most frequent adjectives, and 1K most frequent adverbs. In the 
vocabulary, the ratio of nouns frequency to verbs frequency is 2, adjectives frequency to verbs fre-

quency is 1, and adverbs frequency to verbs frequency is 0.5. Therefore, we almost maintain this ratio 

in training sets 1 and 2. It is noteworthy that in each word POS tag (noun, verb, adjective, and adverb), 

we select the most frequent ones.  

In the first step, we calculate the original distance matrix for both Localized co-occurrence matrices 

Xt1 and Xt2. In the next step, we build the restricted distance matrix for each initial basis word by 

removing it from  =5K initial basis words for matrices Xt1 and Xt2. Afterward, we calculate the 
Frobenius norm of the difference between the full distance matrix and the restricted distance matrix 

for the first and second training sets. Then, we find initial basis words whose absence in the basis 

words leads to a higher norm and less similarity between original distance matrix and restricted dis-
tance matrix. We choose N=500, 1000, 1500, 2000, and 3500 of initial basis words as final basis 

words that have more effect on the difference between two distance matrices. Therefore we have se-

mantic vectors with N final basis words as basis vectors. 

6.5. Word Similarity Experiments 

In this Section, we investigate the effect of the word selection method via comparison of distance ma-
trices on the quality of basis vectors using standard word similarity datasets. The datasets consist of 

word pairs and a gold standard score that indicates the human judgment of the similarity between the 
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words within each pair. We calculate the similarity between word vectors for each pair by the cosine 

similarity measure. 

We measure cosine similarity on the MEN dataset (Bruni et al., 2012), SimLex-999 dataset (Hill et 
al., 2015), RG-65 datasets (Rubenstein & Goodenough, 1965), and WordSim353 dataset (Finkelstein 

et al., 2001). The MEN dataset includes similarity rates for 3000-word pairs. The SimLex-999 dataset 

has a 999-word pair's similarity rates. RG-65 dataset has 65-word pairs with their similarity. 

WordSim353 dataset contains 353-word pairs with their similarity rates. There are 45K vectors (20k 
nouns, 10k verbs, 10k adjectives, 5k nouns) in our vocabulary. Our vocabulary consists of all word 

pairs of datasets mentioned above. We compared the similarity of word pairs with a gold standard 

score through Spearman's correlation coefficient ρ.   

7. Results and Discussion 

In this section, we report the evaluation results of the proposed method using the word similarity task. 

Also, we examine the interpretability of word vectors quantitatively and qualitatively. 

7.1. Word Similarity Task 

First, we have an ablation study on the number of initial basis words (N) for constructing target word 

vectors. We generate the vocabulary target word vectors using N = 15000, N = 12000, N = 9000, N = 
7000, N = 5000, and N = 3000 initial basis words. Then, we evaluate the vocabulary target word vec-

tors using the word similarity task on the MEN, RG-65, SimLex-999, and WordSim353 test sets. The 

results of the evaluations are shown in Figure 1. As shown in Figure 1, by reducing the initial context 
words from 15000 to 7000, there is no drastic change in the Spearman's correlation coefficient in the 

MEN test set. In the case of the RG-65, SimLex-999, and WordSim353 test sets, the Spearman's cor-

relation coefficient is increased slightly by decreasing the initial context words from 15,000 to 7,000. 

By reducing the initial context words from 7000 to 5000, the Spearman's correlation coefficient of the 
MEN, RG-65, SimLex-999, and WordSim353 test sets is increased by 0.21%, 1.85%, 0.22%, and 

0.44%, respectively. As shown in Figure 1, by reducing the initial context words from 5000 to 3000 

the Spearman correlation coefficient in the MEN, SimLex-999, and WordSim353 test sets is de-
creased by about 2%. The decrease in Spearman's correlation coefficient in the RG-65 test set is more 

severe by 4.6%. So, we select N=5000 initial context words. According to our studies, the RG-65 test 

set shows a sharp decrease or increase in Spearman's correlation coefficient by changing the factors of 

methods compared to other test sets due to the small number of word pairs (65-word pairs). 
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Figure 1: An ablation study on the number of initial context words  

Then, we report the Spearman’s correlation coefficient of co-occurrence matrix in three cases. One 

is “using localization”, the other is “no-localization and window=10”, and third one is “no-localization 
and no-window”. Table 2 reports the resulting data. Results show that the co-occurrence matrix X is 

more informative when we apply the localization compare to no-localization is applied. We report that 

there are improvements in the Spearman’s correlation coefficient by 1.8%, 5.7%, 1.4%, and 3.5% for 
MEN, RG-65, Simlex-999, and WordSim353 datasets respectively. Also, the co-occurrence matrix X 

using localization is more effective than the matrix X using no-localization and no-window. Localiza-

tion improves Spearman’s correlation coefficient about 4.5%, 9%, 4.3%, and 6% for MEN, RG-65, 

Simlex-999, and WordSim353 datasets respectively compare to no-localization and no-window. 

Therefore, localization method is so effective. We set       in these experiments. This comes 

from our judgment on the decaying effect of    

 using localization 
no- localization, 

win=10 

no-localization and 

no-window 

MEN Dataset 68.62 66.89 64.03 

RG-65 Dataset 62.70 56.96 53.48 

SimLex-999 Dataset 27.66 26.22 23.27 

WordSim353 Dataset 61.66 58.16 55.48 

Table 2: Spearman’s correlation coefficient ( ) for co-occurrence matrix using localization, using no-
localization and window=10, and using no-localization and no-window. 

We have done all coming experiments and results using “localization” and alpha=0.1. Then, we 

use the word selection method to choose N final basis words from  =5K initial basis words of local-

ized co-occurrence matrix as basis vectors. We obtain vocabulary vectors with N=500, 1000, 1500, 
2000, and 3500 basis vectors to examine the effect of reducing the number of basis words on the qual-

ity of the target word vectors. Then, we compute the cosine similarity of word pairs that are present in 
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vocabulary. We evaluate the proposed word selection method using the gold standard scores of MEN, 

SimLex-999, RG-65, and WordSim353 datasets. Tables 3 and 4 represent the Spearman’s correlation 

coefficient (ρ) between cosine similarity and a gold standard score of word pairs for training sets 1 and 
2, respectively. 

 Table 3 shows the results when the first training set of 18K target words is considered. The word 

selection method refines (reduces)  =5K initial basis words into N selected basis words as basis vec-

tors. Table 3 reports the Spearman’s correlation coefficient of the word selection method using 
N=500, 1000, 1500, 2000, and 3500 selected basis words. The results show a slight decrease in accu-

racy by reducing initial basis words from 5K to 3500. Accuracy decreases by 0.58%, 0.7%, and 0.23% 

for MEN, RG-65, and simLex-999 datasets respectively. Accuracy increases by 0.64% for the 
WordSim353 dataset using 3500 selected basis words. Vocabulary vectors using 2000 selected basis 

words reduce accuracy by about 1.34%, 0.84%, and 0.21% for MEN, RG-65, and simLex-999 da-

tasets, respectively. It increases the WordSim353 dataset accuracy by 0.16%.   

Target words vectors using 1500 selected basis words reduces Spearman’s correlation coefficient 
1.66%, 1.9%, 0.23%, and 0.37% for MEN, RG-65, simLex-999, and WordSim353 datasets, respec-

tively. Results in Table 3 represents that 1000 selected basis words reduces Spearman’s correlation 

coefficient 2.36%, 2.98, 2.07, and 2.13% for MEN, RG-65, simLex-999, and WordSim353 datasets, 
respectively.  

By reducing the number of basis words to 500, the Spearman’s correlation coefficient severely re-

duces for MEN, RG-65, and Simlex-999 datasets. There is a 6.37% decrease in accuracy for the MEN 
dataset and a 4.1% decrease for the RG-65 dataset. Also, the Spearman’s correlation coefficient de-

creases by 2.07% and 1.43% for the SimLex-999 and the WordSim353 datasets, respectively.  

The results of Table 3 show that by reducing the number of basis words from 5000 to 1500, the ac-

curacy reduction is below 2%. By reducing the number of basis words to 1000, the accuracy decreases 
by about 2 to 3%. It seems that the word selection method can reasonably reduce the number of initial 

basis words from 5K to 1500 while there is less than 2% of accuracy reduction. 

 Initial basis words selected basis words 

Number of basis words 5k 500 1000 1500 2000 3500 

MEN Dataset 68.62 62.25 66.26 66.96 67.28 68.04 

RG-65 Dataset 62.70 58.60 59.72 60.80 61.86 62.00 

SimLex-999 Dataset 27.66 25.59 26.72 27.13 27.45 27.43 

WordSim353 Dataset 61.66 60.23 59.53 61.29 61.82 62.30 

Table 3:  Spearman’s correlation coefficient ( ) for the word selection method with N selected basis words 
on the first training set. 
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Next, we try to investigate the effect of the number of target words in the training set on the accu-

racy obtained from reducing the number of basis words. We apply the method on the second training 
set. The second training set has 12K target words. Table 4 presents the results on the second training 

set. The word selection method refines  =5K initial basis words to N final basis words as basis vec-

tors. Results presented in Table 4 show that by selecting 3500 important basis words, we just have a 

0.7%, 1.2%, and 0.33% accuracy drop for MEN, RG-65, and simLex-999 datasets, respectively. It 
slightly improves accuracy for WordSim353 dataset by 0.06%.   

We observe 1.13%, 1.63%, and 0.71% accuracy drop for MEN, RG-65, and simLex-999 datasets 

by 2000 selected basis words, respectively. Our method with 2000 basis words increases the Spear-
man’s correlation coefficient by 0.22% for the WordSim353 dataset. Spearman’s correlation coeffi-

cient for vectors with 1500 selected basis words as basis vectors reduces 1.19%, 1.64%, and 0.29% for 

MEN, RG-65, and simLex-999 datasets, respectively. Also, WordSim353 dataset accuracy increases 
by 0.85%.  

By selecting 1000 basis words, we see 2.3%, 1.77%, 1.19%, and 0.7% decrease in MEN, RG-65, 

and simLex-999, and WordSim353 datasets, respectively. Target word vectors using 500 basis words 

reduces Spearman’s correlation coefficient 2.25%, 4.08%, 2.54%, and 2.04% for MEN, RG-65, sim-
Lex-999, and WordSim353 datasets, respectively. We observe that there is not a big difference in 

word selection method accuracies by selecting 1500 basis words (about 1.5-2%). It means that the 

word selection method chooses the most valuable basis words and is efficient. 

We like to report an important conclusion in this step. The training set is all information we use to 

refine the initial basis words. We investigate the accuracy when 12K and 18k words are used for this 

refinery. Tables 3 and 4 clearly show that the accuracy is not degraded while we reduced the number 

of target words from 18k to 12k.  

 

 Initial basis words selected basis words 

Number of basis 

words 
5k 500 1000 1500 2000 3500 

MEN Dataset 68.62 66.37 66.59 67.43 67.49 67.92 

RG-65 Dataset 62.70 58.62 60.93 60.04 61.07 61.50 

SimLex-999 Dataset 27.66 25.12 26.47 27.37 26.95 27.33 

WordSim353 Dataset 61.66 59.62 60.96 62.51 61.88 61.72 

Table 4: Spearman’s correlation coefficient ( ) for the word selection method with N selected basis words on 
the second training set. 

Furthermore, using either first or second training sets show that we can refine  =5K initial basis 

words to N=1500 final basis words with a little bit of efficiency loss. It decreases Spearman’s correla-
tion coefficient by a margin of 1.5-2% on gold test datasets. So we conclude that the word selection 

method based on the distance matrix is able to provide an acceptable result by selecting only 1500 

basis words out of 5000 and is successful and efficient. Studies on the two training sets 1 and 2 shows 
that the number of target words in the training set does not have much effect on the accuracy obtained 

on gold test sets, and reducing the number of words from 18K to 12K does not cause a significant ac-

curacy drop. 
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Next, we study the effect of the basis words reduction on the accuracy using fusion methods such 

as NMF. NMF tries to present all existing information in a compact form and in a smaller dimension. 

Each component of an NMF vector can represent several basis words while it is not interpretable. We 
construct the vocabulary vectors with 1000 basis vectors extracted by the NMF method. That means 

we convert the 45k   5K localized co-occurrence matrix to a 45K   1K matrix using the NMF meth-

od. We also transform the 45K   3500, 45K   2000, and 45K   1500 co-occurrence matrices to the 

45K   1000 matrix by the NMF method. Table 5 reports the evaluation results of the vocabulary vec-
tors on the gold test sets. 

 Apply NMF on word vectors with 

Number of basis 

words 
1500 BW 2000 BW 3500 BW 5K BW 

Training set 1 2 1 2 1 2 vocabulary 

MEN Dataset 69.25 69.71 70.47 69.96 72.47 72.62 73.69 

RG-65 Dataset 61.34 60.75 64.61 64.19 68.88 67.18 71.62 

SimLex-999 Dataset 27.52 27.42 28.22 28.04 29.31 29.57 30.87 

WordSim353 Dataset 64.02 64.67 64.81 65.45 67.95 67.26 67.74 

Table 5: Spearman’s correlation coefficient ( ) for 1000 dimensions by the NMF method 

Table 5 shows the accuracy of vocabulary vectors with 1000 dimensions obtained by NMF on 
training sets 1 and 2. Also, it shows the accuracy obtained by reducing the dimensions of the localized 

co-occurrence matrix from 5000 columns to 1000 new columns. Comparing the results of NMF 

method on 5000 dimension vectors with 3500 dimension vectors shows 1%, 3%, 1%, and 0.5% accu-
racy drop in MEN, RG-65, simLex-999, and WordSim353 datasets, respectively. 

Applying the NMF method to the co-occurrence matrix using 2000 basis words decreases accuracy 

about 3% in the MEN dataset, and 2.5% in simLex-999, and 2.5% in WordSim353 datasets. Also, a 

7% decrease in the RG-65 dataset accuracy has occurred, which is due to the small number of words 
in the RG-65 dataset. For vocabulary vectors with 1,500 basis words, the Spearman’s correlation coef-

ficient decreases 4% for the MEN dataset, and 3% in simLex-999, and 3% in WordSim353 datasets. 

Results show a 10% decrease in the Spearman’s correlation coefficient in the RG-65 dataset. It is 
mainly due to the small number of words in the RG-65 dataset and also small number of basis words 

that is 1500. Gold datasets with a large number of word pairs such as MEN and simLex-999 experi-

ence 3% to 4% decrease in Spearman’s correlation coefficient. Note that we have used only 1500 ba-
sis words. It means by reducing the number of basis words from 5K to 1500, the NMF method reduc-

es accuracy for 1000 dimensions by about 3-4%. We conclude that the performance of our selection 

method and NMF method drop when a fewer number of basis words are used. Figure 2 shows the 

decreasing trend of the Spearman’s correlation coefficient by reducing the number of basis words 
from 5000 to N = 3500, 2000, 1500 basis words as in the training set 1. We report the Spearman’s 

correlation coefficient on gold test sets. We also apply the NMF method to matrices with N basis 

words and obtain 1000 dimensions. We observe the decreasing trend again. The accuracy reduction in 
the word selection method is less than the NMF method. The NMF performance is decaying faster in 

the RG-65 dataset.  
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Figure 3 shows the decrement diagram of the Spearman’s correlation coefficient for the word se-

lection method and the NMF method obtained using Training set 2. You can see that the results are 
very similar to Figure 2. This similarity indicates that the result of the word selection method does not 

depend on a large number of target words in the training set. 

 

 

Figure 2: Decreasing trend of Spearman’s correlation coefficient for word selection method and NMF meth-
od using training set 1. 

 

Figure 3: Decreasing trend of Spearman’s correlation coefficient for word selection method and NMF meth-
od using training set 2.   

In the selection method, we just select a subset of the initial basis words set, without any manipula-

tion of data, so we need to find and remove the basis words which do not help in discrimination. But, 

fusion methods (like NMF) transform the dimensions to some other spaces to exploit the discrimina-
tion capability in the transformed space. Note that, we do not expect better performance for the selec-

tion method compares to the fusion methods, which use all information while applying the transfor-

mation. In this research, we have tried to introduce a selection method for producing meaningful basis 

words and keep the performance as high as possible. It is clear that any selection method cannot be 
better than the fusion method. 
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In this article, we present a word selection method that selects N basis words from initial basis 

words set with minimal loss of accuracy. Each basis vector corresponds to a basis word, and the re-

sulting word vectors are meaningful and interpretable. To the best of our knowledge, this research is 
the first research on finding the basis vectors applying the word selection method to deduct interpreta-

ble word vectors. The results presented here show that our proposed selection method for N=1500 

basis vectors has good accuracies; about 1.5-2 % lower than 5K initial basis words. The main ad-

vantage of our selection method is that each basis vector is equivalent to a basis word and is meaning-
ful.  

We obtained word embeddings by word2vec (Mikolov et al, 2013a), FastText (Bojanowski et al., 

2017), and BERT (Devlin et al., 2018) using bert-base-nli-mean-tokens and stsb-roberta-large meth-
ods from the sentence_transformers library (Reimers & Gurevych, 2019). We evaluate the word em-

beddings using the word similarity task on the MEN, RG-65, SimLex-999, and WordSim353 test sets. 

The results are reported in Table 6 below. 

Baseline 

Matrix 
stsb-roberta-large 

bert-base-nli-mean-

tokens 
FastText word2vec  

5000 1024 768 300 1000 Number of Dimensions 

68.62 51.41 59.56 75.39 76.3 MEN Dataset 

62.70 53.21 77.40 77.67 72.9 RG-65 Dataset 

27.66 61.77 60.92 44.04 41.83 SimLex-999 Dataset 

61.66 25.58 27.50 68.096 70.8 WordSim353 Dataset 

Table 6: Spearman’s correlation coefficient ( ) for word embeddings. 

Table 6 shows that the word embeddings obtained by the word2vec and FastText models have 

larger Spearman’s correlation coefficients than the count-based Baseline model. In the bert-base-nli-
mean-tokens and stsb-roberta-large methods, which have 768 and 1024 dimensions, respectively, the 

Spearman’s correlation coefficients on the MEN, RG-65, and WordSim353 datasets are lower than 

the other methods. However, in the SimLex-999 similarity set, a significant Spearman's correlation 
coefficient of 60% has been reported.   

7.2. Qualitative Evaluation of Interpretability 

The word embeddings obtained in neural methods are very compact vectors that are difficult for hu-
mans to interpret. We often do not know what the high value compared to the low value in one dimen-

sion determines. The main idea of qualitative evaluation is that if a particular dimension of the word 
vector be interpreted, the high-ranked target words of the vocabulary for that dimension must have 

semantic coherence (Jha et al., 2018). If a vector dimension is interpretable, high-ranking words for 

that dimension should display semantic or syntactic groupings. To confirm this qualitatively, we ana-
lyze word vectors for a few target words in vocabulary namely, "service", "speed", and "waterproof". 

These target words are randomly selected from the vocabulary. Then, we put the top 15 words in that 

dimension as the top-ranked words in Table 7. We see that the proposed model using 1500 dimen-

sions compared to other models forms a coherent semantic group. Semantic coherence is not found in 
the top words of FastText, word2vec, and NMF models. In word vectors obtained by count-base 
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methods, each dimension is equivalent to one word. The Baseline model has 5K dimensions, which is 

equal to one of the most frequent words. We compare top words groups of the Baseline model for 
words "service", "speed", and "waterproof". We find that the top word groups in the Baseline model 

have general meanings. This is because the criterion for selecting initial basis words for dimensions is 

the most frequent words. The Baseline model compared to the FastText, word2vec, and NMF models 

creates a more coherent semantic group. The proposed model has 1500 dimensions. Each dimension 
corresponds to a word that is selected based on the word selection method. By examining and compar-

ing the top words in Table 7, we found that the proposed model has formed a more coherent semantic 

group than the Baseline model for the target words (service, speed, waterproof). Note that words such 
as provide, information, support, public, customer, offer, which are closely related to the word "ser-

vice", are among the top words for the target word "service". Also, in the semantic group for the word 

"speed", words with a very high association such as server, use, web, file, client, run, windows, sys-
tem, network, access, user, and sql are seen. Also in the semantic group obtained for the target word 

"waterproof", words such as Jacket, wear, leather, trouser, dress, fleece, shirt, and pocket can be seen. 

By examining this semantic group, we can deduce that the corpus explains the waterproof property 

and clothing. According to Table 7, we see that this level of semantic grouping is not observed in any 
of the other models. 

Top words  Target words # of 

Dims 
Model 

vu, nm, mg, kg, kb, hz, mb, km, md, ml, mm, cm, pm, vt, lb service 

300 FastText 2f, sq, en, on, om, du, we, uc, ja, wp, je, vu, nl, bo, jp speed 

8d, 4d, 1d, 5d, sj, 6d, p1, fm, 1c, 2d, rn, va, d., 1x, cv waterproof 

bupa, 1x, atmospheric, gprs, semester, giants, edina, abebooks, ovid, camel, 
pga, tpo, prise, consignment, riba 

Service 

1000 
 

word2vev 

sitemap, abingdon, mw, yn, ht, dealership, font-family, kg, lotus, reserved, 
pushchair, enhancing, abattoir, cod, radiator 

Speed 

bonnet, uktv, cask, mm, affiliated, mce, properties, tsb, handmade, kinase, 
filler, cordless, ferries, condolence, creamy 

Waterproof 

heavy-duty, quantize, initial, sweaty, woolly, peter, outdoors, sinful, 
terracotta, insolent, last-minute, kilo, quicker, heady, golf 

Service 

1000 NMF 
Workers, deft, unrhyw, lift, re-ignited, fall, municipal, whig, bruise, funnel, 
reframing, ml, decommission, proletarian, spot-check 

Speed 

fair, wright, creative, zanzibar, Uganda, counterfeit, negotiating, musing, 
wt, self-fertilised, plaintive, Kashmir, Sherlock, chas, padding 

Waterproof 

be, provide, information, use, health, have, support, other, not, public, new, 
people, include, customer, offer 

Service 

5K Baseline 
be, high, limit, use, time, not, camera, have, more, road, do, up, new, 
increase, make 

Speed 

be, not, do, have, use, more, good, so, also, make, only, work , time, other, 
now 

Waterproof 

Server, be , use, web, not, file, client, run, windows, system, network, 
access, user, sql, other 

Service 

1500 Proposed 
Wind, be, farm, energy, turbine, power, blow, not, have, strong, high, 
more, rain, make, day 

Speed 

Jacket, be, wear, leather, trouser, more, make, black, not, dress, have , man 
, fleece, shirt, pocket 

Waterproof 

Table 7- Qualitative evaluation of the word vectors. We examine the high-ranking dimensions for three random-
ly selected words. 

7.3. Quantitative Evaluation of Interpretability 

One of the advantages of increasing interpretability is that each dimension can be understood to some 
extent by humans, and each dimension is associated with a recognizable concept. Quantitative evalua-

tion of interpretability based on human judgments is an effective method. The most common measure 
of quantitative interpretability for a set of word embeddings is the word intrusion test introduced by 
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Chang et al. (2009). In each test, it produces five words that four words are related to, and one word is 

different from the other words. If human judgment recognizes the word influence well, the model is 

considered quantitatively interpretable. This method requires a human vote, so word intrusion test is 
an expensive method (Trifonov et al., 2018). In addition, the word intrusion test does not quantify lev-

els of interpretability but determines interpretability using a binary decision. Continuous quantification 

of interpretability is more appropriate than binary decision because the levels of interpretability vary in 

different dimensions (Park et al., 2017; Şenel et al., 2018). In this paper, we quantify the word vector's 
interpretability using topic coherence and interpretability score measures. 

7.3.1. TOPIC COHERENCE 

Topic coherence is an automated evaluation method for interpreting topic models that are well related 
to human evaluations . Topic coherence is the mean pairwise similarity of word pairs. The mean co-

herence of all topics is called total topic coherence. Assume that   
( )

 is a word that has the rank p in 

the dth dimension of word vectors. The coherence of dth dimension is calculated based on the following 

Equation (Trifonov et al., 2018): 
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Parameter n is the number of high-rank words in each dimension that are used to calculate topic 

coherence . In this study, similar to reference (Trifonov et al., 2018), we consider n = 10. We compute 

Equation (13) for all pairs of words in the dth dimension. Then we calculate the total topic coherence 
based on the following Equation (Trifonov et al., 2018): 
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We use the cosine similarity criterion to measure     . We calculate the total topic coherence on 

the models word2vec, FastText, Baseline, and the proposed model using N=1500 and N=1000 dimen-

sions. The total topic coherence of the models is reported in Table 8. As shown in Table 8, the topic 
coherence of word2vec and FastText methods is much less than other methods . The Baseline method 

uses 5kmost frequent words as initial basis words to construct the co-occurrence matrix. The topic 

coherence of the Baseline method is higher than the word2vec and FastText methods by 0.1. Topic 
coherence of the proposed method using N=1500 final basis words compared to the Baseline method 

is increased by 0.12. By reducing the word vectors dimensions to 1000 using the proposed method, 

interpretability is increased by 0.22 compared to the Baseline method. That is, the word selection 

method selects the final basis words in such a way that the resulting low-dimensional word vector's 
interpretability is increased. Since in the proposed method using N = 1500 compared to N = 1000, the 

Spearman correlation coefficient is reduced to a lesser extent for the word similarity task; we recom-

mend using N=1500 final basis words. 
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    (     ) # of Dims Model 

0.2013 1000 word2vec 

0.2187 300 FastText 

0.3111 5K Baseline 

0.4318 1500 Proposed 

0.5381 1000 Proposed 

Table 8: The total topic coherence of the models 

7.3.2. INTERPRETABILITY SCORE 

Reference (Şenel et al., 2018) suggests an alternative method for word intrusion test that achieves 
quantitative evaluation automatically and continuously which, is based on human judgment .This 

method uses category theory to study the semantic structure of word vector spaces. This requires cate-

gories that represent a wide range of distinct concepts and distinct types of relationships. To achieve 
this goal, reference (Şenel et al., 2018) has introduced a new dataset called SEMCAT. This dataset 

contains more than 6500 words, and the dataset are semantically classified into 110 categories. This 

research is based on the key idea that if a dataset shows all the groups a human makes up, one do not 

need to rely on human judgments. As a result, it is easy to check the presence or absence of distinct 
word embeddings dimensions in each of the dataset category. Therefore, a dataset with a sufficient 

number of categories can provide a good approximation for human judgments. 
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Where      
  and      

   show the interpretability score for the positive direction of the ith dimension 

and the negative direction of the ith dimension, respectively .Where,             and   
         . Parameter D is the number of word vector dimensions and k is the number of categories 

in the dataset.     is the collection of words in the jth category. The parameter     indicates the number 

of words in the jth category.   
 (    ) is a set of distinct words with a high rank in the ith dimension, 

and   
 (    ) is a set of distinct words with a low rank in the ith dimension.      specifies the 

number of words with high and low ranks. The parameter λ determines the strictness of the interpreta-

bility score. The variable λ can be changed in the range of 1 to 10. We consider the parameter  λ = 5 

similar to the reference (Şenel et al., 2018) to perform the experiments. Next, we calculate the inter-
pretability score (IS) for the ith dimension and the jth category as follows:  

         (     
       

 )                            (  ) 

Then, we calculate the interpretability score of the ith dimension for all 110 categories by Equation 

(18): 

       
 

                                           (  ) 
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The total interpretability score of the word vectors for a model is calculated based on the following 

Equation: 

   
 

 
∑    

 

   
                                 (  ) 

We obtain and report the interpretability score of word vectors obtained by FastText, word2vec, 

Baseline models, and proposed method using N=1500 and N=1000 . Interpretability score measure-

ments are based on the SEMCAT dataset presented in reference (Şenel et al., 2018). Interpretability 
scores for word vectors derived from each model are calculated and reported in the table 9. As you can 

see in Table 9, the interpretability score of the proposed method is much higher than the neural mod-

els. Method    presented in the paper by Şenel et al. (2018) transforms the obtained vectors of the 

Glove method to an interpretable space with 110 dimensions. In this method, the label of each dimen-

sion is one of the SEMCAT categories. The interpretability score of the    method is also reported in 

Table 9. The interpretability score of the proposed method using N = 1500 compared to the τ* method 

has improved by 0.68. 

Interpretability Score # of Dims Model 

27.26 1000 word2vec 

28.97 300 FastText 

52.37 5k Baseline 

52.18 1500 Proposed 

52.66 1000 Proposed 

51.5 110   (Şenel et al., 2018) 

Table 9: The interpretability score of word vectors obtained by different models 

Examining the qualitative interpretability presented in Table 7 and the quantitative interpretability 
results presented in Tables 8 and 9, we find that the proposed method using N=1500 dimensions is 

more interpretable than word2vec, and FastText methods . The proposed method using N = 1500 re-

duces 3500 dimensions of word vectors. So the word selection method compared to the Baseline 

method decreases the interpretability score only slightly, which is justified by the 3.3-fold reduction of 
the word vector dimensions. The interpretability score of the proposed method using N=1000 com-

pared to N=1500 is 0.48 higher. This result has already been obtained in Table 8 using the topic co-

herence method. But in the word similarity task, the accuracy drop for N=1000 is more than N=1500. 
For this reason, we recommend N=1500 for the number of final context words. 

Also, the interpretability score of the proposed method is improved by N=1500 compared to the τ* 

method, which transforms the Glove vectors to the 110-dimensional interpretable space, and each di-

mension corresponds to a SEMCAT category. Therefore, although the proposed method in the word 
similarity task obtains a lower Spearman's correlation coefficient than the word2vec and FastText 

methods, it works better in terms of interpretability. The sparse vector has a large number of zeroes 

compared to the dense vector and inevitably carries less information. In the proposed method, com-
pared to the Baseline method, by increasing the interpretability, there is a slight decrease in 

Spearman's correlation coefficient in the word similarity task, which is not a large penalty. In addition 

to improving the interpretability of word vectors, the proposed method introduces N final basis words 
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that represent the knowledge extracted from the corpus at a granular level. The methods that transform 

neural vectors to an interpretable space often fail to provide a concept for each word embedding di-
mension. In methods such as τ*, a category is assigned to each word embedding dimension, but these 

conceptual equivalents of each word embedding dimension depend on another dataset, such as 

SEMCAT. For example, if the corpus contains specialized medical information, for interpreting the 

embeddings using the method of reference (Şenel et al., 2018(, we need to have a data set of catego-
ries in the medical field. However, in the proposed method, word vectors can be constructed simply 

by using a specialized corpus, that for each dimension of word vectors, a concept has been extracted 

from the corpus by the proposed method. Also, the best final basis words selected by the proposed 
method can be used in applications such as keyword extraction and topic modeling. 

8. Conclusion 

In this research, we introduce a selection method based on the comparison of distance matrices to pro-

duce meaningful basis vectors. Each basis vector corresponds to a basis word. We use vocabulary that 
contains 45K target words. We construct localized co-occurrence matrix X for target words in vocabu-

lary using 5k initial basis words.  We use the matrix X to get the similarity of word pairs in the test 

sets. We apply the word selection method on training sets 1 and 2 with different sizes to select N basis 

words. The results show that the selection method does not depend on increasing or decreasing the 
number of target words in the training set. It reports almost the same accuracy. We produce word vec-

tors with N=500, 1000, 1500, 2000, and 3500 informative basis vectors. Our experiences show that 

reducing the number of basis vectors from 5000 to 1500 reduces the Spearman's correlation coeffi-
cient 1.5-2%. Note that basis words reduction decreases the accuracy not only in the selection method 

but also in the NMF method. Our comparative study shows that the accuracy of the selection method 

is less than the word2vec, FastText, and NMF method. The accuracy shortcoming of the selection 
method is compensated by the fact that we produce interpretable basis vectors corresponding to 

unique basis words. 

By qualitatively evaluating the three target word vectors selected randomly from the vocabulary, 

we show that the top words obtained for these target words form more coherent semantic groups than 
other methods word2vec, FastText, Baseline. We use two automated evaluating methods, namely top-

ic coherence and interpretability score, to quantitatively obtain the interpretability of word vectors ob-

tained by word2vec, FastText, Baseline, and Proposed methods using N = 1500 and N = 1000. The 
results show that in the proposed method, the criteria of topic coherence and interpretability score are 

higher than neural methods. The proposed method word vectors compared to interpretable τ* word 

vectors, the interpretability score is slightly higher. Therefore, the proposed method selects N=1500 

final basis words, and there is a slight decrease in accuracy in the word similarity task compared to the 
Baseline method. However, the interpretability score and topic coherence of the word vectors obtained 

by the proposed method have increased. In addition to increasing interpretability, the proposed meth-

od obtains N final basis words and extracts a specific concept for each dimension of the word vector at 
the granular level and does not require specialized external knowledge. 

Here, we report the top 15 basis words of 1500 selected basis words. We like to draw your atten-

tion to the fact that these are the top 15 words based on a web crawled dataset in 2009. The words 
"God-disease-cell-loan-cancer-blood-oil-bird-fish-gas-Iraq-pain-beach-bedroom-christ" are selected 

using the word selection method. We can release the 1500 selected basis words for interested re-

searchers to use. Note that, by applying this method to the favorite corpora, readers will be able to cre-

ate their own vector space based on meaningful words. Then, they can develop different applications 
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such as information retrieval, document classification, question answering, and topic mining, and so 

on. 
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