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Abstract
The influence maximization paradigm has been used by researchers in various fields in order to

study how information spreads in social networks. While previously the attention was mostly on
efficiency, more recently fairness issues have been taken into account in this scope. In the present
paper, we propose to use randomization as a mean for achieving fairness. While this general idea is
not new, it has not been applied in this area.

Similar to previous works like Fish et al. (WWW ’19) and Tsang et al. (IJCAI ’19), we study
the maximin criterion for (group) fairness. In contrast to their work however, we model the problem
in such a way that, when choosing the seed sets, probabilistic strategies are possible rather than
only deterministic ones. We introduce two different variants of this probabilistic problem, one
that entails probabilistic strategies over nodes (node-based problem) and a second one that entails
probabilistic strategies over sets of nodes (set-based problem). After analyzing the relation between
the two probabilistic problems, we show that, while the original deterministic maximin problem
was inapproximable, both probabilistic variants permit approximation algorithms that achieve a
constant multiplicative factor of 1− 1/e minus an additive arbitrarily small error that is due to the
simulation of the information spread. For the node-based problem, the approximation is achieved by
observing that a polynomial-sized linear program approximates the problem well. For the set-based
problem, we show that a multiplicative-weight routine can yield the approximation result.

For an experimental study, we provide implementations of multiplicative-weight routines for
both the set-based and the node-based problems and compare the achieved fairness values to existing
methods. Maybe non-surprisingly, we show that the ex-ante values, i.e., minimum expected value
of an individual (or group) to obtain the information, of the computed probabilistic strategies are
significantly larger than the (ex-post) fairness values of previous methods. This indicates that
studying fairness via randomization is a worthwhile path to follow. Interestingly and maybe more
surprisingly, we observe that even the ex-post fairness values, i.e., fairness values of sets sampled
according to the probabilistic strategies computed by our routines, dominate over the fairness
achieved by previous methods on many of the instances tested.

1. Introduction

The internet has revolutionized the way information spreads through the population. One positive
consequence is that important and valuable campaigns can be spread at little cost quite efficiently
thanks to news platforms and social media. Examples of such valuable campaigns are HIV preven-
tion (Wilder et al., 2018a; Yadav et al., 2018), public health awareness (Valente & Pumpuang, 2007)
or financial inclusion (Banerjee et al., 2013). The information spreading process can be notably
optimized by algorithms that identify key people in the network to act as seed users to initiate an
efficient spread of the campaign. The well known influence maximization problem formalizes this
objective (Kempe et al., 2015): given a network and a probabilistic diffusion model, the task is to find
a set of k seed nodes from which the campaign will start to spread, in order to maximize the expected
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number of reached nodes. The problem has received a tremendous amount of attention (Becker
et al., 2020; Borgs et al., 2014; Borodin et al., 2017; Budak et al., 2011; Chen & Teng, 2017; Cohen
et al., 2014; Tang et al., 2015, 2014).

In the influence maximization problem, the objective is only concerned with the efficiency of the
diffusion process, it does not take into account any fairness criteria. In order to underline the need of
studying such fairness criteria in this scope, we start with the following motivating example: Consider
a simple random graph modeling a network similar to a core-periphery structure (Borgatti & Everett,
2000). The network consists of two communities, the core C and the periphery D. The probability
of intra-community edges are pC and pD respectively, while the probability of inter-community edges
is q. For concreteness, assume that |C| = 50, |D| = 150 and pC = 0.5, pD = 0.1 and q = 0.1. I.e.,
we obtain a random network consisting of a well-connected rather small core and worse connected
larger part of the graph that we refer to as the periphery of the network. Assume now that we use a
state-of-the-art algorithm for influence maximization, e.g., the TIM implementation of the greedy
algorithm due to Tang et al. (2014), in order to compute a seed set of size k with large expected
coverage in the graph. As we can see in Figure 1 on the left, this can lead to a significant discrepancy
in the probability of nodes being reached in the two communities. For concreteness, if k = 5, an
average node in the core is reached with probability larger than 0.25, while the average node in
the periphery is reached only with a probability of around 0.05.1 In the right plot in Figure 1, we
observe that the algorithm selects most of the seed nodes in the core. This is clearly because nodes
in the core are better connected and thus choosing such nodes as seeds results in better coverage. In
summary, we observe that maximizing expected spread without considering any fairness criteria can
lead to unfair coverage with respect to communities or groups in the network. Such observations
have motivated researchers more recently, to take fairness issues in influence maximization into
account. We continue by giving a brief review of the related literature.
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Figure 1: Results for the core-periphery model with a core of 50 nodes and a periphery of 150 nodes.
The budget k is increasing from 1 to 10.

A first sequence of papers has investigated a setting in which several competing players are paying
the network’s host to influence users in their favor. The goal in these works is to ensure that the
host picks seed nodes in a fair way with respect to the different players (Chen et al., 2020; Lu et al.,
2013; Yu et al., 2017). Another line of research has investigated the fairness of the diffusion process
with respect to the vertices, i.e., the users in the network. Indeed when only efficiency is being
optimized, some users, or communities, i.e., groups of users, might get an unfairly low coverage (Ali
et al., 2019; Fish et al., 2019; Farnadi et al., 2020; Khajehnejad et al., 2020; Rahmattalabi et al.,

1. In this example, we use the Independent Cascade model in order to model the information spread, edge weights
are chosen to be 0.05. We refer the reader to Section 2 for the precise definition of the model used.
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2020; Stoica et al., 2020; Tsang et al., 2019). An intuitive criterion to consider here is the maximin
criterion. Here, the goal is to choose at most k seed nodes to maximize the minimum probability
of a user being reached. When generalized to groups of users or communities, the goal becomes to
maximize the minimum expected fraction of users reached per community. The first problem has
been considered by Fish et al. (2019), who showed that the problem is hard to approximate to any
constant approximation factor, unless P = NP . The second problem has been considered by Tsang
et al. (2019). Building on previous work by Chekuri et al. (2010) and Udwani et al. (2018), the
authors designed an algorithm with an asymptotic approximation ratio of 1− 1/e provided that the
number of communities is not much larger than k.

In the present paper, we extend these works by studying the impact of randomization on fairness.
Our approach is to allow randomized strategies for choosing the seed nodes rather than to restrict to
deterministic strategies. Indeed, we introduce two randomized versions of the maximin problem.
In our first problem, we consider randomized strategies that pick nodes as seeds independently. In
contrast, in the second problem, we allow any probabilistic strategies that choose seed sets of expected
size k, i.e., not restricting to independent distributions. It is easy to envision that such randomized
strategies provide certain advantages over deterministic ones. In fact, the use of randomization is a
longstanding idea in computational social choice, where it often leads to more tractable results and
more expressive solutions via for instance time-sharing mechanisms (Manlove, 2013). It can also be
used to incentivize participation (Aziz et al., 2018) or to workaround impossibility results (Brandl
et al., 2016). Lastly and closer to our work, using randomization is frequently used to obtain fairer
solutions (Aziz et al., 2013; Bogomolnaia & Moulin, 2001; Katta & Sethuraman, 2006). Indeed, there
may be optimization problems for which any deterministic solution is unfair. This was famously
illustrated by Machina’s mom example in which a mother should decide which of her two children
will receive an indivisible treat (Machina, 1989). In such cases, randomization may help evening
things out by considering fairness in expectation, i.e., ex-ante fairness rather than ex-post fairness.
Randomization is both useful for one-shot and for repeated problems. In the former, it provides
fairness over opportunities and in the latter it achieves fairness in the long run in a natural way.
Lastly, randomization can be used to satisfy the fairness principle of equal treatment of equals (Moulin,
1991). Despite being an old research topic, the study of randomized solutions is still a hot topic
where many open problems remain to be solved (Aziz, 2019; Brandt, 2019).

1.1 Our Contribution

The contributions of this paper are summarized as follows.

• After recalling the necessary technical background related to influence maximization, in
Section 2, we introduce the two randomized versions of the maximin problem. In the first
one, we consider randomized strategies that pick nodes as seeds independently with some
probability such that the expected size of the resulting seed set is bounded by k, we call this
the node-based problem. In the second problem, we study a more general feasible set. That is,
we consider strategies that consist of probability distributions over seed sets of expected size
k, i.e., not restricting to the special case of distributions that pick nodes independently but
allowing for correlation. We then analyze the relation between the two probabilistic problems.

• In Section 3, we quantify the loss in efficiency that can be incurred by following our fairness
criteria, i.e., we show bounds on the price of fairness. We continue by proving that both
randomized variants of the maximin influence problems are NP-hard. For the node-based
problem, we in addition show that, unless P = NP , there is no algorithm with approximation
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ratio better than 1− 1/e. Thereafter we show that still, in this setting of fairness in influence
maximization, randomization leads to a number of advantages.

• In Section 4, we prove that the resulting problems can be approximated to within a factor of
1− 1/e (plus an additive −ε term that is also inherent in the work of Tsang et al. (2019)) even
in the case when the number of communities exceeds the number of seed nodes k. For the
node-based problem (up to the additive error term) we thus give a tight approximation result.
Furthermore, our work shows that the inapproximability result of Fish et al. (2019) can be
circumvent by introducing randomization to the problem. Our algorithms are comparatively
simple. For the node-based problem, the feasible set is of dimension n. After approximating
(to within an additive ±ε term) all functions σv using concentration bounds, we still face the
problem that the resulting optimization problem is not linear. We show however that the non-
linear optimization problem is approximated to within a factor of 1−1/e by a linear program of
the same size. Thus we obtain a polynomial time algorithm with multiplicative approximation
ratio 1− 1/e (plus the additive −ε term). For the set-based problem, the situation is different.
Here, by introducing a variable for every possible seed set, the problem can be approximated
(to within an additive ε term) by a linear program. The downside of course is that this program
is of dimension Θ(2n). As the linear program is a covering linear program however, we are able
to show that a multiplicative weights routine that is essentially a black-box application of a
method by Young (1995) can be used to obtain the described approximation. This method, as
a subroutine, requires an algorithm for an oracle problem. We observe that the oracle problem
in our case can be solved using standard (weighted) influence maximization and thus can be
approximated to within a factor of 1− 1/e efficiently both in theory and practice. Although
the feasible set to the set-based problem is of exponential dimension, the computed solution
that is guaranteed to be a multiplicative 1− 1/e approximation (plus the additive −ε term)
has only a linear support in n.

• In Section 5, we evaluate implementations of multiplicative weight routines for both node
and set-based problems on random instances, synthetic instances from the work of Tsang et
al. (2019), and a wide range of real world networks. We compare both the ex-ante and ex-post
performance of our techniques with standard greedy techniques, as well as with the routines
proposed by Tsang et al. (2019) and Fish et al. (2019). We observe that our ex-ante values are
superior to the ex-post values of all other algorithms and, maybe surprisingly, our experiments
indicate that even the ex-post values of our algorithms are competitive or even improve over
the ex-post values achieved by the other techniques. We also experimentally evaluate the
loss in efficiency, i.e., in total information spread resulting from using our algorithm over a
standard IM algorithm that does not consider any fairness criteria. We conclude that our
algorithms lead to much fairer solutions while incurring at most a small loss in total spread on
all instances tested.

1.2 Further Related Work

We review the works that have considered fairness issues in the context of influence maximization in
more detail.

The line of research that investigates the fairness of the diffusion process with respect to the
vertices (i.e., users) in the network is closest to our setting. Fish et al. (2019), to the best of
our knowledge, are the first to study the maximin objective in order to maximize the minimum
probability of nodes to be reached by the information spread. They show that this objective
leads to an NP-hard optimization problem, and even more, is hard to approximate to within any
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constant factor unless P = NP . Even worse, the authors show that various greedy strategies have
asymptotically worst-possible approximation ratios.

In the work of Tsang et al. (2019), the authors introduced the problem of maximizing the spread
of a campaign while respecting a group-fairness constraint. In their setting, each user of the network
belongs to one or several communities and several criteria to guarantee that each community gets
its fair share of information are considered. For each of these criteria, maximizing influence while
respecting the related fairness constraint can be solved via a multi-objective submodular optimization
problem. The authors design an algorithm to tackle such multi-objective submodular optimization
problems that provides an asymptotic approximation guarantee of 1 − 1/e. Their work cannot
be directly extended to the case where fairness is considered with respect to individuals instead
of communities. Indeed, their result requires that m = o(k log3(k)) where m is the number of
communities and k is the seed set cardinality constraint.

The above two works are the most closely related to the present paper. We proceed by reviewing
more distant works that still treat fairness issues in influence maximization. Rahmattalabi et
al. (2020) further extend the group-fairness approach of Tsang et al. (2019) by following a different
path. From the expected fraction of vertices reached in each community, the authors define a utility
vector over the entire population of vertices, and then take a welfare optimization approach by
optimizing a decision criterion which is a function of this utility vector. Stoica et al. (2020) study
how improving the diversity of nodes in the seed set can influence efficiency and fairness of the
information diffusion process. In a rather specific setting, where the network is generated using a
biased preferential attachment model yielding two unequal communities, the authors show that,
under certain conditions, seeding strategies that take into account the diversity of nodes in the seed
set are more efficient and equitable. Ali et al. (2019) address fairness of the diffusion process with
respect to different communities considering both the number of people influenced and the time step
at which they are influenced. After illustrating that both, maximizing the expected number of nodes
reached by choosing a seed set of fixed cardinality, and minimizing the number of seeds required to
influence a given portion of the network may lead to unfair solutions, the authors propose an objective
function which balances two objectives: the expected number of nodes reached which should be
maximized, and the maximum disparity in influence between any two communities which should be
minimized. More recently, Farnadi et al. (2020) review the different notions of group-fairness criteria
used in the influence maximization literature and show how influence maximization problems under
these fairness criteria can be expressed as mixed integer linear programs. The authors then provide
numerical tests to measure the price of fairness of different fairness criteria as well as the increase
in fairness with respect to vanilla influence maximization. Lastly, fair influence maximization was
approached by Khajehnejad et al. (2020) based on machine learning techniques. The authors use an
adversarial graph embedding approach to choose a seed set which both makes it possible to achieve
high influence propagation and fairness between different communities.

An even more distant line of work (Chen et al., 2020; Lu et al., 2013; Yu et al., 2017) consider
a setting in which several players compete with similar products on the same networks. These
players pay a given budget to the network’s host in order to influence as many users as possible. The
question investigated is how to ensure that the host picks solutions in a fair way with respect to the
different players. Stated otherwise, the average influence obtained per seed, also called amplification
factor, should be similar for all players. We omit further details on this line of research as it is not
too closely related to our work.
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2. Preliminaries

2.1 Influence Maximization

We consider the classical influence maximization setting where we are given a directed arc-weighted
graph G = (V,A,w) with V being the set of n nodes, A the set of arcs, and w : A → [0, 1] an
arc-weight function. In addition we are given an information diffusion model. A broad variety
of models can be used as information diffusion model. Two of the most popular models are the
Independent Cascade (IC) and Linear Threshold (LT) models (Kempe et al., 2015). In both these
models, given an initial node set S ⊆ V called seed nodes, a spread of influence from the set S is
defined as a randomly generated sequence of node sets (St)t∈N, where S0 = S and St−1 ⊆ St. These
sets represent active users, i.e., we say that a node v is active at time step t if v ∈ St. The sequence
converges as soon as St∗ = St∗+1, for some time step t∗ ≥ 0 called the time of quiescence. For a set
S, we use the standard notation σ(S) = E[|St∗ |] to denote the expected number of nodes activated
at the time of quiescence when running the process with seed nodes S, here the expectation is over
the random process of information diffusion that depends on the weights w and moreover on the
information diffusion model at hand.

Information Diffusion Models. In the Independent Cascade (IC) model, the values wa ∈ [0, 1]
for a ∈ A are probabilities. The sequence of node sets (St)t∈N, is randomly generated as follows. If u
is active at time step t ≥ 0 but was not active at time step t− 1, i.e., u ∈ St \ St−1 (with S−1 = ∅),
node u tries to activate each of its neighbors v, independently, and succeeds with probability wuv.
In case of success, v becomes active at time step t+ 1, i.e., v ∈ St+1.

In the Linear Threshold (LT) model, the values wa ∈ [0, 1] for a ∈ A are such that, for each
node v, it holds that

∑
(u,v)∈Awuv ≤ 1. The sequence of node sets (St)t∈N, is randomly generated as

follows. At time step t+ 1, every inactive node v such that
∑

(u,v)∈A,u∈St wuv ≥ θv becomes active,
i.e., v ∈ St+1, where the thresholds θv are chosen independently and uniformly at random from the
interval [0, 1] for all nodes v ∈ V .

Both the IC and LT models can be generalized to what is known as the Triggering Model,
see (Kempe et al., 2015, Proofs of Theorem 4.5 and 4.6). For a node v ∈ V , let Nv denote all
in-neighbors of v. In the Triggering model, every node v ∈ V independently picks a triggering set
Tv ⊆ Nv according to some distribution over subsets of its in-neighbors. For a possible outcome
L = (Tv)v∈V of triggering sets for the nodes in V , let GL = (V,AL) denote the sub-graph of G where
AL = {(u, v)|v ∈ V, u ∈ Tv}. The graph GL is frequently referred to as live-edge graph and the
edges AL are referred to as live edges. We let ρL(S) be the set of nodes reachable from S in GL. We
denote with L the random variable that describes this process of generating outcomes or live-edge
graphs, and with L we mean a possible outcome, i.e., value taken by L. Then σ(S) = EL[|ρL(S)|].
The IC model is obtained from the Triggering model, if for each arc (u, v), node u is added to Tv
with probability wuv. Differently, the LT model is obtained if each node v picks at most one of its
in-neighbors to be in her triggering set, selecting a node u with probability wuv and selecting no one
with probability 1−

∑
u∈Nv wuv.

Further Notation. In what follows, we assume the triggering model to be the underlying model
describing the information spread. We define σv(S) := PrL[v ∈ ρL(S)] to be the probability that node
v is reached from seed nodes S. Clearly, σ(S) = EL[|ρL(S)|] =

∑
v∈V PrL[v ∈ ρL(S)] =

∑
v∈V σv(S).

We extend this notation in a natural way, that is, for C ⊆ V , we denote by σC(S) = 1
|C| ·

∑
v∈C σv(S)

the average probability of being reached of nodes in C. Note that σv(S) = σ{v}(S) for nodes v ∈ V
and σ(S) = |V | · σV (S). Table 1 summarises the notations frequently used in the paper.
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Notations Descriptions

G = (V,A,w) a directed graph with n nodes V , edges A, and w : A→ [0, 1]

C a set of m communities C ⊆ V
k size of the seed set
GL a live-edge graph
ρL(S) set of nodes reachable from seeds S ⊆ V in GL
σ(S) expected number of nodes activated from seeds S ⊆ V
σv(S) probability that node v is reached from seeds S ⊆ V
σC(S) average probability of being reached of nodes in C ∈ C from seeds S ⊆ V

σ̃(S), σ̃v(S), σ̃C(S)
approximate analogues of σ(S), σv(S), and σC(S) obtained via sampling
a fixed number T of live-edge graphs

1 the all-ones vector
1i a vector with i’th entry being one and all the other entries equal to 0
1P indicator function that equals 1 if P holds and 0 otherwise
P set of vectors p ∈ [0, 1]2

V such that 1T p = 1 and
∑

S⊆V pS |S| ≤ k
X set of vectors x ∈ [0, 1]n such that 1Tx ≤ k
optP(G, C, k) optimal objective value of set-based problem
optX (G, C, k) optimal objective value of node-based problem
PoFP(G, C, k) price of fairness of the set-based problem
PoFX (G, C, k) price of fairness of the node-based problem

Table 1: Notations

For a maximization problem max{F (x) : x ∈ R} with feasibility region R, objective function
F : R → R≥0 and optimum value opt. We say that x is an (α, β)-approximation for real values
α ∈ (0, 1] and β ∈ [0,∞), if F (x) ≥ α · opt−β.

Maximin Optimization. The standard objective studied in influence maximization is finding a
set S maximizing σ(S) under a cardinality constraint |S| ≤ k for some integer k. As this objective
function does not take into account the fairness of the diffusion process with respect to nodes or
communities, Fish et al. (2019) and Tsang et al. (2019), have investigated maximin variants of this
objective that can be written as

max
S∈(Vk)

min
C∈C

σC(S),

where C is a set of m ≥ 1 different communities ∅ 6= C ⊆ V that may not be disjoint and
(
V
k

)
denotes the set of subsets of V of size k. If each node is its own community, this amounts to finding
a set of k seed nodes maximizing the minimum probability that a node is reached, which is the
problem considered by Fish et al. (2019). We note that this is actually one instance of a broader
class of optimization problems that ask to maximize a social welfare function, being the −∞-mean
here. Fish et al. (2019) considered the special case where the diffusion model is the Independent
Cascade model and in which all arcs have the same probability of diffusion α. They proved that the
problem of choosing k seeds S such as to maximize minv∈V σv(S) is NP-hard to be approximated
within a factor better than O(α) and that minimizing the number of seeds to obtain the optimal
solution cannot be approximated within a factor O(lnn). Furthermore, they analysed several natural
heuristics which unfortunately exhibit worst-case approximation ratio exponentially small in n.
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2.2 Fairness via Randomization

We initiate studying the impact of randomization to increase fairness for influence maximization.
We start with a simple example of an influence maximization problem to illustrate the impact of
randomization. Let us assume that we are using the IC model. Consider the graph in Figure 2
consisting of two nodes u, v, each forming their own community, connected in both directions by
edges (u, v), (v, u) with probabilities 1/2. Assume that k = 1. Then (due to symmetry) the optimal
deterministic strategy is to choose any of the two nodes achieving a minimum probability of being
reached of 1/2 for the non-chosen node. A probabilistic strategy however would be allowed to assign
probabilities 1/2 to both the sets {u} and {v}. For each of the two nodes, this strategy achieves
an expected probability of being reached of 1/2 + 1/4 = 3/4, the 1/2 being due to the fact that
the node is a seed himself with probability 1/2 and the 1/4 being due to the probability of being
reached (with probability 1/2) from the other node if she is a seed (happens with probability 1/2).
While the example seems simplistic and artificial, it shows that the probabilistic strategy may in
fact achieve a higher degree of fairness. We consider two different ways of introducing randomness,
either via distributions over sets or via distributions over nodes.

u v

0.5

0.5

Figure 2: Simple instance showing that randomization allows to increase fairness in influence maxi-
mization.

Probabilistically Choosing Sets. We relax the maximin problem by allowing for randomized
strategies, i.e., feasible solutions in our set-based probabilistic maximin problem are not simply sets
of size at most k, but rather distributions over sets. Let P be the set of distributions over sets of
expected size at most k, i.e., P := {p ∈ [0, 1]2

V
: 1T p = 1,

∑
S⊆V pS |S| ≤ k} and let S ∼ p denote

the random process of sampling S according to the distribution p. We now consider the optimization
problem

optP(G, C, k) = max
p∈P

min
C∈C

ES∼p[σC(S)],

i.e., we are searching for the probability distribution that maximizes the minimum expected probability
of the m communities to be reached. This notion is frequently referred to as ex-ante fairness in the
literature (Machina, 1989).

We note that in the conference version (Becker et al., 2021) of this article, we studied the problem
where the probability distributions are restricted to be over sets of size exactly k. Here, we explicitly
allow sets of size different from k, the only restriction on the size is in expectation. This new problem
constitutes a relaxation of the set-based problem studied in (Becker et al., 2021). We emphasize that
all of our results hold for both versions of the problem. The main reason why we further relaxed the
studied set-based problem is that this allows us to obtain a clean relationship (see the last paragraph
of this section) between the set-based and the node-based problem that we introduce next.

Probabilistically Choosing Nodes. An alternative intuitive way of introducing randomness is
obtained by considering a maximin problem where feasible solutions are not distributions over sets,
but are characterized by probability values for nodes. In this setting, which we call the node-based
probabilistic maximin problem, we let X := {x ∈ [0, 1]n : 1Tx ≤ k} be the feasible set and consider the
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process of randomly generating a set S from x, denoted by S ∼ x, by letting i be in S independently
with probability xi. In this setting we are thus interested in finding x ∈ X that maximizes the
minimum expected coverage from S of any community, when S is generated from x as described and
the expectation is over this generation. We write this problem as

optX (G, C, k) = max
x∈X

min
C∈C

ES∼x[σC(S)].

Extending Set Functions to Vectors. In what follows, we extend set functions to vectors in P
and X in a straightforward way, i.e., for a set function f , for p ∈ P, we let f(p) := ES∼p[f(S)] and,
for x ∈ X , we let f(x) := ES∼x[f(S)].

Relationship between Problems. We first observe that, for x ∈ X , the vector px defined as
pxS :=

∏
i∈S xi

∏
j∈V \S(1− xj), for S ⊆ V , is in P and furthermore σC(x) = σC(px) for any C ∈ C.

Hence, we obtain the following lemma.

Lemma 2.1. For any G, C, and k, it holds that optX (G, C, k) ≤ optP(G, C, k).

We proceed by measuring the reverse relation. In fact, the concept of correlation gap can be
used in order to upper bound optP(G, C, k) in terms of optX (G, C, k) incurring only a constant loss.

Lemma 2.2. For any G, C, and k, it holds that optP(G, C, k) ≤ e
e−1 · optX (G, C, k).

Proof. Let G, C, and k be arbitrary. For a distribution p ∈ P over 2V , define the marginal probabilities
yp w.r.t. p by ypi := PrS∼p[i ∈ S] =

∑
S⊆V :i∈S pS . The correlation gap (Agrawal et al., 2010; Yan,

2011) of f : 2V → R≥0 is defined as

γf := sup
p∈[0,1]2V

ES∼p[f(S)]

ES∼yp [f(S)]

and it is well-known that the correlation gap of a monotone submodular function is bounded
from above by e

e−1 , see Agrawal et al. (2010, Corollary 1.2) or Yan (2011, Theorem 2.1). We
may thus conclude that, for all C ∈ C, γσC ≤ e

e−1 . Now, let p ∈ P be an optimal solution, i.e.,
optP(G, C, k) = minC∈C ES∼p[σC(S)]. We obtain

optP(G, C, k) = min
C∈C

ES∼p[σC(S)] ≤ min
C∈C

{ e

e− 1
· ES∼yp [σC(S)]

}
=

e

e− 1
·min
C∈C

ES∼yp [σC(S)] ≤ e

e− 1
· optX (G, C, k),

where the last step uses that
∑

i∈V y
p
i =

∑
i∈V

∑
S⊆V :i∈S pS =

∑
S⊆V pS · |S| ≤ k and thus

yp ∈ X .

It remains to ask if the bound predicted by the above lemma is tight. We give the following
simple example.

Lemma 2.3. There exists a graph G, community structure C, and integer k, such that optP(G, C, k) ≥
5
4 · optX (G, C, k) when using the IC model.

Proof. Consider the graph G consisting of two nodes u and v connected back and forth by two edges
of weight 2/3. Let C be the singleton community structure, and k = 1, i.e., the same instance as
in Figure 2 with the difference that the edge weights are 2/3. Then the best node-based solution
achieves a value of 2/3 (either by choosing one of the two nodes with probability 1 or by choosing
both with equal probability 1/2). The optimal set-based solution that chooses the sets {u} and {v}
both with probability 1/2 however achieves a value of 1/2 + 1/2 · 2/3 = 5/6.

We note that e/(e − 1) ≈ 1.58, while 5/4 = 1.25. We consider tightening this gap to be an
interesting open problem.
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3. Price of Fairness and Hardness

3.1 Price of Group Fairness

The price of group fairness is a quantitative loss measuring the decrease in efficiency that is
incurred when we restrict ourselves to solutions respecting a group fairness requirement. In the
following, we denote the maximizing solutions to the node and general set-based problems by
FX (G, C, k) = argmaxx∈X minC∈C ES∼x[σC(S)] and FP(G, C, k) = argmaxp∈P minC∈C ES∼p[σC(S)],
respectively. Then, the respective prices of fairness PoFX (G, C, k) and PoFP(G, C, k) incurred by
restricting to strategies in FX (G, C, k) and FP(G, C, k) are given by

PoFX (G, C, k) =
maxS∈(Vk)

σ(S)

maxx∈FX (G,C,k) σ(x)
and PoFP(G, C, k) =

maxS∈(Vk)
σ(S)

maxp∈FP (G,C,k) σ(p)
.

We obtain that for both problems, the price of group fairness can be linear in the graph size.

Lemma 3.1. For any even n > 0, there is a graph G with n nodes and a community structure C
such that PoFX (G, C, 1) = PoFP(G, C, 1) = (n+ 2)/4, when using the IC model.

Proof. Let G be composed of two disjoint sets J and I of n/2 vertices each. The only edges present
in G are the edges from one specific vertex w ∈ J to all other vertices in J . Let the weight of these
edges be 1 and let C be the community structure consisting of singletons. Note that for all nodes
v ∈ I ∪{w}, the probability of being reached is equal to the probability of being a seed as these nodes
have no incoming edges. In other words, for any strategy x ∈ X , it holds that σv(x) = xv. Similarly,
for any p ∈ P, it holds that σv(p) = ypv , where ypv :=

∑
S:v∈S pS are the marginal probabilities

with respect to p. Hence, it follows that the probabilistic solutions that maximize fairness split the
budget 1 equally among the nodes in I ∪ {w}. More precisely, when defining ρ := 1/(n2 + 1), we get
FX (G, C, 1) = {ρ · 1I∪{w}} and FP(G, C, 1) = {p ∈ P : ypv = ρ for all v ∈ I ∪ {w}} and in both cases
the achieved objective value is optX (G, C, 1) = optP(G, C, 1) = ρ. Furthermore

max
x∈FX (G,C,1)

σ(x) = max
p∈FP (G,C,1)

σ(p) = n · ρ.

The set S of size 1 that maximizes the expected number of reached nodes however, selects the node
w yielding maxS∈(V1) σ(S) = n/2. Hence, we get a price of fairness that is of linear order. More
precisely, PoFX (G, C, 1) = PoFP(G, C, 1) = (n2 + 1)/2 = (n+ 2)/4.

On the positive side we obtain that the price of group fairness is never larger than n/k.

Lemma 3.2. For any graph G, community structure C and number k, it holds that PoFX (G, C, k) ≤
n/k and PoFP(G, C, k) ≤ n/k.

Proof. Note that, for both problems, there exist some optimal solution x and p, such that the
expected size of the seed set is exactly k, i.e., 1Tx = k and

∑
S⊆V pS |S| = k. Furthermore, the

expected size of the spread (σ(x) and σ(p)) is at least as large as the expected size of the seed set,
i.e., for any x ∈ X and p ∈ P, it holds that σ(x) ≥ k and σ(p) ≥ k. Thus, maxp∈FP (G,C,k) σ(p) ≥ k
and maxx∈FX (G,C,k) σ(x) ≥ k. Together with σ(S) ≤ n for any set S, we obtain an upper bound of
n/k for the price of (group) fairness.

1260



Fairness in Influence Maximization through Randomization

Pessimistic Price of Fairness. A more pessimistic point of view leads to a different definition
of the price of fairness. Indeed, the reader might have wondered if it is the correct choice to define
PoFX and PoFP using the maximum spread over all fair solutions in the denominator. In fact, if we
just compute any fair solution, the loss in terms of efficiency that we may incur could be as large as

PoFX (G, C, k) :=
maxS∈(Vk)

σ(S)

minx∈FX (G,C,k) σ(x)
and PoFP(G, C, k) :=

maxS∈(Vk)
σ(S)

minp∈FS(G,C,k) σ(p)
,

for the node-based problem and the set-based problem, respectively. We call this alternative definition
the pessimistic price of fairness for a graph G, community structure C and budget k. We note that
clearly PoFX (G, C, k) ≥ PoFX (G, C, k) and PoFP(G, C, k) ≥ PoFP(G, C, k). Moreover, we note that
Lemma 3.1 holds still for this alternative definition as σ(x) = σ(p) = n · ρ for all x ∈ FX (G, C, 1)
and p ∈ FP(G, C, 1). In contrast, we observe that Lemma 3.2 does not transfer to the pessimistic
notion. In fact, we obtain only the following weaker lemma.

Lemma 3.3. For any graph G, community structure C and number k, it holds that PoFX (G, C, k) ≤ n
and PoFP(G, C, k) ≤ n.

Proof. Recall that all communities are non-empty. Fix an arbitrary community C. Now, consider
σC(x) as a function of xv for a node v ∈ C. This function is strictly monotonically increasing in [0, 1].
And thus all fair solutions x satisfy that the expected size of the seed set is at least 1, i.e., 1Tx ≥ 1.
Similarly, it can be seen that all fair solutions p to the set-based problem satisfy

∑
S⊆V pS |S| ≥ 1.

Furthermore, the expected size of the spread σ(x) and σ(p) is larger than the expected size of the
seed set, i.e., for any fair x and p, it holds that σ(x) ≥ 1 and σ(p) ≥ 1. Thus minp∈FP (G,C,k) σ(p) ≥ 1
and minx∈FX (G,C,k) σ(x) ≥ 1. Together with σ(S) ≤ n for any set S, we obtain an upper bound of n
for the price of (group) fairness.

It turns out that the above bound is tight. Consider the following example. The graph G consists
of one isolated node v and a (to v unconnected) clique of n− 1 nodes with edge probabilities being
1. Assume furthermore that the community structure C is such that the nodes in the clique do not
participate in any community, while v forms its own community. Furthermore, assume that the
budget k is 2. The node-based solution x that is zero everywhere but for xv = 1 and the set-based
solution p that is zero everywhere but for p{v} = 1 are optimal fair solutions as they achieve an
objective value of 1. The deterministic solution S = {u, v}, where u is an arbitrary node in the
clique however satisfies σ(S) = n and thus PoFX (G, C, 2) ≥ n and PoFP(G, C, 2) ≥ n. Finally, we
remark that the above example heavily depends on the fact that it is not necessary to use the whole
budget k in order to obtain an optimal fair node-based or set-based solution.

3.2 Hardness

Fish et al. (2019) show that the standard maximin problem as introduced in Section 2 is NP-hard and
even inapproximable. In this section, we provide hardness results for our set-based and node-based
probabilistic maximin problems that we introduced in Section 2.2. In the first paragraph of this
subsection, we prove that both problems are NP-hard. In the second paragraph, we even show that
the node-based probabilistic maximin problem cannot be approximated to within 1− 1/e+ ε for
any ε > 0 unless P = NP . We note that, although it shows a stronger result, our reduction in the
second paragraph is significantly less involved than the NP-hardness result in the first paragraph.
The reader may thus wonder why we still present the more involved proof of the weaker NP-hardness
of the node-based problem. The reason for this choice is that we think that the first reduction gives
further insight into how the hardness is implied from the fairness criteria. Note that the reduction
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in the second paragraph uses a single community and thus, in a certain sense, the hardness of
approximation is inherent to maximizing influence spread rather than due to any fairness issue.

NP-Hardness. The main result of this paragraph is the following theorem.

Theorem 3.4. For a directed arc-weighted graph G = (V,E,w) it is NP-hard to decide if there is
p ∈ P with minv∈V ES∼p[σv(S)] ≥ α (resp. x ∈ X with minv∈V ES∼x[σv(S)] ≥ α) for any α ∈ (0, 1)
even when using the IC model.

The proof of the theorem is based on a reduction from the vertex cover problem. In the vertex
cover problem, we are given a graph G = (V,E) where V is a set of n vertices and E is a set of m
edges, and an integer k. The task is to determine if there exists a set T = {vi1 , . . . , vik} of k vertices
such that ∀e ∈ E, e ∩ T 6= ∅. We proceed by describing the reduction.

Let α ∈ (0, 1) be arbitrary. Given an instance of the vertex cover problem, we create instances of
the set-based and node-based probabilistic maximin problem defined as follows, see Figure 3. Let us
call the resulting directed graph G = (U,A) and let us assume that the IC model is the underlying
diffusion model and that we are considering the singleton community structure. The node set U
contains (1) one vertex uv for each vertex v ∈ V , (2) one auxiliary vertex ua, (3) a vertex ue for each
edge e ∈ E, (4) a set Ie = {ue1 , . . . , ueλ} of λ := dmk(k+1)

α(1−α)2 e+ 1 vertices for every edge e ∈ E. The
edge set A is defined as follows: (1) Each vertex uv has an outgoing edge towards ua labelled with
probability 1, while the vertex ua has an outgoing edge with probability α towards each vertex uv.
(2) There is an edge labelled with probability 1 from uv to ue if v ∈ e. (3) There are edges from ue to
all vertices uei for each edge e ∈ E labelled with probability α. We set the budget for both set-based
and node-based problems equal to k. Our aim is now to show that there exists a vertex cover of

v

w

e ua

uv

uw

ue

1

1

α

α

1

1

ue1

ue2

...

ueλ

α

α

α

Ie

Figure 3: Illustration of the reduction: Scheme in G that is obtained for one edge e = {v, w} in G.
Note that there is just one node ua in G, while there is a node ue and a set of nodes Ie
for each edge e ∈ E.

size k in G if and only if there exists p ∈ P (resp. x ∈ X ) such that minu∈U ES∼p[σu(S)] ≥ α (resp.
minu∈U ES∼x[σu(S)] ≥ α) in G. The following direction is immediate:

Lemma 3.5. If there exists a vertex cover {vi1 , . . . , vik} of size k in G, then there exists p ∈ P
(resp. x ∈ X ) such that minu∈U σu(p) ≥ α (resp. minu∈U σu(x) ≥ α) in G.

Proof. Consider the set-based solution p ∈ P such that pS = 1 for S = {uvi1 , . . . , uvik} and the node-
based solution x ∈ X such that xu = 1 if u ∈ {uvi1 , . . . , uvik}. Then, clearly minu∈U ES∼p[σu(S)] ≥ α
and minu∈U ES∼x[σu(S)] ≥ α.

It remains to argue the reverse direction. We first fix the following two observations.
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Observation 3.6. 1. There exists an optimal solution p∗ (resp. x∗) such that, for any set
S ⊆ V with ({ua} ∪ {ue : e ∈ E}) ∩ S 6= ∅, it holds that pS = 0 (resp. px

∗
S = 0, where

px
∗
S :=

∏
i∈S x

∗
i

∏
j∈V \S(1− x∗j )).

2. For an edge e = {v, w} ∈ E, let uei ∈ Ie be a corresponding vertex and let S ⊆ U . Then
(i) σuei (S) = 1 if uei ∈ S, (ii) σuei (S) = α if uei /∈ S and {uv, uw} ∩ S 6= ∅, and (iii)
σuei (S) ≤ α(1− (1− α)2) otherwise.

Proof. 1. Assume that pS > 0 (resp. pxS > 0) for some set S ⊆ V with ({ua}∪{ue : e ∈ E})∩S 6= ∅.
Let u be a node in the intersection and let S′ be the set S with u replaced by one of its
in-neighbors, call it u′. Then, clearly p′ := p− pS1S + pS1S′ (resp. x′ := x− xu1u + xu1u′)
satisfies σu(p′) ≥ σu(p) (resp. σu(x′) ≥ σu(x)) for all vertices u ∈ U . It follows that p (resp.
x) can be transformed into a distribution (resp. vector) satisfying pS = 0 (resp. px∗S = 0) for
all S ⊆ V with ({ua} ∪ {ue : e ∈ E}) ∩ S 6= ∅.

2. The first two cases are trivially true. For the third case, note that in that case uei can be
reached at most via ua. The probability that at least one of uv, uw gets reached from ua is at
most 1− (1− α)2 and thus σuei (S) ≤ α(1− (1− α)2).

We are now ready to prove the lemma showing the reverse direction.

Lemma 3.7. If there exists no vertex cover {vi1 , . . . , vik} of size k in G, then for all optimal solutions
p∗ ∈ P and x∗ ∈ X it holds that minu∈U σu(x∗) ≤ minu∈U σu(p∗) < α in G.

Proof. Following Observation 3.6, let p∗ be such that, for any set S ⊆ V with ({ua} ∪ {ue : e ∈
E}) ∩ S 6= ∅, it holds that p∗S = 0. Our goal is to show that there exists one vertex u ∈ U such that
σu(p∗) < α. Let e = {v, w} ∈ E be arbitrary and recall that Ie is of size λ. Thus, there exists i ∈ [λ]
such that PrS∼p∗ [uei ∈ S] ≤ k/λ as otherwise ES∼p∗ [|S|] > k. W.l.o.g. let us assume that i = 1 for
all edges e ∈ E. Observe that then, for all e ∈ E, it holds that

σue1 (p∗) = Pr
S∼p∗

[ue1 ∈ S] + ES∼p∗ [σue1 (S) | ue1 /∈ S] · Pr
S∼p∗

[ue1 /∈ S]

≤ k

λ
+ ES∼p∗ [σue1 (S) | ue1 /∈ S].

(1)

In order to upper bound the above expectation, we define ρe := PrS∼p∗ [S ∩ {uv, uw} = ∅]. Using
Observation 3.6, we get

ES∼p∗ [σue1 (S) | uei /∈ S] ≤ α(1− (1− α)2) · ρe + α · (1− ρe) = α− ρe · α(1− α)2. (2)

In order to complete the proof it thus remains to find e ∈ E for which ρe can be bounded from
below. We deduce this bound from a lower bound on the sum of all ρe’s. We have∑

e∈E
ρe ≥

∑
e=(v,w)∈E

ES∼p∗ [1S∩{uv ,uw}=∅ | |S| ≤ k] · Pr
S∼p∗

[|S| ≤ k]

≥
ES∼p∗ [

∑
e∈E 1S∩{uv ,uw}=∅ | |S| ≤ k]

k + 1

using that ES∼p∗ [|S|] ≤ k and hence using Markov’s inequality

Pr
S∼p∗

[|S| ≤ k] = 1− Pr
S∼p∗

[|S| ≥ k + 1] ≥ 1− k

k + 1
=

1

k + 1
.
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We now use that there exists no vertex cover of size k in G and thus for each S with |S| ≤ k, there
exists e ∈ E such that S ∩ {uv, uw} = ∅. Hence, we get

∑
e∈E ρe ≥ 1/(k + 1). This also implies

that there exists one edge ē ∈ E for which ρē ≥ 1/(m(k + 1)). Plugging this into (2) and this again
into (1) gives

σuē1 (p∗) ≤ k

λ
+ α− α(1− α)2

m(k + 1)
< α,

using that λ > mk(k+1)
α(1−α)2 by definition.

The above two lemmata directly prove Theorem 3.4.

Hardness of Approximation for Node-Based Problem. We continue by proving an even
stronger result for the node-based probabilistic maximin problem.

Theorem 3.8. For any ε > 0, the node-based probabilistic maximin problem, cannot be approximated
to within a factor 1− 1/e+ ε unless P = NP .

Proof. The proof is by reduction from the Max-Coverage problem. An instance of Max-
Coverage is given by an integer κ and a collection of subsets D = {S1, . . . , Sµ} of a universe
of elements U = {e1, . . . , eν}. The task is to find a subset T of at most κ subsets from D such
that the number of elements in their union |

⋃
S∈T S| is maximized. Recall that, for any ε > 0,

Max-Coverage cannot be approximated to within 1 − 1/e + ε, unless P = NP (Feige, 1998,
Theorem 5.3).

We construct the following instance of the node-based probabilistic maximin problem. The graph
G = (V,E) has an nodeset V that consists of two sets of nodes, the first being L := {u1, . . . , uµ} and
the second being R := {v1, . . . , vν}. There is an edge from node ui to node vj , if and only if ej ∈ Si.
The weight of all these edges is 1. The community structure C consists of a single community C
that is equal to R. Now, w.l.o.g., we can assume that any node-based solution x satisfies xv = 0
for all nodes v ∈ R. Suppose otherwise, then transferring xv to any of v’s ingoing neighbors can
only increase the value of σC(x). There is a one-to-one correspondence between the feasible sets
to Max-Coverage and the integral solutions to the node-based probabilistic maximin problem
as follows. A feasible set T in Max-Coverage that covers ` elements implies an integral solution
to the node-based probabilistic maximin problem with xui = 1 for all Si in T and 0 otherwise that
achieves a value of σC(x) = `/ν. The other direction holds as well.

Now, let ε > 0 and assume that there exists an algorithm with approximation ratio 1− 1/e+ ε
for the node-based probabilistic maximin problem. Let x ∈ X be the output of that algorithm for
the instance constructed above. Notice that the objective function in the node-based probabilistic
maximin problem is equal to

f(x) =
1

ν

∑
v∈R

σv(x) =
1

ν

∑
v∈R

(
1−

∏
u∈δin(v)

(1− xu)
)
,

where δin(v) denote all the ingoing neighbors of node v. It is clear that f is ε-convex in the sense
of Ageev and Sviridenko (2004) and thus Pipeage rounding (Ageev & Sviridenko, 2004) can be
used in order to compute a vector 1T from x such that f(1T ) ≥ f(x). Denoting with x∗ and T ∗

an optimal solution to the node-based probabilistic maximin problem and the Max-Coverage
problem, respectively, this implies∣∣⋃

S∈T S
∣∣

ν
= f(1T ) ≥ f(x) ≥

(
1− 1

e
+ ε
)
· f(x∗) ≥

(
1− 1

e
+ ε
)
· f(1T ∗) =

(
1− 1

e
+ ε
)
·
∣∣⋃

S∈T ∗ S
∣∣

ν
.

Hence, we obtain an algorithm for Max-Coverage with approximation ratio 1− 1/e+ ε which is
impossible unless P = NP . This completes the proof.
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4. Approximation Algorithms

In this section, we show that there are algorithms that compute (1− 1/e, ε)-approximations to both
the node-based and the set-based probabilistic maximin problems. We start with a standard step
that allows us to approximate the functions σC(p) and σC(x) to within an additive error of ε for any
ε > 0.

Approximation via Hoeffding’s bound. The functions σC(p) and σC(x) involved in the opti-
mization problems at hand are not computable exactly in polynomial time (even for a vector p of
polynomial support). Even worse, they are not relatively approximable using Chernoff bounds as
there is no straightforward absolute lower bound on σC(S) for sets S of size k and communities
C ∈ C. Here, we will show that the functions can be absolutely approximated by functions σ̃C(p)
and σ̃C(x) that are obtained by sampling a sufficiently large number of live-edge graphs. Optimal
solutions to the resulting maximin problems involving the approximate functions can thus be shown
to be (1, ε)-approximations to optP(G, C, k) and optX (G, C, k), respectively.

Formally, for T ∈ Z≥0, we let L1, . . . , LT denote a set of T live-edge graphs sampled according
to the Triggering model (that entails both the IC and LT model). Then, for v ∈ V and S ∈ 2V , we
define

σ̃v(S) :=
1

T

T∑
t=1

1v∈ρLt (S).

Lemma 4.1. Let δ ∈ (0, 1/2) and ε ∈ (0, 1). If T ≥ ε−2 · [n+ log n+ log δ−1], then, with probability
at least 1− δ, we have that |σ̃v(S)− σv(S)| ≤ ε holds for all v ∈ V and S ∈ 2V .

Proof. We use Hoeffding’s Bound, see for example Theorem 4.12 in the book by Mitzenmacher and
Upfal (2017). Fix a node v ∈ V and a set S ∈ 2V . Note that the graphs L1, . . . , LT are sampled
independently and that 1v∈ρLt (S) ∈ [0, 1]. Hence, Pr[|σ̃v(S)− σv(S)| ≥ ε] ≤ 2e−2Tε2 ≤ δ · 2−n/n by
the choice of T and assuming that n ≥ 2. Using a union bound over all 2n sets S ∈ 2V and all n
nodes v ∈ V , we obtain that with probability at least 1 − δ, we have |σ̃v(S) − σv(S)| ≤ ε for all
v ∈ V and for all S ∈ 2V .

We now observe that the absolute ε-approximations σ̃v(S) for all nodes v ∈ V and sets S ∈ 2V

imply also that σ̃v(p) = ES∼p[σ̃v(S)] is an absolute ε-approximation of σv(p) := ES∼p[σv(S)] for any
p ∈ P. The same holds true for σ̃v(x) = ES∼x[σ̃v(S)] for any x ∈ X .

Furthermore, we get the same result for σ̃C(p) := 1
|C|
∑

v∈C σ̃v(p) for any p ∈ P and C ∈ C and
for σ̃C(x) := 1

|C|
∑

v∈C σ̃v(x) for any x ∈ X and C ∈ C as these functions are again just averages
over other absolute ε-approximations. Hence we get the following lemma.

Lemma 4.2. Let δ ∈ (0, 1/2) and ε ∈ (0, 1). Assume that T ≥ 4ε−2 · [n+ log n+ log δ−1] and that
σ̃C(·) is as above. Let p ∈ P and x ∈ X be (α, β)-approximations for maxp∈P minC∈C σ̃C(p) and
maxx∈X minC∈C σ̃C(p), respectively. Then p and x are (α, β + ε)-approximations of optP(G, C, k)
and optX (G, C, k) with probability at least 1− δ, respectively.

Proof. For any q ∈ P , define m(q) := minC∈C σC(q) and m̃(q) := minC∈C σ̃C(q). Then, according to
Lemma 4.1 and the comments preceding this lemma, with probability at least 1− δ, it holds that
m̃(q) ∈ [m(q)− ε/2,m(q) + ε/2]. Let p∗ and p̃∗ be maximizing solutions for m and m̃, respectively.
Then

m(p) ≥ m̃(p)− ε

2
≥ α · m̃(p̃∗)− β − ε

2
≥ α · m̃(p∗)−

(
β +

ε

2

)
≥ α ·m(p∗)− (β + ε).

The proof for the node-based problem is completely analogous.
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4.1 Probabilistically Choosing Nodes

We start with the node-based problem. It entails to solve the optimization problem optX (G, C, k) :=
maxx∈X minC∈C σC(x), where σC(x) = ES∼x[σC(S)] for C ∈ C and x ∈ X := {x ∈ [0, 1]n : 1Tx ≤ k}.
Recall that S ∼ x denotes the random process of independently letting i ∈ V be in S with probability
xi. We use Lemma 4.2 in order to approximate σC(·) and thus, in what follows, we focus on finding
an approximation algorithm for the problem maxx∈X minC∈C σ̃C(x). We note that Theorem II.5
from Chekuri et al. (2010) in combination with a binary search on a threshold can be used in order
to get a (1− 1/e, 0)-approximation for this problem. In what follows we give a more direct derivation
of such an approximation.

Node-based Problem via LP. Note that the optimization problem at hand is not linear as, for
given x, the probability to sample S ∈ 2V is equal to

∏
i∈S xi

∏
i/∈S(1 − xi). We will now argue

however that the problem can be constantly approximated by an LP.
For a live-edge graph L and a node v ∈ V , what is the probability of sampling a set S that can

reach v in L, i.e., what is qv(L, x) := PrS∼x[v ∈ ρL(S)]? It is the opposite event of not sampling any
node that can reach v in L, hence qv(L, x) = 1−

∏
i∈V :v∈ρL(i)(1− xi) and this is approximated by

the function pv(L, x) := min{1,
∑

i∈V :v∈ρL(i) xi} as shown in the following observation.

Observation 4.3. For any live-edge graph L, node v ∈ V , and x ∈ X , it holds that qv(L, x) ∈
[(1− 1

e ) · pv(L, x), pv(L, x)].

Proof. We start with the lower bound. For simplicity, we let {i ∈ V : v ∈ ρL(i)} =: {1, . . . , r} = R.
Using the geometric-arithmetic mean inequality, we get

qv(L, x) = 1−
∏
i∈R

(1− xi) ≥ 1−
(1

r

∑
i∈R

(1− xi)
)r

= 1−
(

1− 1

r

∑
i∈R

xi

)r
≥
(

1−
(

1− 1

r

)r)
·min

{
1,
∑
i∈R

xi

}
≥
(

1− 1

e

)
· pv(L, x),

where the second to last inequality uses that f(x) = 1− (1− x/r)r is concave on the interval [0, 1].
We prove the upper bound by induction on r. Clearly if r = 1, by the definition of X , we have

that pv(L, x) = min{1, x1} = x1 = qv(L, x). Let us show the statement for r, assuming that it holds
for r − 1. If pv(L, x) = 1, the statement is obvious as qv(L, x) ≤ 1. If pv(L, x) < 1, we get

qv(L, x) = 1−
r−1∏
i=1

(1− xi) + xr ·
r−1∏
i=1

(1− xi) ≤
r−1∑
i=1

xi + xr ·
r−1∏
i=1

(1− xi) ≤
r∑
i=1

xi = pv(L, x),

where the first inequality uses the induction hypothesis and min{1,
∑r−1

i=1 xi} =
∑r−1

i=1 xi as pv(L, x) <
1, while the second inequality uses that

∏r−1
i=1 (1− xi) ≤ 1.

We now define λv(x) := 1
T

∑T
t=1 pv(Lt, x) and analogously λC(x) := 1

|C|
∑

v∈C λv(x). As pv(L, x)

provides an approximation for qv(L, x), we can show that the node-based maximin problem can be
approximated by a solution to a maximin problem involving the functions λC(x).

Lemma 4.4. Let x ∈ X be an optimal solution to maxx∈X minC∈C λC(x), then x is a (1− 1/e, 0)-
approximation to maxx∈X minC∈C σ̃C(x).

Proof. Note that σ̃C(x) = ES∼x[σ̃C(S)] = 1
|C|
∑

v∈C σ̃v(x) for any x ∈ X and that furthermore

σ̃v(x) = 1
T

∑T
t=1 qv(Lt, x). Hence the definition of λC(x) and Observation 4.3 yield the result.
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Together with Lemma 4.2 and the fact that maxx∈X minC∈C λC(x) can be written as a linear
program by introducing a threshold variable for the minimum, we get the following result.

Theorem 4.5. Let δ ∈ (0, 1/2) and ε ∈ (0, 1). There is a polynomial time algorithm that, with
probability at least 1− δ, computes x ∈ X such that minC∈C σC(x) ≥ (1− 1

e ) optX (G, C, k)− ε.

Proof. It remains to observe that an optimal solution to maxx∈X minC∈C λC(x) can be obtained by
solving the following linear program of polynomial size:

max
{
τ :

n∑
i=1

xi ≤ k, yvt ≤
∑

i:v∈ρLt (i)

xi ∀v ∈ V, t ∈ [T ],

∑
t∈[T ]

∑
v∈C

yvt ≥ T |C| · τ ∀C ∈ C,

x ∈ [0, 1]n, yvt ∈ [0, 1] ∀v ∈ V, t ∈ [T ]
}
.

By combining Lemma 4.4 and Lemma 4.2, we get that, with probability at least 1− δ, the optimal
solution to the above LP is a (1− 1/e, ε)-approximation to optX (G, C, k).

4.2 Probabilistically Choosing Sets

Recall the set-based probabilistic maximin problem optP(G, C, k) := maxp∈P minC∈C σC(p), where
σC(p) = ES∼p[σC(S)] for C ∈ C and p ∈ P := {p ∈ [0, 1]2

V
: 1T p = 1,

∑
S⊆V pS |S| ≤ k}. In the

light of Lemma 4.2, we focus on finding approximate solutions to maxp∈P minC∈C σ̃C(p).
Allowing for distributions over sets rather than nodes turns the optimization problem at hand,

maxp∈P minC∈C σ̃C(p), into a problem that can be written as a linear program. While the original
problem, i.e., the problem of choosing a set maximizing the approximate minimum probability, can
be written as an integer linear program using a variable to model a threshold to be maximized.
Hence, from an algorithmic point of view, one may think that this makes the problem polynomial
time solvable. The caveat is of course that the dimension of P is large, namely Θ(2n), which turns
the dimension of the corresponding linear program exponential. In this section, we show that,
nevertheless, the problem can be approximated to within a constant factor using a specific kind of
linear programming algorithm. The essential observation is that the linear program at hand actually
is a covering linear program. We will use a result due to Young (1995) that shows that such linear
programs can be solved efficiently independent of their dimension under the condition that a certain
oracle problem can be solved efficiently. We proceed by introducing the result of Young.

Young’s Algorithm. Young (1995) gives algorithms for solving packing and covering linear
programs. A covering problem in the sense of Young is of the following form: Let P ⊆ Rν be a convex
set and let f : P → Rµ be a µ-dimensional linear function over P . Assume that 0 ≤ fj(x) ≤ ω for all
j ∈ [µ] and x ∈ P , where ω is the width of P w.r.t. f . The covering problem consists of computing
λ∗ := maxx∈P minj∈[µ] fj(x), when fj(x) ≥ 0 for all x ∈ P .

Theorem 4.6 (Young (1995)). Let η ∈ (0, 1) and assume that there is an oracle that, given a non-
negative vector z ∈ Rµ returns x ∈ P and f(x) satisfying

∑
j∈[m] zjfj(x) ≥ α·maxx∈P {

∑
j∈[m] zjfj(x)}

for some constant α ≤ 1, then there is an algorithm that computes x ∈ P with minj∈[µ] fj(x) ≥
α(1− η) · λ∗ in O(ωη−2 logµ/λ∗) iterations in each of which it does O(µ) work and calls the oracle
once. The output x is the arithmetic mean of the vectors returned by the oracle.
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Set-Based Problem via Young’s Algorithm. Clearly σ̃C is a linear function in p, namely
σ̃C(p) =

∑
S⊆V pS σ̃C(S) and thus the problem maxp∈P minC∈C σ̃C(p) takes exactly the form of a

covering problem in the sense of Young with ν = 2n, µ = m = |C|, P = P, and ω = 1. Hence,
we can compute a (α, 0)-approximation for maxp∈P minC∈C σ̃C(p), if we provide an oracle with
multiplicative approximation α. Hence, let us take a closer look at the requirements of Theorem 4.6
in terms of the oracle problem. Given a non-negative vector z ∈ Rm, the oracle is required to return
p ∈ P and σ̃C(p) for C ∈ C such that

∑
C∈C zC σ̃C(p) ≥ α ·maxp∈P{

∑
C∈C zC σ̃C(p)} for some α ≤ 1.

Note that, by linearity of expectation∑
C∈C

zC σ̃C(p) = ES∼p
[∑
C∈C

zC ·
1

|C|
∑
v∈C

σ̃v(S)
]

= ES∼p
[∑
v∈V

ωv · σ̃v(S)
]
,

where ωv :=
∑

C∈C:v∈C zC/|C|. Hence the oracle problem that the Young’s algorithm has to solve
takes the form

optO(G, C, k, ω) := max
p∈P

σ̃ω(p). (3)

We obtain the following lemma that shows that there is always an optimal solution of linear support.

Lemma 4.7. It holds that optO(G, C, k, ω) = optQ(G, C, k, ω) with

optQ(G, C, k, ω) := max
q∈Q

n∑
i=1

qiσ̃
ω(S∗i ), (4)

where Q := {q ∈ [0, 1]n : 1T q = 1,
∑n

i=1 i · qi ≤ k} and S∗i ∈ argmax{σω(S) : S ∈
(
V
i

)
} for i ∈ [n].

Proof. Let q∗ be an optimal solution to (4). Define p ∈ P as pS = q∗i if S = S∗i and 0 otherwise. Then,
p is a feasible solution to (3) and thus optO(G, C, k, ω) ≥ optQ(G, C, k, ω). It remains to prove that
optO(G, C, k, ω) ≤ optQ(G, C, k, ω). For this sake let p∗ ∈ P be an optimal solution to (3). Assume
p∗S > 0 for some set S of cardinality i, but S 6= S∗i . Consider the solution p′ := p− pS1S + pS1S∗i .
Clearly, σ̃ω(p) ≤ σ̃ω(p′) as S∗i by definition is a maximizing set of size i. This modification can
be repeated until we obtain a solution p̄ with p̄S = 0 for all sets S but the sets S∗1 , . . . S∗n. Clearly
p̄ is an optimal solution to (3) as each modification did not decrease the value of σ̃ω(·). Now
consider the vector q defined by qi = p̄S∗i for i ∈ [n]. Then, q is a feasible solution to (4) and thus
optO(G, C, k, ω) ≤ optQ(G, C, k, ω).

In other words, among the vectors that attain the optimum optO(G, C, k, ω), there is also one
that assigns a positive value to at most n sets. Namely, to one set S∗i ∈

(
V
i

)
for each i ∈ [n]. We now

observe that σ̃ω(·) is a submodular and monotone set function. Hence, for each i ∈ [n], the greedy
hill climbing algorithm computes (1− 1/e, 0) approximations to max{σ̃ω(S) : S ⊆ V, |S| ≤ i}. Let
S1, . . . , Sn denote these approximate solutions. Note that we can assume S1 ⊆ S2 ⊆ . . . ⊆ Sn as
we can compute all the sets via one run of the greedy algorithm with budget n. Now consider the
optimization problem

optgr
Q(G, C, k, ω) := max

q∈Q

n∑
i=1

qiσ̃
ω(Si) (5)

that is identical to (4) up to the replacement of S∗i by Si. We obtain the following lemma.

Lemma 4.8. The vector 1k is an optimal solution to the problem in (5). Consequently, σ̃ω(Sk) =
optgr
Q(G, C, k, ω) ≥ (1− 1/e) · optO(G, C, k, ω).
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Proof. Let q ∈ Q be arbitrary. For i ∈ [n], define αi :=
∑n

j=i qj and ∆i := σω(Si)− σω(Si−1) with
S0 = ∅. Recall that Q := {q ∈ [0, 1]n : 1T q = 1,

∑n
i=1 i · qi ≤ k} and notice that the last constraint

implies
∑n

i=1 αi =
∑n

i=1 i · qi ≤ k. Now, consider the optimization problem maxβ∈[0,1]n{
∑n

i=1 βi∆i :∑n
i=1 βi ≤ k}. Note that, by submodularity, ∆1 ≥ ∆2 ≥ . . . ≥ ∆n and thus the optimum is

∑k
i=1 ∆i.

This implies that
n∑
i=1

qiσ̃
ω(Si) =

n∑
i=1

αi∆i ≤ σ̃ω(Sk).

We showed that the set Sk obtained by greedily maximizing σ̃ω(·) subject to a budget of k yields
a (1− 1/e, 0)-approximation to the oracle problem. Hence we get the following theorem.

Theorem 4.9. Let δ ∈ (0, 1
2) and ε ∈ (0, 1). There is a polynomial time algorithm that, with

probability at least 1 − δ, computes p ∈ P s.t. minC∈C σC(p) ≥ (1 − 1
e ) optP(G, C, k) − ε. The

algorithm calls an oracle for weighted IM in each of its O(ε−2n logm/k) iterations and the support
of the output p is O(ε−2n logm/k).

Proof. We have argued that, for z ∈ Rm, the greedy hill climbing algorithm can be used on σ̃ω(·),
where ω is such that ωv :=

∑
C∈C:v∈C

zC
|C| for v ∈ V , for obtaining a set S of cardinality k that is

a (1 − 1/e, 0)-approximate solution to the problem of maximizing
∑

C∈C zC σ̃C(p) over P. Thus,
we described an oracle with multiplicative approximation 1 − 1/e. Applying Theorem 4.6 with
η = ε/2 thus implies that Young’s algorithm returns a solution p ∈ P with minC∈C σ̃C(p) ≥
α · (1 − ε

2) maxp∈S minC∈C σ̃C(p) ≥ α ·maxp∈P minC∈C σ̃C(p) − ε
2 after O(ε−2 logm/λ∗) iterations.

Observe that for any p ∈ P and v ∈ V , it holds that σv(p) ≥ PrS∼p[v ∈ S]. Hence, σv(p) ≥ k/n for
all v ∈ V and λ∗ ≥ k/n. Thus the number of iterations is bounded by O(ε−2n logm/k). As the
oracle returns a single set in every iteration it follows that the support of p is upper bounded in
this way as well. Applying Lemma 4.2 with ε/2 leads that we get a (1− 1/e, ε)-approximation to
optP(G, C, k) in polynomial time with probability at least 1− δ.

We now state the multiplicative-weight routine for the set-based problem, see Algorithm 1. We
assume a routine Greedy(σ̃ω(·), k) that performs k iterations of the greedy hill climbing algorithm
on σ̃ω(·) and returns a (1− 1/e, 0)-approximation to the oracle problem.

Algorithm 1: MultiplicativeWeight(G, C, k, ε, δ, η)

1 Sample T ≥ 4ε−2 · [n+ log n+ log δ−1] live-edge graphs;
2 p← 0, i← 1, Π← −∞, ∆←∞, zC ← 1 and sC ← 0 for C ∈ C;
3 repeat
4 ωv ←

∑
C∈C:v∈C

zC
|C| for all v ∈ V ;

5 S ← Greedy(σ̃ω(·), k);
6 p← p+ 1S ;
7 sC ← i−1

i · sC + 1
i · σ̃C(S) and zC ← zC · (1− η · σ̃C(S)), for all C ∈ C;

8 Π← minC{sC} and ∆← min
{

∆, σ̃
ω(S)
1T z

}
;

9 i← i+ 1;
10 until Π ≥ (1− η) ·∆;
11 return p/i
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5. Experiments

We report on an experimental study on the two probabilistic maximin problems. In fact, we
provide implementations of multiplicative-weight routines for both the set-based and the node-based
problems2 The routine for the set-based problem is the one described in Section 4.2. We refer to
this algorithm as set-based in what follows. For the node-based problem, an implementation of
the LP-based algorithm from Section 4.1 does not seem promising as it requires solving a large LP.
Instead, we propose a heuristic approach that is again based on a multiplicative-weight routine.
The essential observation is that the optimization problem maxx∈X minC∈C λC(x) from Lemma 4.4
is again a covering LP and thus can be solved using a similar multiplicative-weight routine. In
this case however, the oracle problem turns out to be the LP-relaxation of the standard influence
maximization problem and thus we are again faced with a linear program of a similar form. This
is where our approach becomes heuristic, we propose to again use a greedy algorithm for influence
maximization in order to obtain feasible solutions for this LP. While this comes without any guarantee
on approximation ratio, it turns out to be very efficient in practice. We refer to this algorithm
as node-based in the remainder of this section. In our study we use random, artificial, as well as
real-world instances. On these instances, we compare our methods, both in terms of fairness and
efficiency (i.e., total spread) with a standard implementation of the greedy algorithm for influence
maximization and the (very straightforward) methods proposed by Fish et al. (2019) as well as
the more involved method due to Tsang et al. (2019). We continue by describing the experimental
setting in detail.

5.1 Experimental Setting

Competitors. The methods of Fish et al. (2019) are simple heuristics. First, they propose to use
the greedy algorithm that iteratively picks k seeds such as to maximize the minimum probability
of any node to be reached (note that this is not the same as the greedy algorithm for influence
maximization). In our implementation of this algorithm, in order to break ties, we use the node
of maximum degree. We refer to this algorithm as greedy_maximin. Second, Fish et al. propose
a routine called myopic that after choosing the node of maximum degree, iteratively chooses the
node that has the minimum probability of being reached as a seed node for k − 1 times. We call
this algorithm myopic_fish. As a third heuristic, called naive-myopic, they propose to choose the
k − 1 nodes of smallest probability all at once instead of in k − 1 iterations. We omit the results of
naive-myopic as they are much worse than the ones of myopic_fish.

The algorithm of Tsang et al. (2019) is much more involved. They phrase the problem as a multi-
objective submodular optimization problem and design an algorithm to tackle such multi-objective
submodular optimization problems that provides an asymptotic approximation guarantee of 1− 1/e.
Their algorithm, that improves over previous work by Chekuri et al. (2010) and Udwani (2018),
is a Frank-Wolfe style algorithm that simultaneously optimizes the multilinear extensions of the
submodular functions that describe the coverage of the respective communities. We stress that
their setting is less general than ours as the algorithm only satisfies an approximation guarantee in
the case where the number of communities is o(k log3(k)). We use their python implementation as
provided while choosing gurobi as solver since the other alternative md (their implementation of a
mirror-descent) is much less efficient on the instances tested. We refer to the algorithm by Tsang et
al as tsang.

We also compare our algorithm to the standard greedy algorithm for influence maximization.
We use the slightly more involved and very efficient TIM implementation (Tang et al., 2014). While

2. The code can be downloaded from https://github.com/sajjad-ghobadi/fair_maximin_im
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there exist even more efficient alternatives to TIM in terms of run-time, the efficiency of TIM is
completely sufficient for our purposes. We refer to this method as tim in our evaluation.

We also compare our algorithms to the ultimate baseline for randomized strategies that is given
by the uniform node-based solution, i.e., every node v is chosen as a seed with probability xv = k/n.
We refer to this method as uf_node_based.

Implementation Details. We implement the multiplicative-weight routines for both the set-
based and the node-based problems in C++ and the routines from Fish et al. in python using
networkx (Hagberg et al., 2008) for graph related computations. We used the TIM algorithm for
influence maximization in order to solve the oracle problems for both multiplicative weight routines.
We choose the η parameter of the multiplicative weight routine (see Theorem 4.6) to be 0.1. Our
implementations are not optimized for run-time at this point. For example, we do not use any
parallelization. While it is easily perceivable that this could lead to big run-time improvements (both
for the greedy algorithm for influence maximization and for the multiplicative-weight routines (Young,
2001)), this is out of the scope of the work reported on in this paper.

We use the IC model as diffusion model in all our experiments. For the methods due to Fish
et al. (2019) and Tsang et al. (2019) (as also proposed by them), we use a constant number of
100 live-edge graphs for simulating the information spread instead of the number that guarantees
(1− ε)-approximations with probability 1− δ. As suggested by the confidence intervals in all our
plots, this leads to sufficiently small variance on the instances tested.

All experiments were executed on a compute server running Ubuntu 16.04.5 LTS with 24 Intel(R)
Xeon(R) CPU E5-2643 3.40GHz cores and a total of 128 GB RAM. The code was executed with
python version 3.7.6 and C++ implementations were compiled with g++ 7.5.0. For the random
generation of the graphs and the random choices of the live-edge graphs, we do not explicitly set the
random seeds used by the random number generator. This does not prevent reproducibility of our
results as all the reported results are averages that are robust and independent of the random seeds
chosen as indicated by the confidence intervals reported.

Evaluation Details. For random and synthetic instances, each datapoint in our plots is the
result of averaging over 25 experiments, 5 runs on each of 5 graphs generated according to the
respective graph model. For real world instances each datapoint is the result of averaging over 5
runs on each graph. Error-bars in our plots indicate 95-% confidence intervals. For the evaluation of
σv(x) we choose to approximate the value using a Chernoff bound in a way to obtain an additive
ε-approximation of the values with probability 1− δ and in the reported experiments we choose both
parameters as 0.1.

We report both ex-ante and ex-post fairness values for our methods (for short, we use ea and
ep as suffices). These have the following precise meaning. After computing probabilistic strategies
p or x for the set-based and node-based problems, the ex-ante fairness values correspond to the
objective values minC∈C ES∼p[σC(S)] for the set-based and minC∈C ES∼x[σC(S)] for the node-based
problem. The ex-post values on the other hand are obtained by sampling a single set S according
to the probabilistic strategy p or x and then reporting the value minC∈C σC(S). We report also
both ex-ante and ex-post values for the method of Tsang et al. (2019), since, at the core, their
algorithm works with the multilinear extension and thus also computes a continuous solution x ∈ Rn,
i.e., a feasible solution to the node-based problem. Hence for their method we report both the
value minC∈C ES∼x[σC(S)] as ex-ante value and a value minC∈C σC(S) as ex-post value, where S is
computed by swap rounding from x as described in their paper.

Instances. We evaluate the different algorithms on a vast set of instances. We proceed by describing
the networks and the community structures that we use in our study.
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Figure 4: Results for Barabási-Albert instances: k = 20, n increasing from 40 to 200 in steps of 20.
The minimum community probability is shown on the left, while expected spread is shown
on the right. From top to bottom, we see (1) singleton community structure, (2) BFS
community structure, and (3) random imbalanced community structure.

Networks. We use the following networks: (1) Random instances generated according to the
Barabási-Albert model (Albert & Barabási, 2002) that yields scale-free networks – a property
frequently observed in social networks. We use the parameter modeling the preferential attachment
to be 2, i.e., every newly introduced node is connected to two previously existing nodes. (2) Random
instances generated according to the block-stochastic model that is a natural choice in our setting as
the instances come along with a community structure. (3) The publicly available synthetic instances
from the work of Tsang et al. (2019). (4) Real world instances from the SNAP database (Leskovec
& Krevl, 2014) and a paper by Guimerà et al. (2003), some of which were used also by Fish et al.
We describe the real-world instances in detail below in the corresponding paragraph. The number
of nodes and edges as well as the information whether the networks are directed or undirected are
summarized in Table 2. For most of our experiments and unless stated differently, we choose edge
weights uniformly at random in the interval [0, 0.4] for random instances and the synthetic instances
of Tsang et al., and in the interval [0, 0.2] for the real world instances.

Community Structure. Regarding the community structure, in the case of some networks such
as the block-stochastic networks, the synthetic networks due to Tsang et al., and some real world
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Dataset Nodes Edges Direction

Barabási-Albert 40− 200 152− 792 Directed
Block-stochastic (q = 0.1, p increasing) 200 1920− 3456 Directed
Block-stochastic (p = 0.1, q increasing) 200 139− 2059 Directed

Synthetic networks 500 1576− 1697 Directed
Arenas 1133 5451 Directed

email-Eu-core 1005 25571 Directed
ca-GrQc 5242 14496 Undirected
ca-HepTh 9877 25998 Undirected
Facebook 4039 88234 Undirected
Irvine 1899 20296 Directed

com-Youtube 3000 29077 Undirected

Table 2: Properties of random, synthetic and real world networks

graphs the community structures are given. On all other networks we use some of the following
different ways of constructing the community structure: (1) Singleton communities: every node is
his own community. (2) BFS community structure: for a predefined number of communities m, we
iteratively grow communities of size n/m by breadth first search from a random source node (once
there are no more reachable nodes but the community is still not of size n/m, we pick a new random
source, until every node is in one of the m communities). (3) Random imbalanced community
structure: we randomly assign nodes to one of m communities of fixed sizes. We use different values
for the sizes and specify them for each of the experiments.

We note that the BFS community structure results in a rather connected community structure
which is realistic for some applications. On the other hand, the random imbalanced community
structure, is rather unconnected. Also this setting is realistic for some applications as for example if
the groups indicate gender or ethnicity and we assume that people connect independently of these
attributes.

5.2 Results

Barabási-Albert Graphs. For the Barabási-Albert graphs, we explore singleton communities,
the BFS community structure with m = k,3 and random imbalanced community structures of sizes
4n/10, 3n/10, 2n/10, n/10. The results are reported in Figure 4. In the left plots in Figure 4, we
can see that the ex-ante values of our methods set_based and node_based dominate over all other
ex-ante and ex-post values. Furthermore, we can see that particularly in the last plot, where the
community structure is less simplistic, even the ex-post values of our methods dominate over the
ones of all competitors. In the right plots, where we show the expected spread, we can see that tim
outperforms other methods for all values of n. We note however that the advantage in efficiency
of tim is not too pronounced, particularly in comparison to the disadvantage it yields in terms of
fairness, see for example the plot on the top left.

Block-Stochastic Graphs. In order to further explore how the connectivity of the community
structure influences the performance of the different approaches, we generate Block Stochastic graphs
as follows. We fix the number of nodes to 200, the number of communities to 16 with 6 communities

3. We note that in this case the algorithm of Tsang et al. satisfies its approximation guarantee.
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Figure 5: Results for block stochastic graphs: edge weights constant 0.05, k = 8, n = 200. The
minimum community probability is shown on the left, while expected spread is shown on
the right. From top to bottom, we see (1) q = 0.1 and p increasing from q to 1 in steps of
0.1, (2) p = 0.1 and q increasing from 0 to p in steps of 0.01.

of size n/40, 4 communities of size 2n/40, 4 communities of size 4n/40 and 2 communities of size
5n/40. We then choose two parameters p and q, and create a sequence of instances where the
probability of an edge within a community is p and between communities q. The larger choices
of p and q yield very dense graphs and thus instances become trivial. We choose edge weights to
be 0.05 in this experiment as for the larger choice the instances become trivial as the minimum
community probability becomes very large. The results are reported in Figure 5. In the left plots we
can see that again the ex-ante values of set_based and node_baserd dominate over all other values.
Clearly, by increasing p and q in both experiments, the values of all algorithms are increased. In the
second experiment, for smaller q, when communities are better connected within each other than
between each other, there is a bigger advantage for ex-ante values over ex-post values. In the right
column, for smaller p and q, all algorithms are close to each other. Again tim dominates over the
other algorithms in terms of expected spread, while also the other algorithms – and in particular
set_based and node_based – perform well.

Instances of Tsang et al. Next we evaluate the algorithms on the instances used by Tsang et
al. (2019). These are synthetic networks introduced by Wilder et al. (2018b) in order to analyze
the effects of health interventions. Each of the 500 nodes in these networks has some attributes
(region, ethnicity, age, gender, status) and more similar nodes are more likely to share an edge. The
attributes induce communities and we test, as proposed by Tsang et al. (2019), all algorithms w.r.t.
group fairness of the communities induced by some of those attributes. The results are reported
in Figure 6. Again the ex-ante fairness values of our methods dominate over all other algorithms
as can be seen in the left column. In the first experiment (communities induced by gender), the
ex-post values of set_based, node_based, tsang, and uf_node_based are all almost identical to
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Figure 6: Results for the instances of Tsang et al. (2019): k increasing from 5 to 50 in steps of 5.
The minimum community probability is shown on the left, while expected spread is shown
on the right. From top to bottom, we see (1) community structure induced by attribute
gender, (2) community structure induced by attributes region, gender and ethnicity.

their respective ex-ante values. In the second experiment (communities induced by three attributes,
namely region, gender, and ethnicity) we obtain a much more complex community structure. Here,
our algorithms set_based and node_based perform best not only in the ex-ante values, but also
in terms of ex-post values for most values of k. Even more, in the right plots, we can see that the
achieved values in expected spread by tim and our methods are very close to each other.

Real World Instances. We proceed by describing the used real world instances.

Arenas (Guimerà et al., 2003) This dataset represents an email communication network at the
University Rovira i Virgili (Spain). Each user is represented by a node and there is a directed
edge from a node u to a node v if u sent at least one email to v.

email-Eu-core (Leskovec et al., 2007) Also this dataset is an email network, this time from a
large European research institution. Each member of the research institution belongs to one
of 42 departments, which predefines a community structure. Nodes and edges have the same
interpretation as in Arenas.

ca-GrQc and ca-HepTh (Leskovec et al., 2007) These datasets are co-authorship networks for
two different categories of arXiv (General Relativity and Quantum Cosmology and High Energy
Physics - Theory). The nodes in the networks correspond to authors and there is an undirected
edge between two nodes if the authors co-authored at least one arXiv paper in this category.

Facebook (Leskovec & Mcauley, 2012) This dataset represents a part of the Facebook network,
where nodes are users and edges indicate friendships.
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Figure 7: Results for the instances used by Fish et al. for k = 100. BFS community structure with
(top left) 10 communities, (top right) n/10 communities, (bottom left) n/2 communities.
(bottom right) Random imbalanced community structure with 16 communities.

Irvine (Opsahl & Panzarasa, 2009) This dataset is a network created from an online community
at the University of California, Irvine. Nodes here represent students and each directed edge
represents that at least one online message was sent among the students.

com-Youtube (Yang & Leskovec, 2015) This dataset consists of a snapshot of the social network
included in Youtube. The network has 1134890 nodes and 2987624 edges. Nodes correspond to
users, edges to friendships between users. Also this network contains a predefined community
structure that is given by the so-called Youtube groups. On Youtube, users can open groups
that others can join. As the complete network is very large, we use a connected sub-network.
We first remove all nodes that do not belong to any community. We then obtain the sub-network
as the induced graph among the first 3000 nodes that are seen by a BFS from a random source
node while removing singleton communities. The resulting network contains 3000 nodes (some
may not belong to any community), 29077 edges. The number of communities is 1575.

If networks are undirected, we interpret the edges as existent in both directions. In order to
obtain non-trivial results, i.e., achieve non-zero minimum probabilities in the experiments (especially
for the ex-post values), for each network (other than com-Youtube) we considered the largest
weakly connected component. We exclude greedy and the method of Tsang et al. from the further
experiments as they are not efficient enough to deal with instances of this size. We also restrict to
the set-based method from our two methods as the results of our two methods are very similar. The
results are reported in the following figures.

Evaluation on Networks used by Fish et al. We start with the networks that were also used
in the study of Fish et al. (2019). We experiment with different community structures, both the
BFS community structures with different community sizes and the random imbalanced community
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Figure 8: Results for the Arenas network for increasing k = 5, 10, 20, 50, 100. The minimum
community probability is shown on the left, while expected spread is shown on the right.
BFS community structure with (1) 10 communities, (2) n/10 communities.

structure. The results can be found in Figure 7. We omit the results for the BFS community
structure with only 2 communities as they are very similar to the case of 10 communities. We
observe that in all cases the ex-ante value of our algorithm is dominating over all other values. In
some cases, the values achieved by TIM are comparable but these are instances where all algorithms
perform very close to each other and the minimum community probabilities are rather high anyways.
Furthermore, on several instances, e.g., in the case of 10 BFS communities, the ex-post values of our
algorithm are significantly better than the ex-post values of all other methods.

Fairness vs. Efficiency on Email-Networks. We proceed by focusing on the email networks
Arenas and email-Eu-core and comparing the fairness achieved by the different algorithms with
the efficiency, i.e., expected spread, see Figures 8 and 9. We again use the BFS community structures
with different community sizes. In the case of the email-Eu-core dataset, we evaluate the different
algorithms on the community structure induced by the departments as well. We evaluate the
algorithms for increasing values of k = 5, 10, 20, 50, 100. We observe that set_based performs best
in terms of fairness among all ex-ante as well as ex-post values both on the Arenas dataset as well
as on the email-Eu-core dataset. In terms of efficiency, we observe that on the Arenas dataset,
tim and set_based perform similarly good and much better than the other competitors. For the
email-Eu-core dataset, we see that in terms of efficiency all algorithms (even uf_node_based for
small values of k) perform almost identical.

Fairness vs. Efficiency on Co-Authorship Networks. We turn to the two co-authorship
datasets ca-GrQc and ca-HepTh and evaluate the fairness and efficiency achieved by the different
algorithms. The results are depicted in Figure 10. Focusing on the fairness values first, we observe
that in a setting with n/10 communities, no algorithm achieves a positive ex-post value. Instead
the two randomized algorithms set_based and uf_node_based do achieve a significantly non-zero
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Figure 9: Results for email-Eu-core network for increasing k = 5, 10, 20, 50, 100. The minimum
community probability is shown on the left, while expected spread is shown on the right.
(1) BFS community structure with 10 communities, (2) BFS community structure with
n/10 communities, (3) community structure induced by departments.

ex-ante value, the results of set_based being more than twice as high compared to the values of
uf_node_based. For 10 communities, we again end up in a setting where both the ex-ante and
ex-post values of set_based dominate over all other algorithms. The discrepancy between the
ex-post value achieved by set_based and the other algorithms appears to become more and more
pronounced with increasing values of k. In terms of efficiency, we observe that again tim and
set_based perform the best, while there is a bigger advantage for tim in this case than with most
other instances tested. Note however that set_based does achieve significantly better fairness values
as compared to tim in all settings where it falls behind tim in terms of efficiency.

Fairness vs. Efficiency on com-Youtube Network. We conclude with the com-Youtube network
and evaluate the different algorithms in terms of fairness and efficiency, see Figure 11. In this network
we choose edge weights uniformly at random in the interval [0, 0.1]. In the left plot, we observe
that the ex-ante fairness values achieved by set_based are significantly better than the values of
all other algorithms, especially with increasing values of k. The ex-post values of all algorithms
are much smaller and close to each other. In terms of efficiency, we observe that the results of all
algorithm are very similar. Note that set_based performs almost the same as tim in the expected
spread while being significantly better than tim in terms of fairness.
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Figure 10: Results for co-authorship networks for increasing k = 5, 10, 20, 50, 100. The minimum
community probability is shown on the left, while expected spread is shown on the right.
BFS community structure (1) ca-GrQc with 10 communities, (2) ca-GrQc with n/10
communities, (3) ca-HepTh with 10 communities (4) ca-HepTh with n/10 communities.

6. Conclusion

In this paper, we studied the problem of determining key seed nodes for influence maximization in
social networks in an efficient and fair manner. Notably, we have designed approximation algorithms
achieving a constant multiplicative factor of 1− 1/e (plus an additive arbitrarily small error) for the
objective of maximizing the maximin influence received by a community. For one of the two variants
of our problem, we have shown that this approximation factor is best possible (up to the arbitrarily
small error term). We achieved our algorithmic result by using randomized strategies, thus enlarging
the solution set and enabling us to find fairer solutions ex-ante. Our detailed experimental study
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Figure 11: Results for the com-Youtube network for increasing k = 5, 10, 20, 50, 100. The minimum
community probability is shown on the left, while expected spread is shown on the right.

confirms the increase in ex-ante fairness achieved over previous methods (Fish et al., 2019; Tsang
et al., 2019), indicating that randomness as source of fairness in influence maximization is very
promissing to be further explored. Interestingly, our study shows that even the ex-post fairness
achieved by our methods frequently outperforms the fairness achieved by other tested methods.
While our theoretical results predict that the price of fairness in the studied setting can be very bad,
our experimental evaluation instead indicates that the loss in efficiency when using our methods is
very limited.

Several directions are conceivable as future work. Improving our approximation guarantees for
the set-based problem or providing a matching approximation hardness result seems a challenging
direction of exploration. Tightening the result on the gap between node-based and set-based problem
is certainly an interesting question. Further engineering the implementations of our methods could
yield further gains in efficiency, particularly in terms of running time. Lastly, we believe that the
idea of using randomization to increase the fairness of solutions for influence maximization may be
used for other fairness criteria as, e.g., the group rational criterion of Tsang et al. (2019).
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