
Journal of Artificial Intelligence Research 74 (2022) 179-225 Submitted 11/2021; published 05/2022

Proactive Dynamic Distributed Constraint
Optimization Problems

Khoi D. Hoang khoi.hoang@wustl.edu
Department of Computer Science and Engineering
Washington University in St. Louis
Saint Louis, MO 63130, USA

Ferdinando Fioretto ffiorett@syr.edu
Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244, USA

Ping Hou phou@cs.nmsu.edu
Aurora Innovation
Pittsburgh, PA 15222, USA

William Yeoh wyeoh@wustl.edu
Department of Computer Science and Engineering
Washington University in St. Louis
Saint Louis, MO 63130, USA

Makoto Yokoo yokoo@inf.kyushu-u.ac.jp
Department of Informatics
Kyushu University
Fukuoka, 819-0395, Japan

Roie Zivan zivanr@bgu.ac.il

Department of Industrial Engineering and Management

Ben-Gurion University of the Negev

Beer Sheva, 849900, Israel

Abstract

The Distributed Constraint Optimization Problem (DCOP) formulation is a power-
ful tool for modeling multi-agent coordination problems. To solve DCOPs in a dynamic
environment, Dynamic DCOPs (D-DCOPs) have been proposed to model the inherent
dynamism present in many coordination problems. D-DCOPs solve a sequence of static
problems by reacting to changes in the environment as the agents observe them. Such
reactive approaches ignore knowledge about future changes of the problem. To overcome
this limitation, we introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel formal-
ism to model D-DCOPs in the presence of exogenous uncertainty. In contrast to reactive
approaches, PD-DCOPs are able to explicitly model possible changes of the problem and
take such information into account when solving the dynamically changing problem in
a proactive manner. The additional expressivity of this formalism allows it to model a
wider variety of distributed optimization problems. Our work presents both theoretical
and practical contributions that advance current dynamic DCOP models: (i) We intro-
duce Proactive Dynamic DCOPs (PD-DCOPs), which explicitly model how the DCOP
will change over time; (ii) We develop exact and heuristic algorithms to solve PD-DCOPs
in a proactive manner; (iii) We provide theoretical results about the complexity of this new

©2022 AI Access Foundation. All rights reserved.

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

class of DCOPs; and (iv) We empirically evaluate both proactive and reactive algorithms
to determine the trade-offs between the two classes. The final contribution is important
as our results are the first that identify the characteristics of the problems that the two
classes of algorithms excel in.

1. Introduction

Distributed Constraint Optimization Problems (DCOPs) (Modi et al., 2005; Petcu & Falt-
ings, 2005a; Yeoh & Yokoo, 2012; Fioretto et al., 2018) are problems where agents coordinate
their value assignments to maximize the sum of the utility functions. The model can be ap-
plied to solve a number of multi-agent coordination problems including distributed meeting
scheduling (Maheswaran et al., 2004b), sensor and wireless network coordination (Farinelli
et al., 2008; Yeoh & Yokoo, 2012), multi-robot coordination (Zivan et al., 2015), smart grid
optimization (Kumar et al., 2009; Miller et al., 2012; Fioretto et al., 2017b), coalition struc-
ture generation (Ueda et al., 2010), smart home automation (Rust et al., 2016; Fioretto
et al., 2017a), and cloud computing applications (Paulos et al., 2019; Hoang et al., 2019).

When DCOPs were introduced more than a decade ago, research efforts were initially
focused on the investigation of different algorithmic paradigms to solve the problem, includ-
ing exact search-based methods (Modi et al., 2005; Gershman et al., 2009; Yeoh et al., 2010;
Gutierrez et al., 2011), exact inference-based methods (Petcu & Faltings, 2005a; Vinyals
et al., 2011), exact declarative methods (Hatano & Hirayama, 2013; Le et al., 2017), approx-
imate search-based methods (Maheswaran et al., 2004a; Zhang et al., 2005; Zivan et al.,
2014; Yu et al., 2017; van Leeuwen & Pawelczak, 2017; Chen et al., 2018; Hoang et al.,
2018), approximate inference-based methods (Farinelli et al., 2014; Zivan & Peled, 2012;
Zivan et al., 2017; Cohen & Zivan, 2018; Cohen et al., 2020; Hoang et al., 2020), and
approximate sampling-based methods (Ottens et al., 2017; Nguyen et al., 2019).

Typically, these DCOP algorithms address and solve a single (static) problem as they
assume that the problem does not change over time. However, this assumption limits
the capability of DCOP to solve and model the problems in dynamic environments. Thus,
researchers have proposed the Dynamic DCOP (D-DCOP) model (Petcu & Faltings, 2005b,
2007; Lass et al., 2008; Yeoh et al., 2015), where constraints can change during the problem
solving process. Existing D-DCOP algorithms share a common assumption that information
on how the problem might change is unavailable. As such, they are all reactive algorithms,
that is, they are online algorithms reacting to the changes of the problem by solving the
DCOP every time such changes occur (Petcu & Faltings, 2005b; Sultanik et al., 2009; Yeoh
et al., 2015). However, in several applications, the information on how the problem might
change is indeed available or predictable within some degree of uncertainty. Therefore,
in this article, we are interested in investigating proactive D-DCOP algorithms, which are
offline algorithms that take into account prior knowledge on the evolution of the problem
when finding solutions.

Our contributions in this article are the following: (i) We introduce Proactive Dynamic
DCOPs (PD-DCOPs), which explicitly model how the DCOP might change over time;
(ii) We develop exact and heuristic algorithms to solve PD-DCOPs in a proactive manner;
(iii) We provide theoretical results about the complexity of this new class of DCOPs; and
(iv) We empirically evaluate both proactive and reactive algorithms to determine the trade-

180

Proactive Dynamic DCOPs

offs between the two classes. The final contribution is important as our results are the first
that identify the characteristics of the problems that the two classes of algorithms excel in.1

The structure of this article is as follows: In Section 2, we provide the background for
DCOPs, D-DCOPs, relevant DCOP algorithms, and Markov chains. Next, we present a
motivating domain in Section 3, the PD-DCOP model in Section 4 and introduce three
approaches to solve PD-DCOPs in Section 5. We then discuss the theoretical properties of
PD-DCOPs in Section 6 and related work in Section 7. Finally, we present the experimental
results in Section 8 and conclude in Section 9.

2. Background

In this section, we provide a brief overview of DCOPs, D-DCOPs, relevant DCOP algo-
rithms, and Markov chains.

2.1 DCOPs

A Distributed Constraint Optimization Problem (DCOP) (Modi et al., 2005; Petcu & Falt-
ings, 2005a; Yeoh & Yokoo, 2012; Fioretto et al., 2018) is a tuple 〈A,X,D,F, α〉, where:

• A = {ai}pi=1 is a set of agents.

• X = {xi}ni=1 is a set of decision variables.

• D = {Dx}x∈X is a set of finite domains, where each variable x ∈ X takes values from the
set Dx ∈ D.

• F = {fi}mi=1 is a set of utility functions, each defined over a set of decision variables:
fi :

∏
x∈xfi Dx → R+

0 ∪ {−∞}, where infeasible configurations have −∞ utilities and
xfi ⊆ X is the scope of fi.

2

• α : X→ A is a function that associates each decision variable to one agent.

A solution σ is a value assignment to a set xσ ⊆ X of decision variables that is consistent
with their respective domains. The utility F(σ) =

∑
f∈F,xf⊆xσ f(σ) is the sum of the

utilities across all applicable utility functions in σ. A solution σ is complete if xσ=X. The
goal of a DCOP is to find an optimal complete solution x∗ = argmaxx F(x).

Given a DCOP P , G = (X, E) is the constraint graph of P , where {x, y} ∈ E iff ∃fi ∈ F
such that {x, y} = xfi .3 A pseudo-tree arrangement for G is a spanning tree T = 〈X, ET 〉
of G such that if fi ∈ F and {x, y} ⊆ xfi , then x and y appear in the same branch of T . We
use N(ai) = {aj ∈ A | {xi, xj} ∈ E} to denote the neighbors of agent ai. Figure 1 depicts:
(a) the constraint graph of a DCOP with a set of agents {a1, a2, a3, a4}, each controlling
a variable with domain {0,1}, (b) a pseudo-tree (solid lines identify tree edges connecting
parent-children nodes, dotted lines refer to back-edges connecting pseudo-parents and its
pseudo-children), and (c) the DCOP utility functions in tabular form.

1. This article extends our previous conference papers (Hoang et al., 2016, 2017) by: (1) combining PD-
DCOPs and IPD-DCOPs into a unified model; (2) elaborating on theoretical properties with complete
proofs; (3) proposing new scalable algorithms; and (4) presenting more extensive experimental results.

2. The scope of a function is the set of variables that are associated with the function.
3. We assume that the utility functions are binary between two decision variables.

181

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

x3

a3

x4

a4

x1

a1

x2

a2
a4

a1

a3

x3

x4

x1

a2

x2

0 0 10
0 1 0
1 0 2
1 1 0

x1 xj util

0 0 0
0 1 6
1 0 0
1 1 10

xj x4

j = 1,2,3
util

j = 2,3

(a) Constraint Graph (b) Pseudo-tree (c) Utility Functions

Figure 1: Example of DCOP

2.2 Dynamic DCOPs

A Dynamic DCOP (D-DCOP) (Petcu & Faltings, 2005b, 2007; Lass et al., 2008; Yeoh et al.,
2015) is defined as a sequence of DCOPs with changes between them. Changes between
DCOPs occur over time due to addition or removal of variables, addition or removal of values
in the variable’s domain, addition or removal of utility functions, and increase or decrease in
the utility values. Solving a D-DCOP optimally means finding a utility-maximal solution for
each DCOP in the sequence. Therefore, this approach is reactive since solving each DCOP
in the sequence does not consider future changes. Its advantage is that solving a D-DCOP
is no harder than solving h DCOPs, where h is the horizon of the problem. Researchers
have used this approach to solve D-DCOPs, where they introduce search- and inference-
based approaches that are able to reuse information from previous DCOPs to speed up the
search for the solution for the current DCOP (Petcu & Faltings, 2005b; Yeoh et al., 2015).
Alternatively, a proactive approach predicts future changes in the D-DCOP and finds robust
solutions that require little or no changes in the sequence of DCOP solutions despite future
changes to the DCOP.

Researchers have also proposed other models for D-DCOPs including a model where
agents have deadlines to choose their values (Petcu & Faltings, 2007), a model where agents
can have imperfect knowledge about their environment (Lass et al., 2008), and a model
where changes in the constraint graph depends on the value assignments of agents (Zivan
et al., 2015).

2.3 DCOP Algorithms: DPOP, S-DPOP, and MGM

We now introduce three relevant DCOP algorithms that are the main component of several
PD-DCOP algorithms.

2.3.1 Distributed Pseudo-tree Optimization Procedure (DPOP)

The Distributed Pseudo-tree Optimization Procedure (DPOP) (Petcu & Faltings, 2005a) is
a complete inference algorithm composed of three phases:

• Pseudo-tree Generation: The agents build a pseudo-tree (Hamadi et al., 1998).

• UTIL Propagation: Each agent, starting from the leaves of the pseudo-tree, computes
the optimal sum of utilities in its subtree for each value combination of variables in its

182

Proactive Dynamic DCOPs

separator.4 It does so by adding the utilities of its functions with the variables in its
separator and the utilities in the UTIL messages received from its children agents, and
projecting out its own variables by optimizing over them.

• VALUE Propagation: Each agent, starting from the pseudo-tree root, determines the
optimal value for its variables. The root agent does so by choosing the values of its
variables from its UTIL computations.

2.3.2 Super-stabilizing DPOP (S-DPOP)

Super-stabilizing DPOP (S-DPOP) (Petcu & Faltings, 2005b) is a self-stabilizing extension
of DPOP, where the agents restart the DPOP phases when they detect changes in the
problem. S-DPOP makes use of information that is not affected by the changes in the
problem.

2.3.3 Maximum Gain Message (MGM)

Maximum Gain Message (MGM) (Maheswaran et al., 2004a) is a local search algorithm
that improves the initial solution in an iterative manner. In MGM, each agent starts with
a random assignment to the variables it controls and then sends this initial assignment
to its neighbors. After receiving the assignments of all neighbors, the agent searches for
all possible values in its domain that can improve the current local constraint utilities
and computes the highest improvement in utilities. Then, the agent shares the highest
improvement value as the gain information with its neighbors and decides to change the
assignment if it has the largest gain in the neighborhood. After changing to the new value,
the agent sends messages to the neighbors to inform them of the new assignment. This
process repeats until a stopping condition is met.

2.4 Markov Chains

We now introduce Markov chains and their stationary distribution, which are used in one
of the approaches to solve PD-DCOPs. A Markov chain (Gallager, 2013) is a sequence of
random variables 〈x0, x1, . . . , xT 〉 that share the same state space, and the transition from
xt−1 to xt depends exclusively on the previous state. More formally,

Pr(xt = j | xt−1 = i, xt−2 = r, . . . , x0 = s) = Pr(xt = j | xt−1 = i)

for all time steps t > 0, where i, j, r and s are the values in the state space. We use Pr
to denote the probability measure. A Markov chain is said to be time-homogeneous if the
transition Pij = Pr(xt = j | xt−1 = i) is identical for all time steps t. A time-homogeneous
Markov chain converges to a stationary distribution p∗ when pt−1 · P = pt = p∗. The
probability distribution pt is the distribution over all states at time t in the chain, and P
is the transition matrix where each element Pij is the transition probability from state i to
state j.

A state j is said to be accessible from i, denoted by i → j, if there exists a sequence
of t-step transitions (t ≥ 1) such that Pr(xt = j | x0 = i) = P tij > 0. Two states i and j

4. The separator of xi contains all ancestors of xi in the pseudo-tree that are connected to xi or one of its
descendants.

183

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Figure 2: Distributed Radar Coordination and Scheduling Problem

communicate, denoted by i ↔ j, if both states are accessible from each other. A class C
of communicating states is a non-empty set of states where each state i ∈ C communicates
with every other state j ∈ C \ {i} but does not communicate with any state j /∈ C. The
period of a state i, d(i) = gcd{t : P tii > 0}, is the greatest common divisor (gcd) of the time
steps t for which P tii > 0. The state is said to be aperiodic if it has period d(i) = 1, and
periodic if d(i) > 1. All states in the same class have the same period. If all states of a
Markov chain form a single class, then the chain has the period of the class. A state i is
said to be recurrent if it is accessible from all states j that are accessible from i. In other
words, i → j implies j → i. Otherwise, it is transient. All states in the same class are
either recurrent or transient. A class of states is said to be ergodic if it is both recurrent
and aperiodic. A unichain is a chain that contains a single recurrent class and may be some
transient states. A unichain is ergodic if the recurrent class is ergodic.

In this article, we consider Markov chains that are guaranteed to converge to a unique
stationary distribution p∗ given any initial distribution. Specifically, the Markov chain
follows one of the following (from strict to loose) conditions: (i) Pij > 0 for all states i and
j, (ii) all states are in one single ergodic class and they are ergodic, (iii) the Markov chain
is an ergodic unichain.

3. Distributed Radar Coordination and Scheduling Problem

In this section, we motivate our work using the Distributed Radar Coordination and Schedul-
ing Problem (DRCSP), which is based on NetRad, a real-time weather radar sensor sys-
tem (Deng & An, 2020; Kim et al., 2011; Zink et al., 2005). The main component of the
NetRad system is a set of meteorological command and controls (MCCs), where each MCC
controls a set of radars with limited sensing range. Instead of operating in “sit and spin”
mode, where each radar independently takes 360-degree volume scans, the radars in NetRad
are tasked by the MCCs to scan a specific area of interest in a coordinated fashion. For
example, in Figure 2, the system with five radars are scanning the area with two weather
phenomena, represented as a yellow star and a red star. The MCCs gather moment data
from the radars and then generate the best sensing strategy for the radars by collectively
solving a distributed coordination and scheduling problem, which is a DRCSP. The goal

184

Proactive Dynamic DCOPs

of a DRCSP is to find a coordination strategy that maximizes the aggregated utility by
scanning the highest-utility phenomena in the area.

While NetRad was originally designed to sense and detect weather phenomena such as
tornados, thunderstorms, and hurricanes, it is hard to predict those phenomena in advance
so that the system can deliver better sensing strategies. In contrast, precipitation has been
widely modeled as stochastic processes (Katz, 1977; Richardson, 1981; Wilks, 1992), and
it is known to be associated with many phenomena at locations of interest (Trenberth,
2011; Xu et al., 2012; Moore et al., 2003). Therefore, instead of directly sensing the
weather phenomena, the goal of the DRCSP is to generate strategies for the radars such
that they best sense the precipitation based on the prediction of the precipitation in the
area. Throughout this paper, we will use this problem to motivate the PD-DCOP model.

4. PD-DCOP Model

We now describe the Proactive Dynamic DCOP (PD-DCOP) model that takes into account
the information on how the problem might change dynamically. Formally, a PD-DCOP is
a tuple 〈A,X,Y,D,Ω,F, p0

Y,T, γ, h, c, α〉, where:

• A = {ai}pi=1 is a set of agents.

• X = {xi}ni=1 is a set of decision variables.

• Y = {yi}mi=1 is a set of random variables.

• D = {Dx}x∈X is a set of finite domains of the decision variables, where each variable
x ∈ X takes values from the set Dx ∈ D.

• Ω = {Ωy}y∈Y is a set of finite domains of the random variables, where each variable
y ∈ Y takes values from the set Ωy ∈ Ω.

• F = {fi}ki=1 is a set of utility functions, each defined over a mixed set of decision and
random variables: fi :

∏
x∈X∩xfi Dx ×

∏
y∈Y∩xfi Ωy → R+

0 ∪ {−∞}, where infeasible

configurations have −∞ utilities and xfi ⊆ X ∪Y is the scope of fi. We divide the set
of utility functions into two sets: FX = {fx}, where xfx ∩Y = ∅, and FY = {fy}, where
xfy ∩Y 6= ∅. Note that FY ∪ FY = F and FX ∩ FY = ∅.
• p0

Y = {p0
y}y∈Y is a set of initial probability distributions.

• T = {Ty}y∈Y is a set of transition functions: Ty : Ωy × Ωy → [0, 1].

• γ ∈ [0, 1] is a discount factor.

• h ∈ N is a finite horizon.

• c ∈ R+
0 is a switching cost, which is the cost associated with the change in the value of

each decision variable from one time step to the next.5

• α : X→ A is a function that associates each decision variable to one agent.

Throughout this article, we assume that: (i) each agent controls exactly one decision
variable and thus use the terms “agent” and “decision variable” interchangeably; and (ii)
each utility function is associated with at most one random variable. If multiple random
variables are associated with a utility function, w.l.o.g., they can be merged into a single
variable.

5. For simplicity, we assume that the switching cost is identical across all decision variables.

185

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

The goal of a PD-DCOP is to find a sequence of h+1 assignments x∗ for all the decision
variables in X:

x∗ = argmax
x=〈x0,...,xh〉∈Σh+1

Fh(x) (1)

Fh(x) =

h−1∑
t=0

γt
[
F tx(xt) + F ty(xt)

]
︸ ︷︷ ︸

P

−
h−1∑
t=0

γt
[
c ·∆(xt,xt+1)

]
︸ ︷︷ ︸

Q

+ F̃x(xh) + F̃y(xh)︸ ︷︷ ︸
R

(2)

, where Σ is the assignment space for the decision variables of the PD-DCOP. The first term
P refers to the optimization over the first h time steps, with:

F tx(x) =
∑
fi∈FX

fi(xi) (3)

F ty(x) =
∑
fi∈FY

∑
ω∈Ωyi

fi(xi|yi=ω) · ptyi(ω) (4)

where xi is an assignment for all decision variables in the scope xfi of utility function fi;
we write xi|yi=ω to indicate that the random variable yi ∈ xfi takes on the value ω ∈ Ωyi ;
ptyi(ω) is the probability of the random variable yi taking value ω at time t, and is defined
as:

ptyi(ω) =
∑

ω′∈Ωyi

pt−1
yi (ω′) · Tyi(ω′, ω) (5)

The second term Q takes into account the penalty due to changes in decision vari-
ables’ values during the optimization process, where ∆ : Σ×Σ→ R+

0 is a penalty function
that takes into account the difference in the decision variable assignments between two time
steps. If one of the assignments is null, the penalty function ∆ will return 0.

Lastly, R refers to the optimization from time step h onward where the solution to
the problem at time h remains unchanged for all subsequent problems. Since the nature of
discounting in PD-DCOPs is associated with the discount factor γ, it gives rise to two cases:
γ < 1 and γ = 1. While the sum of discounted utilities can be optimized using Bellman
equation in the former case, we take into account the Markov chain convergence property
in the latter case. Thus, we propose two algorithms to optimize R for two cases γ < 1 and
γ = 1:

• Cumulative Discounted Future Utilities (CDFU): In many problems, future util-
ities are less important than the utility at the current time step (i.e., γ < 1). Thus, we
propose CDFU to optimize R as the sum of cumulative discounted future utilities. The
CDFU algorithm optimizes R using Equations (6), (7), and (8), which will be introduced
in Section 5.

• Markov Chain Convergence (MCC): In problems where future and current utilities
are equally weighted (i.e., γ = 1), we propose the MCC algorithm that takes into account
the convergence property of Markov chains (Gallager, 2013). In this approach, we model
each random variable as a Markov chain, and we assume that each Markov chain is

186

Proactive Dynamic DCOPs

guaranteed to converge to a unique stationary distribution given any initial probability
distribution.6 The MCC algorithm optimizes R with the stationary distribution of the
Markov chains using Equations (9), (10), (11), and (12), which will be introduced in
Section 5.

In summary, the goal of a PD-DCOP is to find a value assignment to all the decision
variables such that it maximizes the sum of three terms P, Q, and R (Equation 2). The
first term, P, maximizes the sum of cumulative discounted utilities for the functions that
do not involve random variables (Fx) and cumulative expected discounted random utilities
(Fy) in the first h time steps. The second term, Q, minimizes the cumulative discounted
penalty costs incurred by solutions changing over time. The last term, R, maximizes the
future utilities for all problems from the time step h onward.

While the PD-DCOP model can be used to capture the presence of exogenous factors
in the dynamic aspect of the problem, note that it can also model dynamic changes to
the DCOP constraint graph through the transition functions. In particular, the deletion
of a constraint will force the random variable associated with that constraint to transit to
a 0 utility value for all decision variables; the addition of a constraint can be handled by
defining a 0 utility constraint in the model from the start and updating its utility when the
constraint is added.

4.1 Modeling DRCSP as a PD-DCOP

Since DRCSP is inherently a distributed constraint reasoning problem and PD-DCOPs have
the capability to model dynamic and uncertainty events, DRCSP can naturally be modeled
using the PD-DCOP formulation. Specifically,

• The set of MCCs is modeled as the set of agents A = {ai}pi=1.

• The set of radars is modeled as the set of decision variables X = {xi}ni=1.

• The precipitation events are modeled as the set of random variables Y = {yi}mi=1.

• The scanning directions of the radars are modeled as the set of decision variable domains
D = {Dx}x∈X.

• The set of precipitation level is modeled as the set of random variable domains Ω =
{Ωy}y∈Y.

• The set of utility function associated with radars sensing the precipitation is modeled as
the set of utility functions F = {fi}ki=1.

• The set of initial distribution of precipitation is modeled as p0
Y = {p0

y}y∈Y.

• The probability transition of the precipitation is modeled as T = {Ty}y∈Y, where Ty :
Ωy × Ωy → [0, 1].

• The discount factor is γ ∈ [0, 1].

• The duration of interest is horizon h ∈ N.

• The cost of changing the sensing direction of radars (e.g., energy consumption) is modeled
as the switching cost c ∈ R+

0 . Since we assume the sensors are of the same type, the
switching cost is identical across all sensors.

• The membership of each radar to a specific MCC is modeled as the mapping function
α : X→ A between a decision variable and an agent.

6. The conditions for such convergence are discussed in Subsection 2.4.

187

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Procedure SolvePD-DCOP()

1 if γ < 1 then

2 SolveMultiDCOPs(h̄ = h,xh̄+1 = null)
3 else
4 sh ← SolveHorizonDCOP()

5 SolveMultiDCOPs(h̄ = h− 1,xh̄+1 = sh)

SOLVEMULTIDCOPS()

SOLVEMULTIDCOPS() SOLVEHORIZONDCOP()

NULL

Figure 3: Illustration of the SolvePD-DCOP Procedure

5. PD-DCOP Algorithms

We are now ready to describe the two approaches introduced in the previous section to solve
PD-DCOPs: Cumulative Discounted Future Utilities (CDFU) and Markov Chain Conver-
gence (MCC). A comparison between the two methods is illustrated in Procedure SolvePD-
DCOP and Figure 3. Both CDFU and MCC approaches are similar in that they call Pro-
cedure SolveMultiDCOPs to solve a number of consecutive DCOPs starting from time
step 0. Procedure SolveMultiDCOPs accepts two parameters: h̄ and xh̄+1. Parame-
ter h̄ indicates the time step of the last DCOP in SolveMultiDCOPs. In other words,
SolveMultiDCOPs solves the DCOPs from time step 0 to time step h̄. Parameter xh̄+1

indicates the solution to the problem at time step h̄ + 1 if it is not null.7 The two ap-
proaches are different in that one of them calls Procedure SolveHorizonDCOP to solve
for the problem at horizon t = h before running SolveMultiDCOPs. In more detail:

• Cumulative Discounted Future Utilities (CDFU): If γ < 1, the CDFU approach
transforms the problem at time step h and optimizes R in Equation (2) by computing
the cumulative discounted and cumulative discounted expected utilities from horizon h
onward:

F̃x(x) =
γh

1− γ
Fhx (x) (6)

F̃y(x) =
∑
fi∈FY

∑
ω∈Ωyi

f̃i(xi|yi=ω) · phyi(ω) (7)

f̃i(xi|yi=ω) = γh · fi(xi|yi=ω) + γ
∑

ω′∈Ωyi

Tyi(ω, ω
′) · f̃i(xi|yi=ω′) (8)

After that, it takes into account the problems from time step 0 to time step h and solve
them together by running SolveMultiDCOPs with arguments h̄ = h and xh̄+1 = null

7. We do not provide pseudocode for Procedure SolveMultiDCOPs since PD-DCOP algorithms have
different ways to implement this procedure.

188

Proactive Dynamic DCOPs

(lines 1-2). We set xh̄+1 = null since CDFU does not constrain the solution at time step
h̄+ 1.

• Markov Chain Convergence (MCC): If γ = 1, the MCC approach transforms the
problem at h and optimizes R in Equation (2) by using the stationary distribution of
Markov chains in the PD-DCOP:8

F̃x(x) = Fhx (x) (9)

F̃y(x) =
∑
fi∈FY

∑
ω∈Ωyi

fi(xi|yi=ω) · p∗yi(ω) (10)

where p∗y(ω) is the probability of random variable y having state ω in the stationary
distribution, and p∗yi is the solution of the following system of linear equations:

∑
ω′∈Ωyi

p∗yi(ω
′) · Tyi(ω′, ω) = p∗yi(ω) (11)

∑
ω∈Ωyi

p∗yi(ω) = 1 (12)

After that, the MCC approach solves for the solution sh to the problem at horizon h by
calling SolveHorizonDCOP (lines 3-4). It then solves the problems from time step 0 to
time step h− 1 by running SolveMultiDCOPs with h̄ = h− 1 and xh̄+1 = sh (line 5).
While solving the problems from time step 0 to time step h − 1, SolveMultiDCOPs
takes into account the switching cost between the solution at time step h − 1 and the
solution sh at time step h.

We now describe how the MCC approach solves the problem at time step h by calling
SolveHorizonDCOP in more detail. This function solves for the solution at time step
h by using the stationary distribution of Markov chains. Since the transition function
Ty ∈ T of each random variable y ∈ Y is independent of the transition functions of other
random variables, each random variable in the PD-DCOP forms an independent Markov
chain. Furthermore, these Markov chains are time-homogeneous–the transition functions
are identical for all time steps – and has finite state spaces–the domain of each random
variable y is a finite set Ωy ∈ Ω. In this paper, we assume that each Markov chain in PD-
DCOPs will converge to a unique stationary distribution given any initial distribution.
The computation of the unique distribution for each random variable y, computed using
a system of linear equations (Equations 11 and 12), can be done independently by each
agent a that controls the decision variable x that is constrained with random variable y.
In other words, the computation for random variable y is performed by the agent a such
that ∃x ∈ X, f ∈ FY : y ∈ xf ∧ x ∈ xf ∧ α(x) = a.

Once the stationary distribution of each random variable is found, the agents refor-
mulate the constraints between decision and random variables into constraints between
decision variables only. Specifically, for each constraint f ∈ FY between decision variables

8. When γ = 1, solving the problem at time step h with stationary distribution will maximize the expected
utility from that time step onward (see Theorem 2).

189

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

x and a random variable y, the following new constraint is created:

F h(x) =
∑
ω∈Ωy

f(x|y=ω) · p∗y(ω) (13)

where p∗y(ω) is the probability of random variable y having state ω in the stationary
distribution. Note that the new scope of this new constraint is exclusively the decision
variables x. The effect of this post-processing step is that it removes all random variables
and reformulates the PD-DCOP into a regular DCOP with exclusively decision variables.
After this step, agents will run any off-the-shelf algorithm to solve the regular DCOP.

In summary, the CDFU and MCC approaches are similar in that they run SolveMultiD-
COPs(h̄,xh̄+1) to solve the problems from time step 0 to time step h̄. The key difference
is that CDFU runs the function to find solutions from time steps 0 to h while MCC runs
the function to find solutions from time steps 0 to h− 1. To find the solution for time step
h, MCC runs SolveHorizonDCOP instead.

To implement SolveMultiDCOPs, we propose two approaches: (1) An Exact ap-
proach that transforms a PD-DCOP into an equivalent DCOP and solves it using any
off-the-shelf exact DCOP algorithm, and (2) a Heuristic approach that transforms a PD-
DCOP into an equivalent dynamic DCOP and solves it using any off-the-shelf dynamic
DCOP algorithm. We describe these approaches in Sections 5.1 and 5.2, respectively.
Later, in Section 8, we will introduce different PD-DCOP algorithms that are based on
these approaches.

5.1 Exact Approach

We now describe an exact approach that transforms a PD-DCOP into an equivalent DCOP
and solves it using any off-the-shelf DCOP algorithm. Since the transition of each random
variable is independent of the assignment of values to decision variables, this problem can
be viewed as a Markov chain. Thus, it is possible to collapse an entire PD-DCOP into a
single DCOP, where (1) each utility function Fi in this new DCOP captures the sum of
utilities of the utility function fi ∈ F across all time steps, and (2) the domain of each
decision variable is the set of all possible combinations of values of that decision variable
across all time steps. However, this process needs to be done in a distributed manner.

As we mentioned in Section 4, the utility functions are divided into two types: (1) The
functions fi ∈ FX whose scope xfi ∩Y =∅ includes exclusively decision variables, and (2)
the functions fi ∈ FY whose scope xfi ∩ Y 6= ∅ includes one random variable. In both
cases, let xi = 〈x0

i , . . . ,x
h̄
i 〉 denote the vector of value assignments to all decision variables

in xfi for each time step.

Each function fi ∈ FX whose scope includes only decision variables can be replaced by
a function Fi:

Fi(xi) =
h̄∑
t=0

F ti (x
t
i) (14)

190

Proactive Dynamic DCOPs

where:

F ti (x
t
i) =

γh

1− γ
fi(x

h
i) if t = h̄ and h̄ = h

γtfi(x
t
i) otherwise

(15)

Each function fi ∈ FY whose scope includes a random variable can be replaced by a
unary function Fi.

9 The first term is the utility for the first h̄ time steps and the second
term is the utility for the time step h̄:

Fi(xi) =

h̄∑
t=0

F ti (x
t
i) (16)

where:

F ti (x
t
i) =

{
γh
∑

ω∈Ωyi
f̃i(x

h
i |yi=ω) · phyi(ω) if t = h̄ and h̄ = h

γt
∑

ω∈Ωyi
fi(x

t
i|yi=ω) · ptyi(ω) otherwise

(17)

The function f̃i is recursively defined according to Equation (8). Additionally, each
decision variable xi will have a unary function Ci:

Ci(xi) = −
h−1∑
t=0

γt
[
c ·∆(xti,x

t+1
i)

]
(18)

which captures the cost of switching values across time steps. This collapsed DCOP can
then be solved with any off-the-shelf exact DCOP algorithm.

5.2 Heuristic Approaches

Since solving PD-DCOPs optimally is PSPACE-hard (see Theorem 1), the exact approach
described earlier fails to scale to large problems as we show in our experimental results
in Section 8 later. Therefore, heuristic approaches are necessary to solve larger problems
of interest. Similar to the exact approach, heuristic approaches solve PD-DCOPs proac-
tively and take into account the discounted utilities and the discounted expected utilities
by reformulating constraints in the problem. While the exact approach reformulates the
constraints into a single DCOP with decision variables only, our heuristic approaches refor-
mulate the constraints into a dynamic DCOP (specifically, a sequence of h̄ DCOPs) with
decision variables only.

For each constraint fi ∈ FX that does not involve a random variable, a new constraint
F ti is created to capture the discounted utilities for time steps 0 ≤ t ≤ h̄. The constraint
F ti is created by following Equation (15). Similarly, for each constraint fi ∈ FY between
decision variables x and a random variable y, we compute the constraint F ti by following
Equation (17). After this pre-processing step, the constraints involve decision variables
exclusively, and the problem at each time step has been transformed to a regular DCOP.
We now introduce two heuristic approaches: Local Search and Sequential Greedy.

9. With slight abuse of notation, we use the same notation Fi in Equations (14) and (16) to refer to two
different functions in two cases.

191

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Algorithm 1: Local Search()

6 iter ← 1

7 〈v0∗
i , v

1∗
i , . . . , v

h̄∗
i 〉 ← 〈null,null, . . . ,null〉

8 〈v0
i , v

1
i , . . . , v

h̄
i 〉 ← InitialAssignment()

9 context← 〈(xj , t, null| xj ∈ N(ai), 0 ≤ t ≤ h̄)〉
10 Send VALUE(〈v0

i , v
1
i , . . . , v

h̄
i 〉) to all neighbors

Procedure CalcGain()

11 〈u0
i , u

1
i , . . . , u

h̄
i 〉 ← CalcUtils(〈v0

i , v
1
i , . . . , v

h̄
i 〉,x

h̄+1
i)

12 u∗ ← −∞
13 foreach 〈d0

i , d
1
i , . . . , d

h̄
i 〉 in ×h̄

t=0Dxi do

14 u← CalcCumulativeUtil(〈d0
i , d

1
i , . . . , d

h̄
i 〉,x

h̄+1
i)

15 if u > u∗ then
16 u∗ ← u

17 〈v0∗
i , v

1∗
i , . . . , v

h̄∗
i 〉 ← 〈d0

i , d
1
i , . . . , d

h̄
i 〉

18 if u∗ 6= −∞ then

19 〈u0∗
i , u

1∗
i , . . . , u

h̄∗
i 〉 ← CalcUtils(〈v0∗

i , v
1∗
i , . . . , v

h̄∗
i 〉,x

h̄+1
i)

20 〈û0
i , û

1
i , . . . , û

h̄
i 〉 ← 〈u0∗

i , u
1∗
i , . . . , u

h̄∗
i 〉 − 〈u0

i , u
1
i , . . . , u

h̄
i 〉

21 else

22 〈û0
i , û

1
i , . . . , û

h̄
i 〉 ← 〈null,null, . . . ,null〉

23 Send GAIN(〈û0
i , û

1
i , . . . , û

h̄
i 〉) to all neighbors

5.2.1 Local Search Approach

In this section, we propose a local search approach that is inspired by MGM (Maheswaran
et al., 2004a), a graphical game-based algorithm that has been shown to be robust in
dynamically changing environments. Algorithm 1 shows the pseudocode of the local search
approach, where each agent ai maintains the following data structures:

• iter is the current iteration number.

• context is a vector of tuples (xj , t, v
t
j) for all its neighboring variables xj ∈ N(ai). Each

of these tuples represents the agent’s assumption that variable xj is assigned value vtj at
time step t.

• 〈v0
i , v

1
i , . . . , v

h̄
i 〉 is a vector of the agent’s current value assignment for its variable xi at

each time step t.

• 〈v0∗
i , v

1∗
i , . . . , v

h̄∗
i 〉 is a vector of the agent’s best value assignment for its variable xi at

each time step t.

• 〈u0
i , u

1
i , . . . , u

h̄
i 〉 is a vector of the agent’s utility (utilities from utility functions minus

costs from switching costs) given its current value assignment at each time step t.

• 〈u0∗
i , u

1∗
i , . . . , u

h̄∗
i 〉 is a vector of the agent’s best utility given its best value assignment at

each time step t.

• 〈û0∗
i , û

1∗
i , . . . , û

h̄∗
i 〉, which is a vector of the agent’s best gain in utility at each time step t.

192

Proactive Dynamic DCOPs

Procedure When Receive VALUE(〈v0∗
s , v

1∗
s , . . . , v

h̄∗
s 〉)

24 foreach t from 0 to h̄ do
25 if vt∗s 6= null then
26 Update (xs, t, v

t
s) ∈ context with (xs, t, v

t∗
s)

27 if received VALUE messages from all neighbors in this iteration then
28 CalcGain()

29 iter ← iter + 1

Procedure When Receive GAIN(〈û0
s, û

1
s, . . . , û

h̄
s 〉)

30 if 〈û0
s, û

1
s, . . . , û

h̄
s 〉 6= 〈null,null, . . . ,null〉 then

31 foreach t from 0 to h̄ do
32 if ûti ≤ 0 ∨ ûts > ûti then
33 vt∗i ← null

34 if received GAIN messages from all neighbors in this iteration then
35 foreach t from 0 to h̄ do
36 if vt∗i 6= null then
37 vti ← vt∗i

38 Send VALUE(〈v1∗
i , v

2∗
i , . . . , v

h̄∗
i 〉) to all neighbors

The high-level ideas are as follows: (1) Each agent ai starts by finding an initial value
assignment to its variable xi for each time step 0 ≤ t ≤ h̄ and initializes its context variable
context. (2) Each agent uses VALUE messages to inform its neighbors of the agent’s current
assignment and to ensure that it has the current values of its neighboring agents’ variables.
(3) Each agent computes its current utilities given its current value assignments, its best
utilities over all possible value assignments, and its best gain in utilities, and sends this gain
in a GAIN message to all its neighbors. (4) Each agent changes the value of its variable
for time step t if its gain for that time step is the largest over all its neighbors’ gain for
that time step, and repeats steps 2 through 4 until a termination condition is met. In more
detail:

Step 1: Each agent initializes its vector of best values to a vector of null values (line 7)
and calls InitialAssignment to initializes its current values (line 8). The values can be
initialized randomly or according to some heuristic function. We describe later one such
heuristic function. Finally, the agent initializes its context, where it assumes that the values
for its neighbors is null for all time steps (line 9).

Step 2: The agent sends its current value assignment in a VALUE message to all neighbors
(line 10). When it receives a VALUE message from a neighbor, it updates the context
variable with the value assignments in that message (lines 24-26). When it has received
VALUE messages from all neighbors in the current iteration, it means that its context now
correctly reflects the neighbors’ actual values. It then calls CalcGain to start Step 3
(line 28).

193

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Function CalcUtils(〈v0
i , v

1
i , . . . , v

h̄
i 〉,x

h̄+1
i)

39 foreach t from 0 to h̄ do
40 if t = 0 then
41 cti ← γ0 · c ·∆(v0

i , v
1
i)

42 else if t = h̄ then

43 cti ← γh̄−1 · c ·∆(vh̄−1
i , vh̄i) + γh̄ · c ·∆(vh̄i ,x

h̄+1
i)

44 else
45 cti ← γt−1 · c ·∆(vt−1

i , vti) +γt · c ·∆(vti , v
t+1
i)

46 uti ←
∑

F t
j |xi∈x

Ft
j
F t
j − cti

47 return 〈u0
i , u

1
i , . . . , u

h̄
i 〉

Function CalcCumulativeUtil(〈v0
i , v

1
i , . . . , v

h̄
i 〉,x

h̄+1
i)

48 u←
∑h̄

t=0

∑
F t

j |xi∈x
Ft
j
F t
j

49 ci ← 0
50 foreach t from 0 to h̄− 1 do
51 ci ← ci + γt · c ·∆(vti , v

t+1
i)

52 ci ← ci + γh̄ · c ·∆(vh̄i ,x
h̄+1
i)

53 return u− ci

Step 3: In the CalcGain procedure, the agent calls CalcUtils to calculate its utility
for each time step given its current value assignments and its neighbors’ current value
assignments recorded in its context (line 11). The utility for a time step t is made out
of two components (line 46). The first component is the sum of utilities over all utility
functions that involve the agent, under the assumption that the agent takes on its current
value and its neighbors take on their values according to its context. Specifically, if the
scope of the utility function F tj involves only decision variables, then F tj (v

t
i , v

t
j) is a function

of both the agent’s current value vti and its neighbor’s value vtj in its context and is defined
according to Equation (15). If the scope involves both decision and random variables, then
F tj (v

t
i) is a unary constraint that is only a function of the agent’s current value vti and is

defined according to Equation (17). The second component is the cost of switching values
from the previous time step t− 1 to the current time step t and switching from the current
time step to the next time step t+1. This cost is c if the values in two subsequent time steps
are different and 0 otherwise. The variable cti captures this cost (lines 40-45). Note that if

xh̄+1
i = null, then ∆(vh̄i ,x

h̄+1
i) = 0. The net utility is thus the utility derived according to

the utility functions minus the switching cost (line 46).

The agent then searches over all possible combination of values for its variable across
all time steps to find the best value assignment that results in the largest cumulative cost
across all time steps (lines 13-17). It then computes the net gain in utility at each time step
by subtracting the utility of the best value assignment with the utility of the current value
assignment (lines 18-20).

194

Proactive Dynamic DCOPs

Step 4: The agent sends its gains in a GAIN message to all neighbors (line 23). When it
receives a GAIN message from its neighbor, it updates its best value vt∗i for time step t to
null if its gain is non-positive (i.e., ûti ≤ 0) or its neighbor has a larger gain (i.e., ûts > ûti)
for that time step (lines 32-33). When it has received GAIN messages from all neighbors
in the current iteration, it means that it has identified, for each time step, whether its gain
is the largest over all its neighbors’ gains. The time steps where it has the largest gain are
exactly those time steps t where vt∗i is not null. The agent thus assigns its best value for
these time steps as its current value and restarts Step 2 by sending a VALUE message that
contains its new values to all its neighbors (lines 34-38).

Heuristics for InitialAssignment: We now introduce a heuristic function to speed up
InitialAssignment. We simplify the PD-DCOP into h̄ independent DCOPs by assuming
that the switching costs are 0 and the constraints with random variables are collapsed into
unary constraints similar to the description for our exact approach. Then, one can use
any off-the-shelf DCOP algorithm to solve these h̄ DCOPs. We initially used DPOP to do
this, but our preliminary experimental results show that this approach is computationally
inefficient.

However, we observed that these h̄ DCOPs do not vary much across subsequent DCOPs
as changes are due only to the changes in distribution of values of random variables. There-
fore, the utilities in UTIL tables of an agent ai remain unchanged across subsequent DCOPs
if neither it nor any of its descendants in the pseudo-tree are constrained with a random vari-
able. We thus used S-DPOP to solve the h̄ DCOPs and the runtimes decreased marginally.

We further optimize this approach by designing a new pseudo-tree construction heuristic,
such that agents that are constrained with random variables are higher up in the pseudo-
tree. Intuitively, this will maximize the number of utility values that can be reused, as they
remain unchanged across subsequent time steps. This heuristic, within the Distributed DFS
algorithm (Hamadi et al., 1998), assigns a score to each agent a according to heuristic h1(a):

h1(a) = (1 + I(a)) · |Ny(a)| (19)

Ny(a) = {a′|a′ ∈ N(a) ∧ ∃f ∈ F, ∃ y ∈ Y : {a′, y} ∈ xf} (20)

I(a) =

{
0 if ∀f ∈ F, ∀y ∈ Y : {a, y} 6∈ xf

1 otherwise
(21)

It then makes the agent with the largest score the pseudo-tree root and traverses the con-
straint graph using DFS, greedily adding the neighboring agent with the largest score as the
child of the current agent. However, this resulting pseudo-tree can have a large depth, which
is undesirable. The popular max-degree heuristic h2(a) = |N(a)|, which chooses the agent
with the largest number of neighbors, typically results in pseudo-trees with small depths.
We thus also introduce a hybrid heuristic which combines both heuristics and weigh them
according to a heuristic weight w:

h3(a) = w h1(a) + (1− w)h2(a) (22)

5.2.2 Sequential Greedy Approach

In addition to the local search approach, we now introduce sequential greedy algorithms
to solve PD-DCOPs. We propose two algorithms: FORWARD and BACKWARD. Both

195

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

algorithms sequentially solve each DCOP one time step at a time in a greedy manner.
However, they differ in how they choose the next problem to solve, where they take into
account the switching cost between two problems differently.

FORWARD: In general, FORWARD greedily solves each sub-problem in PD-DCOPs one
time step at a time starting from the initial time step. In other words, it successively solves
the DCOP at each time step starting from t = 0 to time step h̄. When solving each DCOP,
it takes into account the switching cost of changing values from the solution in the previous
time step. If the optimal solution xh̄+1 6= null, at the last time step h̄, it will take into
account the switching cost incurred by changing the solution from h̄ to the optimal solution
xh̄+1. Specifically, to capture the cost of switching values across time steps, for each decision
variable x ∈ X, the following new unary constraint is created for each time step 0 < t < h̄:

Ct(x) = −c ·∆(xt−1, xt) (23)

At the last time step t = h̄, we add the following constraint:

C h̄(x) =

{
−c ·∆(xh̄−1, xh̄) if xh̄+1 = null

−c ·
(

∆(xh̄−1, xh̄) + ∆(xh̄,xh̄+1
x)

)
otherwise

(24)

where xh̄+1
x is the value of variable x in xh̄+1. After adding the switching cost constraints,

the agents successively solve each DCOP from time step t = 0 onwards using any off-the-
shelf DCOP algorithm.

BACKWARD: Instead of greedily solving the PD-DCOP one time step at a time forward
starting from t = 0 towards h̄, in the case where the solution at time step h̄+ 1 is available
(i.e., xh̄+1 6= null), one can also greedily solve the problem backwards from t = h̄ + 1
towards the first time step. The BACKWARD algorithm implements this key difference.
At time step t, BACKWARD takes into account the switching cost to the solution in the
next time step t+ 1. Specifically, before solving each sub-problem, BACKWARD creates a
unary constraint for each time step 0 ≤ t < h̄:

Ct(x) = −c ·∆(xt, xt+1) (25)

Also, BACKWARD creates an additional unary constraint to capture the switching cost
between the solution at h̄ and the optimal solution xh̄+1:

C h̄(x) = −c ·∆(xh̄,xh̄+1
x) (26)

6. Theoretical Results

We now discuss theoretical results of the PD-DCOP model and its algorithms. In Theo-
rem 1, we discuss the complexity of PD-DCOPs in two cases: h is polynomial in |X| and h
is exponential in |X|. In Theorem 2, if the discount factor γ = 1, we prove that adopting
the optimal solution for the stationary distribution at time step h will maximize the sum of
future utilities from time step h onward. We then provide the error bounds in Theorem 3,
Theorem 4, and Theorem 5. Finally, we discuss the space and time complexities of the local
search approach in Theorem 6.

196

Proactive Dynamic DCOPs

Theorem 1 Optimally solving a PD-DCOP with a horizon that is polynomial (exponential)
in |X| is PSPACE-complete (PSPACE-hard).

Proof: We first consider the case where h is polynomial in |X|. Membership in PSPACE
follows from the existence of a naive depth-first search to solve PD-DCOPs, where a non-
deterministic branch is created for each complete assignment of the PD-DCOP’s decision
variables and for each time step 0 ≤ t ≤ h. The algorithm requires linear space in the
number of variables and horizon length. We reduce the satisfiability of quantified Boolean
formula (QSAT) to a PD-DCOP with 0 horizon. Each existential Boolean variable in the
QSAT is mapped to a corresponding decision variable in the PD-DCOP, and each universal
Boolean variable in the QSAT is mapped to a PD-DCOP random variable. The domains
Dx of all variables x ∈ X are the sets of values {0, 1}, corresponding respectively to the
evaluations, false and true, of the QSAT variables. The initial probability distribution p0

y of
each PD-DCOP random variable y ∈ Y is set to as the uniform distribution. Each QSAT
clause c is mapped to a PD-DCOP utility function fc, whose scope involves all and only
the PD-DCOP-corresponding boolean variables appearing in c, and such that:

fc(x
c) =

{
1, if c(xc) = true
⊥, otherwise.

(27)

where c(xc) denotes the instantiation of the values of the variables in xc to the truth values
of the corresponding literals of c. In other words, a clause is satisfied iff the equivalent
utility function preserves its semantics. The choices for, the switching cost, the discount
factor γ, and the transition function Ty, for each y ∈ Y, of the PD-DCOP, are immaterial.
The reduction is linear in the size of the original quantified Boolean formula. The quantified
Boolean formula is satisfiable iff the equivalent PD-DCOP has at least one solution x whose
cost F(x) 6= ⊥.

Next, we consider the case where h is exponential in X. In this case, since storing
a solution requires space exponential in |X|, solving PD-DCOPs is PSPACE-hard, which
concludes the proof. �

Theorem 2 When γ = 1, from time step h onwards, adopting the optimal solution for the
stationary distribution, instead of any other solution, will maximize the expected utility from
that time step onward.

Proof: As p∗y is the stationary distribution of random variable y and it is also the converged
distribution of pty when t→∞:

lim
t→∞

pty = p∗y (28)

p∗y · T = p∗y (29)

After convergence, as p∗y does not change for every y ∈ Y, the optimal solution for the
successive DCOPs remain the same. Let h∗ be the horizon when the stationary distribution
converges, x∗ be the optimal solution, x′ be any sub-optimal solution, and F∗(x) be the
quality of solution x for the DCOP with stationary distribution. As the stationary distri-
bution at h∗ is the actual distribution at h∗, the solution x∗ is optimal for the DCOP at h∗

197

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

and also optimal for all DCOPs after h∗:

F∗(x∗) > F∗(x′) ∀t ≥ h∗ (30)

The difference in quality between two solutions for DCOPs after h∗ is:

∆∞h∗ =

∞∑
t=h∗

[
F∗(x∗)−F∗(x′)

]
(31)

As the difference in solution quality from h to h∗ is finite, it is dominated by ∆∞h∗ = ∞.
In other words, if we keep the sub-optimal x′ from time step h onward, the accumulated
expected utility of x′ is smaller than that of the optimal solution x∗ with the stationary
distribution. �

Error Bounds: We denote U∞ as the optimal solution quality of a PD-DCOP with an
infinite horizon and Uh as the optimal solution quality when the horizon h is finite. Let
Fy(x) be the utility of a regular DCOP where the decision variables are assigned x given
values y of the random variables. We define F∆

y = maxx∈Σ Fy(x) − minx∈Σ Fy(x) as the
maximum loss in solution quality of a regular DCOP for a given random variable assignment
y and F∆ = maxy∈ΣY

F∆
y where ΣY =

∏
y∈Y Ωy is the assignment space for all random

variables.

Theorem 3 When γ < 1, the error U∞ − Uh of the optimal solution from solving PD-
DCOPs with a finite horizon h instead of an infinite horizon is bounded from above by
γh

1−γF
∆.

Proof: Let x̂∗ = 〈x̂∗0, . . . , x̂∗h, x̂∗h+1, . . .〉 be the optimal solution of PD-DCOPs with infinite
horizon ∞:

U∞ =

∞∑
t=0

γt
[
F tx(x̂∗t) + F ty(x̂∗t)− c ·∆(x̂∗t , x̂

∗
t+1)

]
(32)

Ignoring switching costs after time step h, an upper bound U∞+ of U∞ is defined as:

U∞+ =
h−1∑
t=0

γt
[
F tx(x̂∗t) + F ty(x̂∗t)− c ·∆(x̂∗t , x̂

∗
t+1)

]
+
∞∑
t=h

γt
[
F tx(x̂∗t) + F ty(x̂∗t)

]
(33)

Let x∗ = 〈x∗0, . . . ,x∗h〉 be the optimal solution of the PD-DCOP with a finite horizon h:

Uh =
h−1∑
t=0

γt
[
F tx(x∗t) + F ty(x∗t)− c ·∆(x∗t ,x

∗
t+1)

]
+
∞∑
t=h

γt
[
F tx(x∗h) + F ty(x∗h)

]
(34)

For x̂∗, if we change the solution for every DCOP after time step h to x̂∗h, as 〈x̂∗0, . . . , x̂∗h, x̂∗h, . . .〉,
we get an lower bound U∞− of Uh:

U∞− =

h−1∑
t=0

γt
[
F tx(x̂∗t) + F ty(x̂∗t)− c ·∆(x̂∗t , x̂

∗
t+1)

]
+
∞∑
t=h

γt
[
F tx(x̂∗h) + F ty(x̂∗h)

]
(35)

198

Proactive Dynamic DCOPs

Therefore, we get U∞− ≤ Uh ≤ U∞ ≤ U∞+ .
Next, we compute the difference between the two bounds:

U∞ − Uh ≤ U∞+ − U∞− (36)

=

∞∑
t=h

γt
[
(F tx(x̂∗t) + F ty(x̂∗t))− (F tx(x̂∗h) + F ty(x̂∗h))

]
(37)

Notice that the quantity (F tx(x̂∗t) +F ty(x̂∗t))− (F tx(x̂∗h) +F ty(x̂∗h)) is the utility difference
between the value assignment x̂∗t and x̂∗h for a sub-problem in time step t, and thus is
bounded by the maximum loss of a regular DCOP:

(F tx(x̂∗t) + F ty(x̂∗t))− (F tx(x̂∗h) + F ty(x̂∗h)) ≤ F∆ (38)

Thus,

U∞ − Uh ≤ U∞+ − U∞− (39)

≤
∞∑
t=h

γt
[
F tx(x̂∗t) + F ty(x̂∗t)−F tx(x̂∗h)−F ty(x̂∗h)

]
(40)

≤
∞∑
t=h

γtF∆ (41)

≤ γh

1− γ
F∆ (42)

which concludes the proof. �

Corollary 1 Given a maximum acceptable error ε, the minimum horizon h is logγ
(1−γ)·ε
F∆ .

Proof: Following Theorem 3, the error of the optimal solution is bounded above by γh

1−γF
∆:

ε ≤ γh

1− γ
F∆ (43)

(1− γ) · ε
F∆

≤ γh (44)

logγ
(1− γ) · ε

F∆
≤ h (45)

Thus, the minimum horizon h is logγ
(1−γ)·ε
F∆ . �

Let x∗ denote the optimal solution for the DCOP with a stationary distribution. We define
θy = minω,ω′ Ty(ω, ω

′) as the smallest transition probability between two states ω and ω′

of the random variable y, and β =
∏
y∈Y θy as the smallest transition probability between

two joint states y and y′ of all random variables in Y.

Theorem 4 With β > 0, when γ = 1, the error U∞ −Uh from solving PD-DCOPs with a

finite horizon h using MCC approach is bounded from above by c · |X|+
∑

y∈ΣY

(1−2β)h

2β F∆
y .

199

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Proof: First, given a random variable y, the following inequality holds if the Markov chain
converges to the stationary distribution p∗y (Gallager, 2013). For a given ω ∈ Ωy:

|p∗y(ω)− T ty(ω′, ω)| ≤ (1− 2θy)
t ∀ω′ ∈ Ωy (46)

where T ty and T ∗y are the stationary transition matrix after t time steps and the stationary
transition matrix, respectively:

p0
y · T ty = pty (47)

p0
y · T ∗y = p∗y (48)

For ω ∈ Ωy:

p∗y(ω) =
∑
ω′∈Ωy

p0
y(ω
′) · T ∗y (ω′, ω) (49)

pty(ω) =
∑
ω′∈Ωy

p0
y(ω
′) · T ty(ω′, ω) (50)

|p∗y(ω)− pty(ω)| = |
∑
ω′∈Ωy

p0
y(ω
′) · (T ∗y (ω′, ω)− T ty(ω′, ω))| (51)

= |
∑
ω′∈Ωy

p0
y(ω
′) · (p∗y(ω)− T ty(ω′, ω))| (52)

≤
∑
ω′∈Ωy

p0
y(ω
′) · |(p∗y(ω)− T ty(ω′, ω))| (53)

≤
∑
ω′∈Ωy

p0
y(ω
′) · (1− 2θy)

t (54)

≤ (1− 2θy)
t (55)

where T ∗y (ω′, ω) = p∗y(ω) for all ω′ ∈ Ωy. Similarly, for y ∈ ΣY, we have:

δtY(y) = |p∗Y(y)− ptY(y)| ≤ (1− 2β)t (56)

Then, the solution quality loss for assigning x∗ at time step t is:

F t∆ ≤
∑

y∈ΣY

δtY(y) ·
(

max
x∈Σ

Fy(x)− Fy(x∗)

)
(57)

≤
∑

y∈ΣY

(1− 2β)t · F∆
y (58)

Next, let x̄ = 〈x̄0, . . . , x̄h〉 denote the optimal solution of the PD-DCOP using MCC
approach with x̄h = x∗; x̂ = 〈x̂0, . . . , x̂h〉 denote the optimal solution for the DCOPs from
time steps 0 to h without considering the stationary distribution; and x̌ = 〈x̌0 = x̂0, x̌1 =

200

Proactive Dynamic DCOPs

x̂1, . . . , x̌h−1 = x̂h−1, x̌h = x̄h = x∗〉. We then have the following solution qualities:

U+ =
h∑
t=0

F t(x̂t)−
h−1∑
t=0

[c ·∆(x̂t, x̂t+1)] (59)

U =

h∑
t=0

F t(x̄t)−
h−1∑
t=0

[c ·∆(x̄t, x̄t+1)] (60)

U− =
h∑
t=0

F t(x̌t)−
h−1∑
t=0

[c ·∆(x̌t, x̌t+1)] (61)

Since x∗ is the optimal solution for the PD-DCOP and x̌h = x̄h = x∗, we have U− ≤ U .
Moreover, as x̌t = x̂t for time steps between 0 and h − 1, the error bound for time step 0
to time step h is:

U+ − U ≤ U+ − U− (62)

≤
[
Fh(x̂h)−Fh(x∗)

]
− [c ·∆(x̂h−1, x̂h)− c ·∆(x̌h−1,x

∗)] (63)

≤ Fh∆ + c · |X| (64)

In addition, from t = h+ 1 to ∞, the cumulative error bound is
∑∞

t=h+1F t∆. Summing
up the two error bounds for 0→ h and h+ 1→∞, we get:

Fh∆ + c · |X|+
∞∑

t=h+1

F t∆ = c · |X|+
∞∑
t=h

F t∆ (65)

= c · |X|+
∞∑
t=h

 ∑
y∈ΣY

δtY(y) · F∆
y

 (66)

≤ c · |X|+
∑

y∈ΣY

∞∑
t=h

(1− 2β)t · F∆
y (67)

≤ c · |X|+
∑

y∈ΣY

(1− 2β)h

2β
F∆
y (68)

which concludes the proof. �

Upper Bound on Optimal Quality: We now describe an upper bound on the optimal
solution quality Fh(x∗). Let x̂∗ = 〈x̂∗0, . . . , x̂∗h〉 be the vector of assignments, where:

x̂∗t =

argmax

x∈Σ
γt
[
F tx(x) + F ty(x)

]
if 0 ≤ t < h

argmax
x∈Σ

[
F̃x(x) + F̃y(x)

]
otherwise

(69)

and

F̂h(x) =
h−1∑
t=0

γt
[
F tx(x) + F ty(x)

]
+ F̃x(x) + F̃y(x). (70)

201

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Theorem 5 The lower and upper bounds of the optimal solution of PD-DCOPs are Fh(x) ≤
Fh(x∗) ≤ F̂h(x̂∗) for all x ∈ Σh+1.

Proof: For any given assignment x ∈ Σh+1, Fh(x) is a clear lower bound for Fh(x∗).
For the upper bound, let Fht (·) be the tth component of the Fh(·), defined as:

Fht (xt) =

{
γt
[
F tx(xt) + F ty(xt)− [c ·∆(xt,xt+1)

]
if 0 ≤ t < h

F̃x(xt) + F̃y(xt) otherwise
(71)

with xt, defined as the tth value assignment in the PD-DCOP solution x. Similarly, let us
denote F̂ht (·) as the tth component of the F̂h(·), defined as:

F̂ht (xt) =

{
γt
[
F tx(xt) + F ty(xt)

]
if 0 ≤ t < h

F̃x(xt) + F̃y(xt) otherwise
(72)

It follows that for all 0 ≤ t < h:

Fht (x∗t) = γt
[
F tx(x∗t) + F ty(x∗t)− [c ·∆(xt,xt+1)

]
(73)

≤ γt
[
F tx(x∗t) + F ty(x∗t)

]
(74)

≤ max
x∈Σ

γt
[
F tx(x) + F ty(x)

]
(75)

≤ γt
[
F tx(x̂∗t) + F ty(x̂∗t)

]
= F̂ht (x̂∗t) (76)

where x∗t (resp. x̂∗t) is the tth component of the PD-DCOP solution vector x∗ (resp. x̂∗).
For t = h, it follows:

Fhh (x∗h) = F̃x(x∗h) + F̃y(x∗h) (77)

≤ max
x∈Σ

[
F̃x(x) + F̃y(x)

]
= F̂hh (x̂∗h) (78)

Thus, from the two inequalities above, it follows that:

Fh(x∗) ≤
h∑
t=0

F̂ht (x∗t) = F̂h(x̂∗) (79)

which concludes the proof. �

Theorem 6 An agent’s space requirement for the PD-DCOP local search approach is O(L+
(h+1)|A|), where O(L) is the agent’s space requirement for the InitialAssignment func-
tion. The time complexity of the local search approach is O(Dh), where D = argmaxx |Dx|.

Proof: In our local search algorithms, each agent first calls the InitialAssignment
function to find an initial value assignment to its variable for each time step 0 ≤ t ≤ h
(line 8). Thus, the memory requirement of this step is O((h+ 1) +L) at each agent. Next,
each agent performs a local search step (lines 9-10), which is analogous to that of MGM.
However, different from MGM, our agents search for tuples of h + 1 values, one for each

202

Proactive Dynamic DCOPs

time step in the horizon. Thus, at each iteration, and for each time step t, each agent stores
a vector of values for its current and best variable assignments for its variable; a vector of
the agent’s utilities and best utilities given its current value assignments; and a vector of
the agent’s best gain in utility. In addition, each agent stores the context of its neighbors’
values for each time step t, which requires O((h+1) · |N(ai)|) space. Thus, the overall space
requirement for our local search algorithm is O(L+ (h+ 1)|A|) per agent.

In the local search algorithms, to find the best response in each local search step, in
the worst case, each agent enumerates all possible combinations of decision variable domain
across all time step h. Thus, the time complexity of the local search approach is O(Dh),
where D = argmaxx |Dx| is the largest domain size among all agents. �

Lemma 1 The solution quality of Local Search approaches is monotonically increasing with
respect to the iteration round.

Proof: In MGM, a variable is allowed to change its value in an iteration only when its
gain is higher than its neighbors’ gains, and two neighbors are not allowed to change their
value in the same iteration. The solution quality of MGM has been proved to monotonically
increase with respect to the iteration round (Maheswaran et al., 2004a). Our Local Search
approaches such as LS-SDPOP, LS-MGM, and LS-RAND use the same mechanism for
variables to change their values at every time step. For a given time step in an iteration, a
variable is allowed to change it values only when its gain is the largest among their neighbors’
gains for that time step (Procedure When Receive Gain lines 31-33 and 35-37). Therefore,
the solution quality of the Local Search approaches is monotonically increasing with respect
to the iteration round. �

7. Related Work

Aside from the D-DCOPs described in the introduction and background, several approaches
have been proposed to proactively solve centralized Dynamic CSPs, where value assign-
ments of variables or utilities of constraints may change according to some probabilistic
model (Wallace & Freuder, 1998; Holland & O’Sullivan, 2005). The goal is typically to
find a solution that is robust to possible changes. Other related models include Mixed
CSPs (Fargier et al., 1996), which model decision problems under uncertainty by introduc-
ing state variables, which are not under control of the solver, and seek assignments that are
consistent to any state of the world; and Stochastic CSPs (Walsh, 2002; Tarim et al., 2006),
which introduce probability distributions that are associated to outcomes of state variables,
and seek solutions that maximize the probability of constraint consistencies. While these
proactive approaches have been used to solve CSP variants, they have not been used to
solve Dynamic DCOPs to the best of our knowledge.

Researchers have also introduced Markovian D-DCOPs (MD-DCOPs), which models
D-DCOPs with state variables that are beyond the control of agents (Nguyen et al., 2014).
However, they assume that the state is observable to the agents, while PD-DCOPs do not
assume the observability of the state and are able to solve the problem even when the state
is not observable. Additionally, MD-DCOP agents do not incur a cost for changing values in
MD-DCOPs and only a reactive online approach to solving the problem has been proposed
thus far.

203

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Another related body of work is Decentralized Markov Decision Processes (Dec-MDPs)
(Bernstein et al., 2002). In a Dec-MDP, agents can also observe its local state (the global
state is the combination of all local states), and the goal of a Dec-MDP is to find a policy
that maps each local state to the action for each agent. Thus, like PD-DCOPs, it also
solves a sequential decision making problem. However, Dec-MDPs are typically solved in
a centralized manner (Bernstein et al., 2002; Becker et al., 2004; Dibangoye et al., 2012,
2013) due to its high complexity – solving Dec-MDPs optimally is NEXP-complete even for
the case with only two agents (Bernstein et al., 2002). In contrast, PD-DCOPs are solved
in a decentralized manner and its complexity is only PSPACE-hard (see Theorem 1). The
reason for the lower complexity is because the solution of PD-DCOPs are open-loop policies,
which are policies that are not dependent on state observations.

Decentralized Partially Observable MDPs (Dec-POMDPs) (Bernstein et al., 2002) is a
generalization of Dec-MDPs, where an agent may not accurately observe its local state.
Instead, it maintains a belief of its local state. A Dec-POMDP policy thus maps each
belief to an action for each agent. Solving Dec-POMDPs is also NEXP-complete (Bernstein
et al., 2002) and they are also typically solved in a centralized manner (Hansen et al., 2004;
Szer et al., 2005; Seuken & Zilberstein, 2007; Witwicki & Durfee, 2011; Dibangoye et al.,
2013; Oliehoek et al., 2013) with some exceptions (Nair et al., 2003). Researchers have also
developed a hybrid model, called ND-POMDP (Nair et al., 2005), which is a Dec-POMDP
that exploits locality of agent interactions like a DCOP.

In summary, one can view DCOPs and Dec-(PO)MDPs as two ends of a spectrum
of offline distributed planning models. In terms of expressivity, DCOPs can only model
problems with single time step while Dec-(PO)MDPs can model multiple-time-step prob-
lems. However, DCOPs are only NP-hard while Dec-(PO)MDPs are NEXP-complete. PD-
DCOPs attempt to balance the trade off between expressivity and complexity by searching
for open-loop policies instead of closed-loop policies of Dec-(PO)MDPs. They are thus
more expressive than DCOPs at the cost of a higher complexity, yet not as expressive as
Dec-(PO)MDPs but also without its prohibitive complexity.

8. Experimental Results

In this section, we empirically evaluate our PD-DCOP algorithms. Aside from evaluating
the PD-DCOP algorithms in an offline manner, we also evaluate them in an online setting
which simulates the environment of many real-life applications. In the online setting, we
consider both how long it takes for the algorithms to solve the problem at a given time step
and the time they have to adapt the solution that they have just found. As PD-DCOPs
can be solved in an offline or an online manner, we report the experimental results for
both settings. Our experiments are performed on a 2.1GHz machine with 16GB of RAM
using JADE framework (Bellifemine et al., 2005), and the results report the average of 30
independent runs, each with a timeout of 30 minutes.10

10. https://github.com/khoihd/pd-dcop.

204

Proactive Dynamic DCOPs

8.1 Offline Algorithms

We first evaluate and report the experimental results of our PD-DCOP algorithms in the
offline setting. The experiment in the offline setting will shed light on the performance of
the PD-DCOP algorithms in the scenario where time and computing resources are gener-
ally available. We use the following default configuration: Number of agents and decision
variables |A| = |X| = 10; number of random variables |Y| = 0.2 · |X| = 0.2 · 10 = 2;
domain size |Dx| = |Ωy| = 3; horizon h = 4; and switching cost c = 50.11 The utility values
are sampled from the uniform distribution on [0, 10]. The initial probability distributions
and the transition functions of random variables are randomly generated and normalized.
We report solution quality and simulated runtime (Sultanik et al., 2008). Specifically, we
evaluate the following offline PD-DCOP algorithms:

• Collapsed DPOP (C-DPOP), which uses the exact approach introduced in Subsection 5.1.
The C-DPOP algorithm collapses the PD-DCOP into a single DCOP and solves it with
DPOP.

• Local Search S-DPOP (LS-SDPOP), which uses the local search approach introduced in
Subsection 5.2.1. This algorithm solves for the initial solution for the DCOP at each time
step by running S-DPOP and then searches for better solutions.

• Local Search MGM (LS-MGM), which uses the local search approach like LS-SDPOP.
However, LS-MGM solves for the initial the solution for the DCOP at each time step by
running MGM.

• Local Search Random (LS-RAND), which uses the local search approach like LS-SDPOP
and LS-MGM. However, LS-RAND randomly initializes solution for the DCOP at each
time step.

• Forward DPOP (F-DPOP), which uses the greedy approach FORWARD introduced in
Subsection 5.2.2. F-DPOP sequentially solves the DCOP at each time step with DPOP.

• Forward MGM (F-MGM), which uses the greedy approach FORWARD like F-DPOP.
However, F-MGM sequentially solves the DCOP at each time step with MGM.

• Backward DPOP (B-DPOP), which uses the greedy approach BACKWARD introduced
in Subsection 5.2.2. B-DPOP sequentially solves the DCOP at each time step with DPOP.

• Backward MGM (B-MGM), which uses the greedy approach BACKWARD like B-DPOP.
However, B-MGM sequentially solves the DCOP at each time step with MGM.

8.1.1 Random Networks

In this experiment, we use random networks with constraint density p1 = 0.5 to evaluate
the PD-DCOP algorithms on random instances that do not have a too dense or too sparse
topology. As LS-SDPOP reuses information by applying the hybrid heuristic function h3, we
vary the heuristic weight w and measure the runtime to evaluate its impact on LS-SDPOP.
Figure 4 shows the runtime of LS-SDPOP run on PD-DCOPs with γ = 0.9 and γ = 1. At
w = 0, the heuristic h3 corresponds the max-degree heuristic h2, and at w = 1, the heuristic
is analogous to our h1 heuristic (see Equation 19). The runtime is high at both extremes for
the following reasons: When w = 0, LS-SDPOP exploits weakly the reuse of information,

11. The random variables are randomly associated with the utility functions such that each utility function
has at most one random variable.

205

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Heuristic Weights

250

300

350

400

450

500

Ru
nt

im
e

(m
s)

(a) γ = 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Heuristic Weights

250

300

350

400

450

500

Ru
nt

im
e

(m
s)

(b) γ = 1

Figure 4: Experimental Results Varying Heuristic Weight

LS-SDPOP LS-MGM LS-RAND

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

200

400

600

800

1000

1200

Ru
nt

im
e

(m
s)

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

200

400

600

800

1000

1200
Ru

nt
im

e
(m

s)

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f I
te

ra
tio

ns

(a) γ = 0.9

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f I
te

ra
tio

ns

(b) γ = 1

Figure 5: Experimental Results Varying Switching Cost

and when w = 1, the resulting pseudo-trees have larger depth, which in turn result in larger
runtime. In both cases, the best weight is found at w = 0.6, where LS-SDPOP is able to

206

Proactive Dynamic DCOPs

LS-SDPOP F-DPOP B-DPOP

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

1690

1695

1700

1705

1710

So
lu

tio
n

Qu
al

ity

(a) γ = 0.9

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

500

550

600

650

700

So
lu

tio
n

Qu
al

ity

(b) γ = 1

Figure 6: Comparison between Sequential Greedy and Local Search for DPOP

LS-MGM F-MGM B-MGM

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

1300

1350

1400

1450

1500

1550

1600

1650

So
lu

tio
n

Qu
al

ity

(a) γ = 0.9

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

300

400

500

600

700

So
lu

tio
n

Qu
al

ity

(b) γ = 1

Figure 7: Comparison between Sequential Greedy and Local Search for MGM

reuse information in the most efficient way and has the smallest runtime. Thus, we set the
heuristic weight w = 0.6 for LS-SDPOP in the remaining experiments.

Next, we vary the switching cost c from 0 to 100 to evaluate its impact on the following
PD-DCOP local search algorithms: LS-SDPOP, LS-MGM and LS-RAND. Figure 5 shows
the runtime and the number of iterations that the algorithms take to converge to the final
solution. When c = 0, the initial solution found by LS-SDPOP is the optimal solution
of the PD-DCOP since LS-SDPOP solves the DCOP at each time step optimally by the
ignoring the switching cost between them. Thus, it takes 0 iteration for LS-SDPOP to
converge since the initial solution is also the final solution. When c increases, LS-SDPOP
takes more iterations to converge since it spends more time on searching for a solution
that incurs less switching cost. The trend is similar for LS-MGM and LS-RAND in that
the number of iterations and the runtime increase with the switching cost. Among three

207

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

C-DPOP
F-DPOP

F-MGM
B-DPOP

B-MGM
LS-RAND

LS-SDPOP
LS-MGM

2 3 4 5 6 7 8 9 10
Horizon

2

4

6

8

10

12

14

Ru
nt

im
e

(m
s)

 in
 lo

g
sc

al
e

(a) γ = 0.9

2 3 4 5 6 7 8 9 10
Horizon

2

4

6

8

10

12

14

Ru
nt

im
e

(m
s)

 in
 lo

g
sc

al
e

(b) γ = 1

Figure 8: Experimental Results Varying Horizon

algorithms, LS-SDPOP requires fewer iterations to converge than LS-RAND and LS-MGM.
While LS-SDPOP solves each DCOP optimally, LS-MGM solves each DCOP sub-optimally
with MGM and LS-RAND randomly chooses the initial solution for each DCOP. For that
reason, LS-SDPOP has the best initial solution and requires the fewest iterations. While LS-
MGM is faster than LS-SDPOP in solving for the initial solution and takes fewer iterations
to converge than LS-RAND, LS-MGM is slowest among three algorithms. This experiment
illustrates the impact of the quality of the initial solution on the number of iterations and
the trade-off between the time spent on solving for the initial solution and the time spent
on searching for better solutions.

In order to evaluate the impact of switching cost on the solution quality of two different
heuristics: Local Search and Sequential Greedy, we vary the switching cost and report the
solution quality of the heuristic algorithms. Figure 6 shows the solution quality of LS-
SDPOP, F-DPOP and B-DPOP with DPOP as the algorithm solving the DCOP at each
time step optimally. The LS-SDPOP algorithm starts by solving the DCOP at each time
step without considering the switching cost, and then it locally searches for better solution
in an iterative manner. When the switching cost becomes larger, the quality of initial
solution found by LS-SDPOP decreases due to the higher cost from the difference in the
solutions between two time steps. After solving for the initial solution, LS-SDPOP executes
the local search process, which is based on the hill climbing heuristic used in MGM, and the
solution will potentially get stuck at local maxima. For that reason, large switching cost
has a high impact on the final solution of LS-SDPOP. On the other hand, when sequentially
solving for the DCOP at each time step, Sequential Greedy algorithms such as F-DPOP and
B-DPOP already take into account the solution of the previously solved DCOP by creating
a unary constraint (see Equations 23 - 26). Therefore, while the solution qualities of three
algorithms decrease when the switching cost increases, the solution quality of LS-SDPOP
decreases more significantly than the solution quality of F-DPOP and B-DPOP. We observe
a similar trend in Figure 7 between LS-MGM, F-MGM, and B-MGM. However, the trend

208

Proactive Dynamic DCOPs

|A| C-DPOP LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t q t

5 — — 416 41 359 75 401 102 437 35 417 32 439 35 423 31
10 — — 1699 236 1535 255 1620 238 1710 316 1677 118 1711 304 1677 106
15 — — — — 3176 444 3414 386 — — 3575 234 — — 3589 224
20 — — — — 5614 616 6066 536 — — 6205 392 — — 6222 376
25 — — — — 8737 818 9357 650 — — 9493 553 — — 9524 565
30 — — — — 12651 1185 13166 821 — — 13620 812 — — 13578 841
35 — — — — 16969 1452 17876 1039 — — 18325 1013 — — 18303 1053
40 — — — — 22237 1732 23038 1121 — — 23602 1224 — — 23595 1268
45 — — — — 28251 1944 29159 1358 — — 29611 1481 — — 29655 1523
50 — — — — 33929 1987 35900 1726 — — 36500 1736 — — 36454 1803

Table 1: Varying the Number of Agents on Random Graphs with γ = 0.9

|A| C-DPOP LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t q t

5 185 346012 163 32 133 76 -17 70 156 39 121 31 185 42 176 33
10 — — 600 238 503 209 393 177 703 322 554 110 711 312 697 113
15 — — — — 1270 387 931 296 — — 1235 216 — — 1481 218
20 — — — — 2116 522 1913 417 — — 2221 365 — — 2569 395
25 — — — — 3397 661 3049 482 — — 3513 546 — — 3923 565
30 — — — — 5022 840 4392 552 — — 5106 784 — — 5596 832
35 — — — — 6738 985 5957 577 — — 7021 932 — — 7544 1047
40 — — — — 8548 1079 7853 636 — — 8962 1188 — — 9720 1284
45 — — — — 10938 1146 10302 752 — — 11250 1356 — — 12183 1540
50 — — — — 13290 1267 12865 803 — — 14240 1614 — — 15000 1789

Table 2: Varying the Number of Agents on Random Graphs with γ = 1

tends to fluctuate due to the instability in the quality of solution of each DCOP found by
MGM.

We then vary the horizon h from 2 to 10 and compare the runtime of all PD-DCOP
algorithms. In this experiment, we set the number of decision variables |X| = 5 and report
the runtime in log scale in Figure 8. First, we observe that the exact algorithm C-DPOP
has the largest runtime at h = 2 and h = 3, and it cannot scale to solve problems with
horizon h > 3. The reason is that C-DPOP collapses all DCOPs into a single DCOP that
has the domain size growing exponentially in h. The exponential growth in domain size
severely affects the runtime of DPOP that is used to solve the collapsed DCOP. When
the horizon increases, we observe that local search algorithms (LS-RAND, LS-MGM, and
LS-SDPOP) generally run slower than sequential algorithms (F-MGM, B-MGM, F-DPOP,
B-DPOP). Among the local search algorithms, LS-SDPOP is faster than both LS-MGM and
LS-RAND, and all the sequential algorithms have similar runtimes. This trend is similar
for both cases γ = 0.9 and γ = 1. The only difference between the two cases is the runtimes
of C-DPOP and local search algorithms. When γ = 1, C-DPOP collapses the DCOPs from
time step t = 0 to time step t = h−1, which is one DCOP fewer compared to when γ = 0.9.
The smaller size of the collapsed DCOP has resulted in significantly smaller runtime for
C-DPOP. Similarly, the search space of the local search algorithm is also smaller when
γ = 1.

209

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Finally, we vary the number of agents |A| from 5 to 50 to evaluate the performance of
the algorithms with different number of agents. Table 1 reports solution quality (labeled q)
and runtime (labeled t) of all PD-DCOP algorithms for γ = 0.9. We observe that C-DPOP
times out on all instances due to the large horizon of h = 4. On small problems that have
|A| = 5 or |A| = 10, DPOP-based algorithms provide solutions with higher quality than
those solved by MGM-based algorithms and LS-RAND. However, due to solving the DCOP
at each time step optimally, DPOP-based algorithms cannot scale and time out when the
number of agents is larger. On the other hand, MGM-based algorithms, which solve each
DCOP sub-optimally with MGM, and LS-RAND can scale to solve large problems. In
addition, Sequential Greedy algorithms such as F-DPOP and B-DPOP have better solution
quality than the Local Search algorithm such as LS-SDPOP due to the large switching
cost, which is set at c = 50. The similar trend also happens when we compare the solution
quality of MGM-based algorithms such as F-MGM, B-MGM, and LS-MGM. We observe the
similar result in Table 2 for PD-DCOPs with γ = 1. The key difference is that C-DPOP can
solve problems with |A| = 5 because C-DPOP collapses one fewer DCOP in PD-DCOPs
with γ = 1 compared to PD-DCOPs with γ = 0.9. Thus, the resulting collapsed DCOP is
smaller and it takes less time for C-DPOP to solve.

8.1.2 Dynamic Distributed Meeting Scheduling

Next, we evaluate our PD-DCOP algorithms on dynamic distributed meeting scheduling
problems, which are a real world application with a specific network topology. We generate
the underlying topology randomly with p1 = 0.5 and use the PEAV formulation (Mah-
eswaran et al., 2004b). In this formulation, we enforce the inequality constraints to ensure
that no two meetings can be held at the same time. We vary the number of meetings and
allow each meeting to be scheduled in 5 different starting times. If an algorithm fails to
find a feasible solution for some instance, we do not report the runtime of that instance.

Tables 3 and 4 report the runtime (labeled t) and the percentage of feasible solutions
(labeled %SAT) on PD-DCOPs with γ = 0.9 and γ = 1, respectively. As we observed from
Tables 1 and 2, DPOP-based algorithms return solutions with higher quality than those
by LS-RAND and MGM-based algorithms. Similarly, in distributed meeting scheduling
problems, DPOP-based algorithms are able to find feasible solutions for many instances, but
LS-RAND and MGM-based algorithms fail on most instances. However, it comes at the cost
of larger runtime for DPOP-based algorithms since solving each DCOP optimally usually
takes longer. Among MGM-based algorithms, LS-MGM find more feasible solutions than
F-MGM and B-MGM. Since MGM is not an exact algorithm, the solution for the problem
at each time step is usually infeasible. Once MGM cannot find a feasible solution for a
problem at some time step, sequential greedy algorithms such as F-MGM and B-MGM do
not have a mechanism to improve those infeasible solutions to make them feasible. On the
other hand, despite having initial infeasible solutions, LS-MGM can gradually modify the
initial solution with local search, and thus it is able to change the initial infeasible solution
to a feasible solution. However, LS-MGM is slightly slower than F-DPOP and B-DPOP
due to the additional local search step.

210

Proactive Dynamic DCOPs

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
%SAT t %SAT t %SAT t %SAT t %SAT t %SAT t %SAT t

4 100 94 80 229 70 226 100 39 10 33 100 39 10 36
6 100 150 20 318 26 338 100 112 0 — 100 104 0 —
8 100 405 3 380 20 480 100 372 0 — 100 360 0 —

10 100 27062 0 — 3 490 100 16855 0 — 100 16864 0 —

Table 3: Results for Distributed Meeting Scheduling Problem with γ = 0.9

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
%SAT t %SAT t %SAT t %SAT t %SAT t %SAT t %SAT t

4 73 40 23 108 20 135 93 43 6 35 100 42 10 30
6 76 105 10 210 0 — 100 105 0 — 100 105 0 —
8 90 345 0 — 0 — 100 362 0 — 100 361 0 —

10 96 27060 0 — 0 — 100 17175 0 — 100 16986 0 —

Table 4: Results for Distributed Meeting Scheduling Problem with γ = 1

8.1.3 Distributed Radar Coordination and Scheduling

In this experiment, we evaluate our PD-DCOP algorithms on the Distributed Radar Coordi-
nation and Scheduling Problem (DRCSP), our motivating application described in Section 3.
We use grid networks to represent the DRCSP where sensors are arranged in a rectangular
grid. Each sensor has 8 sensing directions and is connected to its four neighboring sensors
in the cardinal direction. Those sensors on the edges are connected to three neighboring
sensors, and corner sensors are connected to two neighbors. The random variables, which
represent the precipitation of the weather phenomena, are randomly placed on the network.

Tables 5 and 6 report the runtime (labeled t) and the solution quality (labeled q) of
PD-DCOP algorithms on DRCSP with γ = 0.9 and γ = 1, respectively. Similar to the
result of the experiments on random networks and distributed meeting scheduling problems,
DPOP-based algorithms achieve higher quality solutions with than those found by LS-
RAND and its counterpart MGM-based algorithms. However, the better solution of DPOP-
based algorithms comes with a cost of higher runtimes where DPOP-based algorithms run
longer than MGM-based algorithms. In addition, due to larger runtime of the DPOP-based
algorithms, they time out when solving larger instances with 16, 18, 20 agents. In contrast,
MGM-based algorithms successfully finish within the time limit on those larger instances.

8.2 Online Algorithms

In this section, we compare our proactive approach and the reactive approach in an online
setting in order to identify the characteristics of the problems in that they excel in. In
addition, we propose hybrid approach, which is a combination of proactive and reactive
approaches, and we compare our hybrid approach against the reactive approach. For a
fair comparison, we empirically evaluate all approaches in the same online setting. As PD-
DCOPs can be solved in an online manner, we compare the following online approaches:
FORWARD, HYBRID, and REACT.

211

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t

4 315 323 283 1504 120 1683 327 14 306 19 327 15 305 21
6 513 499 474 2097 213 2296 553 19 523 21 555 20 525 23
8 843 847 783 3592 369 3242 895 62 848 34 897 64 851 34

10 1030 1360 1010 3560 444 3368 1117 65 1054 41 1120 64 1049 41
12 1474 2686 1400 4099 618 4321 1519 21036 1429 76 1522 21332 1423 72
14 1513 55739 1525 4412 707 4219 1686 69511 1583 52 1690 69153 1599 54
16 — — 1767 4854 860 4478 — — 1848 81 — — 1841 80
18 — — 2004 5076 891 4856 — — 2110 88 — — 2112 80
20 — — 2332 5543 1028 5269 — — 2436 96 — — 2442 95

Table 5: Results for Distributed Radar Coordination and Scheduling Problem with γ = 0.9

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t

4 136 22 56 226 18 265 134 12 63 18 139 12 130 17
6 213 103 78 297 31 313 205 20 89 27 238 18 224 20
8 315 120 153 374 91 392 297 59 122 37 382 58 361 33

10 401 861 172 456 114 422 405 58 153 43 479 64 451 41
12 508 1646 260 511 188 526 525 20910 232 66 648 20619 610 70
14 544 57709 305 459 210 482 589 69315 265 53 723 69086 679 49
16 — — 349 573 243 548 — — 332 73 — — 792 70
18 — — 393 534 255 532 — — 392 79 — — 902 84
20 — — 480 587 375 567 — — 408 84 — — 1046 85

Table 6: Results for Distributed Radar Coordination and Scheduling Problem with γ = 1

FORWARD: Since FORWARD solves the problem at each time step beforehand, it can
be used as an offline approach or an online approach. Similar to the offline approach,
online FORWARD reformulates the constraints based on the probability distribution of
random variables, solves each problem sequentially, and takes into account the switching
cost between the problem at the current time step and the problem at the previous time
step. In this experiment, we will evaluate FORWARD as a proactive online approach.

REACT: REACT waits for each problem to change, observes the realization of random
variables, and solves the problem in a reactive manner. Similar to FORWARD, REACT
takes into account the switching cost between the problem at the current time step and
the problem at the previous time step. As REACT observes the problem to change before
solving it, REACT is a reactive online approach and cannot be used as an offline approach.

HYBRID: While FORWARD solves each problem beforehand and REACT waits for the
problem to change before solving it, HYBRID is a combination of the two approaches.
Similar to FORWARD, HYBRID greedily solves the problem from the first time step t = 0
onwards. The difference is that it will observe the values of the random variables at each time
step t ≥ 0 and using them to retrieve the probability distribution of the random variables

212

Proactive Dynamic DCOPs

FORWARD
w02 w12 w22

 HYBRID
w02 w12 w22

REACT

w02w01 w11 w12 w21 w22

0 1 2 3 time step

0 ms 500 ms 1000 ms 1500 ms time

Figure 9: Search Time vs. Solution Adoption Time

in the next time step from the transition function. It then solves the problem for the next
time step with the updated probability distributions thereby finding better solutions than
the FORWARD algorithm. HYBRID is an online hybrid approach and cannot be used as
an offline approach.

Figure 9 illustrates the time the three approaches spend searching for solutions (denoted
by gray rectangles) as well as the time they adopt their solutions (denoted by white rectan-
gles), where the time duration between iterations is 500ms. FORWARD starts searching for
optimal solutions before the problem starts, and adopts the solution later. HYBRID solves
the first sub-problem at t = 0 based on the initial distribution of random variables, which
is known a priori. When the problem starts, HYBRID adopts the solution while observing
the values of random variables, using the observation to find its solution for the next time
step. Finally, REACT solves the problem each time the problem changes.

The effective utility Ueff of REACT in each time step t is defined as the normalized
weighted sum:

Ueff =
wt1 · qtt−1 + wt2 · qtt − (wt1 + wt2) · ct−1,t

wt1 + wt2
(80)

where wt1 is the duration it spent searching for a solution at time step t;12 wt2 is the duration
it adopted the solution found; qtt−1 is the quality of solution found in the previous time step
t−1; qtt is the quality of solution found in the current time step t; and ct−1,t is the switching
cost incurred between the two time steps. The effective utility takes into account: (i) the
quality qtt−1 of the solution found in the previous time step while the algorithm is searching
for a solution in the current time step; (ii) the quality qtt of the solution found in the current
time step; and (iii) the switching cost ct−1,t incurred by the solutions found in the current
time step and the previous time step. For FORWARD and HYBRID, since they find a
solution for each time step before the start of that time step, wt1 = 0 for all time steps, and
the effective utility takes into account the solution quality of the current time step and the
switching cost: Ueff = qtt − ct−1,t. However, the solution found for each time step by the

12. We discretize time into 50ms intervals.

213

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

500

600

700

800

900

1000

1100

1200

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

500

750

1000

1250

1500

1750

2000

2250

(b) Large Switching Cost Range

Figure 10: Comparison between F-DPOP and R-DPOP on Random Networks

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

500

600

700

800

900

1000

1100

1200

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

500

750

1000

1250

1500

1750

2000

2250

(b) Large Switching Cost Range

Figure 11: Comparison between Hy-DPOP and R-DPOP on Random Networks

three approaches are likely to differ and we aim to experimentally evaluate the conditions
in which one class of algorithms is preferred over the other.

Choosing DPOP and MGM as two algorithms to solve the DCOP at each time step, we
evaluate the following algorithms: Forward DPOP (F-DPOP), Forward MGM (F-MGM),
Hybrid DPOP (Hy-DPOP),13 Hybrid MGM (H-MGM), Reactive DPOP (R-DPOP)14, and
Reactive MGM (R-MGM) by varying two parameters – the time duration between subse-
quent time steps of the dynamic DCOP (i.e., the time before the DCOP changes) and the
switching cost c of the dynamic DCOP. We use the following default configuration: Number
of agents and decision variables |A| = |X| = |Y| = 10; domain size |Dx| = |Ωy| = 5; and
horizon h = 10. We conduct our experiments on random networks with p1 = 0.5 and dis-
tributed meeting scheduling problems. We report the average difference in effective utilities
(see Equation 80) between a proactive or hybrid algorithm and its reactive counterpart. The

13. We avoid using the acronym H-DPOP as that refers to a different algorithm (Kumar et al., 2008)
14. R-DPOP is the online S-DPOP

214

Proactive Dynamic DCOPs

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

140

130

120

110

100

90

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

125

100

75

50

25

0

25

50

(b) Large Switching Cost Range

Figure 12: Comparison between F-MGM and R-MGM on Random Networks

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

130

125

120

115

110

105

100

95

90

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

125

100

75

50

25

0

25

50

75

(b) Large Switching Cost Range

Figure 13: Comparison between H-MGM and R-MGM on Random Networks

difference in effective utilities is the effective utility of the proactive or hybrid algorithm
minus the effective utility of the reactive algorithm and divided by the horizon h.

Figures 10(a) and 10(b) compare F-DPOP and R-DPOP with a small switching cost
range of [0, 10] and a large switching cost range of [0, 100], respectively. The heatmap
shows the average difference in the effective utilities between F-DPOP and R-DPOP. The
difference is calculated by subtracting the effective utilities of F-DPOP from those of R-
DPOP and divided by the horizon h. When the switching cost is 0, R-DPOP is able to find
an optimal solution at each time step. However, when the cost increases, it may myopically
choose a solution that is good for the current time step but bad for future time steps. Thus,
R-DPOP is best when the switching cost is small and deteriorates with larger switching
costs. When the time duration between subsequent time steps is small, R-DPOP spends
most of the time on searching for the solution and little time on adopting it; vice versa
when the time duration is large. Thus, in Figure 10(a) and Figure 10(b), R-DPOP is worst
when the time duration is small and improves with longer duration.

We observe a similar trend in Figures 11(a) and 11(b), which show the result comparing
Hy-DPOP and R-DPOP, except that the difference is marginally larger. The reason is

215

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

80

60

40

20

0

20

40

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

0

200

400

600

800

(b) Large switching cost range

Figure 14: Difference in Effective Utilities of F-DPOP minus R-DPOP on Distributed Meet-
ing Scheduling Problems

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

100

80

60

40

20

0

20

40

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

0

200

400

600

800

(b) Large switching cost range

Figure 15: Comparison between Hy-DPOP and R-DPOP on Distributed Meeting Schedul-
ing Problems

that Hy-DPOP uses its observation of the random variables in the current time step to
compute a more accurate probability distribution of random variables for the next time
step. By observing and getting better prediction on the values of random variables, Hy-
DPOP can find better solutions. Moreover, unlike R-DPOP, Hy-DPOP is able to adopt the
solution immediately when the problem changes. Therefore, it combines the strengths of
both proactive and reactive algorithms.

We observe similar trends in Figures 12 and 13, where we use MGM instead of DPOP to
solve the DCOP at each time step on random networks. Similar to the results in Figures 10
and 11, the reactive approach, which is R-MGM in this case, is best when the switching
cost is 0 and deteriorates with larger switching costs. R-MGM is also worst when the time
duration is small and improves with longer duration when the switching cost value is small

216

Proactive Dynamic DCOPs

and vice versa. However, the trend tends to fluctuate due to the instability in the quality
of the solutions found by MGM.

We also report our online experimental results comparing F-DPOP and Hy-DPOP
against R-DPOP on distributed meeting scheduling problems in Figures 14 and 15. We
observe a similar trend as in random networks. The reactive algorithm is best if the switch-
ing cost is 0 and its solution quality decreases when the switching cost increases. Also,
R-DPOP is worst when the time duration is small and the solution quality increases with
longer duration. However, in the distributed meeting scheduling problem, when the switch-
ing cost is increasing and becomes much larger, the difference in switching cost dominates
the difference in utility. Since R-DPOP switches values between solutions more frequently
than F-DPOP and Hy-DPOP, R-DPOP performs worse when the time duration increases
and switching cost value is large, which is showed in Figure 14(b) and Figure 15(b). We do
not evaluate the online approach that use MGM on distributed meeting scheduling problems
since the effective utilities cannot be computed with infeasible solutions found by MGM.

Therefore, for the first time to the best of our knowledge, these experimental results shed
light on the identification of characteristics that are well suited for each class of dynamic
DCOP algorithms. Reactive algorithms are well suited for problems with small switching
costs and that change slowly. In contrast, proactive algorithms are well suited for problems
with large switching costs and that change quickly. Our hybrid algorithms combine the
strengths of both approaches – it works well in the same type of problems that proactive
algorithms work well in and it exploits observations to improve its solutions like reactive
algorithms.

8.3 Comparisons with MD-DCOP Algorithms

In the online setting, the states of the random variables are observable by agents and,
thus, PD-DCOPs can be modeled as Markovian Dynamic DCOPs (MD-DCOPs) (Nguyen
et al., 2014) and solved by MD-DCOP algorithms. One of the key differences between the
two models is that agents in PD-DCOPs incur some switching cost by changing solutions
between two subsequent time steps while MD-DCOPs do not. In order to integrate switching
cost in MD-DCOPs for fair comparisons, we first augment the states of the random variables
with the solution of the decision variables in the previous time step and then add the
switching cost to the utility function accordingly. Specifically, given a utility function fi of
a PD-DCOP, where its scope contains a random variable yi with state ωti in the current
time step, and xt−1

i as the assignment of the decision variables in the previous time step, the
state of the random variable yi in the corresponding MD-DCOP is augmented as 〈ωti ,x

t−1
i 〉.

The utility function f ′i of the MD-DCOP now takes into account the switching cost from
the previous solution:

f ′i(〈ωti ,xt−1
i 〉,x

t
i) = fi(ω

t
i ,x

t
i)− c ·∆(xt−1

i ,xti)

The transition function T ′ of the random variable yi is defined as:

T ′yi(〈ω
t
i ,x

t−1
i 〉, 〈ω

t+1
i ,xti〉) =

{
Tyi(ω

t
i , ω

t+1
i) if xt−1

i = xti
0 otherwise

217

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

60

40

20

0

20

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

60

40

20

0

20

40

(b) Large switching cost range

Figure 16: Difference in Effective Utilities of F-DPOP minus Decomposed Distributed R-
learning

After this step, the PD-DCOP is now mapped to the MD-DCOP and it can be solved by
MD-DCOP algorithms.

In this experiment, we choose F-DPOP and R-DPOP as our representative online algo-
rithms and compare them against Decomposed Distributed R-learning (Nguyen et al., 2014),
the best performing MD-DCOP algorithm. We run the experiment on random networks
and use the following configuration: Number of agents and variables |A| = |X| = |Y| = 10;
p1 = 0.5, domain size |Dx| = |Ωy| = 5. We consider the horizon when the distribution
of all random variable has converged and let the algorithms solve the problem for 50 time
steps. We report the average difference in effective utility between F-DPOP or R-DPOP
and Decomposed Distributed R-learning.

Figures 16(a) and 16(b) compare F-DPOP and Decomposed Distributed R-learning with
small switching cost and large switching cost, respectively. The heatmap shows the differ-
ence in average effective utility which is computed by subtracting the effective utilities of
F-DPOP from those of Decomposed Distributed R-learning. When the switching cost is
small, Decomposed Distributed R-learning is able to find better solution where it maps the
actual state of the random variables to the final solution. In contrast, since the distribu-
tion of random variables have converged, the solution of F-DPOP is identical for these 50
time steps and it ignores the actual states of the random variables. Thus, Decomposed
Distributed R-learning is able to take into account the state of the random variables and
thus find better solution. However, when the switching cost is higher, the solution found
by Decomposed Distributed R-learning is worse than F-DPOP. Since the solutions of F-
DPOP between two time steps are identical, F-DPOP incurs no switching cost. In contrast,
Decomposed Distributed R-learning still incurs some switching cost due to different states
between two time steps and the mapping from the actual state of the random variables.
Thus, it returns solutions with worse qualities than solutions of F-DPOP.

Figures 17(a) and 17(b) compare R-DPOP and Decomposed Distributed R-learning with
small switching cost and large switching cost, respectively. When the switching cost is 0,
R-DPOP is able find the optimal solution at each time step without incurring any switching

218

Proactive Dynamic DCOPs

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

350

300

250

200

150

100

50

0

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

4000

3000

2000

1000

0

(b) Large switching cost range

Figure 17: Difference in Effective Utilities of R-DPOP minus Decomposed Distributed R-
learning

cost caused by the previous solution. Thus, it is able to find the optimal solution overall and
the difference in the average effective utility between R-DPOP and Decomposed Distributed
R-learning is marginally positive. However, when the switching cost increases, the solution
quality of R-DPOP decreases since the switching cost is now larger and dominates the
solution quality found in reactive manner. On the other hand, by integrating the previous
solution into its augmented state, Decomposed Distributed R-learning is able to take the
solution of the previous time step into account, and thus the difference between R-DPOP
and Decomposed Distributed R-learning is smaller and becomes negative.

In summary, our experimental results have identified when a proactive or a reactive
approach should be used to solve the problems that are beyond the horizon when the
probability distributions of random variables have converged. On one hand, when the
switching cost is large or when the computation resource is limited, it is desirable to have
the same solution across different time steps that incurs less or even zero switching cost.
Thus, FORWARD is a more suitable approach than REACTIVE and R-learning. On the
other hand, when the switching cost is small, reactive algorithms such as R-DPOP and
R-learning are able to gain higher solution quality by having different solutions at different
time steps. When the switching cost increases, a less reactive approach like R-learning is
able to avoid aggressively changing solutions such as those provided by R-DPOP, and it is
able to gain higher solution quality. However, the downside of R-learning is that it requires a
significant number of iterations for training before being able to achieve satisfactory solution
qualities.

9. Conclusions

In many real-world applications, agents often act in dynamic environments. Thus, the
Dynamic DCOP formulation is attractive to model such problems. Existing research has
focused at solving such problems reactively, thus discarding the information on possible
future changes, which is often available in many applications. To cope with this limita-

219

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

tion, we proposed Proactive Dynamic DCOPs (PD-DCOPs), which model the dynamism
information in Dynamic DCOPs. In addition, we developed an exact algorithm to solve
PD-DCOPs and several heuristic algorithms that can scale to larger and more complex
problems. Our theoretical results presented the complexity of PD-DCOPs and the error
bound of our approaches. We also empirically evaluated both proactive and reactive al-
gorithms to determine the trade-offs between the two classes. When solving PD-DCOPs
online, our new distributed online greedy algorithms FORWARD and HYBRID outper-
formed reactive algorithms in problems with large switching costs and in problems that
change quickly. Our empirical findings on the trade-offs between proactive and reactive al-
gorithms are the first, to the best of our knowledge, that shed light on this important issue.
In the future, we plan to study how to combine the proactive and reactive approaches to
solve D-DCOPs that change quickly over time. If we can leverage the solution provided by
the proactive approach in an efficient way, we might be able to quickly find better solutions
without much trade-off and react better in such environment. We also plan to compare and
evaluate these approaches in both synthetic settings and real-life applications.

Acknowledgments

We thank the anonymous reviewers, whose suggestions improved the quality of our pa-
per. This research is partially supported by the United States-Israel Binational Science
Foundation (BSF) under award 2018081, the United States National Science Foundation
(NSF) under awards 1838364 and 2143706, and the Japan Society for the Promotion of
Science (JSPS) under Outline of Grants-in-Aid for Scientific Research (KAKENHI) awards
JP20H00609 and JP21H04979. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, ei-
ther expressed or implied, of the sponsoring organizations, agencies, or the United States,
Israeli, or Japanese governments.

References

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. (2004). Solving transition independent
decentralized Markov decision processes. Journal of Artificial Intelligence Research,
22, 423–455.

Bellifemine, F., Bergenti, F., Caire, G., & Poggi, A. (2005). JADE–a Java agent development
framework. In Multi-agent programming, pp. 125–147.

Bernstein, D., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decen-
tralized control of Markov decision processes. Mathematics of Operations Research,
27 (4), 819–840.

Chen, Z., Wu, T., Deng, Y., & Zhang, C. (2018). An ant-based algorithm to solve distributed
constraint optimization problems. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 4654–4661.

Cohen, L., Galiki, R., & Zivan, R. (2020). Governing convergence of max-sum on DCOPs
through damping and splitting. Artificial Intelligence, 279.

220

Proactive Dynamic DCOPs

Cohen, L., & Zivan, R. (2018). Balancing asymmetry in max-sum using split constraint fac-
tor graphs. In Proceedings of the International Conference on Principles and Practice
of Constraint Programming (CP), pp. 669–687.

Deng, Y., & An, B. (2020). Speeding up incomplete GDL-based algorithms for multi-
agent optimization with dense local utilities. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pp. 31–38.

Dibangoye, J. S., Amato, C., & Doniec, A. (2012). Scaling up decentralized MDPs through
heuristic search. In Proceedings of the Conference on Uncertainty in Artificial Intel-
ligence (UAI), pp. 217–226.

Dibangoye, J. S., Amato, C., Doniec, A., & Charpillet, F. (2013). Producing efficient error-
bounded solutions for transition independent decentralized MDPs. In Proceedings of
the International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), pp. 539–546.

Fargier, H., Lang, J., & Schiex, T. (1996). Mixed constraint satisfaction: A framework for
decision problems under incomplete knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI), pp. 175–180.

Farinelli, A., Rogers, A., & Jennings, N. (2014). Agent-based decentralised coordination for
sensor networks using the max-sum algorithm. Journal of Autonomous Agents and
Multi-Agent Systems, 28 (3), 337–380.

Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. (2008). Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 639–646.

Fioretto, F., Pontelli, E., & Yeoh, W. (2018). Distributed constraint optimization problems
and applications: A survey. Journal of Artificial Intelligence Research, 61, 623–698.

Fioretto, F., Yeoh, W., & Pontelli, E. (2017a). A multiagent system approach to schedul-
ing devices in smart homes. In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pp. 981–989.

Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., & Ranade, S. (2017b). A DCOP approach
to the economic dispatch with demand response. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 999–1007.

Gallager, R. (2013). Stochastic Processes: Theory for Applications. Cambridge University
Press.

Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward-bounding for dis-
tributed COPs. Journal of Artificial Intelligence Research, 34, 61–88.

Gutierrez, P., Meseguer, P., & Yeoh, W. (2011). Generalizing ADOPT and BnB-ADOPT. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 554–559.

Hamadi, Y., Bessière, C., & Quinqueton, J. (1998). Distributed intelligent backtracking. In
Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 219–
223.

221

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially
observable stochastic games. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 709–715.

Hatano, D., & Hirayama, K. (2013). DeQED: An efficient divide-and-coordinate algorithm
for DCOP. In Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 566–572.

Hoang, K. D., Fioretto, F., Hou, P., Yokoo, M., Yeoh, W., & Zivan, R. (2016). Proac-
tive dynamic distributed constraint optimization. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 597–605.

Hoang, K. D., Fioretto, F., Yeoh, W., Pontelli, E., & Zivan, R. (2018). A large neighbor-
ing search schema for multi-agent optimization. In Proceedings of the International
Conference on Principles and Practice of Constraint Programming (CP), pp. 688–706.

Hoang, K. D., Hou, P., Fioretto, F., Yeoh, W., Zivan, R., & Yokoo, M. (2017). Infinite-
horizon proactive dynamic DCOPs. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 212–220.

Hoang, K. D., Wayllace, C., Yeoh, W., Beal, J., Dasgupta, S., Mo, Y., Paulos, A., & Schewe,
J. (2019). New distributed constraint reasoning algorithms for load balancing in edge
computing. In Proceedings of the Principles and Practice of Multi-Agent Systems
(PRIMA), pp. 69–86.

Hoang, K. D., Yeoh, W., Yokoo, M., & Rabinovich, Z. (2020). New algorithms for continuous
distributed constraint optimization problems. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), p. 502–510.

Holland, A., & O’Sullivan, B. (2005). Weighted super solutions for constraint programs. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 378–383.

Katz, R. W. (1977). An application of chain-dependent processes to meteorology. Journal
of Applied Probability, 14 (3), 598–603.

Kim, Y., Krainin, M., & Lesser, V. (2011). Effective variants of the max-sum algorithm for
radar coordination and scheduling. In Proceedings of the International Joint Confer-
ences on Web Intelligence and Intelligent Agent Technologies (WI-IAT), pp. 357–364.

Kumar, A., Faltings, B., & Petcu, A. (2009). Distributed constraint optimization with
structured resource constraints. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 923–930.

Kumar, A., Petcu, A., & Faltings, B. (2008). H-DPOP: Using hard constraints for search
space pruning in DCOP. In Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), pp. 325–330.

Lass, R., Sultanik, E., & Regli, W. (2008). Dynamic distributed constraint reasoning. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1466–1469.

Le, T., Son, T. C., Pontelli, E., & Yeoh, W. (2017). Solving distributed constraint optimiza-
tion problems with logic programming. Theory and Practice of Logic Programming,
17 (4), 634–683.

222

Proactive Dynamic DCOPs

Maheswaran, R., Pearce, J., & Tambe, M. (2004a). Distributed algorithms for DCOP: A
graphical game-based approach. In Proceedings of the Conference on Parallel and
Distributed Computing Systems (PDCS), pp. 432–439.

Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., & Varakantham, P. (2004b). Taking
DCOP to the real world: Efficient complete solutions for distributed event scheduling.
In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 310–317.

Miller, S., Ramchurn, S., & Rogers, A. (2012). Optimal decentralised dispatch of embed-
ded generation in the smart grid. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 281–288.

Modi, P., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence, 161 (1–2), 149–
180.

Moore, J. T., Glass, F. H., Graves, C. E., Rochette, S. M., & Singer, M. J. (2003). The
environment of warm-season elevated thunderstorms associated with heavy rainfall
over the central united states. Weather and Forecasting, 18 (5), 861–878.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D., & Marsella, S. (2003). Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 705–711.

Nair, R., Varakantham, P., Tambe, M., & Yokoo, M. (2005). Networked distributed
POMDPs: A synthesis of distributed constraint optimization and POMDPs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 133–139.

Nguyen, D. T., Yeoh, W., Lau, H. C., Zilberstein, S., & Zhang, C. (2014). Decentralized
multi-agent reinforcement learning in average-reward dynamic DCOPs. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1447–1455.

Nguyen, D. T., Yeoh, W., Lau, H. C., & Zivan, R. (2019). Distributed Gibbs: A linear-
space sampling-based DCOP algorithm. Journal of Artificial Intelligence Research,
64, 705–748.

Oliehoek, F., Spaan, M., Amato, C., & Whiteson, S. (2013). Incremental clustering and ex-
pansion for faster optimal planning in Dec-POMDPs. Journal of Artificial Intelligence
Research, 46, 449–509.

Ottens, B., Dimitrakakis, C., & Faltings, B. (2017). DUCT: An upper confidence bound
approach to distributed constraint optimization problems. ACM Transactions on
Intelligent Systems and Technology, 8 (5), 69:1–69:27.

Paulos, A., Dasgupta, S., Beal, J., Mo, Y., Hoang, K. D., Lyles, J. B., Pal, P., Schantz, R.,
Schewe, J., Sitaraman, R., Wald, A., Wayllace, C., & Yeoh, W. (2019). A framework
for self-adaptive dispersal of computing services. In IEEE Self-Adaptive and Self-
Organizing Systems Workshops.

Petcu, A., & Faltings, B. (2005a). A scalable method for multiagent constraint optimization.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1413–1420.

223

Hoang, Fioretto, Hou, Yeoh, Yokoo, & Zivan

Petcu, A., & Faltings, B. (2005b). Superstabilizing, fault-containing multiagent combina-
torial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 449–454.

Petcu, A., & Faltings, B. (2007). Optimal solution stability in dynamic, distributed con-
straint optimization. In Proceedings of the International Conference on Intelligent
Agent Technology (IAT), pp. 321–327.

Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and
solar radiation. Water Resources Research, 17 (1), 182–190.

Rust, P., Picard, G., & Ramparany, F. (2016). Using message-passing DCOP algorithms
to solve energy-efficient smart environment configuration problems. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), pp. 468–474.

Seuken, S., & Zilberstein, S. (2007). Memory-bounded dynamic programming for DEC-
POMDPs. In Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 2009–2015.

Sultanik, E., Lass, R., & Regli, W. (2008). DCOPolis: A framework for simulating and
deploying distributed constraint reasoning algorithms. In Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp.
1667–1668.

Sultanik, E., Lass, R., & Regli, W. (2009). Dynamic configuration of agent organizations. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 305–311.

Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search algorithm for
solving decentralized POMDPs. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 576–590.

Tarim, S. A., Manandhar, S., & Walsh, T. (2006). Stochastic constraint programming: A
scenario-based approach. Constraints, 11 (1), 53–80.

Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research,
47 (1-2), 123–138.

Ueda, S., Iwasaki, A., & Yokoo, M. (2010). Coalition structure generation based on dis-
tributed constraint optimization. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 197–203.

van Leeuwen, C. J., & Pawelczak, P. (2017). CoCoA: A non-iterative approach to a lo-
cal search (A)DCOP solver. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 3944–3950.

Vinyals, M., Rodŕıguez-Aguilar, J., & Cerquides, J. (2011). Constructing a unifying the-
ory of dynamic programming DCOP algorithms via the generalized distributive law.
Autonomous Agents and Multi-Agent Systems, 22 (3), 439–464.

Wallace, R., & Freuder, E. (1998). Stable solutions for dynamic constraint satisfaction
problems. In Proceedings of the International Conference on Principles and Practice
of Constraint Programming (CP), pp. 447–461.

224

Proactive Dynamic DCOPs

Walsh, T. (2002). Stochastic constraint programming. In Proceedings of the European
Conference on Artificial Intelligence (ECAI), pp. 111–115.

Wilks, D. S. (1992). Adapting stochastic weather generation algorithms for climate change
studies. Climatic Change, 22 (1), 67–84.

Witwicki, S., & Durfee, E. (2011). Towards a unifying characterization for quantifying
weak coupling in Dec-POMDPs. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 29–36.

Xu, W., Zipser, E. J., Chen, Y.-L., Liu, C., Liou, Y.-C., Lee, W.-C., & Jong-Dao Jou, B.
(2012). An orography-associated extreme rainfall event during TiMREX: Initiation,
storm evolution, and maintenance. Monthly Weather Review, 140 (8), 2555–2574.

Yeoh, W., Felner, A., & Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

Yeoh, W., Varakantham, P., Sun, X., & Koenig, S. (2015). Incremental DCOP search algo-
rithms for solving dynamic DCOPs. In Proceedings of the International Conference
on Intelligent Agent Technology (IAT), pp. 257–264.

Yeoh, W., & Yokoo, M. (2012). Distributed problem solving. AI Magazine, 33 (3), 53–65.

Yu, Z., Chen, Z., He, J., & Deng, Y. (2017). A partial decision scheme for local search
algorithms for distributed constraint optimization problems. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 187–194.

Zhang, W., Wang, G., Xing, Z., & Wittenberg, L. (2005). Distributed stochastic search and
distributed breakout: Properties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence, 161 (1–2), 55–87.

Zink, M., Westbrook, D., Abdallah, S., Horling, B., Lakamraju, V., Lyons, E., Manfredi,
V., Kurose, J., & Hondl, K. (2005). Meteorological command and control: An end-to-
end architecture for a hazardous weather detection sensor network. In Workshop on
End-to-End, Sense-and-Respond Systems, Applications, and Services. USENIX Asso-
ciation.

Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed
constraint optimization. Artificial Intelligence, 212, 1–26.

Zivan, R., Parash, T., Cohen, L., Peled, H., & Okamoto, S. (2017). Balancing exploration
and exploitation in incomplete min/max-sum inference for distributed constraint opti-
mization. Journal of Autonomous Agents and Multi-Agent Systems, 31 (5), 1165–1207.

Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through
value propagation on an alternating DAG. In Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 265–272.

Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., & Sycara, K. (2015). Distributed con-
straint optimization for teams of mobile sensing agents. Journal of Autonomous Agents
and Multi-Agent Systems, 29 (3), 495–536.

225

