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Abstract

Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to
induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns
30, we provide a new introduction to the field. We introduce the necessary logical notation
and the main learning settings; describe the building blocks of an ILP system; compare
several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and
Metagol); highlight key application areas; and, finally, summarise current limitations and
directions for future research.

1. Introduction

A remarkable feat of human intelligence is the ability to learn knowledge. A key form
of learning is induction: the process of forming general rules (hypotheses) from specific
observations (examples). For instance, suppose you draw 10 red balls out of a bag, then
you might induce a hypothesis (a rule) that all the balls in the bag are red. Having induced
this hypothesis, you can predict the colour of the next ball out of the bag.

Machine learning (ML) automates induction. ML induces a hypothesis (also called
a model) that generalises training examples (observations). For instance, given labelled
images of cats and dogs, the goal of ML is to induce a hypothesis that predicts whether an
unlabelled image is a cat or a dog. Inductive logic programming (ILP) (Muggleton, 1991)
is a form of ML. As with other forms of ML, the goal of ILP is to induce a hypothesis that
generalises training examples. However, whereas most forms of ML use tables1 to represent
data (examples and hypotheses), ILP uses logic programs (sets of logical rules). Moreover,
whereas most forms of ML learn functions, ILP learns relations. We illustrate ILP using
four scenarios.

1.1 Scenario 1: Concept Learning

Suppose we want to predict whether someone is happy. To do so, we ask four people (alice,
bob, claire, and dave) whether they are happy. We also ask for additional information,
specifically their job, their company, and whether they like lego. Many ML approaches,
such as a decision tree or neural network learner, would represent this data as a table, such
as Table 1. Using standard ML terminology, each row represents a training example, the

1. Table-based learning is attribute-value learning. See De Raedt (2008) for an overview of the hierarchy of
representations. Note that not all other forms of ML use tables. For instance, Rocktäschel and Riedel
(2017) use embeddings.
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first three columns (name, job, and enjoys lego) represent features, and the final column
(happy) represents the label or classification. Given this table as input, the goal is to induce
a hypothesis that generalises the training examples. For instance, a neural network learner
would learn a table of numbers that weight the importance of the features (or hidden
features in a multi-layer network). We can then use the hypothesis to predict labels for
unseen examples.

Name Job Enjoys lego Happy

alice lego builder yes yes
bob lego builder no no

claire estate agent yes no
dave estate agent no no

Table 1: A table representation of a ML task.

Rather than represent data as tables, ILP represents data as logic programs, sets of logical
rules. The main building block of a logic program is an atom. An atom is of the form
p(x1, . . . , xn), where p is a predicate symbol of arity n (takes n arguments) and each xi
is a term. A logic program uses atoms to represent data. For instance, we can represent
that alice enjoys lego as the atom enjoys lego(alice) and that bob is a lego builder as
lego builder(bob).

An ILP task is formed of three sets (B, E+, E−). The set B is background knowl-
edge (BK). BK is similar to features but can contain relations and information indirectly
associated with the examples. We can represent the data in Table 1 as the set B:

B =



lego builder(alice).
lego builder(bob).
estate agent(claire).
estate agent(dave).
enjoys lego(alice).
enjoys lego(claire).


ILP usually follows the closed world assumption (Reiter, 1977), so if anything is not explic-
itly true we assume it is false. With this assumption, we do not need to explicitly state that
enjoys lego(bob) and enjoys lego(dave) are false.

The sets E+ and E− represent positive and negative examples respectively. We can
represent the examples in Table 1 as:

E+ =
{

happy(alice).
}
E− =


happy(bob).
happy(claire).
happy(dave).


Given these sets, the goal of ILP is to induce a hypothesis that with the BK logically entails
as many positive and as few negative examples as possible. A hypothesis (H) in ILP is a
set of logical rules, such as:

H =
{
∀A. lego builder(A) ∧ enjoys lego(A)→ happy(A)

}
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This hypothesis contains one rule that says that for all A, if A is a lego builder (lego builder(A))
and enjoys lego (enjoys lego(A)), then A is happy (happy(A)). Having induced a rule, we
can deduce knowledge from it. For instance, this rule says if lego builder(alice) and
enjoys lego(alice) are true then happy(alice) must also be true.

The above rule is written in a standard first-order logic notation. We usually write logic
programs in reverse implication form:

head:- body1, body2, . . . , bodyn

A rule in this form states that the head atom is true when every body i atom is true. A comma
denotes conjunction. In logic programming, every variable is assumed to be universally
quantified, so we drop quantifiers. We also flip the direction of the implication symbol→ to
← and often replace it with :- because it is easier to use when writing computer programs.
Therefore, in logic programming notation, the above hypothesis is:

H =
{

happy(A):- lego builder(A),enjoys lego(A).
}

Logic programs are declarative which means that the order of atoms in a rule does not
change its semantics2. For instance, the above hypothesis is semantically identical to this
one:

H =
{

happy(A):- enjoys lego(A),lego builder(A).
}

1.2 Scenario 2: Data Curation

Suppose we want to learn a string transformation programs from input 7→ output examples,
such as program that returns the last character of a string:

Input Output

machine e
learning g

algorithm m

Many forms of ML would represent these examples as a table, such as using a one-hot-
encoding technique3. By contrast, ILP represents these examples as atoms, such as:

E+ =


last([m,a,c,h,i,n,e], e).
last([l,e,a,r,n,i,n,g], g).
last([a,l,g,o,r,i,t,m], m).


The symbol last is the target predicate that we want to learn (the relation to generalise).

The first argument of each atom represents an input list and the second argument represents
an output value. To induce a hypothesis for these examples, we need to provide suitable
BK, such as common list operations:

2. This statement about the declarative nature of logic programs is imprecise. The order of rules often
matters in practice, such as in Prolog. We discuss this issue in detail in Section 2.3.

3. Using the simplest binary one-hot-encoding approach, we would have a feature for every letter and an
example would have the value 1 for that feature if the letter appears in the example; otherwise, the value
will be 0.
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Name Description Example

empty(A) A is an empty list empty([]).

head(A,B) B is the head of the list A head([c,a,t],c).

tail(A,B) B is the tail of the list A tail([c,a,t],[a,t]).

Given the aforementioned examples and BK with the above list operations, the goal is to
search for a hypothesis that generalises the examples. At a high level, an ILP system builds
a hypothesis by combining information from the BK and examples. The set of all possible
hypotheses is called the hypothesis space. In other words, the goal of an ILP system is to
search the hypothesis space for a hypothesis that generalises the examples.

In this data curation scenario, an ILP system could induce the hypothesis:

H =

{
last(A,B):- head(A,B),tail(A,C),empty(C).
last(A,B):- tail(A,C),last(C,B).

}
This hypothesis contains two rules. The first rule says that B is the last element of A when
B is the head of A and the tail of A is empty. The second rule says that B is the last element
of A when B is the last element of the tail of A.

1.3 Scenario 3: Program Synthesis

Suppose we have the following positive and negative examples, again represented as atoms,
where the first argument is an unsorted list and the second argument is a sorted list:

E+ =

{
sort([2,1],[1,2]).
sort([5,3,1],[1,3,5]).

}
E− =

{
sort([2,1],[2,1]).
sort([1,3,1],[1,1,1]).

}
Also suppose that as BK we have the same empty, head, and tail relations from the string
transformation scenario and two additional relations:

Name Description Example

partition(Pivot,A,L,R) L is a sublist of A containing ele-
ments less than or equal to Pivot
and R is a sublist of A containing
elements greater than the pivot

pivot(3,[4,1,5,2],[1,2],[4,5]).

append(A,B,C) true when C is the concatenation
of A and B

append([a,b,c],[d,e],[a,b,c,d,e]).

Given these sets, an ILP system could induce the hypothesis:

H =


sort(A,B):- empty(A),empty(B).
sort(A,B):- head(A,Pivot),partition(Pivot,A,L1,R1),

sort(L1,L2),sort(R1,R2),append(L2,R2,B).


This hypothesis corresponds to the quicksort algorithm (Hoare, 1961) and generalises to lists
of arbitrary length and elements not seen in the training examples. This scenario shows
that ILP is a form of program synthesis (Shapiro, 1983), where the goal is to automatically
build executable programs.
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1.4 Scenario 4: Scientific Discovery

As Srinivasan et al. (1994) state, “There is more to scientific theory formulation than data
fitting. To be acceptable, a theory must be understandable and open to critical analysis”. For
this reason, ILP has been widely used for scientific discovery. For instance, King et al. (1992)
use ILP to model structure-activity relationships for drug design. In this work, an ILP sys-
tem takes as input positive and negative examples and BK. The positive examples are paired
examples of greater activity. For instance, the positive example great(d20,di5) states that
drug 20 has higher activity than drug 15. Negative examples are examples of drug pairings
with lower activity. The BK contains information about the chemical structures of drugs
and the properties of substituents4. For instance, the atom struc(d35,no2,nhcoch3,h)
states that drug 35 has no2 substituted at position 3, nhcoch3 substituted at position 4,
and no substitution at position 5, and the atom flex(no2,3) states that no2 has flexibility
3. Given such examples and BK, the ILP system Golem (Muggleton & Feng, 1990) induces
multiple rules to explain the examples, including this one:

great(A,B):- struc(A,C,D,E),struc(B,F,h,h),h donor(C,hdonO),
polarisable(C,polaril),flex(F,G),flex(C,H),
great flex(G,H),great6 flex(G).

This rule says that Drug A is better than drug B if drug B has no substitutions at positions 4
and 5, and drug B at position 3 has flexibility >6, and drug A at position 3 has polarisability
= 1, and drug A at position 3 has hydrogen donor = 0, and drug A at position 3 is less
flexible than drug B at position 3.

As this scenario illustrates, ILP can learn human-readable hypotheses. The inter-
pretability of such rules is crucial to allow domain experts to gain insight.

1.5 Why ILP?

Most ML approaches rely on statistical inference. By contrast, ILP relies on logical inference
and uses techniques from automated reasoning and knowledge representation. Table 2 shows
a simplified comparison between ILP and statistical ML approaches. We briefly discuss these
differences.

Statistical ML ILP

Examples Many Few
Data Tables Logic programs
Hypotheses Propositional/functions First-/higher-order relations
Explainability Difficult Possible
Knowledge transfer Difficult Easy

Table 2: A simplified comparison between ILP and statistical ML approaches based on the
table by Gulwani et al. (2015).

4. An atom or group other than hydrogen on a molecule.
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Examples. Many forms of ML are notorious for their inability to generalise from small
numbers of training examples, notably deep learning (Marcus, 2018; Chollet, 2019; Bengio
et al., 2019). As Evans and Grefenstette (2018) point out, if we train a neural system
to add numbers with 10 digits, it can generalise to numbers with 20 digits, but when
tested on numbers with 100 digits, the predictive accuracy drastically decreases (Reed &
de Freitas, 2016; Kaiser & Sutskever, 2016). By contrast, ILP can induce hypotheses from
small numbers of examples, often from a single example (Lin et al., 2014; Muggleton et al.,
2018). This data efficiency is important when we only have small amounts of training data.
For instance, Gulwani (2011) applies techniques similar to ILP to induce programs from
user-provided examples in Microsoft Excel to solve string transformation problems, where
it is infeasible to ask a user for thousands of examples. This data efficiency has made ILP
attractive in many real-world applications, especially in drug design, where large numbers
of examples are not always easy to obtain.

Data. Using logic programs to represent data allows ILP to learn with complex relational
information and for easy integration of expert knowledge. For instance, if learning causal
relations in causal networks, a user can encode constraints about the network (Inoue et al.,
2013). If learning to recognise events, a user could provide the axioms of the event calculus
(Katzouris et al., 2015). Relational BK allows us to succinctly represent infinite relations.
For instance, it is trivial to define a summation relation over the infinite set of natural
numbers (add(A,B,C):- C = A+B). By contrast, tabled-based ML approaches are mostly
restricted to finite data and cannot represent this information. For instance, it is impossible
to provide a decision tree learner (Quinlan, 1986, 1993) this infinite relation because it would
require an infinite feature table. Even if we restricted ourselves to a finite set of n natural
numbers, a table-based approach would still need n3 features to represent the complete
summation relation.

Hypotheses. Because they are closely related to relational databases, logic programs
naturally support relational data such as graphs. Because of the expressivity of logic pro-
grams, ILP can learn complex relational theories, such as cellular automata (Inoue et al.,
2014; Evans et al., 2021), event calculus theories (Katzouris et al., 2015), and Petri nets
(Bain & Srinivasan, 2018), and various forms of non-monotonic programs (Bain & Muggle-
ton, 1991; Inoue & Kudoh, 1997; Sakama, 2001). Because of the symbolic nature of logic
programs, ILP can reason about hypotheses, which allows it to learn optimal programs,
such as minimal time-complexity programs (Cropper & Muggleton, 2019) and secure access
control policies (Law et al., 2020). Moreover, because induced hypotheses have the same
language as the BK, they can be stored in the BK, making transfer learning trivial (Lin
et al., 2014).

Explainability. Because of logic’s similarity to natural language, logic programs can be
easily read by humans, which is crucial for explainable AI5. Because of this interpretability,
ILP has long been used for scientific discovery6 (King et al., 1992; Srinivasan et al., 1996,

5. Muggleton et al. (2018) (also explored by Ai et al. (2021)) evaluate the comprehensibility of ILP hy-
potheses using Michie’s (1988) notion of ultra-strong ML, where a learned hypothesis is expected to not
only be accurate but to also demonstrably improve the performance of a human when provided with the
learned hypothesis.

6. Muggleton (1999b) provides a (slightly outdated) summary of scientific discovery using ILP.
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1997, 2006; Kaalia et al., 2016). For instance, the Robot Scientist (King et al., 2004) is a
system that uses ILP to generate hypotheses to explain data and can also automatically
devise experiments to test the hypotheses, physically run the experiments, interpret the
results, and then repeat the cycle. Whilst researching yeast-based functional genomics, the
Robot Scientist became the first machine to independently discover new scientific knowledge
(King et al., 2009).

Knowledge transfer. Most ML algorithms are single-task learners and cannot reuse
learned knowledge. For instance, although AlphaGo (Silver et al., 2016) has super-human
Go ability, it cannot reuse this knowledge to play other games, nor the same game with a
slightly different board. By contrast, because of its symbolic representation, ILP naturally
supports lifelong and transfer learning (Torrey et al., 2007; Cropper, 2019), which is consid-
ered essential for human-like AI (Lake et al., 2016). For instance, when inducing solutions
to a set of string transformation tasks, such as those in Scenario 2, Lin et al. (2014) show
that an ILP system can automatically identify easier problems to solve, learn programs
for them, and then reuse the learned programs to help learn programs for more difficult
problems. Moreover, they show that this knowledge transfer approach leads to a hierarchy
of reusable programs, where each program builds on simpler programs.

1.6 How Does ILP Work?

Building an ILP system (Figure 1) requires making several choices or assumptions. Under-
standing these assumptions is key to understanding ILP. We discuss these assumptions in
Section 4 but briefly summarise them now.

User-provided input Learning output

Examples

last([m,a,c,h,i,n,e], e).

last([l,e,a,r,n,i,n,g], g).

last([a,l,g,o,r,i,t,m], m).

Background knowledge

empty(A) A is an empty list

head(A,B) B is the head of the list A

tail(A,B) B is the tail of the list A

ILP system

Program

last(A,B):- tail(A,C),empty(C),head(A,B).

last(A,B):- tail(A,C),last(C,B).

Search space over programs

each node in the search tree is a program

last(A,B):- tail(A,B). last(A,B):- tail(A,C),empty(C),head(A,B).

Figure 1: An ILP system learns programs from examples and BK. The system learns by
searching a space of possible programs which are constructed from BK.

Learning setting. The central choice is how to represent examples. The examples in the
scenarios in this section include boolean concepts (lego builder) and input-output examples
(string transformation and sorting). Although boolean concepts and input-output examples
are common representations, there are other representations, such as interpretations (Bloc-
keel & De Raedt, 1998) and transitions (Inoue et al., 2014). The representation determines
the learning setting which in turn defines what it means for a program to solve the ILP
problem.
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Representation language. ILP represents data as logic programs. There are, however,
many logic programming languages, each with strengths and weaknesses. For instance,
Prolog is a Turing-complete logic programming language. Datalog is a syntactical subset of
Prolog that sacrifices features (such as data structures) and expressivity (it is not Turing-
complete) to gain efficiency and decidability. Some languages support non-monotonic rea-
soning, such as answer set programming (Gebser et al., 2012). Choosing a suitable repre-
sentation language is crucial in determining which problems a system can solve.

Defining the hypothesis space. The fundamental ILP problem is to search the hypoth-
esis space for a suitable hypothesis. The hypothesis space contains all possible programs
that can be built in the chosen representation language. Unrestricted, the hypothesis space
is infinite, so it is vital to restrict it to make the search feasible. As with all ML techniques,
ILP restricts the hypothesis space by enforcing an inductive bias (Mitchell, 1997). A lan-
guage bias enforces restrictions on hypotheses, such as how many variables or relations can
be in a hypothesis. Choosing an appropriate language bias is necessary for efficient learning
and is a major challenge.

Search method. Having defined the hypothesis space, the problem is to efficiently search
it. The traditional way to categorise approaches is whether they use a top-down or bottom-
up search, where generality orders the search space7. Top-down approaches (Quinlan, 1990;
Blockeel & De Raedt, 1998; Bratko, 1999; Muggleton et al., 2008; Ribeiro & Inoue, 2014)
start with an overly general hypothesis and try to specialise it. Bottom-up approaches
(Muggleton, 1987; Muggleton & Buntine, 1988; Muggleton & Feng, 1990; Inoue et al.,
2014) start with an overly specific hypothesis and try to generalise it. Some approaches
combine the two (Muggleton, 1995; Srinivasan, 2001; Cropper, 2022). A third approach has
recently emerged called meta-level ILP (Inoue et al., 2013; Muggleton et al., 2015; Inoue,
2016; Law et al., 2020; Cropper & Morel, 2021). This approach represents an ILP problem
as a meta-level logic program, i.e. a program that reasons about programs. Meta-level
approaches often delegate the search for a hypothesis to an off-the-shelf solver (Corapi et al.,
2011; Muggleton et al., 2014; Law et al., 2014; Kaminski et al., 2018; Evans et al., 2021;
Cropper & Morel, 2021) after which the meta-level solution is translated back to a standard
solution for the ILP problem.

1.7 A Brief History

That ILP is a form of ML surprises many researchers who only associate ML with statistical
techniques. However, if we follow Mitchell’s (1997) definition of ML8 then ILP is no different
from other ML approaches: it improves given more examples. The confusion seems to come
from ILP’s use of logic as a representation for learning. However, as Domingos (2015) points
out, there are generally five areas of ML: symbolists, connectionists, Bayesian, analogisers,
and evolutionists. ILP is in the symbolic learning category.

7. A hypothesis h1 is more general than h2 if h1 entails at least as many examples as h2. A hypothesis h1

is more specific than h2 if h1 entails fewer examples then h2.
8. According to Mitchell’s (1997), an algorithm is said to learn from experience E with respect to some class

of tasks T and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E.
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Turing can be seen as one of the first symbolist, as he proposed using a logical repre-
sentation to build thinking machines (Turing, 1950; Muggleton, 1994a). McCarthy (1959)
made the first comprehensive proposal for the use of logic in AI with his advice seeker.
Much work on using logic for ML soon followed. Recognising the limitations of table-based
representations, Banerji (1964) proposed using predicate logic as a representation language
for learning. Michalski’s (1969) work on the AQ algorithm, which induces rules using a set
covering algorithm, has greatly influenced many ILP systems. Plotkin’s (1971) work on sub-
sumption and least general generalisation has influenced nearly all of ILP, especially theory.
Other notable work includes Vera (1975) on induction algorithms for predicate calculus and
Sammut’s (1981) MARVIN system, one of the first to learn executable programs. Shapiro’s
(1983) work on inducing Prolog programs made major contributions to ILP, including the
concepts of backtracking and refinement operators. Quinlan’s (1990) FOIL system is one of
the most well-known ILP systems and is a natural extension of ID3 (Quinlan, 1986) from the
propositional setting to the first-order setting. Other notable contributions include inverse
resolution (Muggleton & Buntine, 1988), which was also one of the earliest approaches at
predicate invention. ILP as a field was founded by Muggleton (1991), who stated that it
lies at the intersection of ML and knowledge representation.

1.8 Contributions

There are several excellent ILP survey papers (Sammut, 1993; Muggleton & De Raedt, 1994;
Muggleton, 1999a; Page & Srinivasan, 2003; Muggleton et al., 2012) and books (Nienhuys-
Cheng & Wolf, 1997; De Raedt, 2008). In this paper, we want to provide a new introduction
to the field aimed at a general AI reader interested in symbolic learning. We differ from
existing surveys by including, and mostly focusing on, recent developments (Cropper et al.,
2020a), such as new methods for learning recursive programs, predicate invention, and
meta-level search. Although we cover work on inducing Datalog and answer set programs,
we mostly focus on approaches that induce definite programs, and in particular Prolog
programs. We do not detail work that combines neural networks with ILP, to which there
are already suitable survey papers (d’Avila Garcez et al., 2019; Raedt et al., 2020).

The rest of the paper is organised as follows:

• We describe necessary logic programming notation (Section 2).

• We define the standard ILP learning settings (Section 3).

• We describe the basic assumptions required to build an ILP system (Section 4).

• We compare many ILP systems and describe the features they support (Section 5).

• We describe four ILP systems in detail (Aleph, TILDE, ASPAL, and Metagol) (Section
6).

• We summarise some of the key application areas of ILP (Section 7).

• We briefly survey related work (Section 8).

• We conclude by outlining the main current limitations of ILP and suggesting directions
for future research (Section 9)
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2. Logic Programming

ILP uses logic programs (Kowalski, 1974) to represent BK, examples, and hypotheses.
A logic program is fundamentally different from an imperative program (e.g. C, Java,
Python) and very different from a functional program (e.g. Haskell, OCaml). Imperative
programming views a program as a sequence of step-by-step instructions where computation
is the process of executing the instructions. By contrast, logic programming views a program
as a logical theory (a set of logical rules) where computation is various forms of deduction
over the theory, such as searching for a proof, refutation, or a model of it. Another major
difference is that a logic program is declarative (Lloyd, 1994) because it allows a user to
state what a program should do, rather than how it should work. This declarative nature
means that the order of rules in a logic program does not (usually) matter.

In the rest of this section, we introduce the basics of logic programming necessary to
understand the rest of this paper. We cover the syntax and semantics and briefly introduce
different logic programming languages. We focus on concepts necessary for understanding
ILP and refer the reader to more detailed expositions of logic programming (Nienhuys-
Cheng & Wolf, 1997; De Raedt, 2008; Lloyd, 2012), Prolog (Sterling & Shapiro, 1994;
Bratko, 2012), and ASP (Gebser et al., 2012) for more information. We, therefore, omit
descriptions of many important concepts in logic programming, such as stratified negation.
Readers comfortable with logic can skip this section.

2.1 Syntax

We first define the syntax of a logic program:

• A variable is a string of characters starting with an uppercase letter, e.g. A, B, and
C.

• A function symbol is a string of characters starting with a lowercase letter.

• A predicate symbol is a string of characters starting with a lowercase letter, e.g. job
or happy. The arity n of a function or predicate symbol p is the number of arguments
it takes and is denoted as p/n, e.g. happy/1, head/2, and append/3.

• A constant symbol is a function symbol with zero arity, e.g. alice or bob.

• A term is a variable, or a constant/function symbol of arity n immediately followed
by a tuple of n terms.

• A term is ground if it contains no variables.

• An atom is a formula p(t1, . . . , tn), where p is a predicate symbol of arity n and each
ti is a term, e.g. lego builder(alice), where lego builder is a predicate symbol of
arity 1 and alice is a constant symbol.

• An atom is ground if all of its terms are ground, e.g. lego builder(alice) is ground
but lego builder(A), where A is a variable, is not ground.

• The symbol not denotes negation as failure, where an atom is false if it cannot be
proven true.

• A literal is an atom A (a positive literal) or its negation not A (a negative lit-
eral). For instance, lego builder(alice) is both an atom and a literal but not
lego builder(alice) is only a literal because it includes the negation symbol not.
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• A clause is of the form h1, . . . , hn :- b1, . . . ,bm where each hi and bj is a literal and
the symbol , denotes conjunction. The symbols hi are called the head of the clause.
The symbols bi are called the body of the clause. We sometimes use the name rule
instead of clause.

• A Horn clause is a clause with at most one positive literal.

• A definite clause is clause of the form h :- b1, b2, . . . , bn, i.e. a clause with only
one head literal, e.g. qsort(A,B):- empty(A),empty(B). Informally, a definite clause
states that the head is true if the body is true, i.e. all of the body literals are proven
true. For instance, the rule happy(A):- lego builder(A),enjoys lego(A) says that
happy(A) is true when both lego builder(A) and enjoys lego(A) are true.

• A clause is ground if it contains no variables.

• A clausal theory is a set of clauses.

• A goal (also called a constraint) is a clause of the form :- b1, b2, . . . , bn, i.e. a
clause without a head, e.g. :- head(A,B),head(B,A).

• A unit clause is a clause with no body. For unit clauses, we usually omit the :-
symbol, e.g. loves(alice,X).

• A fact is a ground unit clause loves(andrew,laura).

• Simultaneously replacing variables v1, . . . , vn in a clause with terms t1, . . . , tn is called
a substitution and is denoted as θ = {v1/t1, . . . , vn/tn}. For instance, applying the
substitution θ = {A/bob} to loves(alice,A) results in loves(alice,bob).

• A substitution θ unifies atoms A and B in the case Aθ = Bθ. Note that atoms A and
B need to have a distinct set of variables, i.e., they should not have a variable with
the same name, for unification to work properly.

2.2 Semantics

The semantics of logic programs is based on the concepts of a Herbrand universe, base, and
interpretation. All three concepts build upon a given vocabulary V containing all constants,
functions, and predicate symbols of a program. The Herbrand universe is the set of all
ground terms that can be formed from the constants and functions symbols in V. For
instance, the Herbrand universe of the lego builder example (Section 1.1) is

{alice, bob, claire, dave}

If the example also contained the function symbol age/1, then the Herbrand universe would
be the infinite set:

{alice, bob, claire, dave, age(alice), age(bob), age(age(alice)), . . . }

The Herbrand base is the set of all ground atoms that can be formed from the predicate
symbols in V and the terms in the corresponding Herbrand universe. For instance, the
Herbrand base of the lego builder example is:

happy(alice), happy(bob), happy(claire), happy(dave),
lego builder(alice), lego builder(bob), lego builder(claire), lego builder(dave),
estate agent(alice), estate agent(bob), estate agent(claire), estate agent(dave),
enjoys lego(alice), enjoys lego(bob), enjoys lego(claire), enjoys lego(dave)
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A Herbrand interpretation assigns truth values to the elements of a Herbrand base. By
convention, a Herbrand interpretation includes true ground atoms, assuming that every
atom not included is false. For instance, the Herbrand interpretation corresponding to the
example in Section 1.1 is:{

happy(alice), lego builder(alice), lego builder(bob), estate agent(claire),
estate agent(dave), enjoys lego(alice), enjoys lego(claire)

}
A Herbrand interpretation I is a Herbrand model for a set of clauses C if for all clauses
h1;...;hn:- b1,..,bm ∈ C and for all ground substitutions θ: {b1θ,...,bmθ} ⊂ I →
{h1θ,...,hnθ} ∩I 6= ∅. That is, a Herbrand interpretation I is a Herbrand model of a
clause if for all substitutions θ for which the body literals, after applying the substitution θ,
are true in I, at least one of the head literals is also true in I. For instance, the Herbrand
interpretation from the previous paragraph is a model for the clause:

happy(A):- lego builder(A), enjoys lego(A).

because every substitution that makes the body (θ={A/alice}) true also makes the head
true. By contrast, the following interpretation is not a model of the clause because the
substitution θ={A/dave} makes the body true but not the head:

enjoys lego(A):- estate agent(A).

A definite clause c is a logical consequence of a theory T if every Herbrand model of T is
also a model of c.

This brings us to one of the core concepts in ILP entailment. When a clause c is a logical
consequence of a theory T, we say that c is entailed by T, written T |= c. The concept of
entailment will reappear throughout this text, most prominently when we discuss various
learning settings in ILP (Section 3). It is therefore important to have a firm grasp of its
meaning.

2.3 Logic Programming Languages

There are various logic programming languages. We now cover some of the most important
ones for ILP. Logic programming is based on clausal logic. Clausal programs are sets of
clauses. Robinson (1965) showed that a single rule of inference (the resolution principle) is
both sound and refutation complete for clausal logic. However, reasoning about full clausal
logic is computationally expensive (Nienhuys-Cheng & Wolf, 1997). Therefore, most work
in ILP focuses on fragments of clausal logic, such as Horn programs: clauses with at most
one positive literal. All programs mentioned in the introduction are Horn programs, such
as the program for extracting the last element of the list:

last(A,B):- tail(A,C),empty(C),head(A,B).
last(A,B):- tail(A,C),last(C,B).

One reason for focusing on Horn theories, rather than full clausal theories, is SLD-resolution
(Kowalski & Kuehner, 1971), an inference rule that sacrifices expressibility for efficiency.
For instance, the clause p(a) ∨ p(b) cannot be expressed in Horn logic because it has two
positive literals. Horn logic is, however, still Turing complete (Tärnlund, 1977).
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Prolog (Kowalski, 1988; Colmerauer & Roussel, 1993) is a logic programming language
based on SLD-resolution and is therefore restricted to Horn clauses. Most Prolog imple-
mentations (Wielemaker et al., 2012; Costa et al., 2012) allow extra-logical features, such
as cuts. Prolog is not purely declarative because of constructs like cut, which means that
a procedural reading of a Prolog program is needed to understand it. In other words, the
order of clauses in a Prolog program has a major influence on its execution and results.

Datalog is a fragment of definite clausal theories (clausal theories that contain only
definite clauses). The main two restrictions are (i) every variable in the head literal must also
appear in a body literal, and (ii) complex terms as arguments of predicates are disallowed,
e.g. p(f(1),2) or lists. Therefore, the list manipulation programs from previous sections
cannot (easily) be expressed in Datalog9. Datalog is, however, sufficient for the happy
Scenario because structured terms are unnecessary. Compared to definite programs, the
main advantage of Datalog is decidability (Dantsin et al., 2001). However, this decidability
comes at the cost of expressivity as Datalog is not Turing complete. By contrast, definite
programs with function symbols have the expressive power of Turing machines and are
consequently undecidable (Tärnlund, 1977). Unlike Prolog, Datalog is purely declarative.

2.3.1 Non-Monotonic Logic

A logic is monotonic when adding knowledge to it does not reduce the logical consequences
of that theory. A logic is non-monotonic if some conclusions can be removed/invalidated
by adding more knowledge. Definite programs are monotonic because anything that could
be deduced before a (definite) clause is added to it can still be deduced after it is added.
In other words, adding a (definite) clause to a definite program cannot remove the logical
consequences of the program. For instance, consider the following propositional program:

sunny.
happy:- sunny.

This program states it is sunny and that I am happy if it is sunny. We can therefore deduce
that I am happy because it is sunny. Now suppose that we added another rule:

sunny.
happy:- sunny.
happy:- rich.

This new rule states that I am also happy if I am rich. Note that by the closed world
assumption, we know I am not rich. After adding this rule, we can still deduce that I am
happy from the first rule.

The logic of definite clauses with negation as failure (NAF) (Clark, 1977) is non-
monotonic, which brings us to the special class of normal logic programs, which take the
following form:

h :- b1,...,bn, not bn+1,..., not bm.

Informally, a normal rule states that the head is true if all b1,...,bn are true and all
bn+1,...,bm are false. That is, an atom is false if it cannot be proven true. That an atom

9. It is possible to represent lists as a set of facts.
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cannot be proven true does not mean that it is missing from a knowledge base. Instead, it
additionally means that there no rule can prove it true. Assuming that a logical statement
is false if it cannot be proven true is known as following the closed world assumption.

Now consider the following non-monotonic program:

sunny.
happy:- sunny, not weekday.

This program states it is sunny and I am happy if it is sunny and it is not a weekday. By
the closed world assumption, we can deduce that it is not a weekday, so we can deduce that
I am happy because it is sunny and it is not a weekday. Now suppose we added knowledge
that it is a weekday.

sunny.
happy:- sunny, not weekday.
weekday.

Then we can no longer deduce that I am happy. In other words, by adding knowledge that
it is a weekday, the conclusion that I am happy no longer holds.

There are many different semantics ascribed to non-monotonic programs, including com-
pletion (Clark, 1977), well-founded (Gelder et al., 1991), and stable model (answer set) (Gel-
fond & Lifschitz, 1988) semantics. Discussing the differences of these semantics is beyond
the scope of this paper.

Answer set programming. Answer set programming is a form of logic programming
based on stable model (answer set) semantics (Gelfond & Lifschitz, 1988). Whereas a
definite logic program has only one model (the least Herbrand model), an ASP program can
have one, many, or even no models (answer sets). This makes ASP particularly attractive
for expressing common-sense reasoning (Law et al., 2018). Similar to Datalog, an answer
set program is purely declarative. ASP also supports additional language features, such as
aggregates and weak and hard constraints. Computation in ASP is the process of finding
models. Answer set solvers perform the search and thus generate models. Most ASP solvers
(Gebser et al., 2012), in principle, always terminate (unlike Prolog query evaluation, which
may lead to an infinite loop). We refer the reader to the excellent book by Gebser et al.
(2012) for more information.

2.4 Generality

A key concept in ILP is the generality order over hypotheses (logic programs). A generality
order helps structure the search over the hypothesis space by reasoning about the relative
properties of two programs. A generality ordering tells us whether a program p1 is more
general than a program p2, i.e., whether all logical consequence of p2 are also logical con-
sequences of p1. Equivalently, if p1 is more general than p2, then p2 is more specific than
p1.

Most approaches reason about the generality of programs syntactically through θ-
subsumption (or subsumption for short) (Plotkin, 1971). To understand subsumption, we
need to understand that a clause can be seen as a finite (possibly empty) set of literals,
implicitly representing their disjunction. For instance, the clause:

778



Inductive Logic Programming At 30: A New Introduction

happy(A) :- lego builder(A), enjoys lego(A).

is equivalent to (where ¬ denotes classical negation):

{happy(A),¬lego builder(A),¬enjoys lego(A)}.

We representing clauses as sets, we can define subsumption:

Definition 1 (Clausal subsumption). A clause C1 subsumes a clause C2 if and only if there
exists a substitution θ such that C1θ ⊆ C2.

Example 1 (Clausal subsumption). Let C1 and C2 be the clauses:

C1 = f(A,B):- head(A,B)
C2 = f(X,Y):- head(X,Y),odd(Y).

Then C1 subsumes C2 because{
f(A,B), ¬head(A,B)

}
θ ⊆

{
f(X,Y), ¬head(X,Y),¬odd(Y)

}
with θ = {A/X, Y/B}.
Conversely, a clause C2 is more specific than a clause C1 if C1 subsumes C2.10

In principle, we could check the generality of two programs by comparing the conse-
quences they entail. However, a program might entail an infinite set of consequences (e.g.
when structured terms, such as lists, are involved) which would prevent us from establishing
the generality relation between two programs. In other words, checking entailment between
clauses is undecidable (Church, 1936). By contrast, checking subsumption between clauses
is decidable (Plotkin, 1971), although, in general, deciding subsumption is a NP-complete
problem (Nienhuys-Cheng & Wolf, 1997).

3. Inductive Logic Programming

In the introduction, we described four ILP scenarios. In each case, the problem was formed
of three sets B (background knowledge), E+ (positive examples), and E− (negative ex-
amples). We informally stated the ILP problem is to induce a hypothesis H that with B
generalises E+ and E−. We now formalise this problem.

According to De Raedt (1997), there are three main ILP learning settings: learning from
entailment (LFE), interpretations (LFI), and satisfiability (LFS). LFE and LFI are by far
the most popular learning settings, so we only cover these two. Other recent work focuses
on learning from transitions (Inoue et al., 2014; Evans et al., 2021; Ribeiro et al., 2020) and
learning from answer sets (Law et al., 2014). We refer the reader to these other works for
an overview of those learning settings.

In each setting, the symbol X denotes the example/instance space, the set of examples
for which a concept is defined; B denotes the language of background knowledge, the set of
all clauses that could be provided as background knowledge; and H denotes the hypothesis
space, the set of all possible hypotheses.

10. This notion of subsumption is known as weak subsumption. An alternative notion is strong subsumptions
which additionally performs factoring, i.e., it remove redundant literals. As an example, p(X,Y) :-
q(X,Y), q(Y,X). strongly subsumes p(Z,Z) :- q(Z,Z). with θ = {X/Z, Y/Z} because p(Z,Z) :- q(Z,Z),
q(Z,Z). is equivalent to p(Z,Z) :- q(Z,Z).. It does not, however, weakly subsume it as the number of
literals is different.
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3.1 Learning From Entailment

LFE is by far the most popular ILP setting (Shapiro, 1983; Muggleton, 1987; Muggleton
& Buntine, 1988; Muggleton & Feng, 1990; Quinlan, 1990; Muggleton, 1995; Bratko, 1999;
Srinivasan, 2001; Ray, 2009; Ahlgren & Yuen, 2013; Muggleton et al., 2015; Cropper &
Muggleton, 2016; Kaminski et al., 2018; Cropper & Morel, 2021). The LFE problem is
based on the notion of entailment, which we discussed in Section 2.2, and two properties
of the hypotheses: completeness and consistency. A hypothesis is complete if it entails all
positive examples. A hypothesis is consistent if it does not entail any negative example.

The LFE problem is:

Definition 2 (Learning from entailment). Given a tuple (B,E+, E−) where:

• B ⊆B denotes background knowledge

• E+ ⊆ X denotes positive examples of the concept

• E− ⊆ X denotes negative examples of the concept

The goal LFE is to return a hypothesis H ∈ H such that:

• ∀e ∈ E+, H ∪B |= e (i.e. H is complete)

• ∀e ∈ E−, H ∪B 6|= e (i.e. H is consistent)

A hypothesis can be a single clause or multiple clauses. Often, a single clause is insufficient
to describe a target concept. For instance, to learn a definition of a recursive concept, the
hypothesis needs to capture at least the base and recursive case. The setup in which the
hypothesis needs to capture at least two dependent clauses is known as multi-clause learning
(Muggleton et al., 2011).

Example 2. Consider the LFE tuple:

B =



lego builder(alice).
lego builder(bob).
estate agent(claire).
estate agent(dave).
enjoys lego(alice).
enjoys lego(claire).


E+ =

{
happy(alice).

}
E− =


happy(bob).
happy(claire).
happy(dave).


Also assume we have the hypothesis space:

H =



h1: happy(A):- lego builder(A).
h2: happy(A):- estate agent(A).
h3: happy(A):- likes lego(A).
h4: happy(A):- lego builder(A),estate agent(A).
h5: happy(A):- lego builder(A),enjoys lego(A).
h6: happy(A):- estate agent(A),enjoys lego(A).


Then we can consider which hypotheses an ILP system should return:
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• B ∪ h1 |= happy(bob) so is inconsistent

• B ∪ h2 6|= happy(alice) so is incomplete

• B ∪ h3 |= happy(claire) so is inconsistent

• B ∪ h4 6|= happy(alice) so is incomplete

• B ∪ h5 is both complete and consistent

• B ∪ h6 6|= happy(alice) so is incomplete

The LFE problem in Definition 2 is general. ILP systems impose strong restrictions on X ,
B, and H. For instance, some restrict X to only contain atoms whereas others allow clauses.
Some restrict H to contain only Datalog clauses. We discuss these biases in Section 4.

According to Definition 2, a hypothesis must entail every positive example (be complete)
and no negative examples (be consistent). However, training examples are often noisy, so
it is difficult to find a hypothesis that is both complete and consistent. Therefore, most
approaches relax this definition and try to find a hypothesis that entails as many positive
and as few negative examples as possible. Precisely what this means depends on the system.
For instance, the default cost function in Aleph (Srinivasan, 2001) is coverage, defined as
the number of positive examples entailed subtracted by the number of negative examples
entailed by the hypothesis. Other systems also consider the size of a hypothesis, typically
the number of clauses or literals in it. We discuss noise handling in Section 5.1.

3.2 Learning From Interpretations

The second most popular (De Raedt & Dehaspe, 1997; Blockeel & De Raedt, 1998; Law
et al., 2014) learning setting is LFI where an example is an interpretation, i.e. a set of facts.
The LFI problem is:

Definition 3 (Learning from interpretations). Given a tuple (B,E+, E−) where:

• B ⊆B denotes background knowledge

• E+ ⊆ X denotes positive examples of the concept, each example being a set of facts

• E− ⊆ X denotes negative examples of the concept, each example being a set of facts

The goal of LFI is to return a hypothesis H ∈ H such that:

• ∀e ∈ E+, e is a model of H ∪B
• ∀e ∈ E−, e is not a model of H ∪B

When learning from interpretations, it is implicitly assumed that every example is com-
pletely specified. That is, every atom in the interpretation has to be true or false, and there
is no room for missing values. As providing a complete interpretation might be unfeasible
in many cases, many ILP systems focus on partial interpretations (De Raedt, 1997).

Example 3. To illustrate LFI, we use the example from (De Raedt & Kersting, 2008a).
Consider the BK:

B =

{
father(henry,bill). father(alan,betsy). father(alan,benny).
mother(beth,bill). mother(ann,betsy). mother(alice,benny).

}
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and the examples:

E+ =


e1 =


carrier(alan).
carrier(ann).
carrier(betsy).


e2 =


carrier(benny).
carrier(alan).
carrier(alice).




E− =

{
e3 =

{
carrier(henry).
carrier(beth).

} }
Also assume the hypothesis space:

H =

{
h1 = carrier(X):- mother(Y,X),carrier(Y),father(Z,X),carrier(Z).
h2 = carrier(X):- mother(Y,X),father(Z,X).

}
To solve the LFI problem (Definition 3), we need to find a hypothesis H such that e1

and e2 are models of H ∪ B and e3 is not. That is, we need to find a hypothesis H that
satisfies the following property for every example ei ∈ E+: for every substitution θ such
that body(h1)θ ⊆ B ∪ ei holds, it also holds that head(h1)θ ⊆ B ∪ ei. e3 is not the model of
h1 as there exists a substitution θ = {X/bill, Y/beth, Z/henry} such that body holds but
the head does not. For the same reason, none of the examples is a model of h2.

We often say that a hypothesis covers an example. The meaning of a hypothesis covering
an example changes depending on the learning setup. In LFE, the hypothesis H covers an
example if the example is entailed by H ∪B. In LFI, the hypothesis H covers an example
if the example is a model of H ∪B.

4. Building An ILP System

Building an ILP system requires making several choices or assumptions, which are part
of the inductive bias of a learner. An inductive bias is essential and all ML approaches
impose an inductive bias (Mitchell, 1997). Understanding these assumptions is key to
understanding ILP. The choices can be categorised as:

• Learning setting: how to represent examples

• Representation language: how to represent BK and hypotheses

• Language bias: how to define the hypothesis space

• Search method: how to search the hypothesis space

Table 3 shows the assumptions of some systems. This table excludes many important
systems, including interactive systems, such as Marvin (Sammut, 1981), MIS (Shapiro,
1983), DUCE (Muggleton, 1987), Cigol (Muggleton & Buntine, 1988), and Clint (De Raedt
& Bruynooghe, 1992), theory revision systems, such as FORTE (Richards & Mooney, 1995),
and probabilistic systems, such as SLIPCOVER (Bellodi & Riguzzi, 2015) and ProbFOIL
(De Raedt et al., 2015). Covering all systems is beyond the scope of this paper. We discuss
these differences/assumptions.
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System Setting Hypotheses BK Language Bias Search method

FOIL (Quinlan, 1990) LFE Definite Definite11 n/a12 TD

Progol (Muggleton, 1995) LFE Normal Normal Modes BU+TD

Claudien (De Raedt & Dehaspe, 1997) LFI Clausal Definite DLab TD

TILDE (Blockeel & De Raedt, 1998) LFI Logical trees Normal Modes TD

Aleph (Srinivasan, 2001) LFE Normal Normal Modes BU+TD

XHAIL (Ray, 2009) LFE Normal Normal Modes BU

ASPAL (Corapi et al., 2011) LFE Normal Normal Modes ML

Atom (Ahlgren & Yuen, 2013) LFE Normal Normal Modes BU+TD

QuickFOIL (Zeng et al., 2014) LFE Definite Facts Schema TD

LFIT (Inoue et al., 2014) LFT Normal None n/a13 BU+TD14

ILASPa (Law et al., 2014) LFIb ASP ASP Modes ML

Metagol (Muggleton et al., 2015) LFE Definite Normal Metarules ML

∂ILP (Evans & Grefenstette, 2018) LFE Datalog Facts Metarules15 ML

HEXMIL (Kaminski et al., 2018) LFE Datalog Datalog Metarules ML

FastLAS (Law et al., 2020) LFI ASP ASP Modes ML

Apperception (Evans et al., 2021) LFT Datalog⊃− None Types ML

Popper (Cropper & Morel, 2021) LFE Definite Normal Declarations ML

Table 3: Assumptions of popular ILP systems. LFE stands for learn from entailment, LFI
stands for learning from interpretations, LFT stands for learning from transitions.
TD stands for top-down, BU stands for bottom-up, and ML stands for meta-level.
This table is meant to provide a very high-level overview of the systems. Therefore,
the table entries are coarse and should not be taken absolutely literally. For
instance, Progol, Aleph, and ILASP support other types of language biases, such
as constraints on clauses. Popper also, for instance, supports ASP programs as
BK, but usually takes normal programs.

a. ILASP is a suite of ILP systems. For simplicity, we refer to all the systems as ILASP. However, some
features, such as noise handling, are not in the original ILASP paper.

b. ILASP learns from answer sets. However, to avoid having to introduce a problem setting for a single
system, we have classified it as learning from interpretations, which is the most similar setting. See the
original ILASP paper for more information (Law et al., 2014).

11. The original FOIL setting is more restricted than the table shows and can only have BK in the form of
facts and does not allow functions (De Raedt, 2008).

12. The FOIL paper does not discuss its language bias.
13. LFIT employs many implicit language biases.
14. The LFIT approach of Inoue et al. (2014) is bottom-up and the approach of Ribeiro and Inoue (2014) it

top-down.
15. ∂ILP uses rule templates which can be seen as a generalisation of metarules.
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4.1 Learning Setting

The two main learning settings are LFE and LFI (Section 3). Within the LFE setting,
there are further distinctions. Some systems, such as Progol (Muggleton, 1995), allow for
clauses as examples. Most systems, however, learn from sets of facts, so this dimension of
comparison is not useful.

4.2 Hypotheses

Although some systems learn propositional programs, such as Duce (Muggleton, 1987), most
learn first-order (or higher-order) programs. For systems that learn first-order programs,
there are classes of programs that they learn. Some systems induce full (unrestricted)
clausal theories, such as Claudien (De Raedt & Dehaspe, 1997) and CF-induction (Inoue,
2004). However, reasoning about full clausal theories is computationally expensive, so most
systems learn fragments of clausal logic, usually definite programs. Systems that focus
on program synthesis (Shapiro, 1983; Bratko, 1999; Ahlgren & Yuen, 2013; Cropper &
Muggleton, 2016, 2019; Cropper & Morel, 2021) tend to induce definite programs, typically
as Prolog programs.

4.2.1 Normal Programs

One motivation for learning normal programs (Section 2.3.1) is that many practical appli-
cations require non-monotonic reasoning. Moreover, it is often simpler to express a concept
with negation as failure (NAF). For instance, consider the following problem by Ray (2009):

B =


bird(A):- penguin(A)
bird(alvin)
bird(betty)
bird(charlie)
penguin(doris)

 E+ =


flies(alvin)
flies(betty)
flies(charlie)

 E− =
{

flies(doris)
}

Without NAF it is difficult to induce a general hypothesis for this problem. By contrast,
with NAF a system could learn the hypothesis:

H =
{

flies(A):- bird(A), not penguin(A)
}

ILP approaches that learn normal logic programs can further be characterised by their se-
mantics, such as whether they are based on completion (Clark, 1977), well-founded (Gelder
et al., 1991), or stable model (answer set) (Gelfond & Lifschitz, 1988) semantics. Discussing
the differences between these semantics is beyond the scope of this paper.

4.2.2 Answer Set Programs

There are many benefits to learning ASP programs (Otero, 2001; Law et al., 2014). When
learning Prolog programs with NAF, the programs must be stratified; otherwise, the learned
program may loop under certain queries (Law et al., 2018). By contrast, some systems can
learn unstratified ASP programs (Law et al., 2014). In addition, ASP programs support
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rules that are not available in Prolog, such as choice rules and weak and hard constraints.
For instance, ILASP (Law et al., 2014), can learn the following definition of a Hamiltonian
graph (taken from Law et al. (2020)) as an ASP program:

0{in(V0, V1)}1 :- edge(V0, V1).
reach(V0):- in(1, V0).
reach(V1):- reach(V0), in(V0, V1).
:- not reach(V0), node(V0).
:- V1 != V2, in(V0, V2), in(V0, V1).

This program illustrates useful language features of ASP. The first rule is a choice rule,
which means that an atom can be true. In this example, the rule indicates that there can
be an in edge from the vertex V1 to V0. The last two rules are hard constraints, which
essentially enforce integrity constraints. The first hard constraint states that it is impossible
to have a node that is not reachable. The second hard constraint states that it is impossible
to have a vertex with two in edges from distinct nodes. For more information about ASP
we recommend the book by Gebser et al. (2012).

Approaches to learning ASP programs can be divided into two categories: brave learners,
which aim to learn a program such that at least one answer set covers the examples, and
cautious learners, which aim to find a program which covers the examples in all answer
sets. We refer to existing work of Otero (2001), Sakama and Inoue (2009, 2009), Law et al.
(2018) for more information about these different approaches.

4.2.3 Higher-Order Programs

As many programmers know, there are benefits to using higher-order representations. For
instance, suppose you have some encrypted/decrypted strings represented as Prolog facts:

E+ =


decrypt([d,b,u],[c,a,t])
decrypt([e,p,h],[d,o,g])
decrypt([h,p,p,t,f],[g,o,o,s,e])


Given these examples and suitable BK, a system could learn the first-order program:

H =


decrypt(A,B):- empty(A),empty(B).
decrypt(A,B):- head(A,C),chartoint(C,D),prec(D,E),inttochar(E,F),

head(B,F),tail(A,G),tail(B,H),decrypt(G,H).


This program defines a Caesar cypher which shifts each character back once (e.g. z 7→ y, y
7→ x, etc). Although correct (ignoring the modulo operation for simplicity), this program is
long and difficult to read. To overcome this limitation, some systems (Cropper et al., 2020)
learn higher-order programs, such as:

H =

{
decrypt(A,B):- map(A,B,inv)
inv(A,B):- char to int(A,C),prec(C,D),int to char(D,B)

}
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This program is higher-order because it allows literals to take predicate symbols as argu-
ments. The symbol inv is invented (we discuss predicate invention in Section 5.5) and is
used as an argument for map in the first rule and as a predicate symbol in the second rule.
The higher-order program is smaller than the first-order program because the higher-order
background relation map abstracts away the need to learn a recursive program. Cropper
et al. (2020) show that inducing higher-order programs can drastically improve learning
performance in terms of predictive accuracy, sample complexity, and learning times.

4.3 Background Knowledge

BK is similar to features used in other forms of ML. However, whereas features are finite
tables, BK is a logic program. Using logic programs to represent data allows ILP to learn
with complex relational information. For instance, suppose we want to learn list or string
transformation programs, we might want to supply helper relations, such as head, tail,
and last as BK:

B =


head([H| ],H).
tail([ |T],T).
last([H],H).
last([ |T1],A):- tail(T1,T2),last(T2,A).


These relations hold for lists of any length and any type.

As a second example, suppose you want to learn the definition of a prime number. Then
you might want to give a system the ability to perform arithmetic reasoning, such as using
the Prolog relations:

B =


even(A):- 0 is mod(A,2).
odd(A):- 1 is mod(A,2).
sum(A,B,C):- C is A+B.
gt(A,B):- A>B.
lt(A,B):- A<B.


These relations are general and hold for arbitrary numbers and we do not need to pre-
compute all the logical consequences of the definitions, which is impossible because there
are infinitely many. By contrast, table-based ML approaches are restricted to finite propo-
sitional data. For instance, it is impossible to use the greater than relation over the set of
natural numbers in a decision tree learner because it would require an infinite feature table.

4.3.1 Constraints

BK allows a human to encode prior knowledge of a problem. As a trivial example, if learning
banking rules to determine whether two companies can lend to each other, you may encode
a prior constraint to prevent two companies from lending to each other if they are owned
by the same parent company:

:- lend(A,B), parent company(A,C), parent company(B,C).

Constraints are widely used in ILP (Zeng et al., 2014; Evans, 2020; Cropper & Morel, 2021).
For instance, Inoue et al. (2013) represent knowledge as a causal graph and use constraints
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to denote impossible connections between nodes. Evans et al. (2021) use constraints to
induce theories to explain sensory sequences. For instance, one requirement of their unity
condition is that objects (constants) are connected via chains of binary relations. The
authors argue that such constraints are necessary for the induced solutions to achieve good
predictive accuracy.

4.3.2 Discussion

As with choosing appropriate features, choosing appropriate BK in ILP is crucial for good
learning performance. ILP has traditionally relied on predefined and hand-crafted BK,
often designed by domain experts. However, it is often difficult and expensive to obtain
such BK. Indeed, the over-reliance on hand-crafted BK is a common criticism of ILP (Evans
& Grefenstette, 2018). The difficulty is finding the balance of having enough BK to solve
a problem, but not too much that a system becomes overwhelmed. We discuss these two
issues.

Too little BK. If we use too little or insufficient BK then we may exclude a good hypoth-
esis from the hypothesis space. For instance, reconsider the string transformation problem
from the introduction, where we want to learn a program that returns the last character of
a string from examples.

E+ =


last([m,a,c,h,i,n,e], e)
last([l,e,a,r,n,i,n,g],g)
last([a,l,g,o,r,i,t,m], m)


To induce a hypothesis from these examples, we need to provide an ILP system with suitable
BK. For instance, we might provide BK that contains relations for common list/string
operations, such as empty, head, and tail. Given these three relations, an ILP system
could learn the program:

H =

{
last(A,B):- tail(A,C),empty(C),head(A,B).
last(A,B):- tail(A,C),last(C,B).

}
However, suppose that the user had not provided tail as BK. Then how could a system
learn the above hypothesis? This situation is a major problem, as most systems can only
use BK provided by a user. To mitigate this issue, there is research on enabling a system to
automatically invent new predicate symbols, known as predicate invention, which we discuss
in Section 5.5, which has been shown to mitigate missing BK (Cropper & Muggleton, 2015).
However, ILP still heavily relies on much human input to solve a problem. Addressing this
limitation is a major challenge.

Too much BK. As with too little BK, a major challenge is too much irrelevant BK. Too
many relations (assuming that they can appear in a hypothesis) is often a problem because
the size of the hypothesis space is a function of the size of the BK. Empirically, too much
irrelevant BK is detrimental to learning performance (Srinivasan et al., 1995, 2003; Cropper,
2020), this also includes irrelevant language biases (Cropper & Tourret, 2020). Addressing
the problem of too much BK has been under-researched. In Section 9, we suggest that this
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topic is a promising direction for future work, especially when considering the potential for
ILP to be used for lifelong learning (Section 5.5.4).

4.4 Language Bias

The fundamental ILP problem is to search the hypothesis space for a suitable hypothesis.
The hypothesis space contains all possible programs that can be built in the chosen rep-
resentation language. Unrestricted, the hypothesis space is infinite, so it is important to
restrict it to make the search feasible. To restrict the hypothesis space, systems enforce an
inductive bias (Mitchell, 1997). A language bias enforces restrictions on hypotheses, such
as restricting the number of variables, literals, and rules in a hypothesis. These restrictions
can be categorised as either syntactic bias, restrictions on the form of a rule in a hypothesis,
and semantic bias, restrictions on the behaviour of induced hypotheses (Adé et al., 1995).
For instance, in the happy example (Example 1.1), we assumed that a hypothesis only con-
tains predicate symbols that appear in the BK or examples. However, we need to encode
this bias to give an ILP system. There are several ways of encoding a language bias, such
as grammars (Cohen, 1994a), Dlabs (De Raedt & Dehaspe, 1997), production fields (Inoue,
2004), and predicate declarations (Cropper & Morel, 2021). We focus on mode declarations
(Muggleton, 1995) and metarules (Cropper & Tourret, 2020), two popular language biases.

4.4.1 Mode Declarations

Mode declarations are the most popular form of language bias (Muggleton, 1995; Blockeel
& De Raedt, 1998; Srinivasan, 2001; Ray, 2009; Corapi et al., 2010, 2011; Athakravi et al.,
2013; Ahlgren & Yuen, 2013; Law et al., 2014; Katzouris et al., 2015). Mode declarations
state which predicate symbols may appear in a rule, how often, and also their argument
types. In the mode language, modeh declarations denote which literals may appear in the
head of a rule and modeb declarations denote which literals may appear in the body of a
rule. A mode declaration is of the form:

mode(recall, pred(m1,m2, . . . ,ma))

The following are all valid mode declarations:

modeh(1,happy(+person)).
modeb(*,member(+list,-element)).
modeb(1,head(+list,-element)).
modeb(2,parent(+person,-person)).

The first argument of a mode declaration is an integer denoting the recall. Recall is the
maximum number of times that a mode declaration can be used in a rule16. Another way
of understanding recall is that it bounds the number of alternative solutions for a literal.
Providing a recall is a hint to a system to ignore certain hypotheses. For instance, if using
the parent kinship relation, then we can set the recall to two, as a person has at most two
parents. If using the grandparent relation, then we can set the recall to four, as a person

16. The recall of a modeh declaration is almost always useless and is often set to 1.
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has at most four grandparents. If we know that a relation is functional, such as head, then
we can bound the recall to one. The symbol * denotes no bound.

The second argument denotes that the predicate symbol that may appear in the head
(modeh) or body (modeb) of a rule and the type of arguments it takes. The symbols +, −,
and # denote whether the arguments are input, output, or ground arguments respectively.
An input argument specifies that, at the time of calling the literal, the corresponding
argument must be instantiated. In other words, the argument needs to be bound to a
variable that already appears in the rule. An output argument specifies that the argument
should be bound after calling the corresponding literal. A ground argument specifies that
the argument should be ground and is often used to learn rules with constant symbols in
them.

To illustrate mode declarations, consider the modes:

modeh(1,target(+list,-char)).
modeb(*,head(+list,-char)).
modeb(*,tail(+list,-list)).
modeb(1,member(+list,-list)).
modeb(1,equal(+char,-char)).
modeb(*,empty(+list)).

Given these modes, the rule target(A,B):- head(A,C),tail(C,B) is mode inconsistent be-
cause modeh(1,target(+list,-char)) requires that the second argument of target (B) is
char and the mode modeb(*,tail(+list,-list)) requires that the second argument of tail
(B) is a list, so this rule is mode inconsistent. The rule target(A,B):- empty(A),head(C,B)
is also mode inconsistent because modeb(*,head(+list,-char)) requires that the first ar-
gument of head (C) is instantiated but the variable C is never instantiated in the rule.

By contrast, the following rules are all mode consistent:

target(A,B):- tail(A,C),head(C,B).
target(A,B):- tail(A,C),tail(C,D),equal(C,D),head(A,B).
target(A,B):- tail(A,C),member(C,B).

Depending on the specific system, modes can also support the introduction of constant
symbols. In Aleph, an example of such a declaration is modeb(*,length(+list,#int)),
which would allow integer values to be included in rules.

Different systems use mode declarations in slightly different ways. Progol and Aleph use
mode declarations with input/output argument types because they induce Prolog programs,
where the order of literals in a rule matters. By contrast, ILASP induces ASP programs,
where the order of literals in a rule does not matter, so ILASP does not use input/output
arguments.

4.4.2 Metarules

Metarules17 are a popular form of syntactic bias and are used by many systems (De Raedt
& Bruynooghe, 1992; Flener, 1996; Kietz & Wrobel, 1992; Wang et al., 2014; Muggleton

17. Metarules were introduced as clause schemata by Emde et al. (1983) and were notably used in Mobal sys-
tem (Kietz & Wrobel, 1992). Metarules are also called second-order schemata (De Raedt & Bruynooghe,
1992) and program schemata (Flener, 1996), amongst many other names.
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et al., 2015; Cropper & Muggleton, 2016; Kaminski et al., 2018; Evans & Grefenstette, 2018;
Bain & Srinivasan, 2018). Metarules are second-order rules which define the structure of
learnable programs which in turn defines the hypothesis space. For instance, to learn the
grandparent relation given the parent relation, the chain metarule would be suitable:

P(A,B):- Q(A,C), R(C,B).

The letters P , Q, and R denote second-order variables (variables that can be bound to
predicate symbols) and the letters A, B and C denote first-order variables (variables that
can be bound to constant symbols). Given the chain metarule, the background parent
relation, and examples of the grandparent relation, ILP approaches will try to find suit-
able substitutions for the second-order variables, such as the substitutions {P/grandparent,
Q/parent, R/parent} to induce the theory:

grandparent(A,B):- parent(A,C),parent(C,B).

Despite their widespread use, there is little work determining which metarules to use for a
given learning task. Instead, these approaches assume suitable metarules as input or use
metarules without any theoretical guarantees. In contrast to other forms of bias in ILP,
such as modes or grammars, metarules are themselves logical statements, which allows us to
reason about them. For this reason, there is preliminary work in reasoning about metarules
to identify universal sets suitable to learn certain fragments of logic programs (Cropper
& Muggleton, 2014; Tourret & Cropper, 2019; Cropper & Tourret, 2020). Despite this
preliminary work, deciding which metarules to use for a given problem is still a major
challenge, which future work must address.

4.4.3 Discussion

Choosing an appropriate language bias is essential to make an ILP problem tractable be-
cause it defines the hypothesis space. If the bias is too weak, then the search can become
intractable. If the bias is too strong then we risk excluding a good solution from the hy-
pothesis space. This trade-off is one of the major problems holding ILP back from being
widely used18. To understand the impact of an inappropriate language bias, consider the
string transformation example in Section 1.2. Even if all necessary background relations
are provided, not providing a recursive metarule (e.g. R(A,B):- P(A,C), R(C,B)) would
prevent a metarule-based system from inducing a program that generalises to lists of any
length. Similarly, not providing a recursive mode declaration for the target relation would
prevent a mode-based system from finding a good hypothesis.

Different language biases offer different benefits. Mode declarations are expressive
enough to enforce a strong bias to significantly prune the hypothesis space. They are

18. The Blumer bound (Blumer et al., 1987) (the bound is a reformulation of Lemma 2.1) helps explain this
trade-off. This bound states that given two hypothesis spaces, searching the smaller space will result in
fewer errors compared to the larger space, assuming that the target hypothesis is in both spaces. Here
lies the problem: how to choose a learner’s hypothesis space so that it is large enough to contain the
target hypothesis yet small enough to be efficiently searched. To know more about this aspect of ILP, we
first recommend Chapter 7 of Mitchell’s (1997) Machine Learning book, which is, in our view, still the
best introductory exposition of computational learning theory, and then work specific to ILP (Cohen,
1995b, 1995d, 1995c; Gottlob et al., 1997).
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especially appropriate when a user has much knowledge about their data and can, for in-
stance, determine suitable recall values. If a user does not have such knowledge, then it
can be very difficult to determine suitable mode declarations. Moreover, if a user provides
weak mode declarations (for instance with infinite recall, a single type, and no input/output
arguments), then the search quickly becomes intractable. Although there is some work on
learning mode declarations (McCreath & Sharma, 1995; Ferilli et al., 2004; Picado et al.,
2017), it is still a major challenge to choose appropriate ones.

A benefit of metarules is that they require little knowledge of the BK and a user does
not need to provide recall values, types, or specify input/output arguments. Because they
precisely define the form of hypotheses, they can greatly reduce the hypothesis space, espe-
cially if the user knows about the class of programs to be learned. However, as previously
mentioned, the major downside with metarules is determining which metarules to use for
an arbitrary learning task. Although there is some preliminary work in identifying univer-
sal sets of metarules (Cropper & Muggleton, 2014; Tourret & Cropper, 2019; Cropper &
Tourret, 2020), deciding which metarules to use for a given problem is a major challenge,
which future work must address.

4.5 Search Method

Having defined the hypothesis space, the next problem is to efficiently search it. There are
two traditional search methods: bottom-up and top-down. These methods rely on notions
of generality, where one program is more general or more specific than another (Section
2.4). A generality relation imposes an order over the hypothesis space. Figure 2 shows this
order using theta-subsumption, the most popular ordering relation. A system can exploit
this ordering during the search for a hypothesis. For instance, if a clause does not entail
a positive example, then there is no need to explore any of its specialisations because it is
logically impossible for them to entail the example. Likewise, if a clause entails a negative
example, then there is no need to explore any of its generalisations because they will also
entail the example.

The above paragraph refers only to generality orders on single clauses, as many systems
employ the covering algorithm whereby hypotheses are constructed iteratively clause by
clause (Quinlan, 1990; De Raedt & Dehaspe, 1997; Muggleton, 1995; Blockeel & De Raedt,
1998; Srinivasan, 2001). However, some systems (Shapiro, 1983; Bratko, 1999; Cropper &
Morel, 2021) induce theories formed of multiple clauses and thus require generality orders
over clausal theories. We refer an interested reader to Chapter 7 in the work of De Raedt
(2008) for more information about inducing theories.

4.5.1 Top-Down

Top-down algorithms, (Quinlan, 1990; Blockeel & De Raedt, 1998; Bratko, 1999; Muggleton
et al., 2008) start with a general hypothesis and then specialise it. For instance, HYPER
(Bratko, 1999) searches a tree in which the nodes correspond to hypotheses. Each child
of a hypothesis in the tree is more specific than or equal to its predecessor in terms of
theta-subsumption, i.e. a hypothesis can only entail a subset of the examples entailed by
its parent. The construction of hypotheses is based on hypothesis refinement (Shapiro,
1983; Nienhuys-Cheng & Wolf, 1997). If a hypothesis is considered that does not entail all
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Modes

modeh(1, son(+,-)).
modeb(1, male(+)).
modeb(1, parent(-,+)).
modeb(1, parent(#,+)).
modeb(1, father(-,+)).

son(X,Y):-
male(Y).

son(X,Y):-
father(Y,X).

son(X,Y):-
parent(Y,X).

son(X,Y).

...
son(X,Y):-

parent(Y,X),
male(X).

son(X,Y):-
father(Y,X),
male(Y).

son(X,Y):-
father(Y,X),
male(X).

son(X,Y):-
parent(Y,X),
male(Y).

son(X,Y):-
parent(Y,X),
father(Y,X).

son(X,Y):-
parent(claire,X),
parent(Y,X).

...

son(X,Y):-
parent(Y,X),
father(Y,X),
male(Y).

son(X,Y):-
parent(claire,X),
parent(Y,X),
male(Y),

son(X,Y):-
parent(claire,X),
parent(Y,X),
male(X),

son(X,Y):-
parent(claire,X),
father(Y,X).

son(X,Y):-
parent(Y,X),
father(Y,X),
male(X).

...

son(X,Y):-
parent(claire,X),
father(Y,X),
male(X).

son(X,Y):-
parent(claire,X),
father(Y,X),
male(Y).

...

son(X,Y):-
parent(Y,X),
father(Y,X),
male(X),
parent(claire,X).

son(X,Y):-
parent(Y,X),
father(Y,X),
male(Y),
parent(claire,X),

Figure 2: The generality relation orders the hypothesis space into a lattice (an arrow con-
nects a hypothesis with its specialisation). The hypothesis space is built from
the modes and only shown partially (# indicates that a constant needs to be
used as an argument; only claire is used as a constant here). The most general
hypothesis sits on the top of the lattice, while the most specific hypotheses are
at the bottom. The top-down lattice traversal starts at the top, with the most
general hypothesis, and specialises it moving downwards through the lattice. The
bottom-up traversal starts at the bottom, with the most specific hypothesis, and
generalises it moving upwards through the lattice.

the positive examples, it is immediately discarded because it can never be refined into a
complete hypothesis.

4.5.2 Bottom-Up

Bottom-up algorithms start with the examples and generalise them (Muggleton, 1987; Mug-
gleton & Buntine, 1988; Muggleton & Feng, 1990; Muggleton et al., 2009; Inoue et al., 2014).
For instance, Golem (Muggleton & Feng, 1990) generalises pairs of examples based on rel-
ative least-general generalisation (RLGG) (Buntine, 1988). To introduce RLGG, we start
by introducing Plotkin’s (1971) notion of least-general generalisation (LGG), which tells
us how to generalise two clauses. Given two clauses, the LGG operator returns the most
specific single clause that is more general than both of them.
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Figure 3: Bongard problems

To define the LGG of two clauses, we start with the LGG of terms:

• lgg(f(s1,. . .,sn), f(t1,. . .,tm)) = f(lgg(s1,t1),. . . ,lgg(sn,tn)).

• lgg(f(s1,. . .,sn), g(t1,. . .,tm)) = V (a variable),

• lgg(f(s1,. . .,sn), V) = V′ (a new variable).

Note that a constant is a functor with zero arguments, and thus the above rules apply. We
define the LGG of literals:

• lgg(p(s1,. . .,sn), p(t1,. . .,tn)) = p(lgg(s1,t1),. . . ,lgg(sn,tn)).

• lgg(¬p(s1,. . .,sn), ¬p(t1,. . .,tn)) = ¬p(lgg(s1,t1),. . . ,lgg(sn,tn))

• lgg(p(s1,. . .,sn), q(t1,. . .,tn)) is undefined

• lgg(p(s1,. . .,sn), ¬p(t1,. . .,tn)) is undefined

• lgg(¬p(s1,. . .,sn), p(t1,. . .,tn)) is undefined.

Using the set representation of a clause, we define the LGG of two clauses:

lgg(cl1,cl2) = { lgg(l1,l2) for l1 ∈ cl1 and l2 ∈ cl2, such that lgg(l1,l2) is
defined }

In other words, the LGG of two clauses is a LGG of all pairs of literals of the two clauses.
Having defined the notion of LGG, we move to defining RLGG. Buntine’s (1988) notion

of relative least-general generalisation computes a LGG of two examples relative to the BK
(assumed to be a set of facts):

rlgg(e1,e2) = lgg(e1 :- BK, e2 :- BK).

Example 4. To illustrate RLGG, consider the Bongard problems in Figure 3 where the
goal is to spot the common factor in both images. Assume that the images are described
with the BK:

B =



triangle(o1).
triangle(o3).
circle(o2).
points(o1,down).
points(o3,down).
contains(1,o1).
contains(1,o2).
contains(2,o3).
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That is, the BK states that objects o1 and o3 are triangles, object o2 is a circle, objects o1
and o2 point down, image 1 contains objects o1 and o2, while image 2 contains object 3.
We can use RLGG to identify the common factor, i.e., to find a program representing the
common factor. We will denote the example images as bon(1) and bon(2). We start by
formulating the clauses describing examples relative to BK and removing irrelevant parts
of BK:

lgg( (
bon(1) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down),

circle(o2) , contains(2,o3), triangle(o3), points(o3,down).
)
,(

bon(2) :- contains(1,o1), contains(1,o2), triangle(o1), points(o1,down),
circle(o2), contains(2,o3), triangle(o3), points(o3,down).

)
)

We proceed by computing LGG for the heads and the bodies of the two clauses separately19.
The LGG of the head literals is lgg(bon(1),bon(2)) = bon(lgg(1,2)) = bon(X). An im-
portant thing to note here is that we have to use the same variable for the same ordered
pair of terms everywhere. For instance, we have used the variable X for lgg(1,2) and we
have to use the same variable every time we encounter the same pair of terms. To compute
the LGG of the body literals, we compute the LGG for all pairs of body literals:

{
lgg(contains(1,o1),contains(2,o3)), lgg(contains(1,o1),triangle(o3)), lgg(contains(1,o1),points(o3,down))

lgg(contains(1,o2),contains(2,o3)), lgg(contains(1,o2),triangle(o3)), lgg(contains(1,o1),points(o3,down)),
lgg(triangle(o1),contains(2,o3)), lgg(triangle(o1),triangle(o3)), lgg(triangle(o1),points(o3,down)),
lgg(points(o1,down),contains(2,03)), lgg(points(o1,down),triangle(o3)), lgg(points(o1,down),points(o3,down)),
lgg(circle(o2),contains(2,o3)), lgg(circle(o2),triangle(o3)), lgg(circle(o2),points(o3,down))

}
.

Eliminating undefined LGGs leaves us with:{
lgg(contains(1,o1),contains(2,o3)), lgg(contains(1,o2),contains(2,o3)),

lgg(triangle(o1),triangle(o3)), lgg(points(o1,down),points(o3,down))
}
.

Finally, computing the individual LGGs20{
contains(X,Y), contains(X,Z), triangle(Y), points(Y,down)

}
.

and eliminating the redundant literal contains(X,Z) (as it is subsumed by contains(X,Y))
gives us the clause:

bon(X):- contains(X,Y),triangle(Y),points(Y,down).

We suggest the book by De Raedt (2008) for more information about generality orders.

4.5.3 Top-Down And Bottom-Up

Progol is one of the most important systems and has inspired many other approaches
(Srinivasan, 2001; Ray, 2009; Ahlgren & Yuen, 2013), including Aleph, which we cover in
detail in Section 6.1. Progol is, however, slightly confusing because it is a top-down system
but it first uses a bottom-up approach to bound the search space. Indeed, many authors
only consider it a top-down approach. Progol uses a set covering algorithm. Starting

19. We can do this because when a clause is converted to the set representation, the literals in the body and
head have different signs (body literals are negative, while the head literals are positive) which results
in an undefined LGG.

20. with the following LGGs on terms: lgg(1,2) = X, lgg(o1,o3) = Y, lgg(o2,o3) = Z
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with an empty program, Progol picks an uncovered positive example to generalise. To
generalise an example, Progol uses mode declarations (Section 4.4.1) to build the bottom
clause (Muggleton, 1995), the logically most-specific clause that explains the example. The
use of a bottom clause bounds the search from above (the empty set) and below (the bottom
clause). In this way, Progol is a bottom-up approach because it starts with a bottom clause
and tries to generalise it. However, to find a generalisation of the bottom clause, Progol uses
an A* algorithm to search for a generalisation in a top-down (general-to-specific) manner
and uses the other examples to guide the search21. In this way, Progol is a top-down
approach. When the search for a generalisation of the bottom clause has finished, Progol
adds the clause to its hypothesis (and thus makes it more general) and removes any positive
examples entailed by the new hypothesis. It repeats this process until there are no more
positive examples uncovered. In Section 6.1, we discuss this approach in more detail when
we describe Aleph (Srinivasan, 2001), a system similar to Progol.

4.5.4 Meta-Level

A third new approach has recently emerged called meta-level ILP (Inoue et al., 2013; Mug-
gleton et al., 2015; Inoue, 2016; Law et al., 2020; Cropper & Morel, 2021). There is no
agreed-upon definition for what meta-level ILP means, but most approaches encode the
ILP problem as a meta-level logic program, i.e. a program that reasons about programs.
Such meta-level approaches often delegate the search for a hypothesis to an off-the-shelf
solver (Corapi et al., 2011; Athakravi et al., 2013; Muggleton et al., 2014; Law et al., 2014;
Kaminski et al., 2018; Evans et al., 2021; Cropper & Dumančić, 2020; Cropper & Morel,
2021) after which the meta-level solution is translated back to a standard solution for the
ILP problem. In other words, instead of writing a procedure to search in a top-down or
bottom-up manner, meta-level approaches formulate the learning problem as a declarative
problem, often as an ASP problem (Corapi et al., 2011; Athakravi et al., 2013; Muggleton
et al., 2014; Law et al., 2014; Kaminski et al., 2018; Evans et al., 2021; Cropper & Du-
mančić, 2020; Cropper & Morel, 2021). For instance, ASPAL (Corapi et al., 2011) translates
an ILP problem into a meta-level ASP program which describes every example and every
possible rule in the hypothesis space (defined by mode declarations). ASPAL then uses an
ASP system to find a subset of the rules that cover all the positive but none of the negative
examples. In other words, ASPAL delegates the search to an ASP solver. ASPAL uses an
ASP optimisation statement to find the hypothesis with the fewest literals.

Meta-level approaches can often learn optimal and recursive programs. Moreover, meta-
level approaches use diverse techniques and technologies. For instance, Metagol (Muggleton
et al., 2015; Cropper & Muggleton, 2016) uses a Prolog meta-interpreter to search for a
proof of a meta-level Prolog program. ASPAL (Corapi et al., 2011), ILASP (Law et al.,
2014), HEXMIL (Kaminski et al., 2018), and the Apperception Engine (Evans et al., 2021)
translate an ILP problem into an ASP problem and use powerful ASP solvers to find a model
of the problem – note that these systems all employ very different algorithms. ∂ILP (Evans
& Grefenstette, 2018) uses neural networks to solve the problem. Overall, the development

21. The A* search strategy employed by Progol can easily be replaced by alternative search algorithms, such
as stochastic search (Muggleton & Tamaddoni-Nezhad, 2008).
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of meta-level ILP approaches is exciting because it has diversified ILP from the standard
clause refinement approach of earlier systems.

For more information about meta-level reasoning, we suggest the work of Inoue (2016),
who provides an introduction to meta-level reasoning and learning. Law et al. (2020) also
provide an overview of conflict-driven ILP, which the systems ILASP3 (Law, 2018) and
Popper (Cropper & Morel, 2021) adopt.

4.5.5 Discussion

The different search methods discussed above have different advantages and disadvantages,
and there is no ‘best’ approach. Moreover, as Progol illustrates, there is not necessarily clear
distinctions between top-down, bottom-up, and meta-level approaches. We can, however,
make some general observations about the different approaches.

Bottom-up approaches can be seen as being data- or example-driven. The major ad-
vantage of these approaches is that they are typically very fast. However, as Bratko (1999)
points out, there are several disadvantages of bottom-up approaches, such as (i) they typ-
ically use unnecessarily long hypotheses with many clauses, (ii) it is difficult for them to
learn recursive hypotheses and multiple predicates simultaneously, and (iii) they do not
easily support predicate invention.

The main advantages of top-down approaches are that they can more easily learn recur-
sive programs and textually minimal programs. The major disadvantage is that they can be
prohibitively inefficient because they can generate many hypotheses that do not cover even
a single positive example. Another disadvantage of top-down approaches is their reliance
on iterative improvements. For instance, TILDE keeps specialising every clause which leads
to improvement (i.e., a clause covers fewer negative examples). As such, TILDE can get
stuck with suboptimal solutions if the necessary clauses are very long and intermediate
specialisations do not improve the score (coverage) of the clause. To avoid this issue, these
systems rely on lookahead (Struyf et al., 2006) which increases the complexity of learning.

The main advantage of meta-level approaches is that they can learn recursive programs
and optimal programs (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018; Evans &
Grefenstette, 2018; Evans et al., 2021; Cropper & Morel, 2021). They can also harness the
state-of-the-art techniques in constraint solving, notably in ASP. However, some unresolved
issues remain. A key issue is that many approaches encode an ILP problem as a single
(often very large) ASP problem (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018;
Evans et al., 2021), so struggle to scale to problems with very large domains. Moreover,
since most ASP solvers only work on ground programs (Gebser et al., 2014), pure ASP-
based approaches are inherently restricted to tasks that have a small and finite grounding.
Although preliminary work attempts to tackle this issue (Cropper & Morel, 2021; Cropper,
2022), work is still needed for these approaches to scale to very large problems. Many
approaches also precompute every possible rule in a hypothesis (Corapi et al., 2011; Law
et al., 2014), so struggle to learn programs with large rules, although preliminary work tries
to address this issue (Cropper & Dumančić, 2020).
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5. ILP Features

Table 4 compares the same systems from Table 3 on a small number of dimensions. This
table excludes many other important dimensions of comparison, such as whether a system
supports non-observational predicate learning, where examples of the target relations are
not directly given (Muggleton, 1995). We discuss these features in turn.

System Noise Optimality Infinite domains Recursion Predicate invention

FOIL (Quinlan, 1990) Yes No Yes Partly No

Progol (Muggleton, 1995) Yes No Yes Partly No

Claudien (De Raedt & Dehaspe, 1997) Yes No Yes Party No

TILDE (Blockeel & De Raedt, 1998) Yes No Yes No No22

Aleph (Srinivasan, 2001) Yes No Yes Partly No

XHAIL (Ray, 2009) Yes No Yes Partly No

ASPAL (Corapi et al., 2011) No Yes No Yes No

Atom (Ahlgren & Yuen, 2013) Yes No Yes Partly No

QuickFOIL (Zeng et al., 2014) Yes No No Partly No

LFIT (Inoue et al., 2014) No Yes No No23 No

ILASP (Law et al., 2014) Yes24 Yes Partly25 Yes Partly

Metagol (Muggleton et al., 2015) No Yes Yes Yes Yes

∂ILP (Evans & Grefenstette, 2018) Yes Yes No Yes Partly

HEXMIL (Kaminski et al., 2018) No Yes No Yes Yes

FastLAS (Law et al., 2020) Yes Yes Partly26 No No

Apperception (Evans et al., 2021) Yes Yes No Yes Partly

Popper (Cropper & Morel, 2021) Yes Yes Yes Yes Yes

Table 4: A vastly simplified comparison of ILP systems. As with Table 3, this table is meant
to provide a very high-level overview of some systems. Therefore, the table entries
are coarse and should not be taken absolutely literally. For instance, Metagol does
not support noise and thus has the value no in the noise column, but there is an
extension (Muggleton et al., 2018) that samples examples to mitigate the issue of
misclassified examples. ILASP and ∂ILP support predicate invention, but only a
restricted form. See Section 5.5 for an explanation. FOIL, Progol, and XHAIL
can learn recursive programs when given sufficient examples. See Section 5.4 for
an explanation.
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5.1 Noise

Noise handling is important in ML. In ILP, we can distinguish between three types of noise:

• Noisy examples: where an example is misclassified

• Incorrect BK: where a relation holds when it should not (or does not hold when it
should)

• Imperfect BK: where relations are missing or there are too many irrelevant relations

We discuss these three types of noise.

Noisy examples. The problem definitions from Section 3 are too strong to account for
noisy (incorrectly labelled) examples because they expect a hypothesis that entails all of the
positive and none of the negative examples. Therefore, most systems relax this constraint
and accept a hypothesis that does not necessarily cover all positive examples or that covers
some negative examples27. Most systems that use a set covering loop naturally support noise
handling. For instance, TILDE extends a decision tree learner (Quinlan, 1986, 1993) to the
first-order setting and uses the same information gain methods to induce hypotheses. The
noise-tolerant version of ILASP (Law, 2018) uses ASP’s optimisation abilities to provably
learn the program with the best coverage. In general, handling noisy examples is a well-
studied topic in ILP.

Noisy BK. Just as training examples can potentially be noisy/misclassified, the fact-
s/rules in the BK can be noisy/misclassified. For instance, if learning rules to forecast the
weather, the BK might include facts about historical weather, which might not be 100%
correct. However, most systems assume that the BK is perfect, i.e. that atoms are true or
false, and there is no room for uncertainty. This assumption is a major limitation because
real-world data, such as images or speech, cannot always be easily translated into a purely
noise-free symbolic representation. We discuss this limitation in more detail in Section 9.1.
One of the key appealing features of ∂ILP is that it takes a differentiable approach to ILP
and can be given fuzzy or ambiguous data. Rather than an atom being true or false, ∂ILP
gives atoms continuous semantics, which maps atoms to the real unit interval [0, 1]. The
authors successfully demonstrate the approach on the MNIST dataset.

Imperfect BK. Handling imperfect BK is an under-explored topic in ILP. We can dis-
tinguish between two types of imperfect BK: missing BK and too much BK, which we
discussed in Section 4.3.2.

23. A logical decision tree learned by TILDE can be translated into a logic program that contains invented
predicate symbols. However, TILDE is unable to reuse any invented symbols whilst learning.

24. LFIT does not support recursion in the rules but allows recursion in their usage. The input is a set of
pairs of interpretations and the output is a logic program that can be recursively applied on its output
to produce sequences of interpretations.

25. ILASP precomputes every rule defined by a given mode declaration M to form a rule space SM . Given
background knowledge B and an example E, ILASP requires that the grounding of B ∪ SM ∪ E must
be finite.

26. Given background knowledge B and an example E, FastLAS requires that the grounding of B ∪SM ∪E
must be finite.

27. It is, unfortunately, a common misconception that ILP cannot handle mislabelled examples (Evans &
Grefenstette, 2018).
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5.2 Optimality

There are often multiple (sometimes infinite) hypotheses that solve the ILP problem (or
have the same training error). In such cases, which hypothesis should we choose?

5.2.1 Occamist Bias

Many systems try to learn a textually minimal hypothesis. This approach is justified as
following an Occamist bias (Schaffer, 1993). The most common interpretation of an Oc-
camist bias is that amongst all hypotheses consistent with the data, the simplest is the most
likely28. Most approaches use an Occamist bias to find the smallest hypothesis, measured
in terms of the number of clauses (Muggleton et al., 2015), literals (Law et al., 2014), or
description length (Muggleton, 1995). Most systems are not, however, guaranteed to induce
the smallest programs. A key reason for this limitation is that many approaches learn a
single clause at a time leading to the construction of sub-programs that are sub-optimal in
terms of program size and coverage. For instance, Aleph, described in detail in the next
section, offers no guarantees about the program size and coverage. Newer systems address
this limitation (Corapi et al., 2011; Law et al., 2014; Cropper & Muggleton, 2016; Kamin-
ski et al., 2018; Cropper & Morel, 2021) through meta-level reasoning (Section 4.5). For
instance, ASPAL (Corapi et al., 2011) is given as input a hypothesis space with a set of
candidate clauses. The ASPAL task is to find a minimal subset of clauses that entails all
the positive and none of the negative examples. ASPAL uses ASP’s optimisation abilities
to provably learn the program with the fewest literals.

5.2.2 Cost-Minimal Programs

Learning efficient logic programs has long been considered a difficult problem (Muggleton &
De Raedt, 1994; Muggleton et al., 2012), mainly because there is no declarative difference
between an efficient program, such as mergesort, and an inefficient program, such as bubble
sort. To address this issue, Metaopt (Cropper & Muggleton, 2019) learns efficient programs.
Metaopt maintains a cost during the hypothesis search and uses this cost to prune the
hypothesis space. To learn minimal time complexity logic programs, Metaopt minimises the
number of resolution steps. For instance, imagine learning a find duplicate program, which
finds a duplicate element in a list e.g. [p,r,o,g,r,a,m] 7→ r, and [i,n,d,u,c,t,i,o,n]
7→ i. Given suitable input data, Metagol induces the program:

f(A,B):- head(A,B),tail(A,C),element(C,B).
f(A,B):- tail(A,C),f(C,B).

28. Domingos (1999) points out that this interpretation is controversial, partly because Occam’s razor is
interpreted in two different ways. Following Domingos (1999), let the generalisation error of a hypothesis
be its error on unseen examples and the training error be its error on the examples it was learned from.
The formulation of the razor that is perhaps closest to Occam’s original intent is given two hypotheses
with the same generalisation error, the simpler one should be preferred because simplicity is desirable in
itself. The second formulation, which most ILP systems follow, is different and can be stated as given two
hypotheses with the same training error, the simpler one should be preferred because it is likely to have
lower generalisation error. Domingos (1999) points out that the first razor is largely uncontroversial,
but the second one, taken literally, is provably and empirically false (Zahálka & Zelezný, 2011). Many
systems do not distinguish between the two cases. We therefore also do not make any distinction.
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This program goes through the elements of the list checking whether the same element
exists in the rest of the list. Given the same input, Metaopt induces the program:

f(A,B):- mergesort(A,C),f1(C,B).
f1(A,B):- head(A,B),tail(A,C),head(C,B).
f1(A,B):- tail(A,C),f1(C,B).

This program first sorts the input list and then goes through the list to check for duplicate
adjacent elements. Although larger, both in terms of clauses and literals, the program
learned by Metaopt is more efficient (O(n log n)) than the program learned by Metagol
(O(n2)).

Other systems can also learn optimal programs (Schüller & Benz, 2018). For instance,
FastLAS (Law et al., 2020) follows this idea and takes as input a custom scoring function
and computes an optimal solution for the given scoring function. The authors show that
this approach allows a user to optimise domain-specific performance metrics on real-world
datasets, such as access control policies.

5.3 Infinite Domains

Some systems, mostly meta-level approaches, cannot handle infinite domains (Corapi et al.,
2011; Athakravi et al., 2013; Evans & Grefenstette, 2018; Kaminski et al., 2018; Evans
et al., 2021). Pure ASP-based systems (Corapi et al., 2011; Kaminski et al., 2018; Evans
et al., 2021) struggle to handle infinite domains because (most) current ASP solvers only
work on ground programs, i.e. they need a finite grounding. ASP can work with infi-
nite domains as long as the grounding is finite. This finite grounding restriction is often
achieved by enforcing syntactic restrictions on the programs, such as finitely-ground pro-
grams Calimeri et al. (2008). ASP systems (which combine a grounder and a solver), such
as Clingo (Gebser et al., 2014), first take a first-order program as input, ground it using
an ASP grounder, and then use an ASP solver to determine whether the ground problem
is satisfiable. This approach leads to the grounding bottleneck problem (Balduccini et al.,
2013), where grounding can be so large that it is simply intractable. This grounding issue
is especially problematic when reasoning about complex data structures, such as lists. For
instance, grounding the permutation relation over the ASCII characters would require 128!
facts. The grounding bottleneck is especially a problem when reasoning about real num-
bers29. For instance, ILASP (Law et al., 2014) can represent real numbers as strings and can
delegate reasoning to Python (via Clingo’s scripting feature). However, in this approach,
the numeric computation is performed when grounding the inputs, so the grounding must
be finite, which makes it impractical. This grounding problem is not specific to ASP-based
systems. For instance, ∂ILP is an ILP system based on a neural network, but it only works
on BK in the form of a finite set of ground atoms. This grounding problem is essentially
the fundamental problem faced by table-based ML approaches that we discussed in Section
4.3.

One approach to mitigate this problem is to use context-dependent examples (Law et al.,
2016), where BK can be associated with specific examples so that an ILP systems need

29. Most ASP implementations do not natively support lists nor real numbers, although both can be repre-
sented using other means.
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only ground part of the BK. Although this approach is shown to improve the grounding
problem compared to not using context-dependent examples, the approach still needs a
finite grounding for each example and still struggles as the domain size increases (Cropper
& Morel, 2021).

5.4 Recursion

The power of recursion is that an infinite number of computations can be described by a
finite recursive program (Wirth, 1985). In ILP, recursion is often crucial for generalisation.
We illustrate this importance with two examples.

Example 5 (Reachability). Consider learning the concept of reachability in a graph. With-
out recursion, an ILP system would need to learn a separate clause to define reachability
of different lengths. For instance, to define reachability depths for 1-4 would require the
program:

reachable(A,B):- edge(A,B).
reachable(A,B):- edge(A,C),edge(C,B).
reachable(A,B):- edge(A,C),edge(C,D),edge(D,B).
reachable(A,B):- edge(A,C),edge(C,D),edge(D,E),edge(E,B).

This program does not generalise because it does not define reachability for arbitrary depths.
Moreover, most systems would need examples of each depth to learn such a program. By
contrast, a system that supports recursion can learn the program:

reachable(A,B):- edge(A,B).
reachable(A,B):- edge(A,C),reachable(C,B).

Although smaller, this program generalises reachability to any depth. Moreover, systems
can learn this definition from a small number of examples of arbitrary reachability depth.

Example 6 (String transformations). Reconsider the string transformation problem from
the introduction (Section 1.2). As with the reachability example, without recursion, a
system would need to learn a separate clause to find the last element for each list of length
n, such as:

last(A,B):- tail(A,C),empty(C),head(A,B).
last(A,B):- tail(A,C),tail(C,D),empty(D),head(C,B).
last(A,B):- tail(A,C),tail(C,D),tail(D,E),empty(E),head(E,B).

By contrast, a system that supports recursion can learn the compact program:

last(A,B):- tail(A,C),empty(C),head(A,B).
last(A,B):- tail(A,C),last(C,B).

Because of the symbolic representation and the recursive nature, this program generalises to
lists of arbitrary length and which contain arbitrary elements (e.g. integers and characters).

801



Cropper & Dumančić

Without recursion it is often difficult for a system to generalise from small numbers of
examples (Cropper et al., 2015). Moreover, recursion is vital for many program synthesis
tasks, such as the quicksort scenario from the introduction. Despite its importance, learning
recursive programs has long been a difficult problem (Muggleton et al., 2012). Moreover,
there are many negative theoretical results on the learnability of recursive programs (Cohen,
1995d). As Table 4 shows, many systems cannot learn recursive programs, or can only learn
it in a limited form.

A common limitation is that many systems rely on bottom clause construction (Mug-
gleton, 1995), which we discuss in detail in Section 6.1. In this approach, for each positive
example, a system creates the most specific clause that entails the example and then tries
to generalise the clause to entail other examples. However, because a system learns only
a single clause per example30, this covering approach requires examples of both the base
and inductive cases, which means that such systems struggle to learn recursive programs,
especially from small numbers of examples.

Interest in recursion has resurged recently with the introduction of meta-interpretive
learning (MIL) (Muggleton et al., 2014, 2015; Cropper et al., 2020) and the MIL system
Metagol (Cropper & Muggleton, 2016). The key idea of MIL is to use metarules (Section
4.4.2) to restrict the form of inducible programs and thus the hypothesis space. For instance,
the chain metarule (P (A,B) ← Q(A,C), R(C,B)) allows Metagol to induce programs31

such as:

f(A,B):- tail(A,C),head(C,B).

Metagol induces recursive programs using recursive metarules, such as the tail recursive
metarule P(A,B) ← Q(A,C), P(C,B). Metagol can also learn mutually recursive programs,
such as learning the definition of an even number by also inventing and learning the defini-
tion of an odd number (even 1):

even(0).
even(A):- successor(A,B),even 1(B).
even 1(A):- successor(A,B),even(B).

Many systems can now learn recursive programs (Law et al., 2014; Evans & Grefenstette,
2018; Kaminski et al., 2018; Evans et al., 2021; Cropper & Morel, 2021). With recursion,
systems can generalise from small numbers of examples, often a single example (Lin et al.,
2014; Cropper, 2019). For instance, Popper (Cropper & Morel, 2021) can learn list trans-
formation programs from only a handful of examples, such as a program to drop the last
element of a list:

droplast(A,B):- tail(A,B),empty(B).
droplast(A,B):- tail(A,C),droplast(C,D),head(A,E),cons(E,D,B).

The ability to learn recursive programs has opened ILP to new application areas, including
learning string transformations programs (Lin et al., 2014), robot strategies (Cropper &
Muggleton, 2015), context-free grammars (Muggleton et al., 2014), and answer set gram-
mars (Law et al., 2019).

30. This statement is not true for all systems that employ bottom clause construction. XHAIL (Ray, 2009),
for instance, can induce multiple clauses per example.

31. Metagol can induce longer clauses though predicate invention, which we discuss in Section 5.5.
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5.5 Predicate Invention

Most systems assume that the given BK is suitable to induce a solution. This assumption
may not always hold. Rather than expecting a user to provide all the necessary BK, the goal
of predicate invention (PI) is for a system to automatically invent new auxiliary predicate
symbols, i.e. to introduce new predicate symbols in a hypothesis that are not given the
examples nor the BK32 This idea is similar to when humans create new functions when
manually writing programs, such as to reduce code duplication or to improve readability.
For instance, to learn the quicksort algorithm, a learner needs to be able to partition the
list given a pivot element and append two lists. If partition and append are not provided
in BK, the learner would need to invent them.

PI has repeatedly been stated as an important challenge (Muggleton & Buntine, 1988;
Stahl, 1995; Muggleton, 1994b; Muggleton et al., 2012). Russell (2019) even argues that
the automatic invention of new high-level concepts is the most important step needed to
reach human-level AI. A classical example of PI is learning the definition of grandparent
from only the background relations mother and father. Given suitable examples and no
other background relations, a system can learn the program:

grandparent(A,B):- mother(A,C),mother(C,B).
grandparent(A,B):- mother(A,C),father(C,B).
grandparent(A,B):- father(A,C),mother(C,B).
grandparent(A,B):- father(A,C),father(C,B).

Although correct, this program is large and has 4 clauses and 12 literals. By contrast,
consider the program learned by a system which supports PI:

grandparent(A,B):- inv(A,C),inv(C,B).
inv(A,B):- mother(A,B).
inv(A,B):- father(A,B).

To learn this program, a system has invented a new predicate symbol inv. This program is
semantically equivalent33 to the previous one, but is shorter both in terms of the number of
literals and clauses. The invented symbol inv can be interpreted as parent. In other words,
if we rename inv to parent we have the program:

grandparent(A,B):- parent(A,C),parent(C,B).
parent(A,B):- mother(A,B).
parent(A,B):- father(A,B).

As this example shows, PI can help learn smaller programs, which, in general, is preferable
because most systems struggle to learn large programs (Cropper et al., 2020b; Cropper &
Dumančić, 2020).

32. PI is a form of non-observational predicate learning, where examples of the target relations are not
directly given (Muggleton, 1995).

33. This use of the term semantically equivalent is imprecise. Whether these two programs are strictly
equivalent depends on the definition of logical equivalence, for which there are many (Maher, 1988).
Moreover, equivalence between the two programs is further complicated because they have different
vocabularies (because of the invented predicate symbol). Our use of equivalence is based on the two
programs having the same logical consequences for the target predicate symbol grandparent.
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PI has been shown to help reduce the size of programs, which in turn reduces sample
complexity and improves predictive accuracy (Dumančić & Blockeel, 2017; Cropper, 2019;
Cropper et al., 2020; Dumančić et al., 2019; Dumancic et al., 2021).

To further illustrate the power of PI, imagine learning a droplasts program, which re-
moves the last element of each sublist in a list, e.g. [alice,bob,carol] 7→ [alic,bo,caro].
Given suitable examples and BK, Metagolho (Cropper et al., 2020) learns the higher-order
program:

droplasts(A,B):- map(A,B,droplasts1).
droplasts1(A,B):- reverse(A,C),tail(C,D),reverse(D,B).

To learn this program, Metagolho invents the predicate symbol droplasts1, which is used
twice in the program: once as term in the literal map(A,B,droplasts1) and once as a
predicate symbol in the literal droplasts1(A,B). This higher-order program uses map to
abstract away the manipulation of the list to avoid the need to learn an explicitly recursive
program (recursion is implicit in map).

Now consider learning a double droplasts program (ddroplasts), which extends the
droplast problem so that, in addition to dropping the last element from each sublist, it
also drops the last sublist, e.g. [alice,bob,carol] 7→ [alic,bo]. Given suitable examples,
metarules, and BK, Metagolho learns the program:

ddroplasts(A,B):- map(A,C,ddroplasts1),ddroplasts1(C,B).
ddroplasts1(A,B):- reverse(A,C),tail(C,D),reverse(D,B).

This program is similar to the aforementioned droplasts program, but additionally reuses
the invented predicate symbol ddroplasts1 in the literal ddroplasts1(C,B). This program
illustrates the power of PI to help learn substantially more complex programs.

Most early attempts at PI were unsuccessful, and, as Table 4 shows, most systems do
not support it. As Kramer (1995) points out, PI is difficult for at least three reasons:

• When should we invent a new symbol? There must be a reason to invent a new
symbol; otherwise, we would never invent one.

• How should you invent a new symbol? How many arguments should it have?

• How do we judge the quality of a new symbol? When should we keep an invented
symbol?

There are many PI techniques. We briefly discuss some approaches now.

5.5.1 Inverse Resolution

Early work on PI was based on the idea of inverse resolution (Muggleton & Buntine, 1988)
and specifically W operators. Discussing inverse resolution in depth is beyond the scope of
this paper. We refer the reader to the original work of Muggleton and Buntine (1988) or the
overview books by Nienhuys-Cheng and Wolf (1997) and De Raedt (2008) for more infor-
mation. Although inverse resolution approaches could support PI, they never demonstrated
completeness, partly because of the lack of a declarative bias to delimit the hypothesis space
(Muggleton et al., 2015).
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5.5.2 Placeholders

One approach to PI is to predefine invented symbols through mode declarations, which
Leban et al. (2008) call placeholders and which Law (2018) calls prescriptive PI. For instance,
to invent the parent relation, a suitable modeh declaration would be required, such as:

modeh(1,inv(person,person)).

However, this placeholder approach is limited because it requires that a user manually
specify the arity and argument types of a symbol (Law et al., 2014), which rather defeats
the point, or requires generating all possible invented predicates (Evans & Grefenstette,
2018; Evans et al., 2021), which is computationally expensive.

5.5.3 Metarules

To reduce the complexity of PI, Metagol uses metarules (Section 4.4.2) to define the hypoth-
esis space. For instance, the chain metarule (P (A,B)← Q(A,C), R(C,B)) allows Metagol
to induce programs such as:

f(A,B):- tail(A,C),tail(C,B).

This program drops the first two elements from a list. To induce longer clauses, such as to
drop first three elements from a list, Metagol can use the same metarule but can invent a
new predicate symbol and then chain their application, such as to induce the program34:

f(A,B):- tail(A,C),inv(C,B).
inv(A,B):- tail(A,C),tail(C,B).

A side-effect of this metarule-driven approach to PI is that problems are forced to be
decomposed into smaller problems. For instance, suppose you want to learn a program
that drops the first four elements of a list, then Metagol could learn the following program,
where the invented predicate symbol inv is used twice:

f(A,B):- inv(A,C),inv(C,B).
inv(A,B):- tail(A,C),tail(C,B).

To learn this program, Metagol invents the predicate symbol inv and induces a definition
for it using the chain metarule. Metagol uses this new predicate symbol in the definition
for the target predicate f.

5.5.4 Lifelong Learning

The aforementioned techniques for PI are aimed at single-task problems. PI can be per-
formed by continually learning programs (meta-learning). For instance Lin et al. (2014) use
a technique called dependent learning to enable Metagol to learn string transformations pro-
grams over time. Given a set of 17 string transformation tasks, their learner automatically
identifies easier problems, learn programs for them, and then reuses the learned programs

34. We could unfold (Tamaki & Sato, 1984) this program to remove the invented symbol to derive the
program f(A,B):- tail(A,C),tail(C,D),tail(D,B).
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to help learn programs for more difficult problems. To determine which problems are easier
to solve, the authors initially start with a very strong bias in the form of allowing a learner
to only use one rule to find a solution. They then progressively relax this restriction, each
time allowing more rules in a solution. The authors use PI to reform the bias of the learner
where after a solution is learned not only is the target predicate added to the BK but also
its constituent invented predicates. The authors experimentally show that their multi-task
approach performs substantially better than a single-task approach because learned pro-
grams are frequently reused. Moreover, they show that this approach leads to a hierarchy
of BK composed of reusable programs, where each builds on simpler programs. Figure 4
shows this approach. Note that this lifelong setting raises challenges, which we discuss in
Section 9.1.
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Figure 4: This figure is taken from the work of Lin et al. (2014). It shows the programs
learned by dependent (left) and independent (right) learning approaches. The
size bound column denotes the number of clauses in the induced program. The
nodes correspond to programs and the numbers denote the task that the program
solves. For the dependent learning approach, the arrows correspond to the calling
relationships of the induced programs. For instance, the program to solve task
3 reuses the solution to solve task 12, which in turn reuses the solution to task
17, which in turn reuses the solution to task 15. Tasks 4, 5, and 16 cannot be
solved using an independent learning approach, but can when using a dependent
learning approach.

5.5.5 Theory Refinement

The aim of theory refinement (Wrobel, 1996) is to improve the quality of a theory. Theory
revision approaches (Adé et al., 1994; Richards & Mooney, 1995) revise a program so that it
entails missing answers or does not entail incorrect answers. Theory compression (De Raedt
et al., 2008) approaches select a subset of clauses such that the performance is minimally

806



Inductive Logic Programming At 30: A New Introduction

affected with respect to certain examples. Theory restructuring changes the structure of a
logic program to optimise its execution or its readability (Flach, 1993; Wrobel, 1996). We
discuss two recent refinement approaches based on PI.

Auto-encoding logic programs. Auto-encoding logic programs (ALPs) (Dumančić et al.,
2019) invent predicates by simultaneously learning a pair of logic programs: (i) an encoder
that maps the examples given as interpretations to new interpretations defined entirely in
terms of invented predicates35, and (ii) a decoder that reconstructs the original interpreta-
tions from the invented ones. The invented interpretations compress the given examples and
invent useful predicates by capturing regularities in the data36. ALPs, therefore, change the
representation of the problem. The most important implication of the approach is that the
target programs are easier to express via the invented predicates. The authors experimen-
tally show that learning from the representation invented by ALPs improves the learning
performance of generative Markov logic networks (MLN) (Richardson & Domingos, 2006).
Generative MLNs learn a (probabilistic) logic program that explains all predicates in an
interpretation, not a single target predicate. The predicates invented by ALPs, therefore,
aid the learning of all predicates in the BK.

Program refactoring. Knorf (Dumancic et al., 2021) pushes the idea of ALPs even
further. After learning to solve user-supplied tasks in the lifelong learning setting, Knorf
compresses the learnt program by removing redundancies in it. If the learnt program con-
tains invented predicates, Knorf revises them and introduces new ones that would lead to
a smaller program37. By doing so, Knorf optimises the representation of obtained knowl-
edge. The refactored program is smaller in size and contains fewer redundant clauses. The
authors experimentally demonstrate that refactoring improves learning performance in life-
long learning. More precisely, Metagol learns to solve more tasks when using the refactored
BK, especially when BK is large. Moreover, the authors also demonstrate that Knorf sub-
stantially reduces the size of the BK program, reducing the number of literals in a program
by 50% or more.

6. ILP Case Studies

We now describe in detail four ILP systems: Aleph (Srinivasan, 2001), TILDE (Blockeel &
De Raedt, 1998), ASPAL (Corapi et al., 2011), and Metagol (Cropper & Muggleton, 2016).
These systems are not necessarily the best, nor the most popular, but use considerably dif-
ferent techniques and are relatively simple to explain. Aleph is based on inverse entailment
(Muggleton, 1995) and uses bottom clause construction to restrict the hypothesis space.
Despite its age, Aleph is still one of the most popular systems. TILDE is a first-order gen-
eralisation of decision trees and uses information gain to divide and conquer the training
examples. ASPAL is a meta-level system that uses an ASP solver to solve the ILP problem,
which has influenced much subsequent work, notably ILASP. Finally, Metagol uses a Prolog

35. The head of every clause in the encoder invents a predicate.
36. Evaluating the usefulness of invented predicates via their ability to compress a theory goes back to some

of the earliest work in ILP by the Duce system (Muggleton, 1987).
37. The idea of learning new predicates to restructure knowledge bases goes back at least to Flach (1993).
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meta-interpreter to construct a proof of a set of examples and extracts a program from the
proof. We discuss these systems in turn.

6.1 Aleph

Progol (Muggleton, 1995) is arguably the most influential ILP system, having influenced
many systems (Inoue, 2004; Srinivasan, 2001; Ray, 2009; Ahlgren & Yuen, 2013), which
in turn have inspired many other systems (Katzouris et al., 2015, 2016; Schüller & Benz,
2018). Aleph is based on Progol. We discuss Aleph, rather than Progol, because the
implementation, written in Prolog, is easier to use and the manual is more detailed.

6.1.1 Aleph Setting

The Aleph problem setting is:

Given:

- A set of mode declarations M

- Background knowledge B in the form of a normal program

- Positive (E+) and negative (E−) examples represented as sets of ground facts

Return: A normal program hypothesis H such that:

- H is consistent with M

- ∀e ∈ E+, H ∪B |= e (i.e. is complete)

- ∀e ∈ E−, H ∪B 6|= e (i.e. is consistent)

Note that the examples can be different relations to generalise, i.e. they can have different
predicate symbols.

6.1.2 Aleph Algorithm

Aleph starts with an empty hypothesis and uses the following set covering approach:

1. Select a positive example to generalise. If none exists, stop and return the current
hypothesis; otherwise proceed to the next step.

2. Construct the most specific clause (the bottom clause) (Muggleton, 1995) that is
consistent with the mode declarations (Section 4.4.1) and entails the example.

3. Search for a clause more general than the bottom clause and has the best score.

4. Add the clause to the hypothesis and remove all the positive examples covered by it.
Return to step 1.

We discuss the basic approaches to steps 2 and 3.

6.1.3 Bottom Clause Construction (Step 2)

The purpose of constructing a bottom clause is to bound the search in step 3. The bottom
clause is the most specific clause that entails the example to be generalised. In general,
a bottom clause can have infinite cardinality. Therefore, Aleph uses mode declarations
(Section 4.4.1) to restrict them. Describing how to construct bottom clauses is beyond the
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scope of this paper. See the paper by Muggleton (1995) or the book of De Raedt (2008) for
contrasting methods. Having constructed a bottom clause, Aleph can ignore any clauses
that are not more general than it. In other words, Aleph only considers clauses that are
generalisations of the bottom clause, which must all entail the example. We use the bottom
clause definition provided by De Raedt (2008):

Definition 4 (Bottom clause). Let H be a clausal hypothesis and C be a clause. Then the
bottom clause ⊥(C) is the most specific clause such that:

H ∪ ⊥(C) |= C

Example 7 (Bottom clause). To illustrate bottom clauses in Aleph, we use a modified
example from De Raedt (2008). Let M be the mode declarations:

M =



:- modeh(*,pos(+shape)).
:- modeb(*,red(+shape)).
:- modeb(*,blue(+shape)).
:- modeb(*,square(+shape)).
:- modeb(*,triangle(+shape)).
:- modeb(*,polygon(+shape)).


Let B be the BK:

B =



red(s1).
blue(s2).
square(s1).
triangle(s2).
polygon(A):- rectangle(A).
rectangle(A):- square(A).


Let e be the positive example pos(s1). Then:

⊥(e) = pos(A):- red(A),square(A),rectangle(A),polygon(A).

This bottom clause contains the literal rectangle(A) because it is implied by square(A).
The inclusion of rectangle(A) in turn implies the inclusion of polygon(A). Although blue
and triangle appear in B, they are irrelevant to e, so do not appear in the bottom clause.

Any clause that is not more general than the bottom clause cannot entail e so can be
ignored. For instance, we can ignore the clause pos(A):- blue(A) because it is not more
general than ⊥(e).

Constant symbols. Note that ⊥(e) contains variables, rather than constant symbols,
which would make the bottom clause even more specific. The reason is that the given mode
declarations forbid constant symbols. Had modeb(*,polygon(#shape)) been given in M ,
then ⊥(e) would also contain polygon(s1).
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6.1.4 Clause Search (Step 3)

Having constructed a bottom clause, Aleph searches for generalisations of it. The impor-
tance of constructing the bottom clause is that it bounds the search space from below (the
bottom clause). Figure 5 illustrates the search space of Aleph when given the bottom clause
⊥(e) from our previous shape example. Aleph performs a bounded breadth-first search to
enumerate shorter clauses before longer ones, although a user can easily change the search
strategy38. The search is bounded by several parameters, such as a maximum clause size
and a maximum proof depth. In this scenario, Aleph starts with the most general generali-
sation of ⊥(e), which is pos(A), which simply says that everything is true. Aleph evaluates
(assigns a score) to each clause in the search, i.e. each clause in the lattice. Aleph’s default
evaluation function is coverage defined as P−N , where P and N are the numbers of positive
and negative examples respectively entailed by the clause39. Aleph then tries to specialise
a clause by adding literals to the body of it, which it selects from the bottom clause or by
instantiating variables. Each specialisation of a clause is called a refinement. Properties
of refinement operators (Shapiro, 1983) are well-studied in ILP (Nienhuys-Cheng & Wolf,
1997; De Raedt, 2008), but are beyond the scope of this paper. The key thing to understand
is that Aleph’s search is bounded from above (the most general clause) and below (the most
specific clause). Having found the best clause, Aleph adds it to the hypothesis, removes all
the positive examples covered by the new hypothesis, and returns to Step 1. Describing
the full clause search mechanism and how the score is computed is beyond the scope of this
work, so we refer to the reader to the Progol tutorial by Muggleton and Firth (2001) for a
more detailed introduction.

6.1.5 Discussion

Advantages. Aleph is one of the most popular ILP systems because (i) it has a stable
and easily available implementation with many options, and (ii) it has good empirical
performance. Moreover, it is a single Prolog file, which makes it easy to download and
use40. Because it uses a bottom clause to bound the search, Aleph is also efficient at
identifying relevant constant symbols that may appear in a hypothesis, which is not the
case for pure top-down approaches41. Aleph also supports many other features, such as
numerical reasoning, inducing constraints, and allowing user-supplied cost functions.

Disadvantages. Because it is based on inverse entailment, and only learns a single clause
at a time, Aleph struggles to learn recursive programs and optimal programs and does
not support PI. Aleph also uses many parameters, such as parameters that change the
search strategy when generalising a bottom clause (step 3) and parameters that change
the structure of learnable programs (such as limiting the number of literals in the bottom
clause). These parameters can greatly influence learning performance. Even for experts, it
is non-trivial to find a suitable set of parameters for a problem.

38. Progol, by contrast, uses an A* search (Muggleton, 1995).
39. Aleph comes with 13 evaluation functions, such as entropy and compression.
40. Courtesy of Fabrizio Riguzzi and Paolo Niccolò Giubelli, Aleph is now available as a SWIPL package at

https://www.swi-prolog.org/pack/list?p=aleph
41. As the Aleph manual states, “the bottom clause is really useful to introduce constants (these are obtained

from the seed example”.
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pos(A):-

pos(A):- red(A) pos(A):- square(A) pos(A):- rectangle(A) pos(A):- polygon(A)

pos(A):-
red(A),
square(A).

pos(A):-
red(A),
rectangle(A).

pos(A):-
red(A),
polygon(A).

pos(A):-
square(A),
rectangle(A).

pos(A):-
square(A),
polygon(A).

pos(A):-
rectangle(A),
polygon(A).

pos(A):-
red(A),
square(A),
rectangle(A).

pos(A):-
red(A),
square(A),
polygon(A).

pos(A):-
square(A),
rectangle(A),
polygon(A).

pos(A):-
red(A),
square(A),
rectangle(A),
polygon(A).

Most general hypothesis

Most specific hypothesis

Figure 5: Aleph bounds the hypothesis space from above (the most general hypothesis)
and below (the most specific hypothesis). Aleph starts the search from the most
general hypothesis and specialises it (by adding literals from the bottom clause)
until it finds the best hypothesis.

6.2 TILDE

TILDE (Blockeel & De Raedt, 1998) is a first-order generalisation of decision trees, and
specifically the C4.5 (Quinlan, 1993) learning algorithm. TILDE learns from interpretations,
instead of entailment as Aleph, and is an instance of top-down methodology.

The learning setup of TILDE is different from other ILP systems in the sense that it
closely mimics the standard classification setup from machine learning. That is, TILDE
learns a program that assigns a class to an example (an interpretation). Assigning a class
is done by checking which class an example entails, given the program and background
knowledge. Class assignment is indicated as a special literal of the form class(c), where
c comes from a set of classes C. For instance, if a classifier differentiates between cats and
dog then C = {cat, dog}.

6.2.1 TILDE Setting

The TILDE problem setting is:

Given:

- A set of classes C

- A set of mode declarations

- A set of examples E (a set of interpretations)

- BK in the form of a definite program
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Return: A (normal) logic program hypothesis H such that:

- ∀e ∈ E, H ∧BK ∧ e |= class(c), c ∈ C, where c is the class of the example e

- ∀e ∈ E, H ∧BK ∧ e 6|= class(c′), c′ ∈ C − {c}

6.2.2 TILDE Algorithm

TILDE behaves almost the same as C4.5 limited to binary attributes, meaning that it uses
the same heuristics and pruning techniques. What TILDE does differently is the generation
of candidates splits. Whereas C4.5 generates candidates as attribute-value pairs (or value
inequalities in case of continuous attributes), TILDE uses conjunctions of literals. The
conjunctions are explored gradually from the most general to the most specific ones, where
θ-subsumption (Section 2) is used as an ordering.

To find a hypothesis, TILDE employs a divide-and-conquer strategy recursively repeat-
ing the following steps:

• if all examples belong to the same class, create a leaf predicting that class

• for each candidate conjunction conj, find the normalised information gain when split-
ting on conj

– if no candidate provides information gain, turn the previous node into a leaf
predicting the majority class

• create a decision node n that splits on the candidate conjunction with the highest
information gain

• Recursively split on the subsets of data obtained by the splits and add those nodes as
children of n

Example 8 (Machine repair example (Blockeel & De Raedt, 1998)). To illustrate TILDE’s
learning procedure, consider the following example. Each example is an interpretation (a
set of facts) and it describes (i) a machine with parts that are worn out, and (ii) an action an
engineer should perform: fix the machine, send it back to the manufacturer, or nothing
if the machine is ok. These actions are the classes to predict.

E =


E1: {worn(gear). worn(chain). class(fix).}
E2: {worn(engine). worn(chain). class(sendback).}
E3: {worn(wheel). class(sendback).}
E4: {class(ok).}


Background knowledge contains information which parts are replaceable and which are not:

B =


replaceable(gear).
replaceable(chain).
irreplaceable(engine).
irreplaceable(wheel).


Like any top-down approach, TILDE starts with the most general program; in this case, the
initial program assigns the majority class to all examples. TILDE then gradually refines the
program (specialises it) until satisfactory performance is reached. To refine the program,
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TILDE uses mode declarations. Due to the top-down nature of TILDE, it is more natural to
understand modes as conjunctions that can be added to a current clause. This interpretation
does not conflict the explanation given in Section 4.4. TILDE interprets an input argument
as bounding to a variable that already exists in the current clause; this is identical to stating
that the argument needs to be instantiated when literal is called as it will be instantiated by
the existing literal that introduces that variable. Similarly, in TILDE, an output argument
introduces a new variable; this variable will be instantiated after the literal is called.

Assume the mode declarations:

modeb(*,replaceable(+X)).
modeb(*,irreplaceable(+X)).
modeb(*,worn(+X)).

Each mode declaration forms a candidate split:

worn(X).
replaceable(X).
irreplaceable(X).

Computing the information gain for all of the candidate splits (as with propositional C4.5),
the conjunction worn(X) results in the highest gain and is set as the root of the tree. For
details about the C4.5 and information gain, we refer the reader to the excellent machine
learning book by Mitchell (1997).

TILDE proceeds by recursively repeating the same procedure over both outcomes of
the test: when worn(X) is true and false. When the root test fails, the dataset contains
a single example (E4); TILDE forms a branch by creating the leaf predicting the class ok.
When the root test succeeds, not all examples (E1, E2, E3) belong to the same class.
TILDE thus refines the root node further:

worn(X), worn(X).
worn(X), replaceable(X).
worn(X), irreplaceable(X)

worn(X), worn(Y).
worn(X), replaceable(Y).
worn(X), irreplaceable(Y)

The candidate refinement worn(X), irreplaceable(X) perfectly divides the remaining ex-
amples and thus irreplaceable(X) is added as the subsequent test. All examples are
classified correctly, and thus the learning stops.

The final TILDE tree is (illustrated in Figure 6):

class(sendback):- worn(X),irreplaceable(X),!.
class(fix):- worn(X),!.
class(ok).

Note the usage of the cut (!) operator, which is essential to ensure that only one branch of
the decision tree holds for each example.
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worn(X)

irreplaceable(X) ok

sendback fix

class(X,sendback) :- worn(X), irreplaceable(X), !.
class(X,fix) :- worn(X), !.
class(X,ok).

Figure 6: TILDE learns tree-shaped (normal) programs. Clauses in the program correspond
to paths along the tree.

6.2.3 Discussion

Advantages. An interesting aspect of TILDE is that it learns normal logic programs
(which include negation) instead of definite logic programs. Another advantage of TILDE
is that, compared to other ILP systems, it supports both categorical and numerical data.
Indeed, TILDE is an exception among ILP systems, which usually struggle to handle nu-
merical data. At any refinement step, TILDE can add a literal of the form <(X,V), or
equivalently X < V with V being a value. TILDE’s stepwise refinement keeps the number of
inequality tests tractable.

Disadvantages. Although TILDE learns normal programs, it requires them to be in the
shape of a tree and does not support recursion. Furthermore, TILDE inherits the limitations
of top-down systems, such as generating many needless candidates. Another weakness of
TILDE is the need for lookahead. Lookahead is needed when a single literal is useful only in
a conjunction with another literal. Consider, for instance, that the machine repair scenario
has a relation number of components and the target rule that a machine needs to be fixed
when a part consisting of more than three parts is worn out:

class(fix):- worn(X),number of components(X,Y),Y > 3.

To find this clause, TILDE would first refine the clause:

class(fix):- worn(X).

into:

class(fix):- worn(X),number of components(X,Y).

However, this candidate clause would be rejected as it yields no information gain (every
example covered by the first clause is also covered by the second clause). The introduction of
a literal with the number of components predicate is only helpful if it is introduced together
with the inequality related to the second argument of the literal. Informing TILDE about
this dependency is known as lookahead.

6.3 ASPAL

ASPAL (Corapi et al., 2011) was one of the first meta-level ILP systems, which directly
influenced other ILP systems, notably ILASP. ASPAL builds on TAL (Corapi et al., 2010),
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but is simpler to explain42. Indeed, ASPAL is one of the simplest ILP systems to explain.
It uses the mode declarations to build every possible clause that could be in a hypothesis.
It adds a flag to each clause indicating whether the clause should be in a hypothesis. It
then formulates the problem of deciding which flags to turn on as an ASP problem.

6.3.1 ASPAL Setting

The ASPAL problem setting is:

Given:
- A set of mode declarations M
- B in the form of a normal program
- E+ positive examples represented as a set of facts
- E− negative examples represented as a set of facts
- A penalty function γ

Return: A normal program hypothesis H such that:
- H is consistent with M
- ∀e ∈ E+, H ∪B |= e (i.e. is complete)
- ∀e ∈ E−, H ∪B 6|= e (i.e. is consistent)
- The penalty function γ is minimal

6.3.2 ASPAL Algorithm

ASPAL encodes an ILP problem as a meta-level ASP program. The answer sets of this
meta-level program are solutions to the ILP problem. The ASPAL algorithm is one of the
simplest in ILP:

1. Generate all possible rules consistent with the given mode declarations. Assign each
rule a unique identifier and add that as an abducible (guessable) atom in each rule.

2. Use an ASP solver to find a minimal subset of the rules (by formulating the problem
as an ASP optimization problem).

Step 1 is a little more involved, and we explain why below. Also, similar to Aleph, ASPAL
has several input parameters that constrain the size of the hypothesis space, such as the
maximum number of body literals and the maximum number of clauses. Step 2 uses an
ASP optimisation statement to learn a program with a minimal penalty.

6.3.3 ASPAL Example

Example 9 (ASPAL). To illustrate ASPAL, we slightly modify the example from Corapi
et al. (2011). We also ignore the penalty statement. ASPAL is given as input B, E+, E−,

42. A key difference is that TAL is implemented in Prolog and uses list structure to iteratively build rules.
By contrast, using list-like structure in ASP is inefficient and often impossible as the solver completely
grounds the program before solving it.
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and M :

B =



bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).


E+ =

{
penguin(betty).

}
E− =

{
penguin(alice).

}
M =


modeh(1, penguin(+bird)).
modeb(1, bird(+bird)).
modeb(*,not can(+bird,#ability))


Given these modes43 , the possible rules are:

penguin(X):- bird(X).
penguin(X):- bird(X), not can(X,fly).
penguin(X):- bird(X), not can(X,swim).
penguin(X):- bird(X), not can(X,swim), not can(X,fly).

ASPAL generates skeleton rules which replace constants with variables and adds an extra
literal to each rule as an abducible literal:

penguin(X):- bird(X), rule(r1).
penguin(X):- bird(X), not can(X,C1), rule(r2,C1).
penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).

ASPAL forms a meta-level ASP program from these rules that is passed to an ASP solver:

bird(alice).
bird(betty).
can(alice,fly).
can(betty,swim).
ability(fly).
ability(swim).
penguin(X):- bird(X), rule(r1).
penguin(X):- bird(X), not can(X,C1), rule(r2,C1).
penguin(X):- bird(X), not can(X,C1), not can(X,C2), rule(r3,C1,C2).
0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim)}4.
goal : - penguin(betty), not penguin(alice).
: - not goal.

The key statement in this meta-level program is:

0 {rule(r1),rule(r2,fly),rule(r2,swim),rule(r3,fly,swim)}4.

43. Note that ‘notcan‘ is used in the original ASPAL paper but we think this usage is a typo.

816



Inductive Logic Programming At 30: A New Introduction

This statement is a choice rule, which states none or at most four of the literals {rule(r1),
rule(r2,fly), rule(r2,swim), rule(r3,fly,swim)} could be true. The job of the ASP solver is
to determine which of those literals should be true (formulated as an ASP optimization
problem), which corresponds to an answer set for this program:

rule(r2,c(fly)).

Which is translated to a program:

penguin(A):- not can(A,fly).

6.3.4 Discussion

Advantages. A major advantage of ASPAL is its sheer simplicity, which has inspired
other approaches, notably ILASP. It also learns optimal programs by employing ASP opti-
misation constraints.

Disadvantages. The main limitation of ASPAL is scalability. It precomputes every pos-
sible rule in a hypothesis, which is infeasible on all but trivial problems. For instance, when
learning game rules from observations (Cropper et al., 2020b), ASPAL performs poorly for
this reason.

6.4 Metagol

An interpreter is a program that evaluates (interprets) programs. A meta-interpreter is
an interpreter written in the same language that it evaluates. Metagol (Muggleton et al.,
2015; Cropper & Muggleton, 2016; Cropper et al., 2020) is a form of ILP based on a Prolog
meta-interpreter.

6.4.1 Metagol Setting

The Metagol problem setting is:

Given:
- A set of metarules M
- B in the form of a normal program
- E+ positive examples represented as a set of facts
- E− negative examples represented as a set of facts

Return: A definite program hypothesis H such that:
- ∀e ∈ E+, H ∪B |= e (i.e. is complete)
- ∀e ∈ E−, H ∪B 6|= e (i.e. is consistent)
- ∀h ∈ H, ∃m ∈ M such that h = mθ, where θ is a substitution that grounds all the

existentially quantified variables in m

The last condition ensures that a hypothesis is an instance of the given metarules. It is this
condition that enforces the strong inductive bias in Metagol.

817



Cropper & Dumančić

6.4.2 Metagol Algorithm

Metagol uses the following procedure to find a hypothesis:

1. Select a positive example (an atom) to generalise. If one exists, proceed to step 2. If
none exists, test the hypothesis on the negative examples. If the hypothesis does not
entail any negative example stop and return the hypothesis; otherwise backtrack to a
choice point at step 2 and continue.

2. Try to prove the atom by:

(a) using given BK or an already induced clause
(b) unifying the atom with the head of a metarule (Section 4.4.2), binding the vari-

ables in a metarule to symbols in the predicate and constant signatures, saving
the substitutions, and then proving the body of the metarule through meta-
interpretation (by treating the body atoms as examples and applying step 2 to
them)

In other words, Metagol induces a logic program by constructing a proof of the positive
examples. It uses metarules to guide the proof search. After proving all the examples,
Metagol checks the consistency of the hypothesis against the negative examples. If the
program is inconsistent, Metagol backtracks to explore different proofs (hypotheses).

Metarules. Metarules are fundamental to Metagol. For instance, the chain metarule is
P(A,B):- Q(A,C), R(C,B). The letters P, Q, and R denote second-order variables. Metagol in-
ternally represents metarules as Prolog atoms of the form metarule(Name,Subs,Head,Body).
Here Name denotes the metarule name, Subs is a list of variables that Metagol should find
substitutions for, and Head and Body are list representations of a clause. For example,
the internal representation of the chain metarule is metarule(chain,[P,Q,R], [P,A,B],
[[Q,A,C],[R,C,B]]). Metagol represents substitutions, which we will call metasubs, as
atoms of the form sub(Name,Subs), where Name is the name of the metarule and Subs is a list
of substitutions. For instance, binding the variables P, Q, and R with second, tail, and head
respectively in the chain metarule leads to the metasub sub(chain,[second,tail,head])
and the clause second(A,B):- tail(A,C),head(C,B).

Optimality. To learn optimal programs, Metagol enforces a bound on the program size
(the number of metasubs). Metagol uses iterative deepening to search for hypotheses. At
depth d = 1 Metagol is allowed to induce at most one clause, i.e. use at most one metasub.
If such a hypothesis exists, Metagol returns it. Otherwise, Metagol continues to the next
iteration d + 1. At each iteration d, Metagol introduces d − 1 new predicate symbols and
is allowed to use d clauses. New predicates symbols are formed by taking the name of the
task and adding underscores and numbers. For example, if the task is f and the depth is 4
then Metagol will add the predicate symbols f 1, f 2, and f 3 to the predicate signature.

6.4.3 Metagol Example

Example 10 (Kinship example). To illustrate Metagol, suppose you have the following
BK:
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B =


mother(ann,amy). mother(ann,andy).
mother(amy,amelia). mother(amy,bob).
mother(linda,gavin).
father(steve,amy). father(steve,andy).
father(andy,spongebob). father(gavin,amelia).


And the following metarules represented in Prolog:

metarule(ident,[P,Q], [P,A,B], [[Q,A,B]]).
metarule(chain,[P,Q,R], [P,A,B], [[Q,A,C],[R,C,B]]).

We can call Metagol with a lists of positive (E+) and negative (E−) examples:

E+ =


grandparent(ann,amelia).
grandparent(steve,amelia).
grandparent(steve,spongebob).
grandparent(linda,amelia).

 E− =
{

grandparent(amy,amelia).
}

In Step 1, Metagol selects an example to generalise. Suppose Metagol selects grandparent(ann,amelia).
In Step 2a, Metagol tries to prove this atom using the BK or an already induced clause.
Since grandparent is not part of the BK and Metagol has not yet induced any clauses, this
step fails. In Step 2b, Metagol tries to prove this atom using a metarule. Metagol can, for
instance, unify the atom with the head of the ident metarule to form the clause:

grandparent(ann,amelia):- Q(ann,amelia).

Metagol saves a metasub for this clause:

sub(indent,[grandparent,Q])

The symbol Q in this metasub is still a variable. Metagol recursively tries to prove the atom
Q(ann,amelia). Since there is no Q such that Q(ann,amelia) is true, this step fails. Because
the ident metarule failed, Metagol removes the metasub and backtracks to try a different
metarule. Metagol unifies the atom with the chain metarule to form the clause:

grandparent(ann,amelia):- Q(ann,C),R(C,amelia).

Metagol saves a metasub for this clause:

sub(chain,[grandparent,Q,R])

Metagol recursively tries to prove the atoms Q(ann,C) and R(C,amelia). Suppose the
recursive call to prove Q(ann,C) succeeds by substituting Q with mother to form the atom
mother(ann,amy). This substitution binds Q to mother and C to amy which is propagated to
the other atom which now becomes R(amy,amelia). Metagol also proves this second atom
by substituting R with mother to form the atom mother(amy,amelia). The proof is now
complete and the metasub is:
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sub(chain,[grandparent,mother,mother])

This metasub means that Metagol has induced the clause:

grandparent(A,B):- mother(A,C),mother(C,B).

After proving the example, Metagol moves to Step 1 and picks another example to generalise.
Suppose it picks the example grandparent(steve,amelia). In Step 2a, Metagol tries to
prove this atom using the BK, which again fails, so tries to prove this atom using an
already induced clause, which also fails. Therefore, Metagol tries to prove this atom using
a metarule. Metagol can again use the chain metarule but with different substitutions to
form the metasub:

sub(chain,[grandparent,father,mother])

This metasub corresponds to the clause:

grandparent(A,B):- father(A,C),mother(C,B).

Metagol has now proven the first two examples by inducing the clauses:

grandparent(A,B):- mother(A,C),mother(C,B).
grandparent(A,B):- father(A,C),mother(C,B).

If given no bound on the program size, then Metagol would prove the other two examples
the same way by inducing two more clauses to finally form the program:

grandparent(A,B):- mother(A,C),mother(C,B).
grandparent(A,B):- father(A,C),mother(C,B).
grandparent(A,B):- father(A,C),father(C,B).
grandparent(A,B):- mother(A,C),father(C,B).

In practice, however, Metagol would not learn this program. It would induce the following
program:

grandparent(A,B):- grandparent 1(A,C),grandparent 1(C,B).
grandparent 1(A,B):- father(A,B).
grandparent 1(A,B):- mother(A,B).

In this program, the symbol grandparent 1 is invented and corresponds to the parent
relation. However, it is difficult to concisely illustrate PI in this example. We, therefore,
illustrate PI in Metagol with a simpler example.

Example 11 (Predicate invention). Suppose we have the single positive example:

E+ =
{

f([i,l,p],p).
}

Also suppose that we only have the chain metarule and the background relations head and
tail. Given this input, in Step 2b, Metagol will try to use the chain metarule to prove
the example. However, using only the given the BK and metarules, the only programs that
Metagol can construct are combinations of the four clauses:
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f(A,B):- head(A,C),head(C,B).
f(A,B):- head(A,C),tail(C,B).
f(A,B):- tail(A,C),tail(C,B).
f(A,B):- tail(A,C),head(C,B).

No combination of these clauses can prove the examples, so Metagol must use PI to learn a
solution. To use PI, Metagol will try to prove the example using the chain metarule, which
will lead to the construction of the program:

f([i,l,p],p):- Q([i,l,p],C),R(C,p).

Metagol would save a metasub for this clause:

sub(chain,[f,Q,R]).

Metagol will then try to recursively prove both Q([i,l,p],C) and R(C,p). To prove
Q([i,l,p],C), Metagol will say that it cannot prove it using a relation in the BK, so it
will try to invent a new predicate symbol, which leads to the new atom f 1([i,l,p],C)
and the program:

f([i,l,p],p):- f 1([i,l,p],C),R(C,p).

Note that this binds Q in the metasub to f 1. Metagol then tries to prove the f 1([i,l,p],C)
and R(C,p) atoms. To prove f 1([i,l,p],C), Metagol could use the chain metarule to form
the clause:

f 1([i,l,p],C):- Q2([i,l,p],D),R2(D,C).

Metagol would save another metasub for this clause:

sub(chain,[f 1,Q2,R2]).

Metagol then tries to prove the Q2([i,l,p],D) and R2(D,C) atoms. Metagol can prove
Q2([i,l,p],D) by binding Q2 to tail so that D is bound to [l,p]. Metagol can then prove
R2([l,p],C) by binding R2 to tail so that C is bound [p]. Remember that the binding
of variables is propagated through the program, so C in R(C,p) is now bound to R([p],p).
Metagol then tries to prove the remaining atom R([p],p), which it can by binding R to
head. The proof of all the atoms is now complete and the final metasubs are:

sub(chain,[f,f 1,head]).
sub(chain,[f 1,tail,tail]).

These metasubs correspond to the program:

f(A,B):- f 1(A,C),head(C,B).
f 1(A,B):- tail(A,C),tail(C,B).

6.4.4 Discussion

Advantages. Metagol supports PI, learning recursive programs, and is guaranteed to
learn the smallest program. Because it uses metarules, Metagol can tightly restrict the
hypothesis space, which means that it is extremely efficient at finding solutions. The basic
Metagol implementation is less than 100 lines of Prolog code, which makes Metagol easy
to adapt, such as to support NAF (Siebers & Schmid, 2018), types (Morel et al., 2019),
learning higher-order programs (Cropper et al., 2020), learning efficient programs (Cropper
& Muggleton, 2015, 2019), and Bayesian inference (Muggleton et al., 2013).
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Disadvantages. Deciding which metarules to use for a given task is a major problem.
Given too many metarules, the hypothesis space might be so large that the search is in-
tractable. Given insufficient metarules, the hypothesis space might be too small as to
exclude a good hypothesis. For some tasks, such as string transformations, it is straight-
forward to choose a suitable set of metarules because one already knows the general form
of hypotheses. However, when one has little knowledge of the solutions, then Metagol is
unsuitable. Although there is preliminary work in identifying universal sets of metarules
(Cropper & Muggleton, 2014; Tourret & Cropper, 2019; Cropper & Tourret, 2020), this
work mostly focuses on dyadic logic. If a problem contains predicates of arities greater
than two, then Metagol is unsuitable. Finally, Metagol cannot handle noisy examples and
struggles to learn large programs (Cropper, 2017; Cropper & Dumančić, 2020; Cropper &
Morel, 2021).

7. Applications

We now briefly discuss some application areas of ILP.

Bioinformatics and drug design. Perhaps the most prominent application of ILP is
in bioinformatics and drug design. ILP is especially suitable for such problems because
biological structures, including molecules and protein interaction networks, can easily be
expressed as relations: molecular bonds define relations between atoms and interactions
define relations between proteins. Moreover, as mentioned in the introduction, ILP induces
human-readable models. ILP can, therefore, make predictions based on the (sub)structured
present in biological structures which domain experts can interpret. The types of task ILP
has been applied to include identifying and predicting ligands (substructures responsible for
medical activity) (Finn et al., 1998; Srinivasan et al., 2006; Kaalia et al., 2016), predicting
mutagenic activity of molecules and identifying structural alerts for the causes of chemical
cancers (Srinivasan et al., 1997, 1996), learning protein folding signatures (Turcotte et al.,
2001), inferring missing pathways in protein signalling networks (Inoue et al., 2013), and
modelling inhibition in metabolic networks (Tamaddoni-Nezhad et al., 2006).

Robot scientist. One of the most notable applications of ILP was in the Robot Scientist
project (King et al., 2009). The Robot Scientist uses logical BK to represent the relation-
ships between protein-coding sequences, enzymes, and metabolites in a pathway. The Robot
Scientist uses ILP to automatically generate hypotheses to explain data and then devises
experiments to test hypotheses, run the experiments, interpret the results, and then repeat
the cycle (King et al., 2004). Whilst researching yeast-based functional genomics, the Robot
Scientist became the first machine to independently discover new scientific knowledge (King
et al., 2009).

Ecology. There has been much recent work on applying ILP in ecology (Bohan et al.,
2011; Tamaddoni-Nezhad et al., 2014; Bohan et al., 2017). For instance, Bohan et al.
(2011) use ILP to generate plausible and testable hypotheses for trophic relations (‘who
eats whom’) from ecological data.

Program analysis. Due to the expressivity of logic programs as a representation lan-
guage, ILP systems have found successful applications in software design. ILP systems have
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proven effective in learning SQL queries (Albarghouthi et al., 2017; Sivaraman et al., 2019)
and programming language semantics (Bartha & Cheney, 2019). Other applications include
code search (Sivaraman et al., 2019), in which an ILP system interactively learns a search
query from examples, and software specification recovery from execution behaviour (Cohen,
1994b, 1995a).

Data curation and transformation. Another successful application of ILP is in data
curation and transformation, which is again largely because ILP can learn executable pro-
grams. The most prominent example of such tasks is string transformations, such as the
example given in the introduction. There is much interest in this topic, largely due to success
in synthesising programs for end-user problems, such as string transformations in Microsoft
Excel (Gulwani, 2011). String transformations have become a standard benchmark for some
recent ILP papers (Lin et al., 2014; Cropper et al., 2020; Cropper & Dumančić, 2020; Crop-
per & Morel, 2021; Cropper, 2019). Other transformation tasks include extracting values
from semi-structured data (e.g. XML files or medical records), extracting relations from
ecological papers, and spreadsheet manipulation (Cropper et al., 2015).

Learning from trajectories. Learning from interpretation transitions (LFIT) (Inoue
et al., 2014) automatically constructs a model of the dynamics of a system from the ob-
servation of its state transitions44. Given time-series data of discrete gene expression, it
can learn gene interactions, thus allowing to explain and predict states changes over time
(Ribeiro et al., 2020). LFIT has been applied to learn biological models, like Boolean
Networks, under several semantics: memory-less deterministic systems (Inoue et al., 2014;
Ribeiro & Inoue, 2014), probabilistic systems (Mart́ınez et al., 2015) and their multi-valued
extensions (Ribeiro et al., 2015; Mart́ınez et al., 2016). Mart́ınez et al. (2015, 2016) combine
LFIT with a reinforcement learning algorithm to learn probabilistic models with exogenous
effects (effects not related to any action) from scratch. The learner was notably integrated
into a robot to perform the task of clearing the tableware on a table. In this task external
agents interacted, people brought new tableware continuously and the manipulator robot
had to cooperate with mobile robots to take the tableware to the kitchen. The learner
was able to learn a usable model in just five episodes of 30 action executions. Evans et al.
(2021) apply the Apperception Engine to explain sequential data, such as rhythms and sim-
ple nursery tunes, image occlusion tasks, and sequence induction intelligence tests. They
show that their system can perform human-level performance.

Natural language processing. Many natural language processing tasks require an un-
derstanding of the syntax and semantics of the language. ILP is well-suited for addressing
such tasks for three reasons (i) it is based on an expressive formal language that can cap-
ture/respect the syntax and semantics of the natural language, (ii) linguistics knowledge
and principles can be integrated into ILP systems, and (iii) the learnt clauses are under-
standable to a linguist. ILP has been applied to learn grammars (Mooney & Califf, 1995;
Muggleton et al., 2014; Law et al., 2019) and parsers (Zelle & Mooney, 1996, 1995; Mooney,
1999) from examples. For an extensive overview of language tasks that can benefit from
ILP see the paper by Dzeroski et al. (1999).

44. The LFIT implementations are available at https://github.com/Tony-sama/pylfit
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Physics-informed learning. A major strength of ILP is its ability to incorporate and ex-
ploit background knowledge. Several ILP applications solve problems from first principles:
provided physical models of the basic primitives, ILP systems can induce the target hypoth-
esis whose behaviour is derived from the basic primitives. For instance, ILP systems can use
a theory of light to understand images (Dai et al., 2017; Muggleton et al., 2018). Similarly,
simple electronic circuits can be constructed from the examples of the target behaviour and
the physics of basic electrical components (Grobelnik, 1992) and models of simple dynami-
cal systems can be learned given the knowledge about differential equations (Bratko et al.,
1991).

Robotics. Similarly to the previous category, robotics applications often require incor-
porating domain knowledge or imposing certain requirements on the learnt programs. For
instance, The Robot Engineer (Sammut et al., 2015) uses ILP to design tools for robots
and even complete robots, which are tests in simulations and real-world environments.
Metagolo (Cropper & Muggleton, 2015) learns robot strategies considering their resource
efficiency and Antanas et al. (2015) recognise graspable points on objects through relational
representations of objects.

Games. Inducing game rules has a long history in ILP, where chess has often been the
focus (Goodacre, 1996; Morales, 1996; Muggleton et al., 2009). For instance, Bain (1994)
studies inducing rules to determine the legality of moves in the chess KRK (king-rook-king)
endgame. Castillo and Wrobel (2003) uses a top-down ILP system and active learning to
induce a rule for when a square is safe in the game minesweeper. Legras et al. (2018)
show that Aleph and TILDE can outperform an SVM learner in the game of Bridge. Law
et al. (2014) uses ILASP to induce the rules for Sudoku and show that this more expressive
formalism allows for game rules to be expressed more compactly. Cropper et al. (2020b)
introduce the ILP problem of inductive general game playing : the problem of inducing game
rules from observations, such as Checkers, Sokoban, and Connect Four.

Other. Other notable applications include learning event recognition systems (Katzouris
et al., 2015, 2016), tracking the evolution of online communities (Athanasopoulos et al.,
2018), the MNIST dataset (Evans & Grefenstette, 2018), and requirements engineering
(Alrajeh et al., 2013).

8. Related Work

8.1 Program Synthesis

Because ILP induces programs, it is also a form of program synthesis (Shapiro, 1983), where
the goal is to build a program from a specification. Universal induction methods, such as
Solomonoff induction (Solomonoff, 1964a, 1964b) and Levin search (Levin, 1973) are forms
of program synthesis. However, universal methods are impractical because they learn only
from examples and, as Mitchell (1997) points out, bias-free learning is futile.

Deductive program synthesis approaches (Manna & Waldinger, 1980) take full spec-
ifications as input and are efficient at building programs. Universal induction methods
take only examples as input and are inefficient at building programs. There is an area in
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between called inductive program synthesis45. Similar to universal induction methods, in-
ductive program synthesis systems learn programs from incomplete specifications, typically
input/output examples. In contrast to universal induction methods, inductive program
synthesis systems use BK, and are thus less general than universal methods, but are more
practical because the BK is a form of inductive bias (Mitchell, 1997) which restricts the hy-
pothesis space. When given no BK, and thus no inductive bias, inductive program synthesis
methods are equivalent to universal induction methods.

Early work on inductive program synthesis includes Plotkin (1971) on least general-
isation, Vera (1975) on induction algorithms for predicate calculus, Summers (1977) on
inducing Lisp programs, and Shapiro (1983) on inducing Prolog programs. Interest in
inductive program synthesis has grown recently, partly due to applications in real-world
problems, such as end-user programming (Gulwani, 2011). Inductive program synthesis
interests researchers from many areas of computer science, notably ML and programming
languages (PL). The two major46 differences between ML and PL approaches are (i) the
generality of solutions (synthesised programs) and (ii) noise handling. PL approaches often
aim to find any program that fits the specification, regardless of whether it generalises.
Indeed, PL approaches rarely evaluate the ability of their systems to synthesise solutions
that generalise, i.e. they do not measure predictive accuracy (Feser et al., 2015; Osera &
Zdancewic, 2015; Albarghouthi et al., 2017; Si et al., 2018; Raghothaman et al., 2020). By
contrast, the major challenge in ML (and thus ILP) is learning hypotheses that generalise
to unseen examples. Indeed, it is often trivial to learn an overly specific solution for a given
problem. For instance, an ILP system can trivially construct the bottom clause (Muggleton,
1995) for each example. Similarly, noise handling is a major problem in ML, yet is rarely
considered in the PL literature.

Besides ILP, inductive program synthesis has been studied in many areas of ML, in-
cluding deep learning (Balog et al., 2017; Ellis et al., 2018, 2019). The main advantages
of neural approaches are that they can handle noisy BK, as illustrated by ∂ILP, and can
harness tremendous computational power (Ellis et al., 2019). However, neural methods
often require many more examples (Reed & de Freitas, 2016; Dong et al., 2019) to learn
concepts that symbolic ILP can learn from just a few. Another disadvantage of neural ap-
proaches is that they often require hand-crafted neural architectures for each domain. For
instance, the REPL approach (Ellis et al., 2019) needs a hand-crafted grammar, interpreter,
and neural architecture for each domain. By contrast, because ILP uses logic programming
as a uniform representation for examples, BK, and hypotheses, it can easily be applied to
arbitrary domains.

45. Inductive program synthesis is often called program induction (Lin et al., 2014; Lake et al., 2015; Crop-
per, 2017; Ellis et al., 2018), programming by example (Lieberman, 2001), and inductive programming
(Gulwani et al., 2015), amongst many other names. Gulwani et al. (2017) divide inductive program
synthesis into two categories: (i) program induction, and (ii) program synthesis. They say that program
induction approaches are neural architectures that learn a network that is capable of replicating the
behaviour of a program. By contrast, they say that program synthesis approaches output or return an
interpretable program.

46. Minor differences include the form of specification and theoretical results.
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8.2 StarAI

As ILP builds upon logic programs and logical foundations of knowledge representation,
ILP also inherits one of their major limitations: the inability to handle uncertain or incor-
rect BK. To overcome this limitation, the field of statistical relational artificial intelligence
(StarAI) (De Raedt & Kersting, 2008b; De Raedt et al., 2016) unites logic programming
with probabilistic reasoning.

StarAI formalisms allow a user to explicitly quantify the confidence in the correctness
of the BK by annotating parts of BK with probabilities. Perhaps the simplest flavour of
StarAI languages, and the one that directly builds upon logic programming and Prolog, is
a family of languages based on distribution semantics (Sato, 1995; Sato & Kameya, 2001;
De Raedt et al., 2007). Problog (De Raedt et al., 2007), a prominent member of this family,
represents a minimal extension of Prolog that supports such stochastic execution. Problog
introduces two types of probabilistic choices: probabilistic facts and annotated disjunctions.
Probabilistic facts are the most basic stochastic unit in Problog. They take the form of
logical facts labeled with a probability p and represent a Boolean random variable that
is true with probability p and false with probability 1 − p. For instance, the following
probabilistic fact states that there is 1% chance of an earthquake in Naples.

0.01::earthquake(naples).

In contrast to deterministic logic programs in which a fact is always true if so stated, the
Problog engine determines the truth assignment of a probabilistic fact when it encounters
it during SLD resolution, the main execution principle of logic programs. How often a fact
is deemed true or false is guided by the stated probability. An alternative interpretation
of this statement is that 1% of executions of the probabilistic program would observe an
earthquake. Whereas probabilistic facts introduce non-deterministic behaviour on the level
of facts, annotated disjunctions introduce non-determinism on the level of clauses. Anno-
tated disjunctions allow for multiple literals in the head, but only one of the head literals
can be true at a time. For instance, the following annotated disjunction states that a ball
can be either green, red, or blue, but not a combination of colours:

1
3::colour(B,green);

1
3::colour(B,red);

1
3::colour(B,blue) :- ball(B).

Though StarAI frameworks allow for incorrect BK, they add another level of complexity to
learning: besides identifying the right program (also called structure in StarAI), the learning
task also consists of learning the corresponding probabilities of probabilistic choices (also
called parameters). Learning probabilistic logic programs is largely unexplored, with only
a few existing approaches (De Raedt et al., 2015; Bellodi & Riguzzi, 2015).

8.3 Neural ILP

The successes of deep learning on various tasks have prompted researchers to investigate
whether these techniques can be used to solve the ILP problem. What makes this research
direction interesting is that the techniques are based on numerical optimisation and, if
successful, could learn programs without combinatorial search, which is the core reason why
ILP is a difficult problem. However, to leverage these techniques, ILP needs to be framed
as a problem over a fixed set of variables, which is perhaps unnatural given that hypothesis
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spaces in ILP are combinatorial and essentially infinite. Additionally, integrating neural
networks into ILP would make it possible for ILP to deal with unstructured data, such as
images and sound, and noise associated with unstructured data. While integrating ILP and
program synthesis with neural networks is a proliferating area, relatively few approaches
tackle the ILP problem.

The majority of existing neural-ILP systems reframe the ILP problem as structure learn-
ing by parameter learning. Neural-ILP techniques make the ILP problem amenable to nu-
merical optimisation by assuming that the entire hypothesis space is the solution program,
instead of one member of it. As such a solution program would be able to entail almost
anything, neural-ILP techniques relax the notion of entailment. That is, every member c
of the hypothesis space is associated with valuation wc which indicate the confidence that
the entailments of c are correct. A fact entailed by c is said to be entailed with valuation
wc; a valuation of a fact is then the sum of valuations of all c that entail it. Consequently,
the notion of entailment loses its crispness and needs to be interpreted in the continuous
spectrum. The learning task is then to fit the valuations such that positive examples have
high valuations and the valuations of negative examples are low, for which any numerical
optimisation techniques can be used. These techniques make the hypothesis space finite
by limiting its complexity and consequently only learn syntactically simple programs (e.g.,
the ones up to two literals and two clauses). The prominent examples of this paradigm are
∂ILP, neural theorem provers (Rocktäschel & Riedel, 2017), DiffLog (Si et al., 2019) and
LRNN (Sourek et al., 2018).

At the time of publishing, only one approach can simultaneously learn a logic program
that trains a neural network to solve a sensory part of the task (Dai & Muggleton, 2021).
Dai and Muggleton (Dai & Muggleton, 2021) extends ILP with an abductive step (Flach
& Hadjiantonis, 2013) that deduces labels for training neural networks from background
knowledge and currently explored program. The authors demonstrate that their framework
can learn arithmetic and sorting operations from digits represented as images. This is an
underexplored research direction that holds a lot of promise in making ILP more capable
of handling noise and unstructured data.

8.4 Representation Learning

As introduced in Section 5.5, predicate invention (PI) – changing the representation of a
problem by introducing new predicates symbols defined in terms of provided predicates – is
one of the major open challenges in ILP. PI shares the goal with feature or representation
learning (Bengio et al., 2013) stream of research originating in the deep learning community
(LeCun et al., 2015). Representation learning aims to re-represent given data, be it an image
or a relational knowledge base, in a vector space such that certain semantic properties are
preserved. For instance, to represent a knowledge base (specified as a logic program) in a
vector space, representation learning methods replace every constant and predicate with a
vector such that the vectors of constants often appears in facts together are close in vector
space. The benefit of such representation change is that now any tabular machine learning
approach can operate on complex relational structures. The central goal of representation
learning coincides with the one behind PI: improving learning performance by changing the
representation of a problem.
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Despite strong connections, there is little interaction between PI and representation
learning. The main challenges in transferring the ideas from representation learning to PI
are their different operating principles. It is not clear how symbolic concepts can be invented
through table-based learning principles that current representation learning approaches use.
Only a few approaches (Dumančić & Blockeel, 2017; Dumančić et al., 2019; Sourek et al.,
2018) start from the core ideas in representation learning, strip them of numerical principles
and re-invent them from symbolic principles. A more common approach is to transform
relational data into a propositional tabular form that can be used as an input to a neural
network (Dash et al., 2018; Kaur et al., 2019, 2020). A disadvantage of the latter approaches
is that they only apply to propositional learning tasks, not to first-order program induction
tasks where infinite domains are impossible to propositionalise. Approaches that force
neural networks to invent symbolic constructs, such as ∂ILP and neural theorem provers
(Rocktäschel & Riedel, 2017), do so by sacrificing the expressivity of logic (they can only
learn short Datalog programs).

9. Summary And Limitations

In a survey paper from a decade ago, Muggleton et al. (2012) proposed directions for future
research. There have since been major advances in many of these directions, including in
PI (Section 5.5), using higher-order logic as a representation language (Section 4.4.2) and
for hypotheses (Section 4.2.3), and applications in learning actions and strategies (Section
7). We think that these and other recent advances put ILP in a prime position to have a
significant impact on AI over the next decade, especially to address the key limitations of
standard forms of ML. There are, however, still many limitations that future work should
address.

9.1 Limitations

User-friendly systems. Muggleton et al. (2012) argue that a problem with ILP is the
lack of well-engineered tools. They state that whilst over 100 ILP systems have been built
since the founding of ILP in 1991, less than a handful of systems can be meaningfully used by
ILP researchers. One reason is that ILP systems are often only designed as prototypes and
are often not well-engineered or maintained. Another major problem is that ILP systems
are notoriously difficult to use: you often need a PhD in ILP to use any of the tools.
Even then, it is still often only the developers of a system that know how to properly use
it. This difficulty of use is compounded by ILP systems often using many different biases
or even different syntax for the same biases. For instance, although they all use mode
declarations, the way of specifying a learning task in Progol, Aleph, TILDE, and ILASP
varies considerably. If it is difficult for ILP researchers to use ILP tools, then what hope do
non-ILP researchers have? For ILP to be more widely adopted both inside and outside of
academia, we must develop more standardised, user-friendly, and better-engineered tools.

Language biases. ILP allows a user to provide BK and a language bias. Both are impor-
tant and powerful features, but only when used correctly. For instance, Metagol employs
metarules (Section 4.4.2) to restrict the syntax of hypotheses and thus the hypothesis space.
If a user can provide suitable metarules, then Metagol is extremely efficient. However, if
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a user cannot provide suitable metarules (which is often the case), then Metagol is almost
useless. This same brittleness applies to ILP systems that employ mode declarations (Sec-
tion 4.4.1). In theory, a user can provide very general mode declarations, such as only using
a single type and allowing unlimited recall. In practice, however, weak mode declarations
often lead to very poor performance. For good performance, users of mode-based systems
often need to manually analyse a given learning task to tweak the mode declarations, often
through a process of trial and error. Moreover, if a user makes a small mistake with a mode
declaration, such as giving the wrong argument type, then the ILP system is unlikely to
find a good solution. This need for an almost perfect language bias is severely holding back
ILP from being widely adopted. To address this limitation, we think that an important
direction for future work is to develop techniques for automatically identifying suitable lan-
guage biases. Although there is some work on mode learning (McCreath & Sharma, 1995;
Ferilli et al., 2004; Picado et al., 2017) and work on identifying suitable metarules (Cropper
& Tourret, 2020), this area of research is largely under-researched.

PI and abstraction. Russell (2019) argues that the automatic invention of new high-level
concepts is the most important step needed to reach human-level AI. New methods for PI
(Section 5.5) have improved the ability of ILP to invent such high-level concepts. However,
PI is still difficult and there are many challenges to overcome. For instance, in inductive
general game playing (Cropper et al., 2020b), the task is to learn the symbolic rules of games
from observations of gameplay, such as learning the rules of connect four. The reference
solutions for the games come from the general game playing competition (Genesereth &
Björnsson, 2013) and often contain auxiliary predicates to make them simpler. For instance,
the rules for connect four are defined in terms of definitions for lines which are themselves
defined in terms of columns, rows, and diagonals. Although these auxiliary predicates are
not strictly necessary to learn the reference solution, inventing such predicates significantly
reduces the size of the solution (sometimes by multiple orders of magnitude), which in turn
makes them much easier to learn. Although new methods for PI (Section 5.5) can invent
high-level concepts, they are not yet sufficiently powerful enough to perform well on the
IGGP dataset. Making progress in this area would constitute a major advancement in ILP
and a major step towards human-level AI.

Lifelong learning. Because of its symbolic representation, a key advantage of ILP is
that learned knowledge can be remembered and explicitly stored in the BK. For this rea-
son, ILP naturally supports lifelong (Silver et al., 2013), multi-task (Caruana, 1997), and
transfer learning (Torrey & Shavlik, 2009), which are considered essential for human-like
AI (Lake et al., 2016). The general idea behind all of these approaches is to reuse knowl-
edge gained from solving one problem to help solve a different problem. Although early
work in ILP explored this form of learning (Sammut, 1981; Quinlan, 1990), it has been
under-explored until recently (Lin et al., 2014; Cropper, 2019, 2020; Hocquette & Muggle-
ton, 2020; Dumancic et al., 2021), mostly because of new techniques for PI. For instance,
Lin et al. (2014) learn 17 string transformations programs over time and show that their
multi-task approach performs better than a single-task approach because learned programs
are frequently reused. However, these approaches have only been demonstrated on a small
number of tasks. To reach human-level AI, we would expect a learner to learn thousands or
even millions of concepts. But handling the complexity of thousands of tasks is challenging
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because, as we explained in Section 4.3, ILP systems struggle to handle large amounts of
BK. This situation leads to the problem of catastrophic remembering (Cropper, 2020): the
inability for a learner to forget knowledge. Although there is initial work on this topic
(Cropper, 2020), we think that a key area for future work is handling the complexity of
lifelong learning.

Relevance. The catastrophic remembering problem is essentially the problem of rele-
vance: given a new ILP problem with lots of BK, how does an ILP system decide which
BK is relevant? Although too much irrelevant BK is detrimental to learning performance
(Srinivasan et al., 1995, 2003), there is almost no work in ILP on trying to identify relevant
BK. One emerging technique is to train a neural network to score how relevant programs
are in the BK and to then only use BK with the highest score to learn programs (Balog
et al., 2017; Ellis et al., 2018). However, the empirical efficacy of this approach has yet
to be clearly demonstrated. Moreover, these approaches have only been demonstrated on
small amounts of BK and it is unclear how they scale to BK with thousands of relations.
Without efficient relevancy methods, it is unclear how lifelong learning can be achieved.

Noisy BK. Another issue related to lifelong learning is the underlying uncertainty as-
sociated with adding learned programs to the BK. By the inherent nature of induction,
induced programs are not guaranteed to be correct (i.e. are expected to be noisy), yet they
are the building blocks for subsequent induction. Building noisy programs on top of other
noisy programs could lead to eventual incoherence of the learned program. This issue is
especially problematic because, as mentioned in Section 5.1, most ILP approaches assume
noiseless BK, i.e. a relation is true or false without any room for uncertainty. One of the
appealing features of ∂ILP is that it takes a differentiable approach to ILP, where it can be
provided with fuzzy or ambiguous data. Developing similar techniques to handle noisy BK
is an under-explored topic in ILP.

Probabilistic ILP. A principled way to handle noise is to unify logical and probabilistic
reasoning, which is the focus of statistical relational artificial intelligence (StarAI) (De
Raedt et al., 2016). While StarAI is a growing field, inducing probabilistic logic programs
has received little attention, with few notable exceptions (Bellodi & Riguzzi, 2015; De Raedt
et al., 2015), as inference remains the main challenge. Addressing this issue, i.e. unifying
probability and logic in an inductive setting, would be a major achievement (Marcus, 2018).

Explainability. Explainability is one of the claimed advantages of a symbolic representa-
tion. Recent work (Muggleton et al., 2018; Ai et al., 2021) evaluates the comprehensibility
of ILP hypotheses using Michie’s (1988) framework of ultra-strong ML, where a learned
hypothesis is expected to not only be accurate but to also demonstrably improve the per-
formance of a human being provided with the learned hypothesis. Muggleton et al. (2018)
empirically demonstrate improved human understanding directly through learned hypothe-
ses. However, more work is required to better understand the conditions under which this
can be achieved, especially given the rise of PI.

Learning from raw data. Most ILP systems require data in perfect symbolic form.
However, much real-world data, such as images and speech, cannot easily be translated
into a symbolic form. Perhaps the biggest challenge in ILP is to learn how to both perceive
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sensory input and learn a symbolic logic program to explain the input. For instance, consider
a task of learning to perform addition from MNIST digits. Current ILP systems need to
be given as BK symbolic representations of the digits, which could be achieved by first
training a neural network to recognise the digits. Ideally, we would not want to treat the
two problems separately, but rather simultaneously learn how to recognise the digits and
learn a program to perform the addition. A handful of approaches have started to tackle
this problem (Manhaeve et al., 2018; Dai et al., 2019; Evans et al., 2021; Dai & Muggleton,
2021), but developing better ILP techniques that can both perceive sensory input and learn
complex relational programs would be a major breakthrough not only for ILP, but the whole
of AI.

Further Reading

For an introduction to the fundamentals of logic and automated reasoning, we recommend
the book of Harrison (2009). To read more about ILP, then we suggest starting with the
founding paper by Muggleton (1991) and a survey paper that soon followed (Muggleton &
De Raedt, 1994). For a detailed exposition of the theory of ILP, we thoroughly recommend
the books of Nienhuys-Cheng and Wolf (1997) and De Raedt (2008).
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Sourek, G., Aschenbrenner, V., Zelezný, F., Schockaert, S., & Kuzelka, O. (2018). Lifted
relational neural networks: Efficient learning of latent relational structures. J. Artif.
Intell. Res., 62, 69–100.

Srinivasan, A., Muggleton, S., King, R., & Sternberg, M. (1994). Mutagenesis: ILP ex-
periments in a non-determinate biological domain. In Wrobel, S. (Ed.), Proceedings
of the Fourth International Inductive Logic Programming Workshop. Gesellschaft fur
Mathematik und Datenverarbeitung MBH. GMD-Studien Nr 237.

847



Cropper & Dumančić
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