
Journal of Artificial Intelligence Research 74 (2022) 733-764 Submitted 11/2021; published 06/2022

Cooperation and Learning Dynamics under Wealth
Inequality and Diversity in Individual Risk Perception

Ramona Merhej ramona.merhej@tecnico.ulisboa.pt

INESC-ID and Instituto Superior Técnico, Lisbon, Portugal
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Abstract

We examine how wealth inequality and diversity in the perception of risk of a collective
disaster impact cooperation levels in the context of a public goods game with uncertain
and non-linear returns. In this game, individuals face a collective-risk dilemma where
they may contribute or not to a common pool to reduce their chances of future losses.
We draw our conclusions based on social simulations with populations of independent
reinforcement learners with diverse levels of risk and wealth. We find that both wealth
inequality and diversity in risk assessment can hinder cooperation and augment collective
losses. Additionally, wealth inequality further exacerbates long term inequality, causing rich
agents to become richer and poor agents to become poorer. On the other hand, diversity
in risk only amplifies inequality when combined with bias in group assortment—i.e., high
probability that agents from the same risk class play together. Our results also suggest
that taking wealth inequality into account can help to design effective policies aiming
at leveraging cooperation in large group sizes, a configuration where collective action is
harder to achieve. Finally, we characterize the circumstances under which risk perception
alignment is crucial and those under which reducing wealth inequality constitutes a deciding
factor for collective welfare.

1. Introduction

Global risks are potential crises that threaten the well-being and the common welfare of
the human race. They concern economic, environmental, geopolitical, societal or even
technological risks (World Economic Forum, 2021). Examples include global warming,
pandemics, large-scale conflicts, nuclear proliferation, etc. Although the risk categories
are diverse, they all share a common property: no global risk can be prevented without
substantial collective cooperation and coordination.

While the importance of avoiding global risks is generally not contested, history abounds
with examples of failed risk avoidance and inefficacy in reaching collective action. Notably,
the human race has faced two World Wars, several economic crises, and serious environ-
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mental damage. This failure happens because collective action poses serious cooperation
and coordination challenges that are often difficult to overcome. First, averting global risks
typically poses a social dilemma where the most favorable individual outcome happens when
the risk is avoided through other agents’ efforts and personal contribution is not necessary.
Second, on top of a cooperation dilemma, collective risks entail coordination difficulties also
known as the problem of many hands (PMH) as they require the involvement of a large
number of players (Van de Poel et al., 2012). The intricate dynamics of the problem result
in a non-trivial decision-making process, when agents, in the face of an uncertain disaster,
are torn between the urge to cooperate to ensure risk avoidance and the selfish preference to
defect (Axelrod, 1980; Axelrod & Hamilton, 1981; Kollock, 1998). Moreover, solving collec-
tive action problems has additional challenges related with multiple sources of heterogeneity
across societies. In climate action negotiations, wealth inequality and contribution capacity
of the involved countries, as well as their differences in assessing risk, makes reaching a
unified target more difficult.

The social dilemmas involved in averting global collective risks are usually modeled by a
threshold game with uncertain returns, the collective risk dilemma (CRD) (Milinski et al.,
2008). In a CRD, agents decide how much of their wealth to contribute to a common pool
in order to avoid the risk of a future disaster. The future disaster is only avoided with
certainty if the agents manage to collect contributions above a given target threshold. If
the target is not achieved, all agents are subject, with a given risk probability, to a disaster
modeled by large losses in wealth, independently of whether they contributed or not.

To assess the challenges faced by populations in the context of CRDs, the decision-
making dynamics of the individual agents in the game must also be captured. Studies on
CRDs have therefore resorted to behavioral experiments (Milinski et al., 2008; Dannen-
berg et al., 2011; Tavoni et al., 2011; Milinski et al., 2011; Domingos et al., 2020; Milinski
et al., 2008; Szekely et al., 2021), or modeled the decision-making process of agents using
evolutionary game theory (Santos & Pacheco, 2011; Chen et al., 2012; Hilbe et al., 2013;
Abou Chakra et al., 2018; Vasconcelos et al., 2014, 2013; Santos et al., 2019a, 2021) and,
more recently, reinforcement learning (Domingos et al., 2021a; Merhej et al., 2021). Most
of the studies, however, assume homogeneous populations of agents and hence only study
the original cooperation and coordination challenges of the game without the additional
challenges introduced by heterogeneity. Nonetheless, a few behavioral experiments and the-
oretical studies did look into the effects of wealth inequality in that context and concluded
that it has a significant impact on the target achievement capability of a population (Baland
& Platteau, 1997; Milinski et al., 2011; Hauser et al., 2019; Tavoni et al., 2011; Vasconcelos
et al., 2014; Merhej et al., 2021). Yet, heterogeneity in risk assessment remains an unex-
plored topic in collective risks despite its prevalence in real life threats (World Economic
Forum, 2021; Lee et al., 2015).

In this work, we investigate the challenges of collective action in populations facing
collective risks and featuring a) wealth inequality, b) risk assessment diversity, and c) a
combination of wealth inequality and risk assessment diversity. We model the long-term
adaptation process of agents with multi-agent reinforcement learning.

We proceed with Section 2 on related work then detail the collective risk game and the
agents’ learning dynamics in Section 3. Following that, we explore our results in Section 4
and conclude our work in Section 5.
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2. Related Work

We investigate the challenges posed by heterogeneity on the efficacy of a population of
reinforcement learners in achieving collective action and preventing common risks. In this
context, we are given the choice of modeling agents either as joint-action learners or as
independent learners. The former requires agents to be aware of all other agents’ actions as
well as their learning dynamics. We believe this configuration to be unsuitable for modeling
human learning in large populations where such knowledge is often not available. More-
over, the computational complexity of joint-action learning increases exponentially with the
number of players, making it not only unsuitable for modeling human actors, but also im-
practical. On the other hand, independent learners need only be aware of their own actions
and returns. The approaches to model independent reinforcement learners can further be
divided between gradient-based independent learners and non-gradient based independent
learners, as suggested in (Bloembergen et al., 2015). The former set of algorithms requires
a well-defined differentiable objective function and knowledge of other agents’ policies, an
assumption we find inadequate when modeling human decision-making. We therefore re-
sort to the latter class of independent learners, i.e., non-gradient based learners. Given the
absence of additional constraints to single reinforcement learning, classical RL algorithms
such as Q-learning (Watkins & Dayan, 1992), Policy Hill Climbing (PHC), or Hedge (Auer
et al., 1995), can be directly adopted (Domingos et al., 2021a). Nonetheless, the literature
abounds with RL algorithms designed specifically for the multi-agent setting. These in-
clude, but are not limited to, the Roth-Erev algorithm (Roth & Erev, 1995), WoLF-PHC
(Bowling & Veloso, 2001), Frequency Adjusted Q-learning (Kaisers & Tuyls, 2010), Lenient
Frequency Adjusted Q-learning (Bloembergen et al., 2010), Regret Matching (Hart & Mas-
Colell, 2000), or Counterfactual Regret Minimization (Zinkevich et al., 2007). While most
of these algorithms have been designed to reach specific equilibria, the Roth-Erev algorithm
was designed and shown to effectively describe human behaviors in social dilemmas (Roth
& Erev, 1995). The authors argue that this is a result of its capturing of two distinct
characteristics of human learning: the law of effect that encourages previously successful
actions (Thorndike, 1898) and the power law of practice that makes learning and adaptation
slower with experience (Newell & Rosenbloom, 1981). Therefore, and while all aforemen-
tioned algorithms are viable candidates, we choose to model human decision making using
the Roth-Erev algorithm with the goal of understanding the behavioral differences between
homogeneous and heterogeneous populations in the face of collective risks, and how these
behavioral differences echo on the overall well-being of the population. We note that the
convergence points can possibly vary under different learning dynamics. However, this re-
mains out of the scope of our paper and we refer the interested reader to a survey on the
qualitative differences of various learning dynamics (Bloembergen et al., 2015).

While the general and basic modeling of collective risk dilemmas considers homogeneous
and symmetrical agents, a few studies do investigate the consequences of wealth inequality
among agents. When considering populations of reinforcement learners, wealth inequality
is shown to hinder target achievement and entices rich agents to contribute more than poor
agents (Merhej et al., 2021). On the other hand, when modeling agents with evolutionary
game theory, wealth inequality is found to help in achieving cooperation if rich/poor indi-
viduals can imitate each other regardless their wealth category. Otherwise, if individuals
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preferentially imitate peers belonging to the same wealth class, inequality is detrimental for
cooperation (Vasconcelos et al., 2014). Additionally, rich agents are found to contribute
more than poor agents who only choose to cooperate if all rich players cooperate (Wang
et al., 2010; Chan et al., 2008).

The data found in behavioral experiments does not always confirm the predictions under
evolutionary game theory or reinforcement learning. Here, rich individuals are found to
under-contribute while poor individuals over-contribute (Chan et al., 2008), and cooperation
and collective success are harder to accomplish under wealth inequality (Tavoni et al., 2011).

While only wealth inequality has been studied in collective risks, other types of het-
erogeneity have been considered in other collective action dilemmas, notably in continuous
public goods games. These are non-threshold games where agents need to join efforts to
create a common good instead of avoiding a common disaster. In that context, and under
evolutionary game theory, strong inequality in wealth, productivity and benefits are found
to inhibit cooperation (Hauser et al., 2019).

Importantly, the effective occurrence of global risks in the future can only be approx-
imately estimated, and not accurately measured. As a result, agents make their decision
based on how likely they believe a disaster to occur. Diversity in global risk assessment is
therefore quite common (World Economic Forum, 2021). A survey of 119 countries con-
firms significant variance in public concern and risk assessment of the global climate change
problem (Lee et al., 2015). It finds that diversity in risk assessment mainly results from
a diversity in education and fundamental understanding of the climate change problem
between countries.

Similarly, the risks of the COVID-19 pandemic were assessed differently across coun-
tries that, as a consequence, adopted different safety measures (Alanezi et al., 2021; Gib-
ney, 2020). Some perceived the virus propagation as more threatening than an economic
shutdown and opted for a full lockdown early on, while others were more worried about
unemployment, stagnation etc. and tried to protect the economy first. The diversity in
COVID-19 risk perception is not only observed on a national scale but also on an individ-
ual scale (Lamarche, 2020). Such risk assessment diversity also translates into a behavioral
diversity in safety measure compliance (Thanh et al., 2020).

Although risk perception diversity is a fundamental feature of our society, and the risk
factor has been shown to have substantial impact on a population’s ability to achieve the
target (Milinski et al., 2008; Santos & Pacheco, 2011; Santos et al., 2012; Domingos et al.,
2021a), to the best our knowledge, diversity in risk perception has not yet been explored in
the context of collective risk dilemmas.

The objective of our work is to highlight the consequences of heterogeneity on the
cooperative aptitude of a population facing collective risks. As such, we use RL as a means
to model human actors. Nonetheless, we believe that the results we show can be valuable
for research on cooperative capabilities in multi-agent reinforcement learning, a very active
topic of research (Dafoe et al., 2020). We therefore present some established cooperation
challenges in MARL and the respectively designed solutions.

While n-player non symmetrical social dilemmas and games with mixed-motives are
abundant in the real world, cooperation in multi-agent reinforcement learning has mainly
focused on 2-player games. A study on sequential social dilemmas with deep RL (Leibo
et al., 2017), identified coordination sub-problems that prevent proper cooperation of agents.
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Coordination problems in MARL are quite common and are not only restricted to social
dilemmas (Matignon et al., 2012). One of the reasons for coordination difficulty in MARL
is the non-stationarity of the opponent and the simultaneous policy updates of the players
(Balduzzi et al., 2018; Bloembergen et al., 2015; Tuyls et al., 2006). Suggested solutions try
to increase agents’ understanding of the opponent’s dynamics and leverage these to achieve
higher cooperation. One algorithm proposes predicting the opponent’s policy changes before
computing the agent’s policy gradient (Zhang & Lesser, 2010). Another alternative sug-
gests differentiating through the variations of the opponent to actively shape their learning
(Foerster et al., 2018a). A third solution incorporates both policy prediction and opponent
shaping to increase stability while simultaneously escaping saddle points (Letcher et al.,
2018).

Alternative solutions to increase cooperation in MARL focus on enabling communication
capacities between agents. Communication can take several forms. For example, agents may
communicate by sending messages (Foerster et al., 2016; Cao et al., 2018), sharing intentions
(Kim et al., 2021) or experiences (Christianos et al., 2020), advising actions (Omidshafiei
et al., 2019) to one another etc. Enriching agents with communication capabilities has
shown to improve performance (Foerster et al., 2016; Christianos et al., 2020), speed up
learning (Omidshafiei et al., 2019; Foerster et al., 2016; Christianos et al., 2020) and enhance
coordination (Kim et al., 2021; Omidshafiei et al., 2019). Implementing a centralized critic
with decentralized actors is another form of indirect communication and information sharing
among agents that can increase performance and cooperation (Baker et al., 2019; Foerster
et al., 2018b; Lowe et al., 2017). However, in cooperative environments, a centralized
approach can learn inefficient policies with only one agent active and the other being “lazy”.
This happens as the second agent is discouraged from learning because its exploration would
hinder the first agent’s success and lead to worse team reward (Sunehag et al., 2017). Value
decomposition addresses this problem by learning to decompose the team value function
into per-agent value functions and thus transforms a complex learning problem into local,
more readily learnable sub-problems (Sunehag et al., 2017; Son et al., 2019; Rashid et al.,
2018, 2020; Marchesini & Farinelli, 2021).

A third set of solutions to leverage cooperation in RL introduce conditional commitment
in agents’ policies. One example is an algorithm designed to always asymptotically behave
as a Tit-for-Tat strategy by learning simultaneously a cooperative and a selfish Q-function
and alternating between them to avoid exploitability (Jacq et al., 2019).

Finally, solutions modifying agents’ motivations can be seen as institutional solutions
(Dafoe et al., 2020). Notably, in MARL, intrinsic rewards can be engineered and added to
environmental rewards to help agents solve a sub-problem of the game and facilitate the
emergence of coordination (Liu et al., 2019).

We note that the advised solutions for increasing cooperation in MARL settings focus on
2-player games. Major computational challenges still inhibit the scaling of these algorithms
to n-player games. Additionally, most solutions are developed to increase cooperation in
purely cooperative settings. We propose a non-symmetrical n-player social dilemma. We
describe the emergent behaviors of simple reinforcement learners in these settings. In the
context of reinforcement learning, the paper contributes, not by proposing novel algorithms
for solving social dilemmas, but by identifying novel cooperation and heterogeneity chal-
lenges in large RL populations facing collective risks.
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We examine the impact of heterogeneity in a collective risk dilemma representative
of the climate action problem. As such, we first consider heterogeneity in terms of wealth
inequality and introduce the notion of rich and poor agents. Then, we examine heterogeneity
as a risk assessment diversity and introduce the notion of agents with high and low risk
perception. Finally, we rely on the findings of Lee et al. (2015) on the correlation found
between wealth and risk awareness. In fact, the authors show that public awareness of the
risks associated with the climate change problem is low in poor or developing countries
while it is high in rich or developed countries. As such, we combine the two types of
heterogeneities in a population where rich agents have a high risk perception of the problem
and poor agents have a low risk perception of the problem . We emphasize that, contrary to
previous approaches (e.g., Santos & Pacheco, 2011; Domingos et al., 2021a), we explicitly
differentiate between risk perception and the effective risk exposure, an element of particular
importance whenever risk diversity is considered.

3. Methods

In this section, we describe the methods used for answering our research question: how
do different sources of heterogeneity affect the behaviors of agents in populations facing
collective risks, and how do such behavioral differences affect social welfare? We first define
in Section 3.1 the dynamics of the collective risk dilemma as well as the design of the
introduced heterogeneities. Then, in Section 3.2, we present the decision-making process
or learning algorithm of the agents facing the CRD. Finally, in Section 3.3, we specify the
values and hyper-parameters used to perform the computer simulations.

3.1 Game Definition

Formally, in a population of finite size Z, we allocate for every player an initial endowment
b. Players are then sampled into groups of size N to play CRDs. Every player must choose
to either contribute nothing or a fraction c of their endowment to a common pool. The
benefits gained by investing in the common pool are modeled by the increased chances
of avoiding a disaster (risk) happening with probability r. Should the players manage to
jointly collect a sum greater than a target threshold t, then the disaster is avoided with
certainty. Otherwise, with a disaster probability r, all players lose a fraction p of whatever
they have left of their initial endowments. At the end of the game, each player i, who
started with an initial endowment b, is left with

bfinali =

�
(1� ci)b if the disaster was avoided,
(1� ci)b� p(1� ci)b otherwise.

(1)

where ci represents the binary choice of either contributing 0 or a fraction c of the initial
endowment to the pool (ci 2 f0; cg).

In game theory, normal-form games are usually defined by a payoff matrix that repre-
sents the benefits of a joint action for a given player. While the game risk r and disaster
impact p determine objectively the resulting wealth of an agent, in real life, the (perceived)
benefit, often called utility, of such an outcome is not necessarily equivalent or even linearly
dependent on said outcome. A loss of $1000 is not equally damaging to a millionaire as
it is to an employee earning the minimum-wage salary. The log-utility function has been
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Table 1: Payoff matrix of the game based on player’s action and the outcome of the game.

Strategy Disaster avoided Disaster faced

C xC = log(1� c) x̄C = log(1� c� p� pc))
D xD = 0 x̄D = log(1� p)

used in economics to capture this diminishing marginal utility (Peters & Gell-Mann, 2016).
It assumes that a loss of 70% of one’s possessions, for example, is equally painful for any
individual even if, with different initial wealth, the losses are not equal in absolute value.
A large body of literature exists about utility functions and their representative meanings.
It can be interesting to compare results obtained under different utility functions or even
introduce heterogeneity between agents’ perceived utility. For the moment, however, this
remains out of the scope of our paper, and we consider a homogeneous log utility for all
players. Under a log-utility function, the payoffs of the game are expressed as the difference
in the log of agents’ wealth before and after a game was played. Hence, a successful game
costs xC = log

�
b�cb
b

�
= log(1 � c) for a cooperator and xD = log

�
b
b

�
= 0 for a defector.

Similarly, we can derive that a failure of avoiding the disaster costs x̄C = log(1�c�p(1�c))
for cooperators and x̄D = log(1 � p) for defectors. In the two (discrete) actions game, the
goal of each player i is to find a stochastic policy ��i—representing the probability of player
i choosing to cooperate—that maximizes the payoff. Table 1 summarizes the payoffs of the
game for the two game outcomes of interest (i.e., disaster avoided or faced).

Finally, we recall that social dilemmas arise from a misalignment of individual and
collective interests generated by specific tensions in the payoff function (Macy & Flache,
2002). More precisely, mutual cooperation should always be preferred over a unilateral
cooperation and over a mutual defection. However, there should also always be either
greed or fear that drives agents to defect to either exploit their peers or protect themselves
from exploitation. In our game, a disaster is faced with probability r if the group fails to
achieve the target threshold. Total cooperation always results in target achievement while
total defection always results in failure of target achievement. As such, mutual cooperation
yields a payoff xC = log(1� c), whereas mutual defection yields with probability r a payoff
x̄D = log(1� p) and with probability 1� r, a payoff xD = 0. To satisfy the conditions for a

social dilemma to occur, xC > (1�r)xD+rx̄D which implies that r > log(1�c)
log(1�p) . Additionally,

the threshold t needs to be lower-bounded by the contribution of a single cooperative agent
t > cb, otherwise such a unilateral cooperation would also avoid the disaster and hence be
as good as a mutual cooperation. Moreover, to incentivize agents to defect, the threshold
needs to be achievable with less than a total cooperation t < Ncb, otherwise, agents would
have no motivation to free-ride.

3.1.1 Wealth Inequality

When investigating the impact of wealth inequality in our CRD setting, we consider a
population of finite size Z of which a fraction zR = 20% is rich and holds wR = 50% of
the total wealth W . The remaining fraction zP = 1 � zR = 80% of the population is poor
and holds the remaining wP = 50% of the riches. The total wealth held by the rich/poor is
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equally distributed within the same wealth class. Heterogeneity is introduced as inequality
in initial endowments. Instead of an equal initial endowment b, poor players now start with
an initial endowment bP = W�wP

Z�zP
and correspondingly rich players start with an initial

endowment bR = W�wR
Z�zR

such that bR > bP . We continue to define the threshold t as a
function of the average wealth b =W=Z in the population.

3.1.2 Risk Perception Diversity

When investigating the impact of risk perception diversity in our CRD setting, we consider
the same population of finite size Z but go back to a homogeneous wealth distribution of
the total wealth W among the agents. That is, every agent starts with an equal initial
endowment b =W=Z. However, half of the agents now have a low risk perception, i.e., they
perceive a potential disaster as less likely to occur than it actually does, while the other half
have a high risk perception, i.e., they perceive a potential disaster as more likely to occur
than it actually does. For an effective disaster occurrence probability r, agents with low
risk perception view the disaster happening with probability rL = r � �, while agents with
high risk perception view the disaster happening with probability rH = r + �, where � is a
diversity factor. As a result, the population maintains an average risk perception equal to
the effective risk value. To model risk perception diversity, we assume that during learning,
agents with low risk perception face a disaster with probability rL while agents with high
risk perception face a disaster with probability rH . However, when evaluating the effective
consequences of the learned policies, we consider the common and effective risk value r.

3.1.3 Wealth Inequality and Risk Perception Diversity

We consider the population with wealth inequalities of Section 3.1.1 and assume that the
poor agents have a low risk perception while rich agents have a high risk perception. That
is, poor agents perceive a risk r to occur with probability rL = r � � while rich agents
perceive it with probability rH = r+ �. Compared to populations with only risk inequality,
this maintains a setting where wP = 50% of the wealth in the population is managed by
agents with low risk perception (here also poor) while the other wR = 50% of the wealth is
managed by agents with high risk perception (here also rich). The difference to populations
with only risk inequality, is that 50% of the wealth is now held by 20% of the population
instead of 50% of the population.

3.2 Agent Learning Algorithm

To study the dynamics of cooperation under reinforcement learning, we train a population
of independent RL learners with the Roth-Erev Algorithm (Roth & Erev, 1995). By inde-
pendent learners we mean that the RL agents do not model the presence of other players
and perceive the emerging dynamics as part of their environment’s dynamics. Prior to any
interaction, every agent i has an initial propensity to cooperate or defect, determined by the

values of a propensity vector qi;0 =
�
qi;0(C); qi;0(D)

�T
. The propensity vector is updated

with every learning interaction. At the end of game k, agent i, according to the selected
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action A and the received return x, updates the propensity vector as

qi;k(A) = (1� �)qi;k�1(A) + x;

qi;k(:A) = (1� �)qi;k�1(:A);
(2)

where :A represents the non-chosen action and �, 0 < � < 1, is a forgetting parameter
that inhibits the propensities from growing to infinity.

We train agents of a population asynchronously using the update rule (2). The procedure
is summarized in Algorithm 1. At every learning step k, a group of N agents is selected
randomly from the population of Z agents. The agents in the group engage in a collective
risk dilemma. Every player i in the group chooses one of the available actions following
probabilities pi;k�1 that are derived by normalizing the propensity vector qi;k�1. Since
payoffs are negative or zero, we use the soft-max function to normalize the propensity
vector. At any step k of the learning process, player i will select action A with probability

pi;k�1(A) =
exp(qi;k�1(A))P

A′2fC;Dg exp(qi;k�1(A
0))
: (3)

The selected actions and the game risk factor r determine whether or not the game is
successful (i.e. if agents avoided the disaster). The payoffs for each agent are calculated
according to Table 1 after which all agents in the group update their propensity vectors.
This is repeated for a total of K learning steps. Since the algorithm does not guarantee
that all agents are chosen equally as many times, we define K 0, the minimum number of
learning steps that every agent needs to have performed before training is done. After K
total learning steps, if some agent still has not performed at least K 0 updates, then training
continues until this condition is satisfied.

Algorithm 1: Roth-Erev RL algorithm in an adaptive population with asyn-
chronous updates of propensities.

Init: K total number of learning steps, K 0 minimum number of updates per agent
for i 1 to Z, population size do

qi(0) random initialization;
ui  0 /* tracks number of learning steps per agent */

for k  1 to K do
1. sample random group G of size N ;
2. sample actions Ai � pi;k�1 for i 2 G (Eq. 3);
3. evaluate game success;
4. calculate payoff of i 2 G (Tab. 1);
5. update qi;k (Eq. 2);
6. ui  ui + 1 for i 2 G;
7. umin  min(u)

while umin < K 0 do
repeat steps 1. to 7.
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3.3 Computer Simulation

In this section we present the numerical values that define the CRD, as well as the learning
algorithm hyper-parameters.

In all settings, we consider a population of Z = 200 individuals. The average wealth
in the population is set to b = 1 yielding W = Z. A contribution represents 10% of an
agent’s wealth, i.e., c = 0:1. We define the threshold t as a function of the average wealth
b in the population. We set the target to be achievable if at least M = N=2 agents in
the group contribute, i.e., t = Mcb = Ncb=2. If the threshold target is not achieved,
agents lose an additional 70% of their remaining wealth, i.e., p = 0:7. We test varying risk
values r 2 f0:1; 0:3; 0:5; 0:7; 0:9g, varying group sizes N 2 f2; 4; 6; 8; 10; 20g and varying risk
perception diversity factors � 2 f0:1; 0:2; 0:3; 0:4; 0:5g.

We sample qi;0(A) from a normal distribution N (� = �10; � = 1). This generates play-

ers with a slight random initial preference to defect or cooperate such that loge

�
qi;0(C)
qi;0(D)

�
�

N (�0 = 0; �0 = 2�
� ), according to the log domain transformation of Katz (Katz et al., 1978).

The forgetting parameter is set to � = 0:001.

4. Results

In this section, we provide three sets of experiments that investigate how different systemic
inequality levels between independent RL agents affect cooperation levels in the population
and how these behavioral differences influence social welfare in the system.

• In Section 4.1 we start by analyzing how wealth inequalities impact the success of
a population in a CRD according to three criteria: 1) the probability of achieving
the target threshold, 2) the collected contributions, and 3) the remaining welfare.
Departing from previous work, here we also study explicitly the effects of varying
groups sizes.

• Section 4.2 conducts a similar analysis, but now assessing the impact of the diversity in
risk assessment along the same criteria, together with the impact of group assortment
based on risk assessment.

• Finally, Section 4.3 considers the combined impact of wealth inequality and risk per-
ception diversity.

In all sections, the evaluation proceeds by allowing the agents to train for a total of 2:5�105
learning steps, while imposing a minimum number of K 0 = 3� 104 learning steps for every
agent. The values reported in the three criteria correspond to the values observed at the
end of the training period, averaged over 5 independent runs.

The three metrics considered provide a different perspective on the “success” of the
population: the collected contributions are a measure of cooperation in the population,
while target achievement and remaining welfare are variables we use to quantify the well-
being of the system.

As such, we define �, the percentage of groups in the population that achieve the target,
�, the ratio between the collected contributions and the maximum possible total contribu-
tions, and �, the ratio between the remaining wealth (after contribution costs and disaster
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losses) and the initial wealth. After population evaluation, we evaluate the different classes
of agents (rich/poor, high/low risk perception etc.) on similar criteria.

We look at the average group achievement �, the probability of cooperating, i.e., the
policy �, and the percentage of secured welfare �. While � is directly obtained at the end
of the learning procedure, the achieved contributions �, the group achievement �, and the
remaining wealth � are not.

We can compute � as

� =
�1Z1b1 + �2Z2b2
Z1b1 + Z2b2

(4)

where indices 1 and 2 represent the binary classes in the heterogeneous population, e.g.,
class 1 corresponds to poor/low-risk and class 2 corresponds to rich/high-risk; �i, Zi and bi
denote, respectively, the average cooperation probabilities, the number of agents, and the
initial wealth of the agents in class i; i = f1; 2g. The numerator computes the collected
contributions while the denominator computes the maximum possible contributions in the
case of total cooperation, i.e., �1 = �2 = 1. For homogeneous populations, � = �. To
compute � and �, for every setting, we rollout a game where the population is split into
groups of N players. In each group, agents, following their learned policies, choose to either
contribute or not. At the end of the game, we calculate the percentage of groups, as well
as the percentage of rich/poor and high/low risk agents in the population that successfully
reach the target. We also evaluate the remaining wealth of the population and of the
different classes of agents after cooperation costs and disaster losses. The random variables
are evaluated and averaged over 105 simulations.

We run our simulations on a homogeneous population P0 as a baseline, and its het-
erogeneous counterparts P1, P2 and P3—representing respectively wealth inequality, risk
perception diversity and a combination of wealth and risk diversity.

4.1 Effect of Wealth Inequalities

To understand the consequences of wealth inequality in the context of a collective risk
dilemma, we compare key performance metrics of populations with and without wealth
inequality, i.e., P0 and P1, across different game settings of either varying risk factors r or
varying group sizes N .

4.1.1 Wealth inequality and probability of risk occurrence

In a first experiment, we train the homogeneous population P0 and the population with
wealth inequality P1 to play a collective risk dilemma in groups of N = 6 agents and under
varying risk factors r 2 f0:1; 0:3; 0:5; 0:7; 0:9g. Figure 1 shows the group achievement rates
�, the achieved contributions �, and the secured welfare � for the two populations. We also
explicit �, � and � for the different classes of agents within the populations.

First, as expected, Figure 1a shows that the performance of a population with and
without inequalities increases with the risk factor r. Agents feel a stronger urge to achieve
the target if the consequences of failure are larger. This result is also in accordance with
those found under social learning rules (Vasconcelos et al., 2014). However, while under
evolutionary dynamics and social learning, diversity has proven to increase cooperation rates
(Santos et al., 2008; Vasconcelos et al., 2014), we find in Figure 1a that wealth inequality
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(a) (b) (c)

(d) (e) (f)

Figure 1: Impact of risk under wealth inequality: In the first row, we compare pop-
ulations without inequality to populations with wealth inequality. We plot (a) the overall
group achievement rate �, (b) the percentage of achieved contributions �, and (c) the per-
centage of remaining wealth in the populations �. In the second row, we take a closer look
at the internal dynamics in the populations and compare results for rich, poor and equal
agents (i.e., agents from the homogeneous populations). Again, we plot (d) the overall
group achievement rate �, (e) the policy � or the average cooperation probability, and (f)
the percentage of remaining wealth � for each class of agents. In all panels, shaded areas
represent the standard deviation over 5 runs.

decreases the overall achievement of a population for all risk values (P1 under-achieves
with respect to P0). This is in conformity with some experimental results (Tavoni et al.,
2011), where wealth inequalities are found to inhibit group achievement. This result also
reinforces the different types of dynamics created by individual-based learning (as in here)
when compared to decision-making coupled with dynamics of peer-influence (Vasconcelos
et al., 2014), absent in our model.

Second, Figure 1b reveals that the drop in overall achievement rate for population P1

compared to P0 is not caused by a reduction in total collected contributions. Populations
with wealth inequality collect similar pools of contributions as their homogeneous counter-
parts but can fail up to two times more often in achieving the target.
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Third, we note that while higher risk results in higher group achievement, this does not
translate into higher secured wealth. In fact, Figure 1c shows that the secured wealth in
the population continuously decreases with the risk. While populations adapt to higher
risks by increasing their contributions and target achievement, they do not do that at a
rate that effectively protects them from the ever more probable disasters. When comparing
homogeneous and heterogeneous populations, we observe that the populations with wealth
inequality, as a result of a decrease in group achievement, also lose a larger amount of their
wealth.

To better understand how the introduction of wealth inequality can reduce group achieve-
ment and secured welfare despite consistent high contributions, we consider in Figure 1d the
discrepancies in target achievement for rich vs. poor agents. While rich agents achieve the
target more often than agents from homogeneous populations, poor agents that represent
a majority of 80% of the population, achieve the target significantly less often than both
equal or rich agents which explains the observed overall drop in Figure 1a.

Next, we examine the policies or average cooperation probability of rich, poor and
homogeneous agents. We observe in Figure 1e that in populations with wealth inequality,
the main cooperators are rich agents. Poor agents cooperate significantly less than rich
agents and this gap in cooperation increases with the risk. We confirm that these behaviors
also persist under a linear-utility function, suggesting that they are not specific to the
chosen log-utility. While rich agents continue to adapt to higher risk values by increasing
their contributions, poor agents are less reactive to the risk (flatter curve) and seem to
stagnate for risk values greater than 0:5. This has detrimental effects on poor agents and
the population as a whole for two main reasons. First, the large number of poor agents
in the population (80%) makes it hard for all poor agents to interact in groups with rich
agents, and hence benefit from their cooperation and increased group success. In fact,
for N = 6, 25% of the groups in the population are purely poor groups. Second, the small
share that a poor agent’s contribution represents in terms of the target threshold, introduces
higher coordination problems for this class of agents. While a contribution by a rich agent
represents 83% of the needed target, a contribution of a poor agent only represents 20% of
that same target. As such, the same collective dilemma requires higher coordination from
poor agents, e.g., 5 out of 6 poor players need to cooperate in a purely poor group to achieve
the target. With the learned cooperation rates of poor agents, for r = 0:3 for example, 95:5%
of purely poor groups fail to reach the threshold. These are failures only suffered by poor
agents and explain the gap in achievement observed in Figure 1d. In terms of population
achievement, a 95:5% failure of 25% of all groups implies an overall achievement drop of
24% and explains the drop introduced by wealth inequality in Figure 1a.

Finally, Figure 1f shows that the achievement inequality introduced by wealth inequality
generates further wealth inequality at higher risk values. While the gap in target achieve-
ment is relatively constant in Figure 1d, the difference in wealth losses is minimal for small
risk values and increases for larger ones. At high risk, the consequences of target achieve-
ment failure are more prominent. We observe that poor agents lose significantly more than
rich agents and deduce that the observed additional losses in population welfare introduced
by wealth inequality in Figure 1c, are only incurred by the poor agents. In terms of wealth
distribution, this causes poor agents to become poorer and rich agents to become richer.
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Figure 2: Resulting population wealth distribution among rich and poor agents after engag-
ing in a collective risk dilemma with varying risk values. Recall that before any contribution
costs and disaster losses, rich and poor agents each hold 50% of the overall population’s
wealth. As the risk of disaster occurrence increases, the consequences of differences in tar-
get achievement between the classes are magnified. Poor agents lose more than rich agents
(see Figure 1f) and own even less of the resulting remaining wealth in the population. Rich
agents become relatively richer and poor agents become relatively poorer.

Figure 2 illustrates this phenomena by plotting the distribution of wealth among rich and
poor agents after engaging in collective risk dilemmas of varying risk values.

To conclude, our first findings suggest that wealth inequality decreases overall population
achievement and secured wealth. However, not all agents suffer equally from these conse-
quences. In fact, compared to homogeneous populations, wealth inequality slightly increases
target achievement and welfare of rich agents while significantly decreasing achievement and
welfare of poor agents. Wealth inequality is an unstable state that results in increasingly
higher inequalities.

4.1.2 Wealth Inequality and Group Size

Group size has a considerable effect on overall population achievement under evolutionary
dynamics (Szolnoki & Perc, 2011; Hauert et al., 2006; Kurokawa & Ihara, 2009; Peña &
Nöldeke, 2018). Additionally, we demonstrated under reinforcement dynamics how a group
size of N = 6, combined with wealth inequality, can increase coordination difficulties for
poor agents and lead to a decrease in their wealth and target achievement.

In a second experiment, we train the homogeneous population P0 and the population
with wealth inequality P1 to play a collective risk dilemma of risk r = 0:3 in varying
group sizes of N 2 f2; 4; 6; 8; 10; 20g. Figure 3 shows the group achievement, the total
contributions and the wealth when engaging in different group sizes for the two populations
and their corresponding classes of agents (equal and rich/poor) in a collective risk dilemma
of average risk r = 0:3.

Figure 3a shows that for populations without inequality, larger group sizes imply an
increased coordination difficulty and result in lower group achievements. In fact, group
achievement of homogeneous populations decreases from 85% for N = 2 to around 40% for
N = 20. This clear negative correlation between target achievement and group size is not
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observed for populations with wealth inequality. For the tested values, populations with
wealth inequality are relatively robust to varying group sizes and always reach values of
� ’ 50%. As such, for smaller group sizes with less coordination difficulties, homogeneous
populations outperform populations with wealth inequality. However, as their performance
continues to decline, and that of populations with wealth inequality remains stable, we
observe a cross-point after which populations with inequality outperform their homogeneous
counterparts.

Similar to results observed under varying risk values, Figure 3b confirms that the dis-
crepancies in target achievement between the two populations are not a result of differences
in contributions. Both populations collect similar pool contributions.

In Figure 3c we observe that the qualitative changes of the target achievement with
respect to the group size are mimicked in the wealth. This was not the case for varying
risk values (Figures 1a and 1c) where higher group achievements for larger risk values still
resulted in larger losses. For a constant risk value, target achievement is highly correlated
with the secured wealth.

When looking at the distributions of target achievement, cooperation and welfare be-
tween the different classes of agents, we find again in Figure 3d that poor agents under-
achieve with respect to rich agents. However the difference in achievement decreases with
larger group sizes. Larger group sizes result in a better mixing of rich and poor players
as the probability of sampling purely poor or purely rich groups decreases. In the extreme
case, when the group size is equal to the population size, the group achievements of rich
and poor agents become the same. We conclude that in populations with wealth inequality,
larger group sizes can decrease achievement inequalities without decreasing overall popula-
tion achievement.

From Figure 3e we understand why populations with wealth inequality under-achieve
with respect to homogeneous populations despite equal total contributions. While rich
and poor agents each hold 50% of the wealth in the population, most of the contributions
in the population come from rich agents. Rich agents cooperate more than equal agents
while poor agents cooperate less than equal agents. The variations in cooperation are
almost symmetrical among the two classes and result in population P1 collecting as many
contributions as population P0. However, the rich agents who succeed more often, represent
only 20% of the population, while the poor agents who fail more often represent 80% of
the population. The symmetrical gains and losses in the contributions are translated into
asymmetrical gains and losses in target achievement. However, this effect is less prominent
for larger group sizes with higher mixing of rich and poor agents.

Finally, in Figure 3f we observe again, that the qualitative changes in target achievement
are mirrored in wealth changes. We note that wealth changes are smoother than target
achievement changes. This is because not meeting the target only results in disaster losses
with a risk probability r = 30%. A larger risk value would have caused more pronounced
welfare losses for a similar target achievement rate.

Overall, Figure 3 reveals the qualitative difference in the impact that the group size has
on populations with and without inequality. Yet, it does not explain the reason for this ob-
served difference. While the risk factor increased group achievement for both populations,
the group size induces two very different dynamics. It decreases achievement for homo-
geneous populations but has an ambiguous and non-monotonous impact on heterogeneous
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(d) (e) (f)

Figure 3: Impact of group size under wealth inequality: In the first row, we compare
population P0 without inequality to population P1 with wealth inequality. We plot (a) the
overall group achievement rate �, (b) the percentage of achieved contributions �, and (c)
the percentage of remaining wealth in the populations �. In the second row, we take a
closer look at the internal dynamics in the populations and compare results for rich, poor
and equal agents (i.e., agents from the homogeneous populations). Again we plot (d) the
overall group achievement rate �, (e) the policy � or the average cooperation probability,
and (f) the percentage of remaining wealth � of each class of agents. In all panels, shaded
areas represent the standard deviation over 5 runs.

populations. We investigate how introducing wealth inequalities can diminish the effect of
the group size.

For N = 6, we saw that groups of purely poor agents that represented 25% of the groups
in the populations, almost never achieve the target, causing a significant drop in overall
achievement. To capture how group size modifies global target achievement, we present
in Figure 4 a bar plot for N = 2, N = 6 and N = 10, showing for each group size, the
different possible group configurations and their respective target achievement probability.
For a group of size of N , we have N + 1 different configurations representing respectively
groups with nR 2 f0; 1; : : : Ng rich agents and nP 2 fN;N � 1; : : : 0g poor agents. The first
bar always represents purely poor groups. The width of the bars are proportional to the
probability of said group in the population, while the height represents the probability of
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(a) (b)

(c) (d)

Figure 4: Group achievement distribution: We explicit for different group sizes of
(a) N = 2, (b) N = 6, and (c) N = 10, the N + 1 possible group configurations with
N;N � 1; : : : 0 poor agents and their corresponding group achievements. The first bars
always represent purely poor groups and are the least performing groups in the population.
The width of the bars are proportional to the frequency of the groups in the population. As
such, the area of the figure covered by the bar plots is proportional to the overall population
achievement. For N = 2, more than 60% of the groups are purely poor groups. For larger
group sizes, the mixing of rich and poor agents is more probable. Low performing purely
poor groups become less frequent. However, larger group sizes also increase coordination
difficulty. This is best seen in purely poor groups whose performance drops from 30% for
N = 2 to 2% for N = 10. In (d) we overlap the three group size configurations and observe
that they all cover around half of the figure area which explains the relatively stagnant
group achievement of around 50% with respect to N observed in Figure 3a.

target achievement. For group sizes of N = 6 and N = 10, less than N +1 bars are plotted.
This is because the corresponding groups are almost non existent in the population. The
total area of the figure is equal to 1 and the fraction occupied by the bar plot represents
the total population target achievement.

Looking at the first bar in each plot, we see that for N = 2, groups of purely poor
agents achieve the target with probability � = 30%. As N increases, coordination problems
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increase and purely poor groups achieve the target less often. However, we also observe
that the frequency of low performing groups (the width of the bar) decreases with N .
As N increases, opposite dynamics seem to be at play. On one hand a better mixing of
poor and rich agents decreases the probability of highly unsuccessful poor groups, and on
the other hand, increasing coordination difficulties make target achievement more difficult.
However, neither one these effects strictly outweighs the other. As such, when superposing
the different group configurations in Figure 4d, we see that despite not fully overlapping,
all three settings cover around 50% of the figure area. We deduce that the variations of
the population achievement are neither strictly increasing nor strictly decreasing with the
group size. Different group sizes can be either a little more or a little less advantageous for
the population. This explains the small fluctuations observed around � = 50% in Figure 3a.

Our results highlight how, in large groups, wealth inequality can help escape strong co-
ordination difficulties and improve collective target achievement by allocating more control
to a few rich agents. On the other hand, when action is taken in smaller groups, wealth
inequality can exclude the majority of poor agents from collective success and result in
an overall decline in achievement. We note that the best way of solving collective risk
dilemmas, is to work in small groups of homogeneous agents (P0 at N = 2).

4.2 Effect of Risk Perception Diversity

In the previous section we have looked at the consequences of wealth inequality on pop-
ulations involved in collective risk dilemmas of varying risk probability and group sizes.
Here we investigate the consequences of introducing a symmetrical risk perception diversity
in the population. We present a study comparing the effects of a constant diversity for
different risk values r, and a study comparing small and large diversities in perception � in
a collective dilemma with constant average risk.

4.2.1 Risk Perception Diversity and Probability of Risk Occurrence

In a first experiment, we train a population P2 with risk perception diversity � = 0:1 to
play a collective risk dilemma in groups of N = 6 players and under varying risk factors
r 2 f0:1; 0:3; 0:5; 0:7; 0:9g. During the learning phase, half of the agents in P2 perceive
a risk of rL = r � �, while the other half perceives a risk of rH = r + �. We compare
the performance of P2 to the performance of our baseline homogeneous population P0. In
Figure 5, we plot achievement rates, contribution probabilities and the secured wealth of
the two populations and their corresponding classes of agents (correct and high/low risk
perception).

Figures 5a, 5b and 5c show no significant differences in target achievement, contributions
or secured wealth for homogeneous populations versus populations with risk diversity for
all values of r � 0:3. For r = 0:1, populations with risk diversity contribute less and hence
achieve the target less often. This difference however does not seem to have an impact on
the overall secured wealth. The increased costs of disaster occurrence are compensated by
savings on cooperation costs.

In the second row of Figure 5, we look at the variations between the different classes
of agents. In Figure 5d, we only observe minor differences between agents at high and low
risk for r = 0:1 that completely disappear for higher risk.
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