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Abstract

Tseitin-formulas are systems of parity constraints whose structure is described by a
graph. These formulas have been studied extensively in proof complexity as hard instances
in many proof systems. In this paper, we prove that a class of unsatisfiable Tseitin-
formulas of bounded degree has regular resolution refutations of polynomial length if and
only if the treewidth of all underlying graphs G for that class is in O(log |V (G)|). It follows
that unsatisfiable Tseitin-formulas with polynomial length of regular resolution refutations
are completely determined by the treewidth of the underlying graphs when these graphs
have bounded degree. To prove this, we show that any regular resolution refutation of an
unsatisfiable Tseitin-formula with graph G of bounded degree has length 2Ω(tw(G))/|V (G)|,
thus essentially matching the known 2O(tw(G))poly(|V (G)|) upper bound. Our proof first
connects the length of regular resolution refutations of unsatisfiable Tseitin-formulas to
the size of representations of satisfiable Tseitin-formulas in decomposable negation normal
form (DNNF). Then we prove that for every graph G of bounded degree, every DNNF-
representation of every satisfiable Tseitin-formula with graph G must have size 2Ω(tw(G))

which yields our lower bound for regular resolution.

1. Introduction

Resolution is one of the most studied propositional proof systems in proof complexity due to
its naturality and its connections to practical SAT solving (Nordström, 2015; Buss & Nord-
ström, 2021). A refutation of a CNF-formula in this system (a resolution refutation) relies
uniquely on clausal resolution: in a refutation, clauses are iteratively derived by resolutions
on clauses from the formula or previously inferred clauses, until reaching the empty clause
indicating unsatisfiability. In this paper, we consider regular resolution which is the restric-
tion of resolution to proofs in which, intuitively, variables which have been resolved away
from a clause cannot be reintroduced later on by additional resolution steps. This fragment
of resolution is known to generally require exponentially longer refutations than general res-
olution (Goerdt, 1993; Alekhnovich, Johannsen, Pitassi, & Urquhart, 2007; Urquhart, 2011;
Vinyals, Elffers, Johannsen, & Nordström, 2020) but is still interesting since it corresponds
to DPLL-style algorithms (Davis, Logemann, & Loveland, 1962; Davis & Putnam, 1960).
Consequently, there is quite some work on regular resolution, see e.g. (Atserias, Bonacina,
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de Rezende, Lauria, Nordström, & Razborov, 2018; Urquhart, 1987; Beck & Impagliazzo,
2013; Beame, Beck, & Impagliazzo, 2012) for a very small sample.

Tseitin-formulas are encodings of certain systems of linear equations whose structure is
given by a graph (Tseitin, 1968). They have been studied extensively in proof complexity
essentially since the creation of the field because they are hard instances in many settings,
see e.g. (Urquhart, 1987; Ben-Sasson, 2002; Beame et al., 2012; Itsykson & Oparin, 2013;
Itsykson, Riazanov, Sagunov, & Smirnov, 2021). It is known that different properties of the
underlying graph characterize different parameters of their resolution refutations (Galesi,
Talebanfard, & Torán, 2020; Alekhnovich & Razborov, 2011; Itsykson & Oparin, 2013).
Extending this line of work, we here show that treewidth determines the length of regular
resolution refutations of Tseitin-formulas: classes of Tseitin-formulas of bounded degree
have polynomial length regular resolution refutations if and only if the treewidth of the
underlying graphs is bounded logarithmically in their size. The upper bound for this result
was already known from (Alekhnovich & Razborov, 2011) where it is shown that, for every
graph G, unsatisfiable Tseitin-formulas with the underlying graph G have regular resolution
refutations of length at most 2O(tw(G))|V (G)|c where c is a constant. We provide a matching
lower bound:

Theorem 1. Let T (G, c) be an unsatisfiable Tseitin-formula where G is a connected graph
with maximum degree at most ∆. The length of the smallest regular resolution refutation of
T (G, c) is at least 2Ω(tw(G)/∆)|V (G)|−1.

There were already known lower bounds for the length of resolution refutations of
Tseitin-formulas based on treewidth before. For general resolution, a 2Ω(tw(G)2)/|V (G)| lower
bound can be inferred with the classical width-length relation of (Ben-Sasson, 2002) and
width bounds of (Galesi et al., 2020). This gives a tight 2Ω(tw(G)) bound when the treewidth
of G is linear in its number of vertices. For smaller treewidth, there are also bounds
from (Galesi, Itsykson, Riazanov, & Sofronova, 2019) for the stronger proof system of

depth-d Frege proofs which for resolution translate to bounds of size 2tw(G)Ω(1)
, but since

the top exponent is significantly less than 1, these results are incomparable to ours. Better
bounds of 2Ω(tw(G))/ log |V (G)| for regular resolution that almost match the upper bound were
shown in (Itsykson et al., 2021) for regular resolution refutations. Building on (Itsykson
et al., 2021), we eliminate the division by log |V (G)| in the exponent and thus give a tight
2Θ(tw(G)) dependence.

As in (Itsykson et al., 2021), our proof strategy follows two steps. First, we show that the
problem of bounding the length of regular resolution refutations of an unsatisfiable Tseitin-
formula can be reduced to lower bounding the size of certain representations of a satisfiable
Tseitin-formula. Itsykson et al. in (Itsykson et al., 2021) used a similar reduction of lower
bounds for regular resolution refutations to bounds on read-once branching programs (1-BP)
for satisfiable Tseitin-formulas, using the classical connection between regular resolution
and the search problem which, given an unsatisfiable CNF-formula and a truth assignment,
returns a clause of the formula it falsifies (Kraj́ıcek, 1995). Itsykson et al. showed that
there is a transformation of a 1-BP solving the search problem for an unsatisfiable Tseitin-
formula into a 1-BP of pseudopolynomial size computing a satisfiable Tseitin-formula with
the same underlying graph. This yields lower bounds for regular resolution from lower
bounds for 1-BP computing satisfiable Tseitin-formulas which (Itsykson et al., 2021) also
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shows. Our crucial insight here is that when more succinct representations are used to
present the satisfiable formula, the transformation from the unsatisfiable instance can be
changed to have only a polynomial instead of pseudopolynomial size increase. Concretely,
the representations we use are so-called decomposable negation normal forms (DNNF) which
are very prominent in the field of knowledge compilation (Darwiche, 2001) and generalize
1-BP. We show that every refutation of an unsatisfiable Tseitin-formula can be transformed
into a DNNF-representation of a satisfiable Tseitin-formula with the same underlying graph
with only polynomial overhead. The transformation builds on the relation between regular
resolution refutations of unsatisfiable Tseitin-formulas and 1-BPs that, for each variable
assignment, compute a contraint of the formula that is falsified. Sub-programs of such an
1-BP deal with unsatisfiable Tseitin-formulas over sub-graphs of the initial graph. During
the transformation, the nodes of the 1-BP are visited in a bottom-up order and DNNF
representing satisfiable variants of the corresponding Tseitin-formulas are incrementally
constructed in the process.

In a second step, we then show for every satisfiable Tseitin-formula with an underlying
graph G a lower bound of 2Ω(tw(G)) on the size of DNNF computing the formula. To this
end, we adapt techniques developed in (Bova, Capelli, Mengel, & Slivovsky, 2016) to a
parameterized setting. (Bova et al., 2016) uses rectangle covers of a function, a common
tool from communication complexity, to lower bound the size of any DNNF computing the
function. Our refinement takes the form of a two-player game in which the first player tries
to cover the models of a function with few rectangles while the second player hinders this
construction by adversarially choosing the variable partitions respected by the rectangles
from a certain set of partitions. We show that this game gives lower bounds for DNNF,
and consequently the aim is to show that the adversarial player can always force 2Ω(tw(G))

rectangles in the game when playing on a Tseitin-formula with graph G. This is done by
proving that any rectangle for a carefully chosen variable partition splits parity constraints
of the formula in a way that bounds by a function of tw(G) the number of models that
can be covered. We show that, depending on the treewidth of G, the adversarial player
can choose a partition to limit the number of models of every rectangle constructed in the
game to the point that at least 2Ω(tw(G)) of them will be needed to cover all models of the
Tseitin-formula. As a consequence, we get the desired lower bound of 2Ω(tw(G))|V (G)|−1 for
regular resolution refutations of Tseitin-formulas.

2. Preliminaries

Notions on graphs. We assume the reader is familiar with the fundamentals of graph
theory. For a graph G, we denote by V (G) its vertices and by E(G) its edges. For v ∈ V (G),
E(v) denotes the edges incident to v and N(v) its neighbors (v is not in N(v)). For a subset
V ′ of V (G) we denote by G[V ′] the sub-graph of G induced by V ′.

A binary tree whose leaves are in bijection with the edges of G is called a branch
decomposition1. Each edge e of a branch decomposition T induces a partition of E(G) into
two parts as the edge sets that appear in the two connected components of T after deletion
of e. The number of vertices of G that are incident to edges in both parts of this partition is

1. We remark that often branch decompositions are defined as unrooted trees. However, it is easy to see
that our definition is equivalent, so we use it here since it is more convenient in our setting.
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the order of e, denoted by order(e, T ). The branchwidth of G, denoted by bw(G), is defined
as bw(G) = minT maxe∈E(T ) order(e, T ), where minT is over all branch decompositions
of G. The linear branchwidth of G, denoted by bwℓ(G), is defined analogously where T is
restricted to linear branch decompositions, that is, branch decompositions where every node
is either a leaf or has a child which is a leaf.

While it is convenient to work with branchwidth or linear branchwidth in our proofs,
we state our main result with the more well-known treewidth tw(G) or pathwidth pw(G)
of a graph G. This is justified by the following connections between the four measures
whose proofs can be found in (Harvey & Wood, 2017, Lemma 12), and (Nordstrand, 2017,
Theorem 6.1), respectively.

Lemma 1. If bw(G) ≥ 1, then bw(G) − 1 ≤ tw(G) ≤ 3
2bw(G), and if bwℓ(G) ≥ 1, then

bwℓ(G)− 1 ≤ pw(G) ≤ bwℓ(G) + 1.

For the convenience of the reader, we reproduce the proof of the relation between linear
branchwidth and pathwidth in the appendix.

A separator S in a connected graph G is defined to be a vertex set such that G \ S is
non-empty and not connected. A graph G is called 3-connected if and only if it has at least
4 vertices and, for every S ⊆ V (G), |S| ≤ 2, the graph G \ S is connected.

Variables, assignments, v-trees. Boolean variables can have value 0 (false) or 1 (true).
The notation ℓx refers to a literal for a variable x, that is, x or its negation x. Given a
set X of Boolean variables, lit(X) denotes its set of literals. A truth assignment to X is a
mapping a : X → {0, 1}. If aX and aY are assignments to disjoint sets of variables X and
Y , then aX ∪ aY denotes the combined assignment to X ∪ Y . The set of assignments to
X is denoted by {0, 1}X . Let f be a Boolean function, we denote by var(f) its variables
and by sat(f) its set of models, i.e., assignments to var(f) on which f evaluates to 1. A
v-tree of X is a binary tree T whose leaves are labeled bijectively with the variables in X.
A v-tree T of X induces a set of partitions (X1, X2) of X as follows: choose a vertex v of
T , setting X1 to contain exactly the variables in T that appear below v and X2 := X \X1.

Tseitin-formulas. Tseitin formulas are systems of parity constraints whose structure is
determined by a graph. Let G = (V,E) be a graph and let c : V → {0, 1} be a labeling of
its vertices called a charge function. The Tseitin-formula T (G, c) has for each edge e ∈ E a
Boolean variable xe and for each vertex v ∈ V a constraint χv :

∑
e∈E(v) xe = c(v) mod 2.

The Tseitin-formula T (G, c) is then defined as T (G, c) :=
∧

v∈V χv, i.e., the conjunction of
the parity constraints for all v ∈ V . By χv we denote the negation of χv, i.e., the parity
constraint on (xe)e∈E(v) with charge 1− c(v).

Proposition 1. (Urquhart, 1987, Lemma 4.1) The Tseitin-formula T (G, c) is satisfiable
if and only if for every connected component U of G we have

∑
v∈U c(v) = 0 mod 2.

Proposition 2. (Glinskih & Itsykson, 2017, Lemma 2) Let G be a graph with K connected
components. If the Tseitin-formula T (G, c) is satisfiable, then it has 2|E(G)|−|V (G)|+K mod-
els.

When conditioning the formula T (G, c) on a literal ℓe ∈ {xe, xe} for e = ab in E(G), the
resulting function is another Tseitin formula T (G, c)|ℓe = T (G′, c′) where G′ is the graph
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G without the edge e (so G′ = G− e) and c′ depends on ℓe. If ℓe = xe then c′ equals c. If
ℓe = xe then c′ = c + 1a + 1b mod 2, where 1v denotes the charge function that assigns 1
to v and 0 to all other variables.

Since we consider Tseitin-formulas in the setting of proof systems for CNF-formulas, we
will assume in the following that they are encoded as CNF-formulas. In this encoding, every
individual parity constraint χv is expressed as a CNF-formula Fv and T (G, c) :=

∧
v∈V Fv.

Since it takes 2|E(v)|−1 clauses to write the parity constraint χv, each clause containing E(v)
literals, we make the standard assumption that E(v) is bounded, i.e., there is a constant
upper bound ∆ on the degree of all vertices in G.

DNNF. A circuit over X in negation normal form (NNF) is a directed acyclic graph
whose leaves are labeled with literals in lit(X) or 0/1-constants, and whose internal nodes
are labeled by ∨-gates or ∧-gates. We use the usual semantics for the function computed by
(gates of) Boolean circuits. Every NNF can be turned into an equivalent NNF whose nodes
have at most two successors in polynomial time. So we assume that NNF in this paper
have only binary gates and thus define the size |D| as the number of gates, which is then
linearly related to the number of wires. Given a gate g, we denote by var(g) the variables
for the literals appearing under g. When g is a literal input ℓx, we have var(g) = {x},
and when it is a 0/1-input, we define var(g) = ∅. A gate with two children gl and gr is
called decomposable when var(gl)∩ var(gr) = ∅, and it is called complete (or smooth) when
var(gl) = var(gr). An NNF whose ∧-gates are all decomposable is called a decomposable
NNF (DNNF). We call a DNNF complete when all its ∨-gates are complete. Every DNNF
can be made complete in polynomial time. For every Boolean function f on finitely many
variables, there exists a DNNF computing f .

Branching programs. A branching program (BP) B is a directed acyclic graph with a
single source, sinks that uniquely correspond to the values of a finite set Y , and whose inner
nodes, called decision nodes are each labeled by a Boolean variable x ∈ X and have exactly
two output wires called the 0- and 1-wire pointing to two nodes respectively called its 0-
and 1-child. The variable x appears on a path in B if there is a decision node v labeled
by x on that path. A truth assignment a to X induces a path in B which starts at the
source and, when encountering a decision node for a variable x, follows the 0-wire (resp. the
1-wire) if a(x) = 0 (resp. a(x) = 1). The BP B is defined to compute the value y ∈ Y on an
assignment a if and only if the path of a leads to the sink labeled with y. We denote this
value y as B(a). Let f : X → Y be a function where X is a finite set of Boolean variables
and Y any finite set. Then we say that B computes f if for every assignment a ∈ {0, 1}X
we have B(a) = f(a). We say that a node v in B computes a function g if the BP we get
from B by deleting all nodes that are not reachable from v computes g.

For Y = {0, 1} we also consider non-deterministic BPs (NBP) which allow for additional
unlabelled guessing nodes. In that case we define that B(a) = 1 if and only if there is a
path from the source of B to the 1-sink following all decision nodes as for a BP and taking
an arbitrary successor for guessing nodes. Note that there might a an exponential number
of possible paths, and a is accepted if a single such path goes to the 1-sink. Clearly the BP
are particular cases of NBP without guessing nodes.

An NBP is called read-once, denoted 1-NBP, when on every path each variable of X
appears at most once. A 1-NBP is said to be complete when each variable of X appears
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exactly once on every path. (Complete) 1-BP are defined as (complete) 1-NBP that are
BP, i.e., that have no guessing nodes. 1-BP are also called free binary decision diagrams
(FBDD) in the literature. It is well known that every 1-NBP can be converted into DNNF
in polynomial time by a simple syntactical rewriting (Darwiche & Marquis, 2002; Amarilli,
Capelli, Monet, & Senellart, 2020).

When representing Tseitin-formulas by DNNF or 1-NBP, we will use the following:

Lemma 2. Let G be a graph and let c and c′ be two charge functions such that T (G, c) and
T (G, c′) are satisfiable Tseitin-formulas. Then T (G, c) can be computed by a DNNF (resp.
1-NBP) of size s if and only if this is true for T (G, c′).

Proof. (sketch) T (G, c) can be transformed into T (G, c′) by substituting some variables by
their negations, see (Itsykson et al., 2021, Lemma 2.3). So every DNNF for T (G, c) can
be transformed into one for T (G, c′) by making the same substitutions. Replacing some
variables by their negations is also feasible on 1-NBP without size increase, it boils down
to inverting the 0- and 1-child of the variables in question.

Let R ⊆ {0, 1}X × Y be a relation where Y is again finite. Then we say that a BP B
computes R if for every assignment a we have that (a,B(a)) ∈ R. Let T (G, c) be an
unsatisfiable Tseitin-formula for a graph G = (V,E). Then we define the two following
relations: SearchT (G,c) consists of the pairs (a,C) such that a is an assignment to T (G, c)
that does not satisfy the clause C of T (G, c). The relation SearchVertex(G, c) consists of
the pairs (a, v) such that a does not satisfy the parity constraint χv of a vertex v ∈ V . Note
that SearchT (G,c) and SearchVertex(G, c) both give a reason why an assignment a does not
satisfy T (G, c) but the latter is more coarse: SearchVertex(G, c) only gives a constraint that
is violated while SearchT (G,c) gives an exact clause that is not satisfied.

Regular resolution. We only introduce some minimal notions of proof complexity here;
for more details and references the reader is referred to the recent survey (Buss & Nordström,
2021). Let C1 = x ∨D1 and C2 = x ∨D2 be two clauses such that D1, D2 contain neither
x nor x. Then the clause D1 ∨D2 is inferred by resolution of C1 and C2 on x. A resolution
refutation of length s of a CNF-formula F is defined to be a sequence C1, . . . , Cs such that
Cs is the empty clause and for every i ∈ [s] we have that Ci is a clause of F or it is inferred
by resolution of two clauses Cj , Cℓ such that j, ℓ < i. It is well-known that F has a resolution
refutation if and only if F is unsatisfiable.

To every resolution refutation C1, . . . , Cs we assign a directed acyclic graph G as follows:
the vertices of G are the clauses {Ci | i ∈ [s]}. Moreover, there is an edge CjCi in G if
and only if Ci is inferred by resolution of Cj and some other clause Cℓ on a variable x in
the refutation. We also label the edge CjCi with the variable x. Note that there might be
two pairs of clauses Cj , Cℓ and Cj′ , Cℓ′ such that resolution on both pairs leads to the same
clause Ci. If this is the case, we simply choose one of them to make sure that all vertices in
G have indegree at most 2. A resolution refutation is called regular if on every directed path
in G every variable x appears at most once as a label of an edge. It is known that there is
a resolution refutation of F if and only if a regular resolution refutation of F exists (Davis
& Putnam, 1960), but the latter are in general longer (Alekhnovich et al., 2007; Urquhart,
2011).
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In this paper, we will not directly deal with regular resolution proofs thanks to the
following well-known result.

Theorem 2. (Kraj́ıcek, 1995) For every unsatisfiable CNF-formula F , the length of the
shortest regular resolution refutation of F is the size of the smallest 1-BP computing SearchF .

Since in our setting, from an unsatisfied clause we can directly inferred an unsatisfied
parity constraint, we can use the following simple consequence.

Corollary 1. For every unsatisfiable Tseitin-formula T (G, c), the length of the shortest
regular resolution refutation of T (G, c) is at least the size of the smallest 1-BP computing
SearchVertex(G, c).

3. Reduction From Unsatisfiable to Satisfiable Formulas

To show our main result, we give a reduction from unsatisfiable to satisfiable Tseitin-
formulas as in (Itsykson et al., 2021). There it was shown that, given a 1-BP B computing
SearchVertex(G, c) for an unsatisfiable Tseitin-formula T (G, c), one can construct a 1-BP B′

computing the function of a satisfiable Tseitin-formula T (G, c∗) such that |B′| is quasipoly-
nomial in |B|. Then good lower bounds on the size of B′ yield lower bounds for regular
refutation by Corollary 1. To give tighter results, we give a version of the reduction from
unsatisfiable to satisfiable Tseitin-formulas where the target representation for T (G, c∗) is
not 1-BP but the more succinct DNNF. This lets us decrease the size of the representation
from pseudopolynomial to polynomial which, with tight lower bounds in the later parts of
the paper, will yield Theorem 1.

Theorem 3. Let T (G, c) be an unsatisfiable Tseitin-formula where G is connected and let
S be the length of its smallest resolution refutation. Then there exists for every satisfiable
Tseitin-formula T (G, c∗) a DNNF of size O(S × |V (G)|) computing it.

In the proof of Theorem 3, we heavily rely on results from (Itsykson et al., 2021) in
particular the notion of well-structuredness that we present in Section 3.1. In Section 3.2
we will then prove Theorem 3.

3.1 Well-Structured Branching Programs for SearchVertex(G, c)

In a well-structured 1-BP computing SearchVertex(G, c), every decision node uk for a vari-
able xe computes SearchVertex(Gk, ck) where Gk is a connected sub-graph of G containing
the edge e := ab, and ck is a charge function such that T (Gk, ck) is unsatisfiable. Since uk
deals with T (Gk, ck), its 0- and 1-successors uk0 and uk1 work on T (Gk, ck)|ℓe for ℓe = xe
and ℓe = xe, respectively. T (Gk, ck)|ℓe is a Tseitin-formula whose underlying graph is Gk−e
and whose charge function is ck or ck+1a+1b mod 2 depending on ℓe. For convenience, we
introduce the notation γk(xe) = ck+1a+1b mod 2 and γk(xe) = ck. Since Gk is connected,
Gk − e has at most two connected components. Let Ga

k and Gb
k denote the components of

Gk − e containing a and b, respectively. Note that Ga
k = Gb

k when e is not a bridge of Gk.
Let γak(ℓe) and γbk(ℓe) denote the restriction of γk(ℓe) to the vertices of Ga

k and Gb
k, respec-

tively. While the graph for T (Gk, ck)|ℓe has at most two connected components, exactly
one of them holds an odd total charge, so only the Tseitin-formula corresponding to that
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a b a b a b

Figure 1: The graphs of Example 1. On the left the graph Gk, in the middle the result
after assigning 0 to xe, on the right after assigning 1 to xe.

component is unsatisfiable. Well-structuredness states that uk0 and uk1 each deal with that
unique connected component.

Example 1. Consider the graph Gk shown on the left in Figure 1. Black nodes have
charge 0 and white nodes have charge 1. The corresponding Tseitin-formula T (Gk, ck) is
unsatisfiable because there is an odd number of white nodes. Let e := ab. Then T (Gk, ck)|xe
is the Tseitin-formula for the graph Gk−e with charges as shown in the middle of Figure 1.
Note that T (Gk, ck)|xe is unsatisfiable because of the charges in the triangle component Gb

k.
The repartition of charges for T (Gk, ck)|xe illustrated on the right of Figure 1 shows that
T (Gk, ck)|xe is unsatisfiable because of the charges in the rombus component Ga

k. Well-
structuredness will ensure that, if uk computes SearchVertex(Gk, ck) and decides xe, then
uk0 computes SearchVertex(Gb

k, γ
b
k(xe)) and uk1 computes SearchVertex(Ga

k, γ
a
k(xe)).

Definition 1. Let T (G, c) be an unsatisfiable Tseitin-formula where G is a connected
graph. A branching program B computing SearchVertex(G, c) is well-structured when, for
all nodes uk of B, there exists a connected subgraph Gk of G and a charge function ck such
that T (Gk, ck) is unsatisfiable, uk computes SearchVertex(Gk, ck), and

1. if uk is the source, then Gk = G and ck = c,

2. if uk is a sink corresponding to v ∈ V (G), then Gk = ({v}, ∅) and ck = 1v,

3. if uk is a decision node for xab with 0- and 1- successors uk0 and uk1 , set ℓ0 = xab
and ℓ1 = xab, then for all i ∈ {0, 1}, (Gki , cki) = (Ga

k, γ
a
k(ℓi)) if T (Ga

k, γ
a
k(ℓi)) is

unsatisfiable, otherwise (Gki , cki) = (Gb
k, γ

b
k(ℓi)).

We remark that our definition is a slight simplification of that given by Itsykson et
al. (Itsykson et al., 2021). It can easily be seen that ours is implied by theirs (see Definition
3.2 and Proposition 3.4 in (Itsykson et al., 2021)).

Lemma 3. (Itsykson et al., 2021, Lemma 1.4) Let T (G, c) be an unsatisfiable Tseitin-
formula where G is connected and let B be a 1-BP of minimal size computing the relation
SearchVertex(G, c). Then B is well-structured.

3.2 Constructing DNNF from Well-Structured Branching Programs

Similarly to Theorem 14 in (Itsykson et al., 2021), we give a reduction from a well-structured
1-BP for SearchVertex(G, c) to a DNNF computing a satisfiable formula T (G, c∗).

Lemma 4. Let G be a connected graph. Let T (G, c∗) and T (G, c) be Tseitin-formulas where
T (G, c∗) is satisfiable and T (G, c) unsatisfiable. For every well-structured 1-BP B computing
SearchVertex(G, c) there exists a DNNF of size O(|B| × |V (G)|) computing T (G, c∗).
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Proof. Let S = |B| and denote by u1, . . . , uS the nodes of B such that if uj is a successor
of ui, then j < i (thus uS is the source of B). For every i ∈ [S], the node ui computes
SearchVertex(Gi, ci). We will show how to iteratively construct DNNF D1, . . . , DS such
that, D1 ⊆ D2 ⊆ · · · ⊆ DS and, for every i ∈ [S],

for all v ∈ V (Gi), there is a gate gv in Di computing T (Gi, ci + 1v). (∗)

Observe that, since T (Gi, ci) is unsatisfiable, T (Gi, ci +1v) is satisfiable for any v ∈ V (Gi).
We show by induction on i how to construct Di by extending Di−1 while respecting (∗).

For the base case, u1 is a sink of B, so it computes SearchVertex(Gv, 1v) where Gv :=
({v}, ∅) for a vertex v ∈ V (G). Thus we define D1 as a single constant-1-node which indeed
computes T (Gv, 1v + 1v) = T (Gv, 0). So D1 is a DNNF respecting (∗).

Now for the inductive case, suppose we have the DNNF Dk−1 satisfying (∗). Consider
the node uk of B. If uk is a sink of B, then we argue as for D1 but since we already have
the constant-1-node in Dk−1 we define Dk := Dk−1.

Now assume that uk is a decision node for the variable xe with 0- and 1-successors uk0
and uk1 . Recall that uk computes SearchVertex(Gk, ck) and let e = ab. There are two
cases. If e is not a bridge in Gk then Ga

k = Gb
k = Gk − e and, by well-structuredness, uk0

computes SearchVertex(Gk − e, ck) and uk1 computes SearchVertex(Gk − e, ck + 1a + 1b).
For every v ∈ V (Gk), since k0, k1 < k, by induction there is a gate g0v in Dk0 computing
T (Gk − e, ck +1v) and a gate g1v in Dk1 computing T (Gk − e, ck +1a+1b+1v). So for every
v ∈ V (Gk) we add to Dk−1 an ∨-gate gv whose left input is xe∧ g0v and whose right input is
xe∧g1v . By construction, gv computes T (Gk, ck+1v) and the new ∧-gates are decomposable
since e is not an edge of Gk − e and therefore xe and xe do not appear in Dk0 and Dk1 .

Now if e = ab is a bridge in Gk, by well-structuredness, there exist i ∈ {0, 1} and a
literal ℓe ∈ {xe, xe} such that uki computes SearchVertex(Ga

k, γ
a
k(ℓe)) and uk1−i

computes

SearchVertex(Gb
k, γ

b
k(ℓe)). We construct a gate gv computing T (Gk, ck + 1v) for each v ∈

V (Gk). Assume, without loss of generality, that v ∈ V (Ga
k), then

� T (Gk, ck + 1v)|ℓe ≡ T (Ga
k, γ

a
k(ℓe) + 1v) ∧ T (Gb

k, γ
b
k(ℓe)) ≡ 0

(because of the second conjunct which is known to be unsatisfiable), and

� T (Gk, ck + 1v)|ℓe ≡ T (Ga
k, γ

a
k(ℓe) + 1v) ∧ T (Gb

k, γ
b
k(ℓe))

For the second item, since k0, k1 < k, by induction there is a gate giv in Dki computing
T (Ga

k, γ
a
k(ℓe) + 1v) and there is a gate g1−i

b in Dk1−i
computing T (Gb

k, γ
b
k(ℓe) + 1b). But

γk(ℓe) = γk(ℓe) + 1a + 1b mod 2, so γbk(ℓe) = γbk(ℓe) + 1b mod 2, therefore gi−1
b computes

the formula T (Gb
k, γ

b
k(ℓe)). So we add an ∧-gate gv whose left input is ℓe and whose right

input is giv ∧ g1−i
b and add it to Dk−1. Note that ∧-gates are decomposable since Ga

k and
Gb

k share no edge and therefore Dk0 and Dk1 are on disjoint sets of variables.
Let Dk be the circuit after all gv have been added to Dk−1. It is a DNNF satisfying

both Dk−1 ⊆ Dk and (∗).
It only remains to bound |DS |. To this end, observe that when constructing Dk from

Dk−1 we add at most 3×|Vk| gates, so |DS | is at most 3(|V1|+ · · ·+ |VS |) = O(S×|V (G)|).
DS may have several gates that have no parents, call them the roots of DS . Take any
root of DS and delete all gates not reached from it, the resulting circuit is a DNNF D
computing a satisfiable Tseitin formula T (G, c′). We get a DNNF computing T (G, c∗)
using Lemma 2.

9
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Combining Corollary 1, Lemma 3 and Lemma 4 yields Theorem 3.

4. Adversarial Rectangle Bounds

In this section, we introduce the game we will use to show DNNF lower bounds for Tseitin
formulas. It is based on combinatorial rectangles, a basic object of study from communica-
tion complexity.

Definition 2. A (combinatorial) rectangle for a variable partition (X1, X2) of a variables
set X is defined to be a set of assignments of the form R = A×B where A ⊆ {0, 1}X1 and

B ⊆ {0, 1}X2 . The partition is called balanced when |X|
3 ≤ |X1|, |X2| ≤ 2|X|

3 .

A rectangle on variables X may be seen as a function whose satisfying assignments are
exactly the a ∪ b for a ∈ A and b ∈ B, so we interpret rectangles as Boolean functions
whenever it is convenient.

Definition 3. Let f be a Boolean function. A balanced rectangle cover of f is a collection
R = {R1, . . . , RK} of rectangles on var(f) with respect to (possibly different) balanced par-
titions of var(f), such that f is equivalent to

∨K
i=1Ri. The minimum number of rectangles

in a balanced cover of f is denoted by R(f).

Theorem 4. (Bova et al., 2016, Theorem 6) Let D be a DNNF computing a function f ,
then R(f) ≤ |D|.

The link between DNNF and balanced rectangle covers of Theorem 4 is established by
analyzing particular sub-circuits of the DNNF called its proof trees (or certificates in (Bova
et al., 2016)).

Definition 4. Let D be a DNNF. The proof trees of D defined to be tree-like sub-circuits
of D that can be constructed iteratively as follows: we start from the output gate of D and
add it to the proof tree. Whenever an ∧-gate is met, both its child gates are added to the
proof tree. Whenever a ∨-gate is met, exactly one child is added to the proof tree.

Each proof tree of a DNNF computes a conjunction of literals. By distributivity, the
following holds.

Proposition 3. The disjunction of the conjunctions computed by the proof trees of a DNNF
D computes the same function as D.

Proposition 4. In a complete DNNF, every variable appears exactly once in every proof
tree. So every proof tree of a complete DNNF encodes a single model.

When trying to show parameterized lower bounds with Theorem 4, one often runs into
the problem that it is somewhat inflexible: the partitions of the rectangles in covers have
to be balanced, but in parameterized applications this is often undesirable. Instead, to
show good lower bounds, one wants to be able to partition in places that allow to cut in
complicated subparts of the problem. This is e.g. the underlying technique in (Razgon,
2016). To make this part of the lower bound proofs more explicit and the technique more
reusable, we here introduce a refinement of Theorem 4.
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We define the adversarial multi-partition rectangle cover game for a function f on vari-
ables X and a set S ⊆ sat(f) to be played as follows: two players, the cover player Charlotte
and her adversary Adam, construct in several rounds a set R of combinatorial rectangles
that cover the set S respecting f (that is, rectangles in R contain only models of f). The
game starts with R as the empty set. Charlotte starts a round by choosing a v-tree T of
X. Now Adam chooses a partition (X1, X2) of X induced by T . Charlotte ends the round
by adding to R a combinatorial rectangle for this partition and respecting f . The game is
over when S is covered by R. The adversarial multi-partition rectangle complexity of f and
S, denoted by aR(f, S) is the minimum number of rounds in which Charlotte can finish
the game, whatever the choices of Adam are. The following theorem gives the core tech-
nique for showing lower bounds later on. The linear adversarial multi-partition rectangle
complexity aRℓ(f, S) of f and S is defined analogously with the difference that instead of
a v-tree Charlotte gives an order of X and Adam chooses (X1, X2) such that X1 is a prefix
of the order given by Charlotte.

Theorem 5. Let D be a complete DNNF computing a function f and let S ⊆ sat(f). Then
aR(f, S) ≤ |D|.

Proof. Let X = var(D). We iteratively delete vertices from D and construct rectangles.
Let R be the rectangle cover, initially empty, during the game. The approach is as follows:
Charlotte chooses a proof tree T in D that accepts some assignment in S not yet covered
by R. By completeness of D, all variables of X appear exactly once in T . Charlotte
constructs a v-tree of X from T by deleting negations on the leaves, contracting away nodes
with a single child and forgetting the labels of all operation gates. Now Adam chooses a
partition induced by T given by a subtree of T with root v. Note that v is a gate of C. Let
sat(D, v) ⊆ sat(f) be the assignments to X accepted by a proof tree of C passing through
v, and observe that sat(D, v) is a combinatorial rectangle A×B with A ⊆ {0, 1}var(v) and
B ⊆ {0, 1}X\var(v). Charlotte chooses the rectangle sat(D, v), add it to R and the game
continues.

Note that the vertex v in the above construction is different for every iteration of the
game: by construction, Charlotte never chooses a proof tree that passes through a vertex
v that has appeared before since sat(D, v) is covered by R. Consequently, the game will
never last more than |D| rounds.

If the input is an 1-BP instead of a DNNF, the proof trees chosen by Charlotte are
accepting paths in D, inducing an order of X. Hence, we get the following corollary.

Corollary 2. Let B be a complete 1-NBP computing a function f and let S ⊆ sat(f).
Then aRℓ(f, S) ≤ |B|.

When S = sat(f), we will just write aR(f) for aR(f, sat(f)) and aRℓ(f) for aRℓ(f, sat(f)).

5. Splitting Parity Constraints

In this section, we will see that rectangles split parity constraints in a certain sense and
show how this is reflected in in the underlying graph of Tseitin-formulas. This will be crucial
in proving the DNNF lower bound in the next section with the adversarial multi-partition
rectangle cover game.
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5.1 Rectangles Induce Sub-Constraints for Tseitin-Formulas

Let R be a rectangle for the partition (E1, E2) of E(G) such that R ⊆ sat(T (G, c)). Assume
that there is a vertex v of G incident to edges in E1 and to edges in E2, i.e., E(v) =
E1(v) ∪E2(v) where neither E1(v) not E2(v) is empty. We will show that R does not only
respect χv, but it also respects a sub-constraint of χv.

Definition 5. Let χv be a parity constraint on (xe)e∈E(v). A sub-constraint of χv is a
parity constraint χ′

v on a non-empty proper subset of the variables of χv.

Lemma 5. Let T (G, c) be a satisfiable Tseitin-formula and let R be a rectangle for the
partition (E1, E2) of E(G) with R ⊆ sat(T (G, c)). If v ∈ V (G) is incident to edges in E1 and
to edges in E2, then there exists a sub-constraint χ′

v of χv such that R ⊆ sat(T (G, c)∧ χ′
v).

Proof. Let a1 ∪ a2 ∈ R where a1 is an assignment to E1 and a2 an assignment to E2. Let
a1(v) and a2(v) denote the restriction of a1 and a2 to E1(v) and E2(v), respectively. We
claim that for all a′1 ∪ a′2 ∈ R, we have that a′1(v) and a1(v) have the same parity, that
is, a1(v) assigns an odd number of variables of E1(v) to 1 if and only if it is also the case
for a′1(v). Indeed if a1(v) and a′1(v) have different parities, then so do a1(v) ∪ a2(v) and
a′1(v)∪a2(v). So either a1∪a2 or a

′
1∪a2 falsifies χv, but both assignments are in R, so a1(v)

and a′1(v) cannot have different parities as this contradicts R ⊆ sat(T (G, c)). Let c1 be the
parity of a1(v), then we have that assignments in R must satisfy χ′

v :
∑

e∈E1(v)
xe = c1

mod 2, so R ⊆ sat(T (G, c) ∧ χ′
v).

Renaming χ′
v as χ

1
v and adopting notations from the proof, one sees that χ1

v∧χv ≡ χ1
v∧χ2

v

where χ2
v :

∑
e∈E2(v)

xe = c(v)+c1 mod 2. So R respects the formula (T (G, c)−χv)∧χ1
v∧χ2

v

where (T (G, c) − χv) is the formula obtained by removing all clauses of χv from T (G, c).
In this sense, the rectangle is splitting the constraint χv into two subconstraints in disjoint
variables. Since χv ≡ (χ1

v ∧ χ2
v) ∨ (χ1

v ∧ χ2
v) it is plausible that potentially many models of

χv are not in R. We show that this is true in the next section.

5.2 Vertex Splitting and Sub-Constraints for Tseitin-Formulas

Let v ∈ V (G) and let (N1, N2) be a proper partition of N(v), that is, neither N1 nor N2 is
empty. The graph G′ we get by splitting v along (N1, N2) is defined as the graph we get by
deleting v, adding two vertices v1 and v2, and connecting v1 to all vertices in N1 and v2 to
all vertices in N2. We now show that splitting a vertex v in a graph G has the same effect
as adding a sub-constraint of χv.

Lemma 6. Let T (G, c) be a Tseitin-formula. Let v ∈ V (G) and let (N1, N2) be a proper
partition of N(v). Let c1 and c2 be such that c1+c2 = c(v) mod 2 and let χi

v :
∑

u∈Ni
xuv =

ci mod 2 for i ∈ {1, 2} be sub-constraints of χv. Call G′ the result of splitting v along
(N1, N2) and set

c′(u) :=

{
c(u), if u ∈ V (G) \ {v}
ci, if u = vi, i ∈ {1, 2}

There is a bijection ρ : var(T (G, c)) → var(T (G′, c′)) acting as a renaming of the variables
such that T (G′, c′) ≡ (T (G, c) ∧ χ1

v) ◦ ρ.
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Proof. Denote by T (G, c) − χv the formula equivalent to the conjunction of all χu for
u ∈ V (G) \ {v}. Then T (G, c) ∧ χ1

v ≡ (T (G, c) − χv) ∧ χ1
v ∧ χ2

v. The constraints χu for
u ∈ V (G) \ {v} appear in both T (G′, c′) and in T (G, c) − χv and the sub-constraints χ1

v

and χ2
v are exactly the constraints for v1 and v2 in T (G′, c′) modulo the variable renaming

ρ defined by ρ(xuv) = xuv1 when u ∈ N1, ρ(xuv) = xuv2 when u ∈ N2, and ρ(xe) = xe when
v is not incident to e.

Intuitely, Lemma 6 says that splitting a vertex in G and adding sub-constraint are
essentially the same operation. This allows us to compute the number of models of a
Tseitin-formula to which a sub-constraint was added.

Lemma 7. Let T (G, c) be a satisfiable Tseitin-formula where G is connected. Define
T (G′, c′) as in Lemma 6. If G′ is connected then T (G′, c′) has 2|E(G)|−|V (G)| models.

Proof. T (G, c) is satisfiable and
∑

u∈V (G′) c
′(u) =

∑
u∈V (G) c(u) = 0 mod 2 so T (G′, c′) is

satisfiable by Proposition 1. Using Proposition 2 yields that T (G′, c′) has 2|E(G′)|−|V (G′)|+1 =
2|E(G)|−|V (G)| models.

Lemma 8. Let T (G, c) be a satisfiable Tseitin-formula where G is connected. Let {v1, . . . , vk}
be an independent set in G. For all i ∈ [k] let (N i

1, N
i
2) be a proper partition of N(vi) and

let χ′
vi :

∑
u∈N i

1
xuvi = ci mod 2. If the graph obtained by splitting all vi along (N i

1, N
i
2) is

connected, then the formula T (G, c) ∧ χ′
v1 ∧ · · · ∧ χ′

vk
has 2|E(G)|−|V (G)|−k+1 models.

Proof. An easy induction based on Lemma 6 and Lemma 7. The induction works since,
{v1, . . . , vk} being an independant set, the edges to modify by splitting vi are still in the
graph where v1, . . . , vi−1 have been split.

5.3 Vertex Splitting in 3-Connected Graphs

When we want to apply the results of the last sections to bound the size of rectangles, we
require that the graph G remains connected after splitting vertices. This is obviously not
true for all choices of vertex splits, but here we will see that if G is sufficiently connected,
then we can always chose a large subset of any set of potential splits such that, after applying
the split for this subset, G remains connected.

Lemma 9. Let G be a 3-connected graph of and let I = {v1, . . . , vk} be an independent set
in G. For every i ∈ [k] let (N i

1, N
i
2) be a proper partition of N(vi). Then there is a subset

S ⊆ I of size at least k/3 such that the graph resulting from splitting all vi ∈ S along the
corresponding (N i

1, N
i
2) is connected.

Proof. Let C1, . . . , Cr be the connected components of the graph G1 that we get by splitting
all vi. If G1 is connected, then we can set S = I and we are done. So assume that r > 1
in the following. Now add for every i ∈ [k] the edge (v1i , v

2
i ). Call this edge set L (for

links) and the resulting graph G2. Note that G2 is connected and for every edge set E′ ⊆ L
we have that G2 \ E′ is connected if and only if G is connected after splitting the vertices
corresponding to the edges in E′. Denote by Lin the edges in L whose end points both lie
in some component Cj and let Lout := L \ Lin. Note that 2k = 2|I| = |Lout|+ |Lin|.
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Let Sj = {v ∈ I | |{v1, v2}∩V (Cj)| = 1} be the subset of I such that after splitting the
vertices in I, exactly one side of the vertex ends up in Cj . We show that |Sj | ≥ 3. Since G2

is connected but the set Cj is a connected component of G2 \L = G1, there must be at least
one edge in L incident to a vertex in Cj . By construction this vertex is in I, say it is vi.
Since N i

1 ̸= ∅ and N i
2 ̸= ∅, we have that vi has a neighbor w in Cj and w ̸∈ I (since I is an

independent set). If we delete the vertices of Sj , then a subset of Cj becomes disconnected
from the rest of G2 (which is non-empty because there is at least one component different
from Cj in G2 which also contains a vertex not in I by the same reasoning as before). But
then, because G is 3-connected, there must be at least three vertices in Sj .

Now we have that 2|Lout| =
∑r

i=1 |Sj | ≥ 3r, so

r ≤ 2

3
|Lout|.

Now contract all components Cj in G2 and call the resulting multigraph G3. Note
that G3 is connected, that |V (G3)| = r, and that E(G3) = Lout. Let ET be the edges of
a spanning tree of G3 and let E∗ be the remaining edges. Then |Lout| = |ET | + |E∗| =
r − 1 + |E∗| < 2|Lout|/3 + |E∗| and thus

|E∗| > |Lout|
3

.

Recall that each edge in Lout = E(G3) corresponds to a vertex in I that was split when
going from G to G1. Since G3 remains connected when we delete the edge set E∗, splitting
only the vertices corresponding to E∗ in G yields a connected graph. Finally, the number of
vertices of I that we can split in G while preserving connectivity is the same as the number
of links in G2 that can be deleted while preserving connectivity. If we choose not to delete
the edges that, after contradiction of G2 to G3 constitute ET , then the number of links of
G2 that we can delete while preserving connectivity is,

|Lin ∪ E∗| = |Lin|+ |E∗| = |L| − |Lout|+ |E∗| > |L| − 2

3
|Lout| ≥

1

3
|L| = k

3
.

6. DNNF Lower Bounds for Tseitin-Formulas

In this section, we use the results of the previous sections to show our lower bounds for
DNNF computing Tseitin-formulas. To this end, we first show that we can restrict ourselves
to the case of 3-connected graphs.

6.1 Reduction from Connected to 3-Connected Graphs

In (Bodlaender & Koster, 2006), Bodlaender and Koster study how separators can be used
in the context of treewidth. They call a separator S safe for treewidth if there exists a
connected component of G \S whose vertex set V ′ is such that tw(G[S ∪V ′]+ clique(S)) =
tw(G), where G[S ∪ V ′] + clique(S) is the graph induced on S ∪ V ′ with additional edges
that pairwise connect all vertices in S.
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Lemma 10. (Bodlaender & Koster, 2006, Corollary 15) Every separator of size 1 is safe
for treewidth. When G has no separator of size 1, every separator of size 2 is safe for
treewidth.

Remember that a topological minor H of a G is a graph that can be constructed from
G by iteratively applying the following operations:

− edge deletion,

− deletion of isolated vertices, or

− subdivision elimination: if deg(v) = 2 then delete v and, if its two neighbors are not
already connected, then connect them.

Note that for subdivision elimination, if the two neighbors of v are already connected,
then the subdivision elimination boils down to two edge deletions followed by the deletion
of the now isolated vertex v.

Lemma 11. Let H be a topological minor of G. If the satisfiable Tseitin-formula T (G, 0)
has a DNNF of size s, then so does T (H, 0).

Proof. Let D be a DNNF representing T (G, 0). We show how to obtain a DNNF D′

representing T (H, 0) with |D′| = |D| when H is obtained by applying a single operation
(edge deletion, isolated vertex deletion, subdivision elimination). The lemma will then
follow by induction.

If H is obtained by deleting an isolated vertex v from G, then T (H, 0) = T (G, 0) since
isolated vertices give no constraints and thus no clauses in T (G, 0). So in this case D′ = D.

If H is obtained by deleting an edge e = uv from G, then T (H, 0) = T (G, 0)|xe. Condi-
tioning a DNNF on a variable assignment does not increase its size: one can just replace in
D every occurence of xe by 0 and every occurence xe by 1 to obtain D′. Clearly |D′| = |D|.

Finally assume that there is a vertex v of degree 2 in G incident to the edges e1 = uv
and e2 = vw and say that H is constructed from G by subdivision elimination of v. There
are two cases. If uw ∈ E(G), then H is obtained by removing v, e1 and e2 from G.
In other words, H is derived from G by two edge deletions (e1 and e2) followed by one
isolated vertex deletion (v). We have already treated these operations so we know how
to obtain D′ from D in this case. If however uw ̸∈ E(G) then H is obtained by deleting
v, e1, e2 and by connecting u to w. Since c(v) = 0, the constraint χv : xe1 + xe2 = 0
mod 2 implies that, in every satisfying assignment, xe1 and xe2 take the same value. Thus,
abusing notation a little and calling e1 the edge between u and w in H, we obtain that
T (H, 0) ≡ T (G, 0)|xe2 ∨ T (G, 0)|xe2 . We say that T (H, 0) is obtained by forgetting xe2
from T (G, 0), denoted T (H, 0) ≡ ∃xe2 .T (G, 0). Forgetting is feasible on DNNF without size
increase. Indeed forgetting xe2 from D boils down to replacing both occurrences of xe2 and
occurences of xe2 by 1 (Darwiche, 2001). Calling the resulting DNNF D′, we clearly have
|D′| = |D|.

We remark in passing that a result analogous to Lemma 11 is also true for 1-NBP and
1-BP instead of DNNF. For 1-NBP this is directly clear since the forgetting operation that
we use in the proof is also possible on 1-NBP without any size increase and so the same proof
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works. However, for 1-BP the proof is not immediate, since for them forgetting variables
generally leads to an unavoidable blow-up in size (Darwiche & Marquis, 2002). The proof
can still be made to work nevertheless because we are in a special case in which the variable
to forget is equivalent to a variable that remains and thus the operation is possible without
any size increase. Since we do not use Lemma 11 for 1-NBP or 1-BP, we leave out the
details.

Lemma 12. Let G be a graph with treewidth at least 3. Then G has a 3-connected topological
minor H with tw(H) = tw(G).

Proof. First we construct a topological minor of G with no separator of size 1 that preserves
treewidth. Let S = {v} be a separator of size 1 of G, then G\S has a connected component
V ′ such that G[S ∪ V ′] + clique(S) = G[S ∪ V ′] has treewidth tw(G). Let G′ = G[S ∪ V ′],
then tw(G′) = tw(G). Observe that G′ is a topological minor (remove all edges not in
G[S ∪ V ′] thus isolating all vertices not in S ∪ V ′, which are then deleted) where S is no
longer a separator. Repeat the construction until G′ has no separator of size 1.

Now assume S = {u, v} is a separator of G′. If V ′ are the vertices of a connected
component of G′ \ S, then there is a path from u to v in G[S ∪ V ′] since otherwise either
{u} or {v} is a separator of size 1 of G′. Lemma 10 ensures that there is a connected
component H ′ in G′ \S such that H := (V (H ′)∪S,E(G[V (H ′)∪S])∪{uv}) has treewidth
tw(H) = tw(G′) = tw(G). Let us prove that H is topological minor of G′. Consider
a connected component of G′ \ S distinct from H ′ with vertices V ′ and let P be a path
connecting u to v in G[S∪V ′]. Delete all edges of G[S∪V ′] not in P , then delete all isolated
vertices in V ′ so that only P remains, finally use subdivision elimination to reduce P to a
single edge uv. Repeat the procedure for all connected components of G′ \ S distinct from
H ′, the resulting topological minor is G[V (H ′) ∪ S] with the (additional) edge uv, so H.

Repeat the construction until there are no separators of size 1 or size 2 left. Note
that this process eventually terminates since the number of vertices decreases after every
separator elimination. The resulting graph H is a topological minor of G of treewidth tw(G)
without separators of size 1 or 2. Since tw(H) = tw(G) ≥ 3, we have that H has at least 4
vertices, so H is 3-connected.

Lemma 12 does not hold when replacing treewidth by pathwidth. To see this, note that
trees can have arbitrarily high pathwidth, see (Scheffler, 1989), and trees with more than 3
vertices are clearly not 3-connected. Connected topological minors of trees are again trees,
so a topological minor of a tree is 3-connected if and only if it has at most three vertices
and therefore its pathwidth is at most 2.

6.2 Proof of the DNNF Lower Bound and of the Main Result

Lemma 13. Let T (G, c) be a satisfiable Tseitin-formula where G is a connected graph
with maximum degree at most ∆. Any complete DNNF computing T (G, c) has size at
least 2Ω(tw(G)/∆).

Proof. By Lemma 2 we can set c = 0. By Lemmas 11 and 12 we can assume that G is
3-connected. The lemma is proved by invoking Theorem 5 and showing that aR(T (G, c)) =
2Ω(tw(G)/∆). More specifically, we show that the adversarial multi-partition rectangle com-
plexity is lower-bounded by 2k for k := 2tw(G)

9(∆+1) . To this end, we will show that the rectangles
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that Charlotte can construct after Adam’s answer are never bigger than 2|E(G)|−|V (G)|−k+1.
Since T (G, c) has 2|E(G)|−|V (G)|+1 models, the claim then follows.

So let Charlotte choose a v-tree T . Note that since the variables of T (G, 0) are the
edges of G, the v-tree T is also a branch decomposition of G. Now by the definition of
branchwidth, Adam can choose a cut of T inducing a partition (E1, E2) of E(G) for which
there exists a set V ′ ∈ V (G) of at least bw(G) ≥ 2

3 tw(G) vertices incident to edges in E1

and to edges in E2.
G has maximum degree ∆ so there is an independent set V ′′ ⊆ V ′ of size at least

|V ′|
∆+1 . Since G is 3-connected, by Lemma 9 there is a subset V ∗ ⊆ V ′′ of size at least
|V ′′|
3 ≥ 2tw(G)

9(∆+1) = k such that G remains connected after splitting of the nodes in V ∗ along the

partition of their neighbors induced by the edges partition (E1, E2). Using Lemma 5, we find
that any rectangle R for the partition (E1, E2) respects a sub-constraint χ′

v for each v ∈ V ∗.
So R respects T (G, 0) ∧

∧
v∈V ∗ χ′

v. Finally, Lemma 8 shows that |R| ≤ 2|E(G)|−|V (G)|−k+1,
as required.

Theorem 1 is now a direct consequence of Theorem 3, Lemma 13 and Lemma 2. Let us
however sum up the chain of inequalities that led to Theorem 1. First we have showned the
following:

Regular Refutation Length for an unsatisfiable T (G, c)

≥ 1-BP size for SearchT (G,c)

≥ 1-BP size for SearchVertex(T (G, c))

= well-structured 1-BP size for SearchVertex(T (G, c))

≥ DNNF size for T (G, 0)/O(|V (G)|)

(Theorem 2)

(Corollary 1)

(Lemma 3)

(Theorem 3, Lemma 2)

Then we have shown a bound on the size of the smallest DNNF representing a satisfiable
Tseitin formula, that can be summarized as follows. Let H be the 3-connected topological
minor of G chosen by Lemma 12.

DNNF size for T (G, 0)

≥ DNNF size for T (H, 0)

≥ aR(T (H, 0))

≥ 2k where k = 2 tw(H)/(9(∆(H) + 1))

= 2k where k = 2 tw(G)/(9(∆(H) + 1))

≥ 2k where k = 2 tw(G)/(9(∆(G) + 1))

(Lemma 12)

(Theorem 5)

(Lemma 13)

(Lemma 12)

(∆(G) ≥ ∆(H))

Regarding Lemma 13, note that a similar lower bounds using pathwidth instead of
treewidth holds on the size of the smallest 1-NBP computing a Tseitin-formula. But then,
as explained before, the reduction to Tseitin-formulas structured by 3-connected graphs
does not preserve the pathwidth. So we can only phrase our result with pathwidth for
Tseitin-formulas whose graphs are already 3-connected.

Lemma 14. Let T (G, c) be a satisfiable Tseitin-formula where G is a 3-connected graph
with maximum degree at most ∆. Then every 1-NBP computing T (G, c) has size at least
2Ω(pw(G)/∆).
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Proof. The proof is the similar to that of Lemma 13. Again by Lemma 2 we can set c = 0
and this time it is assumed in the lemma’s statement that G is 3-connected. The proof
then follows Lemma 13’s proof to show that the linear adversarial multi-partition rectan-
gle complexity is lower-bounded by 2k for k := pw(G)

3∆ . One can just follows the second and
third paragraphs of that proof, replacing vtree by linear vtree, branch decomposition by lin-
ear branch decomposition, branchwidth with linear branchwidth, and using the inequality
bwℓ(G) ≥ pw(G) from Lemma 1.

In comparison, (Itsykson et al., 2021) introduced a new width measure for graphs called
the component width, denoted by compw(G), and proved that the 1-NBP size for any
satisfiable Tseitin-formula T (G, c) is between 2compw(G) and |E(G)| × 2compw(G) + 2. They
compared the component width of a graph to its treewidth and its pathwidth and were
able to show that 1

2(tw(G) − 1) ≤ compw(G) ≤ pw(G) + 1 and that the two bounds are
thight. On the one hand, since the component width of trees is 0 while the pathwidth
is unbounded, our Lemma 14 does not extend to cases where G is not 3-connected. On
the other hand Lemma 14 also shows the component width and the pathwidth are linearly
related for 3-connected graphs whose maximum degree is bounded by a constant.

7. Conclusion

We have shown that the unsatisfiable Tseitin-formulas with polynomial length of regular
resolution refutations are completely determined by the treewidth of their graphs. We did
this by connecting lower bounds on these types of refutations to size bounds on DNNF
representations of Tseitin-formulas. Moreover, we introduced a new two-player game that
allowed us to show DNNF lower bounds.

Let us discuss some questions that we think are worth exploring in the future. First, it
would be interesting to see if a 2Ω(tw(G)) lower bound for the refutation of Tseitin-formulas
can also be shown for general resolution. In that case the length of resolution refutations
would essentially be the same as that regular resolution refutations for Tseitin formulas.
Note that this is somewhat plausible since other measures like space and width are known
to be the same for the two proof systems for these formulas (Galesi et al., 2020).

Another question is the relation between knowledge compilation and proof complexity.
As far as we are aware, our Theorem 3 is the first result that connects bounds on DNNF to
such in proof complexity. It would be interesting to see if this connection can be strenght-
ened to other classes of instances, other proof systems, representations from knowledge
compilation and measures on proofs and representations, respectively.
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Appendix A. Pathwidth and Linear Branchwidth

We prove the relation between pathwidth and linear branchwidth stated in Lemma 1. We
shall use the definition of pathwidth in terms of path decomposition. Given a graph G, a
path decomposition of G is a finite sequence P = (B1, . . . , BN ) of vertex sets called bags,
such that

� V (G) = B1 ∪ · · · ∪BN

� for every uv ∈ E(G), there is a bag Bi containing both u and v

� for every i, j and k such that 1 ≤ i < j < k ≤ N , we have Bi ∩Bk ⊆ Bj .

The width of the path decomposition P is defined as

width(P) := max
1≤i≤|P|

|Bi| − 1.

The pathwidth of G is the minimum width of a path decomposition of G, so pw(G) :=
minP width(P).

Recall that a branch decomposition T of G is a binary tree whose leaves are in bi-
jection with E(G). Removing any e ∈ E(T ) splits the tree into two connected compo-
nents, so it also partitions the edges of E(G) into two sets E1(e, T ) and E2(e, T ) that
are in bijection with the leaves of the first and second component, respectively. For
e ∈ E(T ), order(e, T ) is the number of vertices in V (G) that are incident to some edge
in E1(e, T ) and to some edge in E2(e, T ). Recall that the linear branchwidth is defined
as bwℓ(G) = minT maxe∈E(T ) order(e, T ) where T are linear branch decompositions. Lin-
ear branch decompositions of G can alternatively be seen as orders of the edges of G.
Let E(G) = {e1, . . . , em}, let π be a permutation of {1, . . . ,m} and consider the ordering
eπ(1), . . . , eπ(m). For all 1 ≤ i < m we define order(i, π) to be the number of vertices in V (G)
that are incident to some edge in {eπ(1), . . . , eπ(i)} and to some edge in {eπ(i+1), . . . , eπ(m)}.
It is easy to see that bwℓ(G) = minπ maxi order(i, π).

The following lemma is shown in the master thesis (Nordstrand, 2017).

Lemma 15. If G has at least two edges then pw(G)− 1 ≤ bwℓ(G) ≤ pw(G) + 1.

Proof. Removing isolated vertices in the graph does not impact the pathwidth or the linear
branchwidth, so without loss of generality we assume that G has no such vertices.

First we prove that pw(G) − 1 ≤ bwℓ(G). Assume G has linear branchwidth k and let
E(G) = {e1, . . . , em}. Let π be a permutation of {1, . . . ,m}. For i ranging from 1 to m
define Bi to be the vertex set containing both vertices of eπ(i) plus all vertices that are
incident to some edge in {eπ(1), . . . , eπ(i)} and to some edge in {eπ(i+1), . . . , eπ(m)} (which is
not empty since m ≥ 2). Observe that if there is i′ < i < i′′ such that u is incident to eπ(i′)
and to eπ(i′′) then u is in Bi. From the definition of Bi we deduce that |Bi| ≤ order(i, π)+2
(the +2 comes from the vertices of eπ(i)) so if B1, . . . , Bm is a path decomposition then its
width is at most maxi order(i, π) + 1. We claim that B1, . . . , Bm is a path decomposition.
Fr the first two conditions and since G has no isolated vertices, we obtain that the union of
B1, . . . , Bm equals V (G) and that every edge ej of G is at least contained in Bπ−1(j). Now
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for the third condition, take 1 ≤ i < j < k ≤ m and consider u ∈ Bi ∩ Bk. By definition
there are i′ ≤ i ≤ i′′ and k′ ≤ k ≤ k′′ such that u is a vertex of eπ(i′), eπ(i′′), eπ(k′) and
eπ(k′′). Since but then i′ < j < k′′ holds and therefore u is in Bj .

Now we prove the other direction, so bwℓ(G) ≤ pw(G) + 1. Consider a path decompo-
sition P = (B1, . . . , BN ). We construct π as follows. Let c = 1 and start with all edges
of G unmarked. We visit the bags in order. When the vertices of an unmarked edge ei
are both in the current bag, then set π(c) to i, mark ei and increment c. If there are
several such edges, we apply an arbitrary tie-breaking and treat all of them in any order.
At the end of the procedure all the edges are marked (since each edge is contained in some
bag), so π is permutation of {1, . . . ,m}. Now for each 1 ≤ i ≤ m, let i∗ be the smallest
index of a bag containing ei. By construction if π−1(i) ≤ π−1(j) then i∗ ≤ j∗. Now take
1 ≤ k < m, and let u be a vertex incident to an edge ei in {eπ(1), . . . , eπ(π−1(k))} and to an
edge ej in {eπ(π−1(k)+1), . . . , eπ(m)}. Since π−1(i) ≤ π−1(k) < π−1(j) we have i∗ ≤ k∗ ≤ j∗.
Moreover, since ei ⊆ Bi∗ and ej ⊆ Bj∗ we have u ∈ Bi∗ ∩ Bj∗ ⊆ Bk∗ . This shows that
order(π−1(k), π) ≤ |Bk∗ |. So if P is a path decomposition of width pw(G) the corresponding
ordering π verifies maxk order(k, π) ≤ pw(G) + 1.
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