
Journal of Artificial Intelligence Research 74 (2022) 917-955 Submitted 12/2021; published 06/2022

Path Counting for Grid-Based Navigation

Rhys Goldstein rhys.goldstein@autodesk.com
Kean Walmsley kean.walmsley@autodesk.com
Jacobo Bibliowicz jacky.bibliowicz@autodesk.com
Alexander Tessier alex.tessier@autodesk.com
Autodesk Research, Toronto, ON, Canada

Simon Breslav simon.breslav@trax.co

Azam Khan azam.khan@trax.co

Trax.Co, Toronto, ON, Canada

Abstract

Counting the number of shortest paths on a grid is a simple procedure with close ties
to Pascal’s triangle. We show how path counting can be used to select relatively direct grid
paths for AI-related applications involving navigation through spatial environments. Typ-
ical implementations of Dijkstra’s algorithm and A* prioritize grid moves in an arbitrary
manner, producing paths which stray conspicuously far from line-of-sight trajectories. We
find that by counting the number of paths which traverse each vertex, then selecting the
vertices with the highest counts, one obtains a path that is reasonably direct in practice
and can be improved by refining the grid resolution. Central Dijkstra and Central A*
are introduced as the basic methods for computing these central grid paths. Theoretical
analysis reveals that the proposed grid-based navigation approach is related to an existing
grid-based visibility approach, and establishes that central grid paths converge on clear
sightlines as the grid spacing approaches zero. A more general property, that central paths
converge on direct paths, is formulated as a conjecture.

1. Introduction

Computational methods for navigation are essential to many AI-related applications involv-
ing spatial environments, particularly in the domains of video games (Botea et al., 2013),
robotics (Noreen et al., 2016), and architectural design (Pelechano et al., 2008; Nagy et al.,
2017). Some of these methods adhere to a grid-based approach in which (1) the spatial
environment is represented by a regular grid of vertices; (2) the vertices are processed using
some form of graph, tree, or array traversal algorithm; and (3) after processing each vertex,
information is propagated to neighboring vertices. A typical grid-based navigation method
will handle straight-line paths perfectly if they are oriented such that they pass directly
through neighboring vertices, but not if they are oriented at any other angle. The purpose
of this paper is to demonstrate a strictly grid-based approach for approximating straight
path trajectories that head in arbitrary directions. The new approach is based on the simple
and well-known procedure of counting the number of shortest paths on a grid.

The outcome of this work is a practical solution to a common problem in grid path
planning. If there exists a grid path from some vertex A to another vertex B, there are
often many shortest grid paths with the same length. An example of a case involving
multiple shortest grid paths is shown in Figure 1. Typical grid-based implementations of
Dijkstra’s algorithm and A* prioritize grid moves using arbitrary tie-breaking conventions,

©2022 AI Access Foundation. All rights reserved.

Goldstein, Walmsley, Bibliowicz, Tessier, Breslav, & Khan

(a) A relatively indirect shortest grid path

(b) A more direct shortest grid path

Figure 1: Two shortest grid paths (purple arrows) are shown alongside illustrations of
corresponding smoothed paths (green curves). Whereas a simple rule for prioritizing moves
might generate a grid path like the one in (a), the grid path in (b) is more direct and should
yield a shorter smoothed path.

which tends to produce relatively indirect paths. For instance, a convention to lead with
diagonal moves would produce the relatively indirect shortest grid path in Figure 1a. The
problem is how to select more direct shortest grid paths like the one in Figure 1b. The first
grid path strays conspicuously far from line-of-sight trajectories as it traverses obstacle-free
regions of the environment. The second grid path adheres reasonably well to sightlines in
open regions. Either grid path could be smoothed in a post-processing step, but the grid
path in Figure 1b should yield a shorter smoothed path than the one in Figure 1a.

918

Path Counting for Grid-Based Navigation

It is possible to select relatively direct grid paths by conducting numerous line-of-sight
tests or performing other geometric calculations. However, we find that decent results can
be achieved using a simple path counting technique. Our solution is to count the number
of shortest grid paths which traverse each vertex en route from A to B, then select the
vertices with the highest counts. The approach still requires a basic grid path planning
method such as Dijkstra’s algorithm or A*, as one must construct a directed acyclic graph
of all shortest grid paths. Once this is done, the counting procedure can be applied. We
refer to this approach as central grid path planning, and introduce Central Dijkstra and
Central A* as specific methods for computing central paths. We also present a theoretical
analysis consisting of (1) observations on the relationship between path counting and an
existing grid-based visibility approach; (2) an argument based on the central limit theorem
that central grid paths converge on clear sightlines as the grid spacing approaches zero; and
(3) a conjecture that central paths also converge on direct paths.

2. Background and Assumptions

We begin by defining terms and reviewing the basic concepts and assumptions used through-
out the paper. The review presents related work on paths, grids, grid paths, grid path
planning, any-angle path planning, and grid-based visibility.

2.1 Paths

A path is a directed curve which stretches from one point to another without intersecting
itself or passing through obstacles. If one imagines a path as a string, then pulling on the
string will generally cause the path to shorten until it is pulled taut. A taut path is a path
that does not get shorter when one “pulls” on the ends (Oh & Leong, 2017). We introduce
the concept of a direct path, which means that a sightline between any pair of points on the
path must be part of the path itself. A direct path is always taut, but a taut path is not
necessarily direct. There is also the well-known concept of a shortest path, a path with the
minimum length of all possible paths between a given pair of endpoints. A shortest path
is always direct, but a direct path is not necessarily among the shortest. Non-taut, taut,
direct, and shortest paths are illustrated in Figure 2.

Applications involving navigation have diverse requirements. Nevertheless, we assume
shortest paths are generally preferred over direct paths, direct paths over taut paths, and
taut paths over non-taut paths. In addition, we assume paths which share the same topology
as a shortest path are preferred over paths which do not. Two paths with the same endpoints
share the same topology if the region between them is free of obstacles. Of the paths in
Figure 2, only the first two have a common topology.

Paths may partially or fully reside on the boundaries of obstacles as long as there is
always a traversable region on at least one side. A taut, direct, or shortest path can only
contact obstacle boundaries at certain places: at the endpoints of the path, at convex
corners encountered along the path, or alongside straight or convex surfaces of obstacles.
Everywhere else, such paths are perfectly straight. Paths may or may not be permitted to
pass through single-point gaps, and the methods and associated theory presented in this
paper should apply regardless of which convention is used. Examples of convex and concave
surfaces and corners, and a single-point gap, are indicated in Figure 2.

919

Goldstein, Walmsley, Bibliowicz, Tessier, Breslav, & Khan

Figure 2: An example featuring a (1) non-taut path, (2) taut path, (3) direct path, and (4)
shortest path between points A and B. The dashed sightline connecting two points on the
taut path illustrates why the path is not direct. Also shown are a (P) convex surface, (Q)
concave surface, (R) convex corner, (S) concave corner, and (T) single-point gap.

While our focus is on grid-based methods, paths can also be computed on a continuous
domain using analytic approaches. One such approach is the visibility graph, where (1) ob-
stacles are represented by polygons, (2) corners of polygons and endpoints of paths become
vertices in a graph, (3) sightlines between those vertices become edges in the graph, and
(4) paths are computed using a graph-based shortest path algorithm. The visibility graph
was introduced by Lozano-Pérez and Wesley (1979), who also describe the useful technique
of enlarging obstacles to enforce a minimum passage width. Analytic methods tend to give
exact results if the analytic representation of the environment is exact. For example, the
visibility graph gives exact shortest paths for environments with no curved surfaces.

2.2 Grids

Conventional grid-based methods employ a regular grid of vertices, and restrict information
flow such that the state of each vertex can directly influence only neighboring vertices. A
neighborhood is a set of offsets that determine which vertices are considered neighbors. In
2D, commonly used neighborhoods include the 4- and 8-neighborhood on a rectangular
grid and the 6-neighborhood on a triangular grid. Rivera et al. (2020) provide a detailed
description of the broader set of 2k-neighborhoods on rectangular grids (k � 2), and an
analogous set of (3�2k)-neighborhoods could be described for triangular grids (k � 1). We
refer to these two sets of neighborhoods collectively as the standard 2D grid neighborhoods.
Examples of these neighborhoods appear in Figure 3.

A move is a vector from one vertex to any of its neighbors. The 4-neighborhood and
the 6-neighborhood include only cardinal moves, which point to the nearest vertices along
the primary axes of the grid. We assume all cardinal moves have a length of one grid
spacing. Each successive neighborhood of the same grid type is constructed by taking each
pair of adjacent moves and inserting a new move between them. Each inserted move is the
vector sum of the original two (Rivera et al., 2020). For example, each diagonal move in
the 8-neighborhood is the vector sum of the two surrounding cardinal moves.

920

Path Counting for Grid-Based Navigation

(a) 4-neighborhood (b) 6-neighborhood (c) 8-neighborhood

(d) 12-neighborhood (e) 16-neighborhood

Figure 3: Examples of standard neighborhoods for rectangular and triangular grids.

Unless otherwise stated, all grid path planning examples and illustrations in this paper
use the 8-neighborhood. This should not be interpreted as an endorsement of 8-neighbor
grids over the other options. The proposed methods and associated theory pertain to all of
the standard 2D grid neighborhoods described above, and should generalize to certain 3D
grids as well. Although grid-based navigation methods with larger neighborhoods tend to
be more challenging to implement, they can be expected to yield shorter paths.

2.3 Grid Paths

A grid path begins at a start vertex, then follows a sequence of moves to other not-yet visited
vertices until reaching a destination vertex. Using a standard 2D grid neighborhood, and
assuming no obstacles, the shortest grid paths between two vertices A and B are sequences
involving at most two distinct bracketing moves. If the vector from A to B is aligned with a
neighborhood move, then that move is the sole bracketing move. Otherwise, the bracketing
moves are the pair of adjacent neighborhood moves that lie on either side of the A-B vector.
To get from [0; 0] to [6; 3] using the 8-neighborhood, for example, the bracketing moves
are [1; 0] and [1; 1] and one needs three of each. More generally, if the vector from A to
B is [x; y], and if the two bracketing moves are u = [ux; uy] and v = [vx; vy], then the
shortest possible grid paths include exactly m moves in the u direction and k moves in the
v direction, where m and k are given by the coordinate transformation below.�

m
k

�
=

�
ux vx
uy vy

��1 �
x
y

�
The transformation simplifies to the following.

m =
vyx� vxy
uxvy � vxuy

k =
�uyx+ uxy

uxvy � vxuy
(1)

921

Goldstein, Walmsley, Bibliowicz, Tessier, Breslav, & Khan

Adding the lengths of all moves in one of these sequences yields a well-known metric
that we refer to as the standard 2D grid distance, and denote h(x; y).

h(x; y) = m
q
ux2 + uy2 + k

q
vx2 + vy2 (2)

The standard grid distance reduces to what is known as the Manhattan distance for
4-neighbor grids or the octile distance for 8-neighbor grids. Rivera et al. (2020) prove
that h(x; y) is the minimum possible grid path length for all standard rectangular 2D grid
neighborhoods, and provide algorithms which compute this metric for up to 64 neighbors.

Obstacles have the effect of disallowing moves between certain pairs of vertices. In the
presence of obstacles, a shortest grid path between A and B may be longer than the standard
grid distance, or there may be no grid paths at all between the two points. Given a set of
obstacles defined on a continuous domain, a grid-based approximation of the environment
can be constructed by overlaying a grid of vertices. Moves between two neighboring vertices
are allowed if and only if there is a straight-line path between them.

Sometimes the obstacle geometry itself takes the form of a grid, either because a preexist-
ing continuous representation of the environment was rasterized or because the environment
was originally designed as a grid. Grid-based obstacle geometry can usually be regarded
as an array of square, triangular, or hexagonal cells, where each cell is either blocked or
unblocked. When a rectangular grid of vertices is overlaid on an environment of square
cells, it is common practice to place the vertices on the centers of cells, as in Figure 4a, or
on the corners of cells, as in Figure 4b. We assume that vertices on triangular grids would
be placed on the centers of hexagonal cells or on the corners of triangular cells.

(a) Vertices placed on cell centers (b) Vertices placed on cell corners

Figure 4: Vertex placement with grid-based obstacle geometry.

While theoretical and empirical studies have shown that placing vertices on square
cell corners produces shorter paths (Bailey et al., 2015), the cell center convention may
be more convenient for certain applications such as tile-based video games. The grid-
based methods proposed in this paper work with either convention, and in either case we
treat grid-based obstacles the same as continuous obstacles. If a straight-line path exists
between two neighboring vertices, moves between those vertices are allowed. An important
consideration arises for grid-based obstacle geometry with single-point gaps, such as the
gap between vertices P and Q in Figure 4a or at vertex R in Figure 4b. Paths through such
gaps may be either permitted or prohibited.

922

Path Counting for Grid-Based Navigation

2.4 Grid Path Planning

The classic approach to grid path planning involves setting up a grid-based representation of
an environment, as described in Section 2.3, then applying Dijkstra’s graph-based shortest
path algorithm (Dijkstra, 1959), or its A* variant (Hart et al., 1968), to find one or more
shortest paths.

Grid-based implementations of Dijkstra’s algorithm typically compute a hierarchy of
paths between a source vertex and all accessible vertices in the environment. Every vertex
is assigned an initial grid distance of infinity, except the source which has a grid distance
of zero. The algorithm proceeds by expanding not-yet processed vertices in order of grid
distance. When a vertex is expanded, finite grid distances are computed for its neighboring
vertices making them eligible for expansion. If different grid distances are computed for
the same vertex, the shortest is always selected. Once this search procedure is complete,
shortest grid paths can be generated by retracing moves from any processed vertex to the
source vertex. If needed, paths can be reversed so that they start at the source.

Grid-based implementations of A* are similar, except that vertices are expanded in an
order that more efficiently reaches a pre-selected goal vertex. With A*, vertices are ordered
by their grid distance from the source plus a lower-bound estimate of their distance to the
goal. In this paper, we assume the lower-bound estimate is the standard 2D grid distance
h(x; y) specified in (2), though other heuristics are sometimes used. If the goal is among
the unprocessed vertices with the minimum combined distance, the search procedure is
terminated and a shortest grid path is generated from the goal to the source. The path can
be reversed if needed.

Typical implementations of Dijkstra’s algorithm or A* employ some form of tie-breaking
during the search procedure, thereby selecting a single solution from the multitude of short-
est grid paths that usually exist between the source and goal. One tie-breaking convention
is to generate what are known as canonical paths by prioritizing diagonal moves over car-
dinal moves on an 8-neighbor grid (Sturtevant & Rabin, 2016). The shortest grid path in
Figure 1a is an example of a canonical path, assuming vertex A is the source. The approach
can be generalized to larger neighborhoods by prioritizing moves that are vector sums of
the two surrounding moves (Rivera et al., 2020).

Canonical paths arise out of the work of Harabor and Grastien (2011), who demonstrate
that prioritizing diagonal moves allows the A* algorithm to jump over certain vertices dur-
ing the search procedure. The result is a faster variant of A* called Jump Point Search.
Sturtevant and Rabin (2016) use the same ordering of moves to propose the Canonical Di-
jkstra and Canonical A* methods. Canonical Dijkstra incorporates jumping into Dijkstra’s
algorithm to reduce the number of vertex expansions. Canonical A* avoids jumping, but
demonstrates that canonical ordering alone can reduce the number of neighbors that need
to be visited for each vertex expansion in A*.

For implementations of Dijkstra’s algorithm or A* that do not enforce a canonical order-
ing, the selected shortest grid path is typically determined by other tie-breaking conventions.
These conventions may include a clockwise or counterclockwise ordering of neighborhood
moves, a lexicographical ordering of vertex coordinates, or any tie-break rule for nodes in
a heap-based priority queue. The resulting paths may not be as extreme as the example in
Figure 1a, but they tend to be relatively indirect compared with the path in Figure 1b.

923

Goldstein, Walmsley, Bibliowicz, Tessier, Breslav, & Khan

An alternative to the above tie-breaking conventions is to represent all possible shortest
grid paths leading back to the source vertex. This adaptation of Dijkstra’s algorithm or A*
is largely a matter of recording, for every visited vertex, the set of predecessor vertices that
are traversed by any shortest grid path en route to the source. The result is a directed acyclic
graph of paths, rather than a hierarchy. For A*, a slight change to the termination condition
is also required. To capture all shortest paths, the search procedure must be continued until
the goal vertex is not just one of the unprocessed vertices with the minimum combined
distance, but rather the only unprocessed vertex with the minimum combined distance.
For long, meandering paths, this stricter stopping criterion should not cause a significant
increase in the number of vertices that need to be expanded. Our work shows how the
all-paths variants of Dijkstra’s algorithm and A* can be used to select relatively direct grid
paths, improving quality rather than speed.

2.5 Any-Angle Path Planning

Any-angle path planning methods make use of a path planning grid and typically assume
grid-based obstacle geometry, yet depart in some way from the usual constraints of grid-
based approaches to achieve shorter, more direct paths. Field D* departs from grid-based
constraints by allowing paths to bend at points located between pairs of vertices (Ferguson
& Stentz, 2006). Theta* uses line-of-sight checks to connect grid vertices across distances
far greater than the size of the neighborhood (Daniel et al., 2010). In the Anya method, the
hierarchy that is constructed during the search procedure is not a hierarchy of vertices, but
rather a hierarchy of line segments (Harabor et al., 2016). Whereas most any-angle path
planning methods approximate shortest paths, Anya can be used to find exact shortest
paths assuming the grid-based obstacle geometry is exact.

Some any-angle methods speed up the path planning process by performing a precompu-
tation on the environment before any source or goal vertices are selected. Subgoal Graphs
is an any-angle path planning method that uses a precomputation phase to identify key
vertices, called subgoals, at the corners of grid-based obstacles (Uras et al., 2013). Paths
are found on a graph of these subgoals, similar to the analytic visibility graph method,
and then refined as needed. Block A* uses a hierarchical approach, partitioning grid-based
environments into blocks of, for example, 5-by-5 vertices (Yap et al., 2011). Shortest path
distances are precomputed between the grid vertices on the boundaries of each block, al-
lowing subsequent A* searches to treat blocks rather than vertices as nodes. Block A*
is an any-angle method assuming an analytic or any-angle method is used to precompute
distances within each block. If a strictly grid-based method is used for the precomputation,
then the overall method could also be considered grid-based.

Any-angle path planning is often contrasted with the simple approach of using a classic
grid path planning method, as in Section 2.4, then smoothing the resulting grid path in
a post-processing step. Botea et al. (2004) describe what has become a well-known path
smoothing technique employing a succession of line-of-sight checks. Beginning at a vertex
on one end of a grid path, the procedure is to repeatedly delete the subsequent vertex
as long as the resulting path does not go through an obstacle. This greedy algorithm
is usually successful at straightening and shortening paths, though it sometimes leaves
conspicuous triangle-shaped detours unresolved. Han et al. (2020) propose an enhanced

924

Path Counting for Grid-Based Navigation

“string-pulling” algorithm where line-of-sight checks are used not only to delete points, but
also to insert new points on obstacle corners around which the path is “pulled” taut. Paths
can also be smoothed using relaxation approaches that slightly shift the position of each
point (Richardson & Olson, 2011), or interpolation approaches that replace piecewise linear
intervals with polynomial curves, Bézier curves, or splines (Ravankar et al., 2018). Such
local adjustments can be used to soften sharp turns or increase clearance from obstacles, but
may be inefficient at straightening highly indirect grid paths. Regardless of the approach,
smoothing a path does not change its topology.

2.6 Grid-Based Visibility

Computational methods for visibility have several similarities to those developed for navi-
gation. First, visibility methods are applied in many of the same domains, including video
games (Cohen-Or et al., 2003), robotics (Morini et al., 2010), and architectural design
(Turner et al., 2001; Nagy et al., 2017). They are also formulated in a similar way, with
analytic or grid-based representations of obstacles in a 2D or 3D spatial environment. In
a visibility context, obstacles are interpreted as optical barriers rather than travel barriers,
and the paths of interest are generally straight-line paths called sightlines.

While visibility problems are most often tackled with analytic methods, as reviewed by
Ghosh (2007), or raycasting, as described by Roth (1982), there are also grid-based methods
that will prove closely related to our path counting technique for navigation. Although grid-
based visibility methods appear to enjoy only limited use outside of academia, they offer
similar advantages to grid path planning and other grid-based approaches. They are easy to
implement, and allow the trade-off between speed and accuracy to be conveniently adjusted
by varying the grid spacing.

A grid-based visibility method from the level set community was derived from a partial
differential equation by Tsai et al. (2004) and further validated by Kao and Tsai (2008).
The method approximates the region visible from a source point. The original formulation
assumes implicit obstacle geometry defined on a 4-neighbor grid, but here we adapt the
method to use an explicit representation consistent with Section 2.3. We represent obstacles
using a set of binary values Vr

q, where Vr
q = 1 means neighboring vertices q and r are

mutually visible and Vr
q = 0 means the sightline between them is blocked. The output

of the method is a set of visibility scores x;y in the range 0 � x;y � 1. If x;y � 0:5,
we classify [x; y] as visible. Assuming the source is at [0; 0] and the grid spacing is 1, the
visibility scores for the first quadrant of a 4-neighbor grid are given by (3).

 0;0 = 1

 x;0 = x�1;0Vx;0x�1;0 x > 0

 0;y = 0;y�1V0;y
0;y�1 y > 0

 x;y =
�
x x�1;yVx;yx�1;y + y x;y�1Vx;yx;y�1

�
=(x+ y) x; y > 0

(3)

The calculation in (3) can be applied using a standard array traversal algorithm (e.g.
[x; y] = [0; 0], [1; 0], [2; 0], ..., [0; 1], [1; 1], [2; 1], ...). It can be extended to the other three

925

Goldstein, Walmsley, Bibliowicz, Tessier, Breslav, & Khan

quadrants by negating the x coefficient, the y coefficient, or both. It can be generalized to
3D by adding the obvious z terms to the numerator and denominator of the quotient.

Although the original level set formulation assumes the 4-neighborhood, we can extend
the method to employ any of the standard 2D grid neighborhoods in Section 2.2. Recall from
Section 2.3 that every vertex [x; y] is bracketed by at most two moves u and v. Having
identified these vectors, the coordinate transformation in (1) can be used to obtain the
number of moves m and k in the respective directions. These move counts can then be
substituted into the extended formula below. The effect of these steps is to transform the
coordinate space such that u is mapped to [1; 0], v is mapped to [0; 1], and [x; y] is mapped
to [m; k]. This linear transformation allows the validated 4-neighbor formula to be applied
with [m; k] in place of [x; y].

 0;0 = 1

 m;0 = m�1;0Vm;0m�1;0 m > 0

 0;k = 0;k�1V0;k
0;k�1 k > 0

 m;k =
�
m m�1;kVm;km�1;k + k m;k�1Vm;km;k�1

�
=(m+ k) m; k > 0

(4)

Consider applying this extended method to the 8-neighborhood, specifically within the
cone between the positive x axis and the x = y diagonal. Any vertex [x; y] in this region is
bracketed by the moves [1; 0] and [1; 1]. Substituting these vectors into (1) yields m = x�y
and k = y, and substituting these expressions into (4) yields the formula below. Similar
equations could be derived for all 8 convex cones generated by pairs of adjacent moves.

 x;y =
�

(x� y) x�1;yVx;yx�1;y + y x�1;y�1Vx;yx�1;y�1

�
=x 0 < y < x

Formulating this method for all 3D neighborhoods would require a 3D coordinate trans-
form analogous to the one in Section 2.3, but let us focus on the 26-neighborhood and
consider just the convex cone generated by [1; 0; 0], [1; 1; 0], and [1; 1; 1]. The visibility
scores for vertices in this region are computed as follows, and similar equations exist for all
48 tetrahedral regions.

 x;y;z =

0@ (x� y) x�1;y;zVx;y;zx�1;y;z

+ (y � z) x�1;y�1;zVx;y;zx�1;y�1;z

+ z x�1;y�1;z�1Vx;y;zx�1;y�1;z�1

1A =x 0 < z < y < x

Another grid-based visibility method was proposed by Fisher-Gewirtzman et al. (2013)
for the urban design community. Formulated specifically for 3D voxel grids using the 26-
neighborhood, their method is similar to the 26-neighbor variation of the adapted level set
method discussed above. However, instead of performing linear interpolations on sets of
three neighboring vertices within 48 tetrahedral regions, Fisher-Gewirtzman et al. perform
bi-linear interpolations on sets of four neighboring vertices within 24 pyramidal regions.

We refer to our adaptation of the level set visibility method as the linear grid-based
visibility approach, and suggest that the 26-neighbor algorithm of Fisher-Gewirtzman et al.
be called the bi-linear grid-based visibility approach. The linear approach has a particularly
strong relationship to our proposed use of path counting for grid-based navigation.

926

Path Counting for Grid-Based Navigation

3. Central Grid Path Planning

We now demonstrate how path counting can be used to select relatively direct grid paths,
and explain how the technique can be implemented as an extension to Dijkstra’s algorithm
or A*. An empirical study compares the proposed Central A* method to A* and Theta*.

3.1 Path Planning with Counting

Our path planning approach is inspired by Pascal’s triangle, the famous number pattern
illustrated in Figure 5. In Pascal’s triangle, a 1 is placed at the apex and repeated along the
two diverging sides. Every other number is generated by adding two preceding numbers.

Figure 5: The top several rows of Pascal’s triangle.

It is widely understood that the recursive procedure which generates Pascal’s triangle is
also a path counting procedure. The apex of the triangle can be viewed as a source vertex
on a standard 2D grid, and every integer is the number of shortest grid paths leading to
that vertex from the source. For example, there are 70 shortest grid paths between the top
of the triangle in Figure 5 and the vertex in the middle of the bottom row.

The relevance of Pascal’s triangle to our path planning problem is most easily seen on a
grid with no obstacles. Consider the task of selecting a relatively direct shortest grid path
from vertex A to vertex B on the obstacle-free grid in Figure 6a. Figure 6b shows all of the
shortest grid paths, which collectively form a parallelogram. To obtain a path that heads
through the middle of the parallelogram, a first attempt might be to label each vertex with
the number of paths from A. As shown in Figure 6c, this yields a parallelogram-shaped slice
of Pascal’s triangle. Prioritizing vertices with higher Pascal numbers would produce a path
that heads relatively directly from A to the vertex labeled 70, and then proceeds toward B.
The goal is a grid path that heads from A to B as directly as possible.

The key to approximating a direct path is to perform the counting procedure from both
ends. As shown in Figure 6d, the path counts from B form the same Pascal number pattern
as the path counts from A, except flipped across both axes. The next step is to multiply
the two opposing sets of path counts to produce another type of path count. By taking
the number of paths from A to a vertex, then multiplying by the number of paths from
the vertex to B, one ends up with the number of paths which traverse the vertex en route

927

