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Abstract

Understanding the computational complexity of training simple neural networks with
rectified linear units (ReLUs) has recently been a subject of intensive research. Closing
gaps and complementing results from the literature, we present several results on the pa-
rameterized complexity of training two-layer ReLU networks with respect to various loss
functions. After a brief discussion of other parameters, we focus on analyzing the influence
of the dimension d of the training data on the computational complexity. We provide run-
ning time lower bounds in terms of W[1]-hardness for parameter d and prove that known
brute-force strategies are essentially optimal (assuming the Exponential Time Hypothesis).
In comparison with previous work, our results hold for a broad(er) range of loss functions,
including `p-loss for all p ∈ [0,∞]. In particular, we improve a known polynomial-time
algorithm for constant d and convex loss functions to a more general class of loss functions,
matching our running time lower bounds also in these cases.

1. Introduction

Dimensionality reduction of data is a central issue in many machine learning scenarios (Bar-
tal, Fandina, & Neiman, 2019; van der Maaten, Postma, & van der Herik, 2009). In this
paper, our focus is on addressing a natural follow-up question: To what extent can “low-
dimensionality” of data points help in lowering the worst-case computational complexity of
the task of training neural networks? This question is particularly relevant from a practical
point of view because real-life data, even if high-dimensional, is often assumed to be con-
tained in a low-dimensional submanifold of the input space. To answer this question, we
will employ tools and concepts from parameterized complexity analysis. Doing so, we focus
on the very basic case of two-layer ReLU (rectified linear units) neural network training.
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Figure 1: The neural network architecture we study in this paper: After the input layer
(left) with d input neurons, we have one hidden layer with k ReLU neurons and a single
output neuron without additional activation function.

We believe that the studied problem, though very simple and practically irrelevant, is a
basic building block in the grand challenge of gaining a fundamental understanding of the
power and limitations of ReLU networks. As already pointed out in the literature (Bakshi,
Jayaram, & Woodruff, 2019; Goel, Klivans, Manurangsi, & Reichman, 2021), understanding
shallow networks is a natural first step which is already quite involved and challenging. To
the best of our knowledge, we are the first to apply principles from parameterized complexity
theory to empirical risk minimization of ReLU networks. Before proceeding with a discus-
sion of related work and our new contributions, we first provide some formal definitions
concerning the problems which are central to our work.

We study empirical risk minimization for neural networks with ReLU activation. A
rectifier is the function [x]+ := max(0, x). Given a loss function ` : R×R→ R≥0, mapping
the predicted and the true label to a loss value, the problem of training a two-layer ReLU
neural network with k hidden neurons and a single output neuron (see Figure 1) is defined
as follows:

k-ReLU(`)

Input: Data points (x1, y1), . . . , (xn, yn) ∈ Rd × R.
Task: Find weight vectors w1, . . . ,wk ∈ Rd, biases b1, . . . , bk ∈ R, and coeffi-

cients a1, . . . , ak ∈ {−1, 1} that minimize

n∑
i=1

`

(
k∑
j=1

aj [〈wj ,xi〉+ bj ]+, yi

)
.

As usual in the context of computational complexity analysis, we consider the decision in-
stead of the optimization version. The corresponding decision problem is to decide whether
a target training error of at most γ ∈ R can be achieved. We believe it is of fundamental
interest to know where the borderlines of exact solvability of ReLU training are. One of
our main contributions is to prove strong computational hardness results that already hold
for only a single hidden ReLU neuron, that is, k = 1.

In this work, we focus on the case of `p-loss functions, that is, `(ŷ, y) = |ŷ − y|p, for
p ∈ ]0,∞[. Note that this includes both convex and concave loss functions (with respect
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to the absolute error |ŷ − y|). In addition, we also investigate the limit cases p = 0 and
p =∞. The `0-loss (which is completely insensitive to outliers) simply counts the number
of points that are not perfectly fitted, while the `∞-loss only cares about outliers, that is,
it measures only the largest error on any data point. The parameter p can be used to
smoothly interpolate between these two extreme options in practice. Notably, concave loss
functions (p < 1) are explicitly used to obtain very outlier-robust methods (Wang, Nie,
Cai, & Huang, 2013; Jiang, Nie, & Huang, 2015; de Araujo, Hirata, & Rakotomamonjy,
2018). See also (Janocha & Czarnecki, 2016) for an analysis of the impact of different loss
functions on neural network training.

Without loss of generality, we always assume that n ≥ d + 1 because otherwise the
problem can be solved in the lower-dimensional affine hull of the input data points.1

The core theme of our work is to better understand how the dimension parameter d
influences the computational complexity of ReLU network training as defined above. To
this end, we conduct a parameterized complexity analysis (Downey & Fellows, 2013). Before
moving on to study the key parameter d, let us briefly discuss other parameters occurring
in our setting. The most natural other parameters are: the number k of ReLU neurons in
the hidden layer, the number n of input points, and the maximum target error γ.

It turns out that the parameterized complexity for these three parameters is already
settled due to the known literature and simple observations. First, the case k = 1 (that is,
1-ReLU(`)) is known to be NP-hard for `2-loss (Dey, Wang, & Xie, 2020; Goel et al., 2021)
and we even extend the NP-hardness to `p-loss for arbitrary p ∈ [0,∞[ (see Theorem 1); this
renders the parameter k hopeless in terms of getting efficient parameterized algorithms. For
the parameter n, fixed-parameter tractability was already observed by Goel et al. (2021)
(see also related work). Finally, for γ = 0, the case k = 1 is polynomial-time solvable (Goel
et al., 2021) and for k ≥ 2 NP-hardness is known (Bakshi et al., 2019; Goel et al., 2021).
Thus, the dimension d clearly is the most interesting parameter also from a theoretical point
of view. We close some knowledge gaps from the literature with respect to d by proving
strong computational hardness results as well as matching upper bounds. Before discussing
our results in more detail, let us first review the closely related literature.

Related Work. The NP-hardness of empirical risk minimization with `2-loss for a single
ReLU was shown independently by Dey et al. (2020) and Goel et al. (2021). The work of
Goel et al. (2021) is probably the one closest to our work. They provided an in-depth study
concerning tight hardness results for depth-2 ReLU networks such as NP-hardness, condi-
tional running time lower bounds, and hardness of approximation. Arora, Basu, Mianjy,
and Mukherjee (2018) provided a polynomial-time algorithm for k-ReLU(`) for d ∈ O(1)
and convex loss `; in terms of parameterized algorithmics, this is an XP-algorithm for pa-
rameter d: the degree of the polynomial of the running time (only) depends on d. The
underlying idea of their algorithm is to basically iterate over all O(nd) hyperplane parti-
tions of the n data points. Indeed, as pointed out by Goel et al. (2021), since there are
at most 2n partitions, the same algorithm implies fixed-parameter tractability for the pa-

1. To see this, assume that all xi are contained in an affine subspace A with dimension strictly less than d.
Using a bijective affine transformation T : A → RdimA, we now can solve the equivalent k-ReLU(`)
problem with the lower-dimensional data points (T (xi), yi), i ∈ [n]. The solution weights for the original
problem can then be obtained by composing T with the affine transformation given by the weights of
the modified problem.
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rameter n. Moreover, Goel et al. (2021) remarked that the well-known Exponential Time
Hypothesis (ETH) implies that no 2o(n)-time algorithm exists. Deciding whether zero er-
ror (γ = 0) is possible (that is, realizable data) is polynomial-time solvable for a single
ReLU by linear programming (Goel et al., 2021) and NP-hard for two ReLUs (Goel et al.,
2021). Approximation has been subject to further works (Dey et al., 2020; Diakonikolas,
Goel, Karmalkar, Klivans, & Soltanolkotabi, 2020; Goel et al., 2021). Furthermore, Bakshi
et al. (2019) and Chen, Klivans, and Meka (2021) showed fixed-parameter tractability re-
sults for related but different learning concepts of ReLU networks and Boob, Dey, and Lan
(2022) studied the computational complexity of ReLU networks where the output neuron
is also a ReLU. Pilanci and Ergen (2020) show that training a 2-layer neural network can
be reformulated as a convex program. However, the implications on the computational
complexity are limited since their result requires the number of hidden neurons to be very
large. Bertschinger, Hertrich, Jungeblut, Miltzow, and Weber (2022) show that training
2-layer neural networks is complete for the complexity class ∃R (existential theory of the
reals), implying that the problem is presumably not contained in NP. They generalize a
previous result by Abrahamsen, Kleist, and Miltzow (2021), who showed the same fact for
specifically designed, more complex architectures.

Finally, note that the number of dimensions appears naturally in parameterized complex-
ity studies for geometric problems (Giannopoulos, Knauer, & Rote, 2009; Knauer, König,
& Werner, 2015); moreover, it occurs also in recent studies for principal component analysis
(PCA) (Fomin, Golovach, & Simonov, 2020; Simonov, Fomin, Golovach, & Panolan, 2019)
and in computer vision (Chin, Cai, & Neumann, 2020).

Our Contributions. Essentially focusing on the influence of the dimension parameter d
(which so far has been neglected in the literature), we provide two main contributions in
terms of worst-case complexity analysis: First, training a two-layer ReLU neural network
is already computationally intractable even for a single hidden neuron and small d (Theo-
rem 1), that is, we show W[1]-hardness for parameter d and provide an ETH-based lower
bound of nΩ(d) matching the running time upper bound of nO(d) of the brute-force algo-
rithm due to Arora et al. (2018). Hence, our result shows that the combinatorial search
among all O(nd) possible hyperplane partitions is essentially the best one can do. Notably,
our hardness results even hold for very sparse data points with binary labels. It is par-
ticularly surprising that (parameterized) hardness already appears in the case of a single
ReLU neuron because this model is almost a linear model. Linear models (like support
vector machines) can be easily trained in polynomial time. Hence, the presence of a single
nonlinearity, in the form of a single hyperplane of breakpoints, increases the computational
complexity a lot. This also indicates that learning more complicated network architec-
tures is expected to be even more difficult because the set of representable piecewise linear
functions becomes much more complex (Hertrich, Basu, Di Summa, & Skutella, 2021).

Second, on the positive side, for any k ≥ 1, we extend the XP-result for convex loss
functions by Arora et al. (2018) to concave loss functions (Theorem 4). Note that for W[1]-
hard problems, an XP-algorithm is the best one can hope for. Hence, we completely settle
the computational complexity parameterized by dimension d of training a two-layer ReLU
neural network for any `p-loss with p ∈ [0,∞[.

1778



Complexity of ReLU Training Parameterized by Dimensionality

Table 1: (Parameterized) computational complexity of training a single ReLU neuron with
respect to parameter d (input dimension) for `p-loss functions.

Hardness Algorithm

p ∈ [0, 1[ W[1]-h. + no no(d)-time alg. (Theorem 1) nO(d) poly(n, d) (Theorem 4)

p ∈ [1,∞[ W[1]-h. + no no(d)-time alg. (Theorem 1) nd poly(n, d) (Arora et al., 2018)
p =∞ - poly(n, d) (Proposition 3)

Besides these two main findings filling gaps in the literature, we also contribute a
polynomial-time algorithm (for arbitrary dimension) for training a single-neuron ReLU
network when using the `∞-loss function (Proposition 3). This generalizes the polynomial-
time result due to Goel et al. (2021) for the zero-error case. Table 1 provides an overview
of our results for the special case of a single hidden neuron (k = 1).

While hardness of approximation was already shown by Goel et al. (2021), we comple-
ment this by parameterized hardness of exact solutions. Thus, our work points the way
ahead towards a need of combining both algorithmic approaches and to look for approxi-
mation algorithms in FPT time.

Parameterized Complexity. We assume the reader to be familiar with basic concepts
of computational complexity theory. Parameterized complexity is a multivariate approach
to study the time complexity of computational problems (Downey & Fellows, 2013; Cy-
gan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, & Saurabh, 2015). An
instance (x, k) of a parameterized problem L ⊆ Σ∗ × N consists of a classical problem in-
stance x ∈ Σ∗ and a parameter value k ∈ N. A parameterized problem is fixed-parameter
tractable (fpt) (contained in the class FPT) if there exists an algorithm solving any in-
stance (x, k) in f(k) · |x|O(1) time, where f is a function solely depending on k. Note that
fixed-parameter tractability implies polynomial time for constant parameter values where,
importantly, the degree of the polynomial is independent from the parameter value. The
class W[1] contains parameterized problems which are presumably not in FPT (e.g. Clique
parameterized by the size of the requested clique). Parameterized intractability can be
shown in terms of W[1]-hardness which is defined via parameterized reductions. A parame-
terized reduction from L to L′ is an algorithm that maps an instance (x, k) in f(k) · |x|O(1)

time to an instance (x′, k′) such that k′ ≤ g(k) for some function g and (x, k) ∈ L if and
only if (x′, k′) ∈ L′. The class XP contains all parameterized problems which can be solved
in polynomial time if the parameter is a constant, that is, in time f(k) · |x|g(k). It is known
that FPT ⊆W[1] ⊆ XP and that FPT ( XP.

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) (Impagli-
azzo & Paturi, 2001) states that 3-SAT cannot be solved in subexponential time in the
number n of variables of the Boolean input formula. That is, there exists a constant c > 0
such that 3-SAT cannot be solved in O(2cn) time. The ETH implies that FPT 6= W[1]
(and hence P 6= NP) (Cygan et al., 2015). It also implies running time lower bounds, for
example, that Clique cannot be solved in ρ(k) · no(k) time for any function ρ, where k is
the size of the sought clique and n is the number of graph vertices (Cygan et al., 2015).
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Notation. For n ∈ N, let [n] := {1, . . . , n}.

2. Hardness of Training a Single ReLU with `p-Loss in Small Dimension

In this section, we show that there is no hope to obtain an FPT algorithm with respect
to parameter d for training even the simplest possible architecture consisting of a single
neuron with respect to the `p-loss for any p ∈ [0,∞[. To this end, we show intractability of
the problem 1-ReLU(`p). For p = 0, the problem is to minimize the number of data points
that are not perfectly fitted.

Theorem 1. For p ∈ [0,∞[, 1-ReLU(`p) is NP-hard, W[1]-hard with respect to dimen-
sion d, and it cannot be solved in ρ(d) · no(d) time for any computable function ρ unless the
Exponential Time Hypothesis fails.

Note that Goel et al. (2021) proved NP-hardness and conditional running time lower
bounds for additive approximation of k-ReLU(`2) for k ≥ 1. Their running time lower
bound for k = 1 is based on a newly introduced assumption of inapproximability of finding
dense subgraphs and the lower bound for k > 1 assumes the Gap Exponential Time Hypoth-
esis (Dinur, 2016) (which implies the ETH). Their results are achieved via gap reductions
from the problems of finding dense subgraphs and coloring hypergraphs. The reductions
are focused on providing a gap which guarantees the approximation hardness. They achieve
this by using a “large” number d of dimensions (typically equal to the number of vertices
of the input (hyper)graph). For our purpose, however, we need a more fine-grained param-
eterized reduction where d is “small”. To this end, we reduce from a colored variant of
Clique such that d is linearly upper-bounded in the size of the clique.

Proof of Theorem 1. We reduce from the following problem.

Multicolored Clique

Input: An undirected graph G = (V,E) where the vertices are colored
with k colors.

Question: Does G contain a k-clique (a complete subgraph with k vertices)
with exactly one vertex from each color?

Multicolored Clique is NP-hard, W[1]-hard with respect to k, and not solvable in
ρ(k) · |V |o(k) time for any computable function ρ unless the Exponential Time Hypothesis
fails (Cygan et al., 2015). We give a parameterized reduction (which is also polynomial-
time) from Multicolored Clique to 1-ReLU(`p) where the dimension of the data points
is d = 2k. Hence, the theorem follows.

Let G = (V,E) be an undirected graph with N := |V | vertices and let c : V → [k] be a
vertex coloring. We denote by Vj = {vj,1, . . . , vj,Nj} the set of vertices with color j, where

Nj := |Vj |. In the following, we construct a set of data points from R2k with labels in {0, 1},
as well as a target error γ ∈ R, such that these data points can be fitted by a ReLU function
with `p-error at most γ if and only if a multicolored k-clique exists in G.

We set the target error to γ := N −k. Next, we define a small value 0 < δ < 1 such that
making an absolute error of value 1− δ on N − k+ 1 different input points already exceeds
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Figure 2: Schematic illustration of the reduction from Multicolored Clique. Shown
are two dimensions corresponding to one of the k colors. The white points x̃1, . . . , x̃5

correspond to vertices of that color and have label 1. Black points indicate M copies of the
corresponding middle point with label 0. The dashed line indicates the hyperplane defined
by the weight vector w of the ReLU neuron and the shaded area indicates the predictions
of the neuron (darker means larger values). The idea is that exactly one white point can
be predicted correctly (which selects the corresponding vertex to be in the clique) without
predicting a black point incorrectly and thereby exceeding the error.

the threshold γ. For p = 0, we simply choose δ := 0.5. For p > 0, let p̃ := max{p, 1} and
δ := 1/(2p̃(N − k + 1)). This yields

(1− δ)p(N − k + 1) ≥ (1− p̃δ)(N − k + 1)

> (1− 2p̃δ)(N − k + 1)

= N − k = γ, (1)

where, in the case p > 1, the first inequality follows from Bernoulli’s inequality, and in the
case p ≤ 1, it follows from xp ≥ x for all x ∈ [0, 1].

In addition, we define a large integer M such that making an absolute error of δ on M
different input points also exceeds the threshold γ. For p = 0, we choose M := N − k + 1.
For p > 0, we set M := dγ/δpe+ 1, which implies

Mδp > γ. (2)

Note that γ ∈ O(N) and 1/δ ∈ O(N). Thus, M is polynomially bounded in the size of G.

Let Nmax := maxj∈[k]Nj be the maximum number of vertices of one color. For our
reduction we need Nmax distinct rational points on the unit circle centered at the origin.
For example, one can choose

x̃i :=

(
1− i2

1 + i2
,

2i

1 + i2

)
∈ Q2

for each i = 1, 2, . . . , Nmax (Silverman & Tate, 1994). For each vertex vj,i ∈ V , j ∈ [k],
i ∈ [Nj ], let xj,i = (02j−2, x̃i,02k−2j) ∈ R2k be the point x̃i lifted to 2k dimensions, where
each color corresponds to two dimensions. Here, we use the notation 0r for the r-dimensional
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zero-vector. We add two types of data points to our instance (see Figure 2 for an example).
First, for each vertex vj,i ∈ V , add the point (xj,i, 1) ∈ R2k × R. Second, for each pair
of distinct vertices vj,i 6= vj′,i′ ∈ V , if they cannot both be part of a multicolored clique
because they are non-adjacent or have the same color, then add M copies of the point(
(xj,i + xj′,i′)/2, 0

)
∈ R2k × R. This finishes the construction.

We now show that there is a multicolored clique of size k in G if and only if these data
points can be fitted by a ReLU with `p-error at most γ. This then completes our reduction
from Multicolored Clique to 1-ReLU(`p) and hence implies the theorem.

For the first direction, assume that the vertices v1,i1 , . . . , vk,ik form a multicolored clique
of size k inG. We define ε := 1−maxi 6=i′∈[Nmax]〈x̃i, x̃i′〉. Observe that ε > 0, since the points

x̃i, i ∈ [Nmax], are distinct points on the unit circle. Let w := 2/ε · (x̃i1 , x̃i2 , . . . , x̃ik) ∈ R2k

and b := 1− 2/ε. We claim that the ReLU function f(x) = [〈w,x〉+ b]+ achieves an `p-error
of exactly γ = N − k. To see this, first note that for each j ∈ [k], we have

〈w,xj,ij 〉+ b = 2/ε · 〈x̃ij , x̃ij 〉+ 1− 2/ε = 1,

where we used that x̃ij lies on the unit circle. Hence, the k points x1,i1 , . . . ,xk,ik are
perfectly fitted. Second, for each vj,i ∈ V \ {v1,i1 , . . . , vk,ik}, we have

〈w,xj,i〉+ b = 2/ε · 〈x̃ij , x̃i〉+ 1− 2/ε ≤ 2/ε · (1− ε) + 1− 2/ε = −1,

where the inequality follows from our choice of ε. Hence, for each of these N − k points, we
have f(xj,i) = 0, that is, we incur an error of 1. Finally, for each pair of distinct vertices
vj,i 6= vj′,i′ ∈ V that are either non-adjacent or have the same color, note that at most
one of the two vertices can belong to the clique. Thus, making use of our two calculations
above, we obtain

〈w, (xj,i + xj′,i′)/2〉+ b = ((〈w,xj,i〉+ b) + (〈w,xj′,i′〉+ b))/2 ≤ (1− 1)/2 = 0.

Hence, all points with label 0 are fitted exactly and the total `p-error is equal to γ = N −k.
For the reverse direction, suppose that there exist w ∈ R2k and b ∈ R such that the

ReLU function f(x) = [〈w,x〉+ b]+ achieves an `p-error of at most γ = N − k. We show
that the set

C := {vj,i ∈ V | f(xj,i) > δ}

forms a multicolored clique in G. First, observe that |C| ≥ k, because otherwise all data
points associated with vertices in V \C would incur a total `p-error of at least (1− δ)p(N − k + 1),
which is larger than γ by (1). Hence, it remains to show for each pair of vertices vj,i 6= vj′,i′ ∈ C
that they belong to different color classes and are adjacent. Suppose the contrary. Then,
by construction, the 1-ReLU(`p) instance also contains M copies of the point

(
(xj,i +

xj′,i′)/2, 0
)
∈ R2k × R. From 〈w,xj,i〉+ b > δ and 〈w,xj′,i′〉+ b > δ, it follows by linearity

that
f((xj,i + xj′,i′)/2) ≥ 〈w, (xj,i + xj′,i′)/2〉+ b > δ.

Thus, we incur an `p-error of at least Mδp, which is larger than γ by (2). Hence, C is indeed
a multicolored k-clique.

A closer inspection of the above proof reveals that hardness even holds for a more
restricted problem.
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Corollary 2. For p ∈ [0,∞[, 1-ReLU(`p) is NP-hard, W[1]-hard with respect to d, and
cannot be solved in ρ(d) · no(d) time for any computable function ρ (assuming the Exponential
Time Hypothesis) even if all input data points contain at most four non-zero entries and
have binary labels.

We further remark that the basic idea of the reduction in the proof of Theorem 1 also
works for more general loss functions. Essentially, the only necessary condition is that the
value M can be chosen such that it is polynomially bounded in the size of the graph G
and satisfies an inequality analogous to (2) where (·)p is replaced by the corresponding loss
function. We refrain from giving a precise formalization here. Moreover, it is natural to
expect that k-ReLU with k > 1 is computationally even more difficult than the one-neuron
case. Hence, our hardness results should also hold there as well. Indeed, we expect this
to be also true for deeper neural networks; however, a formal proof would require a more
profound understanding of the complicated functions expressible with deeper networks and
is left for future work.

Our findings tell us that in order to achieve fixed-parameter tractability, one has to
consider other parameters to combine with the dimension d. A natural parameter is the
target loss γ. However, this is not a promising parameter since it can be made arbitrarily
small by scaling all values. If we consider the number σ of different coordinate values of
the xi, then we trivially obtain fixed-parameter tractability in combination with d since the
overall number of different data points is at most σd. Hence, the algorithm by Arora et al.
(2018) runs in σd

2 · poly(nd) time.
To sum up, identifying promising parameters (or parameter combinations) to obtain

tractable cases remains a challenge worthwhile further investigation.

3. Polynomial-time Algorithm for a Single ReLU with Maximum Norm

As pointed out by Goel et al. (2021), deciding whether given data points are realizable
by a single ReLU neuron (that is, whether γ = 0) can be done in polynomial time via
linear programming. In other words, it is possible to check whether the input points can
be perfectly fitted by a single ReLU neuron and, in case of a positive answer, to find the
corresponding weights in polynomial time. Recall that the same problem is NP-hard in the
case of two (or more) neurons by Goel et al. (2021).

In this section, we extend this result to minimizing the `∞-loss, that is, minimizing the
maximum prediction error. In fact, we provide a polynomial-time optimization algorithm
(not only decision) for a problem variant that generalizes `∞-loss minimization. In this
variant, the real labels yi for the data points xi are replaced by target intervals [αi, βi]
with αi ≤ βi and we aim to minimize the maximum deviation of a prediction from its
corresponding target interval. To this end, we define distα,β(t) := max{α− t, 0, t−β} to be
the distance of t ∈ R to the interval [α, β].

ReLU(`∞-Interval)

Input: Data points x1, . . . ,xn ∈ Rd and interval boundaries α1 ≤ β1, . . . , αn ≤
βn ∈ R.

Task: Find w ∈ Rd and b ∈ R that minimize maxi∈[n] distαi,βi([〈w,xi〉+b]+).

Note that we obtain `∞-loss minimization by setting αi = βi = yi for all i ∈ [n].
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Proposition 3. ReLU(`∞-Interval) can be solved in polynomial time.

Proof. We show that an optimal solution can be found via solving a series of linear pro-
grams. For each i ∈ [n] with αi > 0, our algorithm finds out whether the optimal ob-
jective value γ∗ is larger or smaller than αi. In the first case, the prediction 〈w,xi〉+ b
is allowed to be arbitrarily small, while in the second case we need to ensure the lower
bound 〈w,xi〉+ b ≥ αi − γ∗. Therefore, we implement a binary search to find an interval
in which γ∗ is contained as follows. Let {α̃1, α̃2, . . . , α̃r} be the set of all distinct pos-
itive αi-values, i ∈ [n], sorted by index such that 0 =: α̃0 < α̃1 < · · · < α̃r < α̃r+1 :=∞.
Let s∗ ∈ [r + 1] denote the (unknown) index with γ∗ ∈ [α̃s∗−1, α̃s∗ [. For each s ∈ [r+ 1], we
define a linear program denoted by LP(s) which minimizes the maximum deviation under
the assumption that only the predictions for data points xi with αi ≥ α̃s are bounded from
below, while all other predictions can be arbitrarily small.

min
w,b,γ

γ

s.t. 〈w,xi〉+ b ∈ [αi − γ, βi + γ], i ∈ [n] with αi ≥ α̃s,
〈w,xi〉+ b ≤ βi + γ, i ∈ [n] with αi < α̃s,

γ ≥ −βi, i ∈ [n],

γ ≥ 0.

(LP(s))

Here, the constraint γ ≥ −βi is only relevant if βi < 0. In this case, it is needed to ensure
that the error is at least −βi because a ReLU unit can only output nonnegative values.

Suppose we already knew the optimal index s∗. Observe that, by construction of LP(s∗),
a triplet (w, b, γ) is an optimal solution for LP(s∗) if and only if (w, b) is optimal for the
problem ReLU(`∞-Interval) with objective value γ. Hence, it only remains to show
how s∗ can be found. To this end, let γ(s) be the objective value of LP(s) for each s ∈ [r+1].
Note that γ(s1) ≥ γ(s2) for s1 < s2 because the set of constraints of LP(s1) is a superset of
the constraints of LP(s2). Hence, for s > s∗, it follows that

γ(s) ≤ γ(s∗) = γ∗ < α̃s∗ ≤ α̃s−1.

Similarly, for s < s∗, we obtain

γ(s) ≥ γ(s∗) = γ∗ ≥ α̃s∗−1 ≥ α̃s.

As a consequence, we can determine whether s < s∗, s = s∗, or s ≥ s∗ by solving LP(s) and
comparing γ(s) with α̃s and α̃s−1. Thus, using binary search and solving O(log n) linear
programs, we can determine s∗ and the optimal solution γ∗ together with the corresponding
weights w and b.

We remark that, analogously to the original problem with labels yi, the zero-error case
for the variant with intervals [αi, βi] can be solved with a single linear program instead of
a binary search: It suffices to run LP(1) once. This results in objective value 0 if and only
if all data points can be fitted precisely within their intervals.
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4. Polynomial-time Algorithm for Concave Loss in Fixed Dimension

In this section, we prove that, for any loss function of the form `(ŷ, y) = ˜̀(|ŷ − y|) where
˜̀: R≥0 → R≥0 is concave, the problem k-ReLU(`) is polynomial-time solvable for con-
stant d (that is, it is in XP with respect to d). In particular, this covers the case of
`p-loss for p ∈ [0, 1[. Notably, concave loss functions can yield increased robustness by
mitigating the influence of outliers. For convex loss functions, in particular for the `p-loss
with p ≥ 1, an analogous result has already been shown by Arora et al. (2018, Theo-
rem 4.1). More precisely, they showed that, if ` is convex, then k-ReLU(`) can be solved in
O(2kndk poly(n, d, k)) time. The idea of their algorithm is essentially to try out all O(nd)
hyperplane partitions of the n input points for each of the k ReLU neurons and solve a
corresponding convex program.

For the concave case, we follow a similar approach. The only but decisive difference
is that the occurring subproblems are not convex programs. Instead, we show that they
can be written as optimization problems over polyhedra with an objective function that is
piecewise concave. It is well-known that global optima of concave problems always occur
at a vertex of the feasible polyhedron (Benson, 1995) and that it is possible to enumerate
all vertices of the polyhedron in XP-time (Kaibel & Pfetsch, 2003). However, since in our
case the objective function is only piecewise concave, it is possible that no vertex is a global
optimum. Instead, we need to enumerate all vertices of all concave pieces of the feasible
region. We show that this can still be done in XP-time, completing the parameterized
complexity classification picture.

Theorem 4. For every loss function being of the form `(ŷ, y) = ˜̀(|ŷ − y|) with a concave
function ˜̀: R≥0 → R≥0, the problem k-ReLU(`) is solvable in time 2k(nk)O(dk) poly(n, d, k).

Proof. Following the approach by Arora et al. (2018, Algorithm 1), for each neuron j ∈ [k],
we consider each coefficient aj ∈ {−1, 1} and each hyperplane partition P j+ ∪ P

j
− = [n],

P j+∩P
j
− = ∅, of the n (indices of the) data points (that is, there exists a (d−1)-dimensional

hyperplane, defined by a vector wj and a bias bj , separating P j+ and P j−, compare Fig-

ure 3). Here, P j+ is the active set, where 〈wj ,xi〉 + bj ≥ 0 shall hold for each i ∈ P j+ and

〈wj ,xi〉+ bj ≤ 0 for each i ∈ P j−. As in the algorithm by Arora et al. (2018), this results
in a total of (at most) 2kndk subproblems. For fixed coefficients aj and fixed partitions

(P j+, P
j
−), j ∈ [k], the corresponding subproblem (compare Line 8 in Algorithm 1 of Arora

et al. (2018)) is the following:

min
wj ,bj

n∑
i=1

˜̀


∣∣∣∣∣∣∣yi −

∑
j : i∈P j

+

aj(〈wj ,xi〉+ bj)

∣∣∣∣∣∣∣


s.t. 〈wj ,xi〉+ bj ≤ 0, j ∈ [k], i ∈ P j−,
〈wj ,xi〉+ bj ≥ 0, j ∈ [k], i ∈ P j+.

(3)

In the following, we show that this problem can be solved in XP-time with respect to d.

As argued in the introduction, we may assume without loss of generality that the affine
hull of the data points xi, i ∈ [n], is the whole space Rd because, otherwise, we could solve
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the problem within a lower-dimensional affine subspace. We first show that this implies
that the feasible region P ⊆ Rkd+k of (3) is pointed, that is, it has at least one vertex. More
precisely, we show that the zero vector 0kd+k is a vertex of P . To do so, we need to show
that it satisfies kd + k linearly independent constraints of (3) with equality. Since 0kd+k

satisfies every constraint of (3) with equality, we only need to show that there exist kd+ k
linearly independent rows. We write rij := (0d(j−1),xi,0d(k−j), ej) ∈ Rkd+k, i ∈ [n], j ∈ [k],

for the kn rows of the constraint matrix, where ej ∈ {0, 1}k is the j-th unit vector. By
our assumption that the affine hull of the data points is the whole space Rd, there exists a
subset S ⊆ [n] of d+1 indices such that the d+1 vectors xi, i ∈ S, are affinely independent.
This implies that, for each fixed j, the d + 1 rows rij are linearly independent. Moreover,
since, for j1 6= j2 and arbitrary i1, i2 ∈ [n], two rows ri1j1 and ri2j2 have non-zero entries
only in distinct columns, it follows that the kd + k rows rij , i ∈ S, j ∈ [k], are linearly
independent. Hence, P is pointed.

Next, we divide the feasible region P of (3) into several polyhedral pieces, depending
on the sign of the prediction error at each data point. Let s = (si)i∈[n] ∈ {−1, 1}n be a sign
vector and let

P (s) :=

{
(w1, . . . ,wk, b1, . . . , bk) ∈ P

∣∣∣∣∣ ∀i ∈ [n] : si

(
yi −

∑
j : i∈P j

+

aj(〈wj ,xi〉+ bj)

)
≥ 0

}

be the subset of the feasible region P for which the sign of the prediction error for each data
point xi coincides with si. Since P is pointed, P (s) must be pointed as well. Moreover, by
definition, the prediction error of every data point has a fixed sign within P (s), implying that
the objective function of (3) (as a sum of concave functions) is concave within P (s) (compare
Figure 4). In addition, the objective value is trivially bounded from below by 0. Since the
minimum of a bounded (from below), concave function over a pointed, nonempty polyhedral
set is always attained by a vertex (Benson, 1995), it follows that P (s) is either empty or
must have a vertex minimizing the loss within P (s). Since P =

⋃
s∈{−1,1}n P (s), it follows

that the optimal solution of (3) must be a vertex of one of the polyhedral sets P (s). Hence,
it suffices to enumerate all these vertices. Compare Figure 5 for a schematic illustration of
this idea. Each vertex of one of the polyhedra P (s) is given by kd+ k linearly independent
inequalities that hold with equality. For selecting these kd+k equations, we have the choice
between a total of kn+ n equations: the kn constraints of (3) as well as the n equations
corresponding to the sign constraints defined by s. Note that these n equations are the
same for each s although the inequalities are different.

We conclude that it suffices to check all
(
kn+n
kd+k

)
≤ (nk)O(dk) possible subsets of kd + k

equations. If the chosen equations are linearly independent, then we can determine the
corresponding unique solution and check whether it is a feasible solution to (3). For each
chosen set of equations, these steps can be done in poly(n, d, k) time. Among all feasible
solutions found that way, we take the best one. Consequently, each of the (at most) 2kndk

subproblems can be solved in (nk)O(dk) poly(n, d, k) time, resulting in the claimed overall
running time.

In comparison to the algorithm for convex loss functions (Arora et al., 2018), our algo-
rithm for concave loss functions requires more time to solve the O(2kndk) many subproblems,
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P j−

P j+

Figure 3: Two-dimensional illustration of
the hyperplane partitions of the data points
into P j+ = {i ∈ [n] | 〈wj ,xi〉+ bj ≥ 0} and

P j− = {i ∈ [n] | 〈wj ,xi〉+ bj < 0}.

prediction error0

loss

Figure 4: The contribution of a data
point xi to the objective function is not
globally concave. However, it is con-
cave if the sign of the prediction error
yi −

∑
j : i∈P j

+
aj(〈wj ,xi〉+ bj) is fixed.

Figure 5: Schematic illustration of how an optimal solution to the subproblem (3) can be
found. The feasible region is a pointed polyhedral cone (left). The hyperplanes where
the prediction error at a certain data point equals zero subdivide P into the regions P (s)
(middle). Since the objective function is concave in each of these regions, it suffices to check
the vertices of all regions (right).

namely (nk)O(dk) poly(n, d, k) instead of poly(n, d, k) time each. This confirms the general
theme in optimization that convex problems are easier to solve than non-convex problems.
However, due to the combinatorial search, both cases result in an XP overall running time.

5. Conclusion

We closed some gaps regarding the computational complexity of training ReLU networks
by proving tight parameterized hardness results and essentially optimal algorithms, thus
settling the parameterized complexity. Notably, as Goel et al. (2021) point out, every
proper learning algorithm also solves the training problem. Hence, our results also imply
parameterized hardness of proper learning.

As our results confirm computational intractability also from a parameterized perspec-
tive, this motivates the challenging task to identify suitable parameters to achieve fixed-
parameter tractability results. For example, parameterizing by some “distance from triv-
iality” measure (e.g. assuming specially structured input data) might be an interesting
approach (Niedermeier, 2006). We conclude with some specific open questions:

• What is the parameterized complexity of k-ReLU(`) with respect to d for k ≥ 2 in the
zero-error case? While polynomial-time algorithms for k = 1 are available (compare
Goel et al. (2021) and Section 3), the zero-error case is NP-hard for k ≥ 2 (Bakshi
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et al., 2019; Goel et al., 2021). Notably, Boob et al. (2022, Section 4) showed NP-
hardness of the zero-error case for k = 2 if the output neuron is also a ReLU. They
give a polynomial-time reduction from the 2-Hyperplane Separability problem,
which is known to be W[1]-hard with respect to dimension and to have an ETH-based
running time lower bound (Giannopoulos et al., 2009). In fact, the reduction of Boob
et al. (2022) is a parameterized reduction with respect to d (the reduction uses two
additional dimensions). Thus, as a corollary, we obtain that, for k = 2, the zero-error
case with ReLU output is W[1]-hard with respect to d and not solvable in no(d) time
assuming ETH.

• Is 1-ReLU(`) fixed-parameter tractable with respect to d if all input points contain
at most three non-zero entries? For at most four non-zero entries, we showed W[1]-
hardness in Corollary 2.

• Confronting inapproximability results for polynomial-time algorithms (see, e.g., Goel
et al. (2021)) and our W[1]-hardness result for exact algorithms (Theorem 1), a natural
follow-up question is: Can acceptable worst-case approximation ratios be obtained in
FPT-time?

• What is the (parameterized) complexity of training deeper neural networks (with at
least three layers)?
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