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Abstract

Autonomous systems that operate in the open world often use incomplete models of
their environment. Model incompleteness is inevitable due to the practical limitations in
precise model specification and data collection about open-world environments. Due to the
limited fidelity of the model, agent actions may produce negative side effects (NSEs) when
deployed. Negative side effects are undesirable, unmodeled effects of agent actions on the
environment. NSEs are inherently challenging to identify at design time and may affect the
reliability, usability and safety of the system. We present two complementary approaches
to mitigate the NSE via: (1) learning from feedback, and (2) environment shaping. The
solution approaches target settings with different assumptions and agent responsibilities.
In learning from feedback, the agent learns a penalty function associated with a NSE. We
investigate the efficiency of different feedback mechanisms, including human feedback and
autonomous exploration. The problem is formulated as a multi-objective Markov decision
process such that optimizing the agent’s assigned task is prioritized over mitigating NSE. A
slack parameter denotes the maximum allowed deviation from the optimal expected reward
for the agent’s task in order to mitigate NSE. In environment shaping, we examine how
a human can assist an agent, beyond providing feedback, and utilize their broader scope
of knowledge to mitigate the impacts of NSE. We formulate the problem as a human-
agent collaboration with decoupled objectives. The agent optimizes its assigned task and
may produce NSE during its operation. The human assists the agent by performing modest
reconfigurations of the environment so as to mitigate the impacts of NSE, without affecting
the agent’s ability to complete its assigned task. We present an algorithm for shaping and
analyze its properties. Empirical evaluations demonstrate the trade-offs in the performance
of different approaches in mitigating NSE in different settings.

1. Introduction

Deploying artificial intelligence (AI) systems requires complex design choices to support
safe operation in the open world. During the design and initial testing, the system designer
typically ensures that the agent’s model includes all the necessary details relevant to its
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Figure 1: Illustration of a negative side effect in the boxpushing domain: A policy based
on the agent’s incomplete model, which overlooks the impact of pushing the box
over the rug, dirties the rug (shaded area).

assigned task. Inevitably, some details in the environment that are unrelated to the agent’s
primary objective may be ignored. The incompleteness of any given model—handcrafted
or machine acquired—is inevitable due to practical limitations in model specification (the
ramification and qualification problems) (Dietterich, 2017) and limited information that
may be available during the design phase (Saisubramanian, Wray, Pineda, & Zilberstein,
2019), including unanticipated domain characteristics and cultural differences among the
target user and development team (Saisubramanian, Zilberstein, & Kamar, 2022). Due
to the limited fidelity of its reasoning model, an agent’s actions may create negative side
effects (NSEs) during policy execution in the deployed environment (Amodei, Olah, Stein-
hardt, Christiano, Schulman, & Mané, 2016; Hibbard, 2012; Saisubramanian et al., 2022;
Saisubramanian, Kamar, & Zilberstein, 2020b; Saisubramanian & Zilberstein, 2021).

Negative side effects are undesired, unmodeled effects of an agent’s actions that occur in
addition to the agent’s intended effects when operating in the open world. Different types of
model incompleteness lead to different types of negative side effects, whose severity ranges
from mild events that are tolerable to catastrophic events. Mitigating NSEs is critical
to improve the safety and reliability of deployed AI systems. However, it is practically
impossible to identify all the NSEs at design time since agents are deployed in varied
settings. Deployed agents often do not have any prior knowledge about NSEs, in which
case this information is gathered after deployment.

In this paper, we focus on NSEs that are undesirable, but not catastrophic or prohibitive.
That is, we consider NSEs that do not affect the agent’s ability to complete its assigned task.
For example, consider an agent that is required to push a box B as quickly as possible from
location L1 to location L2 (Figure 1). The agent’s model includes all the details essential
to optimize the time taken to push the box, including the reward for pushing the box and
the associated transition dynamics. However, details such as the impact of pushing the box
over a rug may not be included in the model if the issue is overlooked during system design.
Consequently, when operating based on this model, the agent may push the box over the
rug, dirtying the rug as a side effect. How can we mitigate the negative side effects, when
the agents are unaware of the side effects and the associated penalties?

Interest in minimizing negative side effects has been growing among AI researchers. Ex-
isting approaches to mitigate NSEs accomplish that by redesigning the reward function for
the agent’s primary objective (Hadfield-Menell, Milli, Abbeel, Russell, & Dragan, 2017),
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(a) Mitigating NSE by learning from user feedback (b) Mitigating NSE via environment shaping

Figure 2: An illustration of our proposed complementary solution approaches with varying
nature of autonomy to mitigate NSE.

constraining the agent’s actions (Zhang, Durfee, & Singh, 2018, 2020), minimizing devia-
tions from a baseline state (Krakovna, Orseau, Martic, & Legg, 2019), or maximizing the
attainable utility of auxiliary objectives and completion of future tasks (Turner, Hadfield-
Menell, & Tadepalli, 2020b; Turner, Ratzlaff, & Tadepalli, 2020a; Krakovna, Orseau, Ngo,
Martic, & Legg, 2020). All these approaches target settings with avoidable NSEs and as-
sume that the agent has some prior knowledge about the cause and occurrence of NSEs.
However, these assumptions are often violated when deploying AI systems in the open
world. Furthermore, in situations where the primary objective is prioritized, the user may
be willing to trade off some NSE for solution quality. For example, if the agent takes ten
times longer to push the box so as to avoid the rug area, the user may be willing to tolerate
some dirt on the rug instead. Prior works, however, do not offer a principled approach to
balance this trade-off and do not provide bounded performance guarantees.

To mitigate NSEs in settings where the agent does not have prior knowledge about the
side effects of its actions, we propose two complementary approaches that have different
properties and underlying assumptions: (1) learning from feedback, and (2) environment
shaping. Figure 2 illustrates these two approaches.

Learning from feedback We first propose a multi-objective approach that exploits the
reliability of the existing model with respect to the primary objective, while allowing a
deployed agent to learn to avoid NSE as much as possible. The agent’s model is augmented
with a secondary reward function that represents the penalty for NSE. The problem is for-
mulated as a multi-objective Markov decision process with lexicographic reward preferences
(LMDP) and slack (Wray, Zilberstein, & Mouaddib, 2015). The agent’s primary objective
is to complete its assigned task, while the secondary objective is to minimize NSE. The
slack denotes the acceptable deviation from the optimal expected reward of its primary ob-
jective so as to minimize NSE. A lexicographic approach is adopted because (1) we target
settings in which optimizing the reward associated with agent’s assigned task is prioritized
over mitigating NSE, (2) the reward for the primary objective and the penalty for NSE
may have different units, such as time taken to push a box and the cost of cleaning a rug,
and (3) alternative scalarization methods require non-trivial parameter tuning and may
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not offer performance guarantees with respect to the primary objective (Roijers, Vamplew,
Whiteson, & Dazeley, 2013).

Our solution framework utilizes a three-step approach to detect and mitigate NSE: (1)
the agent collects data about NSE penalty through a feedback mechanism, (2) the agent
learns a predictive model of the penalty for NSE that generalizes the available data, and (3)
the agent replans using a model augmented with the learned NSE penalty. We investigate
the efficiency of different feedback approaches to learn about the NSE, including oracle
feedback and agent exploration. The oracle feedback typically represents some type of
human feedback such as penalty signals, action approval, correcting agent’s behavior, or
demonstrations of correct ways to perform the task. In learning by exploration, the agent
collects data about the NSE by autonomously exploring the environment.

Environment shaping Our second approach is environment shaping for deployed agents:
a process of applying simple modifications to the current environment to make it more agent-
friendly and minimize the occurrence of NSE. This solution approach is motivated by the
observation that agents often operate in environments that are configurable. Real world
examples show that modest modifications can substantially improve agents’ performance.
For example, Amazon improved the performance of its warehouse robots by optimizing
the warehouse layouts, covering skylights to reduce glare, and repositioning the air con-
ditioning units to blow out to the side (Simon, 2019). Recent studies show the need for
infrastructure modifications such as traffic signs with barcodes and redesigned roads to im-
prove the reliability of autonomous vehicles in the real world (Agashe & Chapman, 2019;
Hendrickson, Biehler, & Mashayekh, 2014; McFarland, 2020). Simple modifications to the
environment have also proved to be beneficial in agent learning (Randløv, 2000) and goal
recognition (Keren, Gal, & Karpas, 2019). These examples show that environment shaping
can improve an agent’s performance with respect to its assigned task. We target settings
in which environment shaping can reduce NSE, without significantly degrading the perfor-
mance of the agent in completing its assigned task. Studies with human subjects have shown
that users are generally willing to perform minor environment modifications to mitigate the
impacts of NSEs (Saisubramanian, Roberts, & Zilberstein, 2021).

Our formulation consists of an acting agent and an environment designer. The acting
agent computes a policy that optimizes the completion of its assigned task and has no
knowledge about the NSE. The environment designer agent is a helper agent that shapes
the environment through minor modifications so as to mitigate the NSE of acting agent’s
actions, without affecting the acting agent’s ability to complete its assigned task. While
this helper agent can be any autonomous agent, the formulation is inspired by having a
human in the role. The environment is described using a configuration file, such as a map,
which is shared between the actor and the designer. Given an environment configuration,
the actor computes and shares sample trajectories of its optimal policy with the designer.
The actor shares trajectories, instead of the entire policy, since compact representation of
the entire policy is a practical challenge in large problems (Guestrin, Koller, & Parr, 2001).
The designer estimates the actor’s policy based on the trajectories, measures the associ-
ated NSE, and modifies the environment by updating the configuration file, if necessary.
Environment shaping is more desirable than providing feedback or demonstrating a safe
way of performing the task, when the agent’s learning capabilities and its model fidelity are
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Assumptions/ Requirements Learning from Feedback Environment Shaping

Agent state representation sufficiently rich to learn about NSE −

Model update requirements augment with NSE penalty function no model update

Type of human assistance provide immediate feedback reconfigure environment

Factors affecting performance sampling biases in feedback collection
designer’s ability to accurately predict

actor policy from trajectories

Environment configuration − user-configurable & described by a file

Unavoidable NSE cannot be eliminated can be eliminated

Table 1: Assumptions and requirements of the two proposed solution approaches. “−”
indicates that the approach is indifferent to the corresponding property.

unknown. Environment shaping can eliminate both avoidable and unavoidable NSE with
respect to the original, unmodified environment. Besides the environment configuration file,
the actor’s objective and policy, no other information is shared between the actor and the
designer. Mitigating NSE via environment shaping is more suitable for settings in which the
human has more control over the environment, agent’s learning capabilities are unknown,
and the environment is configurable.

Summary of contributions We present two complementary solution approaches to mit-
igate agent’s NSE. The agent and the human have different responsibilities in the two ap-
proaches. In learning from feedback, the agent is directly involved in mitigating the NSE as
it learns about NSE and updates its model, while the human facilitates this by providing
feedback. In environment shaping, the human has more control over the environment, by
definition, and the agent has an indirect involvement in mitigating NSE since it only re-
acts to the reconfiguration by revising its policy. Table 1 summarizes the assumptions and
requirements of the two approaches.

Our primary contributions in this paper are: (1) formally defining NSE of agent actions;
(2) formalizing the problem of mitigating NSE as a multi-objective MDP with slack; (3)
presenting a solution approach to update the agent’s policy by learning about NSE as a
secondary reward function and estimating the minimum slack required to avoid NSE; (4)
studying various types of feedback mechanisms to learn the penalty associated with NSE;
(5) evaluating the performance and analyzing the bias associated with each feedback mech-
anism; (6) presenting environment shaping as a method to mitigate NSE and an algorithm
for shaping; and (7) empirical evaluation of environment shaping on two proof-of-concept
domains.

2. Related Work

In this section, we review the emerging approaches to mitigate the impacts of negative side
effects. Table 2 summarizes the characteristics of the approaches we discuss.

A natural approach to overcome NSE caused by reward misspecification is to update
the agent’s model by learning the intended reward function. By treating the specified proxy
reward as a set of demonstrations and using approximate solutions for inference, the agent
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Approach
Multi-

objective
formulation

Bounded-
guarantees wrt.

agent’s task

Generalize
learned NSE
across states

Distinguish and
handle different
magnitudes of

NSE

(Hadfield-Menell et al., 2017) 7 7 3 7

(Zhang et al., 2018) 7 7 7 7

(Shah et al., 2019) 3 7 7 7

(Krakovna et al., 2019) 3 7 7 3

(Zhang et al., 2020) 7 7 7 7

(Turner et al., 2020a) 7 7 7 7

(Turner et al., 2020b) 7 7 7 7

Our approach 3 3 3 3

Table 2: An overview of the characteristics of different approaches in mitigating NSE.

can learn the intended reward function (Hadfield-Menell et al., 2017). As acknowledged by
the authors, this algorithm does not scale to large, complex settings. Further, updating the
reward function of a deployed system requires extensive evaluation of the system to ensure
that no new risks are introduced by the update. This approach is therefore better suited for
handling safety-critical NSE that justifies the suspension of the deployed system—something
that we try to avoid in our work.

Another form of NSE arises when an agent alters features in the environment that the
user does not expect or desire to be changed. This can be addressed by constraining the
features that can be altered by the agent during its operation. Zhang et al. (2018) consider
a setting in which the uncertainty over the desirability of altering a feature is included in
the agent’s model. The agent first computes a policy assuming all the uncertain features
are “locked” for alteration. If a policy exists, then the agent executes it. If no policy exists,
the agent queries the human to determine which features can be altered and recomputes
a policy. A regret minimization approach is used to select the top-k features for querying.
Recently, the authors extended this approach to identify if NSEs are unavoidable by casting
it as a set-cover problem (Zhang et al., 2020). If the side effects are unavoidable, the agent
ceases operation. Therefore, these approaches are not suitable for settings where the agent
is expected to alleviate (unavoidable) NSEs to the extent possible, while completing its
assigned task.

Another class of solution methods defines a penalty function for the NSE as a measure
of deviation from a baseline state, based on the features altered. Krakovna et al. (2019)
present a multi-objective formulation with scalarization, with the deviation from baseline
state measured using reachability-based metrics. The agent’s sensitivity to NSE can be
adjusted by tuning the scalarization parameters. This approach may penalize all side ef-
fects, including positive side effects, since it does not account for human preferences. To
address this drawback, Shah et al. (2019) present an approach to infer human preferences
from the initial state. They assume that an environment is typically optimized for human
preferences and the agent can mitigate NSEs by inferring human preferences before it starts
acting. Attainable utility (Turner et al., 2020a, 2020b) measures the impact of side effects
as the shift in the agent’s ability to optimize auxiliary objectives, generalizing the rela-
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tive reachability measure presented earlier (Krakovna et al., 2019). All these approaches
employ impact regularizers to mitigate NSEs. Designing the right impact regularizer is
challenging since the agent’s behavior is sensitive to the choice of baseline state, the metric
used to calculate the deviation, and requires knowledge about the dynamics of the environ-
ment (Lindner, Matoba, & Meulemans, 2021). Certain NSEs may also impact the agent’s
ability to complete tasks in the future. Krakovna et al. (2020) present an approach that
provides the agent with an auxiliary reward for preserving its ability to perform future tasks
in the environment. We target settings where the agent has no prior knowledge about the
NSE of its actions and the side effects are experienced immediately after action execution.

There have also been numerous recent studies focused on the broad challenge of building
safe and reliable AI systems (Amodei et al., 2016; Russell, Dewey, & Tegmark, 2015; Saria
& Subbaswamy, 2019; Thomas, da Silva, Barto, Giguere, Brun, & Brunskill, 2019), on the
safe deployment of systems trained in simulation or a structured environment (Ramakr-
ishnan, Kamar, Dey, Horvitz, & Shah, 2020; Ramakrishnan, Kamar, Nushi, Dey, Shah, &
Horvitz, 2019; Lakkaraju, Kamar, Caruana, & Horvitz, 2017), and on the problem of con-
figuring environments to enable efficient and interpretable agent operation (Keren, Pineda,
Gal, Karpas, & Zilberstein, 2017; Kulkarni, Sreedharan, Keren, Chakraborti, Smith, &
Kambhampati, 2020). In this work, we focus specifically on negative side effects that are
discovered when the system is deployed.

3. Problem Definition

Consider an environment E in which an agent reasons using its acquired model—a Markov
decision process (MDP) M̃=〈S̃, Ã, T̃ , R̃〉. The agent’s state space is denoted by S̃, its action
space by Ã, transition function by T̃ , and its reward function by R̃. The agent’s model M̃
includes a single objective, which is the primary task of the agent, and all the components
necessary to complete the primary task. A factored state representation is considered.
A primary policy is an optimal policy for M̃ , optimizing the agent’s primary objective
defined by R̃. Executing a primary policy may produce negative side effect in some states
since it only optimizes the primary task. We assume there exists a function that determines
the probability of NSE occurrence associated with an agent trajectory—a sequence of state-
action pairs representing a possible trace of the agent in the environment—but this function
may be unknown to the agent.

Definition 1. Let ζ = {(s1, a1), . . . , (sn, an)}, n ≥ 1, be a finite trajectory of an agent
operating in an environment E ∈ E, with E denoting a finite set of environments. Let Z
denote the set of agent trajectories. A negative side effect is an event that occurs when
the agent executes a certain trajectory in an environment, with probability determined by
a function N : Z × E → [0, 1] where N(ζ, E) denotes the probability of negative side effect
occurring when the agent follows a trajectory ζ ∈ Z in environment E ∈ E.

Multiple types of NSEs may occur during the system operation and each type of side
effect i may be associated with a function Ni, which determines the probability of a specific
type of negative side effect occurring when executing a trajectory.
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Definition 2. An Markovian negative side effect is one that is observed immediately after
an action execution in a state. When ζ = {(s1, a1)}, N(ζ, E) denotes the probability of a
Markovian negative side effect.

States in which an agent’s actions have Markovian NSE are called susceptible states.
The severity of a side effect may range from tolerable to severe impact, depending on the
agent’s primary task and the environment in which it is situated. While it is challenging to
determine N during system design, in general, the user can estimate N by observing the
agent behavior and its consequences in the deployed environment. Tolerance to NSE and
the associated penalty are user-specific. Let θ ∈ Θ denote user tolerance parameter for NSE
in a given environment, where Θ denotes the discrete set of values θ can take.

Definition 3. The penalty for a negative side effect is defined by RN,θ : Z × E → R, with
θ denoting user tolerance parameter and RN,θ(ζ, E) denoting the penalty associated with
trajectory ζ ∈ Z in environment E ∈ E.

Since NSE occurrence depends on the environment and the penalty depends on user
tolerance, it is challenging to accurately specify details about NSE during system design.
Further, the designer may inadvertently omit details that are unrelated to the primary
task. As a result, the agent often does not have prior knowledge about the side effects of
its actions and therefore does not have the ability to minimize NSE. The side effects may
be avoidable or unavoidable by the agent, when it is performing its assigned task.

Definition 4. A negative side effect is avoidable in an environment E if there exists a pol-
icy π̃ to complete the agent’s assigned task such that N(ζ, E) = 0, ∀ζ ∼ π̃, and unavoidable
otherwise.

In this work, we target Markovian negative side effects that are (1) undesirable, but
not safety-critical; (2) deterministic—always occur when the agent executes certain actions
in some states; and (3) not preventing the agent from completing its assigned task. The
learning from feedback approach focuses on the Markovian NSE. The challenges in extend-
ing it to NSE associated with agent trajectories (general case defined in Definition 1) are
discussed in Section 5. The environment shaping approach can handle both Markovian NSE
and those associated with agent trajectories. The solution approaches we present naturally
extend to settings in which a state in S̃ maps to multiple states in the real world with dif-
ferent NSE severities, by considering the expected penalty that accounts for the likelihood
of occurrence.

4. Mitigating NSE using Feedback

An agent that is unaware of the negative side effects of its actions can gather this infor-
mation through feedback signals from an oracle or through autonomous exploration. We
formulate the problem of mitigating NSE as a multi-objective planning problem with lexi-
cographic ordering over the reward functions. The agent learns a secondary reward function
corresponding to NSE penalty. There are two main benefits of a multi-objective formulation
for this setting. First, using multi-objective models makes it easier for users to understand
and control the trade-off between the agent’s ability to mitigate the NSE and optimize its
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assigned task. Second, by separating the reward functions of the agent’s primary objective
and NSE, it is ensured that the model aspects corresponding to agent’s assigned task are
not corrupted during the update.

4.1 Background on Lexicographic MDP

We provide a brief background on lexicographic Markov decision process (LMDP) (Wray
et al., 2015), which is a multi-objective MDP with lexicographic preferences over reward
functions. LMDPs are particularly useful and convenient to model multi-objective MDPs
with competing objectives and with an inherent lexicographic ordering over them.

An LMDP is defined by the tuple M = 〈S,A, T,R,∆R,∆R,∆,S, o〉 (Wray et al., 2015) with S
denoting the finite set of states; A denoting the finite set of actions; T :S×A×S→ [0, 1] is the
transition function indicating the probability of reaching state s′ ∈ S when executing action
a ∈ A in state s ∈ S; RRR = [R1, ..., Rk]

T is a vector of reward functions, with Ri :S×A→R
denoting the reward associated with executing action a ∈ A in state s ∈ S corresponding
to ith objective; ∆∆∆=[δ1, ..., δk−1]T is a vector of slack variables with δi≥0; S = {S1, . . . , Sl}
is an l-partition over the state space; and o = 〈o1, . . . , ol〉 denotes the strict preference
ordering with L = {1, . . . , l}, ∀j ∈ L, oj is a k-tuple ordering elements of k.

We consider l = 1, denoting one preference ordering over the objectives. That is, o = 〈o1〉
and o1 = 〈1, . . . , k〉 denoting the strict preference ordering over the objectives. In the rest of
the paper, we denote the first objective as o1, second objective in the ordering as o2, and so
on, in the interest of clarity and to improve the readability. The strict preference ordering
over them is denoted as o1 � o2 � . . . ok−1 � ok, where the lexicographic preference operator
“�” denotes that the left term has a higher preference ordering and is always optimized
prior to the right term.

The slack δi is an additive value denoting the acceptable deviation from the optimal
expected reward for objective oi so as to improve the lower priority objectives. The set of
value functions is denoted by VVV = [V1, ..., Vk]

T , with Vi denoting the value function corre-
sponding to oi, and calculated as

VVV π(s)=RRR(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)VVV π(s′),∀s ∈ S.

LMDP sequentially processes each objective in the lexicographic order and therefore the
policy of the current objective and the slack determine the actions available for optimizing
the next objective. The set of restricted actions for oi+1 is:

Ai+1(s)={a∈A| max
a′∈Ai

Qi(s, a
′)−Qi(s, a) ≤ ηi}

where ηi=(1− γ)δi, with a discount factor γ ∈ [0, 1). We refer to (Wray et al., 2015) for a
detailed background on LMDP.

4.2 Problem Formulation

In this section, we formulate the problem of mitigating NSE using the LMDP framework.
We consider Markovian NSE that is observed immediately after action execution in a state.
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(a) Disjoint policy sets (b) Slack-induced availability of NSE-
minimizing policies for assigned task

Figure 3: An illustration of the benefits of slack.

The agent’s model is augmented with a secondary reward function that represents the
penalty for NSE. We investigate the efficiency of different forms of feedback to learn about
NSE, including oracle feedback and agent exploration. The agent may not be able to observe
the NSE except for the penalty, which is proportional to the severity of the NSE, provided
by the feedback mechanism. Given M̃ and feedback data regarding NSE, the agent is
expected to compute a policy that optimizes its assigned task, while avoiding NSE as much
as possible, subject to a slack.

Definition 5. The augmented MDP of a given model M̃ is a lexicographic MDP, denoted
by M=〈S,A, T,RRR, o, δ〉 such that:

• S = S̃ denotes the state space;

• A = Ã denotes the set of actions;

• T = T̃ denotes the transition function;

• RRR= [R1,R2] with R1 = R̃ denotes the reward associated with primary objective of the
agent and R2 =RN denotes the NSE penalty;

• o=[o1, o2] denotes the objectives where o1 is the primary objective denoting the agent’s
assigned task and o2 is minimizing NSE, with o1 � o2; and

• δ ≥ 0 is the slack denoting the maximum deviation from optimal expected reward for
o1 in order to minimize NSE.

There may be limited opportunity for avoiding NSE when optimizing the agent’s as-
signed task, denoted by o1. In many problems, the set of policies that are optimal (or valid)
for o1 and the set of policies that avoid NSE may be distinct (Figure 3(a)). Allowing for
a slack on the primary objective indicates willingness to tolerate a certain degree of sub-
optimal behavior, with respect to o1. This expands the set of policies that are “valid” for
its primary objective, thereby enabling the agent to compute a NSE-minimizing policy for
the assigned task (Figure 3(b)). Hence, we consider a slack value δ on o1, which denotes the
maximum allowed deviation of a policy from the optimal expected reward for o1 in order
to minimize NSE.

152



Avoiding Negative Side Effects

Figure 4: Overview of our framework for mitigating NSE using feedback.

Since the agent cannot predict the NSE a priori, it must learn RN using feedback
mechanisms (discussed in Section 4.4). Our overall framework for minimizing the NSE
involves the following three steps (Figure 4):

1. The agent collects data about NSE through various types of oracle feedback or by
exploring the environment;

2. A predictive model of NSE is trained using the gathered data to generalize the agent’s
observations to unseen situations, represented as a reward function RN ;

3. The agent computes a policy π by solving the augmented MDP optimally with the
given δ and learned RN .

4.3 Slack Estimation

Slack denotes the maximum allowed loss in the expected reward of the agent’s primary
objective in order to minimize the NSE. A smaller slack value limits the scope for minimizing
NSE. A very high slack can allow the agent to not fulfill o1 in an attempt to minimize the
NSE. Therefore, the slack determines the overall performance of the agent with respect to
both its objectives. Typically the slack value is based on user preferences and their general
tolerance towards NSE. We present an approach to determine the minimum slack required
to avoid NSE altogether, when feasible (once knowledge about the NSE is obtained).

Algorithm 1 determines the slack as the difference between the expected reward of the
model before and after disabling all the actions that produce NSE. The expected reward
for completing the task from the single start state s0 and using M̃ is denoted by Ṽ ∗1 (s0).
The expected reward after disabling all the actions with NSE, denoted by V̂ ∗1 (s0), is the
maximum reward that can be achieved without causing any NSE, when possible. Thus the
difference in values indicates the minimum slack required to avoid NSE, when feasible, and
ensures that the slack is in the same unit as the primary objective. We calculate the absolute
difference to allow for negative rewards. A solution may no longer exist after the actions
are disabled (Lines 3-4), in which case δ=∞ is returned, indicating that it is impossible to
completely avoid NSE and still accomplish the task.

Proposition 1. Given the function N that determines the probability of NSE occurrence,
Algorithm 1 calculates the minimum slack required to avoid NSE, while still accomplishing
the agent’s primary objective, when the NSE is avoidable.
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Algorithm 1 Slack Estimation (M̃,N,E)

1: δ ←∞
2: Ṽ ∗1 (so)← Solve M̃ optimally with respect to o1

3: Compute NSE-free transition (T̂ ) by disabling all actions with NSE, ∀(s̃, ã, s̃′):

4: T̂ (s̃, ã, s̃′)←

{
T̃ (s̃, ã, s̃′), if N((s̃, ã), E) = 0

0, otherwise

5: if solution exists for 〈S̃, Ã, T̂ , R̃〉 with respect to o1 then
6: V̂ ∗1 (so)← Solve 〈S̃, Ã, T̂ , R̃〉 optimally for o1

7: δ ← |Ṽ ∗1 (so)− V̂ ∗1 (so)|
8: return δ

Proof. We prove this by contradiction. Let δ denote the slack returned by Algorithm 1
and δ∗ denote the minimum slack required to avoid NSE in a setting with avoidable NSE.
Assume δ∗ > δ. This indicates that Algorithm 1 produced a lower value of slack than
required, resulting in NSE during policy execution. This is possible when the model is not
solved optimally or if all the actions that lead to NSE have not been disabled. By Lines 2-6
in Algorithm 1, all unacceptable actions are disabled based on N and the model is solved
optimally. Therefore, δ∗≤δ. Let δ∗<δ. By Lines 2-6 in Algorithm 1, all actions with NSE
are disabled and the model is solved optimally. Hence, δ∗≮ δ. Therefore, δ∗=δ.

Algorithm 1 breaks ties in favor of the primary objective. That is, if there are multiple
policies, within the slack, that result in the same expected penalty for NSE, the algorithm
will output a policy that optimizes the primary objective. Note that Algorithm 1 will fully
utilize the slack value to minimize NSE, even if the improvement in NSE is minimal. For
example, consider an agent operating with δ = 0.5Ṽ ∗1 (s0) to avoid NSE. However, if the
agent operates with δ = 0.25Ṽ ∗1 (s0), the expected penalty for NSE is three. For a 25%
increase in the slack value, the resulting improvement in NSE is three units. In many
problems, such a trade-off may be undesirable. Algorithm 1 calculates the minimum slack
required to avoid the NSE, and does not optimize this trade-off in the expected rewards.

The slack is specified by the user when NSE are unavoidable or when δ estimated using
Algorithm 1 is beyond the user tolerance. If the models are solved approximately, without
solution guarantees, Algorithm 1 is not guaranteed to return the minimum slack but our
approach still produces a policy that minimizes NSE, given the slack.

4.4 Learning from Feedback

To learn about Markovian NSE, we consider two forms of feedback that correlate with
features in S̃: feedback acquired from an oracle and feedback the agent acquires by exploring
the environment. The oracle feedback typically represents human feedback and provides
signals about undesirable actions, with respect to NSE. Alternatively, the agent may explore
the environment to gather reward signals with respect to NSE.
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4.4.1 Learning from Human Feedback

We discuss four different forms of human feedback, each providing information about NSE
directly or indirectly, along with their limitations. In this section, “budget” refers to the
maximum number of queries by the agent or the number of feedback signals received from
the human, and “without replacement” means that the agent queries only unique state-
action pairs.

Random Queries This feedback type represents an ideal setting in which the agent
randomly selects an (s, a) pair for querying an oracle, given a querying budget and without
replacement, and receives the exact, corresponding penalty for the NSE.

Despite the benefits offered by this approach, it is often unrealistic to expect exact
penalty specification for randomly selected state-action pairs. Hence we also consider other
feedback mechanisms where the human approves the agent’s actions, corrects the agent’s
policy, or demonstrates an acceptable trajectory. Since such feedback types do not provide
the exact penalty, feedback indicating acceptable actions are mapped to a zero penalty and
others are mapped to a fixed, non-zero penalty denoted by k, which in turn contributes to
RN . In our experiments, k is set to the maximum penalty incurred for NSE in the problem.

Approval (HA) The agent randomly selects (s, a) pairs, without replacement, to query
the human, who in turn either approves or disapproves the action in that state. The agent
learns by mapping the approved actions to zero penalty, RN (s, a)=0, and the disapproved
actions are mapped to a non-zero penalty RN (s, a) = k. We consider two types of human
approval: strict (HA-S) and lenient (HA-L). Strict feedback disapproves all actions that
result in NSE. Lenient approval only disapproves actions with severe NSE. The severity
threshold for HA-L is a tunable parameter that is problem-specific. Thus with HA-L, the
agent will not learn about NSE with low severity and with HA-S, the agent cannot distin-
guish between actions with different severities of NSE. We consider two types of approval
for simplicity but the framework supports more complex forms of human approval that en-
able the agent to learn NSEs with different levels of severity with a piecewise RN . Despite
the simplicity of this approach, it may be difficult for the human to approve or disapprove
actions in isolation, since they do not convey the agent’s overall behavior.

Corrections (C) In this form of feedback, the agent performs a trajectory of its primary
policy, with the human monitoring. If the human observes an unacceptable action at any
state, they stop the agent and specify an acceptable action to execute in that state. If all
actions in a state lead to NSE, then the user specifies an action with the least NSE. The
agent proceeds until the goal is reached or until interrupted again. When interrupted, the
agent assumes that all actions, except the correction, are unacceptable in that state. If
not interrupted, the action is considered to be acceptable. Acceptable actions are mapped
to zero penalty, RN (s, a) = 0, and unacceptable actions are mapped to a non-zero penalty,
RN (s, a) = k. This approach requires constant human oversight, which may be practically
infeasible in many settings.

Demo-action mismatch (D-AM) In demo-action mismatch, the human provides lim-
ited number of demonstrations. Each demonstration is a complete trajectory of performing
the task, from start to the goal. The agent collects these trajectories and compares them
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with its primary policy. For all states in which there is an action mismatch, the agent as-
sumes its policy leads to NSE and assigns RN (s, a)=k, otherwise assigns RN (s, a)=0. The
agent does not mimic human behavior. Instead, it only uses the demonstrations to gather
knowledge about NSE. A limitation of this approach is that the agent does not receive any
information about NSE in states that are not included in the demonstrations.

4.4.2 Learning from Exploration

When human feedback is expensive to collect or unavailable, it may be easier to allow the
agent to identify susceptible states through exploration. Learning from exploration uses
ε-greedy action selection—the agent exploits the action prescribed by its primary policy or
explores a random action to learn about NSE. The agent executes an action and receives
the corresponding NSE penalty, RN (s, a). Note that the agent explores only to learn RN
and the final policy is computed by solving the augmented model. “Budget” for exploration
strategies refers to the number of episodes.

We consider three exploration strategies: conservative – where the agent explores an
action with probability 0.1 or follows its primary policy, moderate – where the agent either
explores an action with probability 0.5 or follows its primary policy, and radical – where the
agent predominantly explores with probability 0.9, allowing the agent to possibly gather
more information about NSE than the other exploration strategies. Learning by exploring
the real-world may be risky in some contexts, such as autonomous vehicles. In such settings,
exploration may be performed in a simulator that is designed to train the agent to avoid
the negative side effects, or the agent can learn from human feedback.

4.4.3 Model Learning

The agent’s observations are generalized to unseen situations by training a random forest
regression (RF) model to predict the penalty RN . We use the RF model to handle the
continuous nature of the penalty and any regression technique may be used in practice. The
hyperparameters for the training are determined by a randomized search in the space of
RF parameters. For each hyperparameter setting, a three-fold cross validation is performed
and the mean squared error is calculated. Parameters with the least mean squared error are
selected for training, which is then used to predict the penalty RN . The augmented MDP
is then updated with this learned RN and the agent computes a NSE-minimizing policy for
execution by solving the augmented MDP.

4.5 Experimental Setup

We perform extensive evaluation of the different feedback mechanisms for mitigating avoid-
able and unavoidable NSE.

Baselines The performance of our approach is compared with three baselines. First is
the Oracle agent that avoids the NSE while satisfying the primary objective. The Oracle
has a perfect model of NSE and its policy is computed by solving the model after avoiding
all the actions with NSE. In problems with unavoidable NSE, it selects the action with the
least NSE since that is the best possible performance that can be achieved while satisfying
the primary objective. The performance of the Oracle provides a lower bound on the
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penalty for NSE incurred by the agent. The second baseline is the No queries case in
which the agent does not query or learn about NSE. Instead, it naively executes its primary
policy. This provides an upper bound on the penalty for NSE incurred by the agent. Third
is the scalarization approach (Krakovna et al., 2019) (RR) in which the agent optimizes
r(st, at)−βd(st, bt), where r(st, at) is the reward corresponding to o1 and d(st, bt) is the
measure of deviation from the baseline state bt, denoting the NSE. A direct comparison with
this approach is not feasible since it is based on assumptions that do not hold in our setting.
Therefore, we modified the RR approach to make it applicable in our setting—by calculating
the deviation based on a model of NSE learned with Random Query approach, as it does
not introduce any bias. We compute the deviation from inaction baseline, which measures
the NSE of the agent’s action with respect to no action execution in that state (Krakovna
et al., 2019). The side effects we consider are irreversible by an agent, once occurred, making
the baseline state unreachable. We tested with β ∈ [0.1, 0.9] since o1 is prioritized in our
formulation and report results with β = 0.8 as it achieved the best trade-off in training.

Side Effects In the interest of clarity, we consider two types of NSE severity: mild and
severe. Each action can either result in a mild negative side effect, severe negative side
effect, or no negative side effect. The strict human approval (HA-S) feedback disapproves
all actions that result in NSE. The lenient human approval (HA-L) only disapproves actions
with severe NSE. For learning NSE by exploration, we consider agent exploration in a
simulator where the reward signals indicate NSE penalty.

In our experiments, we optimize costs, which are negations of the rewards. Random
forest regression from sklearn Python package is used for model learning. The augmented
MDP is solved using a lexicographic variant of LAO* (Hansen & Zilberstein, 2001). The
slack is computed using Algorithm 1 and γ = 0.95. Values averaged over 100 trials of
planning and execution, along with their standard errors, are reported for the following
domains.

Boxpushing We consider a modified boxpushing domain (Seuken & Zilberstein, 2007) in
which the agent is expected to minimize the expected time taken to push a box to the goal
(Figure 1). Each action takes +1 unit of time. Each state is represented as 〈x, y, b, c〉 where
x, y denote the agent’s location, b indicates if the agent is pushing the box, c indicates the
current cell’s surface type. Pushing the box on a surface type c= 1 results in severe NSE
with a penalty of 10, pushing the box on a surface c=2 results in mild NSE and a penalty
of 5, and no NSE otherwise. The state features used for training are 〈b, c〉. We test on five
instances with grid size 15×15 and with varying initial location of the box and NSE regions.

Driving Our second domain is based on simulated autonomous driving (Saisubramanian,
Kamar, & Zilberstein, 2020a; Wray et al., 2015) in which the agent’s primary objective is to
minimize the expected cost of navigation from start to a goal, during which it may encounter
some puddles. The agent can move in all four directions at low and high speeds. The cost
of navigating at a low speed is two and that of high speed is one. The agent spatters water
when navigating over a puddle at high speed, which is undesirable. Some puddles may
have pedestrians in the vicinity and splashing water on them results in severe NSE with a
penalty of 10 and a mild NSE otherwise with a penalty of 5. Each state is represented by
〈x, y, l, p, h〉 where x, y denote the agent’s location, l is the speed, p, h indicate the presence
of a puddle and a pedestrian in the vicinity. Features used for training are 〈l, p, h〉. Five
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test instances are generated with grid size 15×15 and by varying the start, goal, puddle,
and pedestrian locations.

4.6 Results and Discussion

Effectiveness of learning from feedback We first discuss the effectiveness of various
feedback approaches in learning about NSE in settings with avoidable NSE and then discuss
results with unavoidable NSE.

(a) Boxpushing (b) Driving

(c) Boxpushing (d) Driving

Figure 5: Effect of learning from human feedback methods (a-b) and with exploration
strategies (c-d) on problems with avoidable NSE.

Figure 5 shows the average penalty incurred for NSE in settings with avoidable NSE, as
the feedback budget is increased. The Corrections feedback is efficient in terms of samples
required since the human corrects the agent by prescribing an acceptable action in each state.
Random querying and HA-S, which rely on random samples of states, achieve significant
reduction in NSE with 500 samples. Although HA-L also relies on random sampling of
states, it does not provide information about mild NSE, which affects its performance.
Training with Demo-AM feedback does not always minimize NSE even as the budget is
increased, since the agent does not receive enough negative samples and has no information
about the NSE in states unvisited in the demonstrations. Additionally, it is unable to
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(a) Human feedback (b) Exploration

Figure 6: Performance on Boxpushing problems with unavoidable NSE.

distinguish between the different levels of severity of the NSE of its actions. The performance
with Demo-AM is also affected when the acceptable actions demonstrated by the oracle
violate the slack constraints for the agent and therefore, the agent may not be able to
minimize NSE. However, Demo-AM is still better than No queries. RR with the model of
NSE learned using Random Query and with the given budget, performs poorly irrespective
of the budget. Apart from the reported results, we also tested RR with a perfect model of
NSE and its performance was significantly better and sometimes comparable to the Oracle’s
performance. However, obtaining a perfect model of NSE is non-trivial in practice. In
Figure 5 (c-d), Random querying with the maximum budget (7000) and RR with this learned
model are plotted in to compare the performance of exploration strategies and to understand
how the correlated samples affect the performance. Irrespective of the exploration type, the
agent gathers knowledge about NSE with a reasonable number of episodes.

When NSE are unavoidable, Algorithm 1 does not produce a finite slack. Therefore, we
experiment with a slack value that is 15% of the expected cost of o1, based on the observation
that slack returned by the algorithm for problems with avoidable NSE are typically within
15% of the expected cost for o1. Figure 6 plots the results for boxpushing problems with
unavoidable NSE. Problem instances with unavoidable NSE case were generated by making
sure there is no path to the goal over surface c = 3. We do not report results on the driving
domain because there are no unavoidable NSE in the problem setting we consider—the
agent can avoid NSE by navigating at a low speed.

The performance of human feedback techniques are similar to that of avoidable NSE
setting, except for HA-S and Demo-AM. Since HA-S cannot distinguish between different
severities, its performance is affected when NSE are unavoidable. Demo-AM matches the
performance of other techniques when NSE is unavoidable. Similar to Figure 5(c-d), learning
by exploration in settings with unavoidable NSE matches the performance of Random query.
Overall, the results indicate that our framework can effectively learn and mitigate the
impacts of both avoidable and unavoidable NSE.

Effect of slack We study the effect of slack on the expected cost of o1 and on NSE (o2),
by varying the slack from 40% to 100% of the value returned by Algorithm 1 on problems
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(a) Boxpushing (b) Driving

Figure 7: Effect of slack on o1.

(a) Boxpushing (b) Driving

Figure 8: Effect of slack on NSE.

with avoidable NSE. Figures 7 and 8 shows the results with 7000 queries for human feedback
and 100 exploration episodes. The values show the average cost in 100 episodes of executing
the updated policy with each slack value. We do not compare with the baselines, which
are unaffected by the variation in slack. Results with No Slack bound the performance of
other techniques. As the slack is increased, the average penalty incurred for NSE tends to
decrease. The minimal differences in the average costs for o1 shows that the slack values
returned by Algorithm 1 are reasonable and affect o1 only by a small margin.
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(a) Random Query (b) Strict HA (c) Lenient HA (d) Demo-AM

(e) Corrections (f) Conservative (g) Moderate (h) Radical

Figure 9: Frequency of querying across the state space with different feedback approaches.

5. Limitations of Learning from Feedback

While our results show that learning from feedback successfully mitigates NSE, four key
factors affect agent learning and its ability to mitigate NSE: (1) challenges in collecting
accurate feedback; (2) sampling biases in feedback; (3) limited fidelity of agent state repre-
sentation; and (4) unavoidability of certain NSEs.

Challenges in accurate feedback collection Our empirical results show that learning
from feedback can successfully mitigate NSE. We now discuss the challenges and drawbacks
of collecting feedback using the approaches discussed in Section 4.4.1.

In random query feedback, the human is expected to provide exact penalty for NSE,
which is non-trivial and can result in misspecification in practice. While the approval ap-
proach overcomes this drawback, the agent cannot differentiate between NSE with different
severities and it is often infeasible for the human to provide feedback on randomly selected
state-action pairs. The corrections approach overcomes these limitations, but it requires
constant human oversight, similar to action approval or random query approach. The
Demo-AM approach alleviates the need for constant human supervision and it is relatively
easier for the human to provide demonstrations than correcting or supervising the agent.
However, the agent does not receive information about NSE in states that are not included
in the demonstrations, and cannot differentiate between NSE with different severities. The
autonomous exploration approach avoids the need for human supervision altogether, but it
still requires the designer to specify the penalty for agent training in the simulator and may
lead to misspecification. Further, learning by exploration may be unsafe in certain settings.

These approaches, except random query and approval, also introduce sampling bias
since the samples are not i.i.d., as the visited states are correlated. Furthermore, all actions
other than the corrections or those demonstrated are assumed to be unacceptable. Since
there may be multiple acceptable actions in each state, this introduces additional bias. We
now discuss how the biases affect agent learning.

Bias in various feedback mechanisms The sampling biases in a feedback approach
affects agent performance. Different agent behaviors emerge when learning from different
forms of feedback, as shown in Figure 5. Figure 9 plots the frequency of querying in different
regions of the state space with different feedback mechanisms. The x-axis denotes the state
space and darker shades indicate regions that were frequently queried. The results are
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(a) Boxpushing (b) Driving

(c) Boxpushing (d) Driving

Figure 10: Effect of learning from human feedback (a-b) and with autonomous exploration
(c-d), when the agent state representation has low fidelity.

plotted for driving domain with avoidable NSE and using 7000 queries for human feedback
and 100 trials for exploration. Feedback techniques based on random sampling of states have
a higher coverage of the state space, contributing to a better performance. The exploration
techniques are the most restricted, due to which their performances are largely similar.
Since an ε-greedy approach is followed for exploration, these techniques likely cover only
the region surrounding that of the primary policy. As states in this region are often critical
for satisfying the agent’s primary objective, learning about NSE in this restricted region is
often sufficient to effectively mitigate the penalty for NSE. These results show that different
feedback types focus on different regions of the state space, which in turn affects the NSE
model learning.

Fidelity of state representation Learning from feedback assumes that the agent state
representation has all the necessary features to learn about NSEs. However, in many sce-
narios, the agent’s state representation may include only the features related to the agent’s
task. Limited fidelity of the state representation may affect the agent’s learning and adap-
tation, since the NSE could potentially be non-Markovian and the feedback signals received
for a state-action pair may be conflicting. Figure 10 plots the effect of learning from var-
ious feedback approaches when the agent’s state representation has limited fidelity. For
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the boxpushing domain, the agent’s state representation does not include the surface type,
since it is unrelated to its task. The state feature used for training in this case is 〈b〉,
where b indicates if the agent is currently pushing the box. However, the occurrence of NSE
correlates with surface type. Hence, the agent’s learning and its ability to mitigate NSE
are affected. Similarly for the driving domain, we do not include the presence of puddle
and nearby pedestrians in the state representation, since they are not relevant to o1. The
state feature used for training in this case is 〈l〉, which denotes the current speed. Since
the presence of puddles and nearby pedestrians are important features for learning a model
of NSE, the agent’s performance is affected when the state representation does not include
these features.

Unavoidable NSE and non-Markovian NSE Updating the agent’s policy may not
considerably mitigate the impacts of NSE when they are unavoidable, with respect to the
agent’s task, as shown in Figure 6. For example, in the boxpushing domain, NSE are
unavoidable if the entire floor is covered with a rug. Alternate approaches that do not rely
on agent learning and adaptation are required to mitigate NSE in such settings.

Negative side effects are considered to be non-Markovian when they are associated with
a trajectory (Definition 1). While any form of feedback can be used to learn about NSE
penalties associated with a sequence of actions, the proposed learning from feedback frame-
work requires the penalty to be associated with each each state-action pair (by definition of
RN ). Hence, the proposed approach cannot handle scenarios in which the NSE penalty for
a trajectory is not decomposable into additive penalties associated with state-action pairs.

In the following section, we present an approach that can avoid NSE in such settings,
when the human can assist the system, beyond providing feedback.

6. Mitigating NSE via Environment Shaping

This section presents another approach for mitigating NSEs when agents operate in envi-
ronments that are configurable. In many settings, the human operating the system has a
broader scope of knowledge and more control over the environment in which the agent is
situated. We leverage these insights to mitigate the impacts of NSE when the agent has
no prior knowledge about the side effects of its actions. The problem is formulated as a
human-agent team with decoupled objectives. The agent optimizes its assigned task, during
which its actions may produce NSE. The human shapes the environment through minor
reconfiguration actions so as to mitigate the impacts of agent’s side effects, without affect-
ing the agent’s ability to complete its assigned task. This decoupled approach does not
make any assumptions regarding the agent’s model and its learning capabilities. Further,
by controlling the space of available modifications, the user can prioritize which side effects
should be avoided.

6.1 Problem Formulation

Our formulation consists of an actor agent and an environment designer agent. The actor
agent operates based on an MDP M̃ in an environment that is configurable and described
by a configuration file E, such as a map of the environment. Describing the environment
using configuration files is a common practice in robotics. A factored state representation is
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assumed. The actor optimizes the reward for its assigned task, which is its primary objective
oP , and its model includes the necessary details relevant to oP . Executing the policy π
computed using M̃ may produce NSE, unknown to the actor. The environment designer
measures the impact of NSE associated with the actor’s π and shapes the environment, if
necessary. While the environment designer can be any autonomous agent, the formulation
is inspired by having a human in the role. The actor and the environment designer share
the configuration file of the environment, which is updated by the environment designer to
reflect the modifications. Optimizing oP is prioritized over avoiding NSE. Hence, shaping
is performed in response to the actor’s policy. In the rest of the paper, we refer to the
environment designer simply as designer—not to be confused with the designer of the agent.
We also use the terms ‘actor’ and ‘agent’ interchangeably to denote the actor agent.

Each modification is a sequence of design actions. An example of a modification is
{move(table, l1, l2), remove(rug)}, which moves the table from location l1 to l2 and removes
the rug in the current setting, resulting in a new environment configuration. We consider
the set of modifications to be finite since the environment is generally optimized for the
human and the agent’s primary task (Shah et al., 2019), and the human may not be willing
to drastically modify it. Additionally, the set of modifications for an environment is included
in the problem specification since it is typically controlled by the user and rooted in the
NSE they want to mitigate.

We make the following assumptions about the nature of modifications: (1) the start and
goal conditions of the actor are fixed and cannot be altered, so that the modifications do
not alter the agent’s task or its capabilities; and (2) modifications are applied tentatively for
evaluation purposes and the environment is reset if the reconfiguration affects the actor’s
ability to complete its task or the actor’s policy in the modified setting does not minimize
the side effects.

Definition 6. An actor-designer framework to mitigate negative side effect ( AD-NSE) is
defined by 〈E0, E , M̃ ,Md, δA, δD〉 with:

• E0 denoting the initial environment configuration of the actor;

• E denoting a finite set of possible reconfigurations of E0;

• M̃ is the actor’s MDP;

• Md = 〈Ω,Ψ, C,RN 〉 is the model of the designer with

– Ω denoting a finite set of valid modifications that are available for E0, including
∅ to indicate that no changes are made;

– Ψ : E ×Ω→ E determines the resulting environment configuration after applying
a modification ω ∈ Ω to the current configuration, and is denoted by Ψ(E,ω);

– C : E ×Ω→ R is a cost function that specifies the cost of applying a modification
to an environment, denoted by C(E,ω), with C(E, ∅)=0,∀E∈E; and

– RN is a model specifying the penalty for negative side effect, with RN (π,E) de-
noting the penalty associated with the actor’s policy π in environment E ∈ E.

• δA ≥ 0 is the actor’s slack, indicating the maximum allowed deviation from the initial
optimal policy for oP when recomputing its policy in a modified environment; and
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• δD ≥ 0 indicates the designer’s tolerance threshold for NSE.

Decoupled Objectives The actor agent’s objective is to compute a policy π that maxi-
mizes its expected reward from start state s̃0 in the current environment configuration E,
with respect to oP :

max
π∈Π

V π
P (s̃0|E),

V π
P (s̃) = R(s̃, π(s̃)) +

∑
s̃′∈S̃

T (s̃, π(s̃), s̃′)V π
P (s̃′),∀s̃ ∈ S̃.

When the environment is modified, the actor agent recomputes its policy and may end
up with a longer path to its goal. The slack δA denotes the maximum allowed deviation from
the optimal expected reward in E0, V ∗P (s̃0|E0), to facilitate minimizing NSE via shaping.
A policy π′ in a reconfigured environment, described by E′, satisfies the slack δA if

V ∗P (s̃0|E0)− V π′
P (s̃0|E′) ≤ δA.

The designer first estimates the penalty for NSE associated with agent behavior, de-
noted by RN (π,E). If the NSE exceeds the designer’s tolerance threshold, δD, then the
environment is reconfigured, assuming agent’s policy π is fixed. Given π and a set of valid
modifications Ω, the designer selects a modification that maximizes its utility:

max
ω∈Ω

Uπ(ω)

Uπ(ω) =
(
RN (π,E)−RN (π,Ψ(E,ω))

)︸ ︷︷ ︸
reduction in NSE penalty

−C(E,ω). (1)

Typically the designer is the user of the system and their preferences and tolerance for
NSE is captured by the utility of a modification. The designer’s objective is to balance
the trade-off between minimizing the NSE and the cost of applying the modification. It is
assumed that the cost of the modification is measured in the same units as the NSE penalty.
The cost of a modification may be amortized over episodes of the actor performing the task
in the environment. The following properties are used to guarantee bounded-performance
of the actor when shaping the environment to minimize NSE.

Definition 7. Shaping is admissible if it results in an environment configuration where
(1) the actor can complete its assigned task, given δA and (2) the NSE does not increase,
relative to E0.

Definition 8. Shaping is proper if (1) it is admissible and (2) reduces the actor’s NSE to
be within δD.

Definition 9. Shaping is robust if it results in an environment configuration E where all
valid policies of the actor for oP , given δA, produce NSE within δD. That is, RN (π,E) ≤ δD,
∀π : V ∗P (s̃0|E0)− V π

P (s̃0|E) ≤ δA.
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Shared Knowledge The actor and the designer do not have details about each other’s
model. Since the objectives are decoupled, knowledge about the exact model parameters of
the other agent is not required. Instead, the two key details that are necessary to achieve
collaboration are shared: configuration file describing the environment and the actor’s pol-
icy. The shared configuration file, such as the map of the environment, allows the designer
to effectively communicate the modifications to the actor. The actor’s policy is required
for the designer to shape the environment. However, compact representation of the ac-
tor’s policy is a practical challenge in large problems (Guestrin et al., 2001). Therefore,
instead of sharing the complete policy, the actor provides a finite number of demonstrations
D = {τ1, τ2, . . . , τn} of its optimal policy for oP in the current environment configuration.
Each demonstration τ is a trajectory from start to goal, following π. We consider deter-
ministic policies for the actor. Using D, the designer can extract the actor’s policy and
measure its NSE. The designer is aware of the general capabilities of the agent and its
objectives as they are assigning the task, which makes it easier for them to construe the
agent’s trajectories. Naturally, increasing the number and diversity of sample trajectories
that cover the actor’s reachable states helps the designer improve the accuracy of estimating
the actor’s NSE and select an appropriate modification. If D does not starve any reachable
state, following π, then the designer can extract the actor’s complete policy.

Algorithm 2 Environment shaping to mitigate NSE

Require: 〈E0, E , M̃ ,Md, δA, δD〉: AD-NSE
Require: d: Number of sample trajectories
Require: b: Budget for evaluating modifications

1: E∗ ← E0 . Initialize best configuration
2: E ← E0

3: n←∞
4: D ← Solve M̃ for E0 and sample d trajectories
5: Ω̄← Diverse modifications(b,Ω,Md, E0)
6: while |Ω̄| > 0 do
7: π̂ ← Extract policy from D
8: if RN (π̂, E) < n then
9: n← RN (π̂, E)

10: E∗ ← E
11: if RN (π̂, E) ≤ δD then break
12: ω∗ ← arg maxω∈Ω̄ Uπ̂(ω)
13: if ω∗ = ∅ then break
14: Ω̄← Ω̄ \ ω∗
15: D′ ← Solve M̃ for Ψ(E0, ω

∗) and sample d trajectories
16: if D′ 6= {} then
17: D ← D′
18: E ← Ψ(E0, ω

∗)

19: return E∗

Shaping phase
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6.2 Algorithm for Environment Shaping

Our solution approach for solving AD-NSE, described in Algorithm 2, proceeds in two
phases: a planning phase and a shaping phase. In the planning phase (Line 4), the actor
computes its policy π for oP in the current environment configuration and generates a finite
number of sample trajectories D, following π. The planning phase ends with disclosing D
to the designer. In the shaping phase (Lines 7-14), the designer first associates states with
actions observed in D to extract a policy π̂. The designer then estimates the corresponding
NSE penalty, denoted by RN (π̂, E). If the estimated NSE in the environment described by
E is lower than the current best estimate of NSE, denoted by n, then the best environment
configuration E∗ and n are updated with E and RN (π̂, E) respectively (Lines 8-10). If the
NSE exceeds the designer’s tolerance threshold, RN (π̂, E) > δD, then a utility-maximizing
modification is applied and the configuration file is updated to reflect the modifications
(Lines 12-15). The designer may be willing to evaluate only a few diverse modifications
when the space of modifications is large (Line 5), which is described in detail in Algorithm 3.

The actor returns D = {} when the modification affects its ability to reach the goal,
given δA (Line 15). Modifications are applied tentatively for evaluation and the environ-
ment is reset if the actor returns D = {} or if the reconfiguration does not minimize the
NSE. Therefore, all modifications are applied to E0 and it suffices to test each ω without
replacement, as the actor always calculates the corresponding optimal policy. When M̃ is
solved approximately, without bounded-guarantees, it is non-trivial to verify if δA is violated
but the designer selects a utility-maximizing ω corresponding to this policy.

The planning and shaping phases alternate until the algorithm terminates. Algorithm 2
terminates when at least one of the following conditions is satisfied: (1) the NSE is within
δD (Line 8); (2) all ω∈Ω have been tested (Line 6); or (3) the utility-maximizing option does
not make any modification at all, ω∗= ∅ (Line 13). The first condition is straightforward.
The second criteria describes the worst case scenario when no modification reduces the NSE
to be within δD. In this case, our algorithm identifies an ω that results in an environment
configuration with the least NSE possible. When ω∗=∅, it indicates that cost of modification
exceeds the reduction in NSE or no modification can reduce the NSE further.

Though the designer calculates the utility for all modifications, there is an implicit prun-
ing in the shaping phase since only utility-maximizing modifications are evaluated (Line 15).
However, when multiple modifications have the same cost and produce similar environment
configurations, the algorithm will alternate between planning and shaping multiple times to
evaluate all these modifications, which is |Ω| in the worst case. To minimize the number of
evaluations in settings with large Ω, consisting of multiple similar modifications, we present
a greedy approach to identify and evaluate diverse modifications.

Selecting diverse modifications Let b > 0 denote the maximum number of modifica-
tions the designer is willing to evaluate. When the budget b< |Ω|, it is beneficial to evaluate
b diverse modifications. Algorithm 3 presents a greedy approach to select b diverse modi-
fications. If two modifications result in similar environment configurations, the algorithm
prunes the modification with the higher cost. The similarity threshold is controlled by ε.
This process is repeated until b modifications are identified. Measures such as the Jaccard
distance or embeddings may be used to estimate the similarity between two configurations.
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Algorithm 3 Diverse modifications(b,Ω,Md, E0)

1: Ω̄← Ω
2: if b ≥ |Ω| then return Ω
3: for each ω1, ω2 ∈ Ω̄ do
4: if similarity(ω1, ω2) ≤ ε then
5: Ω̄ = Ω̄ \ arg maxω1,ω2

(C(E0, ω1), C(E0, ω2))
6: if |Ω̄| = b then return Ω̄

Remark. Shaping with Algorithm 2 is guaranteed to be admissible but may not be proper.

Algorithm 2 ensures that a modification does not negatively impact the actor’s ability
to complete its task, given δA (Lines 16-19), and stores the configuration with the least
NSE (Line 10). Therefore, Algorithm 2 is guaranteed to return an E∗ with NSE equal to
or lower than that of the initial configuration E0, thereby guaranteeing admissible shaping.

Shaping with Algorithm 2 is not guaranteed to be proper because (1) no modifications
in Ω may be able to reduce the NSE penalty below δD; or (2) the cost of such a modification
may exceed the corresponding reduction in NSE.

6.2.1 Policy-Preserving Modification

With each reconfiguration, the actor is required to recompute its policy. We now show that
there exists a class of problems for which the actor’s policy is unaffected by shaping.

Figure 11: A dynamic Bayesian network description of a policy-preserving modification,
where rP denotes the reward associated with oP and rN denotes the NSE penalty.

Definition 10. A modification is policy-preserving if the actor’s initial policy is unaltered
by environment shaping.

This property induces policy invariance before and after shaping and hence the policy
is backward-compatible. Additionally, the actor is guaranteed to complete its task with
δA = 0. Figure 11 illustrates the dynamic Bayesian network for this class of problems.

Let F denote the set of features in the environment, with FP ⊂F affecting the actor’s
policy and FD ⊂ F altered by the designer’s modifications. Let ~f and ~f ′ be the feature
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values before and after environment shaping. Given the actor’s π, a policy-preserving ω
follows FD = F \FP , ensuring ~fP = ~f ′P . When ~f = ~fP ∪ ~fD, a policy-preserving ω mitigates

NSE by enforcing Pr(FD = ~fD| ~fP , π) = 0,∀~f . For example in the boxpushing domain,
regions in the agent’s shortest path to its goal cannot be covered by a rug.

Proposition 2. Given an environment configuration E and actor’s policy π, a modification
ω ∈ Ω is guaranteed to be policy-preserving if FD = F \ FP .

Proof. We prove by contradiction. Let ω ∈ Ω be a modification consistent with FD∩FP = ∅
and F = FP ∪ FD. Let π and π′ denote the actor’s policy before and after shaping the
environment with ω such that π 6= π′. Since the actor always computes an optimal policy
for oP (assuming fixed strategy for tie-breaking), a difference in the policy indicates that at

least one feature in FP is affected by ω, ~fP 6= ~f ′P . This is a contradiction since FD ∩FP =∅.
Therefore ~fP = ~f ′P and π=π′. Thus, ω∈Ω is policy-preserving when FD = F \ FP .

Corollary 1. A policy-preserving modification identified by Algorithm 2 guarantees admis-
sible shaping.

Furthermore, a policy-preserving modification results in robust shaping when Pr(FD=
~fD) = 0, for all ~f = ~fP ∪ ~fD that lead to NSE greater than δD. The policy-preserving
property is sensitive to the actor’s state representation. However, many real-world problems
exhibit this feature independence. In the boxpushing example (Figure 1), the actor’s state
representation may not include details about the rug since it is not relevant to the task.
Moving the rug to a different part of the room that is not on the actor’s path to the goal is
an example of a policy-preserving and admissible shaping. Modifications such as removing
the rug or covering it with a protective sheet are policy-preserving and robust shaping since
there is no direct contact between the box and the rug, for all policies of the actor.

6.2.2 Relation to Game Theory

Our solution approach with decoupled objectives can be viewed as a game between the actor
and the designer. The action profile or the set of strategies for the actor is the policy space
Π, with respect to oP and E , with payoffs defined by its reward function R. The action
profiles for the designer is the set of all modifications Ω with payoffs defined by its utility
function U . In each round of the game, the designer selects a modification that is a best
response to the actor’s policy π:

bD(π) = {ω ∈ Ω|∀ω′ ∈ Ω, Uπ(ω) ≥ Uπ(ω′)}. (2)

The actor’s best response is its optimal policy for oP in the current environment configura-
tion, given δA:

bA(E) = {π ∈ Π|∀π′ ∈ Π, V π
P (s̃0) ≥ V π′

P (s̃0) ∧ V π0
P (s̃0)− V π

P (s̃0) ≤ δA}, (3)

where π0 denotes the optimal policy in E0 before initiating environment shaping. These
best responses are pure strategies since there exists a deterministic optimal policy for a
discrete MDP and a modification is selected deterministically. Proposition 3 shows that
AD-NSE is an extensive-form game, which is useful to understand the link between two
often distinct fields of decision theory and game theory. This also opens the possibility for
future work on game-theoretic approaches for mitigating NSE.
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Proposition 3. An AD-NSE with policy constraints induced by Equations 2 and 3 induces
an equivalent extensive form game with incomplete information, denoted by N .

Proof Sketch. Our solution approach alternates between the planning phase and the shaping
phase. This induces an extensive form game N with strategy profiles Ω for the designer and
Π for the actor, given start state s̃0. However, each agent selects a best response based on
the information available to it and its payoff matrix, and is unaware of the strategies and
payoffs of the other agent. The designer is unaware of how its modifications may impact
the actor’s policy until the actor recomputes its policy and the actor is unaware of the NSE
of its actions. Hence this is an extensive form game with incomplete information.

6.3 Experimental Setup

The effectiveness of shaping is studied in settings with avoidable and unavoidable NSE.

Baselines The performance of shaping with budget is compared with the following base-
lines. First is the Initial approach in which the actor’s policy is naively executed and does
not involve shaping or any form of learning to mitigate NSE. This is similar to the No
queries approach considered in Section 4.5. Second is the shaping with exhaustive search to
select a modification, b = |Ω|. Third is the Feedback approach in which the agent performs a
trajectory of its optimal policy for oP and the human approves or disapproves the observed
actions based on the NSE occurrence. The agent then disables all the disapproved actions
and recomputes a policy for execution. If the updated policy violates the slack, the actor
ignores the feedback and executes its initial policy since oP is prioritized. Using the human
feedback as training data, the agent learns a predictive model of NSE.

We use Jaccard distance to measure the similarity between environment configurations.
A random forest classifier from the sklearn Python package is used for learning a predictive
model. The actor’s MDP is solved using value iteration. The algorithms are implemented
in Python and tested on a computer with 16GB of RAM. We optimize action costs, which
are negation of rewards. Values averaged over 100 trials of planning and execution, along
with the standard errors, are reported for the following domains.

Boxpushing We consider a modified boxpushing domain in which the actor is required to
minimize the expected time taken to push a box to the goal location. Each action takes +1
unit of time. The actions succeed with probability 0.9 and may slide right with probability
0.1. Each state is represented as 〈x, y, b〉 where x, y denote the agent’s location and b is a
boolean variable indicating if the agent is pushing the box. Pushing the box over the rug or
knocking over a vase on its way results in NSE, incurring a penalty of 5. The designers are
the system users. We experiment with grid size 15× 15. We consider 24 modifications for
the boxpushing domain, such as adding a protective sheet over the rug, moving the vase to
corners of the room, removing the rug, block access to the rug and vase area, among others.
Removing the rug costs 0.4/unit area covered by the rug, moving the vase costs 1, and all
other modifications cost 0.2/unit. Except for blocking access to the rug and vase area, all
the other modifications are policy-preserving for the representation we consider.

Driving Our second domain is based on simulated autonomous driving, in which the
actor’s objective is to minimize the expected cost of navigation from start to a goal location,
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during which it may encounter some potholes. Each state is the agent’s location represented
by 〈x, y〉. We consider a grid of size 25 × 15. The actor can move in all four directions at
low and high speeds, with costs 2 and 1 respectively. Driving fast through shallow potholes
results in a bumpy ride for the user, which is a mild NSE with a penalty of 2. Driving fast
through a deep pothole may damage the car, in addition to the unpleasant experience for
the rider, and therefore it is a severe NSE with a penalty of 5. The cost of modifications are
amortized over multiple episodes of agent operation in the environment. The modifications
considered are: disabling ‘move fast’ action for the actor in zone i, 1 ≤ i ≤ 4; disabling
‘move fast’ action always; disabling ‘move fast’ action in zones with shallow potholes; fill
all potholes; fill deep potholes; and fill deep potholes in zone i, 1 ≤ i ≤ 4. Disabling ‘move
fast’ is achieved by reducing the speed limit, and costs 0.5 units per pothole in that zone.
Filling a pothole costs two units, and it is a policy-preserving modification.

6.4 Results and Discussion

Effect of slack We vary δA and δD, and plot the resulting NSE penalty in Figure 12. We
report results on the driving domain for shaping based on 100 actor trajectories. We vary
δA between 0-25% of V ∗P (s̃0|E0) and δD between 0-25% of the NSE penalty of the actor’s
policy in E0. Our results show that increasing the slack helps reduce the NSE, as expected.
In particular, when δD ≥ 15%, the NSE penalty is considerably reduced with δA = 15%.
Overall, increasing δA is most effective in reducing the NSE. We also tested the effect of
slack on the cost for oP . The results showed that the cost was predominantly affected by
δA. We observed similar performance for all values of δD for a fixed δA and therefore do
not include that plot. This is an expected behavior since oP is prioritized over minimizing
NSE in our setting.

Figure 12: Effect of δA and δD on the average NSE penalty.

Effectiveness of shaping The effectiveness of shaping is evaluated in terms of the av-
erage NSE penalty incurred and the expected value of oP after shaping. Figure 13 plots
the results for the boxpushing domain with δA = 0, δD = 0, and b = 3, as the number of
observed actor trajectories is increased. We do not report results for oP since we consider
δA=0 and therefore the agent always optimizes oP . Feedback budget is 500. With at most
five trajectories, the designer is able to select a policy-preserving modification that avoids
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(a) Avoidable NSE (b) Unavoidable NSE

#Trajectories oberved
before reconfiguring Shaping Shaping w/ budget

2 1 1
5 2 1
10 2 1
20 2 1
50 6 3
100 6 3

(c) Number of modifications evaluated when NSE is avoidable.

Figure 13: Results on boxpushing domain.

NSE. Shaping w/ budget b = 3 performs similar to shaping by evaluating all modifications,
and reduces the number of shaping evaluations by 50%. The feedback approach is not able
to mitigate NSE since it violates the actor’s slack and the agent state representation has
limited fidelity, similar to the results in Section 5.

(a) Average NSE penalty. (b) Expected cost of oP .

Figure 14: Results on driving domain with avoidable NSE.

Figure 14 plots the results on the driving domain with avoidable NSE, δA = 25%, δD = 0,
and b = 4. We choose δA = 25% since the agent cannot avoid NSE unless it slows down or
chooses an alternate longer route, which requires a non-zero slack, and Figure 12 shows that
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NSE are avoided in the driving domain when δA = 25%, irrespective of δD. The driving
domain does not have unavoidable NSE since the agent can always avoid NSE by slowing
down over potholes. Shaping with budget reduces NSE as more trajectories are observed
but is unable to avoid NSE. However, shaping by evaluating all modifications avoids NSE
by observing ten actor trajectories. The feedback approach is unable to mitigate NSE due
to the limited state representation of the agent. In both domains, we observe that shaping
avoids NSE, after observing few actor trajectories, and shaping w/ budget mitigates NSE
considerably.

7. Limitations of Environment Shaping

While our results show that environment shaping can successfully mitigate both avoidable
and unavoidable NSE, the following factors may affect the performance.

Challenges in performing shaping Environment shaping requires the designer, typ-
ically the user, to supervise the agent and have control over the environment to perform
shaping. In general, certain reconfigurations may require specific skills. Our approach,
however, does not model the designer’s competency and instead assumes that the set of
available modifications is optimized for the designer’s skills. Access to a model of the
designer’s competency is required to automatically identify useful modifications that the
designer can implement. Our formulation assumes that the designer can predict the actor’s
policy from trajectories to perform shaping effectively. In practice, the designer requires
insights about agent behavior to be able to predict agent policy with high confidence.

While our algorithm identifies an appropriate modification, the designer may be required
to evaluate multiple reconfigurations to effectively avoid NSE when there is a large set of
diverse modifications, or when each reconfiguration involves a long sequence of design ac-
tions. This can be time-consuming for the user. Though shaping w/ budget helps alleviate
this concern, it introduces a trade-off between number of modifications to evaluate and the
final NSE. A lower budget reduces the number of modifications to evaluate, but it is not
guaranteed to find an optimal, utility-maximizing reconfiguration. Another approach to
quickly identify right modifications is to generalize the observed performance across modi-
fications. However, it is non-trivial to generalize the effect of shaping on agent performance
and the resulting NSE, since we do not assume knowledge about the agent’s model.

Our framework requires the agent to recompute its policy every time a modification is
being evaluated, which can be computationally expensive if the agent operates based on a
large, complex model. Though policy-preserving modifications overcome this limitation, it
is challenging to determine whether a given modification is policy-preserving a priori since
it depends on the agent’s model.

Interference with future tasks and other agents Reconfigurations can be temporary
or permanent. Permanent modifications may affect the agent’s ability to perform future
tasks in the environment or even introduce new NSE, especially when the agent performs
different types of tasks. In this work, we consider settings where the agent repeatedly
performs the same task, and therefore this issue does not arise. It is not straightforward
to extend our algorithm to handle situations where an agent performs different types of
task, since this requires knowledge about the agent’s behavior and estimating slack for all
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the tasks performed by the agent. Further, there may be multiple agents, with different
tasks and capabilities, operating simultaneously in an environment. In such settings, even
temporary modifications may affect the performance of other agents. However, our approach
currently does not account for these types of interference when identifying an appropriate
reconfiguration to mitigate NSE.

8. Summary and Future Work

Autonomous agents may create negative side effects when executing a policy computed using
an incomplete model of the environment. It is generally infeasible to model all negative side
effects a priori, since the occurrence of side effects depends on the deployed environment
and the tolerance to a side effect is user-specific. In situations where the agent has no prior
knowledge about the side effects of its actions, the user can assist the system in mitigating
the impacts of NSE after deployment. The user assistance can be in the form of feedback or
environment reconfiguration. The agent may also be able to learn about NSE by exploring
the environment to gather signals corresponding to NSE penalty.

We formalize the problem of mitigating NSE and present two solution approaches that
are complementary in their assumptions and agent responsibilities. First, we investigate
the effectiveness of various forms of feedback in learning a model of NSE. The problem
is formulated as a multi-objective problem with slack, and we propose an algorithm to
determine the minimum slack required to avoid these side effects. Second, we leverage
human assistance in the form of environment shaping. The problem is formulated as a
human-agent collaboration with decoupled objectives and present an algorithm for shaping.
Empirical evaluations show that our approaches are effective in mitigating avoidable and
unavoidable NSE. We also discuss the limitations of each approach.

There are many interesting directions for future research. In this work, we target side
effects that are undesirable but not safety-critical. The proposed lexicographic ordering for
learning from feedback may have to be modified when the side effects are safety-critical
because the agent will be expected to prioritize minimizing NSE to maximize safety, over
optimizing the performance of its task. In addition, it is assumed that the user can over ride
the slack value, if the slack computed using the proposed approach violated user tolerance.
In practice, choosing the “right” slack value for a problem can be challenging since it requires
a deep understanding about the trade-offs between the objectives. One approach to guide
the user in picking the slack value is to modify our algorithm such that it presents solutions
with different slack values within a range, instead of outputting a single slack value. This
would allow the user to compare the effect of different slack values and select a value that
best matches their tolerance. Extending learning from feedback approach to NSE associated
with trajectories that are not decomposable into additive penalties of state-action pairs is
another interesting direction for the future.

Our solution approaches rely on immediate human assistance, either in the form of
feedback or shaping the environment. However, humans are bounded-rational, are slow
to respond, and are not guaranteed to provide accurate feedback or identify optimal re-
configurations. In the future, we aim to make our approaches robust to errors in human
assistance. Different feedback approaches have different drawbacks, which we describe in
Section 5. In the future, we aim to develop techniques to learn using a combination of dif-
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ferent feedback approaches. In our current formulation of environment shaping, the space
of available modifications for an environment is assumed to be given. In the future, we aim
to develop methods to automatically identify useful modifications for a given problem. We
also aim to develop techniques to automatically switch between solution methods, depend-
ing on various factors such as agent capabilities, type of NSE, and the human’s preferred
form of assistance.

In this work, we target side effects that affect the safety and reliability of agent operation.
In the future, we plan to expand the scope to address other forms of side effects such as
amplifying underlying biases or increasing vulnerability to attacks, which may occur when
the system optimizes incompletely specified objectives.
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