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Abstract
A multivariate Hawkes process enables self- and cross-excitations through a triggering

matrix that behaves like an asymmetrical covariance structure, characterizing pairwise
interactions between the event types. Full-rank estimation of all interactions is often
infeasible in empirical settings. Models that specialize on a spatiotemporal application
alleviate this obstacle by exploiting spatial locality, allowing the dyadic relationships between
events to depend only on separation in time and relative distances in real Euclidean space.
Here we generalize this framework to any multivariate Hawkes process, and harness it as
a vessel for embedding arbitrary event types in a hidden metric space. Specifically, we
propose a Hidden Hawkes Geometry (HHG) model to uncover the hidden geometry between
event excitations in a multivariate point process. The low dimensionality of the embedding
regularizes the structure of the inferred interactions. We develop a number of estimators
and validate the model by conducting several experiments. In particular, we investigate
regional infectivity dynamics of COVID-19 in an early South Korean record and recent Los
Angeles confirmed cases. By additionally performing synthetic experiments on short records
as well as explorations into options markets and the Ebola epidemic, we demonstrate that
learning the embedding alongside a point process uncovers salient interactions in a broad
range of applications.

1. Introduction

Infectious diseases (Gibson, Streftaris, & Thong, 2018), news topics (He, Rekatsinas, Foulds,
Getoor, & Liu, 2015), crime patterns (Mohler, Short, Brantingham, Schoenberg, & Tita,
2011), neuronal spike trains (Pillow, Shlens, Paninski, Sher, Litke, Chichilnisky, & Simoncelli,
2008), and market trade-level activity (Morariu-Patrichi & Pakkanen, 2018; Swishchuk &
Huffman, 2020) naturally suit the form of a diachronic point process with a network of
directed excitations. Understanding their intrinsic dynamics is of immense scientific and
strategic value: a particular series of discrete options trades may inform an observer on the
fluctuating dispositions of market agents; similarly, temporal news publication patterns may
betray an ensuing shift in the public zeitgeist. The spread of a novel pathogen, notably the
COVID-19 virus, through disjointed pockets of the globe hints to how it proliferates, and
how that might be averted (Drakopoulos, Ozdaglar, & Tsitsiklis, 2017).

Simple Hawkes (1971) processes model excitations as a linear combination of responses
to past events. Often in the multivariate setting, a drastic need for data-efficient techniques
arises: practically, estimating the (= × =) possible excitations between each dyad (pair) of
event types is often untenable without succinct and interpretable parametrization. How
can one possibly disentangle the contributions of hundreds of options trades within each
minute, in a myriad of different strike prices and expiration dates, to the future frequency of
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Figure 1: A stylized rendition. Instead of learning all possible interactions, we estimate a
compact Euclidean embedding with fewer degrees of freedom and the additional benefit of
interpretability.

a particular type of trade? Temporal processes like markets are also highly non-stationary,
exacerbating the restriction to learn meaningful models on short windows. In these cases
it is necessary to envision a reduced parametric form that is expressive yet cogent. The
manifold hypothesis (Fefferman, Mitter, & Narayanan, 2016, for possible references) supposes
that the vast majority of complex, high-dimensional phenomena reside in a state space of
significantly lower dimensionality. The present endeavor is an effort to estimate embeddings
of manifold-like structures from indirect measurements—in this case, marked events.

Spatiotemporal domains (Veen & Schoenberg, 2008; Mohler, 2014; Yuan, Li, Bertozzi,
Brantingham, & Porter, 2019) exploit physical constraints on interaction locality. In essence,
the direct influence one event bears on another is restricted by their separation in space,
invariant to absolute positioning. We show that it is feasible to conjure a latent metric
representation of the event types by harnessing a spatiotemporal approach outside the spatial
context. We tailor the latent space toward the precise interactions between events.

Our first contribution is a model that captures multivariate point-process regularities
in a compressed metric space, and which eliminates the need to estimate all the pairwise
interactions between the event types. As our second contribution, we propose three estimation
algorithms founded on the expectation-maximization (EM) technique in identifying Hawkes
processes (Yuan et al., 2019; Zhou, Zha, & Song, 2013b; Halpin & Boeck, 2013). A latent
structure introduced in the E-step to attribute the source of each event realization (Figure 1)
permits tractable solutions in the M-step, which we exploit to optimize the embedding directly.
Third, our findings on diverse social datasets demonstrate improvements upon the State of
the Art (SotA) models, while also yielding qualitatively intuitive representations (Salehi,
Trouleau, Grossglauser, & Thiran, 2019; Xu, Farajtabat, & Zha, 2016; Zhou, Zha, & Song,
2013a). We successfully learn the regional diffusion process for the 2014–2015 Ebola outbreak
as well as the influences between options trades in different stocks. We also optimized an
embedding for the South Korean early COVID-19 outbreak (Kim, 2020) and the winter stage
of the pandemic in Los Angeles (Welsh, 2020).

One active line of work, paralleling ours, embeds each event based on some conceived
heuristic like temporal proximity (Torricelli, Karsai, & Gauvin, 2020; Zhu & Xie, 2019; Zuo,
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Liu, Lin, Guo, Hu, & Wu, 2018); another direction of inquiry entails the estimation of low-
rank multivariate Hawkes processes (Nickel & Le, 2020; Lemonnier, Scaman, & Kalogeratos,
2017; Junuthula, Haghdan, Xu, & Devabhaktuni, 2019). We differ from both in learning an
actual metric-space representation vis-à-vis the real Hawkes likelihood. To our knowledge,
we are the first to propose a Euclidean embedding scheme driven entirely by an underlying
marked Hawkes process.

2. Method

Consider a record of # event occurrences (:8 , C8) ∈ H, 8 = 1, 2, . . . #, with = marked types
:8 ∈ {1, 2, . . . =} at times C8 ∈ [0, )). We assume that events with certain marks excite future
events of either the same or another type. Multiple such interactions may be present, and
we desire to identify those that are warranted by the available observations. A compact
representation would, in effect, induce a shrinkage prior on the continuum of allowable
interactions. Its form should align with our inductive bias.

We begin with preliminaries. The multivariate intensity function _(: 9 , C 9), conditional
on the events in [0, C 9), dictates the instantaneous frequency of event (: 9 , C 9). Any interval
[C, C + dC) witnesses Poisson-distributed instances of event type : with rate _(:, C)dC. We
decompose this intensity (Bacry & Muzy, 2016) into self- and cross-excitations and an
intrinsic background rate, not knowing a priori which event triggered which:

_(: 9 , C 9) B
#∑
8=1

ℎ(: 9 , :8 , C 9 − C8) + `(: 9). (1)

A variety of approaches exists to estimate or infer the (=× =) separate response functions,
g ↦→ ℎ(: 9 , :8 , g), indexed by the influencing event type :8 and influenced type : 9 . Short
records and ambiguities in the combinatorial structure of potential causation hinder proper
identification of actual interactions. In the presence of competing renditions for the O(=2)
coefficients, we elect the structure that follows from the manifold hypothesis. Concretely, we
envision a Euclidean geometry that adequately captures the interactions between event types.
We estimate distinct embeddings for receiving, G: 9 ∈ - ⊂ R<, versus influencing, H:8 ∈ . ⊂ R<,
event types because otherwise we inadvertently constrain ourselves to symmetrical interactions.
Multivariate Hawkes processes generally admit directed interactions. Accordingly, the finite
collections of vectors - and . constitute the embedding of a putative manifold wherein the
multivariate component of the excitations is characterized by ‖H:8 − G: 9 ‖2 —the influence
that some event type :8 exerts on : 9 . From hereon, we shall express H:8 as H8 and G: 9 as G 9
to ease the notational burden.

Each response is the result of a dyadic interaction between an event (:8 , C8) in the past
and the potential occurrence of an event with type : 9 at the present C 9 . The bank of ' basis
functions combines Gaussian spatial proximities and exponential clocks with support forward
in time:

6A (G 9 , H8) B (2cV2A )−
1
< exp

{
‖G − H‖2

2V2A

}
, (2)

5A (g) B ^Ae
−^A g . (3)
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Eqs. 2 & 3 form the spatial and temporal basis of A = 1, 2, . . . ' kernels comprising
the response function, tentatively produced below and expanded with full nuance in Eq. 8.
Evidently, our construction enables multiscale responses in space (with spreads VA ) and time
(with decays ^A ). Later we introduce the ingredients b (:8) and WA to relieve a constraint on
the magnitude of each response.

ℎ(: 9 , :8 , g) = 1[g > 0]
'∑
A=1

6A (G 9 , H8) 5A (g)

The proposed model family is framed as a strict superset of the parametric Hawkes process
with exponential kernels: setting ' = 1, as we did in most of our experiments, collapses back
to the exponential temporal response function.

A generalized Poisson process yields a clean log likelihood function, written as follows:

log ! =
#∑
9=1

log _(: 9 , C 9) −
=∑
:=1

∫ )

0
_(:, C)dC. (4)

However, direct gradient-based optimization is prone to instability and a painstaking selection
of hyperparameters. We turn to an E-M procedure with an augmented objective.

Suppose we happened upon the expected branching structure (Halpin & Boeck, 2013;
Reinhart, 2018) of the realized point process. In other words, we introduced latent variables
[?8 9A ] ∈ R#×#×' holding expectation estimates of %8 9A ∈ {0, 1}, indicating whether it was
the event instance 8 that triggered instance 9 , and attributing responsibility to kernel basis A.
Approximate knowledge of the untenable true line of causation endows us with the so-called
complete-data log likelihood termed log !2 (Yuan et al., 2019; Veen & Schoenberg, 2008;
Reinhart, 2018), an expectation of the joint log-probability density of the record and the
latent variables [%8 9A ] in terms of their probabilities [?8 9A ].

log !2 B
#∑
9=1

(
#∑
8=1

'∑
A=1

?8 9A log ℎA (: 9 , :8 , C 9 − C8) + ?1 9 log `(: 9)
)
−

=∑
:=1

∫ )

0
_(:, C)dC (5)

By abuse of notation let ℎA (· · · ) denote the Ath response kernel. Note that in the above
form, what was previously a logarithm of summations (see Eq. 4 and 1) is replaced by a
weighted sum of decoupled logarithms. The probability that the event instance was due
to the background white Poisson process is ?1 9 ; ∀ 9 ,

∑
8,A ?8 9A + ?1 9 = 1. Concretely, given

a model _(:, C), our expectation for the particular branch of event cascades where event
8 triggered event 9 via kernel A is the ratio of that particular contribution to the overall
intensity:

?8 9A B
ℎA (: 9 , :8 , C 9 − C8)

_(: 9 , C 9)
. (6)

Lemma 1. The complete-data log likelihood in Eq. 5 provides a lower bound for the point
process log likelihood (Eq. 4): log !2 ≤ log !.

Proposition 1. The lower bound of Lemma 1 is maintained when the latent variables’
expectations [?8 9A ] take on any value as long as ∀ 9 , ∑

8,A ?8 9A + ?1 9 = 1.
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Our proof of Proposition 1 relies on Lemma 1 in the supplementary material. The right-
hand term in Eq. 5 simplifies vastly if one assumes that ∀H8 ∈ ., ∀A,

∑
G: ∈- 6A (G 9 , H8) = 1,

and that ∀8∀A,
∫ )
C8
5A (C − C8)dC ≈ 1. The latter approximation is tenable for large enough ) ;

the former is not. Only through certain concessions may we gain confidence that the sum is
roughly unit (equal to one). First note that by the Gaussian integral, ∀H

∫
R<
6A (G, H)dG = 1.

Veen & Schoenberg (2008) approximated this sum as a Gaussian integral and demonstrated
the viability of such alongside later studies. This approximation holds as long as the spatial
occurrence of events is distributed uniformly in R<. In our embedding scheme, they are not:
events are clumped at discrete locations of their types, and the objective function must also
be constrained so that it does not drift into regimes that violate the approximation. Thusly,
we are left with a coerced normalization of Eq. 2;

6̂A (G, H) =
6A (G, H)
6A (H)

, 6A (H) B
∑
G′∈-

6A (G ′, H). (7)

We rely on the unaltered form in Eq. 2 for the derivation of analytical maximizers during
optimization, as is well established in seismology and other spatiotemporal studies (Reinhart,
2018); nevertheless, we found empirically that the intervention in Eq. 7 stymies potential
drift towards degeneracy. Granular control of the magnitudes is desirable, so the final touch
is the introduction of one more kernel parameter, b (:8), to directly represent the total after
summation. The spatial kernel thus handles only the distribution of influence across its
receptors. The full response function is therefore Eq. 8. We eliminate redundancies by post
hoc constraining the exertion coefficient =−1

∑=
;=1 b (;) = 1 and scaling the basis coefficients

WA appropriately.

ℎ(: 9 , :8 , g) B 1[g > 0]
'∑
A=1

b (:8)WA 6̂A (G 9 , H8) 5A (g) (8)

2.1 Optimization

Furnished with the expected branching structure in Eq. 6 (the “Expectation” step), we perform
projected gradient ascent by setting partial derivatives of the complete-data log-likelihood with
respect to each kernel parameter to zero (the “Maximization” step). Eventually, the potential
trigger routes ?8 9 are aggregated in certain ways to form coefficient estimates. Omitting the
domains of summation over 8 and 9 , 8 as implicitly {1, 2, . . . #} and {1, 2, . . . #} × {1, 2, . . . #}
respectively, the solutions unfold as the following:

^A (UX , VX) =
∑
9 ,8 ?8 9A + UX − 1∑

8, 9 ?8 9A (C: 9 − C:8 ) + VX
, (9)

V2A =

∑
8, 9 ?8 9A

G: 9 − H:82
<

∑
9 ,8 ?8 9A

, (10)

WA =

∑
9 ,8 ?8 9A∑
8 b (:8)

, (11)

b (;) =
∑'
A=1

∑
9 ,8 1[:8 = ;]?8 9A∑'

A=1 WA
∑
8 1[:8 = ;]

, (12)

`(:) = )−1
∑
9

1[: 9 = :]?1 9 . (13)

At times, it is necessary to preserve focus on the acceptable time horizons for a particular
domain. A Gamma(UX , VX) prior on the decay rate ^A admits the maximization a posteriori
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in Eq. 9, which trivially becomes uninformative at the assignment ^A (1, 0) that we chose in
our upcoming experiments. We included those extra parameters simply in case it becomes
desirable to bias the model’s time scale in the future. Empirically, we found that one is
typically interested in the half-life (log 2/^A ), the prior of which is the reciprocal of the
aforementioned gamma distribution and characterized by the aptly named inverse-gamma
distribution with expectation VX

UX−1 . Preserving the mean while increasing both parameters
strengthens the prior.

The influences Φ = [i(:, ;)] consist of the kernels with time integrated out, i.e.

i(:, ;) B
∫ ∞

0
ℎ(:, ;, g)dg =

'∑
A=1

b (;)WA 6̂A (G: , H;).

There is evidence that this quantity encodes the causal network structure (Achab, Bacry,
Gaiffas, Mastromatteo, & Muzy, 2017; Etesami, Kiyavash, Zhang, & Singhal, 2016). Pursuant
to the above maximization step, one may alternatively estimate all of these =2 degrees of
freedom: that is what we will later term our baseline.

2.2 Embedding the Dyadic Relationships

We present two candidate approaches for estimating optimal Euclidean embeddings of the
Hidden Hawkes Geometry (hence HHG) in a multivariate point process. One is based on
the gradients of log !2, and the other on a diffusion-maps heuristic. Finally, we present a
full-rank baseline estimator derived from the same EM algorithm.

2.2.1 Maximum Likelihood

We learn embeddings directly via the EM objective function, log !2, rather than some
heuristic. Our approach updates both the reception and influence embedding, concurrently
with the rest of the parameters, during the M-phase. The influence points maximize their
EM objective at tractable solutions to a set of decoupled equations.

Observe the partial gradient with respect to an influence vector H, after expanding the
response functions:

mlog !2
mH;

=

'∑
A=1

[
−

∑
9 ,8

1[:8 = ;]?8 9A
(
H; − G: 9
V2A

)
+ b (;)WA

∑
8

=∑
:=1

1[:8 = ;] (2cV2A )−</2
(
H; − G:
V2A

)
exp

{
− ‖H; − G: ‖

2

2V2A

}]
(14)

This expression is difficult to solve analytically. Recall, however, our prior simplifying
assumption that ∀H, A ∑

G∈- 6A (G, H) = 1, also enforced a posteriori by means of Eq. 7. See
the discussion above that surrounds this equation. The latter portion of Eq. 14 contains the
form

∑
G (G − H)6A (G, H), equivalent to taking a quantized “expectation” of a Gaussian variable

subtracted by its own mean (see Eq. 2). Hence, as long as the Gaussian sum is assumed to
be approximately unit, then the entire second part of Eq. 14 vanishes due to the contribution
of the pieces involving G: . We garner the following—rather intuitive—formula for globally
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optimal influence points, within the microcosm of the current E-phase:

H; =

∑'
A=1

∑
9 ,8 1[:8 = ;]?8 9AG: 9∑'

A=1

∑
9 ,8 1[:8 = ;]?8 9A

. (15)

Evidently each influence point H8 ∈ . is attracted to the reception points {G 9 ∈ -} that it
appears to excite.

First-order optimizer (HHG-A). All parameters are updated simultaneously in each fixed-
point iteration. Solving the optimality conditions leads to a decoupled system of equations
comprising functionally distinct blocks of parameters, like reception points, influence points,
and kernel decay rates. Unfortunately there is no analogous solution for the reception points
that could manifest by a sensible approximation like that of the Gaussian integral, above.
The simplest strategy is to submit to regular gradient ascent with learning rate Y: climbing
the average log likelihood

G: ← G: + Y · #−1
mlog !

mG:
. (16)

We produce the gradient below, in implicit vector notation.

0: B
mlog !2
mG:

=

'∑
A=1

∑
8

(
G: − H:8
V2A

) [
−

∑
9

1[: 9 = :]?8 9A

+ b (:8)WA (2cV2A )−</2 exp
{
−
G: − H:82

2V2A

}]
. (17)

To gain intuition on the selection of Y, we looked into entropic impact as a heuristic. The
beautiful findings of McFadden, 1965 allowed us to reason about the contribution of shifting
an embedding point to the differential entropy of a doubly stochastic point process:

m2� (:, C)
mCmG:

= [log _(:, C) + 1]
∑
8

mℎ(:, :8 , C − C8)
mG:

,

which admitted a simple rule of thumb for adjusting the learning rate of Eq. 16 proportionally
to =/#, with other factors pertaining to domain idiosyncrasies. Maintaining this rule
ameliorated convergence in our synthetic experiments of §3.1.

Second-order optimizer (HHG-B). Further differentiating Eq. 17 with respect to every
reception point leads to a block-diagonal Hessian matrix, �, decoupled into (<×<) coordinate
blocks indexed by event type, �: . Assuming each of these is negative definite—more on
that below—then it is numerically trivial to invert them. A naïve Newton step could have
trouble converging, so we employed Levenberg-Marquardt regularization to introduce a sort
of learning rate, Y1 (Nesterov & Polyak, 2006). Newton-Raphson optimization may be viewed
as maximizing a downwards-facing (convex) local quadratic approximation of the objective
function. From that perspective, Y1 plays the role of inserting a parabola centered at the
current G: and strengthening local convexity. We additionally introduce a regularization
parameter Y2 that constrains how far the embedding points may escape the origin. It may be
useful in quelling the aimless drift of unconnected event types. Following the previous analogy,
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Y2 superimposes a parabola at the embedding origin, a Gaussian well in the log-likelihood
space. High Y1 grows jump sizes to mimic a learning rate, whereas Y2 shrinks the jumps as a
regularizer.

0̃: B 0: − 2(#Y2)G: , �̃: B �: − 2# (Y−11 + Y2)�, G: ← G: + �̃−1: 0̃: . (18)

In practice, we chose to execute four such optimization steps during each M-phase to
approximately converge to the current global optimum. Recall that a sole global optimum
exists for each block of parameters per M-phase; however, we are point-wise maximizing
an upper bound to the true likelihood. Each EM iteration concludes at a solution that is
not guaranteed to be optimal, much less global. Yet it does converge eventually (Hunter &
Lange, 2004).

Convexity. A multivariate function with negative-definite Hessian throughout the domain
has one extremum, the global maximum, and is thereby convex. The reception-point
Hessians �: are not negative definite per se. They may, however, be deconstructed into
the difference of a diagonal component and an outer product of another matrix with itself:
�: = diag(2:) − �): �: . Clearly, if the elements of 2: were all negative, then the whole �:
would be negative definite. The vector 2: is

: ↦→
'∑
A=1

V−2A
∑
8

[
b (:8)WA (2cV2A )−</2 exp

{
−
G: − H:82

2V2A

}
−

∑
9

1[: 9 = :]?8 9A

]
,

where the positive component inside the sum is bounded above by unit, and the negative
component is not analogously bounded below. To avoid undesirable cases, we apply a
zero ceiling to each element of 2: before employing the additional regularizers via (Y1, Y2).
Convexity is therefore ensured. Oftentimes, it suffices to only set one of the two—particularly
Y1—to a nonzero value. Whenever only Y2 is specified, it is implied that Y1 →∞.

2.2.2 Diffusion-maps heuristic (HHG-DM)

Could we posit a diffusion process across event types, and estimate coordinates that recreate
diffusion distances on an approximate Riemannian manifold? Random-walk manifold embed-
dings are helpful in deep representations (Kalatzis, Eklund, Arvanitidis, & Hauberg, 2020;
Li, Lindenbaum, Cheng, & Cloninger, 2019; Rey, Menkovski, & Portegies, 2019). Construed
as graph affinities, the influences Φ guide a Markovian random walk of which diffusion
maps (Soize & Ghanem, 2016; Lian, Talmon, Zaveri, Carin, & Coifman, 2015; Coifman &
Lafon, 2006) may be approximated via spectral decomposition. We found that asymmetrical
diffusion-maps embeddings in the style of Pham & Chen, 2018 serve as an adequate initial
condition for (-,. ) but are not always conducive to stable learning in conjunction with the
rest of our iterative procedure. We term the model learned entirely this way as HHG-DM.

We briefly review the technique’s application here; the curious reader is encouraged to
peruse the theory presented in Coifman and Lafon’s seminal publication (2006). Casting
the influence matrix as edge weights in a bipartite graph flowing between influence (col.)↔
reception (row), we examine the diffusion process upon it (Pham & Chen, 2018). We first
normalize by density to our liking, per our selected value for the parameter 0 ≤ U ≤ 1
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according to

� = diag

(〈 =∑
;=1

i(;, :)
〉=
:=1

)−U
· Φ · diag

(〈 =∑
;=1

i(:, ;)
〉=
:=1

)−U
. (19)

Consider the row-stochastic version of �, named �'. Its singular values multiplied by
the left (orthonormal) eigenvectors thereof supply manifold embedding coordinates for the
reception points, weighted by significance according to the singular values. Likewise, ��
may be constructed as the row-stochastic transformation of �) from the same Eq. 19, of
which the resultant coordinates grant us the influence points. In each set of coordinates, we
preserve only those corresponding to the highest < singular values—except for the largest,
which is constant by definition.

2.2.3 Full Rank Baseline (FRB)

Did the reduction in degrees of freedom lend its hand to a more generalizable model of the
point process? In order to motivate the reason for having an embedding at all—besides the
gains in interpretability—we pitted the techniques HHG-A/B and HHG-DM against the following:

ℎ(:, ;, g) = i(:, ;)1[g > 0]
'∑
A=1

5A (g), (20)

having estimated the full-rank matrix entries i(·, ·) directly (Zhou et al., 2013b).

2.3 Initialization

We surmised adequate initial conditions for the EM procedure with a fixed empirical protocol.
The surmised influence matrix came by summing up correlations between event types.

î(:, ;) =
∑
8, 9

1[: 9 = :, :8 = ;] · ˆ̂e− ˆ̂· (C 9−C8) (21)

Notice that it remains unscaled. Initial “coefficient” ˆ̂ was computed as the naive reciprocal
inter-arrival time between event types Ĉ = =(# − 1)−1 ∑#−1

8=1 (C8+1 − C8). We justify this
construction on basis of Eq. 9, which forms a weighted average over said arrival times to
garner an optimal estimate for ^−1A . We feed the result of Eq. 21 into the diffusion-maps
algorithm in order to obtain our initial embeddings (Ĝ, Ĥ) ∈ -̂ × .̂ . ∀A V̂2A is initialized at the
mean dyadic squared distance in the embedding; ˆ̂A = (AĈ)−1, in which variety is injected to
nudge the kernels apart; ŴA = '−1 and finally ∀G, ˆ̀(G) = )−1=−1#.

3. Results

First we explore simulated estimations to elucidate the comparative behavior of all four
techniques: HHG-A, HHG-B, HHG-DM, and FRB. Then we present a number of findings and
challenges regarding the characterization, namely, of a recent Ebola epidemic, the COVID-19
epidemic, and an illustrative portion of the options market. As the Euclidean norm, especially
under a Gaussian kernel with exponential decay, suffers from the curse of dimensionality, all
of the following experiments set < ∈ {2, 3}. It remains the topic of future study to incorporate
parsimonious yet more robust metrics.

1331



Marmarelis, Ver Steeg, & Galstyan

3.1 Synthetic Experiments

We intended to stress-test the learning algorithm under small record sizes and numerous
event types; we thereby contrived a few scenarios with known ground-truth parameters
sampled randomly. The underlying models had a single kernel ' = 1 in the response function
and conformed to the formulations from §2.2. Each sampled model was simulated with the
thinning algorithm (see e.g. Mei & Eisner, 2017 and their supplementary material) in order
to generate a time-series record of specified length #. Reception and influence points were
realized uniformly from a unit square (< = 2). Spatial bandwidths V2 were granted a gamma
distribution with shape U = 1/√= and unit scale. Decay rates ^ were standard log-normal as
were backgrounds `(:), though scaled by 1/=.

Stability (Bacry & Muzy, 2016) was ensured by setting W = 1/√=, constraining the Frobenius
norm ‖Φ‖� = 1 that upper-bounds the !2-induced norm, which itself upper-bounds the
spectral radius of the influences d(Φ), the real criterion.

Settings Outcomes

(=) (#) Test Train Div. Impr.
Model (see §2.2) Types Events

HHG-B (Y2 = 10−1,Eq. 18) 15 300 −4.45 ± 2.11 −4.09 ± 1.80 0.15 -0.023
HHG-A (Y = 0.75,Eq. 16) −4.82 ± 2.80 −4.36 ± 2.59 0.14 *0.028
HHG-DM −5.21 ± 4.33 −4.52 ± 2.96 0.12 ***0.040
FRB −5.34 ± 3.88 −4.42 ± 2.94 0.20 —
HHG-B (Y2 = 100) 900 −5.03 ± 3.35 −4.79 ± 3.88 0.11 0.023
HHG-A (Y = 0.25) −5.79 ± 3.98 −5.54 ± 3.78 0.12 -0.012
HHG-DM −3.94 ± 2.39 −3.78 ± 2.31 0.08 **0.044
FRB −6.13 ± 3.61 −5.71 ± 3.21 0.14 —
HHG-B (Y2 = 100) 30 −5.51 ± 4.15 −5.47 ± 4.16 0.11 0.009
HHG-A (Y = 0.5) −4.45 ± 3.96 −4.14 ± 3.48 0.09 0.011
HHG-DM −7.62 ± 6.59 −7.04 ± 5.92 0.11 *0.020
FRB −6.87 ± 4.52 −6.46 ± 4.17 0.30 —
—
HHG-B (< − 1) −7.93 ± 4.29 −8.21 ± 4.78 0.21 -0.010
HHG-B (< + 1) −6.61 ± 4.03 −7.04 ± 4.29 0.12 -0.009
HHG-B (< + 2) −6.17 ± 6.01 −6.60 ± 6.28 0.11 0.035
HHG-B (< + 3) −7.63 ± 4.95 −7.92 ± 5.47 0.12 0.025

Table 1: Agglomerate metrics collected in twenty simulated trials per synthetic experiment.
Outcome columns show, respectively, mean and standard deviation of test and train log
likelihoods (cols. “Test” & “Train”), divergence from ground-truth branching structure (col.
“Div.”), and mean improvement in correlation of the model’s embeddings from GloVe’s, each
with respect to the ground-truth space; t-test significance markers are provided as well (col.
“Impr.”). ***: % ≤ 0.01, **: % ≤ 0.05, *: % ≤ 0.1. The correlation improvements all passed an
Anderson-Darling test (Razali & Wah, 2011) for normality with confidence ≥ 0.95.
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Figure 2: Decreases from in-sample (train) to out-of-sample (test) log likelihoods are
indicative of overfitting. Bootstrapped means across the twenty trials reveal quantiles of 95%
confidence. Comparative behavior varies by (=, #) configurations.

In line with Goodhart’s Law (1981), different facets of the model apparatus were scruti-
nized. First, we sought to ascertain whether the baseline tends to reach high in-sample likeli-
hoods yet abysmal out-of-sample likelihoods, including extreme outliers. We bootstrapped
the mean difference between the train and test log-likelihoods, arriving at confidence intervals
for the test-train gap in Figure 2. This metric is a common indicator of overfitting. Its
applicability is more tenuous in the empirical records scrutinized in §3.2, where the process
is not guaranteed to be stationary.

There are further questions one could ask than the descriptive means and standard
deviations of train and test log ! in Table 1. Did our models recover the chain of causation
between excited events? We opened up the empirical [?8 9A ] estimates and computed their
Hellinger distance (Campbell & Li, 2019) from those stipulated by the ground truth, as if they
were categorical distributions. For each “to be caused” event 9 , the quantities (8, A) ↦→ ?8 9A
form empirical histograms that are poorly suited numerically for the more conventional
KL-divergence measure, unlike the Hellinger distance.

Was the matrix of asymmetric influences i(:, ;) recovered correctly? We visualized the
squared errors between the ground-truth influences and those of the final estimate in Figure 3.

Digging deeper, it is often pertinent to examine residual distributions. Our point-process
model considers some events as (probably) excited by the past and others as purely white-
noise background occurrences. These background events innovate the process by possibly
triggering new dynamics. Should our model fit the record, then it may be called upon to
sample the likely background events from the rest. The interarrival times of that subset
ought to follow an exponential distribution with rate parameters `(:). By the Poisson
superposition principle (Ogata, 1981), we may inspect the distribution of all background
events against Exp(` B ∑

: `(:)). Those quantiles are illustrated in Figure 4.
Finally, as the intrinsic dimensionality < is unknown in practice, we reevaluated HHG-B

under mismatched dimensionalities against the static (< = 2) ground truth. These results
were included for the (30, 900)−case on the bottom of Table 1. (Y1, Y2) remained unchanged.

Comparison to GloVe. In addition to excitatory point processes, our technique shares
commonalities with a dual realm: that of vector embeddings for words and other sequential
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Figure 3: Root Mean Square Error (RMSE) of the recovered (= × =) influence (triggering)
matrix, [i(:, ;)]:,;. Bootstrapped means across the twenty trials reveal quantiles of 95%
confidence. Comparative behavior varies by (=, #) configurations.

entities. We sought to draw comparisons with the latest treatments in that field. Our plan
consisted of feeding the ordered sequence of event-type occurrences into a typical application
of the GloVe scheme (Pennington, Socher, & Manning, 2014), in an attempt to recover a set
of vectors that served as both influence and reception points. We designed a forward-looking
window on the three next events to produce an asymmetric co-occurrence matrix, resulting
in three embedding dimensions.

The final column of Table 1 displays a systematic evaluation against GloVe’s embeddings
with reference to the ground-truth geometry. Concretely, all pairwise distances in each setting
(that of our learned model and the newfound GloVe embeddings) were correlated to those
of the ground truth by Kendall’s rank–based nonparametric statistic (Newson, 2002). The
gap between GloVe’s estimated correlation and the model’s under scrutiny, each in [−1, 1]
and where a positive difference means the model correlated more with the ground truth,
was collected in each trial, and means along with a t-test significance (Student, 1908) were
reported in the last column of Table 1. GloVe is nondeterministic, so we obtained the sample
mean of ten embedding correlations per trial.

3.2 Real-World Experiments

Model Variety (see §2.2) State of the Art, reported in Salehi et al., 2019
HHG-B -A -DM FRB GEO VI-SG (2019) SGLP (2016) ADM4 (2013a)

−0.46 −1.18 −1.80 −0.17 −1.15 −2.06 −3.03 −4.61

Table 2: Test log ! at the best train log ! under various conditions from the Ebola dataset.
Each proposed model shows the best of 500 epochs; the others were trained until convergence.
Log likelihoods are averaged over the record size. GEO refers to interactions modeled over
actual geographic coordinates. (< = 3, Y1 = 10−2, Y2 = 10−1, Y = 2)

Epidemics. Consider an infectious disease within a social apparatus, behaving like a diffu-
sive point process. In 2019, a finely regularized variational approach to learning multivariate
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Figure 4: Synthetic results. Aligning quantiles of empirical and theoretical distributions of
background-event interarrival times, deduced by the respective modalities. Deviations from
the diagonal suggest a model mismatch, particularly in filtering out the background events.
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Hawkes processes from relatively short records (Salehi et al., 2019) was demonstrated on a
dataset of symptom incidences during the ∼2014–2015 Ebola outbreak1. We gave the record
precisely the same treatment the authors did, and obtained significantly higher commensurate
likelihoods than their best case. In turn, they outperformed the cutting-edge approaches
MLE-SGLP (Xu et al., 2016) and AHHG-DM4 (Zhou et al., 2013a) that regularize towards
sparsity.

We also trained a model with an embedding fixed to the geographic coordinates of the
54 West African districts present in the dataset, requiring it only to learn the appropriate
response function. Assessing the value of the real spatial component of this process, we found
that only HHG-B and FRB successfully outperformed the spatiotemporal model. See Table 2.
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Model Parameters Test

HHG-B (Y1 = 102, < = 2) −3.05
HHG-A (Y = 10, < = 2) −3.03
HHG-DM (U = 1, < = 2) −3.28
FRB −4.00
GEO −3.11

Figure 5: Left. Geographic locations of South Korean regions (mostly cities). Colors were
interpolated by hue on the basis of physical proximity to metropolitan Seoul (violet) versus
Busan (red), the two major urban centers. Right. Out-of-sample average log-likelihoods
attained by each model.

COVID-19. The novel coronavirus brought the world to its knees almost a year ago,
as of this writing. The human suffering and socioeconomic disruptions have persisted
since. Identifying harbingers for COVID-19’s spatiotemporal transmission is of paramount
importance for proactive policymaking. The most readily available data consist of confirmed
cases tallied at the end of each day; timestamps of higher fidelity are both impractical and of
questionable value, since a positive test result indicates that virus transmission occurred some
days ago, the precise number of which is ambiguous. Further, the inhomogeneous testing
rate per community and over time contributes to the nonstationarity of the process. Inherent
nonstationarity stems from changing social practices and other exogenous conditions. Reports

1. (Garske, Cori, Ariyarajah, Blake, Dorigatti, Eckmanns, Fraser, Hinsley, Jombart, Mills, Nedjati-Gilani,
Newton, Nouvellet, Perkins, Riley, Schumacher, Shah, Kerkhove, Dye, Ferguson, & Donnelly, 2017)
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Figure 6: Embeddings of the highest-scoring model for South Korea: our novel HHG-A. Each
location is endowed with a pair of an ex and a dot, corresponding to receiving and influencing
points respectively. Panels were faceted by qualitative color groups interpreted from Figure 5.
Under < = 2, the raw hidden-space coordinates were plotted. We added normal noise with
standard deviation of five units to each of the influence points (dots) to reveal the various
colors stacked on top of each other.

of deaths attributed to COVID-19 are potentially even less reliable as proxy indicators for
transmission, due primarily to inconsistent protocols. As before, we only modeled point-
process excitations. Incorporating a self-limiting aspect—as in the compartmental models (e.g.
Bertozzi, Franco, Mohler, Short, & Sledge, 2020)—remains the topic of future study.

South Korea. Early on in the pandemic, South Korea experienced a transient surge in
cases that it swiftly suppressed by strict social controls. We believed we were likely to
succeed in interpreting that record as a relatively stable Hawkes process, as opposed to most
other countries that did not enforce the same measures. We found the meticulous dataset
released by the Korean Centers for Disease Control & Prevention (Kim, 2020). They detail
3,385 incidences from the early outbreaks across the 155 regions of the country, each with at
least one infection occurrence. Diligent testing appears to contribute to the embedding’s
identifiability.
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The test set consisted of the last 30 days in the record, containing 631 incidences. The
table in Figure 5 displays the resultant score of each model. It is also worth noting that the
full-rank baseline FRB registered a significantly higher in-sample likelihood than all the other
models did, indicative of excess overfitting. See the full HHG-A embeddings in Figure 6. The
optimal response function (with one kernel, ' = 1) predicted that each contagious individual
infected W = 0.714 others on average, with a half life of 3.34 days.

Los Angeles is a dense metropolitan area with diverse demographics. We are interested
in recovering the landscape of transmission dynamics. It usually differs from a uniform
spatiotemporal diffusion process because the physical separation between cities is not com-
mensurate to how much their residents come into contact. Distant cities connected by
common routes between home and work may be nearby in a putative “interaction space.” In
the absence of reliable network information on contact rates—for mobility data introduce
their own set of biases2—it would be useful to infer this from the infection rates themselves.

Model Test

HHG-B (Y1 = 10−2, < = 3) 0.694
HHG-A (Y = 20, < = 2) 0.655
HHG-DM (U = 1, < = 3) 0.701
FRB 0.659
GEO 0.684

Table 3: Out-of-sample average log-likelihood for Los Angeles attained by each model.

We found a dataset of confirmed cases in Los Angeles County curated by the Los Angeles
Times (Welsh, 2020). The sheer volume of infections per city is reflected in daily counts.
To curb some of the nonstationary elements we truncated the record to the latest 50,000
cases as of December 12, 2020. To discretize the time series into events, we interpolated the
cumulative daily counts of each city into a continuous signal. Specifically, we extended the
curves linearly after a logarithmic (because of exponential growth) transformation. We then
located the exact timestamp of consecutive increments of a specific threshold size; in this
case study, that was ten infections. The resultant dataset consists of 5,000 events beginning
roughly on November 9. Each of those events belongs to one of the 64 most impacted cities
of Los Angeles County, depicted on the map in Figure 7.

The test set consisted of the last five days in the record, comprising 1,605 events out of the
5,000. Trying < = 2, 3 and a handful of choices for the hyperparameter Y, we arrived at the
results in Table 3. Our novel parametrization HHG-DM scored the highest, and was visualized
in Figure 7 through colorings that reflect topography in the HHG-DM embedding. Its predicted
average infection rate was 0.578 and its half life was 0.0934 days: a little troublesome in
comparison to the South Korean results, and likely due to the instability of this process.

2. (Oliver, Lepri, Sterly, Lambiotte, Delataille, De Nadai, Letouzé, Salah, Benjamins, Cattuto, Colizza,
de Cordes, Fraiberger, Koebe, Lehmann, Murillo, Pentland, Pham, Pivetta, Saramäki, Scarpino, Tizzoni,
Verhulst, & Vinck, 2020)
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Figure 7: Above are the geographic locations of the 64 cities in Los Angeles county that
were impacted with the most confirmed cases of COVID-19. Communities are colored by
locations in the reception (left) and influence (right) embedding in the highest-scoring HHG-DM
model: from violet to red along the principal axis in the embedding space. Image source:
OpenStreetMap. Below are plotted the two principal components of the influence (dots)
and reception (exes) embeddings accompanied by the same colorings as above.

Options market. The intertwined market activity of options with underlying stocks TSLA,
AAPL, and IBM during the unremarkable consecutive trading days of Sept. 15 & 18, 2017 led
to 24 distinct event types. Roughly 100,000 total trades per day were sampled on 120% and
80% fuzzy moneyness levels—as portrayed in Figure 10—at the expiration dates 01/18/2019
& 04/20/2018 for both puts and calls. The historical data was procured from AlgoSeek with
the generosity of Prof. Roger G. Ghanem. The last 45 minutes of trading comprised each
day’s test set. See Table 4.

An auxiliary accuracy metric in Table 4 is derived from categorical cross-entropy of
the predicted event type at the time of an actual occurrence, rendered by the expression
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Figure 8: Embeddings on market data. Eight trade partitions per stock; TSLA is blue,
AAPL green, and IBM orange. Exes receive; dots influence. Embedding scales are normalized
to reflect a unit kernel bandwidth.
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Figure 9: Quantile-quantile plots on inter-arrival times of all background market trades in
the test partition, versus their supposed distributions from the sum of the model’s background
rates.

exp{E8 [log _(:8 , C8) − log
∑
; _(;, C8)]}, in other words the geometric average of prediction

accuracies. Between events, intensities decrease monotonically and with a homogeneous
rate, so the ratio of intensities should stay roughly the same between occurrences—barring
relatively outsized background rates. The “naive” score is computed from simply the mean
empirical rate of each event type. We visualized the two-dimensional color-coded embeddings
in Figure 8 and dsitributional fits for background events in Figure 9.
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Figure 10: Trades at discrete strike prices were resampled according to quantized log-Gaussian
profiles with reference to moneyness at any given point in time. Standard deviations, in
logarithmic space, were half the separation between the two densities’ centers. They were kept
“loose” for the sake of seamless translation even under abrupt fluctuations in the underlying
stock price.

Dataset Model Train Test Half Life (min.) Categorical Accuracy

Sept. 15 HHG-B (Y1 = 101) 3.13 2.60 6.50 × 10−4 0.123 vs. naive 0.099
HHG-A (Y = 20) 3.05 2.57 4.09 × 10−4 0.119 0.099
HHG-DM 2.85 2.34 2.26 × 10−4 0.103 0.099
FRB 2.54 2.11 1.15 × 10−3 0.103 0.099

Sept. 18 HHG-B (Y1 = 10−1) 3.27 2.82 5.41 × 10−4 0.135 vs. naive 0.108
HHG-A (Y = 1) 3.13 2.72 5.88 × 10−4 0.123 0.108
HHG-DM 2.88 2.48 2.32 × 10−4 0.103 0.108
FRB 2.75 2.43 8.78 × 10−4 0.117 0.108

Table 4: Market fits with associated half lives. In HHG-A, the best in-sample Y was picked
out of a handful of candidates. A similar grid search was enacted on powers of 10 for Y1 in
HHG-B. Outcome of 1,000 epochs depicted. Categorical accuracy is a prediction score ∈ [0, 1]
for the next event type, at the point of occurrence of the next event.

4. Discussion

We expose some empirical details for estimating models and then analyze significant results.
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Figure 11: Indices of the stopping epochs for the synthetic experiments. Closer to the end
(1,000 epochs) suggests convergence, hence stability of the algorithm.
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4.1 Convergence

Of our three proposals for hidden-embedding point process estimators HHG-B, HHG-A, and
HHG-DM, we concede that the iterator’s stability tends to decline in that order of enumeration.

Observe, in Figure 11, the epochs of the best models found. HHG-DM and HHG-B converge
best in the synthetic experiments. Interestingly, that tendency did not transfer onto real
datasets. That phenomenon demonstrates the value of theoretical guarantees for convergence.
HHG-DM appears to learn in the same way that a random search with some upward drift does,
contrary to our initial expectations. Every now and then the HHG-DM sampler would stumble
upon a model with high in-sample likelihood that also garnered the best fit out of sample.

On the other hand, HHG-A and even more so HHG-B typically achieved their ideal fits at
the end of their learning curves, even though HHG-A underwhelmed in the synthetic cases. In
the Korean dataset, for instance, both HHG-A and HHG-B reached their maximum likelihoods
at the last epoch. That was not the case for HHG-DM.

4.2 Time-Scale Drift
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Figure 12: Illustrative scenario (Sept. 18 options) of time-scale drift in the model’s response
function alongside a growing test-set likelihood.

As a model would converge to its optimal estimate, certain overarching parameters like
the response time scale (homogeneous across event-type pairs) would drift. See e.g. Figure 12.
It proved quite difficult to steer the optimizer away from its “destined” time scale.

Disentangling time scales. Parsing out longer behaviors out of high-frequency trades is
severely difficult, and the gamma prior failed to facilitate it. Whenever we implemented a prior
strong enough to influence the learning algorithm, it would overpower the course of training
and degenerate the model. Should one desire to investigate longer-term patterns through

1342



Point Process Metric Space

individual trades, it would be imperative to study higher-order interactions (Marmarelis &
Berger, 2005) in the future.

4.3 Predictive Ability

We display the epoch with the best training score in all of our experiments. Most notable in
Table 1 of synthetic results are the following: HHG-A/B yield a higher test log ! than FRB in all
three rows; HHG-DM’s results are a little more mixed. The ability to reveal chains of causality
between excited events, as measured by the Hellinger divergence from the ground-truth
branching structure, is better in HHG than in FRB. On average, the embeddings mostly mirror
the ground-truth space more accurately than GloVe does, but HHG-DM here proved most
consistent with significant improvement throughout.

We conjecture that the stiffness of a (normalized) spectral decomposition in HHG-DM
provides some benefits and some drawbacks: it facilitates topological discovery—hence its
correlation to the ground-truth layout—yet clashes with the real point-process objective. The
direct optimizers of gradient-based HHG-A and curvature-informed HHG-B appear increasingly
more resilient in general.

The excessive overfitting of the full-rank Hawkes process (FRB) is illuminated in Figure 2,
as well as the more granular Figure 4.

As is the case for convergence in the synthetic experiments, HHG-B and HHG-DM stand out
as most accurately recovering the influence matrix in Figure 3.

Focusing on the first two columns of the aforementioned figures, (15, 900) & (30, 900),
we examine the relative performance of HHG-B and FRB as a function of increasing number
of event types (the original process dimensionality). The full-rank baseline, FRB, exhibits
inferior ability in recovering influences than HHG-B when the event types increase from 15
to 30, as witnessed in Figure 3. A similar effect occurs to a lesser extent in Figure 4. The
main driving force behind the failure of FRB appears to manifest in the over-determination
of possible interactions between event types.

Included additionally are the results of model misspecification for HHG-B in the
(30, 900) case within the final rows of Table 1. Standing against the two-dimensional ground
truth, models with < = 1, 3, 4, 5 showcase the general sensitivity to over-compression (< = 1)
yet FRB-like performance following under-compression (< = 3, 4, 5). A surprising outcome is
the divergence and GloVe-correlation improvement of the under-compressed models. All three
of those models exhibit consistent lowered divergence metrics. The experiments with < = 4, 5
yielded astounding correlation improvements, albeit of high variance. Sometimes—although
not always, as is evident in the Ebola investigation below—a few extra degrees of freedom
garner the helpful kind of flexibility.

Benchmark on the Ebola dataset. Table 2’s results depict superiority in our models to
the SotA. It is puzzling that our simple full-rank baseline EM estimator FRB outperforms the
more sophisticated formulations, when MLE-SGLP resembles a regularized version thereof.
Perhaps its shrinkage priors do not suit this particular dataset, or all ∼17,000 training events
sufficiently fleshed out the possible interactions without need for regularization. Sparsity per
se did not bear out as an appropriate constraint. Our hidden-embedding model HHG-B was
the only such estimator that outperformed the spatiotemporal model built on geographic
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“ground truths.” This finding suggests that geographic information is recovered in that
embedding, at least.
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Figure 13: Per-epoch evolution of model estimates for the Ebola dataset. Black line indicates
the decay-rate parameter set a priori for the other SotA models in Table 2.

It was difficult to transparently compare our methodologies against the SotA from Salehi
et al., 2019. Part of the separation of outcomes could have been due to our framing that
compels the estimator to learn a response decay rate on its own. The other cited models had
those parameters selected via grid search, and remain static during the course of training.
As witnessed in Figure 13, our proposed models roughly converged to similar decay rates as
those chosen in Salehi et al., 2019, but the paths followed were rather variable.

The half lives of all models are largely similar, aligning with the time scales of the
particular Ebola strain under consideration that had an incubation period of about 8–12
days (Kerkhove, Bento, Mills, Ferguson, & Donnelly, 2015).

Intrinsic dimensionality of the Ebola process. One would expect that a model like
HHG-B would replicate FRB as the degrees of freedom equilibrate, i.e. < → =. However,
that was not found to be the case. It appears that our fixed-point EM algorithms vastly
complicate learning, for little payoff, in comparison to FRB when < increases. We deemed it
sufficient to demonstrate that the likelihood is not monotonic in embedding dimensionality
<. To make our case, listed are likelihoods of the most stable HHG-B as a function of <:
HHG-B(2) = −1.7, HHG-B(3) = −0.46, HHG-B(4) = −0.80. It therefore appears that the optimal
dimensionality lies at < = 3, hinting at an intrinsic Euclidean geometry of the process.

Transmission network implicit in COVID-19 infection rates. The manifold struc-
ture of contagion networks has long been studied (Taylor, Klimm, Harrington, Kramár,
Mischaikow, Porter, & Mucha, 2015), although estimation thereof remains elusive. Our
point-process models identified embedding candidates based on the multivariate statistics of
the infections. For one, we observe that the two urban hubs Seoul and Busan are not as far
apart in the hidden influence space (Figure 6) as they are geographically. They still cluster
in their respective neighborhoods—Busan to the right, Seoul to the left. The generally rural
regions in between seem to spread across this topology. Regarding Los Angeles (Figure 7,)
we first note that there is visible geographic locality preserved in the colorings. The reception
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embedding exhibits contiguous streaks of red/orange, of yellow/green, and of blue/violet.
The influence embedding has communities of green/yellow scattered about.

There are clear and acute differences between the embeddings and geography, albeit some
geographic structure is recovered in the embedding. We expected divergences, as previously
stated, since physical communities and even mobility networks do not always correspond to
the underlying transmission process. All these factors may serve to inform an epidemiological
model as proxies, in agglomeration, to the true contact rates between individuals. We provide
an additional factor, derived from the measured infection rates themselves. It is distinct from
the other datasets that estimate interaction between communities. We also demonstrated its
predictive ability.

On our results pertaining to the pandemic, we decided against including the auxiliary
goodness-of-fit tests on inter-arrival times and classification accuracies. Our reasoning is that
the COVID-19 infection process is clearly not a Hawkes process; it is unstable, multiphasic,
and multifaceted. Our models provide a coarse approximation of its dynamics. Other
quantities more specific to a Hawkes process may be misleading. On the other hand, the
likelihood is salient on any point process and embeddings should yield qualitative meaning.
Our other point-process applications demonstrate the validity of the presented models.

Analysis of market embeddings. Events belonging to each stock ticker tend to attract
influencing points of the same color in Figure 8, with deviations probably due to relative
perceptions by the market. Efficient estimators are necessary in order to discern a lack of
stationarity; in this case, transferring our Sept. 15 HHG-A model onto the Sept. 18 test set
yielded an average log ! improvement from 2.57 to 2.82. Vice versa, transferring from Sept.
18 to Sept. 15 led to a decrease from 2.72 to 2.45. Thus point-process behavior largely persists,
but not entirely. Further, aggregate b (;)’s confirm our broad intuition that out-of-money
trades move markets the most (Yang, Kutan, & Ryu, 2018).

Quantile plots in Figure 9 indicate that the embedding models—all with the HHG- suffix—
outperformed the baseline in statistically filtering out white background events according to
their estimated probabilities ?1 9 . A constant-intensity Poisson process would witness arrival
times distributed exponentially (Bacry & Muzy, 2016); therefore, any deviation from that in
a model’s sampled background events suggests the presence of uncaptured interactions.

We observed that the categorical accuracy measured in Table 4, assessing classification
ability towards the next event to come by ignoring temporal granularities, is highest for
HHG-B in the two trading days studied. It beats the naive score by at least 2.4% each time.

4.4 Modality Prescription

Given the most consistently smooth learning curves under HHG-B during both synthetic
experimentation and empirical investigations, we recommend the implementation of HHG-B
in future endeavors. The final test-set likelihoods of HHG-B were always remarkably close to
the top, if not the actually the highest. There was no empirical dataset scrutinized for which
HHG-B failed significantly in comparison to HHG-A, HHG-B, or even FRB.

1345



Marmarelis, Ver Steeg, & Galstyan

5. Related Work

The fundamental notion driving the doubly stochastic process, first attributed to Cox (1955),
manifests in a variety of ways including the Latent Point Process Allocation (Lloyd, Gunter,
Osborne, Roberts, & Nickson, 2016) model. In fact, note the meteoric diversity of Bayesian
methods permeating serially dependent point processes (e.g. Apostolopoulou, Linderman,
Miller, & Dubrawski, 2019; Detommaso, Hoitzing, Cui, & Alamir, 2019). Zhang et al. (2019)
sample the branching structure in order to infer the Gaussian process (GP) that constitutes
the influence function. GPs, usually accompanied by inducing points, sometimes directly
modulate the intensity (Liu & Hauskrecht, 2019; Lloyd et al., 2016; Aglietti, Bonilla,
Damoulas, & Cripps, 2019; Ding, Khan, Sato, & Sugiyama, 2018; Flaxman, Chirico, Pereira,
& Loeffler, 2019). Linderman and Adams (Linderman & Adams, 2015) took an approach
that estimated a matrix very similar to our [i8 9A ], relying on discretized binning and
variational approximation. Salehi et al. (2019) exploited a reparametrization trick akin to
those in variational autoencoders in order to efficiently estimate the tensor of basis-function
coefficients.

Recent progress has been made in factorizing interactions with a direct focus on scalabil-
ity (Nickel & Le, 2020), improving on prior work in low-rank processes (Lemonnier et al.,
2017). Block models on observed interaction pairs also exist (Junuthula et al., 2019). While
these all achieve compact Hawkes processes, our methodology distinguishes itself by learning
a Euclidean embedding with the semantics of a metric space, not a low-rank projection.

Deep nonparametric (Poisson or even intensity-free) point process models3 made massive
strides in the past few years. However, not all domains permit such expressive characterization.
Our baseline estimator resembles most closely the one described in the work of Zhou et
al. (2013b), whereas the spatiotemporal aspect is inspired from the likes of Schoenberg et
al. (see Veen & Schoenberg, 2008; Mohler, 2014; Yuan et al., 2019, ). Variational substitutes
in the EM algorithm have also been explored (Cho, Galstyan, Brantingham, & Tita, 2014).
A concurrent study to ours by Zhu et al. (2020) parametrizes a heterogeneous kernel in real
Euclidean space by deep neural networks.

6. Conclusions

We demonstrated the viability of estimating embeddings for events in an interpretable
metric space by tying it to a self-exciting point process. The three proposed expectation-
maximization algorithms extract parsimonious serial dependencies to different degrees of
reliability, partly depending on record length and dimensionality. The optimizer of second
order HHG-B converges most consistently to an accurate model. In comparison to learning
the full triggering matrix (with FRB,) our embedding models achieve a higher likelihood out
of sample. The estimated time scale for Ebola contagion settles close to its natural rate.
Our framework paves the way for generalization, extension to more elaborate models, and
consequent potential for actionable insights.

3. (notably Mei & Eisner, 2017; Lu, Wang, Shi, Yu, & Ye, 2019; Loaiza-Ganem, Perkins, Schroeder,
Churchland, & Cunningham, 2019; Okawa, Iwata, Kurashima, Tanaka, Toda, & Ueda, 2019; Omi, 2019;
Sharma, Ghosh, & Fiterau, 2019; Shang & Sun, 2019; He et al., 2015; Du, Dai, Trivedi, Upadhyay,
Gomez-Rodriguez, & Song, 2016; Jia & Benson, 2019; Mehrasa, Deng, Ahmed, Chang, He, Durand,
Brubaker, & Mori, 2019, )
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Appendix A

Proof of Lemma 1

We seek to demonstrate that log !2 ≤ log ! always. Recall the likelihood function and its
complete-data relative:

log ! =
#∑
9=1

log _(: 9 , C 9) − Λ,

log !2 =
#∑
9=1

(
#∑
8=1

'∑
A=1

?8 9A log ℎA (: 9 , :8 , C 9 − C8) + ?1 9 log `(: 9)
)
− Λ, where ?8 9A =

ℎA (: 9 , :8 , C 9 − C8)
_(: 9 , C 9)

.

The intensity may be written as _(:, C) = ∑#
8=1

∑'
A=1 ℎA (:, :8 , C − C8) + `(:). Compare each

pairing of a receiving event’s (indexed by 9) additive contribution to the two objectives; on
one hand, where log ! contains log _(: 9 , C 9), log !2 reckons with

#∑
8=1

'∑
A=1

?8 9A log ℎA (: 9 , :8 , C 9 − C8) + ?1 9 log `(: 9)

=

∑#
8=1

∑'
A=1 ℎA (: 9 , :8 , C 9 − C8) log ℎA (: 9 , :8 , C 9 − C8) + `(: 9) log `(: 9)

_(: 9 , C 9)

=

∑#
8=1

∑'
A=1 ℎA (: 9 , :8 , C 9 − C8) log ℎA (: 9 , :8 , C 9 − C8) + `(: 9) log `(: 9)∑#

8=1

∑'
A=1 ℎA (: 9 , :8 , C 9 − C8) + `(: 9)

.

To minimize distractions, we focus on the structure of what is found inside the logarithms
and what is found on the outside. Accordingly, the above expression takes the abstract form∑

@ F@ log G@∑
@ F@

in terms of positive (for they serve as arguments to a logarithm) weights F@ and
contents G@, over arbitrary indices @. The concave logarithm admits the following relation,
by Jensen’s inequality: ∑

@ F@ log G@∑
@ F@

≤ log

∑
@ F@G@∑
@ F@

.

Since F@ = G@ corresponding to expansion terms in the intensity function,

log

∑
@ F@G@∑
@ F@

= log

[
#∑
8=1

'∑
A=1

ℎ2A (: 9 , :8 , C 9 − C8) + `2(:8)
]
− log

[
#∑
8=1

'∑
A=1

ℎA (: 9 , :8 , C 9 − C8) + `(: 9)
]
.

We can likewise compare log
∑

@ F@ G@∑
@ F@

to log
∑
@ G@;

log

∑
@ F@G@∑
@ F@

− log
∑
@

G@ = log

[
#∑
8=1

'∑
A=1

ℎ2A (: 9 , :8 , C 9 − C8) + `2(:8)
]
− 2 log

[
#∑
8=1

'∑
A=1

ℎA (: 9 , :8 , C 9 − C8) + `(: 9)
]

= log
∑
@

G2@ − log
(∑
@

G@

)2
≤ 0 by the multinomial theorem.
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Hence ∑
@ F@ log G@∑

@ F@
≤ log

∑
@ F@G@∑
@ F@

≤ log
∑
@

G@ .

∴

∑#
8=1

∑'
A=1 ℎA (: 9 , :8 , C 9 − C8) log ℎA (: 9 , :8 , C 9 − C8) + `(: 9) log `(: 9)∑#

8=1

∑'
A=1 ℎA (: 9 , :8 , C 9 − C8) + `(: 9)

≤ log
[ #∑
8=1

'∑
A=1

ℎA (: 9 , :8 , C 9 − C8) + `(: 9)
]

#∑
8=1

'∑
A=1

?8 9A log ℎA (: 9 , :8 , C 9 − C8) + ?1 9 log `(: 9) ≤ log
[ #∑
8=1

'∑
A=1

ℎA (: 9 , :8 , C 9 − C8) + `(: 9)
]
.

Therefore we hold that log !2 ≤ log !. �

Proof of Proposition 2

We are once again concerned with the behavior of

9 ↦→
#∑
8=1

'∑
A=1

?8 9A log ℎA (: 9 , :8 , C 9 − C8) + ?1 9 log `(: 9),

now in the case that ?′
8 9A
=
ℎ′A (: 9 ,:8 ,C 9−C8)
_′ (: 9 ,C 9 ) and the contents of the aforementioned logarithms

do not match—hence the apostrophes. Note that the above is equivalent to

#∑
8=1

'∑
A=1

?8 9A log
ℎA (: 9 , :8 , C 9 − C8)

_(: 9 , C 9)
+ ?1 9 log

`(: 9)
_(: 9 , C 9)

+ log _(: 9 , C 9),

since
∑#
8=1

∑'
A=1 ?8 9A + ?1 9 = 1 ∀ 9 . Now let us examine the effects of a mismatch, ℎ′A ≠ ℎA ⇐⇒

?′
8 9A
≠ ?8 9A . We have, essentially,

#∑
8=1

'∑
A=1

?′8 9A log ?8 9A + ?′1 9 log ?
′
1 9 + log _(: 9 , C 9).

When [?] and [?′] are put under the lens of discrete/categorical distributions, we may parse
the expression in terms of a cross entropy

−� ( [?′], [?]) + log _(: 9 , C 9).

Since [?′] is independent of _(: 9 , C 9), our quantity reaches its maximum when the distribution
[?′] is set to equal [?] (where � ( [?′], [?]) = � ( [?′]) + � ! ( [?′] | | [?]) is minimized). The
same cannot be said about maximization with respect to [?], which depends on log _(: 9 , C 9)
as well. The latter task proves useful in learning.

Thus when we perform a single learning iteration and vary the model parameters to
evaluate log !2 on some [?] fixed a priori, it will still offer a lower bound to log !. �
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